[go: up one dir, main page]

WO2025167800A1 - Blood proteomic markers for stroke and methods thereof - Google Patents

Blood proteomic markers for stroke and methods thereof

Info

Publication number
WO2025167800A1
WO2025167800A1 PCT/CN2025/075243 CN2025075243W WO2025167800A1 WO 2025167800 A1 WO2025167800 A1 WO 2025167800A1 CN 2025075243 W CN2025075243 W CN 2025075243W WO 2025167800 A1 WO2025167800 A1 WO 2025167800A1
Authority
WO
WIPO (PCT)
Prior art keywords
stroke
subject
markers
protein
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/CN2025/075243
Other languages
French (fr)
Inventor
Timothy Hudson Rainer
Xiaodan ZHANG
Qianyun LI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Hong Kong HKU
Original Assignee
University of Hong Kong HKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Hong Kong HKU filed Critical University of Hong Kong HKU
Publication of WO2025167800A1 publication Critical patent/WO2025167800A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • G01N33/6896Neurological disorders, e.g. Alzheimer's disease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2871Cerebrovascular disorders, e.g. stroke, cerebral infarct, cerebral haemorrhage, transient ischemic event

Definitions

  • the present disclosure relates to a method for diagnosis and treatment of a subject with suspected stroke.
  • the present disclosure further relates to a group of biomedical markers associated with a high likelihood of stroke of a subject.
  • Stroke affects 17 million people globally each year who could benefit from improved diagnostics.
  • blood biomarkers hold potential to improve the early detection, diagnosis and treatment of acute stroke (including acute ischaemic stroke (AIS) and intracerebral haemorrhage (ICH) ) .
  • AIS acute ischaemic stroke
  • ICH intracerebral haemorrhage
  • biomarkers in stroke care could improve healthcare efficiency and save millions of lives and unnecessary costs.
  • POCTs Point of care tests
  • CT computed stroke
  • SM stroke mimics
  • TIA transient ischaemic attack
  • CT imaging
  • ICH ruled out
  • clinical ability to differentiate AIS from SM/TIA is limited such that in the early stages many SM are inappropriately diagnosed and treated as AIS.
  • non-contrast CT read by an experienced radiologist or neurologist has 96%specificity for ruling in ICH but poor specificity for ruling in AIS [5] .
  • Non-contrast CT has limited capacity for differentiating AIS from SM [6] .
  • Diffusion-weighted MRI is more sensitive than CT as it shows fresh ischaemic lesions as early as 2h from symptom onset [7] . However, it is usually unavailable in the first hours.
  • AIS intravenous thrombolytic
  • CT and MRI provide limited information on cellular and molecular pathophysiology [9] .
  • stroke sub-types e.g. large vessel occlusion (LVO) from non-LVO
  • rtPA Treatment in early stroke diagnosis and treatment is time critical: rtPA is most effective within 3h from symptom onset although it is still effective within 4.5h and within some sub-groups expected up to 9h. There is a 6h time window for urokinase thrombolysis, arterial thrombolysis and anterior circulation thrombectomy. Endovascular therapy is effective within 24h for subgroups with LVO, although may have some potential use in the extended 24-48h time window.
  • ALINITY iTBI is the first CE-marked, lab-based, Food and Drug Administration (FDA) -approved, GFAP/UCH-L1 blood test to enable physicians to objectively rule out the presence of an intracranial lesion and render CT unnecessary [13] .
  • Stroke is a complex and heterogenous disease with multiple tissue and biology specific pathologies and adaptive response pathways to brain damage. Nevertheless, there are recognisable patterns to guide diagnostic biomarker strategies [14] .
  • the early phase of acute stroke involves vessel occlusion or rupture, thrombosis and endothelial damage which leads to ischaemia and/or haemorrhage, neurone death, apoptosis and necrosis, and leakage of the blood-brain barrier (BBB) .
  • BBB blood-brain barrier
  • adaptive repair mechanisms including immune-inflammatory and repair responses [15, 16] .
  • TIA and most SMs differ from stroke with various pathophysiological patterns [6, 17] .
  • ICH differs from AIS in that the former involves vessel rupture, haemorrhage, ischaemia and significantly more neurone death. This is evidenced by neurone-enriched markers (e.g. GFAP) which are elevated in the plasma in the first 6 hours to much higher levels in ICH than AIS (Fig. 2) [14, 18] .
  • GFAP neurone-enriched markers
  • the diagnosis, risk-stratification, prediction and prognosis of stroke is dependent on clinical assessment and imaging.
  • Radiological techniques such as CT are extremely accurate for ruling out intracerebral haemorrhage but do not accurately rule in AIS and differentiate it from SM or TIA in the early stages.
  • MRI has limited availability, depending upon patients being well enough to have a scan, may miss small infarcts in critical areas.
  • the present invention relates to a method for diagnosis and treatment of a subject with suspected stroke.
  • the present invention further relates to a group of biomedical markers associated with a high likelihood of stroke of a subject.
  • an assay for detecting, diagnosing, monitoring or prognosticating a medical condition, or for detecting, diagnosing, monitoring or prognosticating the responsiveness of a subject to a therapy against said medical condition is provided, as well as a corresponding method and a kit for classifying a subject and a medical decision support system.
  • the disclosure provides a panel of blood protein biomarkers which, either alone or in combination, enable a rapid diagnosis, risk-classification and prognosis to be made in patients suspected of having a stroke.
  • Patients from the community, in emergency departments or in hospitals, with symptoms and signs that suggest a stroke need an accurate early assessment.
  • Patients with suspected stroke may have an AIS (60%) , a ICH (20%) , a TIA (10%) or be a SM (10%) .
  • a panel comprising a plurality of markers selected to selectively identify the occurrence or nonoccurrence of a stroke in a subject exhibiting one or more symptoms associated with the diagnosis of stroke, wherein said marker (s) are selected to distinguish the occurrence of a stroke in said subject from one or more stroke mimic conditions.
  • the one or more stroke mimic conditions are selected from the group consisting of brain tumour, aneurysm, electrocution, burns, infections, cerebral hypoxia, head injury, stress, dehydration, nerve palsy, hypoglycaemia, migraine, multiple sclerosis, peripheral vascular disease, peripheral neuropathy, seizure, subdural haematoma, syncope, and transient unilateral weakness.
  • a panel comprising a plurality of markers selected to selectively identify the occurrence or nonoccurrence of an acute stroke in a subject exhibiting one or more symptoms associated with the diagnosis of stroke.
  • panel comprising a plurality of markers selected to selectively identify the occurrence or nonoccurrence of a non-acute stroke in a subject exhibiting one or more symptoms associated with the diagnosis of stroke.
  • one or more markers in said panel are selected to distinguish if the onset of said stroke was within 3 hours.
  • the one or more markers in said panel are selected to distinguish if the onset of said stroke was within 4.5 hours.
  • the one or more markers in said panel are selected to distinguish if the onset of said stroke was within 6 hours.
  • the one or more markers in said panel are selected to distinguish if the onset of said stroke was within 9 hours.
  • the one or more markers in said panel are selected to distinguish if the onset of said stroke was within a window of from 24 hours.
  • the one or more markers in said panel are selected to distinguish if the onset of said stroke was within a window of from 24 to 48 hours.
  • Imaging a CT scan or MRI
  • An early CT scan can diagnose some SMs (e.g. brain cancer) and rule out haemorrhage. However, it identifies the presence and location of an AIS in only 20%subjects in the first 12 hours. It gives little information on pathology or time of stroke onset.
  • An early CT scan is frequently not quickly available especially out of hospital, and when negative provides no guidance on disease or progression.
  • MRI is more accurate but still gives limited information on pathology, is frequently not available in most hospitals in early phases and is contraindicated in some patients (e.g. metal implants or instability) .
  • patients with a suspected stroke can provide a sample of blood for a point of care test.
  • This test identifies the presence of the marker (s) , quantifies the amount, and guides probability of a diagnosis, need for specific treatment, likely response to treatment and long-term survival and quality of life.
  • disclosure solves the unmet clinical need in the community or in hospital of making an early, objective, accurate diagnosis of stroke, its sub-types, or its mimics in patients with suspected stroke. It also improves prognosis, risk-classification and responsiveness to treatment.
  • the blood marker (s) will act as a bedside, point-of-care test. Abnormal concentrations of markers will indicate the presence of a stroke and its sub-types. Normal or mildly elevated or reduced levels of markers will rule out stroke with a high degree of accuracy thus rendering further investigation and treatment unnecessary.
  • the quantitative change in blood biomarkers in the first few hours confirms whether a stroke has occurred, what type of stroke, whether the stroke would benefit from treatment (e.g. thrombolysis or thrombectomy) and the time of probable onset of stroke in patients where onset time is unclear.
  • the protein biomarkers are useful for screening patients with suspected stroke.
  • the protein biomarkers are highly diagnostic of stroke.
  • the protein biomarkers differentiate IS from ICH at an early stage.
  • the protein biomarkers are useful for disease monitoring and progression.
  • AIS or ICH a. to differentiate stroke (AIS or ICH from non-stroke (SM or TIA) ;
  • AIS e.g. migraine, depression, dehydration, lethargy
  • CT imaging
  • AIS e.g. migraine, depression, dehydration, lethargy
  • low-risk SM e.g. migraine, depression, dehydration, lethargy
  • the present disclosure relates to the field of diagnosis and treatment of a subject suspected with stroke, and particularly relates to a set of marker genes for the prognostic assessment of stroke.
  • a list of genes was found to be significantly upregulated/downregulated in samples from a subject suffered from a stroke compared to samples from control subject; the results of using said genes as a prognostic marker in stroke were interpreted objectively and with high accuracy.
  • the said gene set can be used to develop a RT-qPCR Kit for in vitro prognostic assessment of stroke.
  • an assay for detecting, diagnosing, graduating, monitoring or prognosticating a medical condition, or for detecting, diagnosing, monitoring or prognosticating the responsiveness of a subject to a therapy against said medical condition, in particular, stroke.
  • the present disclosure relates to an assay for detecting, diagnosing, monitoring or prognosticating a medical condition, or for detecting, diagnosing, monitoring or prognosticating the responsiveness of a subject to a therapy against said medical condition, preferably stroke, comprising at least the steps of: (a) testing in a sample obtained from a subject for the expression of a marker or a group of biomedical markers; (b) testing in a control sample for the expression of the same marker, group of markers in (a) ; (c) determining the difference in expression of markers of steps (a) and (b) ; and (d) deciding on the presence or stage of a medical condition of a subject to a therapy against said medical condition, preferably stroke, based on the results obtained in step (c) .
  • the disclosure relates to a method for classifying a subject comprising: (a) providing a subject's dataset comprising data on gene expression of a stratifying biomedical marker or group of said markers obtained by a method as defined herein above, or as defined in the list or group of biomedical markers described herein above or below; (b) accessing a database comprising database values for a stratifying biomedical marker or group of said markers as defined herein above, or as defined in the list or group of biomedical markers described herein above or below; and (c) calculating a subject's classification score based on the difference between database between the results of step (a) and (b) .
  • the disclosure relates to a medical decision support system comprising: an input for providing a subject dataset comprising data on gene expression of a stratifying biomedical marker or group of said markers obtained by a method as defined herein above, or as defined in the list or group of biomedical markers described herein above; a computer program product for enabling a processor to carry out the method for classifying a subject comprising as define above; and an output for outputting the subject classification score.
  • predictive value for a medical condition refers to a value allowing the assessment of a medical condition or the development of said medical condition in the future, e.g. within a defined time frame of 1-2 hrs, 2-4 hrs, 4-6 hrs, 6-8 hrs, 8-12 hrs, 12-24 hrs, 1-2 days, 2-4 days, 4-6 days, 1 to 2 weeks, 2-3 weeks, 1 month, 2 month, 3 month, 4 months, 5 months, 6 months, 1, 2, 3, 4, 5, 6, 7, 10 years or more years or any other period of time.
  • the term also includes all situations associated with said medical condition, e.g. treatment results, responsiveness to treatments etc.
  • the disclosure relates to a composition for in vivo or in vitro diagnosing, detecting, monitoring or prognosticating a disease, e.g. stroke, or for diagnosing, detecting, monitoring or prognosticating the likelihood of responsiveness of a subject to a therapy.
  • the therapy is for stroke.
  • Such a composition may alternatively or additionally comprise a thrombolytic therapy or an antibody against any of the above-mentioned markers.
  • a nucleic acid affinity ligand or peptide affinity ligand is modified to function as an imaging contrast agent.
  • the expression may be tested by any suitable means known to the person skilled in the art, such as room temperature polymerase chain reaction (RT-PCR) , RNA sequencing, or gene expression detection on microarrays.
  • RT-PCR room temperature polymerase chain reaction
  • the present disclosure relates to a medical decision support system that is a molecular stroke determination decision making workstation.
  • the decision-making workstation may be used for deciding on the initiation and/or continuation of a therapy for a subject.
  • the decision-making workstation is used for deciding on the probability and likelihood of responsiveness to a therapy.
  • FIG. 1 Images of two patients with suspected stroke.
  • A Patient 1 with ICH (arrow) .
  • FIG. 2 Temporal change in circulating level of GFAP.
  • the concentration of GFAP (combined median with 95%CI) was plotted. This graph shows that GFAP increased rapidly from 3 h and peaked at 4.5 h from symptom onset and decreased continuously afterwards till 24 h in patients with ICH. For patients with AIS, GFAP had always been at a lower level than those in ICH patients.
  • FIG. 3 Discovery pipeline for selecting novel proteins with high-performance potential in stroke.
  • Examplar box plot of PTPN6 (F) comparing stroke with non-stroke within 6 hours of stroke onset.
  • FIGs. 4A-F Examplar Discovery Temporal profiles of novel proteins in the 24 hours of stroke
  • the terms “patient” or “subject” are used interchangeably and mean a mammal, including, but not limited to, a human or non-human mammal, such as a bovine, equine, canine, ovine, or feline.
  • a human or non-human mammal such as a bovine, equine, canine, ovine, or feline.
  • the subject is human.
  • the terms “increase or decrease” refer to the ability to cause an overall increase or decrease of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or greater. Reduce can refer to the symptoms of the disorder being treated, the presence of stroke.
  • Treating” or “treatment” of a state, disorder or condition includes:
  • prophylactically effective amount refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount will be less than the therapeutically effective amount.
  • Acceptable excipients, diluents, and carriers for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remington: The Science and Practice of Pharmacy. Lippincott Williams &Wilkins (A. R. Gennaro edit. 2005) .
  • the choice of pharmaceutical excipient, diluent, and carrier can be selected with regard to the intended route of administration and standard pharmaceutical practice.
  • a “therapeutically effective amount” means the amount of a compound that, when administered to an animal for treating a state, disorder or condition, is sufficient to affect such treatment.
  • the “therapeutically effective amount” will vary depending on the compound, the disease and its severity and the age, weight, physical condition and responsiveness of the animal to be treated.
  • compositions of the disclosure may include a “therapeutically effective amount” or a “prophylactically effective amount” of a compound described herein.
  • a “therapeutically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result.
  • a therapeutically effective amount of an antibody or antibody portion may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the antibody or antibody portion to elicit a desired response in the individual.
  • a therapeutically effective amount is also one in which any toxic or detrimental effects of the compound are outweighed by the therapeutically beneficial effects.
  • a “prophylactically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount will be less than the therapeutically effective amount.
  • screen and “screening” and the like as used herein means to test a subject or patient to determine if they have or are likely to have a particular illness or disease, or a particular manifestation of an illness or disease. The term also means to test an agent to determine if it has a particular action or efficacy.
  • identification means to recognise a disease state or a clinical manifestation or severity of a disease state in a subject or patient.
  • the term also is used in relation to test agents and their ability to have a particular action or efficacy.
  • prediction means to tell in advance based upon special knowledge.
  • prevention refers to acting prior to overt disease onset, to prevent the disease from developing or minimize the extent of the disease or slow its course of development.
  • agent means a substance that produces or is capable of producing an effect and would include, but is not limited to, chemicals, pharmaceuticals, biologics, small organic molecules, antibodies, nucleic acids, peptides, and proteins.
  • the term “about” or “approximately” means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system, i.e., the degree of precision required for a particular purpose, such as a pharmaceutical formulation.
