[go: up one dir, main page]

WO2025158965A1 - Support method, support device, and support program - Google Patents

Support method, support device, and support program

Info

Publication number
WO2025158965A1
WO2025158965A1 PCT/JP2025/000926 JP2025000926W WO2025158965A1 WO 2025158965 A1 WO2025158965 A1 WO 2025158965A1 JP 2025000926 W JP2025000926 W JP 2025000926W WO 2025158965 A1 WO2025158965 A1 WO 2025158965A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
identification information
information
equipment
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2025/000926
Other languages
French (fr)
Japanese (ja)
Inventor
和也 古市
芳弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Publication of WO2025158965A1 publication Critical patent/WO2025158965A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/30Creation or generation of source code
    • G06F8/36Software reuse
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing

Definitions

  • the present invention relates to a method, device, and program for supporting the development of models related to the operation of plant equipment.
  • Models are used to design, construct, operate, and manage plants. Models are developed for each plant to suit its type, size, location, etc.
  • Plant managers do not have specialized knowledge about models, so it is difficult for them to know what models they should implement in order to optimally operate the plants they manage.
  • the inventors recognized the need for technology that can accurately select models that are recommended for implementation in accordance with the plant and propose them to plant managers and others.
  • the present invention was made in light of these circumstances, and its purpose is to provide technology to support the development of models related to the operation of plant equipment.
  • one aspect of the present invention is a method for supporting the implementation of a model related to the operation of plant equipment.
  • the method is executed by a processor and includes the steps of acquiring equipment identification information for the plant equipment or process identification information for a process executed in the plant equipment, acquiring parameter identification information for parameters acquired during the operation of the plant equipment, acquiring time-series data for the parameters, selecting a model recommended for implementation from among a plurality of models related to the operation of the plant equipment based on the equipment identification information or process identification information, the parameter identification information, and the time-series data for the parameters, and outputting information about the selected model.
  • This device includes an information acquisition unit that acquires equipment identification information for plant equipment or process identification information for processes executed in the plant equipment, parameter identification information for parameters acquired during operation of the plant equipment, and time-series data for the parameters; a selection unit that selects a model recommended for implementation from among multiple models related to the operation of the plant equipment based on the equipment identification information or process identification information, the parameter identification information, and the time-series data for the parameters; and an output unit that outputs information about the selected model.
  • the present invention provides technology to support the development of models related to the operation of plant equipment.
  • FIG. 1 is a diagram schematically illustrating an example of a method for developing a model related to the operation of a plant facility.
  • 1 is a diagram illustrating a configuration of a development support system according to a first embodiment.
  • 1 is a diagram illustrating a configuration of a construction support apparatus according to a first embodiment.
  • 3 is a flowchart showing the procedure of a support method according to the first embodiment.
  • FIG. 10 illustrates an example of a data structure of a processing element storage unit.
  • FIG. 10 illustrates an example of a data structure of a processing element storage unit.
  • FIG. 1 is a diagram schematically illustrating an example of a method for developing a model related to the operation of a plant facility.
  • 1 is a diagram illustrating a configuration of a development support system according to a first embodiment
  • FIG. 2 is a diagram illustrating an example of a screen displayed on a display device of the development support device.
  • FIG. 2 is a diagram illustrating an example of a screen displayed on a display device of the development support device.
  • FIG. 10 is a diagram illustrating a configuration of a development support system according to a second embodiment.
  • FIG. 10 is a sequence diagram showing the procedure of a support method according to a second embodiment.
  • FIG. 10 is a diagram illustrating a configuration of a development support device according to a second embodiment.
  • FIG. 10 is a diagram illustrating an example of internal data of a recommendation level storage unit.
  • FIG. 10 is a diagram illustrating an example of internal data of a recommendation level storage unit.
  • FIG. 10 is a diagram illustrating an example of time-series data of parameters.
  • FIG. 10 is a diagram illustrating an example of a screen displayed on an administrator terminal from the development support device.
  • FIG. 10 is a diagram illustrating an example of a screen displayed on an administrator
  • Figure 1 shows a schematic diagram of an example of a method for developing a model related to the operation of a plant facility. This diagram shows the steps of a method for developing an AI (artificial intelligence) that optimizes the operation of the plant facility as an example of a model related to the operation of the plant facility.
  • AI artificial intelligence
  • step (1) operational data collected and accumulated from the customer's existing plant equipment is stored in a database server.
  • preprocessing is performed on the driving data stored in the database server.
  • Preprocessing may include, for example, assigning the same tag to identical or similar driving data when different tags are assigned to the driving data, aligning the units of the driving data, adjusting the offset of the driving data, processing outliers in the driving data, normalizing the driving data, supplementing missing driving data, and calculating other data representing physical properties, states, etc. from the driving data using predetermined formulas, algorithms, simulations, etc.
  • Preprocessing may be performed by referring to a tag correspondence table that defines the correspondence between tags assigned to the driving data. The content of the preprocessing may be determined by a data scientist with specialized knowledge for organizing and analyzing data.
  • step (3) the data scientist visualizes the preprocessed data by referencing design information such as a process flow diagram (PFD) and heat and material balance (H&MB).
  • the data scientist visualizes the preprocessed data in a format that matches the plant's design information, such as a time series plot, histogram, or box plot.
  • the visualized data may be referenced by a data scientist or process engineer in a subsequent step, or may be provided to the customer.
  • the visualized data may be used, for example, to understand the plant's operating status (product production volume, whether or not operation has been stopped, equipment efficiency, etc.), as well as to select operating data (data type, extraction period) and to confirm the validity of the operating data preprocessing.
  • step (4) a process engineer with specialized knowledge of plant equipment design and operation creates a process simulation to simulate the operation of the plant equipment based on design information such as process flow diagrams (PFDs), heat and material balances (H&MBs), and equipment performance. If an existing process simulator exists, step (4) is omitted.
  • PFDs process flow diagrams
  • H&MBs heat and material balances
  • step (5) the data scientist uses the preprocessed stable region data as input values for the process simulation to simulate the operation of the plant equipment and obtain simulation results such as the plant's thermal efficiency.
  • the data scientist constructs a surrogate model (substitute model) to replace the process simulation.
  • the surrogate model inputs preprocessed stable region data and outputs simulation results without simulating the operation of the plant equipment.
  • the surrogate model may be constructed using a neural network, for example.
  • the data scientist trains the surrogate model using the preprocessed data and the simulation results from the process simulation as training data. For example, when preprocessed data is input into the input layer of the neural network, the middle layer of the neural network may be adjusted so that the output layer of the neural network outputs actual data corresponding to that preprocessed data, or the simulation results output when that preprocessed data is input into the process simulation.
  • the surrogate model may be an emulation model constructed based on operational data or a physical model constructed using first principles.
  • step (7) the process engineer defines constraints for optimizing the operation of the plant equipment. Constraints may include upper and lower limits for various parameters. The process engineer may define constraints based on information obtained through customer interviews, equipment design information, instrumentation alarm information, etc.
  • the operation optimization AI searches for values of operation parameters that optimize the operation of the plant equipment under the defined constraints.
  • the operation optimization AI inputs a large amount of preprocessed data into a surrogate model and searches, using a specified optimization algorithm, for input data values that will optimize the value of a specified piece of output data. Because the surrogate model can instantly calculate output data from input data, it can be used to search for optimal solutions from among huge combinations of input data, even for complex processes where simulation calculations take days or even weeks.
  • the above-mentioned work process flow is similar when developing AI to optimize the operation of other plant equipment. Therefore, if information about the work process when developing a model is accumulated, the next time a similar model is developed, it will be possible to smoothly develop the model using a similar work process by referring to past performance. This makes it easier to formulate work plans and manage work processes for model development, thereby reducing the cost, time, and effort involved in model development.
  • operation data is time-series data collected during the operation of plant equipment, and is typically expected to have continuous values. Considering this characteristic, it is difficult to imagine that the data will suddenly change to a completely different value without context. Therefore, the pre-processing of operation data involves removing outliers that have increased or decreased by more than a specified rate from the previous value.
  • This work should also be performed in the development of operation optimization AI for other plant equipment and other models. If such common work is packaged in advance, existing packages can be used when developing new models, significantly reducing the cost, time, and effort required for model development.
  • FIG. 2 shows the configuration of a development support system according to the first embodiment.
  • the development support system 1 includes a development device 3, a design device 4, an operation control device 5, a construction support device 100, a development support device 200, and a communication network 2 for connecting these devices so that they can communicate with each other.
  • the plant equipment 10 includes facilities, equipment, devices, piping, etc. for carrying out processes in the plant.
  • the plant equipment 10 includes reactors, separation equipment, drying equipment, piping, etc.
  • the development device 3 develops a model related to the operation of the plant equipment 10.
  • the model may be a simulation model that simulates the operating state or fluid state of the plant equipment 10, a reaction model that simulates chemical reactions in the plant equipment 10, a proxy model that replaces the simulation model or reaction model, AI for verifying scale-up or scale-down in the design of the plant equipment 10, AI for optimizing the operation of the plant equipment 10, AI for detecting or predicting abnormalities during the operation of the plant equipment 10, etc.
  • the design device 4 designs the plant equipment 10 using the model developed by the development device 3.
  • the operation control device 5 controls the operation of the plant equipment 10 using the model developed by the development device 3.
  • the development support device 200 supports the development of models in the development device 3.
  • the development support device 200 acquires equipment identification information for the plant equipment 10 or process identification information for the process executed in the plant equipment 10, and target output information for the model, and outputs a processing element list including the processing elements that should make up the model's development process based on the acquired equipment identification information or process identification information and target output information. This allows developers to develop models using processing element lists of models developed in the past, significantly reducing development costs, time, and effort.
  • the target output information of a model is information that the model outputs ultimately or intermediately in accordance with the model's purpose.
  • the target output information of a simulation model is the simulation results
  • the target output information of an operation optimization AI is the operating parameters for optimizing the operation of the plant equipment 10.
  • the construction support device 100 accumulates past performance information that the development support device 200 references to output a processing element list, and supports the construction of a development support environment.
  • the construction support device 100 acquires equipment identification information for the plant equipment 10 that is the target of the developed model, or process identification information for the process executed in the plant equipment 10, and target output information for the developed model, acquires the processing elements that make up the development process of the developed model, and stores the processing elements in association with the equipment identification information or process identification information, and/or target output information.
  • FIG. 3 shows the configuration of a construction support device 100 according to the first embodiment.
  • the construction support device 100 includes a communication device 101, a display device 102, an input device 103, a processing device 120, and a storage device 130.
  • the communication device 101 controls wireless or wired communication.
  • the display device 102 displays a screen generated by the processing device 120.
  • the display device 102 may be a liquid crystal display device, an organic EL display device, or the like.
  • the input device 103 transmits instructions input by the user of the construction support device 100 to the processing device 120.
  • the input device 103 may be a mouse, keyboard, touchpad, or the like.
  • the display device 102 and input device 103 may be implemented as a touch panel.
  • the storage device 130 stores data and computer programs used by the processing device 120.
  • the storage device 130 includes a processing element holding unit 131.
  • the processing element holding unit 131 holds processing elements that should constitute the development process of a model related to the operation of the plant equipment 10, in association with the equipment identification information or process identification information of the plant equipment 10, and/or the target output information of the model.
  • the processing element holding unit 131 may also hold source code and models of modules that should constitute the development process of the model. Furthermore, the processing element holding unit 131 may hold variables, constants, parameters, etc. included in the source code.
  • Processing device 120 comprises information acquisition unit 121, processing acquisition unit 122, processing division unit 123, and processing element registration unit 124.
  • these components can be realized by any circuit, a computer CPU, memory, programs loaded into memory, etc., but here we have depicted functional blocks realized by the cooperation of these components. Therefore, those skilled in the art will understand that these functional blocks can be realized in various ways using hardware alone, software alone, or a combination of these.
  • FIG. 4 is a flowchart showing the steps of the support method according to the first embodiment. The steps for supporting the construction of a development support environment using the construction support device 100 will be explained with reference to FIGS. 3 and 4.
  • the model that has already been developed is referred to as the "first model,” and the newly developed model is referred to as the "second model.”
  • the information acquisition unit 121 acquires equipment identification information for the plant equipment that is the subject of the developed first model, or process identification information for the process performed in the plant equipment (S10).
  • the equipment identification information may include information such as the type, scale, size, and performance of the plant equipment.
  • the process identification information may include information such as the type, time, and conditions of raw materials, final products, intermediate products, reactions, and processing.
  • the information acquisition unit 121 may acquire equipment identification information or process identification information from the development device 3, design device 4, development support device 200, etc.
  • the information acquisition unit 121 may acquire equipment identification information or process identification information from a developer, etc. via the input device 103.
  • the information acquisition unit 121 acquires target output information of the developed first model (S12).
  • the target output information is information that the model outputs ultimately or intermediately, and for example, in the plant optimization model described above, includes conditions such as the values of controlled variables for optimizing plant operation.
  • the information acquisition unit 121 may acquire the target output information from the development device 3, the design device 4, the development support device 200, etc.
  • the information acquisition unit 121 may also acquire the target output information from a developer, etc. via the input device 103.
  • the information acquisition unit 121 may acquire the target output information by analyzing the source code of the first model, system design drawings, etc.
  • the process acquisition unit 122 acquires the processes that make up the developed first model (S14).
  • the processes may include work steps for developing the first model and components (modules) that make up the first model.
  • the process acquisition unit 122 may acquire source code, variables, constants, parameters, etc. of the modules that make up the first model.
  • the process acquisition unit 122 may acquire the processes from the development device 3, the design device 4, the development support device 200, etc.
  • the process acquisition unit 122 may acquire the processes from a developer, etc. via the input device 103.
  • the processing division unit 123 divides the acquired processing into multiple processing elements as necessary (S16).
  • the processing division unit 123 may divide the processing into units of work processes.
  • the processing division unit 123 may divide the processing into processing elements that are common to the development of multiple models and processing elements that differ individually depending on the type of plant, the target output information of the model, etc. Note that if the processing acquisition unit 122 is able to acquire the processing of the first model for each processing element, the processing division unit 123 does not have to divide the processing.
  • the processing element registration unit 124 stores processing elements in the processing element holding unit 131 in association with equipment identification information or process identification information, and/or target output information.
  • FIG. 5 shows an example of the data structure of the processing element storage unit 131.
  • processing elements are stored for each target plant equipment, process, and issue (target output information).
  • processing elements that are commonly included in the model regardless of the target plant equipment, process, or issue are stored.
  • FIG. 6 shows an example of the data structure of the processing element storage unit 131.
  • a processing element storage unit 131 is provided for each work process.
  • the processing element storage unit 131 for each work process stores processing elements in a matrix of the target plant equipment and process, and the target issue (target output information).
  • the processing element storage unit 131 is not limited to a relational database like those shown in Figures 5 and 6; for example, it may be configured as a graph database in which individual processing elements are linked by edges to the target plant equipment and process, and/or target issue.
  • FIG. 7 shows the configuration of a development support device 200 according to the first embodiment.
  • the development support device 200 includes a communication device 201, a display device 202, an input device 203, a processing device 220, and a storage device 230.
  • the communication device 201 controls wireless or wired communication.
  • the display device 202 displays a screen generated by the processing device 220.
  • the display device 202 may be a liquid crystal display device, an organic EL display device, or the like.
  • the input device 203 transmits instructions input by a user of the development support device 200 to the processing device 220.
  • the input device 203 may be a mouse, keyboard, touchpad, or the like.
  • the display device 202 and input device 203 may be implemented as a touch panel.
  • the storage device 230 stores data and computer programs used by the processing device 220.
  • the storage device 230 includes a processing element holding unit 231.
  • the processing element holding unit 231 holds the processing elements that constitute the development process of a model related to the operation of the plant equipment 10, in association with the equipment identification information or process identification information of the plant equipment 10, and/or the target output information of the model.
  • the processing element holding unit 231 may be the same as the processing element holding unit 131.
  • the processing element holding unit 231 may be obtained from the construction support device 100 and stored in the storage device 230. If the development support device 200 accesses the processing element holding unit 131 of the construction support device 100, the processing element holding unit 231 does not need to be provided.
  • the processing device 220 comprises an information acquisition unit 221, a processing element list acquisition unit 222, an output unit 223, a processing element determination unit 224, a processing parameter reception unit 225, a processing order determination unit 226, a connection element reception unit 227, a processing element connection unit 228, and a processing element registration unit 229.
  • these components are realized by any circuit, a computer CPU, memory, a program loaded into memory, etc., but here we have depicted functional blocks realized by the cooperation of these components. Therefore, those skilled in the art will understand that these functional blocks can be realized in various ways using hardware alone, software alone, or a combination of these.
  • FIG. 8 is a flowchart showing the steps of the support method according to the first embodiment. The steps for supporting model development using the development support device 200 will be explained with reference to FIGS. 7 and 8.
  • the information acquisition unit 221 acquires equipment identification information for the plant equipment being developed or process identification information for the process being executed in the plant equipment (S20).
  • the information acquisition unit 221 may acquire the equipment identification information or process identification information from the development device 3, design device 4, etc.
  • the information acquisition unit 221 may also acquire the equipment identification information or process identification information from a developer, etc. via the input device 203.
  • the information acquisition unit 221 acquires target output information for the model (S22).
  • the information acquisition unit 221 may acquire the target output information from the development device 3, the design device 4, etc.
  • the information acquisition unit 221 may also acquire the target output information from a developer, etc. via the input device 203.
  • the processing element list acquisition unit 222 acquires a processing element list containing processing elements that should constitute the model development process based on the equipment identification information or process identification information and the target output information (S24).
  • the processing element list acquisition unit 222 may acquire the processing element list by referencing the processing element storage unit 231 or the processing element storage unit 131. If the processing element storage unit 231 or the processing element storage unit 131 has the data structure shown in FIG. 5, the processing element list acquisition unit 222 acquires a processing element list by extracting processing elements whose target equipment, target process, and target task match the equipment identification information, process identification information, and target output information, respectively, as well as common processing elements. If the processing element storage unit 231 or the processing element storage unit 131 has the data structure shown in FIG. 6, the processing element list acquisition unit 222 acquires a processing element list by extracting processing elements whose target equipment, target process, and target task match the equipment identification information, process identification information, and target output information, respectively, as well as common processing elements, for each work process.
  • the output unit 223 outputs the acquired processing element list to the developer as a candidate list of processing elements that should constitute the model development process (S25).
  • the output unit 223 may display the candidate list on the display device 202.
  • the output unit 223 may also transmit the candidate list to a terminal device used by the developer.
  • the processing element determination unit 224 accepts a selection of processing elements from the candidate list that are to constitute the model development process (S26), and determines the selected processing elements as processing elements that constitute the model development process (S28).
  • the processing element determination unit 224 may accept a selection of processing elements from the developer via the input device 203.
  • the processing element determination unit 224 may also accept a selection of processing elements from a terminal device used by the developer.
