[go: up one dir, main page]

WO2025158668A1 - Recipe creation device and recipe creation tool integration device - Google Patents

Recipe creation device and recipe creation tool integration device

Info

Publication number
WO2025158668A1
WO2025158668A1 PCT/JP2024/002514 JP2024002514W WO2025158668A1 WO 2025158668 A1 WO2025158668 A1 WO 2025158668A1 JP 2024002514 W JP2024002514 W JP 2024002514W WO 2025158668 A1 WO2025158668 A1 WO 2025158668A1
Authority
WO
WIPO (PCT)
Prior art keywords
recipe
image
image data
image classification
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2024/002514
Other languages
French (fr)
Japanese (ja)
Inventor
安彦 杉垣
晋 小山
宗行 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Priority to PCT/JP2024/002514 priority Critical patent/WO2025158668A1/en
Priority to TW113150204A priority patent/TW202531418A/en
Publication of WO2025158668A1 publication Critical patent/WO2025158668A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • This disclosure relates to a recipe creation device that creates recipes for automatic inspection or automatic measurement of semiconductor devices, etc., and a recipe creation tool integration device that integrates recipe creation tools created by the recipe creation device.
  • Semiconductor device production lines are equipped with review SEMs (Scanning Electron Microscopes), which review defects based on coordinate information of defects detected by optical inspection equipment, and critical dimension SEMs (Critical Dimension-SEMs), which measure the dimensions of patterns, and are used for detailed inspection of these defects and measurement of patterns.
  • SEMs Sccanning Electron Microscopes
  • Critical Dimension-SEMs Critical Dimension-SEMs
  • the desired image quality differs depending on, for example, whether it is desired to inspect the edge or flat surface of the circuit pattern image captured in the SEM image. For this reason, workers need to rely on their experience to adjust the numerous parameters that affect the image quality of the circuit pattern image each time they perform inspection or measurement.
  • Patent Document 1 discloses technology that improves the efficiency of such parameter adjustment (recipe development).
  • the image data contained in recipes contains the user's IP (Intellectual Property, hereafter referred to as User IP), such as circuit layout information, making it difficult for anyone other than the user to share it.
  • IP Intelligent Property
  • a recipe creation device acquires image data of a circuit pattern on a wafer using a charged particle beam device, and creates a recipe for automatically inspecting or measuring the circuit pattern from the image data.
  • the recipe creation device includes an image classification execution unit that uses an image classification model to determine an image classification code for first image data acquired by the charged particle beam device according to a first initial recipe including default conditions, a cryptography conversion unit that converts the image classification code of the first image data into a first cryptography code using a non-reversible cryptography method, and a recipe search unit that compares the first cryptography code with a recipe database to extract a recommended recipe.
  • the image classification model is trained using training image data, and the training image data is image data acquired by the charged particle beam device according to a second initial recipe.
  • the second initial recipe is a recipe obtained by modifying an existing recipe created for a specified inspection or measurement to include default conditions.
  • the recipe database registers the cryptography code obtained by converting the image classification code using the cryptography conversion unit, and a recommended recipe obtained by removing unique information from an existing recipe for the training image data classified with the image classification code.
  • FIG. 1 is a diagram illustrating an overview of a semiconductor inspection system.
  • 1 is an example of a hardware configuration of an information processing device (computer).
  • 1 is a flowchart of an inspection performed by a semiconductor inspection system.
  • 1 shows a conventional inspection recipe creation flow.
  • 10 is an example of a recipe creation screen.
  • FIG. 10 is a functional block diagram of the recipe creation device (operation phase).
  • 1 is a flowchart showing an inspection recipe creation flow according to the first embodiment;
  • 10 is an example of a recipe creation screen in the first embodiment.
  • FIG. 10 is a diagram illustrating an image classification process.
  • FIG. 10 is a diagram illustrating an image classification process.
  • 1 is an example of a data structure of a recipe database.
  • FIG. 10 is a functional block diagram of a recipe creation device (preparation phase).
  • FIG. 10 is a flow chart showing a process for creating an image classification database and a recipe database according to the first embodiment; 10 is an example of a learning screen according to the first embodiment.
  • FIG. 2 is a functional block diagram of the recipe creation device.
  • FIG. 1 illustrates a network connection of multiple semiconductor inspection systems and recipe creation tool integration devices.
  • FIG. 2 is a functional block diagram of a recipe creation tool integration device.
  • 10 is an example of an associative learning screen according to the second embodiment.
  • 13 is an example of a recipe creation tool update screen according to the second embodiment.
  • FIG. 10 is a diagram for explaining version management of a recipe creation tool.
  • FIG. 1A is a diagram showing an overview of a semiconductor inspection system, which is an example of a system for inspecting or measuring wafers according to the present disclosure.
  • the semiconductor inspection system 801 acquires image data of a circuit pattern on a wafer and analyzes the acquired image data to inspect the circuit pattern.
  • the semiconductor inspection system 801 has an imaging unit 101, a control unit 120, and a recipe creation device 130.
  • the imaging unit 101 and control unit 120 constitute a charged particle beam device that acquires image data and performs inspection; here, an example is shown in which a scanning electron microscope (SEM) is used. Note that semiconductor measurement systems that measure circuit patterns have a similar configuration.
  • the object to be inspected is not limited to semiconductor wafers.
  • a primary electron beam 105 emitted from an electron source 102 is accelerated by an acceleration electrode 103 to a desired acceleration voltage value and irradiated onto a sample 109 such as a wafer.
  • the control unit 120 controls the tilt deflector 107 with a control signal 113, tilting the primary electron beam 105 to irradiate the sample 109.
  • methods for photographing the side walls of a circuit pattern also include tilting the stage 110 (stage control).
  • Irradiation with the primary electron beam 105 causes secondary electrons (SE) and backscattered electrons (BSE) to be emitted from the sample 109 as signal electrons.
  • SE secondary electrons
  • BSE backscattered electrons
  • the SEs are detected by the SE detector 112
  • the BSEs are detected by the BSE detector 108, and are converted into a digital signal 114 by the A/D converter 111.
  • the digital signal 114 is input to the control unit 120 and stored in the memory 122.
  • a CPU Central Processing Unit
  • image processing hardware 123 perform image processing according to the purpose, and the circuit pattern on the wafer is inspected.
  • image processing hardware 123 include an ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), and GPU (Graphical Processing Unit).
  • the recipe creation device 130 is a device that creates an inspection recipe that defines these parameters in accordance with the circuit pattern to be inspected.
  • the recipe creation device 130 is realized by an information processing device (computer) 10, which primarily includes a processor (CPU) 11, memory 12, storage device 13, input interface (I/F) 14, output I/F 15, communication I/F 16, and bus 17, as shown in FIG. 1B.
