[go: up one dir, main page]

WO2025169773A1 - Development month age estimation device, development month age estimation method, and development month age estimation program - Google Patents

Development month age estimation device, development month age estimation method, and development month age estimation program

Info

Publication number
WO2025169773A1
WO2025169773A1 PCT/JP2025/002414 JP2025002414W WO2025169773A1 WO 2025169773 A1 WO2025169773 A1 WO 2025169773A1 JP 2025002414 W JP2025002414 W JP 2025002414W WO 2025169773 A1 WO2025169773 A1 WO 2025169773A1
Authority
WO
WIPO (PCT)
Prior art keywords
developmental age
developmental
test
child
age estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2025/002414
Other languages
French (fr)
Japanese (ja)
Inventor
啓峰 大和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of WO2025169773A1 publication Critical patent/WO2025169773A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/22Social work or social welfare, e.g. community support activities or counselling services

Definitions

  • This disclosure relates to a developmental age estimation device, a developmental age estimation method, and a developmental age estimation program that estimate a child's developmental age.
  • test sheet that displays multiple test items (such as movements and exercises that a child of the age being tested can perform) that are set according to the child's developmental stage, and have the tester (a medical or educational professional, etc.) use tools to perform tests on the child being tested for each test item, determine whether the child passed or failed each test item, and then graphically represent the pass/fail results to estimate the child's developmental age (see Non-Patent Document 1).
  • test items such as movements and exercises that a child of the age being tested can perform
  • tester a medical or educational professional, etc.
  • the estimation of the developmental age based on the test results is performed by the person in charge of the test (i.e., a human), and the test results may vary depending on the subjectivity of the person in charge. Furthermore, with conventional technology, since the final estimation of the developmental age requires human judgment, there is also the problem of a lack of speed in obtaining test results.
  • the inventors of the present application discovered that by using data on the pass rate for each test item (i.e., the proportion of children in a certain age group who achieve that test item), it is possible to obtain highly objective estimates of developmental age while increasing the freedom of test items (i.e., flexibility in selection). Note that in the above-mentioned Non-Patent Document 1, the pass rate for each test item is only used for selecting and rearranging test items, and is not used directly for estimating developmental age.
  • the present disclosure aims to provide a developmental age estimation device, a developmental age estimation method, and a developmental age estimation program that enable highly objective estimation results regarding developmental age while increasing the degree of freedom in test items.
  • a developmental age estimation function is generated based on data regarding the continuous probability distribution of the implemented test items and the test results for each of those implemented test items, and the developmental age of the child being tested is estimated based on that developmental age estimation function. This makes it possible to obtain highly objective estimation results regarding developmental age while increasing the degree of freedom in the test items.
  • the processor may acquire data on multiple ages in months and the pass rates corresponding to each of the multiple test items, and generate data on the continuous probability distribution based on the pass rate data.
  • data regarding continuous probability distributions can be easily obtained based on passage rate data corresponding to multiple lunar ages.
  • the processor may determine two parameters of a beta distribution probability density function based on the passage rate data, and generate data regarding the continuous probability distribution based on a cumulative distribution function obtained by integrating the beta distribution probability density function.
  • the processor may set age ranges for the pass rate data for each of the plurality of test items and convert the age ranges into a range from 0 to 1.
  • data regarding continuous probability distributions can be appropriately obtained based on the probability density function of the beta distribution.
  • the processor may set a probability function of the pass rate for each of the performed test items based on the data regarding the continuous probability distribution and the test results, and the developmental age estimation function may include a product of the probability functions for each of the performed test items.
  • the developmental age of the child being tested can be easily estimated based on the test results and data regarding the continuous probability distribution for each test item.
  • a display device that displays the estimated developmental age.
  • the user of the developmental age estimation device can easily check the estimated developmental age.
  • one aspect of the present disclosure is a developmental age estimation method using a developmental age estimation device that estimates a child's developmental age, wherein the developmental age estimation device generates a developmental age estimation function based on data relating to continuous probability distributions for two or more implemented test items used in testing the child to be tested out of multiple test items for estimating the developmental age of the child to be tested, and the test results for each of the implemented test items, estimates the developmental age of the child to be tested based on the mode of the distribution of pass rates obtained by the developmental age estimation function, and outputs the estimated developmental age result.
  • a developmental age estimation function is generated based on data regarding the continuous probability distribution of the implemented test items and the test results for each of those implemented test items, and the developmental age of the child being tested is estimated based on that developmental age estimation function. This makes it possible to obtain highly objective estimation results regarding developmental age while increasing the degree of freedom in the test items.
  • one aspect of the present disclosure is a developmental age estimation program that causes a computer to execute a developmental age estimation process to estimate a child's developmental age, wherein the developmental age estimation process includes the steps of: generating a developmental age estimation function based on data relating to continuous probability distributions for two or more implemented test items used in testing the child to be tested out of multiple test items for estimating the developmental age of the child to be tested, and the test results for each of the implemented test items; estimating the developmental age of the child to be tested based on the mode of the distribution of pass rates obtained by the developmental age estimation function; and outputting the estimated developmental age result.
  • a developmental age estimation function is generated based on data regarding the continuous probability distribution of the implemented test items and the test results for each of those implemented test items, and the developmental age of the child being tested is estimated based on that developmental age estimation function. This makes it possible to obtain highly objective estimation results regarding developmental age while increasing the degree of freedom in the test items.
  • FIG. 10 is an explanatory diagram showing an example of pass rate data for a plurality of inspection items.
  • FIG. 10 is an explanatory diagram showing an example of (A) a probability distribution and (B) a cumulative distribution of pass rate data.
  • FIG. 10 is an explanatory diagram showing an example of display content on an examination item confirmation screen.
  • the developmental age estimation system 1 includes a developmental age estimation device 2 that estimates a child's developmental age, and a user terminal 4 that is communicatively connected to the developmental age estimation device 2 via a communication network 3 such as the Internet.
  • the developmental age estimation device 2 is composed of a computer that executes a process for estimating a child's developmental age (hereinafter referred to as the "developmental age estimation process").
  • the developmental age estimation device 2 is composed of a server that executes a process for estimating a child's developmental age in response to a request from a client used by a user (here, the user terminal 4).
  • the developmental age estimation process by the developmental age estimation device 2 is performed based on test result data for each of multiple test items conducted in the past, and test results for the test items being conducted on the child currently being tested (hereinafter referred to as "conducted test items"). Tests for the conducted test items can be conducted by the tester in the same way as conventional testing methods.
  • test items used to estimate developmental age can be, for example, the test items adopted in the above-mentioned non-patent document 1.
  • the developmental age estimation system 1 is not limited to these and can also use other known testing methods (for example, "DENVER II Denver Developmental Assessment Method" by W. K. Frankenburg, M.
  • the developmental age estimation system 1 should use test items for which the reliability of data on pass rates for multiple ages (for example, the percentage of children of a certain age who achieve that test item) has been established as test results. Furthermore, if data on pass rates for multiple ages for a new test item is obtained, the developmental age estimation system 1 can also adopt that new test item.
  • children primarily refers to preschool-age infants and school-age children aged 0 to 12 years.
  • developmental age estimation using the systems, devices, methods, and programs disclosed herein is not limited to children, and can be applied to people of any chronological age (including adolescents and adults).
  • the user terminal 4 is composed of an information processing device with communication functions, such as a smartphone, tablet terminal, or PC, used by the user.
  • the user may include, for example, a medical or educational professional, but is not limited to this, and the user may also be someone other than such a professional (for example, a family member of a child).
  • the developmental age estimation system 1 may include multiple user terminals.
  • the user terminal 4 is configured to cause the developmental age estimation device 2 to execute the developmental age estimation process, but this is not limited to this, and the user terminal 4 may also function as the developmental age estimation device (i.e., execute the developmental age estimation process).
  • the developmental age estimation device 2 is not limited to a server, and may be configured as an information processing device such as a smartphone, tablet terminal, or PC, just like the user terminal 4.
  • the developmental age estimation device 2 does not necessarily need to be connected to a communications network, and can be operated directly by the user.
  • the developmental age estimation process in the developmental age estimation system 1 may be realized by the cloud (i.e., a collection of virtual resources and services).
  • the developmental age estimation device 2 has a communication unit 11, an input unit 12, a display unit 13, a memory unit 14, and a control unit 15.
  • the communication unit 11 includes an antenna, communication circuitry, etc., and performs wireless or wired communication with other devices (such as the user terminal 4 in this case) via the communication network 3 in accordance with a known communication protocol.
  • the input unit 12 includes a known input device (e.g., a keyboard) for inputting operation commands, etc. to the developmental age estimation device 2. However, if operation commands, etc. are input to the developmental age estimation device 2 from another device (e.g., the user terminal 4), the input unit 12 may be omitted.
  • a known input device e.g., a keyboard
  • operation commands, etc. are input to the developmental age estimation device 2 from another device (e.g., the user terminal 4)
  • the input unit 12 may be omitted.
  • the display unit 13 includes a known device (for example, a display device such as an LCD display) for displaying (i.e., outputting) information used by the developmental age estimation device 2 and information generated by the developmental age estimation device 2.
  • a display device such as an LCD display
  • information from the developmental age estimation device 2 is output to another device (for example, the user terminal 4)
  • the display unit 13 may be omitted.
  • voice i.e., from a speaker not shown.
  • the memory unit 14 includes a storage or other storage device for storing data and information necessary for processing by the developmental age estimation device 2.
  • the memory unit 14 does not need to be provided integrally with the developmental age estimation device 2, and may be configured as an external storage device connected to the developmental age estimation device 2 via a network or the like. As will be described later, the memory unit 14 stores test item data 21, distribution function data 22, test result data 23, and developmental age estimation function data 24, etc.
  • the control unit 15 includes one or more processors (CPU, MPU, etc.), and the processor executes a predetermined control program (an example of a developmental age estimation program) to perform the processing required to estimate the developmental age.
  • the control unit 15 also has overall control over the operation of the developmental age estimation device 2.
  • test item data collection unit 31 collects data on multiple test items performed in the past from data stored in other databases (not shown), etc., and stores this data in the memory unit 14 as test item data 21.
  • the test item data 21 includes data on the pass rates for multiple ages for multiple test items performed in the past.
  • Figure 2 shows the pass rate for test item No. 134, "walk two to three steps.” More specifically, Figure 2 shows that for "walk two to three steps," 44.2% of 11-month-old children achieved this (i.e., they were able to "walk two to three steps"), 68.3% of 13-month-old children achieved this, 89.5% of 15-month-old children achieved this, and 98.0% of 17-month-old children achieved this.
  • the pass rates for other test items are similar to that for test item No. 134.
  • test item data 21 includes data on test items used in known test methods.
  • the test item data 21 may also include data obtained on new test items. Note that at least a portion of the test item data 21 stored in the memory unit 14 may be data entered in advance by an administrator of the developmental age estimation system 1, etc.
  • the distribution function estimation unit 32 generates a probability density function and a cumulative distribution function for the pass rate for each test item based on the test item data 21.
  • a beta distribution is used as the continuous probability distribution.
  • the probability density function f(x; ⁇ , ⁇ ) for the pass rate of each test item is expressed by the following equation (1).
  • the age ranges in months for which the pass rate for each test item was obtained are converted to correspond to the range of the random variable between 0 and 1.
  • the distribution function estimation unit 32 can appropriately control the peak and variance of the probability density distribution by determining two parameters ⁇ and ⁇ , as shown in Figure 3(A), for example.
  • the distribution function estimation unit 32 determines the parameters ⁇ and ⁇ so as to fit the pass rate values of each test item in the test item data 21 (i.e., actual measured values obtained from past test results), thereby obtaining an appropriate continuous probability distribution for the pass rate of each test item based on the cumulative distribution function F(x; ⁇ , ⁇ ), as shown in Figure 3(B), for example.
  • the distribution function estimation unit 32 can determine the parameters ⁇ and ⁇ so that the sum of squared residuals between the pass rate value for each test item in the test item data 21 and the pass rate at the corresponding age in months (more precisely, the predetermined value of the random variable converted from the age in months) calculated using the cumulative distribution function F(x; ⁇ , ⁇ ) is minimized.
  • a general-purpose scientific calculation library may be used to determine the parameters ⁇ and ⁇ .
  • the BFGS method Broyden-Fletcher-Goldfarb-Shanno method
  • the L-BFGS-B method Lited-memory Broyden-Fletcher-Goldfarb-Shanno method with Box constraints
  • the distribution function estimation unit 32 inversely converts the range of the random variable from 0 to 1 into the lunar age interval, and obtains data on the cumulative distribution function F(x; ⁇ , ⁇ ) of the passage rate with lunar age as a variable (an example of data related to a continuous probability distribution).
  • the data for the probability density function f(x; ⁇ , ⁇ ) and cumulative distribution function F(x; ⁇ , ⁇ ) of the beta distribution obtained for each test item are sequentially stored in the memory unit as distribution function data 22.
  • the distribution function estimation unit 32 can generate the probability density function and cumulative distribution function described above when a new test item is added to the test item data 21 or when pass rate data for an existing test item is updated.
  • the distribution function estimation unit 32 first identifies the minimum value x_min and maximum value x_max of age-in-months X in the data group of the test item to be processed in the test item data 21.
  • the data group of the test item is assumed to be composed of ages in months and passage rates corresponding to the two white circles ( ⁇ ) shown in Figure 4.
  • the distribution function estimation unit 32 identifies the minimum value y_min and maximum value y_max of passage rate Y in the data group of that test item.
  • the distribution function estimation unit 32 calculates the X coordinates of both ends of interval 2W, which is obtained by doubling interval W, whose ends are the X coordinates of the intersection points, and widening it around the midpoint of the interval (see the black circle ( ⁇ ) in Figure 4). Furthermore, the distribution function estimation unit 32 can determine the smallest interval that includes these X coordinates and has integers on both ends as the age interval to be subjected to the age conversion process for the target test item. The distribution function estimation unit 32 can convert the determined age interval so that its ends are 0 and 1, respectively.
  • the test item setting unit 33 sets test items to be performed from among the test items included in the test item data 21.
  • the test item setting unit 33 can set multiple test items selected by the tester (e.g., input from the user terminal 4) as test items to be performed.
  • the developmental age estimation device 2 can pre-calculate the age range for each test item (i.e., the age range in which a significant change occurs in the pass rate for each test item) based on the cumulative distribution function F(x; ⁇ , ⁇ ) obtained for each of the multiple test items.
  • the developmental age estimation device 2 can then generate a test item confirmation screen showing the age range calculated for each test item, as shown in Figure 5, for example.
  • the developmental age estimation device 2 can send the test item confirmation screen to an external device (here, the user terminal 4) and display it on its display.
  • the test item confirmation screen displays a list of each test item (see test item numbers 313 to 382 in Figure 5) along with a graphic (here, a bar for displaying the age range, hereafter referred to as the "age range display bar") indicating the range of the age range covered by each test item.
  • the length of the age range display bar is set to correspond to a specific pass rate range (for example, 2.5% to 97.5%).
  • the age range display bar also displays a symbol (here, a black circle ( ⁇ )) indicating the age at which the pass rate is greatest.
  • test personnel can determine the range of age ranges that each test item covers (i.e., that are effective for estimating developmental age). Test personnel can also determine whether the test item they are about to select is appropriate for the current test by checking the length of the age range display bar and the position of the symbol indicating the age at which the pass rate is highest. Test personnel can set the desired test item (e.g., letter) as the test item to be performed by selecting it (e.g., by touching the touch panel display) on the test item confirmation screen. Alternatively, test items can be evaluated in advance using a similar method, and only those that are concluded to be appropriate can be used for subsequent processing.
  • desired test item e.g., letter
  • test item setting unit 33 may randomly set the test items to be performed from among the test items included in the test item data 21, or may use a specific algorithm that sequentially selects the most appropriate test items to be performed in accordance with the estimated developmental age.
  • the test result acquisition unit 34 acquires the test results for each test item selected for testing the child being tested. For example, an examiner can conduct a test for each test item and input the test results into the developmental age estimation device 2 from the user terminal 4. However, the test results may also be input by an automatic testing device instead of an examiner.
  • the automatic testing device is equipped with a trained model prepared in advance for the test, and can acquire test results for each test item based on video footage of the child being tested's movements.
  • the test results acquired by the test result acquisition unit 34 are sequentially stored in the memory unit as test result data 23.
  • Test result data 23 includes, for example, an identifier indicating "achieved” or “not achieved” for each implemented test item. However, test result data 23 may also include an identifier indicating "partial achievement” (i.e., a state in which it is difficult to determine whether the test item has been completely achieved) for each implemented test item.
  • the developmental age estimation function generation unit 35 generates a developmental age estimation function based on data on the cumulative distribution function F(x; ⁇ , ⁇ ) for two or more implemented test items used in the test of the child being tested, and the test results for each implemented test item.
  • the estimated pass rate distribution function Ei(m) for each test item by age is defined as follows:
  • the probability function Pi(m) of the pass rate according to the test results is defined as follows. However, this may be omitted in the case of "partial achievement.”
  • the developmental age estimation function P(m) can be expressed as the following equation (3) using the probability function Pi(m) described above.
  • n Number of test items M lower : Minimum lower limit of age in months for each test item (integer value) M upper : The maximum upper limit of the age range for each test item (integer value)
  • the developmental age estimation unit 36 can estimate the developmental age of the child being tested based on the mode of the distribution of values obtained by the developmental age estimation function P(m) (i.e., the conditional probability of obtaining given test items and their implementation results at each age).
  • the developmental age estimation unit 36 In the probability distribution based on the developmental age estimation function P(m), a peak (i.e., the mode) occurs, as shown in Figure 6, for example, and the developmental age estimation unit 36 can estimate the developmental age of the child being tested based on the age value corresponding to that peak.
  • the developmental age estimation unit 36 may output the age value corresponding to the peak, or may output a predetermined range that includes the age value corresponding to the peak (for example, the age value corresponding to the peak is used as the median).
  • the position of the peak in the probability distribution based on the developmental age estimation function P(m) depends on the likelihood function corresponding to the numerator in equation (3). Therefore, the developmental age estimation function P(m) shown in equation (3) may be expressed using only the likelihood function, omitting the denominator.
  • the developmental age estimation unit 36 can output the above results to the display unit 13 or user terminal 4, but may also output an error message stating that an appropriate estimation result could not be obtained.
  • the developmental age estimation unit 36 can output an error message to the display unit 13 or the user terminal 4 if it determines that there is a contradiction in the test results. For example, in the test items shown in FIG. 5, if the result of an implemented test item targeting a certain age range is "not achieved" and the result of an implemented test item targeting a higher age range than the not-achieved implemented test item is "achieved," the developmental age estimation unit 36 can determine that there is a contradiction in the test results.
  • each of the units 31-36 in the control unit 15 can be realized by one or more processors executing a predetermined control program.
  • the control unit 15 can also comprehensively control the operation of the developmental age estimation device 2.
  • the examiner can access the developmental age estimation device 2 from the user terminal 4 and execute the developmental age estimation process.
  • the examiner can input (i.e., select) the desired test items (i.e., implemented test items) into the developmental age estimation device 2 from the user terminal 4.
  • the examiner can input the test results of each implemented test item into the developmental age estimation device 2 from the user terminal 4.
  • the examiner can input the test results into the developmental age estimation device 2 while sequentially implementing multiple implemented test items on the child being tested (i.e., while sequentially obtaining the test results of each implemented test item).
  • the developmental age estimation device 2 generates a developmental age estimation function based on the data for the cumulative distribution function F(x; ⁇ , ⁇ ) for each implemented test item and the test results for each implemented test item. Next, the developmental age estimation device 2 estimates the developmental age of the child being tested based on the most frequent value of the probability distribution obtained by the generated developmental age estimation function. Furthermore, the developmental age estimation device 2 transmits the estimated developmental age results to the user terminal 4 and displays them on the display of the user terminal 4.
  • the user terminal 4 functions as a developmental age estimation device, the above-mentioned developmental age estimation process can be performed entirely by the user terminal 4.
  • the developmental age estimation system 1 generates a developmental age estimation function P(m) based on data on the cumulative distribution function F(x; ⁇ , ⁇ ) of the pass rate for the implemented test items, with age as a variable, and the test results for each of those implemented test items, and estimates the developmental age of the child being tested based on that developmental age estimation function P(m).
  • the "age in months" indicating a child's developmental stage does not necessarily have to be expressed in months, but may instead be expressed in years or years and months.
  • the age intervals do not necessarily have to be integer values, but may include decimal values.
  • a beta distribution is used as the continuous probability distribution for the pass rate of each test item, but other probability density distribution functions can also be used as alternatives, as long as the parameters specifying the distribution can be uniquely and appropriately determined using existing pass rate data.
  • Developmental age estimation system 2 Developmental age estimation device 3: Communication network 4: User terminal 11: Communication unit 12: Input unit 13: Display unit 14: Memory unit 15: Control unit 21: Test item data 22: Distribution function data 23: Test result data 24: Developmental age estimation function data 31: Test item data collection unit 32: Distribution function estimation unit 33: Test item setting unit 34: Test result acquisition unit 35: Developmental age estimation function generation unit 36: Developmental age estimation unit