  • “about” can mean within 1 or more than 1 standard deviation, per the practice in the art.
  • “about” can mean a range of up to 20%, preferably up to 10%, more preferably up to 5%, and more preferably still up to 1%of a given value.
  • the term can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value.
  • the term “about” meaning within an acceptable error range for the particular value should be assumed.
  • GFAP could serve as an independent or complementary test for excluding ICH from IVT, especially when CT is not routinely available [20] .
  • More evidence is required to evaluate GFAP’s performance in differentiating IS from SM, and when combined with other biomarkers, (e.g. NR2A/2B subunit of NMDARs) [21] . Therefore, we selected GFAP as a potential protein biomarker for further validation.
  • compositions and methods for evaluating patients with suspected stroke in order firstly, to differentiate diagnostically acute ischaemic stroke and its subgroups thereof (e.g. LVO, cardioembolic stroke, small-vessel occlusion, atherothrombotic stroke, stroke of undetermined aetiology) from ICH, TIA and SMs.
  • diagnostically acute ischaemic stroke and its subgroups thereof e.g. LVO, cardioembolic stroke, small-vessel occlusion, atherothrombotic stroke, stroke of undetermined aetiology
  • High-throughput proteomic studies Recently we have conducted preliminary high-throughput proteomic studies using Liquid-chromatography mass-spectrometry on 30 AIS subjects, 6 ICH subjects and 14 age, sex and comorbidity matched controls (see Fig. 3) . We discovered 13 novel brain-specific/enriched or biologically related proteins that exhibit the highest early diagnostic performance in patients with suspected stroke (see Table 1) . We compared these with GFAP, the current most studied and most promising marker selected from our systematic review in early stroke diagnostics. Table 1 summarises the biological plausibility and early diagnostic performance of each of these 14 proteins.
  • Brain-specific/enriched proteins We have identified three brain-specific/enriched proteins with diagnostic potential.
  • EH domain-containing protein 3 (EDH3) , an ATP-and membrane-binding protein, that controls membrane reorganisation/tubulation upon ATP hydrolysis, is highly expressed in brain and heart [25] . It participates in the retrograde dendritic transport of endocytosed basal cell adhesion molecule (BACE1) in a unidirectional manner and in the effective sorting of BACE1 to axons. This suggests its involvement in neuronal ATP processing and apoptosis, the latter playing a major role in stroke [25] .
  • BACE1 endocytosed basal cell adhesion molecule
  • Receptor-type protein-tyrosine phosphatase zeta is a cell surface receptor and a chondroitin sulphate (CS) proteoglycan which is highly abundant in the brain, and primarily expressed on neural progenitors and glial cells [26] . It is required for normal differentiation of precursor cells into mature oligodendrocytes, and it plays a role in protecting oligodendrocytes against apoptosis [26] . Our preliminary data shows that plasma PTPRZ1 is increased in patients with acute stroke compared with controls (Fig. 4 and Table 1) .
  • THY1 (CD90) is a glycosylphosphatidylinositol-anchored (GPI-anchored) glycoprotein and abundantly expressed in neurones. THY1 has multiple physiologic functions, including cell-cell signalling, cellular differentiation, cell adhesion and direct involvement in Fas-mediated apoptosis [27] . Our data showed that THY1 was elevated in patients with ICH compared with AIS and controls (Fig. 3) . These brain-specific/enriched proteins are released into circulation after stroke and are potential diagnostic biomarkers (Table 1) .
  • GGCT Gamma-glutamyl cyclotransferase
  • GSH Glutathione
  • GGCT levels correlate positively with levels of GSH, which is linked to its antioxidant function after cerebral ischaemic reperfusion [29] .
  • Our preliminary data shows that it increases significantly in the plasma of patients with AIS, especially in the super acute phase (sensitivity 100%, specificity 95%for differentiating AIS from controls (Table 1) ) .
  • Increased levels of GGCT could be a self-protective mechanism aiding in the clearance of oxygen free radicals, thus alleviating damage to brain cells.
  • BCAM a cell surface glycoprotein belonging to the immunoglobulin superfamily, acts as a receptor for laminin and an adhesion molecule [30, 31] and which may protect cells against apoptosis [32] . It is elevated significantly in the circulation in patients with AIS (Fig. 4 and Table 1) .
  • AIS Fig. 4 and Table 1 .
  • One possible explanation is that after cerebral infarction, there is an increase in cellular apoptosis and migration of white blood cells into the lesion.
  • the upregulation of BCAM helps alleviate apoptosis and promotes white blood cell migration.
  • NIF3-like protein 1 (NIF3L1) , a cytoplasmic protein, shows high conservation from bacteria to mammals. Its transcript is expressed throughout the entire process of mouse embryonic development [33] . It is involved in neuronal differentiation [34] . Our data showed that it is downregulated in patients with stroke compared with controls (Fig. 3, Table 1) .
  • imaging is not available (e.g. prehospital, clinics, some EDs/hospitals)
  • CT imaging
  • Fig. 5 shows a new stroke pathway that could integrate novel biomarker strategies.
  • the disclosure provides early blood biomarkers that achieve high performance to diagnose stroke from non-stroke that may be used in a clinical setting including the emergency department (ED) , prehospital and general medicine settings.
  • ED emergency department
  • Selected diagnostic blood biomarkers will be validated in suspected stroke patients and murine models.
  • certain circulating markers individually or in combination, are used to diagnose acute stroke (AIS, ICH) from non-stroke (TIA and SM) prior imaging and diagnose AIS from non-stroke (SM and TIA) when CT is negative.
  • ICH and AIS patients are differentiated and treated, the more brain cells will be saved and the better the outcome.
  • Protein biomarkers are differentially released early into the blood stream in the acute phase of stroke (AIS and ICH) as a result of the pathophysiological response.
  • the pathology of stroke has been briefly described above and involves brain toxicity, ischaemia, stress, necrosis, apoptosis and BBB damage as a result of differential arterial occlusion (as in AIS) or vessel rupture (as in ICH) .
  • adaptive responses may not be specific to stroke, they are highly relevant if interpreted in the appropriate clinical context (i.e. suspected stroke versus chest pain, abdominal inflammation) .
  • the present disclosure also provides methods for stratifying subjects prior to treatment and/or monitoring subjects for their responses to treatment, e.g., administration of agents, both oral and topical, life-style alterations such as diet and exercise, and non-traditional treatment such as acupuncture. This is useful in both patient care as well as clinical trials.
  • the methods comprise obtaining the expression of at least one gene in at least one gene signature, or the corresponding protein level, in a subject prior to any treatment.
  • the methods comprise obtaining the expression of at least one gene in at least one gene signature (or the corresponding protein) in a normal subject that serves as a reference expression value. After a course of treatment at a particular time period that a person of skill in the art can determine, the measurement of expression of the markers profile or desired gene or genes (or corresponding proteins) is measured, and differential expression or protein level, when compared to the reference (e.g. prior to treatment levels, or control levels) would indicate that the subject has suspected stroke.
  • the expression of at least one gene in at least one gene signature, or corresponding protein level would be measured before and after treatment. In an alternative embodiment, more than one gene from each signature, or corresponding protein would be measured.
  • the present disclosure also provides a method for determining target genes or proteins for drug development.
  • the disclosure also contemplates that the protein products of any of the genes in the gene signatures found for example in datasets and/or described in any of the Tables or Figures herein may have diagnostic value, as well as to serve as potential therapeutic targets for patient monitoring, stratification, or drug development.
  • a sample of biological tissue or bodily fluid from a subject to be tested for a condition is obtained.
  • the sample is tested for protein levels (for protein corollaries of any of the markers as described herein.
  • the protein sample can be obtained from any biological tissue.
  • biological tissues include, but are not limited to, biopsies, epidermal, whole blood, and plasma.
  • the protein sample can be obtained from any biological fluid.
  • fluids include, but are not limited to, plasma, saliva, and urine. Protein can be isolated and/or purified from the sample using any method known in the art, including but not limited to immunoaffinity chromatography.
  • ELISAs enzyme-linked immunosorbent assays
  • RIA radioimmunoassays
  • IRMA immunoradiometric assays
  • IEMA immunoenzymatic assays
  • Antibodies are a method of detecting and measuring target or desired proteins in a sample. Such antibodies are available commercially or can be made by conventional methods known in the art. Such antibodies can be monoclonal or polyclonal and fragments thereof, and immunologic binding equivalents thereof.
  • the term “antibody” means both a homologous molecular entity as well as a mixture, such as a serum product made up of several homologous molecular entities.
  • such antibodies will immunoprecipitate the desired proteins from a solution as well as react with desired/target proteins on a Western blot, immunoblot, ELISA, and other assays listed above.
  • Antibodies for use in these assays can be labeled covalently or non-covalently with an agent that provides a detectable signal. Any label and conjugation method known in the art can be used. Labels include but are not limited to enzymes, fluorescent agents, radiolabels, substrates, inhibitors, cofactors, magnetic particles, and chemiluminescent agents. A number of fluorescent materials are known and can be utilised as detectable labels. These include, for example, fluorescein, rhodamine, auramine, Texas Red, AMCA blue and Lucifer Yellow. A particular detecting material is an anti-rabbit antibody prepared in goats and conjugated with fluorescein through an isothiocyanate.
  • Any desired targets or binding partner (s) can also be labeled with a radioactive element or with an enzyme.
  • the radioactive label can be detected by any of the currently available counting procedures.
  • the preferred isotope may be selected from 3H, 14C, 32P, 35S, 36Cl, 51Cr, 57Co, 58Co, 59Fe, 90Y, 125I, 131I, and 186Re.
  • Enzyme labels are likewise useful, and can be detected by any of the presently utilized colorimetric, spectrophotometric, fluorospectrophotometric, amperometric or gasometric techniques.
  • the enzyme is conjugated to the selected particle by reaction with bridging molecules such as carbodiimides, diisocyanates, glutaraldehyde and the like.
  • enzymes which can be used in these procedures are known and can be utilized.
  • the enzymes are peroxidase, ⁇ -glucuronidase, ⁇ -D-glucosidase, ⁇ -D-galactosidase, urease, glucose oxidase plus peroxidase and alkaline phosphatase.
  • U.S. Patent Nos. 3,654,090; 3,850,752; and 4,016,043 are referred to by way of example for their disclosure of alternate labeling material and methods.
  • sample refers to a sample of biological fluid, tissue, or cells, in a healthy and/or pathological state obtained from a subject.
  • samples include, but are not limited to, blood, bronchial lavage fluid, sputum, saliva, urine, amniotic fluid, lymph fluid, tissue or fine needle biopsy samples, peritoneal fluid, cerebrospinal fluid, and includes supernatant from cell lysates, lysed cells, cellular extracts, and nuclear extracts.
  • the whole blood sample is further processed into serum or plasma samples.
  • the sample includes blood spotting tests.
  • all the assays disclosed herein can be in kit form for use by a health care provider and/or a diagnostic laboratory.
  • the present disclosure provides for a kit comprising one or more probes and/or antibodies for detecting expression levels of one or more markers as described herein.
  • kits may include probes for one or more of the proteins from one or more signatures, as described herein, reagents for isolating and purifying proteins, instructions for use, and reference values or the means for obtaining reference values in a control sample for the included genes.
  • a preferred kit for patient classification with regard to disease activity and clinical manifestations would include probes for at least one protein from each of the signatures described herein.
  • the kit would include reagents for testing markers, for example.
  • reagents for testing markers for example.
  • Such a kit could include antibodies that recognise the protein of interest, reagents for isolating and/or purifying protein from a biological tissue or bodily fluid, reagents for performing assays on the isolated and purified protein, instructions for use, and reference values or the means for obtaining reference values for the quantity or level of peptides in a control sample.
  • a preferred kit for monitoring or use to disease activity would include probes from at least one gene from each of the marker’s signatures described herein.
  • Such a kit could include antibodies that recognize the protein of interest, reagents for isolating and/or purifying protein from a biological tissue or bodily fluid, reagents for performing assays on the isolated and purified protein, instructions for use, and reference values or the means for obtaining reference values for the quantity or level of peptides in a control sample.
  • the kit for diagnosing or prognosing of strokes would include probes for at least one gene from each of the determinative signatures, such as any combination of markers as described herein, or corresponding protein.
  • kits suitable for use by a medical specialist may be prepared to determine the presence or amount of a desired protein or protein activity, expression or signature amplification in suspected stroke subject samples.
  • One class of such kits will contain at least the labeled target or its binding partner, for instance an antibody specific thereto, and directions, of course, depending upon the method selected, e.g., "competitive, " "sandwich, " and the like.
  • the kits may also contain peripheral reagents such as buffers, stabilisers, etc.
  • the kits comprise one or more antibodies described herein.
  • test kit may be prepared for the determination and quantitation of a desired target or protein in cells or a sample, comprising:
  • the diagnostic test kit may comprise:
  • test kit may be prepared and used for the purposes stated above, and comprises:
  • target can include any of the following: any of the genes (including any single or combinations) of the markers as described herein, any corresponding protein of these genes; alone or in combination with one or more biological markers.
  • Inclusion criteria Adults ⁇ 18 years of age; with suspected acute stroke defined as either FAST-positive, or LAPSS-positive or ROSIER>0; within 24 hours of symptom onset; and giving informed consent.
  • Control subjects are non-neurologic patients (matched for age, race, gender and smoking plus one or more of the following vascular risk factors: diabetes, hypertension, atrial fibrillation, hyperlipidaemia) or b) relatives or other adults.
  • NIHSS National Institute for Health Stroke Scale
  • the primary outcome is biomarker performance of diagnosis of acute stroke (AIS or ICH) from non-stroke (SM, TIA and Control) within 6 hours of symptom onset, presented as proportion, AUC, specificity and sensitivity. Secondary outcomes include temporal and dynamic change of biomarkers in patients with AIS, ICH, SM and TIA within 24 hours.
  • the index standard is any one of 14 biomarkers or panel of biomarkers.
  • the initial pre-specified cut off levels are detailed in Table 1.
  • the derivation cohort is semi-exploratory as it will identify which of the 14 biomarkers has the highest performance accuracy.
  • the reference standard will be the diagnosis of stroke (AIS and ICH) and non-stroke (TIA, SM) made by a consultant neurologist and based on a clinical history, neurological examination, and neuroimaging (CT; and/or MRI) .
  • Biospecimen (blood) collection, processing, storage, and analysis We will collect 20ml blood into EDTA bottles from each patient within 24h from symptom onset. The samples will be centrifuged at 4°C for 10 minutes at 1600xg within 15 mins of collection. The plasma fraction will be aliquoted and stored at -80°C. We will use commercial ELISA kits for targeted protein measurements [39] , which is based on a sandwich principle.
  • the total number of mice is 112.
  • Biospecimen collection, processing and storage We will collect blood samples and harvest brain from MCAO, haemorrhagic, and sham group mice at 1h, 3h, 4.5h, 6h, 12h and 24h after surgery. We will also conduct the same sample collection from blank mice to obtain baseline information. We will take 1mL of blood from each mouse, centrifuge as in the clinical phases, and store plasma for later analysis. We will freeze brain tissue for infarct volume, BBB leakage analysis and immunofluorescent staining (see method below) . We will evaluate the relationship of circulation level of the biomarkers with infarct volume and degree of BBB leakage.
  • Immunohistochemical analysis of brain tissue will be performed to compare the protein level of biomarkers on the ipsilateral and contralateral side of the surgery lesion, expecting that the change in stained cells on the ipsilateral side will be lower than the contralateral.
  • We will also assess the relationship of circulation level of biomarkers with change of number of stained cells from brain.
  • Brain infarct volume will be calculated according to previous reports [42] .
  • immunoglobulin G IgG will be visualised by immunofluorescence staining [44] . Sections will be examined by fluorescence microscope. We will analyse images with NIH Image J software. For immunohistochemical staining of biomarkers in brain tissue, brain sections will be first fixed with 4%paraformaldehyde for 10 min and blocked with BSA (10%) for 1 h and then processed as previously described [44] .
  • Kidwell CS Chalela JA, Saver JL, et al. Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA 2004; 292: 1823-30.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Provided are compositions and methods for evaluating patients with suspected stroke in order to differentiate diagnostically acute ischaemic stroke and its subgroups from intracerebral haemorrhage, transient ischaemic attack and stroke mimics; to predict responsiveness to treatment and post-treatment adverse effects; and to prognose the likelihood of subsequent stroke, quality of life and survival.