  • the processor 11 functions as a functional unit that provides specified functions by executing processes according to programs loaded into memory 12.
  • the storage device 13 stores data and programs used by the functional unit.
  • the input I/F 14 is connected to input devices such as a keyboard, pointing device, and operation panel, and the output I/F 15 is connected to a display device.
  • the communication device I/F 16 enables communication with other information processing devices via a network. These are connected to each other via bus 17 so that they can communicate with each other.
  • the recipe creation device 130 does not have to be realized by a single information processing device, but may be realized by multiple information processing devices. It may also be virtualized. Furthermore, some or all of the functions of the recipe creation device 130 may be realized as a cloud application.
  • the program or functional units may be described as the main focus, but the main focus of the hardware in these cases is a processor, or an information processing device comprising such a processor.
  • the information processing device executes processing in accordance with a program read into memory, using resources such as memory and communication interfaces as appropriate through the processor.
  • Figure 1B shows an example of a CPU as the processor, a GPU or the like may also be used.
  • the processing to realize a function is not limited to software program processing, but can also be implemented using dedicated circuits. Dedicated circuits such as FPGAs and ASICs can be used.
  • FIG. 2 is a flowchart of the inspection of sample 109 performed by semiconductor inspection system 801.
  • Sample 109 is placed on imaging unit 101, and the inspection flow begins.
  • the recipe creation device 130 performs imaging condition setting S01, which sets imaging conditions such as the number of imaging frames and scan direction and acquires a template image for alignment, and inspection condition setting S02, which sets inspection conditions related to the inspection location and inspection detection function.
  • the various parameter values set by imaging condition setting S01 and inspection condition setting S02, and the template image for alignment, are called an inspection recipe.
  • the inspection recipe created by recipe creation device 130 is sent to control unit 120, which then performs wafer imaging S03 and inspection S04 in accordance with the inspection recipe.
  • the wafer is imaged to acquire a circuit pattern image, and defect locations are identified from the circuit pattern image.
  • inspection result output S05 is performed.
  • the identified defect locations are displayed on the GUI of control unit 120 together with image information and brightness information. In this way, an inspection recipe is created and the semiconductor inspection system operates according to the inspection recipe, making it possible to automatically inspect wafers one after another as they flow down the production line.
  • FIG. 3A shows a conventional inspection recipe creation flow
  • FIG. 3B shows a GUI for creating an inspection recipe using the flow of FIG. 3A.
  • This GUI is displayed on the display device of the recipe creation device 130.
  • the name of the recipe to be created is specified in the recipe name specification section 201 on the recipe creation screen 200, and then creation of the inspection recipe begins.
  • an imaging position setting S11 is performed to set the position to be inspected on the sample, and a template image for alignment is acquired.
  • the template image includes an OM template image for rough alignment at low magnification using an optical microscope, and an SEM template image for precise alignment at high magnification using an electron microscope.
  • the OM alignment adjustment section 202 sets the acquisition conditions for the OM template image, and the set acquisition conditions are sent to the control section 120.
  • the desired OM template image is acquired by the optical microscope (not shown) of the imaging section 101.
  • the SEM alignment adjustment section 203 sets the acquisition conditions for the SEM template image, and the set acquisition conditions are sent to the control section 120.
  • the desired SEM template image is acquired by the imaging section 101.
  • the optical conditions for imaging are optical conditions set in the imaging unit 101, such as the scan speed, scan direction, and number of frames, for acquiring a circuit pattern image for inspection. These are set in the SEM imaging parameter setting section 206 on the recipe creation screen 200.
  • the optical conditions for imaging (imaging parameters) may be set as numerical values or as a selected mode.
  • the set optical conditions for imaging are sent to the control unit 120, and the imaging unit 101 performs wafer imaging (S13).
  • the captured circuit pattern image is then sent to the recipe creation device 130.
  • the operator creating the inspection recipe visually checks the image quality of the circuit pattern image displayed on the display device (S14) and determines whether it is satisfactory for the image quality to be used in inspection. If the image quality is determined to be insufficient, the process returns to the optical conditions for imaging (S12) and repeats steps S12 to S14 until a circuit pattern image with satisfactory image quality is obtained.
  • inspection condition setting S15 where inspection parameters such as the inspection location, inspection method, and defect detection accuracy are set.
  • the inspection location is selected by selecting from a coordinate list that lists the coordinates of the inspection location in the inspection location designation section 204 on the recipe creation screen 200.
  • Inspection parameters are selected in the defect detection function selection section 205 on the recipe creation screen 200.
  • the set optical conditions for imaging (imaging parameters) and inspection conditions (inspection parameters) are sent to the control unit 120, which then performs inspection S16 and obtains inspection results such as defect locations and defect features from the circuit pattern image.
  • the operator visually confirms the inspection results obtained in the inspection S16, and returns to the imaging optical condition setting S12, repeating steps S12 to S17, until the expected results are achieved.
  • image quality improvement condition setting S18 In the semiconductor inspection system 801, an operator visually classifies defects from an improved image obtained by improving the image quality of a circuit pattern image. For this reason, it is desirable to improve the image quality of the circuit pattern image by adjusting the image quality so that the characteristics of the defects are clearly expressed.
  • the image quality improvement conditions for the circuit pattern image are set in the image quality adjustment parameter adjustment unit 207 on the recipe creation screen 200.
  • the set image quality improvement conditions are sent to the control unit 120, which then executes image quality improvement processing S19 for the circuit pattern image. Note that in this disclosure, the image quality improvement conditions are also treated as part of the inspection conditions (inspection parameters).
  • the worker visually checks the improved image obtained in the image quality improvement process S19, and returns to image quality improvement condition setting S18 and repeats steps S18 to S20 until the worker is satisfied with the image quality.
  • a slide bar is used to adjust the parameters in the image quality adjustment parameter adjustment unit 207 so that the worker can improve the image quality intuitively.
  • the recipe creation device 130 of this embodiment is capable of extracting existing usable inspection recipe data based on image data acquired under predetermined default conditions and keywords attached to the image data, significantly reducing the time required for recipe creation work.