  • the processing element determination unit 224 may automatically determine processing elements listed in the processing element list as processing elements that constitute the model development process.
  • the processing element determination unit 224 may automatically select processing elements based on predetermined selection criteria, and determine the selected processing elements as processing elements that constitute the model development process. When processing elements are automatically selected, the selection of processing elements may be performed by a machine learning model.
  • the machine learning model may be a model that learns the relationship between the equipment identification information and/or process identification information, target output information, and processing elements included in the development process of previously constructed AI, as well as general AI construction flows that are not limited to the plant field, and determines the processing elements of the second model by inputting the equipment identification information, process identification information, or target output information of the second model.
  • the processing parameter receiving unit 225 receives input of processing parameters for the determined processing element (S30).
  • the processing parameters may include parameters used when executing the processing element.
  • the processing parameter receiving unit 225 sets the received processing parameters for the processing element.
  • the processing parameter receiving unit 225 may receive processing parameters from the developer via the input device 203.
  • the processing parameter receiving unit 225 may receive processing parameters from a terminal device used by the developer. For example, if the processing element relates to outlier removal processing in pre-processing of driving data, the processing parameter receiving unit 225 receives input of parameters that serve as a criterion for removing outliers.
  • the parameters that serve as a criterion for removing outliers may be, for example, based on the interquartile range (hereinafter referred to as IQR) of the acquired data, ⁇ Lower limit is (first quartile) - 1.5 x IQR ⁇ Upper limit is (third quartile) + 1.5 x IQR
  • IQR interquartile range
  • ⁇ Lower limit is (first quartile) - 1.5 x IQR
  • ⁇ Upper limit is (third quartile) + 1.5 x IQR
  • the processing parameters may be set without requiring input from the developer.
  • the processing element may store initial setting parameters, such as the setting parameters in the first model.
  • the processing element may be configured to allow the developer to check the initial setting parameters and edit them as necessary.
  • the processing order determination unit 226 determines the processing order in which the processing elements are to be executed (S32).
  • the processing order determination unit 226 may receive the processing order from the developer via the input device 203.
  • the processing order determination unit 226 may also receive the processing order from a terminal device used by the developer.
  • the processing order determination unit 226 may automatically determine the processing order based on a predetermined criterion.
  • the predetermined criterion may be, for example, the processing order in the first model, or a criterion based on the processing order in AI related to the operation of multiple plants constructed in the past, such as the first model, or a criterion based on the order in AI development in other fields, not limited to plant operation.
  • Such processing order criteria may refer to those stored in the processing element storage unit 231, or may be learned based on the processing order of AI constructed in the past.
  • the combined element receiving unit 227 receives processing elements required to combine the determined processing elements (S34). In cases where the information output from the preceding processing element does not match the information to be input to the subsequent processing element, a processing element that generates input information for the subsequent processing element from the output information of the preceding processing element may be added as a combined element.
  • the combined element receiving unit 227 may receive source code, parameters, etc. of the combined element from the developer via the input device 203.
  • the combined element receiving unit 227 may also receive source code, parameters, etc. of the combined element from a terminal device used by the developer.
  • the combined element receiving unit 227 may automatically generate combined elements based on the output information of the preceding processing element and the input information of the subsequent processing element.
  • the processing element combining unit 228 combines the determined processing elements (S36).
  • the processing element combining unit 228 combines the determined processing elements and the combined elements in the determined processing order. This generates a second model.
  • the processing element registration unit 229 stores the equipment identification information or process identification information, the target output information, and the determined processing element in the processing element storage unit 231 (S38). This allows the processing elements that make up the development process of the developed model to be used in the development of subsequent models.
  • the contents of the processing element storage unit 131 and the processing element storage unit 231 may be updated accordingly.
  • Figure 9 shows an example of a screen displayed on the display device 202 of the development support device 200.
  • a user interface screen is displayed that allows the developer to select the type of equipment to be developed and the type of model or problem.
  • the information acquisition unit 221 acquires the equipment identification information of the plant equipment to be developed and the target output information of the model.
  • Figure 10 shows an example of a screen displayed on the display device 202 of the development support device 200.
  • the output unit 223 displays a list of processing elements that should make up the model development process, acquired by the processing element list acquisition unit 222 according to the type of device selected by the developer and the type of model or problem.
  • the development support system of this embodiment utilizes knowledge and resources gained from previous model development, thereby streamlining model development, which has traditionally been done individually, and significantly reducing the cost, time, and effort required to develop new models. It also enables the division of labor in model development, allowing process engineers, data scientists, AI developers, and others to focus on their respective essential tasks.
  • Second Embodiment 11 shows the configuration of a development support system 1 according to the second embodiment.
  • the development support system 1 according to the second embodiment includes an administrator terminal 300 in addition to the configuration of the development support system 1 according to the first embodiment shown in FIG.
  • the development support system 1 according to the second embodiment supports the development of a model that is recommended to be implemented in order to operate the plant facility 10 favorably.
  • the following mainly describes the configuration and operation that are different from the development support system 1 according to the first embodiment, and omits descriptions of the configuration and operation that are the same as those of the first embodiment as appropriate.
  • FIG. 12 is a sequence diagram showing the steps of the support method according to the second embodiment.
  • the administrator terminal 300 transmits equipment identification information for the plant equipment 10 or process identification information for a process executed in the plant equipment 10 to the development support device 200 (S10).
  • the administrator terminal 300 transmits parameter identification information for parameters acquired during operation of the plant equipment 10 to the development support device 200 (S12).
  • the parameter identification information includes information regarding the type of parameter acquired during operation of the plant equipment 10, such as temperature, pressure, or concentration.
  • the parameter identification information may also include information regarding the acquisition location, indicating where in the plant equipment 10 the parameter was acquired, such as the entrance to the equipment, inside the equipment, or exit from the equipment.
  • the administrator terminal 300 transmits time-series data for the parameters acquired during operation of the plant equipment 10 to the development support device 200 (S14).
  • the development support device 200 calculates a recommendation level, which indicates the degree to which implementation of a model should be recommended for optimal operation of the plant equipment 10, for multiple models related to the operation of the plant equipment 10, based on the equipment identification information or process identification information, parameter identification information, and parameter time-series data acquired from the administrator terminal 300 (S16).
  • the recommendation level is determined in advance based on, for example, past recommendation performance, past implementation performance, evaluations of models implemented in the past, and the quality of operation of the plant equipment 10 in which the model was previously implemented, and is stored in the development support device 200.
  • the development support device 200 refers to the calculated recommendation level and selects a model recommended for implementation from among the multiple models related to the operation of the plant equipment 10 (S18).
  • the development support device 200 outputs information about the selected model to the administrator terminal 300 (S20).
  • the development support device 200 presents to the administrator terminal 300 information about the dataset required to implement the selected model (S22).
  • the development support device 200 presents to the administrator terminal 300 output information output from the model when the selected model is tested by inputting time-series parameter data into the model (S24).
  • the administrator references the information presented by the development support device 200, determines the model to be implemented, and requests the development support device 200 to develop the model from the administrator terminal 300 (S26).
  • the development support device 200 acquires a processing element list including the processing elements that should make up the development process of the model for which development has been requested (S28), and outputs the acquired processing element list to the administrator terminal 300 (S30).
  • the subsequent procedures are the same as those in the first embodiment.
  • FIG. 13 shows the configuration of a development support device according to the second embodiment.
  • the development support device 200 includes a communication device 201, a display device 202, an input device 203, a processing device 220, and a storage device 230.
  • the development support device 200 according to the second embodiment may further include the configuration of the development support device 200 according to the first embodiment shown in FIG. 7.
  • the storage device 230 stores data and computer programs used by the processing device 220.
  • the storage device 230 includes a model information storage unit 261 and a recommendation level storage unit 262.
  • the model information storage unit 261 stores information on multiple models related to the operation of the plant equipment 10.
  • the model information storage unit 261 stores information such as the model's target output information, input information, the dataset required to implement the model, a processing element list including the processing elements that should make up the model's development process, the time, cost, and manpower required to develop the model, past performance in recommending the model, and past performance in implementing the model, as well as the model itself.
  • the recommendation level holding unit 252 holds a recommendation level that indicates the degree to which implementation of a model should be recommended for each of the equipment identification information or process identification information, parameter identification information, and characteristics of the time-series data of the parameters of the plant equipment 10.
  • Figures 14 and 15 show examples of internal data of the recommendation level holding unit 262.
  • Figure 14 shows a table that stores the correspondence between the temperature and pressure when the plant equipment 10 is operating and the recommendation level of a model.
  • Figure 15 shows a table that stores the correspondence between the characteristics of the time-series data of parameters acquired when the plant equipment 10 is operating and the recommendation level of a model.
  • the table shown in Figure 15 may be held for each type of parameter.
  • the recommendation level holding unit 252 may hold a table that stores the correspondence between the type of parameters acquired when the plant equipment 10 is operating and the recommendation level of a model.
  • the processing device 220 comprises an information acquisition unit 241, a time-series data analysis unit 242, a selection unit 243, an output unit 244, a recommendation performance recording unit 245, an implementation performance recording unit 246, an evaluation acquisition unit 247, a recommendation level setting unit 248, and a trial unit 249.
  • These components are realized by hardware components such as any circuit, a computer CPU, memory, or a program loaded into memory, but the functional blocks realized by the cooperation of these components are depicted here. Therefore, those skilled in the art will understand that these functional blocks can be realized in various ways using only hardware, only software, or a combination of these.
  • the information acquisition unit 241 acquires, from the administrator terminal 300, equipment identification information for the plant equipment 10 or process identification information for processes executed on the plant equipment 10, parameter identification information for parameters acquired during operation of the plant equipment 10, and time series data for the parameters.
  • the information acquisition unit 241 may acquire information about plant equipment 10 that is already in operation from the administrator terminal 300, or may acquire information about plant equipment 10 that is not yet in operation from the administrator terminal 300.
  • the information acquisition unit 241 may acquire, from the administrator terminal 300, parameter identification information and time series data for parameters acquired when the plant equipment 10 is in operation, or may acquire, from the administrator terminal 300, parameter identification information and time series data for parameters acquired from a simulator that simulates the operation of the plant equipment 10.
  • the information acquisition unit 241 may acquire this information from the development device 3, the design device 4, the operation control device 5, the plant equipment 10, etc.
  • the information acquisition unit 241 may acquire equipment identification information or process identification information from a developer, etc. via the input device 203.
  • the time series data analysis unit 242 analyzes the time series data of the parameters acquired by the information acquisition unit 241.
  • the time series data analysis unit 242 may calculate statistical values such as the maximum value, minimum value, average value, variance, standard deviation, and median of the time series data.
  • the time series data analysis unit 242 may calculate the rate of change of the time series data, the rate of change of the rate of change, local maximum values, local minimum values, inflection points, amplitude, and frequency.
  • the time series data analysis unit 242 may analyze the characteristics, aspects, and trends of the time series data over a specified period.
  • the characteristics of the time series data may be that the time series data is stable, constantly fluctuating, gradually increasing, gradually decreasing, or that outliers are present.
  • the time series data analysis unit 242 may determine that the time series data is stable if the difference between the maximum and minimum values of the time series data over a specified period is equal to or less than a specified value, if the variance is equal to or less than a specified value, or if the average absolute value of the rate of change is equal to or less than a specified value.
  • the time series data analysis unit 242 may determine that the time series data is constantly fluctuating if the variance of the time series data over a predetermined period is equal to or greater than a predetermined value, or if the average absolute value of the rate of change is equal to or greater than a predetermined value.
  • the selection unit 243 selects a model recommended for implementation from among multiple models related to the operation of the plant equipment 10, based on the equipment identification information or process identification information, parameter identification information, and parameter time series data acquired by the information acquisition unit 241.
  • the selection unit 243 calculates the recommendation level for each of the multiple models by referring to the recommendation level storage unit. For example, the selection unit 243 may acquire the recommendation level corresponding to the equipment identification information or process identification information from the table shown in FIG. 14, acquire the recommendation level corresponding to the aspect of the parameter time series data from the table shown in FIG. 15, and calculate the product of these recommendation levels to determine the recommendation level for the model.
  • the selection unit 243 may further acquire the recommendation level corresponding to the parameter identification information, and calculate the product of the recommendation level corresponding to the equipment identification information or process identification information, the recommendation level corresponding to the parameter identification information, and the recommendation level corresponding to the aspect of the parameter time series data to determine the recommendation level for the model.
  • the selection unit 243 selects a model with a large calculated recommendation level as a model recommended for implementation.
  • the selection unit 243 may select a model based on further conditions related to equipment identification information or process identification information, parameter identification information, time-series data of parameters, the location, climate, years of operation of the plant equipment 10, or any combination thereof.
  • the selection unit 243 may also select a model recommended for implementation based on a recommendation level output by a nonlinear model or machine learning model that outputs a recommendation level for each model corresponding to input including equipment identification information or process identification information, parameter identification information, and the aspect of the time-series data of parameters.
  • a machine learning model may be used in which the equipment identification information or process identification information, the parameter identification information, and information related to the aspect of the time-series data of parameters are used as explanatory variables and the target output information is used as a target variable.
  • the information related to the aspect of the time-series data of parameters may be a feature obtained by dimensional compression of raw data of the time-series data of parameters as an explanatory variable.
  • the machine learning model may be trained using the recommendation performance recorded in the recommendation performance recording unit 245 (described later), the model implementation performance, evaluations of previously implemented models acquired by the evaluation acquisition unit 247 (described later), or the quality of operation of the plant equipment 10 in which the model was previously implemented as training data.
  • the output unit 244 reads information about the model selected by the selection unit 243 from the model information storage unit 261 and outputs the information to the administrator terminal 300.
  • the output unit 244 reads information about the dataset required to implement the model selected by the selection unit 243 from the model information storage unit 261 and outputs the information to the administrator terminal 300.
  • the trial unit 249 inputs the time-series data of the parameters acquired by the information acquisition unit 241 into the model selected by the selection unit 243, and trials the model.
  • the output unit 244 outputs output information of the model trialed by the trial unit 249 to the administrator terminal 300.
  • the recommended performance recorder 245 records information about the recommended performance of models recommended by the development support device 200 to the administrator terminal 300 in the model information storage unit 261.
  • the implementation performance recorder 246 records information about the implementation performance of models adopted by the administrator and implemented in the operation control device 5 in the model information storage unit 261.
  • the evaluation acquisition unit 247 acquires an evaluation of a model that was previously implemented in the operation control device 5.
  • the evaluation acquisition unit 247 may acquire an evaluation of the model by the administrator from the administrator terminal 300.
  • the evaluation acquisition unit 247 may evaluate the model based on the quality of operation of the plant equipment 10 in which the model was previously implemented. For example, the evaluation acquisition unit 247 may evaluate the quality of operation of the plant equipment 10 in which the model was implemented based on time-series data of parameters acquired during the operation of the plant equipment 10 in which the model was previously implemented, and determine an evaluation of the model.
  • the recommendation level setting unit 248 sets the recommendation level of the model and stores it in the recommendation level holding unit 252.
  • the recommendation level setting unit 248 may set the recommendation level of the model based on the recommendation history or implementation history of the model held in the model information holding unit 261. For example, the more times a model has been recommended or implemented, the higher the recommendation level may be. Furthermore, the higher the probability that the recommended model has been implemented, the higher the recommendation level may be.
  • the recommendation level setting unit 248 may set the recommendation level of the model based on the evaluation of the model acquired by the evaluation acquisition unit 247. For example, the higher the evaluation of the model, the higher the recommendation level of the model may be.
  • the model recommendation level may be set manually, as the model's recommendation track record, implementation track record, model evaluations, etc. have not yet been accumulated.
  • the recommendation level setting unit 248 updates the model recommendation level in accordance with the model's recommendation track record, implementation track record, model evaluations, etc.
  • the model recommendation level is updated in association with the equipment identification information of the plant equipment for which the model has been recommended, implemented, or evaluated, or the process identification information of the process executed in the plant equipment, the parameter identification information acquired when the model was recommended, and the characteristics of the parameter time-series data. This makes it possible to set a model recommendation level that is more in line with reality, thereby improving the accuracy of model recommendations.
  • Figure 16 shows an example of time series data for parameters.
  • the information acquisition unit 241 may acquire time series data for multiple parameters.
  • the time series data analysis unit 242 analyzes the acquired time series data for the parameters and determines the state and trend of the time series data.
  • Figure 17 shows an example of a screen presented from the development support device 200 to the administrator terminal 300.
  • the output unit 244 outputs to the administrator terminal 300 a screen displaying the equipment identification information acquired by the information acquisition unit 241, the time-series data of the parameters, information about the model selected by the selection unit 243, and the effects of implementing the model.
  • the trial unit 249 inputs the time-series data of the parameters acquired by the information acquisition unit 241 into the model and tries out the model.
  • Figure 18 shows an example of a screen presented by the development support device 200 to the administrator terminal 300.
  • the output unit 244 outputs to the administrator terminal 300 a screen displaying a configuration diagram of the model selected by the selection unit 243 and the trial results from the trial unit 249.
  • the output unit 244 reads from the model information storage unit 261 a processing element list including the processing elements that should make up the development process of the model requested to be implemented, and outputs this to the administrator terminal 300.
  • the technology of this embodiment selects and recommends a model based on information about the operation of the plant equipment 10, making it possible to accurately recommend a model for optimal operation of the plant equipment 10. This improves the operating efficiency of the plant equipment 10. It also significantly reduces the cost and effort required to develop a model.
  • processing elements constituting a previously developed model are stored in advance in the processing element storage unit 131.
  • information about previously developed models may be collected when the processing element list acquisition unit 222 acquires a list of processing elements.
  • the processing element storage unit 131 may also be temporarily generated.
  • the present invention can be used in a method, device, and program for supporting the development of models related to the operation of plant equipment.
  • 1 Development support system 2 Communication network, 3 Development equipment, 4 Design equipment, 5 Operation control device, 10 Plant equipment, 100 Construction support device, 101 Communication device, 102 Display device, 103 Input device, 120 Processing device, 121 Information acquisition unit, 122 Processing acquisition unit, 123 Processing division unit, 124 Processing element registration unit, 130 Storage device, 131 Processing element holding unit, 200 Development support device, 201 Communication device, 202 Display device, 203 Input device, 220 Processing device, 221 Information acquisition unit, 222 Processing element list acquisition unit, 223 Output unit, 224 processing element determination unit, 225 processing parameter reception unit, 226 processing order determination unit, 227 combined element reception unit, 228 processing element combination unit, 229 processing element registration unit, 230 storage device, 231 processing element storage unit, 241 information acquisition unit, 242 time series data analysis unit, 243 selection unit, 244 output unit, 245 recommended performance recording unit, 246 implementation performance recording unit, 247 evaluation acquisition unit, 248 recommendation level setting unit, 249 trial unit, 252 recommendation level storage unit, 261 model information storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Business, Economics & Management (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