Landscapes

  • Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Child & Adolescent Psychology (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Relating to the estimation of the development month age of a child, the present invention obtains an estimation result with high objectivity regarding the development month age while increasing the degree of freedom of inspection items. [Solution] A development month age estimation device 3 comprises: a processor 15 for executing processing for estimating the development month age of a child which is the subject of inspection on the basis of inspection results for a plurality of inspection items; and a storage device 14 for storing data on a continuous probability distribution indicating a passage rate where month ages in a predetermined range are taken as a variable, for each of the plurality of inspection items. The processor 15 generates a development month age estimation function on the basis of data on a continuous probability distribution for two or more implementation inspection items used for inspection among the plurality of inspection items and an inspection result for each of the implementation inspection items, estimates the development month age of a child which is the subject of inspection on the basis of the mode value of a distribution of passage rates obtained by the development month age estimation function, and outputs an estimation result of the development month age.

Description

発達月齢推定装置、発達月齢推定方法、及び発達月齢推定プログラムDevelopmental age estimation device, developmental age estimation method, and developmental age estimation program

 本開示は、子供の発達月齢を推定する発達月齢推定装置、発達月齢推定方法、及び発達月齢推定プログラムに関する。 This disclosure relates to a developmental age estimation device, a developmental age estimation method, and a developmental age estimation program that estimate a child's developmental age.