  • the image data required for recipe creation is confidential information that contains circuit patterns, and it is necessary to prevent such information related to user IP from leaking to the outside.
  • the recipe creation device 130 of this embodiment conceals image classification data that indicates the tendency of the image data through encryption, and also deletes user-specific information from existing inspection recipes registered in the recipe database.
  • the functions of the recipe creation device 130 will be explained separately for the operation phase in which inspection recipes are created, and the preparation phase in which the image classification database and recipe database required for the operation phase are created.
  • Fig. 4 shows a functional block diagram of the recipe creation device 130 (operation phase) of this embodiment
  • Fig. 5 shows the inspection recipe creation flow of this embodiment
  • Fig. 6 shows a GUI for creating an inspection recipe according to the flow of Fig. 5.
  • Fig. 5 shows an extracted flow characteristic of this embodiment in the inspection recipe creation flow, and in order to explain the overall picture of the inspection recipe creation of this embodiment, the description will be made with appropriate reference to the inspection recipe creation flow of Fig. 3A.
  • the GUI shown in Figure 6 is displayed on the display device of the recipe creation device 130.
  • the name of the recipe to be created is specified in the recipe name specification section 201 on the recipe creation screen 200a, and when the AI proposal acquisition button 211 is pressed at this time, creation of an inspection recipe according to this embodiment begins.
  • imaging position setting S11 is performed in the same manner as in the conventional method (see Figure 3A).
  • the keyword specification unit 401 then receives a keyword specification S31 from the AI proposal specification unit 212 on the recipe creation screen 200a.
  • Keywords are not limited to specific content, but it is desirable that they be set so that words indicating the direction of the image quality improvement process can be selected. Even for the same circuit pattern image, the image quality that prominently expresses the features of a defect differs depending on whether the inspection position is on an edge portion or a flat portion.
  • the AI proposal specification unit 212 displays a keyword group 213, allowing the operator to select keywords that indicate features that interest them. Keywords may include general words that indicate image features, as well as words that indicate user-specific image features.
  • the recipe adjustment unit 409 specifies the inspection location in response to the operator's selection from the coordinate list in the inspection location designation unit 204 on the recipe creation screen 200a, and creates an initial recipe in which other imaging parameters and inspection parameters are set to predetermined default conditions.
  • the "other imaging parameters and inspection parameters" are parameters set in the defect detection function selection unit 205, SEM imaging parameter setting unit 206, and image quality adjustment parameter adjustment unit 207 on the recipe creation screen 200a.
  • the recipe adjustment unit 409 sends the initial recipe created in this manner to the control unit 120.
  • the control unit 120 acquires a circuit pattern image using the imaging unit 101 in accordance with the initial recipe and sends it to the recipe creation device 130 (S32). Note that the circuit pattern image acquired at this time does not need to be for all inspection locations in the coordinate list, and it is sufficient to acquire one or a small number of circuit pattern images.
  • the image classification execution unit 403 performs image classification S33 on the circuit pattern image based on the specified keywords and the acquired initial recipe using the image classification model 140.
  • the image classification S33 process will be explained using Figures 7A and 7B.
  • Figure 7A shows the image classification space formed by the image classification model 140 to classify images
  • Figure 7B shows in tabular form the classification results of training image data (circuit pattern images) using the image classification space.
  • the image classification space 300 is an n-dimensional space in which circuit pattern images are positioned, although a three-dimensional space is shown here for simplicity's sake. Circles indicate the coordinates of images positioned in the image classification space 300.
  • the coordinate axes corresponding to each dimension are features extracted from the circuit pattern image or keywords.
  • Features extracted from circuit pattern images include the intensity of high-frequency fluctuations in brightness that reflect the state of the edge, and the intensity of low-frequency fluctuations in brightness that reflect the state of the background.
  • Features extracted from keywords include combination patterns of selected keywords.
  • the number of dimensions n of image classification space 300 and the n-dimensional coordinate axes are defined, and training is performed using, as learning image data, circuit pattern images captured using an initial recipe created by semiconductor inspection system 801 by applying the above-mentioned default conditions to an existing recipe previously created in image classification space 300, to obtain image classification model 140 that classifies multiple circuit pattern images that are similar to each other into image groups.
  • "similar" means that they are located nearby in image classification space 300.
  • Image groups 301 to 303 shown in Figure 7A correspond to image classification codes 1 to 3 shown in Figure 7B, respectively.
  • the image classification execution unit 403 inputs the circuit pattern image according to the specified keyword and the acquired initial recipe into the image classification model 140 and infers which image group it will be classified into.
  • the inference process corresponds to the following process, for example:
  • the coordinates of the acquired circuit pattern image in the image classification space 300 are calculated, and it is assumed that these coordinates are coordinates 311 shown in Figure 7A.
  • the image group closest to coordinates 311 is image group 303 with image classification code "3,” so the image classification code "3" is output as the image classification result.
  • the image classification codes of multiple image groups may be output. In that case, it is advisable to add a priority order or classification certainty according to the distance from coordinates 311 before outputting.
  • the image classification code (“3" in this example) is transferred from the image classification execution unit 403 to the encryption conversion unit 405, which then performs encryption code calculation S34 based on the image classification code.
  • the encryption conversion unit 405 uses a non-reversible encryption method.
  • a cryptographic hash function is adopted, and the encryption code is also called a hash value.
  • the algorithm used should be one that was published after SHA-224, such as SHA-224, SHA-256, SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-512, Tiger(2)-192/140128, Whirlpool, MINMAX, RIPEMD-128/256, or RIPEMD-140320.
  • a cryptographic hash function is a hash function with cryptographic mathematical properties suitable for information security applications such as encryption, converting an input of any length into an output of a fixed length.
  • the original image classification code cannot be determined from the hash value. For this reason, even if the user's IP address or a related name is actually used as the image classification code to make it easier for the worker creating the recipe to understand, this information will not be leaked to the outside.
  • the encryption code calculated by the encryption conversion unit 405 is transferred to the recipe search unit 407, which compares it with the recipe database 150 to extract a recommended recipe (S35).
  • Figure 8 shows the data structure of the recipe database 150.