Description

BLOOD PROTEOMIC MARKERS FOR STROKE AND METHODS THEREOF 1. FIELD
The present disclosure relates to a method for diagnosis and treatment of a subject with suspected stroke. The present disclosure further relates to a group of biomedical markers associated with a high likelihood of stroke of a subject.
2. BACKGROUND
Stroke affects 17 million people globally each year who could benefit from improved diagnostics. In patients with suspected stroke, blood biomarkers hold potential to improve the early detection, diagnosis and treatment of acute stroke (including acute ischaemic stroke (AIS) and intracerebral haemorrhage (ICH) ) . Similar to their role in patients with chest pain, biomarkers in stroke care could improve healthcare efficiency and save millions of lives and unnecessary costs. These biomarkers will be patented and used to develop simple, inexpensive, accurate, Point of care tests (POCTs) for use in Emergency Department (ED) , prehospital, clinics and hospital ward settings. The Global Acute Ischaemic Stroke Diagnosis and Treatment Industry estimates that by 2027 the market will reach US$2.4 billion.
In 2020, the global incidence of stroke was 11.71 million people, of which AIS accounted for 7.59 million (65%) , ICH 3.41 million (29%) , and sub-arachnoid haemorrhage (SAH) 0.71 million [1, 2] . The attributable mortality to stroke was 7.08 million, to AIS 3.48 million and to ICH 3.25 million people [2] . Of the global prevalence of all stroke subtypes at 89.13 million, AIS accounted for 68.16 million and ICH for 18.88 million [2] . It is the third leading cause of disability adjusted life years [3] and accounts for over 143 million years of healthy life lost each year [1] . In Hong Kong it is the fourth leading cause of death [4] .
Clinicians diagnose stroke based on a clinical history, neurological examination and cerebrovascular imaging (computed tomography, CT and/or magnetic resonance imaging, MRI) . The reference standard for ruling in/ruling out stroke is imaging (CT/MRI) . (Fig. 1) [5] . However, a number of challenges can affect early stroke management.
When imaging (CT) is not available in the acute setting, it can be difficult to distinguish stroke from ICH, stroke mimics (SM) and transient ischaemic attack (TIA) .
When imaging (CT) is available in acute phase, and ICH is ruled out, clinical ability to differentiate AIS from SM/TIA is limited such that in the early stages many SM are inappropriately diagnosed and treated as AIS. In the first few hours, non-contrast CT read by an experienced radiologist or neurologist has 96%specificity for ruling in ICH but poor specificity for ruling in AIS [5] . Non-contrast CT has limited capacity for differentiating AIS from SM [6] . Diffusion-weighted MRI is more sensitive than CT as it shows fresh ischaemic lesions as early as 2h from symptom onset [7] . However, it is usually unavailable in the first hours. 25%of patients who receive intravenous thrombolytic (IVT) treatment have SM and are treated inappropriately [8] . Also, CT and MRI provide limited information on cellular and molecular pathophysiology [9] . When AIS is diagnosed, it can also be challenging to diagnose stroke sub-types (e.g. large vessel occlusion (LVO) from non-LVO) .
Treatment in early stroke diagnosis and treatment is time critical: rtPA is most effective within 3h from symptom onset although it is still effective within 4.5h and within some sub-groups expected up to 9h. There is a 6h time window for urokinase thrombolysis, arterial thrombolysis and anterior circulation thrombectomy. Endovascular therapy is effective within 24h for subgroups with LVO, although may have some potential use in the extended 24-48h time window.
Hence, there is a need for additional, complimentary, and alternative diagnostic strategies.
Biomarkers in acute myocardial infarction (AMI) and mild traumatic brain injury (mTBI)
In patients with chest pain and suspected AMI, the introduction of blood-based biomarkers has transformed diagnostic accuracy, disease assessment and treatment, and given patients prolonged and better-quality lives [10] . In patients with mTBI, the combination of brain-enriched proteins –glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) –measured in serum and plasma in the acute phase can safely rule out abnormalities on CT with a sensitivity of 96.7%and a negative predictive value of 99.5%thus improving healthcare efficiency [11, 12] . ALINITY iTBI (Abbott) is the first CE-marked, lab-based, Food and Drug Administration (FDA) -approved, GFAP/UCH-L1 blood test to enable physicians to objectively rule out the presence of an intracranial lesion and render CT unnecessary [13] .
Pathophysiology
Stroke is a complex and heterogenous disease with multiple tissue and biology specific pathologies and adaptive response pathways to brain damage. Nevertheless, there are recognisable patterns to guide diagnostic biomarker strategies [14] . The early phase of acute stroke involves vessel occlusion or rupture, thrombosis and endothelial damage which leads to ischaemia and/or haemorrhage, neurone death, apoptosis and necrosis, and leakage of the blood-brain barrier (BBB) . This is followed by adaptive repair mechanisms including immune-inflammatory and repair responses [15, 16] .
TIA and most SMs differ from stroke with various pathophysiological patterns [6, 17] . ICH differs from AIS in that the former involves vessel rupture, haemorrhage, ischaemia and significantly more neurone death. This is evidenced by neurone-enriched markers (e.g. GFAP) which are elevated in the plasma in the first 6 hours to much higher levels in ICH than AIS (Fig. 2) [14, 18] . Thus, variable levels of biomarkers reflect different pathophysiological stages and mechanisms in suspected stroke.
The diagnosis, risk-stratification, prediction and prognosis of stroke is dependent on clinical assessment and imaging.
Clinical assessment alone is insufficiently sensitive to diagnose stroke accurately in a high proportion of cases. Currently there are clinical stroke scales (e.g. National Institutes of Health Stroke Scale, NIHSS) which have predictive potential but these scales are subjective and scoring may vary between assessors.
Radiological techniques such as CT are extremely accurate for ruling out intracerebral haemorrhage but do not accurately rule in AIS and differentiate it from SM or TIA in the early stages. MRI has limited availability, depending upon patients being well enough to have a scan, may miss small infarcts in critical areas.
Therefore a relatively simple, fast, accurate, non-invasive, inexpensive blood test may have great clinical usefulness and commercial value.
3. SUMMARY
The present invention relates to a method for diagnosis and treatment of a subject with suspected stroke. The present invention further relates to a group of biomedical markers associated with a high likelihood of stroke of a subject. Furthermore, an assay for detecting, diagnosing, monitoring or prognosticating a medical condition, or for detecting, diagnosing, monitoring or prognosticating the responsiveness of a subject to a therapy against said medical condition is provided, as well as a corresponding method and a kit for classifying a subject and a medical decision support system.
The disclosure provides a panel of blood protein biomarkers which, either alone or in combination, enable a rapid diagnosis, risk-classification and prognosis to be made in patients suspected of having a stroke. Patients from the community, in emergency departments or in hospitals, with symptoms and signs that suggest a stroke need an accurate early assessment. Patients with suspected stroke may have an AIS (60%) , a ICH (20%) , a TIA (10%) or be a SM (10%) .
In one embodiment, provided is a panel comprising a plurality of markers selected to selectively identify the occurrence or nonoccurrence of a stroke in a subject exhibiting one or more symptoms associated with the diagnosis of stroke, wherein said marker (s) are selected to distinguish the occurrence of a stroke in said subject from one or more stroke mimic conditions.
In certain embodiment, the one or more stroke mimic conditions are selected from the group consisting of brain tumour, aneurysm, electrocution, burns, infections, cerebral hypoxia, head injury, stress, dehydration, nerve palsy, hypoglycaemia, migraine, multiple sclerosis, peripheral vascular disease, peripheral neuropathy, seizure, subdural haematoma, syncope, and transient unilateral weakness.
In one embodiment, provided is a panel comprising a plurality of markers selected to selectively identify the occurrence or nonoccurrence of an acute stroke in a subject exhibiting one or more symptoms associated with the diagnosis of stroke.
In one embodiment, provided is panel comprising a plurality of markers selected to selectively identify the occurrence or nonoccurrence of a non-acute stroke in a subject exhibiting one or more symptoms associated with the diagnosis of stroke.
In one embodiment, one or more markers in said panel are selected to distinguish if the onset of said stroke was within 3 hours.
In one embodiment, the one or more markers in said panel are selected to distinguish if the onset of said stroke was within 4.5 hours.
In one embodiment, the one or more markers in said panel are selected to distinguish if the onset of said stroke was within 6 hours.
In one embodiment, the one or more markers in said panel are selected to distinguish if the onset of said stroke was within 9 hours.
In one embodiment, the one or more markers in said panel are selected to distinguish if the onset of said stroke was within a window of from 24 hours.
In one embodiment, the one or more markers in said panel are selected to distinguish if the onset of said stroke was within a window of from 24 to 48 hours.
At present there is no nationally approved blood-based biomarker which can be used in the first few hours to confirm the diagnosis of stroke, classify the type of stroke, guide treatment and predict outcome. Imaging (a CT scan or MRI) is the next best thing but is of limited applicability. An early CT scan can diagnose some SMs (e.g. brain cancer) and rule out haemorrhage. However, it identifies the presence and location of an AIS in only 20%subjects in the first 12 hours. It gives little information on pathology or time of stroke onset. An early CT scan is frequently not quickly available especially out of hospital, and when negative provides no guidance on disease or progression. MRI is more accurate but still gives limited information on pathology, is frequently not available in most hospitals in early phases and is contraindicated in some patients (e.g. metal implants or instability) .
In one embodiment, patients with a suspected stroke can provide a sample of blood for a point of care test. This test identifies the presence of the marker (s) , quantifies the amount, and guides probability of a diagnosis, need for specific treatment, likely response to treatment and long-term survival and quality of life.
In one aspect, disclosure solves the unmet clinical need in the community or in hospital of making an early, objective, accurate diagnosis of stroke, its sub-types, or its mimics in patients with suspected stroke. It also improves prognosis, risk-classification and responsiveness to treatment.
In one embodiment, the blood marker (s) will act as a bedside, point-of-care test. Abnormal concentrations of markers will indicate the presence of a stroke and its sub-types. Normal or mildly elevated or reduced levels of markers will rule out stroke with a high degree of accuracy thus rendering further investigation and treatment unnecessary. The quantitative change in blood biomarkers in the first few hours confirms whether a stroke has occurred, what type of stroke, whether the stroke would benefit from treatment (e.g. thrombolysis or thrombectomy) and the time of probable onset of stroke in patients where onset time is unclear.
In one embodiment, the protein biomarkers are useful for screening patients with suspected stroke.
In one embodiment, the protein biomarkers are highly diagnostic of stroke.
In one embodiment, the protein biomarkers differentiate IS from ICH at an early stage.
In one embodiment, the protein biomarkers are useful for disease monitoring and progression.
Provided is a panel of proteins that have biological and temporal relevance and of sufficiently high sensitivity and specificity to be considered alone and in combination to fulfil unmet clinical needs.
The blood proteins that are identified may be used alone or in combination in the diagnosis, risk-stratification, prediction and prognosis of patients presenting with stroke-like symptoms.
Broadly, there is an unmet clinical need for biomarkers and biomarker panels in acute stroke assessment in the prehospital, clinic, emergency department (or equivalent) and hospital settings. There is a need for:
Diagnostic biomarkers
a) Where imaging is not available (e.g. prehospital, clinics, developing world settings) ,
a. to differentiate stroke (AIS or ICH from non-stroke (SM or TIA) ;
b. to differentiate AIS from HS; and
c. to differentiate AIS from low-risk SM (e.g. migraine, depression, dehydration, lethargy) ;
b) Where imaging (CT) is available in early stage stroke (in hospital or mobile stroke units) ,
a. to differentiate AIS from low-risk SM (e.g. migraine, depression, dehydration, lethargy) in CT negative suspected stroke;
b. to differentiate AIS from TIA
c. in AIS, to differentiate LVO from non-LVO
The present disclosure relates to the field of diagnosis and treatment of a subject suspected with stroke, and particularly relates to a set of marker genes for the prognostic assessment of stroke. In primary culture and sequencing analysis of tissue samples, a list of genes was found to be significantly upregulated/downregulated in samples from a subject suffered from a stroke compared to samples from control subject; the results of using said genes as a prognostic marker in stroke were interpreted objectively and with high accuracy. The said gene set can be used to develop a RT-qPCR Kit for in vitro prognostic assessment of stroke.
This method provides the advantage of being able to provide predictive information at an early developmental stage of a disease, e.g. stroke. The methodology has successfully been used to identify stratifying genes for stroke patients.
The present disclosure provides a biomedical marker or group of biomedical markers associated with a high likelihood of a subject with stroke, wherein said biomedical marker or group of biomedical markers comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, or all markers.
Provided herein is an assay for detecting, diagnosing, graduating, monitoring or prognosticating a medical condition, or for detecting, diagnosing, monitoring or prognosticating the responsiveness of a subject to a therapy against said medical condition, in particular, stroke.
Provided herein is a corresponding method for classifying a subject and a medical decision support system. In a further aspect the present disclosure relates to an assay for detecting, diagnosing, monitoring or prognosticating a medical condition, or for detecting, diagnosing, monitoring or prognosticating the responsiveness of a subject to a therapy against said medical condition, preferably stroke, comprising at least the steps of: (a) testing in a sample obtained from a subject for the expression of a marker or a group of biomedical markers; (b) testing in a control sample for the expression of the same marker, group of markers in (a) ; (c) determining the difference in expression of markers of steps (a) and (b) ; and (d) deciding on the presence or stage of a medical condition of a subject to a therapy against said medical condition, preferably stroke, based on the results obtained in step (c) .
In one embodiment, the disclosure relates to a method for classifying a subject comprising: (a) providing a subject's dataset comprising data on gene expression of a stratifying biomedical marker or group of said markers obtained by a method as defined herein above, or as defined in the list or group of biomedical markers described herein above or below; (b) accessing a database comprising database values for a stratifying biomedical marker or group of said markers as defined herein above, or as defined in the list or group of biomedical markers described herein above or below; and (c) calculating a subject's classification score based on the difference between database between the results of step (a) and (b) .
In one embodiment, the disclosure relates to a medical decision support system comprising: an input for providing a subject dataset comprising data on gene expression of a stratifying biomedical marker or group of said markers obtained by a method as defined herein above, or as defined in the list or group of biomedical markers described herein above; a computer program product for enabling a processor to carry out the method for classifying a subject comprising as define above; and an output for outputting the subject classification score.
The term "predictive value for a medical condition" refers to a value allowing the assessment of a medical condition or the development of said medical condition in the future, e.g. within a defined time frame of 1-2 hrs, 2-4 hrs, 4-6 hrs, 6-8 hrs, 8-12 hrs, 12-24 hrs, 1-2 days, 2-4 days, 4-6 days, 1 to 2 weeks, 2-3 weeks, 1 month, 2 month, 3 month, 4 months, 5 months, 6 months, 1, 2, 3, 4, 5, 6, 7, 10 years or more years or any other period of time. The term also includes all situations associated with said medical condition, e.g. treatment results, responsiveness to treatments etc.