 従来、運動、言語、知能、及び情緒などに関する子供(乳幼児等を含む)の発達には、個人差があることが知られている。子供の養育者等は、子供の現在の発達状況と、同月齢(または同年齢)の他の子供における標準的な発達状況との比較(標準的な発達状況との乖離を把握すること)を望む場合がある。また、子供の発達月齢(すなわち、検査対象の子供の発達状況を示す月数を基準とする尺度)を適切に推定することは、医療や教育の分野においても重要である。 It has long been known that there are individual differences in the development of children (including infants and toddlers) in terms of motor, language, intelligence, and emotions. Caregivers may wish to compare their child's current developmental status with the standard developmental status of other children of the same age (or to understand any deviations from the standard developmental status). Furthermore, appropriately estimating a child's developmental age (i.e., a scale based on the number of months that indicates the developmental status of the child being tested) is also important in the fields of medicine and education.

 子供の発達月齢を推定するための技術としては、例えば、子供の発達段階に応じて設定された複数の検査項目(例えば、検査対象の月齢の子供が可能な動作や運動など)が表示された検査表を用いて、検査担当者(医療や教育の専門家等)が、用具などを使用して検査対象の子供の各検査項目に関する検査を実行し、各検査項目に対する合否を判定し、その合否の結果を図式化して検査対象の子供の発達月齢を推定する方法が知られている(非特許文献1を参照)。 One known technique for estimating a child's developmental age is to use a test sheet that displays multiple test items (such as movements and exercises that a child of the age being tested can perform) that are set according to the child's developmental stage, and have the tester (a medical or educational professional, etc.) use tools to perform tests on the child being tested for each test item, determine whether the child passed or failed each test item, and then graphically represent the pass/fail results to estimate the child's developmental age (see Non-Patent Document 1).

遠城寺宗徳著「遠城寺式・乳幼異分析的発達検査法」慶應義塾大学出版会株式会社 2022年(改訂新装版初版第7刷)"Tojoji Method: Infant Differential Development Testing Method" by Tojoji Munenori, Keio University Press, 2022 (revised and reprinted first edition, 7th printing)

 ところで、上記非特許文献1に開示された検査以外にも子供の発達月齢を推定するための様々な検査手法が開発されており、それぞれ独自に設定された検査項目を用いて発達月齢の推定が行われている。したがって、そのような従来技術では、子供の発達月齢を推定するための検査は、検査項目の優劣や適否にかかわらず検査手法ごとに定められた検査項目に従って実施される必要がある。そのため、従来技術では、検査項目の自由度の高い標準化された検査によって発達月齢を推定することは困難である。 Incidentally, in addition to the test disclosed in Non-Patent Document 1 above, various other testing methods have been developed for estimating a child's developmental age, and each method estimates the developmental age using its own unique set of test items. Therefore, with such conventional technology, tests for estimating a child's developmental age must be conducted in accordance with the test items specified for each testing method, regardless of the merits or suitability of the test items. For this reason, with conventional technology, it is difficult to estimate a child's developmental age using standardized tests with a high degree of freedom in test items.

 また、上記非特許文献1に記載のような従来技術では、検査結果に基づく発達月齢の推定は検査担当者(すなわち、人間)が行うため、検査結果は検査担当者の主観によってばらつきが生じる場合がある。さらに、従来技術では、最終的な発達月齢の推定において人間の判断が必要となるため、検査結果を得るまでの迅速性にも欠けるという問題もある。 Furthermore, with conventional technology such as that described in Non-Patent Document 1, the estimation of the developmental age based on the test results is performed by the person in charge of the test (i.e., a human), and the test results may vary depending on the subjectivity of the person in charge. Furthermore, with conventional technology, since the final estimation of the developmental age requires human judgment, there is also the problem of a lack of speed in obtaining test results.

 本願発明者は、鋭意検討した結果、各検査項目に対する通過率(すなわち、ある月齢集団の子供においてその検査項目を達成している個体の割合)のデータを利用することで、検査項目の自由度(すなわち、選択の柔軟性)を高めつつ、発達月齢に関して客観性の高い推定結果を得ることが可能となることを見出した。なお、上記非特許文献1では、各検査項目の通過率は、検査項目の選択や並べ替えなどに利用されるにすぎず、発達月齢の推定に直接利用されてはいない。 After extensive research, the inventors of the present application discovered that by using data on the pass rate for each test item (i.e., the proportion of children in a certain age group who achieve that test item), it is possible to obtain highly objective estimates of developmental age while increasing the freedom of test items (i.e., flexibility in selection). Note that in the above-mentioned Non-Patent Document 1, the pass rate for each test item is only used for selecting and rearranging test items, and is not used directly for estimating developmental age.

 本開示は、以上の背景に鑑み、検査項目の自由度を高めつつ、発達月齢に関して客観性の高い推定結果を得ることを可能とする発達月齢推定装置、発達月齢推定方法、及び発達月齢推定プログラムを提供することを課題とする。 In light of the above background, the present disclosure aims to provide a developmental age estimation device, a developmental age estimation method, and a developmental age estimation program that enable highly objective estimation results regarding developmental age while increasing the degree of freedom in test items.

 上記課題を解決するために本開示のある態様は、子供の発達月齢を推定する発達月齢推定装置であって、複数の検査項目に対する検査結果に基づき、検査対象の子供の発達月齢を推定する処理を実行するプロセッサと、前記複数の検査項目の各々に関し、所定の範囲の月齢を変数とした通過率を示す連続確率分布に関するデータを記憶する記憶装置と、を備え、前記プロセッサは、前記複数の検査項目のうち前記検査対象の子供の検査に用いられた2以上の実施検査項目についての前記連続確率分布に関するデータと、前記実施検査項目の各々に対する検査結果に基づき発達月齢推定関数を生成し、前記発達月齢推定関数によって得られる前記通過率の分布の最頻値に基づき、前記検査対象の子供の発達月齢を推定し、前記発達月齢の推定結果を出力する構成とする。 In order to solve the above problem, one aspect of the present disclosure is a developmental age estimation device that estimates a child's developmental age, and includes a processor that executes processing to estimate the developmental age of a child being tested based on the test results for a plurality of test items, and a storage device that stores data regarding a continuous probability distribution indicating the pass rate for each of the plurality of test items, with age within a predetermined range as a variable. The processor generates a developmental age estimation function based on the data regarding the continuous probability distribution for two or more implemented test items used in the test of the child being tested out of the plurality of test items, and the test results for each of the implemented test items, and estimates the developmental age of the child being tested based on the mode of the distribution of pass rates obtained by the developmental age estimation function, and outputs the estimated developmental age.

 この態様によれば、実施検査項目についての連続確率分布に関するデータと、それら実施検査項目の各々に対する検査結果とに基づき発達月齢推定関数を生成し、その発達月齢推定関数に基づき検査対象の子供の発達月齢を推定するため、検査項目の自由度を高めつつ、発達月齢に関して客観性の高い推定結果を得ることが可能となる。 In this embodiment, a developmental age estimation function is generated based on data regarding the continuous probability distribution of the implemented test items and the test results for each of those implemented test items, and the developmental age of the child being tested is estimated based on that developmental age estimation function. This makes it possible to obtain highly objective estimation results regarding developmental age while increasing the degree of freedom in the test items.

 上記の態様において、前記プロセッサは、前記複数の検査項目の各々に関し、複数の月齢と、それら複数の月齢にそれぞれ対応する通過率のデータとを取得し、前記通過率のデータに基づき、前記連続確率分布に関するデータを生成するとよい。 In the above aspect, the processor may acquire data on multiple ages in months and the pass rates corresponding to each of the multiple test items, and generate data on the continuous probability distribution based on the pass rate data.

 この態様によれば、複数の月齢にそれぞれ対応する通過率のデータに基づき、連続確率分布に関するデータを容易に取得することができる。 According to this aspect, data regarding continuous probability distributions can be easily obtained based on passage rate data corresponding to multiple lunar ages.

 上記の態様において、前記プロセッサは、前記通過率のデータに基づきベータ分布の確率密度関数の2つのパラメータを決定し、前記ベータ分布の確率密度関数の積分によって得られる累積分布関数に基づき、前記連続確率分布に関するデータを生成するとよい。 In the above aspect, the processor may determine two parameters of a beta distribution probability density function based on the passage rate data, and generate data regarding the continuous probability distribution based on a cumulative distribution function obtained by integrating the beta distribution probability density function.

 この態様によれば、ベータ分布の確率密度関数に基づき、子供の発達月齢の推定に適した連続確率分布に関するデータを取得することができる。 According to this aspect, it is possible to obtain data relating to a continuous probability distribution suitable for estimating a child's developmental age in months, based on the probability density function of the beta distribution.

 上記の態様において、前記プロセッサは、前記複数の検査項目の各々に関する前記通過率のデータの月齢区間を設定し、前記月齢区間を0から1の範囲に変換するとよい。 In the above aspect, the processor may set age ranges for the pass rate data for each of the plurality of test items and convert the age ranges into a range from 0 to 1.

 この態様によれば、ベータ分布の確率密度関数に基づき、連続確率分布に関するデータを適切に取得することができる。 According to this aspect, data regarding continuous probability distributions can be appropriately obtained based on the probability density function of the beta distribution.

 上記の態様において、前記プロセッサは、前記実施検査項目の各々について、前記連続確率分布に関するデータおよび前記検査結果に基づき前記通過率の確率関数をそれぞれ設定し、前記発達月齢推定関数は、前記実施検査項目の各々の前記確率関数の積を含むとよい。 In the above aspect, the processor may set a probability function of the pass rate for each of the performed test items based on the data regarding the continuous probability distribution and the test results, and the developmental age estimation function may include a product of the probability functions for each of the performed test items.

 この態様によれば、実施検査項目の各々についての連続確率分布に関するデータおよび検査結果に基づき、検査対象の子供の発達月齢を容易に推定することができる。 In this manner, the developmental age of the child being tested can be easily estimated based on the test results and data regarding the continuous probability distribution for each test item.

 上記の態様において、前記発達月齢の推定結果を表示する表示装置を更に備えるとよい。 In the above aspect, it is preferable to further include a display device that displays the estimated developmental age.

 この態様によれば、発達月齢推定装置のユーザは、発達月齢の推定結果を容易に確認することができる。 In this manner, the user of the developmental age estimation device can easily check the estimated developmental age.

 上記課題を解決するために本開示のある態様は、子供の発達月齢を推定する発達月齢推定装置による発達月齢推定方法であって、前記発達月齢推定装置は、検査対象の子供の発達月齢を推定するための複数の検査項目のうち、前記検査対象の子供の検査に用いられた2以上の実施検査項目についての連続確率分布に関するデータと、前記実施検査項目の各々に対する検査結果とに基づき発達月齢推定関数を生成し、前記発達月齢推定関数によって得られる通過率の分布の最頻値に基づき、前記検査対象の子供の発達月齢を推定し、前記発達月齢の推定結果を出力する構成とする。 In order to solve the above problem, one aspect of the present disclosure is a developmental age estimation method using a developmental age estimation device that estimates a child's developmental age, wherein the developmental age estimation device generates a developmental age estimation function based on data relating to continuous probability distributions for two or more implemented test items used in testing the child to be tested out of multiple test items for estimating the developmental age of the child to be tested, and the test results for each of the implemented test items, estimates the developmental age of the child to be tested based on the mode of the distribution of pass rates obtained by the developmental age estimation function, and outputs the estimated developmental age result.