  • the hash value of the image classification code is registered in the encryption code 151
  • the recipe name 152 is registered with the recipe name of the inspection recipe created for inspecting the circuit pattern image included in that image classification code
  • the pure recipe 153 is registered with the contents of the inspection recipe corresponding to that recipe name.
  • the contents of the inspection recipe registered in the pure recipe 153 are the inspection recipe minus the unique information related to the user IP (hereinafter referred to as unique information), and are referred to as the pure recipe hereinafter.
  • unique information the unique information related to the user IP
  • the parameters set in the defect detection function selection unit 205, SEM imaging parameter setting unit 206, and image quality adjustment parameter adjustment unit 207 on the recipe creation screen 200 correspond to the contents registered as a pure recipe.
  • the recipe adjustment unit 409 creates a trial recipe by replacing the default conditions set as the initial recipe with the optical conditions for imaging and the inspection conditions specified in the pure recipe of the extracted recommended recipe.
  • the recipe adjustment unit 409 sends the trial recipe created in this way to the control unit 120.
  • the control unit 120 performs an inspection trial (S36) according to the trial recipe.
  • the trial results are confirmed (S37), and if the expected results are obtained, the trial recipe is selected as the inspection recipe.
  • parameters are adjusted from the optical conditions for imaging (S12) according to the flow of Figure 3A until the expected results are achieved. If the expected results are obtained, the trial recipe with the adjusted parameters is selected as the inspection recipe.
  • the new recipe storage unit 411 stores the selected inspection recipe (S21). Note that if multiple recommended recipes are available, multiple trial recipes can be created based on each recommended recipe, and the operator can select the trial recipe that produces the best trial results and adjust its parameters as necessary.
  • irreversible encryption methods are not limited to cryptographic hash functions; lossy compression functions can also be used.
  • lossy compression function When a lossy compression function is used, the encryption code is a compressed code, and the hash value is converted to the compressed code.
  • the trial recipe be determined as the inspection recipe as is, but even in cases where parameter adjustment is required, adjustments can be started from parameters that already provide relatively good image quality, making it possible to create an inspection recipe more quickly than conventional recipe creation methods that require adjustments from scratch.
  • FIG. 9 shows a functional block diagram of the recipe creation device 130 (preparation phase) of this embodiment
  • FIG. 10 shows the flow of creating an image classification database and a recipe database
  • FIG. 11 shows a GUI for creating an image classification database in the flow of FIG.
  • the GUI shown in Figure 11 is displayed on the display device of the recipe creation device 130.
  • the learning target designation section 501 of the learning screen 500 settings are made to acquire circuit pattern images to be registered in the image classification model 140 (see Figure 7B).
  • an inspection recipe is designated (S41). Below, an example is described in which an existing inspection recipe is designated and the preparation phase is executed, but the preparation phase may also be executed in parallel with the creation of a new inspection recipe as shown in Figure 3A.
  • the keyword designation unit 401 then receives a keyword designation S42 from the feature of interest designation unit 504 on the learning screen 500.
  • the keyword group 505 selectable in the feature of interest designation unit 504 is the same as the keyword group 213 selectable in the AI proposal designation unit 212 on the recipe creation screen 200a.
  • the circuit pattern image used for training the image classification model 140 is a circuit pattern image acquired according to an initial recipe in which the imaging parameters and inspection parameters of the inspection recipe have been replaced with predetermined default conditions. These default conditions are the same as the default conditions of the initial recipe created in the operation phase. If the operator selects the acquisition method "Execute initial recipe and capture image" in the learning image data acquisition section 503 of the learning screen 500, the recipe adjustment section 409 creates an initial recipe by replacing part of the specified inspection recipe with the default conditions. The recipe adjustment section 409 sends the initial recipe created in this manner to the control unit 120.
  • the control unit 120 acquires a circuit pattern image using the imaging unit 101 in accordance with the initial recipe and sends it to the recipe creation device 130 (S43). Note that if a circuit pattern image has already been captured according to the initial recipe, the operator selects "Existing Image" in the learning image data acquisition section 503 of the learning screen 500 and inputs the data path in which the image is saved.
  • the image classification learning unit 413 can acquire the circuit pattern image by accessing the input data path. If learning image data is to be added (Yes in S44), the process repeats from step S41. If learning image data is not to be added (No in S44), the process proceeds to step S45.
  • the image classification learning unit 413 trains the image classification model 140 using the training image data (S45). For example, by projecting each circuit pattern image into an n-dimensional image classification space based on features extracted from the acquired circuit pattern image and specified keywords, multiple similar circuit pattern images are classified into image groups.
  • Methods that can be applied to image classification include the K-means algorithm, mixed normal distribution, Ward's method, centroid method, shortest (longest) distance method, group average method, and the Support Vector Machine, a pattern recognition model using supervised learning.
  • methods such as image classification using deep learning or deep learning networks such as ChatGPT, which apply transformer technology, may be used without obtaining features.
  • the worker sets the parameters required for training the image classification model 140 in the learning control parameter setting unit 511.
  • the learning progress display section 521 of the learning screen 500 may display the image classification space 300, and may display the projection status of the circuit pattern images into the image classification space 300 and the classification status of the circuit pattern images.
  • the image classification learning section 413 assigns image classification codes (labels) that uniquely identify the classified image groups. For example, image classification codes 1 to 3 are assigned to the image groups 301 to 303 shown in FIG. 11.
  • the image classification code (“1" to "3" in this example) set by the image classification learning unit 413 is transferred from the image classification learning unit 413 to the encryption conversion unit 405, which then performs encryption code calculation S46 based on the image classification code.
  • the recipe adjustment unit 409 deletes the unique information from the inspection recipe specified in step S41 and creates a pure recipe (S47).
  • the recipe registration unit 417 creates the recipe database 150 (see Figure 8) using the image classification model 140, the encryption code obtained in step S46, and the pure recipe obtained in step S47. Specifically, it identifies which existing inspection recipe's initial recipe the circuit pattern image included in the image group with image classification code 1 was acquired from, identifies the recipe name 152 corresponding to the encrypted code with the registered hash value of the image classification code, and registers that pure recipe, thereby constructing and registering the recipe database 150 (S48).