In one embodiment, the disclosure relates to a composition for in vivo or in vitro diagnosing, detecting, monitoring or prognosticating a disease, e.g. stroke, or for diagnosing, detecting, monitoring or prognosticating the likelihood of responsiveness of a subject to a therapy. In one embodiment, the therapy is for stroke. Such a composition may alternatively or additionally comprise a thrombolytic therapy or an antibody against any of the above-mentioned markers. In one embodiment a nucleic acid affinity ligand or peptide affinity ligand is modified to function as an imaging contrast agent.
In one embodiment, provided is a method of identifying a subject for eligibility for a therapy for prevention of stroke comprising: (a) testing in a sample obtained from subject for a parameter associated with a marker or group of markers as indicated herein above; (b) classifying the levels of tested parameters; and (c) identifying the individual as eligible to receive a therapy wherein the subject's sample is classified as having an aberrant expression of one or more of the above mentioned markers.
In one embodiment, the expression may be tested by any suitable means known to the person skilled in the art, such as room temperature polymerase chain reaction (RT-PCR) , RNA sequencing, or gene expression detection on microarrays.
In one embodiment, the present disclosure relates to a medical decision support system that is a molecular stroke determination decision making workstation. The decision-making workstation may be used for deciding on the initiation and/or continuation of a therapy for a subject. In one embodiment, the decision-making workstation is used for deciding on the probability and likelihood of responsiveness to a therapy.
4. BRIEF DESCRIPTION OF THE FIGURES
The patent or application file contains at least one drawing executed in colour. Copies of this patent or patent application publication with colour drawings will be provided by the Office upon request and payment of the necessary fee.
FIG. 1 CT Images of two patients with suspected stroke. (A) Patient 1 with ICH (arrow) . Patient 2 with AIS: the first CT is negative within 6 hours (B) , and the second CT shows the lesion (arrow) at 24 hours after symptom onset (C) .
FIG. 2 Temporal change in circulating level of GFAP. The concentration of GFAP (combined median with 95%CI) was plotted. This graph shows that GFAP increased rapidly from 3 h and peaked at 4.5 h from symptom onset and decreased continuously afterwards till 24 h in patients with ICH. For patients with AIS, GFAP had always been at a lower level than those in ICH patients.
FIG. 3 Discovery pipeline for selecting novel proteins with high-performance potential in stroke.
(A) Heat maps showing differential expressing circulating proteins comparing stroke with non-stroke. (B) Volcano plots showing differential expressing circulating proteins comparing stroke with non-stroke, and (C) AIS with control. Examplar box plot of brain-enriched protein EHD3 (D) and THY1 (E) , comparing early AIS, ICH, and control within 6 hours of stroke onset. Examplar box plot of PTPN6 (F) , comparing stroke with non-stroke within 6 hours of stroke onset. Examplar box plots of differential CTTN (G) , ADGRL4 (H) , NIF3L1 (I) comparing AIS with ICH within 6 hours of stroke onset. Examplar box plot of THY1 (J) , CTTN (K) , NIF3L1 (L) comparing small and large infarct volume.
FIGs. 4A-F. Examplar Discovery Temporal profiles of novel proteins in the 24 hours of stroke
From our preliminary data, we identified differential patterns of acute change in circulating proteins compared with age, gender, and comorbidity-matched non-stroke controls (horizontal dotted line) over 24 hours. The shaded area is 95%CI. From stroke onset some brain-enriched proteins demonstrated (A) rising trends (THY1) , (B) falling trends (EHD3) , and (C) biphasic trends (LEPR) . Similar patterns may be seen in some adaptive-response proteins: PTPN6 (D) , BCAM (E) , and TAGLN (F) .
FIG. 5. Future Clinical Pathway using novel diagnostic biomarkers.
4.1 DEFINITIONS
As used herein, the terms “patient” or “subject” are used interchangeably and mean a mammal, including, but not limited to, a human or non-human mammal, such as a bovine, equine, canine, ovine, or feline. Preferably, the subject is human.
As used herein, the terms “increase or decrease” refer to the ability to cause an overall increase or decrease of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or greater. Reduce can refer to the symptoms of the disorder being treated, the presence of stroke.
“Treating” or “treatment” of a state, disorder or condition includes:
(1) preventing or delaying the appearance of clinical symptoms of the state, disorder, or condition developing in a person who may be afflicted with or predisposed to the state, disorder or condition but does not yet experience or display clinical symptoms of the state, disorder or condition; or
(2) inhibiting the state, disorder or condition, i.e., arresting, reducing or delaying the development of the disease or a relapse thereof (in case of maintenance treatment) or at least one clinical symptom, sign, or test, thereof; or
(3) relieving the disease, i.e., causing regression of the state, disorder or condition or at least one of its clinical or sub-clinical symptoms or signs.
The benefit to a subject to be treated is either statistically significant or at least perceptible to the patient or to the physician.
A “prophylactically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount will be less than the therapeutically effective amount.
Acceptable excipients, diluents, and carriers for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remington: The Science and Practice of Pharmacy. Lippincott Williams &Wilkins (A. R. Gennaro edit. 2005) . The choice of pharmaceutical excipient, diluent, and carrier can be selected with regard to the intended route of administration and standard pharmaceutical practice.
A “therapeutically effective amount” means the amount of a compound that, when administered to an animal for treating a state, disorder or condition, is sufficient to affect such treatment. The “therapeutically effective amount” will vary depending on the compound, the disease and its severity and the age, weight, physical condition and responsiveness of the animal to be treated.
The compositions of the disclosure may include a “therapeutically effective amount” or a “prophylactically effective amount” of a compound described herein. A “therapeutically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result. A therapeutically effective amount of an antibody or antibody portion may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the antibody or antibody portion to elicit a desired response in the individual. A therapeutically effective amount is also one in which any toxic or detrimental effects of the compound are outweighed by the therapeutically beneficial effects. A “prophylactically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount will be less than the therapeutically effective amount.
The terms “screen” and “screening” and the like as used herein means to test a subject or patient to determine if they have or are likely to have a particular illness or disease, or a particular manifestation of an illness or disease. The term also means to test an agent to determine if it has a particular action or efficacy.
The terms “identification” , “identify” , “identifying” and the like as used herein means to recognise a disease state or a clinical manifestation or severity of a disease state in a subject or patient. The term also is used in relation to test agents and their ability to have a particular action or efficacy.
The terms “prediction” , “predict” , “predicting” and the like as used herein means to tell in advance based upon special knowledge.
The terms “prevent” , “prevention” , and the like refer to acting prior to overt disease onset, to prevent the disease from developing or minimize the extent of the disease or slow its course of development.
The term “agent” as used herein means a substance that produces or is capable of producing an effect and would include, but is not limited to, chemicals, pharmaceuticals, biologics, small organic molecules, antibodies, nucleic acids, peptides, and proteins.
The term “about” or “approximately” means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system, i.e., the degree of precision required for a particular purpose, such as a pharmaceutical formulation. For example, “about” can mean within 1 or more than 1 standard deviation, per the practice in the art. Alternatively, “about” can mean a range of up to 20%, preferably up to 10%, more preferably up to 5%, and more preferably still up to 1%of a given value. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value. Where particular values are described in the application and claims, unless otherwise stated, the term “about” meaning within an acceptable error range for the particular value should be assumed.
5. DETAILED DESCRIPTION
At present there is no blood test that can be used to diagnose stroke in the first few hours of stroke onset. Two blood markers have been used for ruling out the need of CT scan in patients with mild traumatic brain injury (mTBI) –GFAP and UCH. These markers have FDA approval for mTBI but not for stroke. Neither have been rigorously studied in patients with suspected stroke and neither are approved for ruling in or ruling out stroke. We demonstrated that GFAP may be used in the first six hours to differentiate AIS from HS.
Our diagnostic meta-analysis of GFAP circulating levels reveals that patients with ICH have significantly higher levels of GFAP than patients with AIS in the first 24hr especially within 4.5hrs (Fig. 2) . Thus, GFAP could serve as an independent or complementary test for excluding ICH from IVT, especially when CT is not routinely available [20] . More evidence is required to evaluate GFAP’s performance in differentiating IS from SM, and when combined with other biomarkers, (e.g. NR2A/2B subunit of NMDARs) [21] . Therefore, we selected GFAP as a potential protein biomarker for further validation.
Provided are compositions and methods for evaluating patients with suspected stroke in order firstly, to differentiate diagnostically acute ischaemic stroke and its subgroups thereof (e.g. LVO, cardioembolic stroke, small-vessel occlusion, atherothrombotic stroke, stroke of undetermined aetiology) from ICH, TIA and SMs.
High-throughput proteomic studies: Recently we have conducted preliminary high-throughput proteomic studies using Liquid-chromatography mass-spectrometry on 30 AIS subjects, 6 ICH subjects and 14 age, sex and comorbidity matched controls (see Fig. 3) . We discovered 13 novel brain-specific/enriched or biologically related proteins that exhibit the highest early diagnostic performance in patients with suspected stroke (see Table 1) . We compared these with GFAP, the current most studied and most promising marker selected from our systematic review in early stroke diagnostics. Table 1 summarises the biological plausibility and early diagnostic performance of each of these 14 proteins.
Brain-specific/enriched proteins: We have identified three brain-specific/enriched proteins with diagnostic potential.
EH domain-containing protein 3 (EDH3) , an ATP-and membrane-binding protein, that controls membrane reorganisation/tubulation upon ATP hydrolysis, is highly expressed in brain and heart [25] . It participates in the retrograde dendritic transport of endocytosed basal cell adhesion molecule (BACE1) in a unidirectional manner and in the effective sorting of BACE1 to axons. This suggests its involvement in neuronal ATP processing and apoptosis, the latter playing a major role in stroke [25] . Our prior study demonstrates that circulating levels of this protein increase early in patients with AIS compared with ICH and controls, with both sensitivity and specificity 100%differentiating AIS from ICH in the hyperacute phase, and sensitivity 85%, specificity 100%identifying AIS from controls (Fig. 4 and Table 1) .
Receptor-type protein-tyrosine phosphatase zeta (PTPRZ1) is a cell surface receptor and a chondroitin sulphate (CS) proteoglycan which is highly abundant in the brain, and primarily expressed on neural progenitors and glial cells [26] . It is required for normal differentiation of precursor cells into mature oligodendrocytes, and it plays a role in protecting oligodendrocytes against apoptosis [26] . Our preliminary data shows that plasma PTPRZ1 is increased in patients with acute stroke compared with controls (Fig. 4 and Table 1) .
THY1 (CD90) is a glycosylphosphatidylinositol-anchored (GPI-anchored) glycoprotein and abundantly expressed in neurones. THY1 has multiple physiologic functions, including cell-cell signalling, cellular differentiation, cell adhesion and direct involvement in Fas-mediated apoptosis [27] . Our data showed that THY1 was elevated in patients with ICH compared with AIS and controls (Fig. 3) . These brain-specific/enriched proteins are released into circulation after stroke and are potential diagnostic biomarkers (Table 1) .
Adaptive Response Proteins: Other biologically related proteins also possess high potential for stroke diagnostics. Gamma-glutamyl cyclotransferase (GGCT) , an essential enzyme of the γ-glutamyl cycle, plays a crucial role in maintaining Glutathione (GSH) homeostasis by catalysing the exchange between GSH and γ-glutamyl-amino acid dipeptides during normal metabolism [28] . GGCT levels correlate positively with levels of GSH, which is linked to its antioxidant function after cerebral ischaemic reperfusion [29] . Our preliminary data shows that it increases significantly in the plasma of patients with AIS, especially in the super acute phase (sensitivity 100%, specificity 95%for differentiating AIS from controls (Table 1) ) . Increased levels of GGCT could be a self-protective mechanism aiding in the clearance of oxygen free radicals, thus alleviating damage to brain cells.
BCAM, a cell surface glycoprotein belonging to the immunoglobulin superfamily, acts as a receptor for laminin and an adhesion molecule [30, 31] and which may protect cells against apoptosis [32] . It is elevated significantly in the circulation in patients with AIS (Fig. 4 and Table 1) . One possible explanation is that after cerebral infarction, there is an increase in cellular apoptosis and migration of white blood cells into the lesion. The upregulation of BCAM helps alleviate apoptosis and promotes white blood cell migration.
NIF3-like protein 1 (NIF3L1) , a cytoplasmic protein, shows high conservation from bacteria to mammals. Its transcript is expressed throughout the entire process of mouse embryonic development [33] . It is involved in neuronal differentiation [34] . Our data showed that it is downregulated in patients with stroke compared with controls (Fig. 3, Table 1) .
All the 13 proteins identified from our prior studies in human plasma have genetic correlates in the mouse and can be studied experimentally in murine stroke models [35] .
Critical challenges and unmet clinical need
Critical challenges in early (<24 hour) stroke diagnosis divide into two broad contexts:
a) where imaging is not available (e.g. prehospital, clinics, some EDs/hospitals)
b) where imaging (CT) is available.
Where imaging is not available, there are no accurate methods for stroke diagnosis. Thus, there is an unmet clinical need for biomarkers for early detection and diagnosis to differentiate stroke (AIS or ICH) from low-risk SM (e.g. migraine, depression, dehydration, lethargy) and TIA. Some patients, for example, may not need to be transferred to hospital. Where CT imaging is available (e.g. in hospital or mobile stroke units) , there is a need for biomarkers in patients with CT negative suspected stroke to differentiate AIS from low-risk SM (e.g. migraine, depression, dehydration, lethargy) and TIA (Fig. 1) .
Potential future protocols
Fig. 5 shows a new stroke pathway that could integrate novel biomarker strategies.
Bradford Hill Criteria for cause and effect
In this proposal we will address aspects of analysis that are crucial to strengthen causal evidence in molecular epidemiology and research, namely Bradford Hill Criteria, including evidence for strength of association, consistency, specificity, temporality, biological gradient, plausibility, coherence, experiment, and analogy [36] .
The disclosure provides early blood biomarkers that achieve high performance to diagnose stroke from non-stroke that may be used in a clinical setting including the emergency department (ED) , prehospital and general medicine settings.
Selected diagnostic blood biomarkers will be validated in suspected stroke patients and murine models.
In certain embodiments, in adult suspected stroke patients presenting within 24 hours of symptom onset, certain circulating markers individually or in combination, are used to diagnose acute stroke (AIS, ICH) from non-stroke (TIA and SM) prior imaging and diagnose AIS from non-stroke (SM and TIA) when CT is negative.
In certain embodiments, single and serial blood samples are collected from patient populations of suspected stroke. In certain embodiments, biomarkers are correlated with clinical findings, including but not limited to follow up for appropriate post-stroke survival and evaluation of quality of life.