 この態様によれば、実施検査項目についての連続確率分布に関するデータと、それら実施検査項目の各々に対する検査結果とに基づき発達月齢推定関数を生成し、その発達月齢推定関数に基づき検査対象の子供の発達月齢を推定するため、検査項目の自由度を高めつつ、発達月齢に関して客観性の高い推定結果を得ることが可能となる。 In this embodiment, a developmental age estimation function is generated based on data regarding the continuous probability distribution of the implemented test items and the test results for each of those implemented test items, and the developmental age of the child being tested is estimated based on that developmental age estimation function. This makes it possible to obtain highly objective estimation results regarding developmental age while increasing the degree of freedom in the test items.

 上記課題を解決するために本開示のある態様は、子供の発達月齢を推定する発達月齢推定処理をコンピュータに実行させる発達月齢推定プログラムであって、前記発達月齢推定処理には、検査対象の子供の発達月齢を推定するための複数の検査項目のうち、前記検査対象の子供の検査に用いられた2以上の実施検査項目についての連続確率分布に関するデータと、前記実施検査項目の各々に対する検査結果とに基づき発達月齢推定関数を生成し、前記発達月齢推定関数によって得られる通過率の分布の最頻値に基づき、前記検査対象の子供の発達月齢を推定し、前記発達月齢の推定結果を出力する手順が含まれる構成とする。 In order to solve the above problem, one aspect of the present disclosure is a developmental age estimation program that causes a computer to execute a developmental age estimation process to estimate a child's developmental age, wherein the developmental age estimation process includes the steps of: generating a developmental age estimation function based on data relating to continuous probability distributions for two or more implemented test items used in testing the child to be tested out of multiple test items for estimating the developmental age of the child to be tested, and the test results for each of the implemented test items; estimating the developmental age of the child to be tested based on the mode of the distribution of pass rates obtained by the developmental age estimation function; and outputting the estimated developmental age result.

 この態様によれば、実施検査項目についての連続確率分布に関するデータと、それら実施検査項目の各々に対する検査結果とに基づき発達月齢推定関数を生成し、その発達月齢推定関数に基づき検査対象の子供の発達月齢を推定するため、検査項目の自由度を高めつつ、発達月齢に関して客観性の高い推定結果を得ることが可能となる。 In this embodiment, a developmental age estimation function is generated based on data regarding the continuous probability distribution of the implemented test items and the test results for each of those implemented test items, and the developmental age of the child being tested is estimated based on that developmental age estimation function. This makes it possible to obtain highly objective estimation results regarding developmental age while increasing the degree of freedom in the test items.

 以上の態様によれば、検査項目の自由度を高めつつ、発達月齢に関して客観性の高い推定結果を得ることができる。 The above aspects allow for greater flexibility in test items while providing highly objective estimates of developmental age.

実施形態に係る発達月齢推定装置を含む発達月齢推定システムの構成図A configuration diagram of a developmental age estimation system including a developmental age estimation device according to an embodiment. 複数の検査項目に関する通過率のデータの一例を示す説明図FIG. 10 is an explanatory diagram showing an example of pass rate data for a plurality of inspection items. 通過率のデータに関する(A)確率分布及び(B)累積分布の例を示す説明図FIG. 10 is an explanatory diagram showing an example of (A) a probability distribution and (B) a cumulative distribution of pass rate data. 各検査項目に対する月齢区間の設定例を示す説明図An explanatory diagram showing an example of setting age ranges for each test item 検査項目確認画面における表示内容の一例を示す説明図FIG. 10 is an explanatory diagram showing an example of display content on an examination item confirmation screen. 発達月齢推定関数に基づく通過率の確率分布の一例を示す説明図An explanatory diagram showing an example of a probability distribution of the passage rate based on the developmental age estimation function.

 以下、本開示に係る発達月齢推定システム、発達月齢推定装置、発達月齢推定装置によって発達月齢を推定する方法、及び発達月齢を推定する処理を実行するためのプログラムに関する実施形態について、図面を参照しながら説明する。 Below, embodiments of a developmental age estimation system, a developmental age estimation device, a method for estimating a developmental age using a developmental age estimation device, and a program for executing the process of estimating a developmental age according to the present disclosure will be described with reference to the drawings.

 図1に示すように、発達月齢推定システム1は、子供の発達月齢を推定する発達月齢推定装置2と、インターネット等の通信ネットワーク3を介して発達月齢推定装置2に対して通信可能に接続されるユーザ端末4とを含む。 As shown in FIG. 1, the developmental age estimation system 1 includes a developmental age estimation device 2 that estimates a child's developmental age, and a user terminal 4 that is communicatively connected to the developmental age estimation device 2 via a communication network 3 such as the Internet.

 発達月齢推定装置2は、子供の発達月齢を推定するための処理(以下、「発達月齢推定処理」という)を実行するためのコンピュータから構成される。本実施形態では、発達月齢推定装置2は、ユーザが使用するクライアント(ここでは、ユーザ端末4)からのリクエストに応じて子供の発達月齢を推定する処理を実行するサーバから構成される。 The developmental age estimation device 2 is composed of a computer that executes a process for estimating a child's developmental age (hereinafter referred to as the "developmental age estimation process"). In this embodiment, the developmental age estimation device 2 is composed of a server that executes a process for estimating a child's developmental age in response to a request from a client used by a user (here, the user terminal 4).

 発達月齢推定装置2による発達月齢推定処理は、過去に実施された複数の検査項目の各々に関する検査結果のデータ、及び現在の検査対象である子供に対して実施される検査項目(以下、「実施検査項目」という)に関する検査結果に基づき実行される。実施検査項目に関する検査は、検査担当者よって従来の検査手法と同様に行うことができる。 The developmental age estimation process by the developmental age estimation device 2 is performed based on test result data for each of multiple test items conducted in the past, and test results for the test items being conducted on the child currently being tested (hereinafter referred to as "conducted test items"). Tests for the conducted test items can be conducted by the tester in the same way as conventional testing methods.

 過去の検査結果のデータは、子供の発達月齢を推定するために設定された検査項目に毎に得られる。発達月齢推定システム1では、発達月齢を推定するための検査項目として、例えば、上述の非特許文献1において採用されている検査項目を利用することができる。ただし、これに限らず、発達月齢推定システム1では、他の公知の検査手法(例えば、W. K. Frankenburg, M. D. 著「DENVER II デンバー発達判定法」社団法人 日本小児保健協会 2016年(第2版2刷);中村淳子、大川一郎、野原理恵、芹澤奈菜美著「田中ビネー知能検査V」田研出版株式会社 2003年;鈴木治太郎著「改訂版 鈴木ビネー知能検査」古市出版 2007年;新版K式発達検査研究会(編集)「新版K式発達検査法2001年版」ナカニシヤ出版 2008年;津守真、稲毛教子著「乳幼児精神発達診断法」大日本図書 1961年;田中美郷ほか. 改訂版 随意運動発達検査,音声言語医学,1990, 31: p172-185;佐竹恒夫著「質問ー応答関係検査」エスコアール 1997年を参照)において採用されている任意の検査項目を利用することができる。 Data on past test results is obtained for each test item set to estimate a child's developmental age. In the developmental age estimation system 1, the test items used to estimate developmental age can be, for example, the test items adopted in the above-mentioned non-patent document 1. However, the developmental age estimation system 1 is not limited to these and can also use other known testing methods (for example, "DENVER II Denver Developmental Assessment Method" by W. K. Frankenburg, M. D., Japan Pediatric Health Association, 2016 (2nd edition, 2nd printing); "Tanaka-Binet Intelligence Test V" by Junko Nakamura, Ichiro Okawa, Rie Nohara, and Nanami Serizawa, Taken Publishing Co., Ltd., 2003; "Revised Edition Suzuki-Binet Intelligence Test" by Harutaro Suzuki, Furuichi Publishing, 200 You can use any test items adopted in the revised Voluntary Motor Development Test, Speech and Linguistic Medicine, 1990, 31: pp. 172-185; New Edition K-Type Development Test Research Group (ed.), "New Edition K-Type Development Test Method 2001 Edition," Nakanishiya Publishing, 2008; Tsumori Makoto and Inage Noriko, "Infant Mental Development Diagnostic Method," Dainippon Tosho, 1961; Tanaka Misato et al., "Revised Edition Voluntary Motor Development Test," Speech and Linguistic Medicine, 1990, 31: pp. 172-185; Satake Tsuneo, "Question-Response Relationship Test," Escoal, 1997).

 特に、発達月齢推定システム1では、検査結果として複数の月齢に対する通過率(例えば、ある月齢の子供がその検査項目を達成している割合)のデータの信頼性が確立されている検査項目を利用するとよい。なお、発達月齢推定システム1では、新たな検査項目について複数の月齢に対する通過率のデータが得られた場合には、その新たな検査項目を採用することもできる。 In particular, the developmental age estimation system 1 should use test items for which the reliability of data on pass rates for multiple ages (for example, the percentage of children of a certain age who achieve that test item) has been established as test results. Furthermore, if data on pass rates for multiple ages for a new test item is obtained, the developmental age estimation system 1 can also adopt that new test item.

 なお、本実施形態において、「子供」は主として、暦年齢にして0~12歳となる、学齢前の乳幼児と学童期の児童を指す。ただし、本開示に係るシステム、装置、方法、及びプログラムを用いた発達月齢の推定は、子供に限定されず、任意の暦年齢の人物(青年期や成人期を含む)に適用することが可能である。 In this embodiment, "children" primarily refers to preschool-age infants and school-age children aged 0 to 12 years. However, developmental age estimation using the systems, devices, methods, and programs disclosed herein is not limited to children, and can be applied to people of any chronological age (including adolescents and adults).

 ユーザ端末4は、ユーザによって使用されるスマートフォン、タブレット端末、またはPCなどの通信機能を有する情報処理装置から構成される。ユーザには、例えば、医療や教育の専門家が含まれるが、これに限らず、ユーザはそのような専門家以外の者(例えば、子供の家族)であってもよい。また、図1では、1つのユーザ端末4のみが示されているが、発達月齢推定システム1には複数のユーザ端末が含まれ得る。 The user terminal 4 is composed of an information processing device with communication functions, such as a smartphone, tablet terminal, or PC, used by the user. The user may include, for example, a medical or educational professional, but is not limited to this, and the user may also be someone other than such a professional (for example, a family member of a child). Furthermore, although only one user terminal 4 is shown in Figure 1, the developmental age estimation system 1 may include multiple user terminals.