  • the original image classification code cannot be determined from the hash value. For this reason, even if a name related to the user IP address is actually used as the image classification code to make it easier for the worker creating the recipe to understand, this information will not be leaked to the outside.
  • Fig. 12 corresponds to a functional block diagram that integrates the functional block diagram of the recipe creation device 130 (operation phase) shown in Fig. 4 and the functional block diagram of the recipe creation device 130 (preparation phase) shown in Fig. 9.
  • the actions between the functional blocks in the operation phase are indicated by solid lines, and the actions between the functional blocks in the preparation phase are indicated by dashed lines.
  • the image classification model 140 and recipe database 150 can be updated by carrying out the above-described preparation phase and performing additional learning on the newly created inspection recipe.
  • Example 2 multiple semiconductor inspection systems 801 integrate the image classification models 140 and recipe databases 150 created by each semiconductor inspection system 801 via network 802 to create an integrated image classification model 812 and an integrated recipe database 813.
  • information related to a user IP is kept under confidential information management by the user and is not permitted to be taken outside the factory, for example.
  • the output of the image classification model 140 is converted into an encrypted code, and the image classification code is converted into an encrypted code and registered in the recipe database 150, so that user IP information can be taken outside in a form that does not leak to the outside.
  • the high confidentiality of the method disclosed herein is utilized to integrate the image classification models created by multiple semiconductor inspection systems 801 to create an integrated image classification model.
  • Figure 13A shows three semiconductor inspection systems 801a-c and a recipe creation tool integration device 803 connected via a network 802.
  • semiconductor inspection systems 801a-b are semiconductor inspection systems located on different production lines in the same factory (FabXX)
  • semiconductor inspection system 801c is a semiconductor inspection system located on a production line in a different factory (FabAA).
  • Figure 13B also shows a functional block diagram of recipe creation tool integration device 803.
  • Recipe creation tool integration device 803 is also realized by information processing device (computer) 10 shown in Figure 1B. Some or all of the functions of recipe creation tool integration device 803 may be realized as a cloud application.
  • the integration unit 811 creates an integrated image classification model 812 by performing federated learning on the image classification models 140 created by each of the recipe creation devices 130 of the semiconductor inspection systems 801a-c.
  • the recipe creation tool integration device 803 can create an integrated image classification model by acquiring the image classification models 140 and performing federated learning without sending highly confidential information, such as learning image data used to train the image classification models 140, to the recipe creation tool integration device 803, which is an external device.
  • the integration unit 811 integrates multiple image classification spaces through federated learning and creates an integrated recipe database 813 by integrating the recipe databases 150 created by each recipe creation device 130. This allows the recipe creation tools built by each of the multiple semiconductor inspection systems to be consolidated into one, integrating the knowledge and experience of engineers.
  • Figure 14 shows a GUI for causing the integration unit 811 to perform associative learning.
  • the GUI shown in Figure 14 is displayed on the display device of the recipe creation tool integration device 803.
  • the semiconductor inspection system to be the target of associative learning is specified.
  • a list 604 of semiconductor inspection systems accessible by the recipe creation tool integration device 803 is displayed in the associative learning target selection section 603.
  • the operator specifies the semiconductor inspection system for which associative learning is to be performed and presses the start learning button 605 to start associative learning.
  • the operator sets the parameters required for associative learning in the associative learning control parameter setting section 611. It is also recommended that the progress of associative learning be displayed in the learning progress display section 621 of the associative learning screen 600.
  • the integrated image classification model 812 and integrated recipe database 813 created by the recipe creation tool integration device 803 are transmitted via the network 802 to the recipe creation devices 130 of the semiconductor inspection systems 801a-c, where they are used as the image classification model 140 and recipe database 150.
  • Figure 15A shows a GUI used by the recipe creation device 130 of each semiconductor inspection system 801 to update the recipe creation tool (image classification model and recipe database) to the recipe creation tool (integrated image classification model and integrated recipe database) created by the recipe creation tool integration device 803.
  • the GUI shown in Figure 15A is displayed on the display device of the recipe creation device 130. Since the original image classification model and recipe database differ for each integrated image classification model and integrated recipe database, version management is performed by the integration management database 815 of the integration unit 811.
  • version management is performed using the creation date as a key.
  • the key for version management is not limited to creation timing, and for example, search may be possible from multiple perspectives.
  • the worker updates the recipe creation tool using the recipe creation tool update screen 700.
  • a data path is specified in the AI component path specification section 701
  • version management information from the integrated management database 815 is read, and a version list 703 is displayed in the federated learning target selection section 702.
  • the update of the recipe creation tool in the recipe creation device 130 begins.
  • the present disclosure is not limited to the above-described embodiments, but includes various modifications.
  • the above-described embodiments have been described in detail to make the present disclosure easier to understand, and are not necessarily limited to those including all of the configurations described.
  • it is possible to replace part of the configuration of one embodiment or modification with the configuration of another embodiment or modification and it is also possible to add the configuration of another embodiment or modification to the configuration of one embodiment or modification.
  • 10 Information processing device (computer), 11: Processor (CPU), 12: Memory, 13: Storage device, 14: Input interface, 15: Output interface, 16: Communication interface, 17: Bus, 101: Imaging unit, 102: Electron source, 103: Acceleration electrode, 105: Primary electron beam, 107: Tilt deflector, 108: BSE detector, 109: Sample, 110: Stage, 111: A/D converter, 112: SE detector, 113: Control signal, 114: Digital signal, 120: Control unit, 121: CPU, 122: Memory, 123: Image processing hardware hardware, 130: recipe creation device, 140: image classification model, 150: recipe database, 151: encryption code, 152: recipe name, 153: pure recipe, 200: recipe creation screen, 201: recipe name specification section, 202: OM alignment adjustment section, 203: SEM alignment adjustment section, 204: inspection location specification section, 205: defect detection function selection section, 206: SEM imaging parameter setting section, 207: image quality adjustment parameter adjustment section, 211:

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

The present invention relates to a recipe creation device 130 for creating a recipe for causing a system that performs inspection or measurement to automatically perform inspection or measurement. The recipe creation device 130 includes: an image classification execution unit 403 that obtains an image classification code of first image data by using an image classification model 140; a cryptographic conversion unit 405 that converts the image classification code of the first image data into a first cryptographic code by using an irreversible cryptographic method; and a recipe search unit 407 that extracts a recommended recipe by collating the first cryptographic code with a recipe database 150. The image classification model has been trained with training image data, and the first image data and the training image data have been acquired under the same default conditions. Furthermore, the recipe database has registered therein: cryptographic codes obtained by converting image classification codes by using the cryptographic method in the cryptographic conversion unit; and recommended recipes obtained by deleting unique information from existing recipes for training image data classified into the image classification codes.

Description

レシピ作成装置及びレシピ作成ツール統合装置Recipe creation device and recipe creation tool integration device

 本開示は、半導体デバイスなどの自動検査または自動計測用のレシピを作成するレシピ作成装置、及びレシピ作成装置が作成したレシピ作成ツールを統合するレシピ作成ツール統合装置に関する。 This disclosure relates to a recipe creation device that creates recipes for automatic inspection or automatic measurement of semiconductor devices, etc., and a recipe creation tool integration device that integrates recipe creation tools created by the recipe creation device.

 近年の半導体デバイスは微細化と多層化が進み、その製造工程は極めて複雑なものとなっている。このため、半導体デバイスの生産ラインの歩留まりを向上させ、安定的に運用するためには、製造プロセスに起因する欠陥を迅速かつ正確に検査することが重要になってくる。 In recent years, semiconductor devices have become increasingly miniaturized and multi-layered, making their manufacturing processes extremely complex. For this reason, in order to improve the yield of semiconductor device production lines and ensure stable operation, it is important to be able to quickly and accurately inspect for defects caused by the manufacturing process.

 半導体デバイスの生産ラインには、光学式検査装置等で検出された欠陥の座標情報に基づいて欠陥をレビューするレビューSEM(Scanning Electron Microscope)や、パターンの寸法を測定する測長SEM(Critical Dimension-SEM)が配置され、これら欠陥の詳細な検査やパターンの計測に用いられる。検査や計測を精度よく行うためには、好ましい画質でのSEM画像を取得する必要がある。好ましい画質は、SEM画像に写った回路パターン画像について、例えばエッジ部分を検査したいのか、あるいは平面部分を検査したいのかによっても異なる。このため、作業員は、検査あるいは計測の度に、経験を頼りに回路パターン画像の画質を左右する多数のパラメータを調整することが必要になる。 Semiconductor device production lines are equipped with review SEMs (Scanning Electron Microscopes), which review defects based on coordinate information of defects detected by optical inspection equipment, and critical dimension SEMs (Critical Dimension-SEMs), which measure the dimensions of patterns, and are used for detailed inspection of these defects and measurement of patterns. In order to perform inspection and measurement accurately, it is necessary to acquire SEM images with the desired image quality. The desired image quality differs depending on, for example, whether it is desired to inspect the edge or flat surface of the circuit pattern image captured in the SEM image. For this reason, workers need to rely on their experience to adjust the numerous parameters that affect the image quality of the circuit pattern image each time they perform inspection or measurement.

 検査システムのパラメータ調整は大変時間のかかる作業であり、例えば、特許文献1には、このようなパラメータ調整(レシピ開発)を効率化する技術が開示されている。 Adjusting the parameters of an inspection system is a very time-consuming task, and for example, Patent Document 1 discloses technology that improves the efficiency of such parameter adjustment (recipe development).