Provided is a method for supporting implementation of a model related to operation of plant equipment. The method is executed by a processor, and includes: acquiring equipment identification information of plant equipment or process identification information of a process executed in the plant equipment; acquiring parameter identification information of a parameter acquired in operation of the plant equipment; acquiring time-series data of the parameter; selecting a model recommended to be implemented from among a plurality of models related to operation of the plant equipment on the basis of the equipment identification information or the process identification information, the parameter identification information, and the time-series data of the parameter; and outputting information of the selected model.

Description

支援方法、支援装置、及び支援プログラムSupport method, support device, and support program

 本発明は、プラント設備の運転に関するモデルの開発を支援する方法、支援装置、及び支援プログラムに関する。 The present invention relates to a method, device, and program for supporting the development of models related to the operation of plant equipment.

 プラントを設計、建設、運転、管理するために、様々なモデルが利用されている。プラントの種類、規模、場所などに合わせたモデルがプラントごとに開発されている。 Various models are used to design, construct, operate, and manage plants. Models are developed for each plant to suit its type, size, location, etc.

特開2023-016369号公報Japanese Patent Application Laid-Open No. 2023-016369

 プラントの管理者は、モデルに関する専門的な知識を有していないので、自身が管理するプラントを好適に運転するために、どのようなモデルを実装すればよいのかを知ることが困難である。本発明者らは、プラントに合わせて、実装が推奨されるモデルを的確に選択し、プラントの管理者などに提案する技術が必要であることを課題として認識した。 Plant managers do not have specialized knowledge about models, so it is difficult for them to know what models they should implement in order to optimally operate the plants they manage. The inventors recognized the need for technology that can accurately select models that are recommended for implementation in accordance with the plant and propose them to plant managers and others.

 本発明は、こうした状況を鑑みてなされたものであり、その目的は、プラント設備の運転に関するモデルの開発を支援するための技術を提供することにある。 The present invention was made in light of these circumstances, and its purpose is to provide technology to support the development of models related to the operation of plant equipment.

 上記課題を解決するために、本発明のある態様の方法は、プラント設備の運転に関するモデルの実装を支援する方法であって、方法は、プロセッサによって実行され、プラント設備の設備識別情報又はプラント設備で実行されるプロセスのプロセス識別情報を取得することと、プラント設備の運転において取得されるパラメータのパラメータ識別情報を取得することと、パラメータの時系列データを取得することと、設備識別情報又はプロセス識別情報と、パラメータ識別情報と、パラメータの時系列データとに基づいて、プラント設備の運転に関する複数のモデルの中から、実装が推奨されるモデルを選択することと、選択されたモデルの情報を出力することと、を含む。 In order to solve the above problem, one aspect of the present invention is a method for supporting the implementation of a model related to the operation of plant equipment. The method is executed by a processor and includes the steps of acquiring equipment identification information for the plant equipment or process identification information for a process executed in the plant equipment, acquiring parameter identification information for parameters acquired during the operation of the plant equipment, acquiring time-series data for the parameters, selecting a model recommended for implementation from among a plurality of models related to the operation of the plant equipment based on the equipment identification information or process identification information, the parameter identification information, and the time-series data for the parameters, and outputting information about the selected model.

 本発明の別の態様は、支援装置である。この装置は、プラント設備の設備識別情報又はプラント設備で実行されるプロセスのプロセス識別情報と、プラント設備の運転において取得されるパラメータのパラメータ識別情報と、パラメータの時系列データとを取得する情報取得部と、設備識別情報又はプロセス識別情報と、パラメータ識別情報と、パラメータの時系列データとに基づいて、プラント設備の運転に関する複数のモデルの中から、実装が推奨されるモデルを選択する選択部と、選択されたモデルの情報を出力する出力部と、を備える。 Another aspect of the present invention is a support device. This device includes an information acquisition unit that acquires equipment identification information for plant equipment or process identification information for processes executed in the plant equipment, parameter identification information for parameters acquired during operation of the plant equipment, and time-series data for the parameters; a selection unit that selects a model recommended for implementation from among multiple models related to the operation of the plant equipment based on the equipment identification information or process identification information, the parameter identification information, and the time-series data for the parameters; and an output unit that outputs information about the selected model.

 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。 In addition, any combination of the above components, and any transformation of the present invention into a method, device, system, recording medium, computer program, etc., are also valid aspects of the present invention.

 本発明によれば、プラント設備の運転に関するモデルの開発を支援するための技術を提供することができる。 The present invention provides technology to support the development of models related to the operation of plant equipment.

プラント設備の運転に関するモデルの開発方法の例を模式的に示す図である。FIG. 1 is a diagram schematically illustrating an example of a method for developing a model related to the operation of a plant facility. 第1の実施の形態に係る開発支援システムの構成を示す図である。1 is a diagram illustrating a configuration of a development support system according to a first embodiment. 第1の実施の形態に係る構築支援装置の構成を示す図である。1 is a diagram illustrating a configuration of a construction support apparatus according to a first embodiment. 第1の実施の形態に係る支援方法の手順を示すフローチャートである。3 is a flowchart showing the procedure of a support method according to the first embodiment. 処理要素保持部のデータ構造の例を示す図である。FIG. 10 illustrates an example of a data structure of a processing element storage unit. 処理要素保持部のデータ構造の例を示す図である。FIG. 10 illustrates an example of a data structure of a processing element storage unit. 第1の実施の形態に係る開発支援装置の構成を示す図である。1 is a diagram illustrating a configuration of a development support device according to a first embodiment; 第1の実施の形態に係る支援方法の手順を示すフローチャートである。3 is a flowchart showing the procedure of a support method according to the first embodiment. 開発支援装置の表示装置に表示される画面の例を示す図である。FIG. 2 is a diagram illustrating an example of a screen displayed on a display device of the development support device. 開発支援装置の表示装置に表示される画面の例を示す図である。FIG. 2 is a diagram illustrating an example of a screen displayed on a display device of the development support device. 第2の実施の形態に係る開発支援システムの構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a development support system according to a second embodiment. 第2の実施の形態に係る支援方法の手順を示すシーケンス図である。FIG. 10 is a sequence diagram showing the procedure of a support method according to a second embodiment. 第2の実施の形態に係る開発支援装置の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a development support device according to a second embodiment. 推奨度保持部の内部データの例を示す図である。FIG. 10 is a diagram illustrating an example of internal data of a recommendation level storage unit. 推奨度保持部の内部データの例を示す図である。FIG. 10 is a diagram illustrating an example of internal data of a recommendation level storage unit. パラメータの時系列データの例を示す図である。FIG. 10 is a diagram illustrating an example of time-series data of parameters. 開発支援装置から管理者端末に提示される画面の例を示す図である。FIG. 10 is a diagram illustrating an example of a screen displayed on an administrator terminal from the development support device. 開発支援装置から管理者端末に提示される画面の例を示す図である。FIG. 10 is a diagram illustrating an example of a screen displayed on an administrator terminal from the development support device.

 まず、本開示の第1の実施の形態として、プラント設備の運転に関するモデルを開発する際に、そのモデルの開発工程を構成すべき処理要素を含む処理要素リストを提供する技術について説明する。つづいて、本開示の第2の実施の形態として、プラント設備に関する情報から、プラント設備を好適に運転するために実装が推奨されるモデルを提案する技術について説明する。 First, as a first embodiment of the present disclosure, we will explain a technology that, when developing a model related to the operation of plant equipment, provides a list of processing elements that includes the processing elements that should make up the development process of that model. Next, as a second embodiment of the present disclosure, we will explain a technology that, based on information related to the plant equipment, proposes a model that is recommended for implementation in order to operate the plant equipment optimally.

(第1の実施の形態)
 図1は、プラント設備の運転に関するモデルの開発方法の例を模式的に示す。本図では、プラント設備の運転に関するモデルの一例として、プラント設備の運転を最適化するAI(人工知能)を開発する方法の手順を示す。
(First embodiment)
Figure 1 shows a schematic diagram of an example of a method for developing a model related to the operation of a plant facility. This diagram shows the steps of a method for developing an AI (artificial intelligence) that optimizes the operation of the plant facility as an example of a model related to the operation of the plant facility.

 ステップ(1)において、顧客が保有する既設のプラント設備において収集され、蓄積された運転データをデータベースサーバに格納する。 In step (1), operational data collected and accumulated from the customer's existing plant equipment is stored in a database server.

 ステップ(2)において、データベースサーバに格納された運転データに対して前処理を実行する。前処理は、例えば、同一又は類似する運転データに異なるタグが付与されている場合にそれらの運転データに同一のタグを付与したり、運転データの単位を揃えたり、運転データのオフセットを調整したり、運転データの外れ値を処理したり、運転データを正規化処理したり、欠損している運転データを補完したり、所定の計算式、アルゴリズム、シミュレーションなどを使用して運転データから物性や状態などを表す別のデータを算出したりする処理を含んでもよい。運転データに付与されたタグの対応関係を定めたタグ対応表を参照して、前処理を実行してもよい。前処理の内容は、データを整理、分析するための専門知識を有するデータサイエンティストによって決定されてもよい。 In step (2), preprocessing is performed on the driving data stored in the database server. Preprocessing may include, for example, assigning the same tag to identical or similar driving data when different tags are assigned to the driving data, aligning the units of the driving data, adjusting the offset of the driving data, processing outliers in the driving data, normalizing the driving data, supplementing missing driving data, and calculating other data representing physical properties, states, etc. from the driving data using predetermined formulas, algorithms, simulations, etc. Preprocessing may be performed by referring to a tag correspondence table that defines the correspondence between tags assigned to the driving data. The content of the preprocessing may be determined by a data scientist with specialized knowledge for organizing and analyzing data.