 本実施形態では、ユーザ端末4が発達月齢推定装置2に発達月齢推定処理を実行させる構成としたが、これに限らず、ユーザ端末4が発達月齢推定装置として機能(すなわち、発達月齢推定処理を実行)してもよい。つまり、発達月齢推定装置2は、サーバに限定されず、ユーザ端末4と同様にスマートフォン、タブレット端末、またはPCなどの情報処理装置によって構成され得る。その場合、発達月齢推定装置2は、必ずしも通信ネットワークに接続される必要はなく、ユーザによって直接操作され得る。また、発達月齢推定システム1における発達月齢推定処理は、クラウド(すなわち、仮想的なリソースやサービスの集合体)によって実現されてもよい。 In this embodiment, the user terminal 4 is configured to cause the developmental age estimation device 2 to execute the developmental age estimation process, but this is not limited to this, and the user terminal 4 may also function as the developmental age estimation device (i.e., execute the developmental age estimation process). In other words, the developmental age estimation device 2 is not limited to a server, and may be configured as an information processing device such as a smartphone, tablet terminal, or PC, just like the user terminal 4. In this case, the developmental age estimation device 2 does not necessarily need to be connected to a communications network, and can be operated directly by the user. Furthermore, the developmental age estimation process in the developmental age estimation system 1 may be realized by the cloud (i.e., a collection of virtual resources and services).

 発達月齢推定装置2は、通信部11、入力部12、表示部13、記憶部14、及び制御部15を有する。 The developmental age estimation device 2 has a communication unit 11, an input unit 12, a display unit 13, a memory unit 14, and a control unit 15.

 通信部11は、アンテナや通信回路等を含み、公知の通信プロトコルにしたがって他の装置(ここでは、ユーザ端末4など)と通信ネットワーク3を介して無線通信または有線通信を行う。 The communication unit 11 includes an antenna, communication circuitry, etc., and performs wireless or wired communication with other devices (such as the user terminal 4 in this case) via the communication network 3 in accordance with a known communication protocol.

 入力部12は、発達月齢推定装置2に対する操作命令等を入力するための公知の入力装置(例えば、キーボードなど)を含む。ただし、発達月齢推定装置2への操作命令等の入力が他の装置(例えば、ユーザ端末4)から行われる場合には、入力部12は省略されてもよい。 The input unit 12 includes a known input device (e.g., a keyboard) for inputting operation commands, etc. to the developmental age estimation device 2. However, if operation commands, etc. are input to the developmental age estimation device 2 from another device (e.g., the user terminal 4), the input unit 12 may be omitted.

 表示部13は、発達月齢推定装置2で使用される情報や、発達月齢推定装置2で生成された情報などを表示(すなわち、出力)するための公知の装置(例えば、液晶ディスプレイなどの表示装置)を含む。ただし、発達月齢推定装置2からの情報の出力が他の装置(例えば、ユーザ端末4)に対して行われる場合には、表示部13は省略されてもよい。また、そのような情報は、音声によって(すなわち、図示しないスピーカから)出力されてもよい。 The display unit 13 includes a known device (for example, a display device such as an LCD display) for displaying (i.e., outputting) information used by the developmental age estimation device 2 and information generated by the developmental age estimation device 2. However, if information from the developmental age estimation device 2 is output to another device (for example, the user terminal 4), the display unit 13 may be omitted. Furthermore, such information may be output by voice (i.e., from a speaker not shown).

 記憶部14は、発達月齢推定装置2の処理に必要なデータや情報を記憶するためのストレージ等の記憶装置を含む。なお、記憶部14は、発達月齢推定装置2と一体に設けられる必要はなく、ネットワーク等を介して発達月齢推定装置2に接続された外部の記憶装置によって構成されてもよい。後述するように、記憶部14には、検査項目データ21、分布関数データ22、検査結果データ23、及び発達月齢推定関数データ24などが記憶される。 The memory unit 14 includes a storage or other storage device for storing data and information necessary for processing by the developmental age estimation device 2. The memory unit 14 does not need to be provided integrally with the developmental age estimation device 2, and may be configured as an external storage device connected to the developmental age estimation device 2 via a network or the like. As will be described later, the memory unit 14 stores test item data 21, distribution function data 22, test result data 23, and developmental age estimation function data 24, etc.

 制御部15は、1以上のプロセッサ(CPU、MPU等)を含み、そのプロセッサが所定の制御プログラム(発達月齢推定プログラムの一例)を実行することにより、発達月齢の推定に必要な処理を実行することができる。また、制御部15は、発達月齢推定装置2の動作を統括的に制御することができる。 The control unit 15 includes one or more processors (CPU, MPU, etc.), and the processor executes a predetermined control program (an example of a developmental age estimation program) to perform the processing required to estimate the developmental age. The control unit 15 also has overall control over the operation of the developmental age estimation device 2.

 制御部15において、検査項目データ収集部31は、他のデータベース(図示せず)に保存されたデータ等から過去に実施された複数の検査項目に関するデータを収集し、検査項目データ21として記憶部14に記憶する。検査項目データ21には、例えば図2に示すように、過去に実施された複数の検査項目に関し、複数の月齢に対する通過率のデータが含まれる。 In the control unit 15, the test item data collection unit 31 collects data on multiple test items performed in the past from data stored in other databases (not shown), etc., and stores this data in the memory unit 14 as test item data 21. For example, as shown in Figure 2, the test item data 21 includes data on the pass rates for multiple ages for multiple test items performed in the past.

 図2では、例えば、検査項目No. 134の「2~3歩あるく」に関する通過率が示されている。より詳細には、図2には、「2~3歩あるく」について、生後11ヶ月の子供のうち44.2%が達成しており(すなわち、「2~3歩あるく」ことが可能であり)、生後13ヶ月の子供のうち68.3%が達成しており、生後15ヶ月の子供のうち89.5%が達成しており、生後17ヶ月の子供のうち98.0%が達成していることが示されている。他の検査項目の通過率についても検査項目No. 134と同様である。 Figure 2, for example, shows the pass rate for test item No. 134, "walk two to three steps." More specifically, Figure 2 shows that for "walk two to three steps," 44.2% of 11-month-old children achieved this (i.e., they were able to "walk two to three steps"), 68.3% of 13-month-old children achieved this, 89.5% of 15-month-old children achieved this, and 98.0% of 17-month-old children achieved this. The pass rates for other test items are similar to that for test item No. 134.

 検査項目データ21には、上述のように公知の検査手法において採用されている検査項目についてのデータが含まれる。また、検査項目データ21には、新たな検査項目について得られたデータが含まれ得る。なお、記憶部14に記憶された検査項目データ21の少なくとも一部は、予め発達月齢推定システム1の管理者等によって入力されたデータであってもよい。 As described above, the test item data 21 includes data on test items used in known test methods. The test item data 21 may also include data obtained on new test items. Note that at least a portion of the test item data 21 stored in the memory unit 14 may be data entered in advance by an administrator of the developmental age estimation system 1, etc.

 制御部15において、分布関数推定部32は、各検査項目に関する通過率について、検査項目データ21に基づき確率密度関数および累積分布関数を生成する。 In the control unit 15, the distribution function estimation unit 32 generates a probability density function and a cumulative distribution function for the pass rate for each test item based on the test item data 21.

 本実施形態では、連続確率分布としてベータ分布が用いられる。各検査項目の通過率に関する確率密度関数f(x;α,β)は、次の式(1)で表される。詳細は後述するが、ベータ分布を採用するにあたり、各検査項目において通過率が得られた月齢区間は、0~1の確率変数の範囲に対応するようにそれぞれ変換される。 In this embodiment, a beta distribution is used as the continuous probability distribution. The probability density function f(x;α,β) for the pass rate of each test item is expressed by the following equation (1). As will be explained in detail later, when using the beta distribution, the age ranges in months for which the pass rate for each test item was obtained are converted to correspond to the range of the random variable between 0 and 1.

       

 ここで、
 x:確率変数(0≦x≦1)
 α,β:正の実数
where:
x: random variable (0≦x≦1)
α, β: positive real numbers

 ただし、式(1)におけるベータ関数B(α,β)は、次の式で表される。 However, the beta function B(α, β) in equation (1) is expressed as follows:

     

 さらに、式(1)に示したベータ分布の確率密度関数f(x;α,β)を積分することにより、次の式(2)で表されるベータ分布の累積分布関数F(x;α,β)が得られる。 Furthermore, by integrating the probability density function f(x;α,β) of the beta distribution shown in equation (1), we obtain the cumulative distribution function F(x;α,β) of the beta distribution expressed by the following equation (2).

       

 このようなベータ分布の確率密度関数f(x;α,β)によれば、例えば図3(A)に示すように、分布関数推定部32は、2つのパラメータα、βを決定することにより、確率密度分布のピークや分散を適切に制御することができる。そして、分布関数推定部32は、検査項目データ21における各検査項目の通過率の値(すなわち、過去の検査結果から得られた実測値)にフィッティングさせるようにパラメータα、βを決定することにより、例えば図3(B)に示すように、累積分布関数F(x;α,β)に基づき、各検査項目の通過率に関する適切な連続確率分布を得ることができる。 With this type of beta distribution probability density function f(x;α,β), the distribution function estimation unit 32 can appropriately control the peak and variance of the probability density distribution by determining two parameters α and β, as shown in Figure 3(A), for example. The distribution function estimation unit 32 then determines the parameters α and β so as to fit the pass rate values of each test item in the test item data 21 (i.e., actual measured values obtained from past test results), thereby obtaining an appropriate continuous probability distribution for the pass rate of each test item based on the cumulative distribution function F(x;α,β), as shown in Figure 3(B), for example.

 例えば、分布関数推定部32は、検査項目データ21における各検査項目の各通過率の値と、累積分布関数F(x;α,β)によって求められた対応する月齢(より厳密には月齢が変換された確率変数の所定値)における通過率との残差平方和が最小となるように、パラメータα、βを決定することができる。 For example, the distribution function estimation unit 32 can determine the parameters α and β so that the sum of squared residuals between the pass rate value for each test item in the test item data 21 and the pass rate at the corresponding age in months (more precisely, the predetermined value of the random variable converted from the age in months) calculated using the cumulative distribution function F(x;α,β) is minimized.

 なお、パラメータα、βの決定には、汎用の科学計算ライブラリが利用されてもよい。例えば、パラメータα、βの決定には、PythonのScipyライブラリにおけるoptimizeモジュールのminimize関数において、BFGS法(Broyden-Fletcher-Goldfarb-Shanno法)やL-BFGS-B法(Limited-memory Broyden-Fletcher-Goldfarb-Shanno with Box constraints)が利用されてもよい。 In addition, a general-purpose scientific calculation library may be used to determine the parameters α and β. For example, the BFGS method (Broyden-Fletcher-Goldfarb-Shanno method) or the L-BFGS-B method (Limited-memory Broyden-Fletcher-Goldfarb-Shanno method with Box constraints) may be used in the minimize function of the optimize module in the Scipy library for Python to determine the parameters α and β.

 その後、分布関数推定部32は、0~1の確率変数の範囲を月齢区間に逆変換し、月齢を変数とした通過率の累積分布関数F(x;α,β)のデータ(連続確率分布に関するデータの一例)を得ることができる。 Then, the distribution function estimation unit 32 inversely converts the range of the random variable from 0 to 1 into the lunar age interval, and obtains data on the cumulative distribution function F(x;α,β) of the passage rate with lunar age as a variable (an example of data related to a continuous probability distribution).

 各検査項目について得られたベータ分布の確率密度関数f(x;α,β)および累積分布関数F(x;α,β)のデータは、分布関数データ22として記憶部に順次記憶される。 The data for the probability density function f(x;α,β) and cumulative distribution function F(x;α,β) of the beta distribution obtained for each test item are sequentially stored in the memory unit as distribution function data 22.