特表2015-514311号公報Special Publication No. 2015-514311

 このようにレシピ作成には時間がかかり、生産効率向上の妨げとなる。また、作業員(インラインエンジニア)が経験を頼りに調整しているパラメータも多く、レシピ作成作業は属人的になりがちで、増産時にはエンジニア不足がボトルネックとなる場合もある。特に、レシピに含まれる画像データに回路レイアウト情報といったユーザのIP(Intellectual Property、以下ユーザIPという)情報が含まれているため、ユーザ以外の者が共有することは困難である。 As such, creating recipes takes time, hindering improvements in production efficiency. Furthermore, many parameters are adjusted by workers (inline engineers) relying on their experience, making recipe creation work highly dependent on individual skills, and a shortage of engineers can become a bottleneck when ramping up production. In particular, the image data contained in recipes contains the user's IP (Intellectual Property, hereafter referred to as User IP), such as circuit layout information, making it difficult for anyone other than the user to share it.

 本開示の一実施の態様であるレシピ作成装置は、荷電粒子線装置によりウェハ上の回路パターンの画像データを取得し、画像データの画像から回路パターンの検査または計測を行うシステムに、検査または計測を自動で行わせるレシピを作成するレシピ作成装置であって、画像分類モデルを用いて荷電粒子線装置によりデフォルト条件を含む第1初期レシピにしたがって取得された第1画像データの画像分類コードを求める画像分類実行部と、第1画像データの画像分類コードを非可逆な暗号手法により第1暗号コードに変換する暗号変換部と、第1暗号コードとレシピデータベースとを照合して推奨レシピを抽出するレシピ探索部とを有し、画像分類モデルは学習用画像データを用いてトレーニングされており、学習用画像データは、荷電粒子線装置により第2初期レシピにしたがって取得された画像データであり、第2初期レシピは、所定の検査または計測のために作成された既存レシピを、デフォルト条件を含むように変更したレシピであって、レシピデータベースは、画像分類コードを暗号変換部で暗号手法により変換した暗号コードと、当該画像分類コードに分類された学習用画像データの既存レシピから固有情報を削除した推奨レシピとを登録していることを特徴とする。 A recipe creation device according to one embodiment of the present disclosure acquires image data of a circuit pattern on a wafer using a charged particle beam device, and creates a recipe for automatically inspecting or measuring the circuit pattern from the image data. The recipe creation device includes an image classification execution unit that uses an image classification model to determine an image classification code for first image data acquired by the charged particle beam device according to a first initial recipe including default conditions, a cryptography conversion unit that converts the image classification code of the first image data into a first cryptography code using a non-reversible cryptography method, and a recipe search unit that compares the first cryptography code with a recipe database to extract a recommended recipe. The image classification model is trained using training image data, and the training image data is image data acquired by the charged particle beam device according to a second initial recipe. The second initial recipe is a recipe obtained by modifying an existing recipe created for a specified inspection or measurement to include default conditions. The recipe database registers the cryptography code obtained by converting the image classification code using the cryptography conversion unit, and a recommended recipe obtained by removing unique information from an existing recipe for the training image data classified with the image classification code.

 レシピ作成作業が短縮でき、生産ラインの稼働率が向上し、製品コストの低減につながる。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 This shortens the time required to create recipes, improves production line utilization, and reduces product costs. Other issues and novel features will become apparent from the description of this specification and the accompanying drawings.

半導体検査システムの概要を示す図である。FIG. 1 is a diagram illustrating an overview of a semiconductor inspection system. 情報処理装置(コンピュータ)のハードウェア構成例である。1 is an example of a hardware configuration of an information processing device (computer). 半導体検査システムが実行する検査のフローチャートである。1 is a flowchart of an inspection performed by a semiconductor inspection system. 従来の検査用レシピ作成フローである。1 shows a conventional inspection recipe creation flow. レシピ作成画面の例である。10 is an example of a recipe creation screen. レシピ作成装置(運用フェーズ)の機能ブロック図である。FIG. 10 is a functional block diagram of the recipe creation device (operation phase). 実施例1の検査用レシピ作成フローである。1 is a flowchart showing an inspection recipe creation flow according to the first embodiment; 実施例1のレシピ作成画面の例である。10 is an example of a recipe creation screen in the first embodiment. 画像分類処理について説明するための図である。FIG. 10 is a diagram illustrating an image classification process. 画像分類処理について説明するための図である。FIG. 10 is a diagram illustrating an image classification process. レシピデータベースのデータ構造例である。1 is an example of a data structure of a recipe database. レシピ作成装置(準備フェーズ)の機能ブロック図である。FIG. 10 is a functional block diagram of a recipe creation device (preparation phase). 実施例1の画像分類データベース及びレシピデータベース作成フローである。10 is a flow chart showing a process for creating an image classification database and a recipe database according to the first embodiment; 実施例1の学習画面の例である。10 is an example of a learning screen according to the first embodiment. レシピ作成装置の機能ブロック図である。FIG. 2 is a functional block diagram of the recipe creation device. 複数の半導体検査システム及びレシピ作成ツール統合装置がネットワークで結合されている様子を示す図である。FIG. 1 illustrates a network connection of multiple semiconductor inspection systems and recipe creation tool integration devices. レシピ作成ツール統合装置の機能ブロック図である。FIG. 2 is a functional block diagram of a recipe creation tool integration device. 実施例2の連合学習画面の例である。10 is an example of an associative learning screen according to the second embodiment. 実施例2のレシピ作成ツール更新画面の例である。13 is an example of a recipe creation tool update screen according to the second embodiment. レシピ作成ツールのバージョン管理を説明するための図である。FIG. 10 is a diagram for explaining version management of a recipe creation tool.

 以下、図面を参照しながら、本開示の実施例を説明する。 Below, an embodiment of the present disclosure will be described with reference to the drawings.