The earlier stroke is identified, and ICH and AIS patients are differentiated and treated, the more brain cells will be saved and the better the outcome. Protein biomarkers are differentially released early into the blood stream in the acute phase of stroke (AIS and ICH) as a result of the pathophysiological response. The pathology of stroke has been briefly described above and involves brain toxicity, ischaemia, stress, necrosis, apoptosis and BBB damage as a result of differential arterial occlusion (as in AIS) or vessel rupture (as in ICH) . Although adaptive responses may not be specific to stroke, they are highly relevant if interpreted in the appropriate clinical context (i.e. suspected stroke versus chest pain, abdominal inflammation) .
In certain embodiments, the present disclosure also provides methods for stratifying subjects prior to treatment and/or monitoring subjects for their responses to treatment, e.g., administration of agents, both oral and topical, life-style alterations such as diet and exercise, and non-traditional treatment such as acupuncture. This is useful in both patient care as well as clinical trials.
In certain embodiments, the methods comprise obtaining the expression of at least one gene in at least one gene signature, or the corresponding protein level, in a subject prior to any treatment. In alternative embodiments, the methods comprise obtaining the expression of at least one gene in at least one gene signature (or the corresponding protein) in a normal subject that serves as a reference expression value. After a course of treatment at a particular time period that a person of skill in the art can determine, the measurement of expression of the markers profile or desired gene or genes (or corresponding proteins) is measured, and differential expression or protein level, when compared to the reference (e.g. prior to treatment levels, or control levels) would indicate that the subject has suspected stroke. In certain embodiments, the expression of at least one gene in at least one gene signature, or corresponding protein level, would be measured before and after treatment. In an alternative embodiment, more than one gene from each signature, or corresponding protein would be measured.
The present disclosure also provides a method for determining target genes or proteins for drug development.
The disclosure also contemplates that the protein products of any of the genes in the gene signatures found for example in datasets and/or described in any of the Tables or Figures herein may have diagnostic value, as well as to serve as potential therapeutic targets for patient monitoring, stratification, or drug development.
Assays and Methods to Detect Proteins
In certain embodiments, a sample of biological tissue or bodily fluid from a subject to be tested for a condition is obtained.
In certain embodiments, the sample is tested for protein levels (for protein corollaries of any of the markers as described herein. The protein sample can be obtained from any biological tissue. In certain embodiments, biological tissues include, but are not limited to, biopsies, epidermal, whole blood, and plasma. The protein sample can be obtained from any biological fluid. In certain embodiments, fluids include, but are not limited to, plasma, saliva, and urine. Protein can be isolated and/or purified from the sample using any method known in the art, including but not limited to immunoaffinity chromatography.
While any method known in the art can be used, preferred methods for detecting and measuring increase levels of the proteins in a protein sample include quantitative Western blot, immunoblot, quantitative mass spectrometry, enzyme-linked immunosorbent assays (ELISAs) , radioimmunoassays (RIA) , immunoradiometric assays (IRMA) , and immunoenzymatic assays (IEMA) and other sandwich assays using monoclonal and polyclonal antibodies.
Antibodies are a method of detecting and measuring target or desired proteins in a sample. Such antibodies are available commercially or can be made by conventional methods known in the art. Such antibodies can be monoclonal or polyclonal and fragments thereof, and immunologic binding equivalents thereof. The term “antibody” means both a homologous molecular entity as well as a mixture, such as a serum product made up of several homologous molecular entities.
In one embodiment, such antibodies will immunoprecipitate the desired proteins from a solution as well as react with desired/target proteins on a Western blot, immunoblot, ELISA, and other assays listed above.
Antibodies for use in these assays can be labeled covalently or non-covalently with an agent that provides a detectable signal. Any label and conjugation method known in the art can be used. Labels include but are not limited to enzymes, fluorescent agents, radiolabels, substrates, inhibitors, cofactors, magnetic particles, and chemiluminescent agents. A number of fluorescent materials are known and can be utilised as detectable labels. These include, for example, fluorescein, rhodamine, auramine, Texas Red, AMCA blue and Lucifer Yellow. A particular detecting material is an anti-rabbit antibody prepared in goats and conjugated with fluorescein through an isothiocyanate. Any desired targets or binding partner (s) can also be labeled with a radioactive element or with an enzyme. The radioactive label can be detected by any of the currently available counting procedures. The preferred isotope may be selected from 3H, 14C, 32P, 35S, 36Cl, 51Cr, 57Co, 58Co, 59Fe, 90Y, 125I, 131I, and 186Re. Enzyme labels are likewise useful, and can be detected by any of the presently utilized colorimetric, spectrophotometric, fluorospectrophotometric, amperometric or gasometric techniques. The enzyme is conjugated to the selected particle by reaction with bridging molecules such as carbodiimides, diisocyanates, glutaraldehyde and the like. Many enzymes which can be used in these procedures are known and can be utilized. In embodiments the enzymes are peroxidase, β-glucuronidase, β-D-glucosidase, β-D-galactosidase, urease, glucose oxidase plus peroxidase and alkaline phosphatase. U.S. Patent Nos. 3,654,090; 3,850,752; and 4,016,043 are referred to by way of example for their disclosure of alternate labeling material and methods.
The terms "sample" or "biological sample" as used herein, refers to a sample of biological fluid, tissue, or cells, in a healthy and/or pathological state obtained from a subject. Such samples include, but are not limited to, blood, bronchial lavage fluid, sputum, saliva, urine, amniotic fluid, lymph fluid, tissue or fine needle biopsy samples, peritoneal fluid, cerebrospinal fluid, and includes supernatant from cell lysates, lysed cells, cellular extracts, and nuclear extracts. In some embodiments, the whole blood sample is further processed into serum or plasma samples. In some embodiments, the sample includes blood spotting tests.
Kits
It is contemplated that all the assays disclosed herein (e.g. components for determining the markers profile of a sample) can be in kit form for use by a health care provider and/or a diagnostic laboratory.
In certain embodiments, the present disclosure provides for a kit comprising one or more probes and/or antibodies for detecting expression levels of one or more markers as described herein.
Assays for the detection and quantitation of one or more of the marker signatures profiles can be incorporated into kits. Such kits may include probes for one or more of the proteins from one or more signatures, as described herein, reagents for isolating and purifying proteins, instructions for use, and reference values or the means for obtaining reference values in a control sample for the included genes.
A preferred kit for patient classification with regard to disease activity and clinical manifestations would include probes for at least one protein from each of the signatures described herein.
In a further embodiment, the kit would include reagents for testing markers, for example. Such a kit could include antibodies that recognise the protein of interest, reagents for isolating and/or purifying protein from a biological tissue or bodily fluid, reagents for performing assays on the isolated and purified protein, instructions for use, and reference values or the means for obtaining reference values for the quantity or level of peptides in a control sample.
A preferred kit for monitoring or use to disease activity would include probes from at least one gene from each of the marker’s signatures described herein. Such a kit could include antibodies that recognize the protein of interest, reagents for isolating and/or purifying protein from a biological tissue or bodily fluid, reagents for performing assays on the isolated and purified protein, instructions for use, and reference values or the means for obtaining reference values for the quantity or level of peptides in a control sample.
In one embodiment, the kit for diagnosing or prognosing of strokes , would include probes for at least one gene from each of the determinative signatures, such as any combination of markers as described herein, or corresponding protein.
In a further embodiment, commercial test kits suitable for use by a medical specialist may be prepared to determine the presence or amount of a desired protein or protein activity, expression or signature amplification in suspected stroke subject samples. One class of such kits will contain at least the labeled target or its binding partner, for instance an antibody specific thereto, and directions, of course, depending upon the method selected, e.g., "competitive, " "sandwich, " and the like. The kits may also contain peripheral reagents such as buffers, stabilisers, etc. In embodiments, the kits comprise one or more antibodies described herein.
Accordingly, a test kit may be prepared for the determination and quantitation of a desired target or protein in cells or a sample, comprising:
(a) a predetermined amount of at least one labeled immunochemically reactive component obtained by the direct or indirect attachment of the target or a specific binding partner thereto, to a detectable label;
(b) other reagents; and
(c) directions for use of said kit.
More specifically, the diagnostic test kit may comprise:
(a) a known amount of the target as described above (or a binding partner) generally bound to a solid phase to form an immunosorbent, or in the alternative, bound to a suitable tag, or plural such end products, etc. (or their binding partners) one of each;
(b) if necessary, other reagents; and
(c) directions for use of said test kit.
In a further variation, the test kit may be prepared and used for the purposes stated above, and comprises:
(a) a labeled component which has been obtained by coupling the target to a detectable label;
(b) one or more additional immunochemical reagents of which at least one reagent is a ligand or an immobilized ligand, which ligand is selected from the group consisting of:
(i) a ligand capable of binding with the labeled component (a) ;
(ii) a ligand capable of binding with a binding partner of the labeled component (a) ;
(iii) a ligand capable of binding with at least one of the component (s) to be determined; and
(iv) a ligand capable of binding with at least one of the binding partners of at least one of the component (s) to be determined; and
(c) directions for the performance of a protocol for the detection and/or determination of one or more components of an immunochemical reaction between the target and a specific binding partner thereto.
As referenced herein “target” can include any of the following: any of the genes (including any single or combinations) of the markers as described herein, any corresponding protein of these genes; alone or in combination with one or more biological markers.
Molecular biology
In accordance with the present disclosure, there may be numerous tools and techniques within the skill of the art, such as those commonly used in molecular immunology, cellular immunology, pharmacology, and microbiology. See, e.g., Sambrook et al. (2001) Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, N.Y. ; Ausubel et al. eds. (2005) Current Protocols in Molecular Biology. John Wiley and Sons, Inc. : Hoboken, N.J. ; Bonifacino et al. eds. (2005) Current Protocols in Cell Biology. John Wiley and Sons, Inc. : Hoboken, N.J. ; Coligan et al. eds. (2005) Current Protocols in Immunology, John Wiley and Sons, Inc. : Hoboken, N.J. ; Coico et al. eds. (2005) Current Protocols in Microbiology, John Wiley and Sons, Inc. : Hoboken, N.J. ; Coligan et al. eds. (2005) Current Protocols in Protein Science, John Wiley and Sons, Inc. : Hoboken, N.J. ; and Enna et al. eds. (2005) Current Protocols in Pharmacology, John Wiley and Sons, Inc. : Hoboken, N.J.
The terms used in this specification generally have their ordinary meanings in the art, within the context of this invention and the specific context where each term is used. Certain terms are discussed below, or elsewhere in the specification, to provide additional guidance to the practitioner in describing the methods of the invention and how to use them. Moreover, it will be appreciated if the same thing can be said in more than one way. Consequently, alternative language and synonyms may be used for any one or more of the terms discussed herein, nor is any special significance to be placed upon whether or not a term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of the other synonyms. The use of examples anywhere in the specification, including examples of any terms discussed herein, is illustrative only, and in no way limits the scope and meaning of the invention or any exemplified term. Likewise, the invention is not limited to its preferred embodiments.
This invention will be better understood from the Experimental Details, which follow. However, one skilled in the art will readily appreciate that the specific methods and results discussed are merely illustrative of the invention as described more fully in the claims that follow thereafter.
6. EXAMPLES
Bradford Hill Causal evidence 1: In order to establish biological plausibility, we have and will further investigate the roles of each protein (referring to The Human Protein Atlas [37] ) in terms of brain specificity, enrichment and stroke adaptive response (e.g. apoptosis, inflammation) through literature and bioinformatic analysis.
6.1 Clinical study of selected targeted proteins
Study Design: In a prospective derivation and validation cohort study, over two years, we will recruit 250 consecutive suspected stroke patients within 24 hours from symptom onset and 100 controls from the ED of Queen Mary Hospital, Hong Kong, China from 1st January 2025 to 31st December 2027. This cohort will be divided into two phases.
Recruitment: We will recruit 125 suspected stroke patients in the first year of this study as derivation cohort. We will recruit two types of control –a) 25 healthy age and sex-matched controls, and b) 25 age-, sex-and comorbidity (e.g. diabetes, hypertension, smoking) matched patient controls with no acute illness. A neurologist will confirm stroke (AIS and ICH) .
Inclusion criteria: Adults ≥18 years of age; with suspected acute stroke defined as either FAST-positive, or LAPSS-positive or ROSIER>0; within 24 hours of symptom onset; and giving informed consent. Control subjects are non-neurologic patients (matched for age, race, gender and smoking plus one or more of the following vascular risk factors: diabetes, hypertension, atrial fibrillation, hyperlipidaemia) or b) relatives or other adults.
Data: On the first day, we will assess the National Institute for Health Stroke Scale (NIHSS) [38] . A research nurse will collect demographic data, medical history, risk factors, medication, time from symptom onset, laboratory and imaging data.
Outcomes: The primary outcome is biomarker performance of diagnosis of acute stroke (AIS or ICH) from non-stroke (SM, TIA and Control) within 6 hours of symptom onset, presented as proportion, AUC, specificity and sensitivity. Secondary outcomes include temporal and dynamic change of biomarkers in patients with AIS, ICH, SM and TIA within 24 hours.
Index test: The index standard is any one of 14 biomarkers or panel of biomarkers. The initial pre-specified cut off levels are detailed in Table 1. The derivation cohort is semi-exploratory as it will identify which of the 14 biomarkers has the highest performance accuracy.
Reference standard: The reference standard will be the diagnosis of stroke (AIS and ICH) and non-stroke (TIA, SM) made by a consultant neurologist and based on a clinical history, neurological examination, and neuroimaging (CT; and/or MRI) .
Biospecimen (blood) collection, processing, storage, and analysis: We will collect 20ml blood into EDTA bottles from each patient within 24h from symptom onset. The samples will be centrifuged at 4℃ for 10 minutes at 1600xg within 15 mins of collection. The plasma fraction will be aliquoted and stored at -80℃. We will use commercial ELISA kits for targeted protein measurements [39] , which is based on a sandwich principle.
Setting: Queen Mary Hospital receives 800 suspected stroke patients a year. We have already recruited 160 suspected stroke patients (AIS 60%; ICH 10%; TIA 14%; SM 16%) and 25 controls within one year before this proposed study. We aim to establish a biobank consisting of 250 suspected stroke patients and 50 controls prior to commencing this study.
Sample size: The sample size for comparing two groups (i.e. stroke v non-stroke) in the discovery phase, when the targeted AUC is 0.9, specificity >/=0.99, and sensitivity >/=0.8, is 53 per group (total 106) [40, 41] .
Bradford Hill Causal evidence 2: To determine the strength of association between AIS lesion volume, NIHSS and each biomarker, we will use samples from 500 patients with suspected stroke (250 from clinical cohorts and 250 from archived biobank samples) and present results as correlation coefficients. The same will be repeated in our murine studies.