 分布関数推定部32は、検査項目データ21に新たな検査項目が追加された場合や、既存の検査項目に関する通過率のデータが更新された場合に、上述のような確率密度関数および累積分布関数の生成を行うことができる。 The distribution function estimation unit 32 can generate the probability density function and cumulative distribution function described above when a new test item is added to the test item data 21 or when pass rate data for an existing test item is updated.

 ここで、図4を参照して、各検査項目において通過率に有意な変化が生じる月齢区間を、0~1の確率変数の範囲に対応するように変換する処理(以下、「月齢変換処理」という)について説明する。なお、以下に示す処理方法以外にも、通過率データに対応する月齢全てを含み、かつ、妥当なパラメータα、βを決定しうるものであれば、異なる処理方法を用いて月齢区間を決定してもよい。さらに、一度得られたパラメータα、βを参照することで月齢区間を再定義し、新たにパラメータα、βを決定してもよい。また、これらの処理方法は必ずしも全ての検査項目に対して一律に適用する必要はなく、検査項目ごとに十分に妥当なパラメータα、βが決定されるような月齢区間が定義できれば、用いる処理方法が異なっても差し支えない。 Here, referring to Figure 4, we will explain the process of converting the age intervals in which a significant change occurs in the pass rate for each test item so that they correspond to the range of a random variable between 0 and 1 (hereinafter referred to as the "age conversion process"). Note that in addition to the processing method described below, different processing methods may be used to determine the age intervals, as long as they include all ages corresponding to the pass rate data and can determine appropriate parameters α and β. Furthermore, the age intervals may be redefined by referencing the parameters α and β that have already been obtained, and new parameters α and β may be determined. Furthermore, these processing methods do not necessarily have to be applied uniformly to all test items; as long as it is possible to define age intervals in which sufficiently appropriate parameters α and β can be determined for each test item, it is acceptable to use different processing methods.

 月齢変換処理では、まず、分布関数推定部32は、検査項目データ21における処理対象の検査項目のデータ群における月齢Xの最小値x_minおよび最大値x_maxを特定する。ここでは、検査項目のデータ群は、図4中に示した2つの白丸印(○)にそれぞれ対応する月齢および通過率から構成されるものとする。同様に、分布関数推定部32は、その検査項目のデータ群における通過率Yの最小値y_minおよび最大値y_maxを特定する。 In the age-in-months conversion process, the distribution function estimation unit 32 first identifies the minimum value x_min and maximum value x_max of age-in-months X in the data group of the test item to be processed in the test item data 21. Here, the data group of the test item is assumed to be composed of ages in months and passage rates corresponding to the two white circles (○) shown in Figure 4. Similarly, the distribution function estimation unit 32 identifies the minimum value y_min and maximum value y_max of passage rate Y in the data group of that test item.

 そこで、分布関数推定部32は、XY平面上で(x_min, y_min)と(x_max, y_max)とを通る直線(すなわち、図4中の丸印(○)を結ぶ実線およびそれを延長した破線を参照)を作成し、その直線と直線y=0, y=1との交点(図4中の四角印(■)を参照)のX座標を計算する。 The distribution function estimation unit 32 therefore creates a straight line passing through (x_min, y_min) and (x_max, y_max) on the XY plane (i.e., see the solid line connecting the circles (○) in Figure 4 and the dashed line extending from that), and calculates the X coordinate of the intersection of this line with the line y=0, y=1 (see the square (■) in Figure 4).

 続いて、分布関数推定部32は、それらの交点のX座標を両端とする区間Wを、その区間の中点(図4中の黒丸印(●)を参照)を中心に2倍に広げた区間2Wの両端のX座標を計算する。さらに、分布関数推定部32は、それらのX座標を含み且つ両端が整数である最小の区間を、対象の検査項目に関して月齢変換処理の対象となる月齢区間として決定することができる。分布関数推定部32は、決定した月齢区間を、その両端がそれぞれ0および1となるように変換することができる。 Next, the distribution function estimation unit 32 calculates the X coordinates of both ends of interval 2W, which is obtained by doubling interval W, whose ends are the X coordinates of the intersection points, and widening it around the midpoint of the interval (see the black circle (●) in Figure 4). Furthermore, the distribution function estimation unit 32 can determine the smallest interval that includes these X coordinates and has integers on both ends as the age interval to be subjected to the age conversion process for the target test item. The distribution function estimation unit 32 can convert the determined age interval so that its ends are 0 and 1, respectively.

 再び図1を参照すると、制御部15において、実施検査項目設定部33は、検査項目データ21に含まれる検査項目の中から実施検査項目を設定する。例えば、実施検査項目設定部33は、検査担当者によって選択された(例えば、ユーザ端末4から入力された)複数の検査項目を実施検査項目として設定することができる。 Referring again to FIG. 1, in the control unit 15, the test item setting unit 33 sets test items to be performed from among the test items included in the test item data 21. For example, the test item setting unit 33 can set multiple test items selected by the tester (e.g., input from the user terminal 4) as test items to be performed.

 ここで、発達月齢推定装置2では、複数の検査項目についてそれぞれ取得した累積分布関数F(x;α,β)に基づき、各検査項目が対象とする月齢区間(すなわち、各検査項目の通過率に有意な変化が生じる月齢区間)を予め算出することができる。そして、発達月齢推定装置2は、例えば図5に示すように、各検査項目について算出した月齢区間を示す検査項目確認画面を生成しておくことができる。発達月齢推定装置2は、検査担当者が実施検査項目を選択する際に、その検査項目確認画面を外部装置(ここでは、ユーザ端末4)に送信し、そのディスプレイに表示させることができる。 Here, the developmental age estimation device 2 can pre-calculate the age range for each test item (i.e., the age range in which a significant change occurs in the pass rate for each test item) based on the cumulative distribution function F(x;α,β) obtained for each of the multiple test items. The developmental age estimation device 2 can then generate a test item confirmation screen showing the age range calculated for each test item, as shown in Figure 5, for example. When the tester selects the test item to be performed, the developmental age estimation device 2 can send the test item confirmation screen to an external device (here, the user terminal 4) and display it on its display.

 検査項目確認画面では、各検査項目(図5中の検査項目No. 313~382を参照)の一覧と共に、各検査項目が対象とする月齢区間の範囲を示す図形(ここでは、月齢区間を表示するためのバー、以下、「月齢区間表示バー」という)が示されている。月齢区間表示バーの長さは、特定の通過率の範囲(例えば、2.5%~97.5%)に対応するように設定される。また、月齢区間表示バーには、通過率が最大となる月齢を示す記号(ここでは、黒丸(●))が示されている。 The test item confirmation screen displays a list of each test item (see test item numbers 313 to 382 in Figure 5) along with a graphic (here, a bar for displaying the age range, hereafter referred to as the "age range display bar") indicating the range of the age range covered by each test item. The length of the age range display bar is set to correspond to a specific pass rate range (for example, 2.5% to 97.5%). The age range display bar also displays a symbol (here, a black circle (●)) indicating the age at which the pass rate is greatest.

 検査担当者は、月齢区間表示バーの長さと、それらの下方に示された月齢を示す横軸の数値とを参照することにより、各検査項目が対象とする(すなわち、発達月齢の推定に有効な)月齢区間の範囲を把握することができる。また、検査担当者は、月齢区間表示バーの長さや、通過率が最大となる月齢を示す記号の位置を確認することにより、選択しようとしている検査項目が今回の検査に適切なものであるか否かを判断することができる。検査担当者は、検査項目確認画面において、所望の検査項目(例えば、文字)を選択する操作(例えば、タッチパネルディスプレイにおけるタッチ操作)を行うことにより、実施検査項目として設定することができる。もしくは、同様の手法により事前に評価を行い、妥当であると結論された検査項目に限って以降の処理に用いることも可能である。 By referring to the length of the age range display bar and the horizontal axis values indicating age in months shown below it, test personnel can determine the range of age ranges that each test item covers (i.e., that are effective for estimating developmental age). Test personnel can also determine whether the test item they are about to select is appropriate for the current test by checking the length of the age range display bar and the position of the symbol indicating the age at which the pass rate is highest. Test personnel can set the desired test item (e.g., letter) as the test item to be performed by selecting it (e.g., by touching the touch panel display) on the test item confirmation screen. Alternatively, test items can be evaluated in advance using a similar method, and only those that are concluded to be appropriate can be used for subsequent processing.

 なお、実施検査項目は、必ずしも検査担当者によって選択される必要はない。例えば、実施検査項目設定部33は、検査項目データ21に含まれる検査項目の中からランダムに実施検査項目を設定してもよいし、発達月齢の推定結果に沿いながら順次最適な実施検査項目を選択するような特定のアルゴリズムを用いてもよい。 Note that the test items to be performed do not necessarily have to be selected by the tester. For example, the test item setting unit 33 may randomly set the test items to be performed from among the test items included in the test item data 21, or may use a specific algorithm that sequentially selects the most appropriate test items to be performed in accordance with the estimated developmental age.

 制御部15において、検査結果取得部34は、検査対象の子供の検査用に選択された各実施検査項目に関し、それぞれの検査結果を取得する。例えば、検査担当者は、各実施検査項目に関する検査を実施し、その検査結果をユーザ端末4から発達月齢推定装置2に入力することができる。ただし、検査結果は、検査担当者の代わりに自動検査装置によって入力されてもよい。例えば、自動検査装置は、検査用に予め準備された学習済みモデルを備え、各実施検査項目について検査対象の子供の動作が撮影された動画に基づき検査結果を取得することができる。検査結果取得部34によって取得された検査結果は、検査結果データ23として記憶部に順次記憶される。 In the control unit 15, the test result acquisition unit 34 acquires the test results for each test item selected for testing the child being tested. For example, an examiner can conduct a test for each test item and input the test results into the developmental age estimation device 2 from the user terminal 4. However, the test results may also be input by an automatic testing device instead of an examiner. For example, the automatic testing device is equipped with a trained model prepared in advance for the test, and can acquire test results for each test item based on video footage of the child being tested's movements. The test results acquired by the test result acquisition unit 34 are sequentially stored in the memory unit as test result data 23.

 検査結果データ23には、例えば、各実施検査項目について「達成」または「未達成」を示す識別子が含まれる。ただし、検査結果データ23には、各実施検査項目について「部分達成」(すなわち、完全に達成されたか否かの判断が難しい状態)を示す識別子が含まれてもよい。 Test result data 23 includes, for example, an identifier indicating "achieved" or "not achieved" for each implemented test item. However, test result data 23 may also include an identifier indicating "partial achievement" (i.e., a state in which it is difficult to determine whether the test item has been completely achieved) for each implemented test item.

 制御部15において、発達月齢推定関数生成部35は、検査対象の子供の検査に用いられた2以上の実施検査項目についての累積分布関数F(x;α,β)のデータと、各実施検査項目に対する検査結果とに基づき発達月齢推定関数を生成する。 In the control unit 15, the developmental age estimation function generation unit 35 generates a developmental age estimation function based on data on the cumulative distribution function F(x;α,β) for two or more implemented test items used in the test of the child being tested, and the test results for each implemented test item.