 ステップ(3)において、データサイエンティストは、プロセスフロー図(PFD)、ヒートアンドマテリアルバランス(H&MB)などの設計情報を参照して、前処理されたデータを可視化する。データサイエンティストは、時系列プロット、ヒストグラム、箱ひげ図など、プラントの設計情報に合った態様で、前処理されたデータを可視化する。可視化されたデータは、後続のステップにおいてデータサイエンティストやプロセスエンジニアによって参照されてもよいし、顧客に提供されてもよい。可視化されたデータは、例えば、プラントの運転状態(製品の生産量、運転停止の有無、機器の効率など)の把握のため、並びに運転データの選定(データ種類、抽出期間)及び運転データの前処理の妥当性の確認のために使用され得る。 In step (3), the data scientist visualizes the preprocessed data by referencing design information such as a process flow diagram (PFD) and heat and material balance (H&MB). The data scientist visualizes the preprocessed data in a format that matches the plant's design information, such as a time series plot, histogram, or box plot. The visualized data may be referenced by a data scientist or process engineer in a subsequent step, or may be provided to the customer. The visualized data may be used, for example, to understand the plant's operating status (product production volume, whether or not operation has been stopped, equipment efficiency, etc.), as well as to select operating data (data type, extraction period) and to confirm the validity of the operating data preprocessing.

 ステップ(4)において、プラント設備の設計や運転に関する専門知識を有するプロセスエンジニアは、プロセスフロー図(PFD)、ヒートアンドマテリアルバランス(H&MB)、機器性能などの設計情報に基づいて、プラント設備の運転をシミュレートするためのプロセスシミュレーションを構築する。既存のプロセスシミュレータが存在する場合は、このステップ(4)は省略される。 In step (4), a process engineer with specialized knowledge of plant equipment design and operation creates a process simulation to simulate the operation of the plant equipment based on design information such as process flow diagrams (PFDs), heat and material balances (H&MBs), and equipment performance. If an existing process simulator exists, step (4) is omitted.

 ステップ(5)において、データサイエンティストは、前処理されて安定領域のデータをプロセスシミュレーションの入力値にしてプラント設備の運転をシミュレートし、プラントの熱効率などのシミュレーション結果を得る。 In step (5), the data scientist uses the preprocessed stable region data as input values for the process simulation to simulate the operation of the plant equipment and obtain simulation results such as the plant's thermal efficiency.

 ステップ(6)において、データサイエンティストは、プロセスシミュレーションを代替するサロゲートモデル(代理モデル)を構築する。代理モデルは、前処理された安定領域のデータを入力し、プラント設備の運転をシミュレートすることなく、シミュレーション結果を出力する。代理モデルは、ニューラルネットワークなどにより構築されてもよい。データサイエンティストは、前処理されたデータと、プロセスシミュレーションによるシミュレーション結果を学習データとして代理モデルを学習する。例えば、ニューラルネットワークの入力層に前処理されたデータを入力したときに、それらの前処理データに対応する実績データ、またはそれらの前処理データをプロセスシミュレーションに入力したときに出力されたシミュレーション結果がニューラルネットワークの出力層から出力されるように、ニューラルネットワークの中間層を調整してもよい。なお、代理モデルには、運転データを基に構築するエミュレーションモデルや、第一原理則で構築した物理モデルを活用してもよい。 In step (6), the data scientist constructs a surrogate model (substitute model) to replace the process simulation. The surrogate model inputs preprocessed stable region data and outputs simulation results without simulating the operation of the plant equipment. The surrogate model may be constructed using a neural network, for example. The data scientist trains the surrogate model using the preprocessed data and the simulation results from the process simulation as training data. For example, when preprocessed data is input into the input layer of the neural network, the middle layer of the neural network may be adjusted so that the output layer of the neural network outputs actual data corresponding to that preprocessed data, or the simulation results output when that preprocessed data is input into the process simulation. Note that the surrogate model may be an emulation model constructed based on operational data or a physical model constructed using first principles.

 ステップ(7)において、プロセスエンジニアは、プラント設備の運転を最適化する際の制約条件を定義する。制約条件は、各種パラメータの上限値、下限値などであってもよい。プロセスエンジニアは、顧客へのヒアリングにより得られた情報、機器設計情報、計装アラーム情報などに基づいて制約条件を定義してもよい。 In step (7), the process engineer defines constraints for optimizing the operation of the plant equipment. Constraints may include upper and lower limits for various parameters. The process engineer may define constraints based on information obtained through customer interviews, equipment design information, instrumentation alarm information, etc.

 ステップ(8)において、運転最適化AIは、定義された制約条件のもとで、プラント設備の運転を最適化する運転パラメータの値を探索する。運転最適化AIは、前処理された多数のデータを代理モデルに入力し、出力されるデータのうち所定のデータの値が最適値となるような入力データの値を、所定の最適化アルゴリズムにしたがって探索する。代理モデルは、入力データから出力データを瞬時に算出することができるので、シミュレーション計算に数日から数週間もかかるような複雑なプロセスにおいても、代理モデルを用いることにより、膨大な入力データの組合せの中から最適解を探索することができる。 In step (8), the operation optimization AI searches for values of operation parameters that optimize the operation of the plant equipment under the defined constraints. The operation optimization AI inputs a large amount of preprocessed data into a surrogate model and searches, using a specified optimization algorithm, for input data values that will optimize the value of a specified piece of output data. Because the surrogate model can instantly calculate output data from input data, it can be used to search for optimal solutions from among huge combinations of input data, even for complex processes where simulation calculations take days or even weeks.

 上記のような作業工程の流れは、他のプラント設備の運転最適化AIを開発する場合にも同様となる。したがって、モデルを開発したときの作業工程に関する情報を蓄積しておけば、次回以降に同種のモデルを開発する際に、過去の実績を参照して同様の作業工程で円滑にモデルを開発することができる。これにより、モデルを開発するための作業計画の策定や作業工程の管理を容易にすることができるので、モデルの開発のコスト、時間、労力などを低減させることができる。 The above-mentioned work process flow is similar when developing AI to optimize the operation of other plant equipment. Therefore, if information about the work process when developing a model is accumulated, the next time a similar model is developed, it will be possible to smoothly develop the model using a similar work process by referring to past performance. This makes it easier to formulate work plans and manage work processes for model development, thereby reducing the cost, time, and effort involved in model development.

 運転最適化AIの開発に含まれる作業工程には、他のプラント設備の運転最適化AIや他のモデルの開発においても実行されるものがある。例えば、運転データはプラント設備の運転中に収集された時系列データであり、通常、値が連続的であることが期待され、脈絡無く突然全く異なる値に変化することは想定しにくいという特性を考慮すると、運転データを前処理する作業として、直前の値から所定の変化率以上増減したデータを外れ値として除去する作業は、他のプラント設備の運転最適化AIや他のモデルの開発においても共通して実行すべき作業である。このような共通の作業を予めパッケージ化しておけば、新たにモデルを開発する際に既存のパッケージを利用することができるので、モデルの開発に要するコスト、時間、労力などを大幅に低減させることができる。 Some of the work processes involved in the development of operation optimization AI are also performed in the development of operation optimization AI for other plant equipment and other models. For example, operation data is time-series data collected during the operation of plant equipment, and is typically expected to have continuous values. Considering this characteristic, it is difficult to imagine that the data will suddenly change to a completely different value without context. Therefore, the pre-processing of operation data involves removing outliers that have increased or decreased by more than a specified rate from the previous value. This work should also be performed in the development of operation optimization AI for other plant equipment and other models. If such common work is packaged in advance, existing packages can be used when developing new models, significantly reducing the cost, time, and effort required for model development.

 図2は、第1の実施の形態に係る開発支援システムの構成を示す。開発支援システム1は、開発装置3、設計装置4、運転制御装置5、構築支援装置100、開発支援装置200、およびそれらを通信可能に接続するための通信網2を備える。 Figure 2 shows the configuration of a development support system according to the first embodiment. The development support system 1 includes a development device 3, a design device 4, an operation control device 5, a construction support device 100, a development support device 200, and a communication network 2 for connecting these devices so that they can communicate with each other.

 プラント設備10は、プラントにおいてプロセスを実行するための設備、機器、装置、配管などを含む。例えば、化学プラントにおいては、プラント設備10は、反応器、分離装置、乾燥装置、配管などを含む。 The plant equipment 10 includes facilities, equipment, devices, piping, etc. for carrying out processes in the plant. For example, in a chemical plant, the plant equipment 10 includes reactors, separation equipment, drying equipment, piping, etc.

 開発装置3は、プラント設備10の運転に関するモデルを開発する。モデルは、プラント設備10の運転状態や流体の状態などをシミュレートするシミュレーションモデル、プラント設備10における化学反応をシミュレートする反応モデル、シミュレーションモデルや反応モデルなどを代替する代理モデル、プラント設備10の設計においてスケールアップやスケールダウンを検証するためのAI、プラント設備10の運転を最適化するためのAI、プラント設備10の運転中に異常を検知又は予知するためのAIなどであってもよい。 The development device 3 develops a model related to the operation of the plant equipment 10. The model may be a simulation model that simulates the operating state or fluid state of the plant equipment 10, a reaction model that simulates chemical reactions in the plant equipment 10, a proxy model that replaces the simulation model or reaction model, AI for verifying scale-up or scale-down in the design of the plant equipment 10, AI for optimizing the operation of the plant equipment 10, AI for detecting or predicting abnormalities during the operation of the plant equipment 10, etc.

 設計装置4は、開発装置3により開発されたモデルを使用してプラント設備10を設計する。 The design device 4 designs the plant equipment 10 using the model developed by the development device 3.

 運転制御装置5は、開発装置3により開発されたモデルを使用してプラント設備10の運転を制御する。 The operation control device 5 controls the operation of the plant equipment 10 using the model developed by the development device 3.

 開発支援装置200は、開発装置3におけるモデルの開発を支援する。開発支援装置200は、プラント設備10の設備識別情報またはプラント設備10で実行されるプロセスのプロセス識別情報と、モデルの目的出力情報を取得し、取得された設備識別情報またはプロセス識別情報と目的出力情報とに基づいて、モデルの開発工程を構成すべき処理要素を含む処理要素リストを出力する。これにより、開発者は、過去に開発されたモデルの処理要素リストを利用してモデルを開発することができるので、開発のコスト、時間、労力などを大幅に低減させることができる。 The development support device 200 supports the development of models in the development device 3. The development support device 200 acquires equipment identification information for the plant equipment 10 or process identification information for the process executed in the plant equipment 10, and target output information for the model, and outputs a processing element list including the processing elements that should make up the model's development process based on the acquired equipment identification information or process identification information and target output information. This allows developers to develop models using processing element lists of models developed in the past, significantly reducing development costs, time, and effort.

 モデルの目的出力情報は、モデルの目的に合わせて、モデルが最終的または中間的に出力する情報である。例えば、シミュレーションモデルの目的出力情報はシミュレーション結果であり、運転最適化AIの目的出力情報はプラント設備10の運転を最適化するための運転パラメータである。 The target output information of a model is information that the model outputs ultimately or intermediately in accordance with the model's purpose. For example, the target output information of a simulation model is the simulation results, and the target output information of an operation optimization AI is the operating parameters for optimizing the operation of the plant equipment 10.

 構築支援装置100は、開発支援装置200が処理要素リストを出力するために参照する過去の実績情報を蓄積して、開発支援環境の構築を支援する。構築支援装置100は、開発済みのモデルの対象であるプラント設備10の設備識別情報またはプラント設備10で実行されるプロセスのプロセス識別情報と、開発済みのモデルの目的出力情報とを取得し、開発済みのモデルの開発工程を構成する処理要素を取得し、処理要素を、設備識別情報もしくはプロセス識別情報、および/または目的出力情報に対応付けて記憶する。 The construction support device 100 accumulates past performance information that the development support device 200 references to output a processing element list, and supports the construction of a development support environment. The construction support device 100 acquires equipment identification information for the plant equipment 10 that is the target of the developed model, or process identification information for the process executed in the plant equipment 10, and target output information for the developed model, acquires the processing elements that make up the development process of the developed model, and stores the processing elements in association with the equipment identification information or process identification information, and/or target output information.

 図3は、第1の実施の形態に係る構築支援装置100の構成を示す。構築支援装置100は、通信装置101、表示装置102、入力装置103、処理装置120、および記憶装置130を備える。 FIG. 3 shows the configuration of a construction support device 100 according to the first embodiment. The construction support device 100 includes a communication device 101, a display device 102, an input device 103, a processing device 120, and a storage device 130.

 通信装置101は、無線または有線による通信を制御する。表示装置102は、処理装置120により生成される画面を表示する。表示装置102は、液晶表示装置、有機EL表示装置などであってもよい。入力装置103は、構築支援装置100の使用者による指示入力を処理装置120に伝達する。入力装置103は、マウス、キーボード、タッチパッドなどであってもよい。表示装置102および入力装置103は、タッチパネルとして実装されてもよい。 The communication device 101 controls wireless or wired communication. The display device 102 displays a screen generated by the processing device 120. The display device 102 may be a liquid crystal display device, an organic EL display device, or the like. The input device 103 transmits instructions input by the user of the construction support device 100 to the processing device 120. The input device 103 may be a mouse, keyboard, touchpad, or the like. The display device 102 and input device 103 may be implemented as a touch panel.

 記憶装置130は、処理装置120が使用するデータ及びコンピュータプログラムを格納する。記憶装置130は、処理要素保持部131を備える。 The storage device 130 stores data and computer programs used by the processing device 120. The storage device 130 includes a processing element holding unit 131.

 処理要素保持部131は、プラント設備10の運転に関するモデルの開発工程を構成すべき処理要素を、プラント設備10の設備識別情報もしくはプロセス識別情報、および/またはモデルの目的出力情報に対応付けて保持する。処理要素保持部131は、モデルの開発工程を構成すべきモジュールのソースコードや、モデルを保持してもよい。さらに、処理要素保持部131は、ソースコードに含まれる変数、定数、パラメータなどを保持してもよい。 The processing element holding unit 131 holds processing elements that should constitute the development process of a model related to the operation of the plant equipment 10, in association with the equipment identification information or process identification information of the plant equipment 10, and/or the target output information of the model. The processing element holding unit 131 may also hold source code and models of modules that should constitute the development process of the model. Furthermore, the processing element holding unit 131 may hold variables, constants, parameters, etc. included in the source code.

 処理装置120は、情報取得部121、処理取得部122、処理分割部123、および処理要素登録部124備える。これらの構成は、ハードウエアコンポーネントでいえば、任意の回路、コンピュータのCPU、メモリ、メモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。 Processing device 120 comprises information acquisition unit 121, processing acquisition unit 122, processing division unit 123, and processing element registration unit 124. In terms of hardware components, these components can be realized by any circuit, a computer CPU, memory, programs loaded into memory, etc., but here we have depicted functional blocks realized by the cooperation of these components. Therefore, those skilled in the art will understand that these functional blocks can be realized in various ways using hardware alone, software alone, or a combination of these.