Bradford Hill Causal evidence 3: To investigate consistency between the 14 biomarkers and the diagnosis of stroke type (AIS and ICH) from non-stroke (TIA and SM) in patients with suspected stroke, we will run derivation, internal validation, and external validation studies (Fig. 6) comparing sensitivity, specificity, AUC, and relative expression of each marker alone and in combination.
Phase 1A Derivation and Internal Validation Cohort 1
Using data from our preliminary study, we will evaluate our 14 biomarkers (Table 1) individually and in combinations to identify potential models for stroke diagnosis. Although our preliminary data gave us initial insights for novel protein markers (Figs. 2-4 and Table 1) , we need to establish the performance of each biomarker in larger, more robust, data sets. We will run a clinical derivation study powered to optimise results. This initial dataset (year 1) will undergo internal validation by bootstrapping prior to later validation in a second cohort (year 2 below) , which meets the above Bradford Hill Causal evidence 3.
Data analysis: In this stage, we will compare the diagnostic performance of each target protein and select individual or panels of proteins (see the statistical plan below) .
Phase 1B Validation Cohort 2
In this phase, we will validate the individual or panel of proteins selected from phase 1A in an independent cohort (N = 125) . Three serial blood samples within 72h from symptom onset will be collected in this phase. At the end of this phase, we will confirm the diagnostic performance of the biomarker signatures.
Bradford Hill Causal evidence 4: To determine specificity of each marker alone or in combination to diagnose AIS and ICH, we will use sub-divided SMs (low risk (e.g., migraine, psychiatric, dehydration) and high risk (e.g., tumour, myelodegenerative disease) ) , TIAs, age-gender-health control and non-acute comorbidity matched controls (Fig. 3) .
Bradford Hill Causal evidence 5: To establish temporal relationships and dynamic change we will use single (within 24 hours) and serial (within 72 hours) blood samples from patients with suspected stroke and controls relating quantitative change to time of symptom onset in this phase. We will establish differential temporal profiles (Fig. 4) . A rising trend of brain-enriched markers and rising/decreasing trend of adaptive response markers would be most typical of stroke whilst a flat trend, compared with controls, may suggest pre-stroke pathology.
Bradford Hill Causal evidence 6: We will investigate biological gradient in human studies by comparing relationships between normal, minor, moderate, and severe stroke types (determined by NIHSS score, infarct or haemorrhage volumes and 3-month post-stroke mRS) .
6.2 Murine Experimental Model
Bradford Hill Causal evidence 7: We will use experiment to establish the causal link between circulating proteins and temporal change in our AIS (middle cerebral artery occlusion model, MCAO) and ICH murine models (see below) . Such studies are not possible in humans. We have clarified that the 14 brain-specific and adaptive response proteins identified in our prior studies all have murine analogues [35] .
Procedures: We will use MCAO and ICH models in mice.
i) Phase 2A An AIS (MCAO) model; procedure according to our previous study [42] .
ii) Phase 2B An ICH (haemorrhagic) model; procedure according to previous reports [43] .
Experimental overview: In phase 2A, BALB/c mice will be randomly assigned to 6 groups according to sacrifice time points after MCAO surgery, consisting of 1h, 3h, 4.5h, 6h, 12h and 24h (N=6 each group, total 36) . Phase 2B will include similar grouping (6 groups, N=6 each group, total 36) . Sham mice will undergo simplified surgery without vessel occlusion or haemorrhage and will be divided into 6 groups according to the above sacrifice time points (N=6 each group, total 36) . A blank group (n=6) without any injury will also be included as blank control. The total number of mice is 112.
Biospecimen collection, processing and storage: We will collect blood samples and harvest brain from MCAO, haemorrhagic, and sham group mice at 1h, 3h, 4.5h, 6h, 12h and 24h after surgery. We will also conduct the same sample collection from blank mice to obtain baseline information. We will take 1mL of blood from each mouse, centrifuge as in the clinical phases, and store plasma for later analysis. We will freeze brain tissue for infarct volume, BBB leakage analysis and immunofluorescent staining (see method below) . We will evaluate the relationship of circulation level of the biomarkers with infarct volume and degree of BBB leakage.
Immunohistochemical analysis of brain tissue will be performed to compare the protein level of biomarkers on the ipsilateral and contralateral side of the surgery lesion, expecting that the change in stained cells on the ipsilateral side will be lower than the contralateral. We will also assess the relationship of circulation level of biomarkers with change of number of stained cells from brain.
Bradford Hill Causal evidence 8: We will investigate coherence, through immunohistochemical analysis and immunofluorescence of mouse brain tissue in our experimental murine studies.
Analysis of mouse brain tissue: Brain infarct volume will be calculated according to previous reports [42] . For BBB integrity assessment, immunoglobulin G (IgG) will be visualised by immunofluorescence staining [44] . Sections will be examined by fluorescence microscope. We will analyse images with NIH Image J software. For immunohistochemical staining of biomarkers in brain tissue, brain sections will be first fixed with 4%paraformaldehyde for 10 min and blocked with BSA (10%) for 1 h and then processed as previously described [44] .
6.3 Statistical Analysis
We will use Prism 9 (GraphPad Software Inc. La Jolla, CA92037 USA) to perform all statistical analysis. Non-normally distributed data will be transformed logarithmically before analysis and presented as means ± SD. Statistical significance will be assessed by Student’s t-test or one-way ANOVA with Bonferroni correction for multiple comparisons. We will use Pearson’s correlation test to determine the correlation between human plasma levels of biomarkers and infarct volume, NIHSS score. We will also use Pearson’s correlation test to evaluate the correlation between mouse plasma level of biomarkers with infarct volume, BBB leakage, ipsilateral fluorescence density. P values <0.05 will be considered to indicate statistically significant differences. Diagnostic performance will be presented as AUC, sensitivity and specificity. In an initial analysis we will derive the potential models adjusting for age, sex and comorbidity. We will use univariate analysis followed by multiple logistic regression. This will be supplemented by machine learning [45] . Our derivation set will identify optimal cutoff values with sensitivity, specificity and 95%CIs. Our first internal validation will use bootstrapping. Our second external validation will affirm the performance characteristics of the protein models. Indeterminate index tests and reference standards will undergo a sensitivity analysis based on 95%CIs. We will report the time of the test from symptom onset and in relation to the reference standard, and adverse events. Results will be reported according to Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) statement [46] and Standards for Reporting of Diagnostic Studies (STARD) 2015 guidelines for reporting diagnostic accuracy studies [47] .
Provided is a point-of care testing ( “POCT” ) in patients with suspected stroke (Fig. 5) . It serves as a detection/diagnostic test where imaging is not available, guides decisions on referral to hospital or not, and supports clinical conclusions where there is uncertainty over or negative imaging results.
Exemplary products, systems and methods are set out in the following items:
The foregoing description of the specific embodiments will so fully reveal the general nature of the disclosure that others can, by applying knowledge within the skill of the relevant art (s) (including the contents of the documents cited and incorporated by reference herein) , readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present disclosure. Such adaptations and modifications are therefore intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance presented herein, in combination with the knowledge of one skilled in the relevant art (s) .
While various embodiments of the present disclosure have been described above, it should be understood that they have been presented by way of examples, and not limitation. It would be apparent to one skilled in the relevant art (s) that various changes in form and detail could be made therein without departing from the spirit and scope of the disclosure. Thus, the present disclosure should not be limited by any of the above-described exemplary embodiments but should be defined only in accordance with the following claims and their equivalents.
All references cited herein are incorporated herein by reference in their entirety and for all purposes to the same extent as if each individual publication or patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes.
Table 1. Novel Discovery Biomarkers and GFAP with high performance potential for diagnosing stroke
REFERENCES
1. Feigin VL, Brainin M, Norrving B, et al. World Stroke Organization (WSO) : Global Stroke Fact Sheet 2022. Int J Stroke 2022; 17: 18-29.
2. Tsao CW, Aday AW, Almarzooq ZI, et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145: e153-e639.
3. Diseases GBD, Injuries C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396: 1204-22.
4. Centre for Health Protection. Death Rates by Leading Causes of Death, 2001 –2019. https: //www. chp. gov. hk/en/statistics/data/10/27/117. html [Accessed on 22nd September 2023]
5. Kidwell CS, Chalela JA, Saver JL, et al. Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA 2004; 292: 1823-30.
6. B HB, Akhtar N, Alrohimi A, et al. Stroke mimics: incidence, aetiology, clinical features and treatment. Ann Med 2021; 53: 420-36.
7. Brazzelli M, Sandercock PA, Chappell FM, et al. Magnetic resonance imaging versus computed tomography for detection of acute vascular lesions in patients presenting with stroke symptoms. Cochrane Database Syst Rev 2009: CD007424.
8. Liberman AL, Choi HJ, French DD, et al. Is the Cost-Effectiveness of Stroke Thrombolysis Affected by Proportion of Stroke Mimics? Stroke 2019; 50: 463-8.
9. Serhal M MR. Evaluation of Cryptogenic Stroke. https: //www. acc. org/latest-in-cardiology/articles/2019/10/10/23/20/evaluation-of-cryptogenic-stroke [Accessed on 22nd September 2023] .
10. Shah ASV, Anand A, Strachan FE, et al. High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial. Lancet 2018; 392: 919-28.
11. Diaz-Arrastia R, Wang KKW, Papa L, et al. Acute Biomarkers of Traumatic Brain Injury: Relationship between Plasma Levels of Ubiquitin C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic Protein. J Neurotraum 2014; 31: 19-25.
12. Papa L, Brophy GM, Welch RD, et al. Time Course and Diagnostic Accuracy of Glial and Neuronal Blood Biomarkers GFAP and UCH-L1 in a Large Cohort of Trauma Patients With and Without Mild Traumatic Brain Injury. Jama Neurol 2016; 73: 551-60.
13. Alinity I TBI. Abbott Ireland. https: //www. globalpointofcare. abbott/en/lp/apoc/overcoming-challenges-evaluation-mild-traumatic-brain-injury. html [Accessed on 22nd September 2023] .
14. di Biase L, Bonura A, Pecoraro PM, et al. Unlocking the Potential of Stroke Blood Biomarkers: Early Diagnosis, Ischemic vs. Haemorrhagic Differentiation and Haemorrhagic Transformation Risk: A Comprehensive Review. Int J Mol Sci 2023; 24.
15. Woodruff TM, Thundyil J, Tang SC, et al. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 2011; 6: 11.
16. Magid-Bernstein J, Girard R, Polster S, et al. Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions. Circ Res 2022; 130: 1204-29.
17. Simmatis LER, Scott SH, Jin AY. The Impact of Transient Ischemic Attack (TIA) on Brain and Behavior. Front Behav Neurosci 2019; 13: 44.
18. Abdelhak A, Foschi M, Abu-Rumeileh S, et al. Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nature Reviews Neurology 2022; 18: 158-72.
19. Li Q, Zhao L, Chan CL, et al. Multi-Level Biomarkers for Early Diagnosis of Ischaemic Stroke: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences 2023; 24.
20. Jaeger HS, Tranberg D, Larsen K, et al. Diagnostic performance of Glial Fibrillary Acidic Protein and Prehospital Stroke Scale for identification of stroke and stroke subtypes in an unselected patient cohort with symptom onset < 4.5 h. Scand J Trauma Resusc Emerg Med 2023; 31: 1.
21. Stanca DM, Marginean IC, Soritau O, et al. GFAP and antibodies against NMDA receptor subunit NR2 as biomarkers for acute cerebrovascular diseases. J Cell Mol Med 2015; 19: 2253-61.
22. Leung LY, Chan CP, Leung YK, et al. Comparison of miR-124-3p and miR-16 for early diagnosis of hemorrhagic and ischemic stroke. Clin Chim Acta 2014; 433: 139-44.
23. Rainer TH, Leung LY, Chan CPY, et al. Plasma miR-124-3p and miR-16 concentrations as prognostic markers in acute stroke. Clin Biochem 2016; 49: 663-8.
24. Rainer TH, Wong LK, Lam W, et al. Prognostic use of circulating plasma nucleic acid concentrations in patients with acute stroke. Clin Chem 2003; 49: 562-9.
25. Lu Q, Insinna C, Ott C, et al. Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat Cell Biol 2015; 17: 228-40.
26. Dwyer CA, Katoh T, Tiemeyer M, et al. Neurons and glia modify receptor protein-tyrosine phosphatase zeta (RPTPzeta) /phosphacan with cell-specific O-mannosyl glycans in the developing brain. J Biol Chem 2015; 290: 10256-73.
27. Morris RJ. Thy-1, a Pathfinder Protein for the Post-genomic Era. Front Cell Dev Biol 2018; 6: 173.
28. Oakley AJ, Yamada T, Liu D, et al. The identification and structural characterization of C7orf24 as gamma-glutamyl cyclotransferase. An essential enzyme in the gamma-glutamyl cycle. J Biol Chem 2008; 283: 22031-42.
29. Zhang X, Wang X, Khurm M, et al. Alterations of Brain Quantitative Proteomics Profiling Revealed the Molecular Mechanisms of Diosgenin against Cerebral Ischemia Reperfusion Effects. J Proteome Res 2020; 19: 1154-68.
30. Zen Q, Cottman M, Truskey G, et al. Critical factors in basal cell adhesion molecule/lutheran-mediated adhesion to laminin. J Biol Chem 1999; 274: 728-34.
31. Rettig WJ, Garin-Chesa P, Beresford HR, et al. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells. Proc Natl Acad Sci U S A 1988; 85: 3110-4.
32. Drewniok C, Schon M, Schon MP. Basal cell adhesion molecule is inversely associated with apoptosis, but plays a limited role for protection against apoptotic stimuli. Skin Pharmacol Phys 2004; 17: 304-9.
33. Tascou S, Uedelhoven J, Dixkens C, et al. Isolation and characterization of a novel human gene, NIF3L1, and its mouse ortholog, Nif3l1, highly conserved from bacteria to mammals. Cytogenet Cell Genet 2000; 90: 330-6.
34. Akiyama H, Fujisawa N, Tashiro Y, et al. The role of transcriptional corepressor Nif3l1 in early stage of neural differentiation via cooperation with Trip15/CSN2. J Biol Chem 2003; 278: 10752-62.
35. Human Protein Atlas. https: //www. proteinatlas. org/humanproteome/brain/mouse+brain [Accessed on 22nd September 2023] .
36. Fedak KM, Bernal A, Capshaw ZA, et al. Applying the Bradford Hill criteria in the 21st century: how data integration has changed causal inference in molecular epidemiology. Emerg Themes Epidemi 2015; 12.
37. Human Protein Atlas. https: //www. proteinatlas. org/ [Accessed on 22nd September 2023] .
38. Guterud M, Fagerheim Bugge H, Roislien J, et al. Prehospital screening of acute stroke with the National Institutes of Health Stroke Scale (ParaNASPP) : a stepped-wedge, cluster-randomised controlled trial. Lancet Neurol 2023; 22: 800-11.
39. Bustamante A, Penalba A, Orset C, et al. Blood Biomarkers to Differentiate Ischemic and Hemorrhagic Strokes. Neurology 2021; 96: e1928-e39.
40. Flahault A, Cadilhac M, Thomas G. Sample size calculation should be performed for design accuracy in diagnostic test studies. J Clin Epidemiol 2005; 58: 859-62.
41. Obuchowski NA, McClish DK. Sample size determination for diagnostic accuracy studies involving binormal ROC curve indices. Stat Med 1997; 16: 1529-42.
42. Li QY, Tang GH, Xue SH, et al. Silica-coated superparamagnetic iron oxide nanoparticles targeting of EPCs in ischemic brain injury. Biomaterials 2013; 34: 4982-92.
43. Xie B, Miao P, Sun Y, et al. Micro-computed tomography for hemorrhage disruption of mouse brain vasculature. Transl Stroke Res 2012; 3: 174-9.
44. Liao B, Geng L, Zhang F, et al. Adipocyte fatty acid-binding protein exacerbates cerebral ischaemia injury by disrupting the blood-brain barrier. Eur Heart J 2020; 41: 3169-80.
45. Tiedt S, Brandmaier S, Kollmeier H, et al. Circulating Metabolites Differentiate Acute Ischemic Stroke from Stroke Mimics. Ann Neurol 2020; 88: 736-46.
46. Collins GS, Reitsma JB, Altman DG, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) : the TRIPOD statement. Ann Intern Med 2015; 162: 55-63.
47. Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD 2015: An Updated List of Essential Items for Reporting Diagnostic Accuracy Studies. Radiology 2015; 277: 826-32.
48. Li Q, Zhao L, Chan CL, Zhang Y, Tong SW, Zhang X, Ho JWK, Jiao Y, Rainer TH. Multi-Level Biomarkers for Early Diagnosis of Ischaemic Stroke: A Systematic Review and Meta-Analysis. Int J Mol Sci. 2023 Sep 7; 24 (18) : 13821.
49. US Patent publication 20230332236A1