 発達月齢推定関数の生成に関し、各実施検査項目の月齢ごとの推定通過率分布関数Ei(m)を次のように定義する。 In generating the developmental age estimation function, the estimated pass rate distribution function Ei(m) for each test item by age is defined as follows:

   

 ただし、
 m:月齢
 Mlower:各実施検査項目が対象とする月齢区間における月齢の下限値(整数値)
 Mupper:各実施検査項目が対象とする月齢区間における月齢の上限値(整数値)
however,
m: Age in months M lower : Lower limit of age in months in the age range targeted by each test item (integer value)
M upper : Upper limit of age in months for each test item (integer value)

 また、検査結果に応じた通過率の確率関数Pi(m) を次のように定義する。ただし、「部分達成」の場合については省略されてもよい。 Furthermore, the probability function Pi(m) of the pass rate according to the test results is defined as follows. However, this may be omitted in the case of "partial achievement."

   

 ただし、
  i:各実施検査項目のインデックス番号
however,
i: Index number of each test item

 発達月齢推定関数P(m)は、ベイズの定理に基づき、上述の確率関数Pi(m)を用いて次の式(3)のように表すことができる。 Based on Bayes' theorem, the developmental age estimation function P(m) can be expressed as the following equation (3) using the probability function Pi(m) described above.

   

 ただし、
  n:実施検査項目の数
  Mlower:各実施検査項目が対象とする月齢区間における月齢の下限値の最小値(整数値)
  Mupper:各実施検査項目が対象とする月齢区間における月齢の上限値の最大値(整数値)
however,
n: Number of test items M lower : Minimum lower limit of age in months for each test item (integer value)
M upper : The maximum upper limit of the age range for each test item (integer value)

 制御部15において、発達月齢推定部36は、発達月齢推定関数P(m)によって得られる値(すなわち、各月齢において、与えられた検査項目とそれらの実施結果を得た場合の条件付き確率)の分布の最頻値に基づき、検査対象の子供の発達月齢を推定することができる。発達月齢推定関数P(m)に基づく確率分布では、例えば図6に示すようにピーク(すなわち、最頻値)が生じ、発達月齢推定部36は、そのピークに対応する月齢の値に基づき検査対象の子供の発達月齢を推定することができる。発達月齢推定部36は、発達月齢の推定結果を示すにあたり、ピークに対応する月齢の値を出力してもよいし、ピークに対応する月齢の値を含む(例えば、ピークに対応する月齢の値を中央値とする)所定の範囲を出力してもよい。 In the control unit 15, the developmental age estimation unit 36 can estimate the developmental age of the child being tested based on the mode of the distribution of values obtained by the developmental age estimation function P(m) (i.e., the conditional probability of obtaining given test items and their implementation results at each age). In the probability distribution based on the developmental age estimation function P(m), a peak (i.e., the mode) occurs, as shown in Figure 6, for example, and the developmental age estimation unit 36 can estimate the developmental age of the child being tested based on the age value corresponding to that peak. When indicating the estimated developmental age, the developmental age estimation unit 36 may output the age value corresponding to the peak, or may output a predetermined range that includes the age value corresponding to the peak (for example, the age value corresponding to the peak is used as the median).

 なお、発達月齢推定関数P(m)に基づく確率分布のピークの位置は、式(3)の分子に相当する尤度関数に依存する。したがって、式(3)に示した発達月齢推定関数P(m)は、分母を省略して尤度関数のみによって表されてもよい。 Note that the position of the peak in the probability distribution based on the developmental age estimation function P(m) depends on the likelihood function corresponding to the numerator in equation (3). Therefore, the developmental age estimation function P(m) shown in equation (3) may be expressed using only the likelihood function, omitting the denominator.

 また、全ての実施検査項目の検査結果が「達成」となった場合は、発達月齢の推定値のピークならびに推定範囲の上限を得ることはできないが、発達月齢の推定範囲の下限値は得ることは可能である。全ての実施検査項目の検査結果が「未達成」となった場合についても、発達月齢の推定値のピークならびに推定範囲の下限を得ることはできないが、発達月齢の推定範囲の上限値は得ることは可能である。いずれの場合についても、発達月齢推定部36は、表示部13やユーザ端末4に対して上記の結果を出力することは可能だが、適切な推定結果が得られないとしてエラーメッセージを出力してもかまわない。 Furthermore, if the test results for all implemented test items are "achieved," it is not possible to obtain the peak estimated value of the developmental age or the upper limit of the estimated range, but it is possible to obtain the lower limit of the estimated range of the developmental age. If the test results for all implemented test items are "not achieved," it is not possible to obtain the peak estimated value of the developmental age or the lower limit of the estimated range, but it is possible to obtain the upper limit of the estimated range of the developmental age. In either case, the developmental age estimation unit 36 can output the above results to the display unit 13 or user terminal 4, but may also output an error message stating that an appropriate estimation result could not be obtained.

 さらに、発達月齢推定部36は、検査結果に矛盾があると判定した場合にも表示部13やユーザ端末4に対してエラーメッセージを出力することができる。例えば、発達月齢推定部36は、図5に示した検査項目において、ある月齢区間を対象とする実施検査項目の結果が「未達成」となり、かつ、その未達成の実施検査項目よりも高い月齢区間を対象とする実施検査項目の結果が「達成」となった場合に、検査結果に矛盾があると判定することができる。 Furthermore, the developmental age estimation unit 36 can output an error message to the display unit 13 or the user terminal 4 if it determines that there is a contradiction in the test results. For example, in the test items shown in FIG. 5, if the result of an implemented test item targeting a certain age range is "not achieved" and the result of an implemented test item targeting a higher age range than the not-achieved implemented test item is "achieved," the developmental age estimation unit 36 can determine that there is a contradiction in the test results.

 制御部15における各部31-36の機能の少なくとも一部は、1以上のプロセッサが所定の制御プログラムを実行することにより実現可能である。また、制御部15は、発達月齢推定装置2の動作を統括的に制御可能である。 At least some of the functions of each of the units 31-36 in the control unit 15 can be realized by one or more processors executing a predetermined control program. The control unit 15 can also comprehensively control the operation of the developmental age estimation device 2.

 上記構成を有する発達月齢推定システム1では、検査担当者は、ユーザ端末4から発達月齢推定装置2にアクセスして、発達月齢推定処理を実行させることができる。その発達月齢推定処理において、検査担当者は、所望の検査項目(すなわち、実施検査項目)を、ユーザ端末4から発達月齢推定装置2に対して入力(すなわち、選択)することができる。さらに、検査担当者は、各実施検査項目の検査結果を、ユーザ端末4から発達月齢推定装置2に対して入力することができる。このとき、検査担当者は、検査対象となる子供に対して複数の実施検査項目を順次実施しながら(すなわち、各実施検査項目の検査結果を順次取得しながら)、発達月齢推定装置2に対して検査結果を入力することができる。 In the developmental age estimation system 1 having the above configuration, the examiner can access the developmental age estimation device 2 from the user terminal 4 and execute the developmental age estimation process. In this developmental age estimation process, the examiner can input (i.e., select) the desired test items (i.e., implemented test items) into the developmental age estimation device 2 from the user terminal 4. Furthermore, the examiner can input the test results of each implemented test item into the developmental age estimation device 2 from the user terminal 4. At this time, the examiner can input the test results into the developmental age estimation device 2 while sequentially implementing multiple implemented test items on the child being tested (i.e., while sequentially obtaining the test results of each implemented test item).

 検査担当者による検査結果の入力が完了すると、発達月齢推定装置2は、それら各実施検査項目についての累積分布関数F(x;α,β)のデータと、各実施検査項目に対する検査結果とに基づき発達月齢推定関数を生成する。続いて、発達月齢推定装置2は、生成した発達月齢推定関数によって得られる確率分布の最頻値に基づき、検査対象の子供の発達月齢を推定する。さらに、発達月齢推定装置2は、発達月齢の推定結果をユーザ端末4に送信し、ユーザ端末4のディスプレイに表示させる。 Once the tester has completed inputting the test results, the developmental age estimation device 2 generates a developmental age estimation function based on the data for the cumulative distribution function F(x;α,β) for each implemented test item and the test results for each implemented test item. Next, the developmental age estimation device 2 estimates the developmental age of the child being tested based on the most frequent value of the probability distribution obtained by the generated developmental age estimation function. Furthermore, the developmental age estimation device 2 transmits the estimated developmental age results to the user terminal 4 and displays them on the display of the user terminal 4.

 なお、ユーザ端末4が発達月齢推定装置として機能する場合には、上述の発達月齢推定処理は、全てユーザ端末4によって実行され得る。 If the user terminal 4 functions as a developmental age estimation device, the above-mentioned developmental age estimation process can be performed entirely by the user terminal 4.

 このように、発達月齢推定システム1では、実施検査項目についての月齢を変数とした通過率の累積分布関数F(x;α,β)のデータと、それら実施検査項目の各々に対する検査結果とに基づき発達月齢推定関数P(m)を生成し、その発達月齢推定関数P(m)に基づき検査対象の子供の発達月齢を推定するため、検査項目の自由度を高めつつ、発達月齢に関して客観性の高い推定結果を得ることが可能となる。 In this way, the developmental age estimation system 1 generates a developmental age estimation function P(m) based on data on the cumulative distribution function F(x;α,β) of the pass rate for the implemented test items, with age as a variable, and the test results for each of those implemented test items, and estimates the developmental age of the child being tested based on that developmental age estimation function P(m).This makes it possible to obtain highly objective estimation results regarding developmental age while increasing the degree of freedom in the test items.

 以上、本開示を特定の実施形態に基づいて説明したが、これらの実施形態はあくまでも例示であって、本開示はこれらの実施形態によって限定されるものではない。上述の実施形態に示した発達月齢推定装置、発達月齢推定方法、及び発達月齢推定プログラムの各構成要素は、必ずしも全てが必須ではなく、少なくとも当業者であれば本開示の範囲を逸脱しない限りにおいて適宜取捨選択することが可能である。 The present disclosure has been described above based on specific embodiments, but these embodiments are merely examples, and the present disclosure is not limited to these embodiments. Not all of the components of the developmental age estimation device, developmental age estimation method, and developmental age estimation program shown in the above-described embodiments are necessarily essential, and at least those skilled in the art can select and discard as appropriate within the scope of the present disclosure.

 例えば、本開示において子供の発達段階を示す「月齢」は、必ずしも月を単位として示す必要はなく、例えば、年を単位として或いは年及び月を単位として示されてもよい。また、月齢区間についても必ずしも整数値である必要はなく、小数値を含んでいてもかまわない。さらに、本実施形態では、各検査項目の通過率に関する連続確率分布としてベータ分布を採用したが、他の確率密度分布関数であっても、既存の通過率データを用いることでその分布を指定するパラメータを一意かつ適切に決定できるものであれば、代替として用いることも可能である。 For example, in this disclosure, the "age in months" indicating a child's developmental stage does not necessarily have to be expressed in months, but may instead be expressed in years or years and months. Furthermore, the age intervals do not necessarily have to be integer values, but may include decimal values. Furthermore, in this embodiment, a beta distribution is used as the continuous probability distribution for the pass rate of each test item, but other probability density distribution functions can also be used as alternatives, as long as the parameters specifying the distribution can be uniquely and appropriately determined using existing pass rate data.