 図4は、第1の実施の形態に係る支援方法の手順を示すフローチャートである。図3および図4を参照して、構築支援装置100により開発支援環境の構築を支援する手順を説明する。なお、開発済みのモデルを「第1モデル」といい、新たに開発するモデルを「第2モデル」という。 FIG. 4 is a flowchart showing the steps of the support method according to the first embodiment. The steps for supporting the construction of a development support environment using the construction support device 100 will be explained with reference to FIGS. 3 and 4. The model that has already been developed is referred to as the "first model," and the newly developed model is referred to as the "second model."

 情報取得部121は、開発された第1モデルの対象であるプラント設備の設備識別情報、またはプラント設備で実行されるプロセスのプロセス識別情報を取得する(S10)。設備識別情報は、プラント設備の種類、規模、サイズ、性能などの情報を含んでもよい。プロセス識別情報は、原料、最終生成物、中間生成物、反応や加工などの種類、時間、条件などの情報を含んでもよい。情報取得部121は、開発装置3、設計装置4、開発支援装置200などから設備識別情報またはプロセス識別情報を取得してもよい。情報取得部121は、入力装置103を介して開発者などから設備識別情報またはプロセス識別情報を取得してもよい。 The information acquisition unit 121 acquires equipment identification information for the plant equipment that is the subject of the developed first model, or process identification information for the process performed in the plant equipment (S10). The equipment identification information may include information such as the type, scale, size, and performance of the plant equipment. The process identification information may include information such as the type, time, and conditions of raw materials, final products, intermediate products, reactions, and processing. The information acquisition unit 121 may acquire equipment identification information or process identification information from the development device 3, design device 4, development support device 200, etc. The information acquisition unit 121 may acquire equipment identification information or process identification information from a developer, etc. via the input device 103.

 情報取得部121は、開発された第1モデルの目的出力情報を取得する(S12)。目的出力情報は、モデルが最終的または中間的に出力する情報であり、例えば、上述したプラント最適化モデルにおいては、プラントの運転を最適化するための制御量の値などの条件を含む。情報取得部121は、開発装置3、設計装置4、開発支援装置200などから目的出力情報を取得してもよい。情報取得部121は、入力装置103を介して開発者などから目的出力情報を取得してもよい。情報取得部121は、第1モデルのソースコードやシステム設計図などを解析することにより目的出力情報を取得してもよい。 The information acquisition unit 121 acquires target output information of the developed first model (S12). The target output information is information that the model outputs ultimately or intermediately, and for example, in the plant optimization model described above, includes conditions such as the values of controlled variables for optimizing plant operation. The information acquisition unit 121 may acquire the target output information from the development device 3, the design device 4, the development support device 200, etc. The information acquisition unit 121 may also acquire the target output information from a developer, etc. via the input device 103. The information acquisition unit 121 may acquire the target output information by analyzing the source code of the first model, system design drawings, etc.

 処理取得部122は、開発された第1モデルを構成する処理を取得する(S14)。処理は、第1モデルを開発するための作業工程や、第1モデルを構成する部品(モジュール)などを含んでもよい。処理取得部122は、第1モデルを構成するモジュールのソースコード、変数、定数、パラメータなどを取得してもよい。処理取得部122は、開発装置3、設計装置4、開発支援装置200などから処理を取得してもよい。処理取得部122は、入力装置103を介して開発者などから処理を取得してもよい。 The process acquisition unit 122 acquires the processes that make up the developed first model (S14). The processes may include work steps for developing the first model and components (modules) that make up the first model. The process acquisition unit 122 may acquire source code, variables, constants, parameters, etc. of the modules that make up the first model. The process acquisition unit 122 may acquire the processes from the development device 3, the design device 4, the development support device 200, etc. The process acquisition unit 122 may acquire the processes from a developer, etc. via the input device 103.

 処理分割部123は、処理取得部122が第1モデルの全体を取得していた場合などには、必要に応じて、取得された処理を複数の処理要素に分割する(S16)。処理分割部123は、作業工程を単位として処理を分割してもよい。処理分割部123は、複数のモデルの開発において共通する処理要素と、プラントの種類やモデルの目的出力情報などに応じて個別に異なる処理要素に分割してもよい。なお、処理取得部122が第1モデルの処理を処理要素ごとに取得可能である場合には、処理分割部123による処理の分割は実施されなくてもよい。 If the processing acquisition unit 122 has acquired the entire first model, the processing division unit 123 divides the acquired processing into multiple processing elements as necessary (S16). The processing division unit 123 may divide the processing into units of work processes. The processing division unit 123 may divide the processing into processing elements that are common to the development of multiple models and processing elements that differ individually depending on the type of plant, the target output information of the model, etc. Note that if the processing acquisition unit 122 is able to acquire the processing of the first model for each processing element, the processing division unit 123 does not have to divide the processing.

 処理要素登録部124は、処理要素を、設備識別情報もしくはプロセス識別情報、および/または目的出力情報に対応付けて処理要素保持部131に格納する。 The processing element registration unit 124 stores processing elements in the processing element holding unit 131 in association with equipment identification information or process identification information, and/or target output information.

 図5は、処理要素保持部131のデータ構造の例を示す。本図の例では、処理要素が、対象となるプラント設備、プロセス、課題(目的出力情報)ごとに保持されている。また、対象となるプラント設備、プロセス、課題によらず共通してモデルに含まれる処理要素が保持されている。 Figure 5 shows an example of the data structure of the processing element storage unit 131. In this example, processing elements are stored for each target plant equipment, process, and issue (target output information). In addition, processing elements that are commonly included in the model regardless of the target plant equipment, process, or issue are stored.

 図6は、処理要素保持部131のデータ構造の例を示す。本図の例では、作業工程ごとに処理要素保持部131が設けられる。それぞれの作業工程の処理要素保持部131では、対象となるプラント設備およびプロセスと、対象となる課題(目的出力情報)のマトリクスで処理要素が保持されている。なお、処理要素保持部131は、図5、6のようなリレーショナルデータベースに限られず、例えば、個々の処理要素が、対象となるプラント設備およびプロセス、ならびに/または対象となる課題とエッジで紐づけられたグラフデータベースとして構成されてもよい。 Figure 6 shows an example of the data structure of the processing element storage unit 131. In the example shown in this figure, a processing element storage unit 131 is provided for each work process. The processing element storage unit 131 for each work process stores processing elements in a matrix of the target plant equipment and process, and the target issue (target output information). Note that the processing element storage unit 131 is not limited to a relational database like those shown in Figures 5 and 6; for example, it may be configured as a graph database in which individual processing elements are linked by edges to the target plant equipment and process, and/or target issue.

 図7は、第1の実施の形態に係る開発支援装置200の構成を示す。開発支援装置200は、通信装置201、表示装置202、入力装置203、処理装置220、および記憶装置230を備える。 FIG. 7 shows the configuration of a development support device 200 according to the first embodiment. The development support device 200 includes a communication device 201, a display device 202, an input device 203, a processing device 220, and a storage device 230.

 通信装置201は、無線または有線による通信を制御する。表示装置202は、処理装置220により生成される画面を表示する。表示装置202は、液晶表示装置、有機EL表示装置などであってもよい。入力装置203は、開発支援装置200の使用者による指示入力を処理装置220に伝達する。入力装置203は、マウス、キーボード、タッチパッドなどであってもよい。表示装置202および入力装置203は、タッチパネルとして実装されてもよい。 The communication device 201 controls wireless or wired communication. The display device 202 displays a screen generated by the processing device 220. The display device 202 may be a liquid crystal display device, an organic EL display device, or the like. The input device 203 transmits instructions input by a user of the development support device 200 to the processing device 220. The input device 203 may be a mouse, keyboard, touchpad, or the like. The display device 202 and input device 203 may be implemented as a touch panel.

 記憶装置230は、処理装置220が使用するデータ及びコンピュータプログラムを格納する。記憶装置230は、処理要素保持部231を備える。 The storage device 230 stores data and computer programs used by the processing device 220. The storage device 230 includes a processing element holding unit 231.

 処理要素保持部231は、プラント設備10の運転に関するモデルの開発工程を構成すべき処理要素を、プラント設備10の設備識別情報もしくはプロセス識別情報、および/またはモデルの目的出力情報に対応付けて保持する。処理要素保持部231は、処理要素保持部131と同じものであってもよい。処理要素保持部231は、構築支援装置100から取得されて記憶装置230に格納されてもよい。開発支援装置200が構築支援装置100の処理要素保持部131にアクセスする場合は、処理要素保持部231は設けられなくてもよい。 The processing element holding unit 231 holds the processing elements that constitute the development process of a model related to the operation of the plant equipment 10, in association with the equipment identification information or process identification information of the plant equipment 10, and/or the target output information of the model. The processing element holding unit 231 may be the same as the processing element holding unit 131. The processing element holding unit 231 may be obtained from the construction support device 100 and stored in the storage device 230. If the development support device 200 accesses the processing element holding unit 131 of the construction support device 100, the processing element holding unit 231 does not need to be provided.

 処理装置220は、情報取得部221、処理要素リスト取得部222、出力部223、処理要素決定部224、処理パラメータ受付部225、処理順序決定部226、結合要素受付部227、処理要素結合部228、および処理要素登録部229を備える。これらの構成は、ハードウエアコンポーネントでいえば、任意の回路、コンピュータのCPU、メモリ、メモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。 The processing device 220 comprises an information acquisition unit 221, a processing element list acquisition unit 222, an output unit 223, a processing element determination unit 224, a processing parameter reception unit 225, a processing order determination unit 226, a connection element reception unit 227, a processing element connection unit 228, and a processing element registration unit 229. In terms of hardware components, these components are realized by any circuit, a computer CPU, memory, a program loaded into memory, etc., but here we have depicted functional blocks realized by the cooperation of these components. Therefore, those skilled in the art will understand that these functional blocks can be realized in various ways using hardware alone, software alone, or a combination of these.

 図8は、第1の実施の形態に係る支援方法の手順を示すフローチャートである。図7および図8を参照して、開発支援装置200によりモデルの開発を支援する手順を説明する。 FIG. 8 is a flowchart showing the steps of the support method according to the first embodiment. The steps for supporting model development using the development support device 200 will be explained with reference to FIGS. 7 and 8.

 情報取得部221は、開発対象のプラント設備の設備識別情報またはプラント設備で実行されるプロセスのプロセス識別情報を取得する(S20)。情報取得部221は、開発装置3、設計装置4などから設備識別情報またはプロセス識別情報を取得してもよい。情報取得部221は、入力装置203を介して開発者などから設備識別情報またはプロセス識別情報を取得してもよい。 The information acquisition unit 221 acquires equipment identification information for the plant equipment being developed or process identification information for the process being executed in the plant equipment (S20). The information acquisition unit 221 may acquire the equipment identification information or process identification information from the development device 3, design device 4, etc. The information acquisition unit 221 may also acquire the equipment identification information or process identification information from a developer, etc. via the input device 203.

 情報取得部221は、モデルの目的出力情報を取得する(S22)。情報取得部221は、開発装置3、設計装置4などから目的出力情報を取得してもよい。情報取得部221は、入力装置203を介して開発者などから目的出力情報を取得してもよい。 The information acquisition unit 221 acquires target output information for the model (S22). The information acquisition unit 221 may acquire the target output information from the development device 3, the design device 4, etc. The information acquisition unit 221 may also acquire the target output information from a developer, etc. via the input device 203.

 処理要素リスト取得部222は、設備識別情報またはプロセス識別情報と目的出力情報とに基づいて、モデルの開発工程を構成すべき処理要素を含む処理要素リストを取得する(S24)。処理要素リスト取得部222は、処理要素保持部231または処理要素保持部131を参照して、処理要素リストを取得してもよい。処理要素保持部231または処理要素保持部131が図5に示したデータ構造を有している場合は、処理要素リスト取得部222は、対象設備、対象プロセス、対象課題が、それぞれ、設備識別情報、プロセス識別情報、目的出力情報と一致する処理要素と、共通の処理要素を抽出して処理要素リストを取得する。処理要素保持部231または処理要素保持部131が図6に示したデータ構造を有している場合は、処理要素リスト取得部222は、作業工程ごとに、対象設備、対象プロセス、対象課題が、それぞれ、設備識別情報、プロセス識別情報、目的出力情報と一致する処理要素と、共通の処理要素を抽出して処理要素リストを取得する。 The processing element list acquisition unit 222 acquires a processing element list containing processing elements that should constitute the model development process based on the equipment identification information or process identification information and the target output information (S24). The processing element list acquisition unit 222 may acquire the processing element list by referencing the processing element storage unit 231 or the processing element storage unit 131. If the processing element storage unit 231 or the processing element storage unit 131 has the data structure shown in FIG. 5, the processing element list acquisition unit 222 acquires a processing element list by extracting processing elements whose target equipment, target process, and target task match the equipment identification information, process identification information, and target output information, respectively, as well as common processing elements. If the processing element storage unit 231 or the processing element storage unit 131 has the data structure shown in FIG. 6, the processing element list acquisition unit 222 acquires a processing element list by extracting processing elements whose target equipment, target process, and target task match the equipment identification information, process identification information, and target output information, respectively, as well as common processing elements, for each work process.

 出力部223は、取得された処理要素リストを、モデルの開発工程を構成すべき処理要素の候補リストとして開発者に出力する(S25)。出力部223は、表示装置202に候補リストを表示してもよい。出力部223は、開発者が使用する端末装置に候補リストを送信してもよい。 The output unit 223 outputs the acquired processing element list to the developer as a candidate list of processing elements that should constitute the model development process (S25). The output unit 223 may display the candidate list on the display device 202. The output unit 223 may also transmit the candidate list to a terminal device used by the developer.

 処理要素決定部224は、候補リストの中からモデルの開発工程を構成すべき処理要素の選択を受け付け(S26)、選択された処理要素を、モデルの開発工程を構成する処理要素として決定する(S28)。処理要素決定部224は、入力装置203を介して開発者から処理要素の選択を受け付けてもよい。処理要素決定部224は、開発者が使用する端末装置から処理要素の選択を受け付けてもよい。処理要素決定部224は、処理要素リストにリストされた処理要素を自動的にモデルの開発工程を構成する処理要素として決定してもよい。処理要素決定部224は、所定の選択基準に基づいて処理要素を自動的に選択し、選択された処理要素を、モデルの開発工程を構成する処理要素として決定してもよい。処理要素が自動的に選択される場合、処理要素の選択は、機械学習モデルにより行われてもよい。その場合、機械学習モデルは、過去に構築されたAIの設備識別情報および/またはプロセス識別情報と、目的出力情報と、当該AIの開発工程に含まれていた処理要素との関係や、プラント分野に限られない一般的なAI構築フローを学習し、第2のモデルの設備識別情報、プロセス識別情報、または目的出力情報の入力により、第2のモデルの処理要素を決定するモデルであってもよい。 The processing element determination unit 224 accepts a selection of processing elements from the candidate list that are to constitute the model development process (S26), and determines the selected processing elements as processing elements that constitute the model development process (S28). The processing element determination unit 224 may accept a selection of processing elements from the developer via the input device 203. The processing element determination unit 224 may also accept a selection of processing elements from a terminal device used by the developer. The processing element determination unit 224 may automatically determine processing elements listed in the processing element list as processing elements that constitute the model development process. The processing element determination unit 224 may automatically select processing elements based on predetermined selection criteria, and determine the selected processing elements as processing elements that constitute the model development process. When processing elements are automatically selected, the selection of processing elements may be performed by a machine learning model. In this case, the machine learning model may be a model that learns the relationship between the equipment identification information and/or process identification information, target output information, and processing elements included in the development process of previously constructed AI, as well as general AI construction flows that are not limited to the plant field, and determines the processing elements of the second model by inputting the equipment identification information, process identification information, or target output information of the second model.