Claims (23)

  1. A panel comprising one or more markers to selectively identify the occurrence or nonoccurrence of a stroke in a subject exhibiting one or more symptoms associated with the diagnosis of stroke, wherein the one or more markers is selected from the group consisting of Receptor-type tyrosine-protein phosphatase zeta ( “PTPRZ1” ) , EH domain-containing protein 3 ( “EHD3” ) , Thy-1 membrane glycoprotein ( “THY1” ) , Gamma-glutamyl cyclotransferase ( “GGCT” ) , Basal cell adhesion molecule (BCAM”) , Interleukin-1 receptor type 2 ( “IL1R2” ) , Transgelin ( “TAGLN” ) , Annexin A7 ( “ANXA7” ) , Tyrosine-protein phosphatase non-receptor type 6 ( “PTPN6” ) , Src substrate cortactin ( “CTTN” ) , NIF3-like protein 1 ( “NIF3L1” ) , and Leptin receptor ( “LEPR” ) , Adhesion G protein-coupled receptor L4 ( “ADGRL4” ) .
  2. The panel according to claim 1, wherein the one or more symptoms associated with the diagnosis of stroke are selected from the group consisting of a) sudden numbness or weakness in the face, arm, or leg, especially on one side of the body; b) sudden confusion, trouble speaking, or difficulty understanding speech; c) sudden trouble seeing in one or both eyes; d) sudden severe headache with no known cause; e) sudden dizziness, loss of balance, or coordination; f) sudden difficulty walking or a lack of coordination; g) other symptoms from the SM group consisting of brain tumour, aneurysm, electrocution, burns, infections, cerebral hypoxia, head injury, stress, dehydration, nerve palsy, hypoglycaemia, migraine, multiple sclerosis, peripheral vascular disease, peripheral neuropathy, seizure, subdural haematoma, syncope, and transient unilateral weakness.
  3. The panel according to any one of the preceding claims wherein the one or more markers selectively identify the occurrence or nonoccurrence of an acute stroke in a subject exhibiting one or more symptoms associated with the diagnosis of stroke, and wherein the marker further comprises Glial fibrillary acidic protein ( “GFAP” ) .
  4. The panel according to any one of the preceding claims wherein the one or more markers selectively identify the occurrence or nonoccurrence of a non-acute stroke in a subject exhibiting one or more symptoms associated with the diagnosis of stroke, and wherein the marker further comprises Glial fibrillary acidic protein ( “GFAP” ) .
  5. The panel according to any one of the preceding claims wherein the one or more markers are selected to distinguish if the onset of said stroke was within 3-4.5 hours, 4.5 to 6 hours, 6-9 hours, 9-12 hours, 12-24 hours, or 24-48 hours.
  6. The panel according to any one of the preceding claims wherein one or more markers in said panel are selected to distinguish if the onset of said stroke was within 3 hours.
  7. The panel according to any one of the preceding claims wherein one or more markers in said panel are selected to distinguish if the onset of said stroke was within 4.5 hours.
  8. The panel according to any one of the preceding claims wherein one or more markers in said panel are selected to distinguish if the onset of said stroke was within a window of from 24 to 48 hours.
  9. A method for diagnosing stroke in a first subject comprising: assaying a sample from the subject for one or more markers selected from the group consisting of Receptor-type tyrosine-protein phosphatase zeta ( “PTPRZ1” ) , EH domain-containing protein 3 ( “EHD3” ) , Thy-1 membrane glycoprotein ( “THY1” ) , Gamma-glutamyl cyclotransferase ( “GGCT” ) , Basal cell adhesion molecule (BCAM”) , Interleukin-1 receptor type 2 ( “IL1R2” ) , Transgelin ( “TAGLN” ) , Annexin A7 ( “ANXA7” ) , Tyrosine-protein phosphatase non-receptor type 6 ( “PTPN6” ) , Src substrate cortactin ( “CTTN” ) , and NIF3-like protein 1 ( “NIF3L1” ) , wherein an increase in expression of the one or more markers compared to expression of the same markers in a control sample from a second subject without a stroke indicates that the first subject has a stroke.
  10. The method of claim 9 further comprising assaying the sample from the first subject for one or more markers selected from the group consisting of Leptin receptor ( “LEPR” ) and Adhesion G protein-coupled receptor L4 ( “ADGRL4” ) , where in a decrease in expression of the one or more markers compared to expression of the same markers in a control sample from a second subject without a stroke indicates that the first subject has a stroke.
  11. A method for diagnosing stroke in a first subject comprising: assaying a sample from the first subject for one or more markers selected from the group consisting of EH domain-containing protein 3 ( “EHD3” ) , Gamma-glutamyl cyclotransferase ( “GGCT” ) , Basal cell adhesion molecule (BCAM”) , NIF3-like protein 1 ( “NIF3L1” ) , Interleukin-1 receptor type 2 ( “IL1R2” ) , Src substrate cortactin ( “CTTN” ) , wherein an increase in expression of the one or more markers compared to expression of the same markers in a control sample from a second subject without a stroke indicates that the first subject has AIS.
  12. The method of claim 11 further comprising assaying the sample from the first subject for Adhesion G protein-coupled receptor L4 ( “ADGRL4” ) , where in a decrease in expression of ADGRL4 compared to expression of ADGRL4 in a control sample from a second subject without a stroke indicates that the subject has AIS.
  13. The method of claim 9 wherein an increase in expression of THY1 compared to expression of ADGRL4 in a control sample from a second subject without a stroke indicates that the subject has intracerebral hemorrhage ( “ICH” ) .
  14. The method of claim 13 further comprising assaying the sample from the first subject for Glial fibrillary acidic protein ( “GFAP” ) wherein a higher expression of GFAP as compared to a subject with AIS in the first 24 hours indicates that the subject has ICH.
  15. A method for determining stroke in a subject, comprising:
    (a) obtaining a sample from the subject with suspected stroke,
    (b) assaying the level of one or more markers selected from the group consisting of Receptor-type tyrosine-protein phosphatase zeta ( “PTPRZ1” ) , EH domain-containing protein 3 ( “EHD3” ) , Thy-1 membrane glycoprotein ( “THY1” ) , Gamma-glutamyl cyclotransferase ( “GGCT” ) , Basal cell adhesion molecule (BCAM” ) , Interleukin-1 receptor type 2 ( “IL1R2” ) , Transgelin ( “TAGLN” ) , Annexin A7 ( “ANXA7” ) , Tyrosine-protein phosphatase non-receptor type 6 ( “PTPN6” ) , Src substrate cortactin ( “CTTN” ) , and NIF3-like protein 1 ( “NIF3L1” ) , Leptin receptor ( “LEPR” ) , and Adhesion G protein-coupled receptor L4 ( “ADGRL4” ) in the sample, and
    (c) comparing the level of the one or more markers in the sample with the one or more markers in a control sample, wherein the control sample is from a subject without stroke.
  16. The method of claim 15, wherein the sample from the subject is selected from the group consisting of blood, urine, blood plasma, blood serum, cerebrospinal fluid, saliva, perspiration or brain tissue, or a derivative thereof and wherein the marker further comprises Glial fibrillary acidic protein ( “GFAP” ) .
  17. The method of claim 16 wherein multiple blood samples are obtained over a period of time.
  18. The method of any one of the preceding claims, further comprising the step of treating the patient with a thrombolytic therapy or endovascular therapy.
  19. The method of claim 18, wherein the thrombolytic therapy is administration of tissue plasminogen activator ( “TPA” ) , or tenecteplase.
  20. The method of claim 9 wherein the assaying is quantitative Western blot, immunoblot, quantitative mass spectrometry, enzyme-linked immunosorbent assays (ELISAs) , radioimmunoassays (RIA) , immunoradiometric assays (IRMA) , and immunoenzymatic assays (IEMA) or sandwich assays using monoclonal and polyclonal antibodies.
  21. A method of determining presence or risk of hemorrhage in a subject, said method comprising: obtaining a test sample from a subject; analyzing the obtained test sample for the presence or amount of (1) one or more markers selected from the group consisting of PTPRZ1, EHD3, THY1, GGCT, BCAM, IL1R2, TAGLN, ANXA7, PTPN6, CTTN, NIF3L1, LEPR, ADGRL4, and GFAP; and (2) one or more additional markers both proteomic and non-proteomic for, or mass spectrometry peak levels of, any of apoptosis, cellular adhesion, cellular injury, coagulation, glial activation, inflammatory mediation, myelin breakdown, thrombosis, vascular damage, and specific and non-specific markers of cerebral injury; and correlating clinical patient information for cerebral injury, in order to deduce a probability of present or future risk of a hemorrhage for the subject.
  22. A kit comprising one or more probes and/or antibodies for detecting expression levels of markers selected from the group consisting of Receptor-type tyrosine-protein phosphatase zeta ( “PTPRZ1” ) , EH domain-containing protein 3 ( “EHD3” ) , Thy-1 membrane glycoprotein ( “THY1” ) , Gamma-glutamyl cyclotransferase ( “GGCT” ) , Basal cell adhesion molecule (BCAM”) , Interleukin-1 receptor type 2 ( “IL1R2” ) , Transgelin ( “TAGLN” ) , Annexin A7 ( “ANXA7” ) , Tyrosine-protein phosphatase non-receptor type 6 ( “PTPN6” ) , Src substrate cortactin ( “CTTN” ) , and NIF3-like protein 1 ( “NIF3L1” ) , Leptin receptor ( “LEPR” ) , and Adhesion G protein-coupled receptor L4 ( “ADGRL4” ) .
  23. A method for treating stroke in a subject comprising:
    (a) obtaining a sample from the subject with suspected stroke;
    (b) assaying RNA level of one or more markers selected from the group consisting of Receptor-type tyrosine-protein phosphatase zeta ( “PTPRZ1” ) , EH domain-containing protein 3 ( “EHD3” ) , Thy-1 membrane glycoprotein ( “THY1” ) , Gamma-glutamyl cyclotransferase ( “GGCT” ) , Basal cell adhesion molecule (BCAM” ) , Interleukin-1 receptor type 2 ( “IL1R2” ) , Transgelin ( “TAGLN” ) , Annexin A7 ( “ANXA7” ) , Tyrosine-protein phosphatase non-receptor type 6 ( “PTPN6” ) , Src substrate cortactin ( “CTTN” ) , and NIF3-like protein 1 ( “NIF3L1” ) in the sample;
    (c) comparing the RNA level of the one or more markers in the sample with the one or more markers in a control sample, wherein the control sample is from a control subject without stroke; and
    (d) treating the subject with one or more thrombolytic therapy or endovascular therapy.
PCT/CN2025/075243 2024-02-06 2025-01-26 Blood proteomic markers for stroke and methods thereof Pending WO2025167800A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202463550507P 2024-02-06 2024-02-06
US63/550,507 2024-02-06