1 :発達月齢推定システム
2 :発達月齢推定装置
3 :通信ネットワーク
4 :ユーザ端末
11:通信部
12:入力部
13:表示部
14:記憶部
15:制御部
21:検査項目データ
22:分布関数データ
23:検査結果データ
24:発達月齢推定関数データ
31:検査項目データ収集部
32:分布関数推定部
33:実施検査項目設定部
34:検査結果取得部
35:発達月齢推定関数生成部
36:発達月齢推定部
1: Developmental age estimation system 2: Developmental age estimation device 3: Communication network 4: User terminal 11: Communication unit 12: Input unit 13: Display unit 14: Memory unit 15: Control unit 21: Test item data 22: Distribution function data 23: Test result data 24: Developmental age estimation function data 31: Test item data collection unit 32: Distribution function estimation unit 33: Test item setting unit 34: Test result acquisition unit 35: Developmental age estimation function generation unit 36: Developmental age estimation unit

Claims (8)

 子供の発達月齢を推定する発達月齢推定装置であって、
 複数の検査項目に対する検査結果に基づき、検査対象の子供の発達月齢を推定する処理を実行するプロセッサと、
 前記複数の検査項目の各々に関し、所定の範囲の月齢を変数とした通過率を示す連続確率分布に関するデータを記憶する記憶装置と、
を備え、
 前記プロセッサは、
 前記複数の検査項目のうち前記検査対象の子供の検査に用いられた2以上の実施検査項目についての前記連続確率分布に関するデータと、前記実施検査項目の各々に対する検査結果とに基づき発達月齢推定関数を生成し、
 前記発達月齢推定関数によって得られる前記通過率の分布の最頻値に基づき、前記検査対象の子供の発達月齢を推定し、
 前記発達月齢の推定結果を出力する、発達月齢推定装置。
A developmental age estimation device for estimating a child's developmental age, comprising:
a processor that executes a process of estimating the developmental age of a child being tested based on test results for a plurality of test items;
a storage device that stores data relating to a continuous probability distribution indicating a passing rate for each of the plurality of test items, with a predetermined range of age in months as a variable;
Equipped with
The processor:
generating a developmental age estimation function based on data on the continuous probability distribution for two or more implemented test items among the plurality of test items used in testing the child to be tested and the test results for each of the implemented test items;
estimating the developmental age of the test subject child based on the mode of the distribution of the passage rate obtained by the developmental age estimation function;
A developmental age estimation device that outputs the estimation result of the developmental age.
 前記プロセッサは、
 前記複数の検査項目の各々に関し、複数の月齢と、それら複数の月齢にそれぞれ対応する通過率のデータとを取得し、
 前記通過率のデータに基づき、前記連続確率分布に関するデータを生成する、請求項1に記載の発達月齢推定装置。
The processor:
For each of the plurality of test items, data on a plurality of ages in months and passage rates corresponding to the plurality of ages in months is acquired;
The developmental age estimation device according to claim 1 , wherein data relating to the continuous probability distribution is generated based on data on the passage rate.
 前記プロセッサは、前記通過率のデータに基づきベータ分布の確率密度関数の2つのパラメータを決定し、
 前記ベータ分布の確率密度関数の積分によって得られる累積分布関数に基づき、前記連続確率分布に関するデータを生成する、請求項2に記載の発達月齢推定装置。
The processor determines two parameters of a probability density function of a beta distribution based on the passage rate data;
The developmental age estimation device according to claim 2 , wherein data relating to the continuous probability distribution is generated based on a cumulative distribution function obtained by integrating a probability density function of the beta distribution.
 前記プロセッサは、
 前記複数の検査項目の各々に関する前記通過率のデータの月齢区間を設定し、
 前記月齢区間を0から1の範囲に変換する、請求項3に記載の発達月齢推定装置。
The processor:
setting an age range for the passage rate data for each of the plurality of test items;
The developmental age estimation device according to claim 3 , wherein the age interval is converted into a range from 0 to 1.
 前記プロセッサは、
 前記実施検査項目の各々について、前記連続確率分布に関するデータおよび前記検査結果に基づき前記通過率の確率関数をそれぞれ設定し、
 前記発達月齢推定関数は、前記実施検査項目の各々の前記確率関数の積を含む、請求項1に記載の発達月齢推定装置。
The processor:
for each of the test items to be performed, a probability function of the pass rate is set based on the data regarding the continuous probability distribution and the test results;
The developmental age estimating device according to claim 1 , wherein the developmental age estimating function includes a product of the probability functions of the respective test items.
 前記発達月齢の推定結果を表示する表示装置を更に備えた、請求項1に記載の発達月齢推定装置。 The developmental age estimation device of claim 1, further comprising a display device that displays the estimated developmental age.  子供の発達月齢を推定する発達月齢推定装置による発達月齢推定方法であって、
 前記発達月齢推定装置は、
 検査対象の子供の発達月齢を推定するための複数の検査項目のうち、前記検査対象の子供の検査に用いられた2以上の実施検査項目についての連続確率分布に関するデータと、前記実施検査項目の各々に対する検査結果とに基づき発達月齢推定関数を生成し、
 前記発達月齢推定関数によって得られる通過率の分布の最頻値に基づき、前記検査対象の子供の発達月齢を推定し、
 前記発達月齢の推定結果を出力する、発達月齢推定方法。
A developmental age estimation method for estimating a child's developmental age by a developmental age estimation device, comprising:
The developmental age estimation device includes:
generating a developmental age estimation function based on data on continuous probability distributions for two or more implemented test items used in testing the child among a plurality of test items for estimating the developmental age of the child to be tested, and test results for each of the implemented test items;
estimating the developmental age of the test subject child based on the mode of the distribution of the passage rate obtained by the developmental age estimation function;
A developmental age estimation method that outputs the estimation result of the developmental age.
 子供の発達月齢を推定する発達月齢推定処理をコンピュータに実行させる発達月齢推定プログラムであって、
 前記発達月齢推定処理には、
 検査対象の子供の発達月齢を推定するための複数の検査項目のうち、前記検査対象の子供の検査に用いられた2以上の実施検査項目についての連続確率分布に関するデータと、前記実施検査項目の各々に対する検査結果とに基づき発達月齢推定関数を生成し、
 前記発達月齢推定関数によって得られる通過率の分布の最頻値に基づき、前記検査対象の子供の発達月齢を推定し、
 前記発達月齢の推定結果を出力する手順が含まれる、発達月齢推定プログラム。
A developmental age estimation program that causes a computer to execute a developmental age estimation process for estimating a child's developmental age,
The developmental age estimation process includes:
generating a developmental age estimation function based on data on continuous probability distributions for two or more implemented test items used in testing the child among a plurality of test items for estimating the developmental age of the child to be tested, and test results for each of the implemented test items;
estimating the developmental age of the test subject child based on the mode of the distribution of the passage rate obtained by the developmental age estimation function;
A developmental age estimation program including a procedure for outputting the estimation result of the developmental age.
PCT/JP2025/002414 2024-02-07 2025-01-27 Development month age estimation device, development month age estimation method, and development month age estimation program Pending WO2025169773A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2024-017310 2024-02-07
JP2024017310 2024-02-07

Publications (1)

Publication Number Publication Date
WO2025169773A1 true WO2025169773A1 (en) 2025-08-14

Family

ID=96699772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2025/002414 Pending WO2025169773A1 (en) 2024-02-07 2025-01-27 Development month age estimation device, development month age estimation method, and development month age estimation program

Country Status (1)

Country Link
WO (1) WO2025169773A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005293566A (en) * 2004-03-12 2005-10-20 National Institute Of Advanced Industrial & Technology Infant behavior generation system in virtual space
KR20050123499A (en) * 2004-06-25 2005-12-29 전미숙 System and method for providing services with regard to checking steps of infants' growth and development
JP2018514815A (en) * 2015-04-05 2018-06-07 スマイラブルズ インコーポレイテッド Presentation of customized learning content for infants based on developmental age, customized learning content based on parental preferences, customized educational playlists, and automated systems for detecting infant performance
JP2021089700A (en) * 2019-12-06 2021-06-10 株式会社カイクリエイツ Information processor, information processing method, and program
JP7198393B1 (en) * 2021-04-20 2022-12-28 花王株式会社 Infant Development Stage Calculation System

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005293566A (en) * 2004-03-12 2005-10-20 National Institute Of Advanced Industrial & Technology Infant behavior generation system in virtual space
KR20050123499A (en) * 2004-06-25 2005-12-29 전미숙 System and method for providing services with regard to checking steps of infants' growth and development
JP2018514815A (en) * 2015-04-05 2018-06-07 スマイラブルズ インコーポレイテッド Presentation of customized learning content for infants based on developmental age, customized learning content based on parental preferences, customized educational playlists, and automated systems for detecting infant performance
JP2021089700A (en) * 2019-12-06 2021-06-10 株式会社カイクリエイツ Information processor, information processing method, and program
JP7198393B1 (en) * 2021-04-20 2022-12-28 花王株式会社 Infant Development Stage Calculation System

Similar Documents

Publication Publication Date Title
Leng et al. The effectiveness of social bubbles as part of a Covid-19 lockdown exit strategy, a modelling study
Mujeeb et al. Aquabot: a diagnostic chatbot for achluophobia and autism
JP6004084B2 (en) Model updating method, apparatus, and program
Eichler et al. Automatic and efficient fall risk assessment based on machine learning
Oyeledun et al. The effect of a continuous quality improvement intervention on retention-in-care at 6 months postpartum in a PMTCT program in Northern Nigeria: results of a cluster randomized controlled study
Khullar et al. Deep neural network-based handheld diagnosis system for autism spectrum disorder
JP2025504884A (en) Image analysis and insight generation
Liu et al. Health care data analysis and visualization using interactive data exploration for sportsperson
Byaro et al. Per capita income and public health expenditure: what makes good child health outcomes in Tanzania? a comparison of Frequentist and Bayesian approach (1995-2013)
CN112394924B (en) Method, device, electronic equipment and medium for generating questioning model
CN112397195B (en) Method, apparatus, electronic device and medium for generating physical examination model
CN112700353A (en) Smart classroom system, student health data management method, server, and medium
WO2025169773A1 (en) Development month age estimation device, development month age estimation method, and development month age estimation program
Castro et al. How New Mexico leveraged a COVID-19 case forecasting model to preemptively address the health care needs of the state: quantitative analysis
Nwokoro et al. Enhancing Maternal Outcome Prediction Using Explainable Artificial Intelligence for Women of Childbearing Age
JP7429036B2 (en) Judgment device, model generation device, judgment method and judgment program
Song et al. Case-based reasoning approach for diagnostic screening of children with developmental delays
TWM451585U (en) Intelligent computer-implemented system for processing characteristics analysis
Tian Agent-based modeling and system dynamics modeling on transmission of tuberculosis in Saskatchewan
Khan et al. Development and Evaluation of ShasthoBondhu: mHealth App for Guiding Emergency Remote Healthcare with Wearable IoT and AI Fusion
Leecaster et al. Translation of Contextual Control Model to chronic disease management: A paradigm to guide design of cognitive support systems
Jones et al. North Carolina COVID-19 agent-based model framework for hospitalization forecasting overview, design concepts, and details protocol
Othman et al. An expert system for pneumococcal prognosis
Bannan et al. NEXT‐GENERATION LEARNING: SMART MEDICAL TEAM TRAINING
WO2022107341A1 (en) Simulation program, simulation method, and simulation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 25752027

Country of ref document: EP

Kind code of ref document: A1