 処理パラメータ受付部225は、決定された処理要素における処理パラメータの入力を受け付ける(S30)。処理パラメータは、処理要素を実行する際に使用されるパラメータを含んでもよい。処理パラメータ受付部225は、受け付けた処理パラメータを処理要素に設定する。処理パラメータ受付部225は、入力装置203を介して開発者から処理パラメータを受け付けてもよい。処理パラメータ受付部225は、開発者が使用する端末装置から処理パラメータを受け付けてもよい。例えば、処理要素が運転データの前処理における外れ値除去処理に関するものである場合、外れ値を除去する基準となるパラメータの入力を受け付ける。外れ値を除去する基準となるパラメータは、例えば、取得したデータの四分位範囲(interquartile range:以下、IQR)に基づき、
・下限値を(第一四分位数)-1.5×IQR
・上限値を(第三四分位数)+1.5×IQR
であってもよい。なお、処理パラメータは、開発者による入力を要することなく設定されてもよい。その場合、処理要素には、第1モデルにおける設定パラメータ等、初期設定パラメータが格納され得る。この場合、さらに開発者が初期設定パラメータを確認し、必要に応じて編集されるように構成されてもよい。
The processing parameter receiving unit 225 receives input of processing parameters for the determined processing element (S30). The processing parameters may include parameters used when executing the processing element. The processing parameter receiving unit 225 sets the received processing parameters for the processing element. The processing parameter receiving unit 225 may receive processing parameters from the developer via the input device 203. The processing parameter receiving unit 225 may receive processing parameters from a terminal device used by the developer. For example, if the processing element relates to outlier removal processing in pre-processing of driving data, the processing parameter receiving unit 225 receives input of parameters that serve as a criterion for removing outliers. The parameters that serve as a criterion for removing outliers may be, for example, based on the interquartile range (hereinafter referred to as IQR) of the acquired data,
・Lower limit is (first quartile) - 1.5 x IQR
・Upper limit is (third quartile) + 1.5 x IQR
The processing parameters may be set without requiring input from the developer. In this case, the processing element may store initial setting parameters, such as the setting parameters in the first model. In this case, the processing element may be configured to allow the developer to check the initial setting parameters and edit them as necessary.

 処理順序決定部226は、処理要素を実行する処理順序を決定する(S32)。処理順序決定部226は、入力装置203を介して開発者から処理順序を受け付けてもよい。処理順序決定部226は、開発者が使用する端末装置から処理順序を受け付けてもよい。処理順序決定部226は、所定の基準に基づいて処理順序を自動的に決定してもよい。所定の基準は、例えば、第1モデルにおける処理順序であってもよいし、第1モデル等、過去に構築された複数のプラントの運転に関するAIにおける処理順序に基づく基準であってもよいし、プラントの運転向けに限らず、他分野におけるAI開発における順序に基づく基準であってもよい。このような処理順序の基準は、処理要素保持部231に記憶されたものを参照してもよいし、過去に構築されたAIの処理順序に基づいて学習されてもよい。 The processing order determination unit 226 determines the processing order in which the processing elements are to be executed (S32). The processing order determination unit 226 may receive the processing order from the developer via the input device 203. The processing order determination unit 226 may also receive the processing order from a terminal device used by the developer. The processing order determination unit 226 may automatically determine the processing order based on a predetermined criterion. The predetermined criterion may be, for example, the processing order in the first model, or a criterion based on the processing order in AI related to the operation of multiple plants constructed in the past, such as the first model, or a criterion based on the order in AI development in other fields, not limited to plant operation. Such processing order criteria may refer to those stored in the processing element storage unit 231, or may be learned based on the processing order of AI constructed in the past.

 結合要素受付部227は、決定された処理要素を結合するために必要な処理要素を受け付ける(S34)。先行する処理要素から出力される情報と、後続の処理要素に入力すべき情報とが合致していない場合などには、先行する処理要素の出力情報から後続の処理要素の入力情報を生成する処理要素が結合要素として追加されてもよい。結合要素受付部227は、入力装置203を介して開発者から結合要素のソースコードやパラメータなどを受け付けてもよい。結合要素受付部227は、開発者が使用する端末装置から結合要素のソースコードやパラメータなどを受け付けてもよい。結合要素受付部227は、先行する処理要素の出力情報と、後続の処理要素の入力情報に基づいて、結合要素を自動的に生成してもよい。 The combined element receiving unit 227 receives processing elements required to combine the determined processing elements (S34). In cases where the information output from the preceding processing element does not match the information to be input to the subsequent processing element, a processing element that generates input information for the subsequent processing element from the output information of the preceding processing element may be added as a combined element. The combined element receiving unit 227 may receive source code, parameters, etc. of the combined element from the developer via the input device 203. The combined element receiving unit 227 may also receive source code, parameters, etc. of the combined element from a terminal device used by the developer. The combined element receiving unit 227 may automatically generate combined elements based on the output information of the preceding processing element and the input information of the subsequent processing element.

 処理要素結合部228は、決定された処理要素を結合する(S36)。処理要素結合部228は、決定された処理要素と結合要素を、決定された処理順序で結合する。これにより、第2モデルが生成される。 The processing element combining unit 228 combines the determined processing elements (S36). The processing element combining unit 228 combines the determined processing elements and the combined elements in the determined processing order. This generates a second model.

 処理要素登録部229は、設備識別情報またはプロセス識別情報と、目的出力情報と、決定された処理要素とを処理要素保持部231に格納する(S38)。これにより、開発されたモデルの開発工程を構成する処理要素を、次回以降に開発されるモデルの開発に利用することができる。 The processing element registration unit 229 stores the equipment identification information or process identification information, the target output information, and the determined processing element in the processing element storage unit 231 (S38). This allows the processing elements that make up the development process of the developed model to be used in the development of subsequent models.

 開発済みのモデルが変更、追加された場合は、それに合わせて、処理要素保持部131および処理要素保持部231の内容が更新されてもよい。 If a developed model is changed or added, the contents of the processing element storage unit 131 and the processing element storage unit 231 may be updated accordingly.

 図9は、開発支援装置200の表示装置202に表示される画面の例を示す。本図では、開発対象となる装置の種類とモデルや課題の種類を開発者が選択するためのユーザインタフェース画面が表示されている。開発者が装置の種類とモデルや課題の種類を選択すると、情報取得部221は、開発対象のプラント設備の設備識別情報と、モデルの目的出力情報を取得する。 Figure 9 shows an example of a screen displayed on the display device 202 of the development support device 200. In this figure, a user interface screen is displayed that allows the developer to select the type of equipment to be developed and the type of model or problem. When the developer selects the type of equipment and the type of model or problem, the information acquisition unit 221 acquires the equipment identification information of the plant equipment to be developed and the target output information of the model.

 図10は、開発支援装置200の表示装置202に表示される画面の例を示す。本図では、開発者により選択された装置の種類とモデルや課題の種類に合わせて処理要素リスト取得部222により取得された、モデルの開発工程を構成すべき処理要素のリストが、出力部223により表示されている。 Figure 10 shows an example of a screen displayed on the display device 202 of the development support device 200. In this figure, the output unit 223 displays a list of processing elements that should make up the model development process, acquired by the processing element list acquisition unit 222 according to the type of device selected by the developer and the type of model or problem.

 本実施の形態の開発支援システムによれば、過去にモデルを開発したときの知見やリソースを利用するので、従来は個別に行われてきたモデルの開発を効率化し、新たなモデルの開発に要するコスト、時間、労力などを大幅に低減させることができる。また、モデルの開発の分業を可能とすることができるので、プロセスエンジニア、データサイエンティスト、AIの開発者などが、それぞれの本質的な作業に集中することができる。 The development support system of this embodiment utilizes knowledge and resources gained from previous model development, thereby streamlining model development, which has traditionally been done individually, and significantly reducing the cost, time, and effort required to develop new models. It also enables the division of labor in model development, allowing process engineers, data scientists, AI developers, and others to focus on their respective essential tasks.

(第2の実施の形態)
 図11は、第2の実施の形態に係る開発支援システム1の構成を示す。第2の実施の形態に係る開発支援システム1は、図1に示した第1の実施の形態に係る開発支援システム1の構成に加えて、管理者端末300を備える。第2の実施の形態に係る開発支援システム1は、プラント設備10を好適に運転するために実装が推奨されるモデルの開発を支援する。主に、第1の実施の形態の開発支援システム1と異なる構成及び動作について説明し、第1の実施の形態と同様である構成及び動作の説明は適宜省略する。
Second Embodiment
11 shows the configuration of a development support system 1 according to the second embodiment. The development support system 1 according to the second embodiment includes an administrator terminal 300 in addition to the configuration of the development support system 1 according to the first embodiment shown in FIG. The development support system 1 according to the second embodiment supports the development of a model that is recommended to be implemented in order to operate the plant facility 10 favorably. The following mainly describes the configuration and operation that are different from the development support system 1 according to the first embodiment, and omits descriptions of the configuration and operation that are the same as those of the first embodiment as appropriate.

 管理者端末300は、プラント設備10の管理者が使用する端末である。管理者端末300は、プラント設備10の所有者、設計者、開発者、保守者、技術者などによって使用される端末であってもよい。管理者端末300は、任意のコンピュータ、スマートフォン、携帯電話などの端末装置であってもよい。 The administrator terminal 300 is a terminal used by the administrator of the plant equipment 10. The administrator terminal 300 may be a terminal used by the owner, designer, developer, maintainer, engineer, etc. of the plant equipment 10. The administrator terminal 300 may be any terminal device such as a computer, smartphone, or mobile phone.

 図12は、第2の実施の形態に係る支援方法の手順を示すシーケンス図である。管理者端末300は、プラント設備10の設備識別情報又はプラント設備10で実行されるプロセスのプロセス識別情報を開発支援装置200に送信する(S10)。管理者端末300は、プラント設備10の運転において取得されるパラメータのパラメータ識別情報を開発支援装置200に送信する(S12)。ここで、パラメータ識別情報とは、温度、圧力、又は濃度などのプラント設備10の運転において取得されるパラメータの種類に関する情報を含む。パラメータ識別情報は、さらに、設備の入口、設備の内部、設備の出口など、パラメータがプラント設備10のどこで取得されたものかを表す取得位置に関する情報も含むとよい。管理者端末300は、プラント設備10の運転において取得されるパラメータの時系列データを開発支援装置200に送信する(S14)。 FIG. 12 is a sequence diagram showing the steps of the support method according to the second embodiment. The administrator terminal 300 transmits equipment identification information for the plant equipment 10 or process identification information for a process executed in the plant equipment 10 to the development support device 200 (S10). The administrator terminal 300 transmits parameter identification information for parameters acquired during operation of the plant equipment 10 to the development support device 200 (S12). Here, the parameter identification information includes information regarding the type of parameter acquired during operation of the plant equipment 10, such as temperature, pressure, or concentration. The parameter identification information may also include information regarding the acquisition location, indicating where in the plant equipment 10 the parameter was acquired, such as the entrance to the equipment, inside the equipment, or exit from the equipment. The administrator terminal 300 transmits time-series data for the parameters acquired during operation of the plant equipment 10 to the development support device 200 (S14).

 開発支援装置200は、管理者端末300から取得した設備識別情報又はプロセス識別情報と、パラメータ識別情報と、パラメータの時系列データとに基づいて、プラント設備10の運転に関する複数のモデルについて、プラント設備10を好適に運転するためにモデルの実装を推奨すべき度合いを表す推奨度を算出する(S16)。推奨度は、例えば、過去の推奨実績、過去の実装実績、過去に実装されたモデルに対する評価、過去にモデルが実装されたプラント設備10の運転の良否などに基づいて予め決定され、開発支援装置200に保持される。開発支援装置200は、算出された推奨度を参照して、プラント設備10の運転に関する複数のモデルの中から、実装が推奨されるモデルを選択する(S18)。開発支援装置200は、選択されたモデルの情報を管理者端末300に出力する(S20)。 The development support device 200 calculates a recommendation level, which indicates the degree to which implementation of a model should be recommended for optimal operation of the plant equipment 10, for multiple models related to the operation of the plant equipment 10, based on the equipment identification information or process identification information, parameter identification information, and parameter time-series data acquired from the administrator terminal 300 (S16). The recommendation level is determined in advance based on, for example, past recommendation performance, past implementation performance, evaluations of models implemented in the past, and the quality of operation of the plant equipment 10 in which the model was previously implemented, and is stored in the development support device 200. The development support device 200 refers to the calculated recommendation level and selects a model recommended for implementation from among the multiple models related to the operation of the plant equipment 10 (S18). The development support device 200 outputs information about the selected model to the administrator terminal 300 (S20).

 開発支援装置200は、選択されたモデルを実装するために必要なデータセットの情報を管理者端末300に提示する(S22)。開発支援装置200は、選択されたモデルにパラメータの時系列データを入力してモデルを試行したときにモデルから出力される出力情報を管理者端末300に提示する(S24)。 The development support device 200 presents to the administrator terminal 300 information about the dataset required to implement the selected model (S22). The development support device 200 presents to the administrator terminal 300 output information output from the model when the selected model is tested by inputting time-series parameter data into the model (S24).

 管理者は、開発支援装置200から提示された情報を参照して、実装するモデルを決定し、モデルの開発を管理者端末300から開発支援装置200に要求する(S26)。 The administrator references the information presented by the development support device 200, determines the model to be implemented, and requests the development support device 200 to develop the model from the administrator terminal 300 (S26).

 開発支援装置200は、第1の実施の形態において説明したように、開発を要求されたモデルの開発工程を構成すべき処理要素を含む処理要素リストを取得し(S28)、取得した処理要素リストを管理者端末300に出力する(S30)。以降の手順は、第1の実施の形態と同様である。 As explained in the first embodiment, the development support device 200 acquires a processing element list including the processing elements that should make up the development process of the model for which development has been requested (S28), and outputs the acquired processing element list to the administrator terminal 300 (S30). The subsequent procedures are the same as those in the first embodiment.

 図13は、第2の実施の形態に係る開発支援装置の構成を示す。開発支援装置200は、通信装置201、表示装置202、入力装置203、処理装置220、及び記憶装置230を備える。第2の実施の形態に係る開発支援装置200は、図7に示した第1の実施の形態の開発支援装置200の構成を更に備えてもよい。 FIG. 13 shows the configuration of a development support device according to the second embodiment. The development support device 200 includes a communication device 201, a display device 202, an input device 203, a processing device 220, and a storage device 230. The development support device 200 according to the second embodiment may further include the configuration of the development support device 200 according to the first embodiment shown in FIG. 7.

 記憶装置230は、処理装置220が使用するデータ及びコンピュータプログラムを格納する。記憶装置230は、モデル情報保持部261及び推奨度保持部262を備える。 The storage device 230 stores data and computer programs used by the processing device 220. The storage device 230 includes a model information storage unit 261 and a recommendation level storage unit 262.

 モデル情報保持部261は、プラント設備10の運転に関する複数のモデルの情報を保持する。モデル情報保持部261は、モデルの目的出力情報、入力情報、モデルを実装するために必要なデータセット、モデルの開発工程を構成すべき処理要素を含む処理要素リスト、モデルの開発に要する時間、費用、人員、過去にモデルを推奨した実績、過去にモデルが実装された実績などの情報やモデル自体を保持する。 The model information storage unit 261 stores information on multiple models related to the operation of the plant equipment 10. The model information storage unit 261 stores information such as the model's target output information, input information, the dataset required to implement the model, a processing element list including the processing elements that should make up the model's development process, the time, cost, and manpower required to develop the model, past performance in recommending the model, and past performance in implementing the model, as well as the model itself.