Publications (1)

Publication Number Publication Date
WO2025167800A1 true WO2025167800A1 (en) 2025-08-14

Family

ID=96699119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2025/075243 Pending WO2025167800A1 (en) 2024-02-06 2025-01-26 Blood proteomic markers for stroke and methods thereof

Country Status (1)

Country Link
WO (1) WO2025167800A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040219509A1 (en) * 2001-08-20 2004-11-04 Biosite, Inc. Diagnostic markers of stroke and cerebral injury and methods of use thereof
US20180230538A1 (en) * 2015-05-11 2018-08-16 The Regents Of The University Of California Methods of distinguishing ischemic stroke from intracerebral hemorrhage
WO2019175379A1 (en) * 2018-03-16 2019-09-19 Fundació Institut De Recerca De L'hospital De La Santa Creu I Sant Pau Markers of synaptopathy in neurodegenerative disease
WO2020091222A1 (en) * 2018-10-30 2020-05-07 아주대학교 산학협력단 Biomarker proteins for diagnosing alzheimer's disease, and uses thereof
WO2021087344A1 (en) * 2019-10-31 2021-05-06 Cedars-Sinai Medical Center Theranostics for hypertension induced myocardial microbleeds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040219509A1 (en) * 2001-08-20 2004-11-04 Biosite, Inc. Diagnostic markers of stroke and cerebral injury and methods of use thereof
US20180230538A1 (en) * 2015-05-11 2018-08-16 The Regents Of The University Of California Methods of distinguishing ischemic stroke from intracerebral hemorrhage
WO2019175379A1 (en) * 2018-03-16 2019-09-19 Fundació Institut De Recerca De L'hospital De La Santa Creu I Sant Pau Markers of synaptopathy in neurodegenerative disease
WO2020091222A1 (en) * 2018-10-30 2020-05-07 아주대학교 산학협력단 Biomarker proteins for diagnosing alzheimer's disease, and uses thereof
WO2021087344A1 (en) * 2019-10-31 2021-05-06 Cedars-Sinai Medical Center Theranostics for hypertension induced myocardial microbleeds

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIASE,L.D.ET AL.: "Unlocking the Potential of Stroke Blood Biomarkers: Early Diagnosis, Ischemic vs. Haemorrhagic Differentiation and Haemorrhagic Transformation Risk: A Comprehensive Review", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 24, 17 July 2023 (2023-07-17), XP093141386, DOI: 10.3390/ijms241411545 *
PANTAZAKA, E. ET AL.: "Chondroitin sulfate-cell membrane effectors as regulators of growth factor-mediated vascular and cancer cell migration", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1840, 8 January 2014 (2014-01-08), XP028872915, DOI: 10.1016/j.bbagen.2014.01.009 *

Similar Documents

Publication Publication Date Title
Huang et al. Immature granulocytes: a novel biomarker of acute respiratory distress syndrome in patients with acute pancreatitis
US11041864B2 (en) Method for prediction of prognosis of sepsis
Zheng et al. Comparison of plasma copeptin and multiple biomarkers for assessing prognosis of patients with aneurysmal subarachnoid hemorrhage
Bolatkale et al. A novel biochemical marker for community-acquired pneumonia: Ischemia-modified albumin
Shetty et al. Sepsis in the emergency department–part 2: investigations and monitoring
EP2912471A1 (en) Biomarkers for the prognosis of ischemic stroke
Kokura et al. The Controlling Nutritional Status score as a functional prognostic marker in patients with acute stroke: A multicenter retrospective cohort study
Wang et al. Pan-immune-inflammatory value predicts the 3 months outcome in acute ischemic stroke patients after intravenous thrombolysis
Miao et al. IL‐33 as a Novel Serum Prognostic Marker of Intracerebral Hemorrhage
Duan et al. The diagnostic and prognostic value of serum CXCL12 levels in patients with ischemic stroke
Stejskal et al. DETERMINATION OF SERUM VISININ LIKE PROTEIN-1 AND ITS POTENTIAL FOR THE DIAGNOSIS OF BRAIN INJURY DUE TO THE STROKE-A PILOT STUDY.
Chen et al. Serum CXCL12 concentration in patients with severe traumatic brain injury are associated with mortality
WO2025092877A1 (en) A method of multi-biomedical markers association for nasopharngeal carcinoma metastatses
WO2025167800A1 (en) Blood proteomic markers for stroke and methods thereof
Alp et al. Predictive value of kynurenine pathway metabolites in the severity of patients with obsessive‐compulsive disorder
Borg et al. Serum levels of biochemical markers of traumatic brain injury
Sasmita et al. Correlation between serum S100β protein level with neurological deficit in patients with acute intracerebral hemorrhage
JP7713445B2 (en) Biomarkers of drug-induced cytotoxicity and depression
Wang et al. Factors influencing procalcitonin in the cerebrospinal fluid of patients after neurosurgery and its diagnostic value for intracranial infection
Ölmez et al. Significance of laboratory biomarkers in monitoring patients with COVID-19 pneumonia
CN113215249B (en) Differentiation and diagnosis of anxiety and depression by IL-26
Wu et al. Usefulness of serum NOX4 as a potential biomarker to predict early neurological deterioration and poor outcome of spontaneous intracerebral hemorrhage: a prospective observational study
WO2024213092A1 (en) Protein markers for mild cognitive impairment and alzheimer&#39;s disease
Khanna et al. Novel biomarkers in deep vein thrombosis
CN113252910B (en) Application of TIMP3 in the diagnosis of anxiety and depression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 25751400

Country of ref document: EP

Kind code of ref document: A1