 推奨度保持部252は、プラント設備10の設備識別情報又はプロセス識別情報、パラメータ識別情報、パラメータの時系列データの特徴ごとに、モデルの実装を推奨すべき度合いを表す推奨度を保持する。図14及び図15は、推奨度保持部262の内部データの例を示す。図14は、プラント設備10が運転されるときの温度及び圧力と、モデルの推奨度との対応関係を格納したテーブルを示す。図15は、プラント設備10が運転されるときに取得されるパラメータの時系列データの特徴と、モデルの推奨度との対応関係を格納したテーブルを示す。図15に示したテーブルは、パラメータの種類ごとに保持されてもよい。推奨度保持部252は、プラント設備10が運転されるときに取得されるパラメータの種類と、モデルの推奨度との対応関係を格納したテーブルを保持してもよい。 The recommendation level holding unit 252 holds a recommendation level that indicates the degree to which implementation of a model should be recommended for each of the equipment identification information or process identification information, parameter identification information, and characteristics of the time-series data of the parameters of the plant equipment 10. Figures 14 and 15 show examples of internal data of the recommendation level holding unit 262. Figure 14 shows a table that stores the correspondence between the temperature and pressure when the plant equipment 10 is operating and the recommendation level of a model. Figure 15 shows a table that stores the correspondence between the characteristics of the time-series data of parameters acquired when the plant equipment 10 is operating and the recommendation level of a model. The table shown in Figure 15 may be held for each type of parameter. The recommendation level holding unit 252 may hold a table that stores the correspondence between the type of parameters acquired when the plant equipment 10 is operating and the recommendation level of a model.

 処理装置220は、情報取得部241、時系列データ解析部242、選択部243、出力部244、推奨実績記録部245、実装実績記録部246、評価取得部247、推奨度設定部248、及び試行部249を備える。これらの構成は、ハードウエアコンポーネントでいえば、任意の回路、コンピュータのCPU、メモリ、メモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ソフトウエアのみ、又はそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。 The processing device 220 comprises an information acquisition unit 241, a time-series data analysis unit 242, a selection unit 243, an output unit 244, a recommendation performance recording unit 245, an implementation performance recording unit 246, an evaluation acquisition unit 247, a recommendation level setting unit 248, and a trial unit 249. These components are realized by hardware components such as any circuit, a computer CPU, memory, or a program loaded into memory, but the functional blocks realized by the cooperation of these components are depicted here. Therefore, those skilled in the art will understand that these functional blocks can be realized in various ways using only hardware, only software, or a combination of these.

 情報取得部241は、プラント設備10の設備識別情報又はプラント設備10で実行されるプロセスのプロセス識別情報と、プラント設備10の運転において取得されるパラメータのパラメータ識別情報と、パラメータの時系列データとを管理者端末300から取得する。情報取得部241は、既に運用されているプラント設備10に関する情報を管理者端末300から取得してもよいし、まだ運用されていないプラント設備10に関する情報を管理者端末300から取得してもよい。情報取得部241は、プラント設備10が運転されたときに取得されたパラメータのパラメータ識別情報や時系列データを管理者端末300から取得してもよいし、プラント設備10の運転をシミュレートするシミュレータなどから取得されたパラメータのパラメータ識別情報や時系列データを管理者端末300から取得してもよい。情報取得部241は、開発装置3、設計装置4、運転制御装置5、プラント設備10などから、こららの情報を取得してもよい。情報取得部241は、入力装置203を介して開発者などから設備識別情報又はプロセス識別情報を取得してもよい。 The information acquisition unit 241 acquires, from the administrator terminal 300, equipment identification information for the plant equipment 10 or process identification information for processes executed on the plant equipment 10, parameter identification information for parameters acquired during operation of the plant equipment 10, and time series data for the parameters. The information acquisition unit 241 may acquire information about plant equipment 10 that is already in operation from the administrator terminal 300, or may acquire information about plant equipment 10 that is not yet in operation from the administrator terminal 300. The information acquisition unit 241 may acquire, from the administrator terminal 300, parameter identification information and time series data for parameters acquired when the plant equipment 10 is in operation, or may acquire, from the administrator terminal 300, parameter identification information and time series data for parameters acquired from a simulator that simulates the operation of the plant equipment 10. The information acquisition unit 241 may acquire this information from the development device 3, the design device 4, the operation control device 5, the plant equipment 10, etc. The information acquisition unit 241 may acquire equipment identification information or process identification information from a developer, etc. via the input device 203.

 時系列データ解析部242は、情報取得部241により取得されたパラメータの時系列データを解析する。時系列データ解析部242は、時系列データの最大値、最小値、平均値、分散、標準偏差、中央値などの統計値を算出してもよい。時系列データ解析部242は、時系列データの変化率、変化率の変化率、極大値、極小値、変曲点、振幅、周波数などを算出してもよい。時系列データ解析部242は、所定の期間における時系列データの特徴、態様、傾向を解析してもよい。時系列データの特等は、時系列データが安定している、常時変動している、漸増している、漸減している、外れ値が存在するなどであってもよい。例えば、時系列データ解析部242は、所定の期間における時系列データの最大値と最小値との差が所定値以下である場合、分散が所定値以下である場合、変化率の絶対値の平均値が所定値以下である場合などに、時系列データが安定していると判定してもよい。時系列データ解析部242は、所定の期間における時系列データの分散が所定値以上である場合、変化率の絶対値の平均値が所定値以上である場合などに、時系列データが常時変動していると判定してもよい。 The time series data analysis unit 242 analyzes the time series data of the parameters acquired by the information acquisition unit 241. The time series data analysis unit 242 may calculate statistical values such as the maximum value, minimum value, average value, variance, standard deviation, and median of the time series data. The time series data analysis unit 242 may calculate the rate of change of the time series data, the rate of change of the rate of change, local maximum values, local minimum values, inflection points, amplitude, and frequency. The time series data analysis unit 242 may analyze the characteristics, aspects, and trends of the time series data over a specified period. The characteristics of the time series data may be that the time series data is stable, constantly fluctuating, gradually increasing, gradually decreasing, or that outliers are present. For example, the time series data analysis unit 242 may determine that the time series data is stable if the difference between the maximum and minimum values of the time series data over a specified period is equal to or less than a specified value, if the variance is equal to or less than a specified value, or if the average absolute value of the rate of change is equal to or less than a specified value. The time series data analysis unit 242 may determine that the time series data is constantly fluctuating if the variance of the time series data over a predetermined period is equal to or greater than a predetermined value, or if the average absolute value of the rate of change is equal to or greater than a predetermined value.

 選択部243は、情報取得部241により取得された設備識別情報又はプロセス識別情報と、パラメータ識別情報と、パラメータの時系列データとに基づいて、プラント設備10の運転に関する複数のモデルの中から、実装が推奨されるモデルを選択する。選択部243は、推奨度保持部を参照して、複数のモデルのそれぞれの推奨度を算出する。例えば、選択部243は、設備識別情報又はプロセス識別情報に対応する推奨度を図14に示したテーブルから取得し、パラメータの時系列データの態様に対応する推奨度を図15に示したテーブルから取得し、それらの推奨度の積を算出してモデルの推奨度としてもよい。パラメータ識別情報と推奨度の対応関係を格納したテーブルが推奨度保持部252に保持されている場合は、パラメータ識別情報に対応する推奨度を更に取得し、設備識別情報又はプロセス識別情報に対応する推奨度と、パラメータ識別情報に対応する推奨度と、パラメータの時系列データの態様に対応する推奨度の積を算出してモデルの推奨度としてもよい。選択部243は、算出された推奨度が大きいモデルを実装が推奨されるモデルとして選択する。選択部243は、設備識別情報又はプロセス識別情報、パラメータ識別情報、パラメータの時系列データ、プラント設備10の所在地、気候、運転年数などや、それらの任意の組み合わせに関する条件に更に基づいてモデルを選択してもよい。また、選択部243は、設備識別情報又はプロセス識別情報と、パラメータ識別情報と、パラメータの時系列データの態様とからなる入力に対して、対応する各モデルの推奨度を出力する非線形モデル又は機械学習モデルにより出力される推奨度に基づいて、実装が推奨されるモデルを選択してもよい。この場合、設備識別情報又はプロセス識別情報と、パラメータ識別情報と、パラメータの時系列データの態様に関する情報とを説明変数とし、目的出力情報を目的変数とする機械学習モデルが使用されてもよい。ここで、パラメータの時系列データの態様に関する情報は、パラメータの時系列データの生データを次元圧縮することにより得られた特徴量が説明変数として用いられてもよい。また、機械学習モデルは、後述する推奨実績記録部245に記録された推奨実績、モデルの実装実績、又は、後述する評価取得部247によって取得される過去に実装されたモデルに対する評価、若しくは過去にモデルが実装されたプラント設備10の運転の良否を学習データとして学習されてもよい。 The selection unit 243 selects a model recommended for implementation from among multiple models related to the operation of the plant equipment 10, based on the equipment identification information or process identification information, parameter identification information, and parameter time series data acquired by the information acquisition unit 241. The selection unit 243 calculates the recommendation level for each of the multiple models by referring to the recommendation level storage unit. For example, the selection unit 243 may acquire the recommendation level corresponding to the equipment identification information or process identification information from the table shown in FIG. 14, acquire the recommendation level corresponding to the aspect of the parameter time series data from the table shown in FIG. 15, and calculate the product of these recommendation levels to determine the recommendation level for the model. If a table storing the correspondence between parameter identification information and recommendation levels is stored in the recommendation level storage unit 252, the selection unit 243 may further acquire the recommendation level corresponding to the parameter identification information, and calculate the product of the recommendation level corresponding to the equipment identification information or process identification information, the recommendation level corresponding to the parameter identification information, and the recommendation level corresponding to the aspect of the parameter time series data to determine the recommendation level for the model. The selection unit 243 selects a model with a large calculated recommendation level as a model recommended for implementation. The selection unit 243 may select a model based on further conditions related to equipment identification information or process identification information, parameter identification information, time-series data of parameters, the location, climate, years of operation of the plant equipment 10, or any combination thereof. The selection unit 243 may also select a model recommended for implementation based on a recommendation level output by a nonlinear model or machine learning model that outputs a recommendation level for each model corresponding to input including equipment identification information or process identification information, parameter identification information, and the aspect of the time-series data of parameters. In this case, a machine learning model may be used in which the equipment identification information or process identification information, the parameter identification information, and information related to the aspect of the time-series data of parameters are used as explanatory variables and the target output information is used as a target variable. Here, the information related to the aspect of the time-series data of parameters may be a feature obtained by dimensional compression of raw data of the time-series data of parameters as an explanatory variable. The machine learning model may be trained using the recommendation performance recorded in the recommendation performance recording unit 245 (described later), the model implementation performance, evaluations of previously implemented models acquired by the evaluation acquisition unit 247 (described later), or the quality of operation of the plant equipment 10 in which the model was previously implemented as training data.

 出力部244は、選択部243により選択されたモデルの情報をモデル情報保持部261から読み出して管理者端末300に出力する。出力部244は、選択部243により選択されたモデルを実装するために必要なデータセットの情報をモデル情報保持部261から読み出して管理者端末300に出力する。 The output unit 244 reads information about the model selected by the selection unit 243 from the model information storage unit 261 and outputs the information to the administrator terminal 300. The output unit 244 reads information about the dataset required to implement the model selected by the selection unit 243 from the model information storage unit 261 and outputs the information to the administrator terminal 300.

 試行部249は、選択部243により選択されたモデルに、情報取得部241により取得されたパラメータの時系列データを入力して、モデルを試行する。出力部244は、試行部249により試行されたモデルの出力情報を管理者端末300に出力する。 The trial unit 249 inputs the time-series data of the parameters acquired by the information acquisition unit 241 into the model selected by the selection unit 243, and trials the model. The output unit 244 outputs output information of the model trialed by the trial unit 249 to the administrator terminal 300.

 推奨実績記録部245は、開発支援装置200から管理者端末300に推奨されたモデルの推奨実績に関する情報をモデル情報保持部261に記録する。実装実績記録部246は、管理者により採用されて運転制御装置5に実装されたモデルの実装実績に関する情報をモデル情報保持部261に記録する。 The recommended performance recorder 245 records information about the recommended performance of models recommended by the development support device 200 to the administrator terminal 300 in the model information storage unit 261. The implementation performance recorder 246 records information about the implementation performance of models adopted by the administrator and implemented in the operation control device 5 in the model information storage unit 261.

 評価取得部247は、過去に運転制御装置5に実装されたモデルに対する評価を取得する。評価取得部247は、管理者によるモデルに対する評価を管理者端末300から取得してもよい。評価取得部247は、過去にモデルが実装されたプラント設備10の運転の良否に基づいてモデルを評価してもよい。例えば、評価取得部247は、過去にモデルが実装されたプラント設備10の運転において取得されたパラメータの時系列データに基づいて、モデルが実装されたプラント設備10の運転の良否を評価し、モデルの評価を決定してもよい。 The evaluation acquisition unit 247 acquires an evaluation of a model that was previously implemented in the operation control device 5. The evaluation acquisition unit 247 may acquire an evaluation of the model by the administrator from the administrator terminal 300. The evaluation acquisition unit 247 may evaluate the model based on the quality of operation of the plant equipment 10 in which the model was previously implemented. For example, the evaluation acquisition unit 247 may evaluate the quality of operation of the plant equipment 10 in which the model was implemented based on time-series data of parameters acquired during the operation of the plant equipment 10 in which the model was previously implemented, and determine an evaluation of the model.

 推奨度設定部248は、モデルの推奨度を設定し、推奨度保持部252に格納する。推奨度設定部248は、モデル情報保持部261に保持されたモデルの推奨実績又は実装実績に基づいてモデルの推奨度を設定してもよい。例えば、推奨又は実装された回数が多いほど推奨度を高くしてもよい。また、推奨したモデルが実装された確率が高いほど推奨度を高くしてもよい。推奨度設定部248は、評価取得部247により取得されたモデルに対する評価に基づいてモデルの推奨度を設定してもよい。例えば、モデルに対する評価が高いほどモデルの推奨度を高くしてもよい。 The recommendation level setting unit 248 sets the recommendation level of the model and stores it in the recommendation level holding unit 252. The recommendation level setting unit 248 may set the recommendation level of the model based on the recommendation history or implementation history of the model held in the model information holding unit 261. For example, the more times a model has been recommended or implemented, the higher the recommendation level may be. Furthermore, the higher the probability that the recommended model has been implemented, the higher the recommendation level may be. The recommendation level setting unit 248 may set the recommendation level of the model based on the evaluation of the model acquired by the evaluation acquisition unit 247. For example, the higher the evaluation of the model, the higher the recommendation level of the model may be.

 開発支援装置200の運用開始直後は、モデルの推奨実績、実装実績、モデルに対する評価などがまだ蓄積されていないので、手動でモデルの推奨度が設定されてもよい。開発支援装置200を運用していくにつれて、推奨度設定部248は、モデルの推奨実績、実装実績、モデルに対する評価などに合わせてモデルの推奨度を更新する。モデルの推奨度の更新は、モデルを推奨、実装、又は評価を取得したプラント設備の設備識別情報又は前記プラント設備で実行されるプロセスのプロセス識別情報と、モデル推奨時に取得したパラメータ識別情報と、パラメータの時系列データの特徴とに紐づけて行われる。これにより、より現実に即したモデルの推奨度を設定することができるので、モデルを推奨する精度を向上させることができる。 Immediately after the development support device 200 begins operation, the model recommendation level may be set manually, as the model's recommendation track record, implementation track record, model evaluations, etc. have not yet been accumulated. As the development support device 200 continues to operate, the recommendation level setting unit 248 updates the model recommendation level in accordance with the model's recommendation track record, implementation track record, model evaluations, etc. The model recommendation level is updated in association with the equipment identification information of the plant equipment for which the model has been recommended, implemented, or evaluated, or the process identification information of the process executed in the plant equipment, the parameter identification information acquired when the model was recommended, and the characteristics of the parameter time-series data. This makes it possible to set a model recommendation level that is more in line with reality, thereby improving the accuracy of model recommendations.

 図16は、パラメータの時系列データの例を示す。情報取得部241は、複数のパラメータの時系列データを取得してもよい。時系列データ解析部242は、取得されたパラメータの時系列データを解析して、時系列データの態様や傾向を判定する。 Figure 16 shows an example of time series data for parameters. The information acquisition unit 241 may acquire time series data for multiple parameters. The time series data analysis unit 242 analyzes the acquired time series data for the parameters and determines the state and trend of the time series data.

 図17は、開発支援装置200から管理者端末300に提示される画面の例を示す。出力部244は、情報取得部241により取得された設備識別情報、パラメータの時系列データ、選択部243により選択されたモデルの情報、モデルを実装することによる効果が表示された画面を管理者端末300に出力する。モデルを試行するためのボタンが入力されると、試行部249は、情報取得部241により取得されたパラメータの時系列データをモデルに入力して、モデルを試行する。 Figure 17 shows an example of a screen presented from the development support device 200 to the administrator terminal 300. The output unit 244 outputs to the administrator terminal 300 a screen displaying the equipment identification information acquired by the information acquisition unit 241, the time-series data of the parameters, information about the model selected by the selection unit 243, and the effects of implementing the model. When the button for trying out the model is pressed, the trial unit 249 inputs the time-series data of the parameters acquired by the information acquisition unit 241 into the model and tries out the model.

 図18は、開発支援装置200から管理者端末300に提示される画面の例を示す。出力部244は、選択部243により選択されたモデルの構成図と、試行部249による試行結果が表示された画面を管理者端末300に出力する。モデルの実装を要求するためのボタンが入力されると、出力部244は、実装を要求されたモデルの開発工程を構成すべき処理要素を含む処理要素リストをモデル情報保持部261から読み出して管理者端末300に出力する。 Figure 18 shows an example of a screen presented by the development support device 200 to the administrator terminal 300. The output unit 244 outputs to the administrator terminal 300 a screen displaying a configuration diagram of the model selected by the selection unit 243 and the trial results from the trial unit 249. When a button to request implementation of the model is pressed, the output unit 244 reads from the model information storage unit 261 a processing element list including the processing elements that should make up the development process of the model requested to be implemented, and outputs this to the administrator terminal 300.

 本実施の形態の技術によれば、プラント設備10の運転に関する情報に基づいてモデルを選択して推奨するので、プラント設備10を好適に運転するためのモデルを的確に推奨することができる。これにより、プラント設備10の運転効率を向上させることができる。また、モデルの開発に要する費用や労力を大幅に低減させることができる。 The technology of this embodiment selects and recommends a model based on information about the operation of the plant equipment 10, making it possible to accurately recommend a model for optimal operation of the plant equipment 10. This improves the operating efficiency of the plant equipment 10. It also significantly reduces the cost and effort required to develop a model.

 以上、本発明を実施例にもとづいて説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on examples. These examples are merely illustrative, and those skilled in the art will understand that various modifications are possible in the combination of each component and each treatment process, and that such modifications are also within the scope of the present invention.

 第1の実施の形態では、過去に開発されたモデルを構成する処理要素が、予め処理要素保持部131に保持される例について説明した。別の例では、処理要素リスト取得部222が処理要素のリストを取得する際に、過去に開発されたモデルに関する情報が収集されてもよい。この場合も、処理要素保持部131が一時的に生成されてもよい。 In the first embodiment, an example was described in which processing elements constituting a previously developed model are stored in advance in the processing element storage unit 131. In another example, information about previously developed models may be collected when the processing element list acquisition unit 222 acquires a list of processing elements. In this case, the processing element storage unit 131 may also be temporarily generated.

 本発明は、プラント設備の運転に関するモデルの開発を支援する方法、支援装置、及び支援プログラムに利用可能である。 The present invention can be used in a method, device, and program for supporting the development of models related to the operation of plant equipment.

 1 開発支援システム、2 通信網、3 開発装置、4 設計装置、5 運転制御装置、10 プラント設備、100 構築支援装置、101 通信装置、102 表示装置、103 入力装置、120 処理装置、121 情報取得部、122 処理取得部、123 処理分割部、124 処理要素登録部、130 記憶装置、131 処理要素保持部、200 開発支援装置、201 通信装置、202 表示装置、203 入力装置、220 処理装置、221 情報取得部、222 処理要素リスト取得部、223 出力部、224 処理要素決定部、225 処理パラメータ受付部、226 処理順序決定部、227 結合要素受付部、228 処理要素結合部、229 処理要素登録部、230 記憶装置、231 処理要素保持部、241 情報取得部、242 時系列データ解析部、243 選択部、244 出力部、245 推奨実績記録部、246 実装実績記録部、247 評価取得部、248 推奨度設定部、249 試行部、252 推奨度保持部、261 モデル情報保持部、262 推奨度保持部、300 管理者端末。 1 Development support system, 2 Communication network, 3 Development equipment, 4 Design equipment, 5 Operation control device, 10 Plant equipment, 100 Construction support device, 101 Communication device, 102 Display device, 103 Input device, 120 Processing device, 121 Information acquisition unit, 122 Processing acquisition unit, 123 Processing division unit, 124 Processing element registration unit, 130 Storage device, 131 Processing element holding unit, 200 Development support device, 201 Communication device, 202 Display device, 203 Input device, 220 Processing device, 221 Information acquisition unit, 222 Processing element list acquisition unit, 223 Output unit, 224 processing element determination unit, 225 processing parameter reception unit, 226 processing order determination unit, 227 combined element reception unit, 228 processing element combination unit, 229 processing element registration unit, 230 storage device, 231 processing element storage unit, 241 information acquisition unit, 242 time series data analysis unit, 243 selection unit, 244 output unit, 245 recommended performance recording unit, 246 implementation performance recording unit, 247 evaluation acquisition unit, 248 recommendation level setting unit, 249 trial unit, 252 recommendation level storage unit, 261 model information storage unit, 262 recommendation level storage unit, 300 administrator terminal.

Claims (12)

 プラント設備の運転に関するモデルの実装を支援する方法であって、
 前記方法は、プロセッサによって実行され、
 前記プラント設備の設備識別情報又は前記プラント設備で実行されるプロセスのプロセス識別情報を取得することと、
 前記プラント設備の運転において取得されるパラメータのパラメータ識別情報を取得することと、
 前記パラメータの時系列データを取得することと、
 前記設備識別情報又は前記プロセス識別情報と、前記パラメータ識別情報と、前記パラメータの時系列データとに基づいて、前記プラント設備の運転に関する複数のモデルの中から、実装が推奨されるモデルを選択することと、
 選択されたモデルの情報を出力することと、
を含む方法。
1. A method for assisting in the implementation of a model for the operation of a plant facility, comprising:
The method is executed by a processor,
acquiring equipment identification information of the plant equipment or process identification information of a process executed in the plant equipment;
acquiring parameter identification information of parameters acquired during operation of the plant equipment;
acquiring time series data of the parameter;
selecting a model recommended for implementation from among a plurality of models related to the operation of the plant equipment based on the equipment identification information or the process identification information, the parameter identification information, and time-series data of the parameters;
Outputting information about the selected model;
A method comprising:
 実装が推奨されるモデルを選択する際に、前記設備識別情報若しくは前記プロセス識別情報、前記パラメータ識別情報、又は前記パラメータの時系列データの特徴ごとに予め保持された、モデルの実装を推奨すべき度合いを表す推奨度を参照して、実装が推奨されるモデルを選択する
請求項1に記載の方法。
The method according to claim 1, wherein when selecting a model recommended for implementation, the method selects the model recommended for implementation by referring to a recommendation level that indicates a degree to which implementation of the model should be recommended, the recommendation level being stored in advance for each of the equipment identification information or the process identification information, the parameter identification information, or a feature of the time-series data of the parameter.
 前記推奨度は、過去の推奨実績に基づいて決定される
請求項2に記載の方法。
The method according to claim 2 , wherein the recommendation level is determined based on past recommendation performance.
 前記推奨度は、過去の実装実績に基づいて決定される
請求項2に記載の方法。
The method according to claim 2 , wherein the recommendation level is determined based on past implementation results.
 前記推奨度は、過去に実装されたモデルに対する評価に基づいて決定される
請求項2に記載の方法。
The method according to claim 2 , wherein the recommendation level is determined based on evaluations of previously implemented models.
 前記評価は、過去にモデルが実装されたプラント設備の運転の良否に基づいて決定される
請求項5に記載の方法。
The method according to claim 5 , wherein the evaluation is determined based on the quality of operation of plant equipment in which the model has been implemented in the past.
 前記評価は、過去にモデルが実装されたプラント設備の運転において取得されたパラメータの時系列データに基づいて決定される
請求項5に記載の方法。
The method according to claim 5 , wherein the evaluation is determined based on time-series data of parameters acquired during the operation of a plant facility in which the model was implemented in the past.
 選択されたモデルを実装するために必要なデータセットの情報を提示することを更に含む
請求項1に記載の方法。
The method of claim 1 , further comprising presenting information about a dataset required to implement the selected model.
 選択されたモデルに前記パラメータの時系列データを入力したときの前記選択されたモデルからの出力情報を提示することを更に含む
請求項1に記載の方法。
The method of claim 1 , further comprising presenting output information from the selected model when time series data of the parameters is input to the selected model.
 選択されたモデルの開発工程を構成すべき処理要素を含む処理要素リストを出力することを更に含む方法。
請求項1に記載の方法。
The method further includes outputting a processing element list including processing elements that are to constitute the development process of the selected model.
The method of claim 1.
 プラント設備の設備識別情報又は前記プラント設備で実行されるプロセスのプロセス識別情報と、前記プラント設備の運転において取得されるパラメータのパラメータ識別情報と、前記パラメータの時系列データとを取得する情報取得部と、
 前記設備識別情報又は前記プロセス識別情報と、前記パラメータ識別情報と、前記パラメータの時系列データとに基づいて、前記プラント設備の運転に関する複数のモデルの中から、実装が推奨されるモデルを選択する選択部と、
 選択されたモデルの情報を出力する出力部と、
を備える支援装置。
an information acquisition unit that acquires equipment identification information of a plant facility or process identification information of a process executed in the plant facility, parameter identification information of a parameter acquired during operation of the plant facility, and time-series data of the parameter;
a selection unit that selects a model recommended for implementation from among a plurality of models related to the operation of the plant equipment based on the equipment identification information or the process identification information, the parameter identification information, and time-series data of the parameters;
an output unit that outputs information about the selected model;
A support device comprising:
 コンピュータを、
 プラント設備の設備識別情報又は前記プラント設備で実行されるプロセスのプロセス識別情報と、前記プラント設備の運転において取得されるパラメータのパラメータ識別情報と、前記パラメータの時系列データとを取得する情報取得部と、
 前記設備識別情報又は前記プロセス識別情報と、前記パラメータ識別情報と、前記パラメータの時系列データとに基づいて、前記プラント設備の運転に関する複数のモデルの中から、実装が推奨されるモデルを選択する選択部と、
 選択されたモデルの情報を出力する出力部と、
として機能させるための支援プログラム。
Computer,
an information acquisition unit that acquires equipment identification information of a plant facility or process identification information of a process executed in the plant facility, parameter identification information of a parameter acquired during operation of the plant facility, and time-series data of the parameter;
a selection unit that selects a model recommended for implementation from among a plurality of models related to the operation of the plant equipment based on the equipment identification information or the process identification information, the parameter identification information, and time-series data of the parameters;
an output unit that outputs information about the selected model;
A support program to help it function as a
PCT/JP2025/000926 2024-01-24 2025-01-15 Support method, support device, and support program Pending WO2025158965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2024008853A JP2025114261A (en) 2024-01-24 2024-01-24 Support method, support device, and support program
JP2024-008853 2024-01-24

Publications (1)

Publication Number Publication Date
WO2025158965A1 true WO2025158965A1 (en) 2025-07-31

Family

ID=96545254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2025/000926 Pending WO2025158965A1 (en) 2024-01-24 2025-01-15 Support method, support device, and support program

Country Status (2)

Country Link
JP (1) JP2025114261A (en)
WO (1) WO2025158965A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304211A (en) * 2001-04-06 2002-10-18 Nkk Corp Plant operation support method and program therefor
US20220147672A1 (en) * 2019-05-17 2022-05-12 Tata Consultancy Services Limited Method and system for adaptive learning of models for manufacturing systems
WO2023209789A1 (en) * 2022-04-26 2023-11-02 日本電気株式会社 Plant management device, plant management method, and computer-readable storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304211A (en) * 2001-04-06 2002-10-18 Nkk Corp Plant operation support method and program therefor
US20220147672A1 (en) * 2019-05-17 2022-05-12 Tata Consultancy Services Limited Method and system for adaptive learning of models for manufacturing systems
WO2023209789A1 (en) * 2022-04-26 2023-11-02 日本電気株式会社 Plant management device, plant management method, and computer-readable storage medium

Also Published As

Publication number Publication date
JP2025114261A (en) 2025-08-05

Similar Documents

Publication Publication Date Title
US10360517B2 (en) Distributed hyperparameter tuning system for machine learning
Testi et al. MLOps: A taxonomy and a methodology
Li et al. A snail shell process model for knowledge discovery via data analytics
US10963802B1 (en) Distributed decision variable tuning system for machine learning
EP3404593A1 (en) Method and system for data based optimization of performance indicators in process and manufacturing industries
US11501201B2 (en) Systems, methods, and apparatuses for training, storage, and interaction with machine learning models
CN110188910A (en) The method and system of on-line prediction service are provided using machine learning model
JP2023537766A (en) Systems and methods for automated data science processes
US20230140696A1 (en) Method and system for optimizing parameter intervals of manufacturing processes based on prediction intervals
Biller et al. Simulation: The critical technology in digital twin development
CN113641525A (en) Variable anomaly repair method, apparatus, medium and computer program product
JPWO2018079225A1 (en) Automatic prediction system, automatic prediction method, and automatic prediction program
Sakhrawi et al. Support vector regression for enhancement effort prediction of Scrum projects from COSMIC functional size
CN118536942A (en) Construction method of ultrasonic education system based on machine learning
Saqr et al. Automating individualized machine learning and AI prediction using AutoML: the case of idiographic predictions
Hoffmann et al. Improving automated hyperparameter optimization with case-based reasoning
Han et al. Data Framework Design of EDISON 2.0 Digital Platform for Convergence Research.
CN111274480B (en) Feature combination method and device for content recommendation
Panjwani et al. Predictive modeling for cell culture in commercial manufacturing of biotherapeutics
WO2025158965A1 (en) Support method, support device, and support program
US20230213897A1 (en) Information processing device, information processing method, and computer program product
JP2023042857A (en) Information processing device, information processing method, program, and model generation method
Mione et al. Managing experimental-computational workflows in robotic platforms using directed acyclic graphs
WO2025027756A1 (en) Support method, support device, support program, and method for constructing development support system
JP7506208B1 (en) Information processing device, information processing method, and information processing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 25744895

Country of ref document: EP

Kind code of ref document: A1