 図1Aは本開示に係るウェハの検査または計測を行うシステムの一例である、半導体検査システムの概要を示す図である。半導体検査システム801はウェハ上の回路パターンの画像データを取得し、取得した画像データを分析して回路パターンを検査する。半導体検査システム801は、撮像部101、制御部120及びレシピ作成装置130を有する。撮像部101及び制御部120は画像データの取得及び検査を行う荷電粒子線装置を構成し、ここでは、走査型電子顕微鏡(SEM)を用いる例を示している。なお、回路パターンの計測を行う半導体計測システムも同様の構成となる。また、検査対象は半導体ウェハに限定されるものではない。 FIG. 1A is a diagram showing an overview of a semiconductor inspection system, which is an example of a system for inspecting or measuring wafers according to the present disclosure. The semiconductor inspection system 801 acquires image data of a circuit pattern on a wafer and analyzes the acquired image data to inspect the circuit pattern. The semiconductor inspection system 801 has an imaging unit 101, a control unit 120, and a recipe creation device 130. The imaging unit 101 and control unit 120 constitute a charged particle beam device that acquires image data and performs inspection; here, an example is shown in which a scanning electron microscope (SEM) is used. Note that semiconductor measurement systems that measure circuit patterns have a similar configuration. Furthermore, the object to be inspected is not limited to semiconductor wafers.

 撮像部101では、電子源102から放出される1次電子ビーム105が加速電極103により所望の加速電圧値まで加速されてウェハなどの試料109に照射される。また、回路パターンの側壁や低部を検査する場合には、制御部120から制御信号113により傾斜用偏向器107を制御し、1次電子ビーム105を傾斜させて試料109を照射する。なお、回路パターンの側壁を撮影する方法としては、1次電子ビームの照射角を制御する方法(チルト制御)の他、ステージ110を傾斜させる方法(ステージ制御)もある。 In the imaging unit 101, a primary electron beam 105 emitted from an electron source 102 is accelerated by an acceleration electrode 103 to a desired acceleration voltage value and irradiated onto a sample 109 such as a wafer. Furthermore, when inspecting the side walls or bottom of a circuit pattern, the control unit 120 controls the tilt deflector 107 with a control signal 113, tilting the primary electron beam 105 to irradiate the sample 109. In addition to controlling the irradiation angle of the primary electron beam (tilt control), methods for photographing the side walls of a circuit pattern also include tilting the stage 110 (stage control).

 1次電子ビーム105の照射に起因して試料109から信号電子である二次電子(SE:Secondary Electron)と後方散乱電子(BSE:Backscattered Electron)が放出される。SEはSE検出器112にて検出され、BSEはBSE検出器108にて検出され、A/D変換器111でデジタル信号114に変換される。デジタル信号114は制御部120に入力されてメモリ122に格納される。 Irradiation with the primary electron beam 105 causes secondary electrons (SE) and backscattered electrons (BSE) to be emitted from the sample 109 as signal electrons. The SEs are detected by the SE detector 112, and the BSEs are detected by the BSE detector 108, and are converted into a digital signal 114 by the A/D converter 111. The digital signal 114 is input to the control unit 120 and stored in the memory 122.

 制御部120では、CPU(Central Processing Unit)121や画像処理ハードウェア123により、目的に応じた画像処理が行われ、ウェハ上の回路パターンが検査される。画像処理ハードウェア123の例としては、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)、GPU(Graphical Processing Unit)等が挙げられる。 In the control unit 120, a CPU (Central Processing Unit) 121 and image processing hardware 123 perform image processing according to the purpose, and the circuit pattern on the wafer is inspected. Examples of image processing hardware 123 include an ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), and GPU (Graphical Processing Unit).

 半導体検査システム801が適切に検査を行うためには、撮像部101や制御部120に適切なパラメータ設定を行う必要がある。レシピ作成装置130はこれらパラメータを定める検査用レシピを、検査対象とする回路パターンに応じて作成する装置である。 In order for the semiconductor inspection system 801 to perform inspections properly, appropriate parameters must be set for the imaging unit 101 and control unit 120. The recipe creation device 130 is a device that creates an inspection recipe that defines these parameters in accordance with the circuit pattern to be inspected.

 レシピ作成装置130は、図1Bに示すようなプロセッサ(CPU)11、メモリ12、ストレージ装置13、入力インタフェース(I/F)14、出力I/F15、通信I/F16、バス17を主要な構成として含む情報処理装置(コンピュータ)10により実現される。プロセッサ11はメモリ12にロードされたプログラムに従って処理を実行することによって、所定の機能を提供する機能部として機能する。ストレージ装置13は、機能部で使用するデータやプログラムを格納する。入力I/F14は、キーボード、ポインティングデバイス、操作パネルなどの入力装置に接続され、出力I/F15は表示装置に接続される。通信装置I/F16は、ネットワークを介して他の情報処理装置との通信を可能にする。これらはバス17により互いに通信可能に接続されている。レシピ作成装置130は、1台の情報処理装置で実現する必要はなく、複数台の情報処理装置で実現してもよい。また、仮想化されていてもよい。さらに、レシピ作成装置130の一部、あるいはすべての機能をクラウド上のアプリケーションとして実現してもよい。 The recipe creation device 130 is realized by an information processing device (computer) 10, which primarily includes a processor (CPU) 11, memory 12, storage device 13, input interface (I/F) 14, output I/F 15, communication I/F 16, and bus 17, as shown in FIG. 1B. The processor 11 functions as a functional unit that provides specified functions by executing processes according to programs loaded into memory 12. The storage device 13 stores data and programs used by the functional unit. The input I/F 14 is connected to input devices such as a keyboard, pointing device, and operation panel, and the output I/F 15 is connected to a display device. The communication device I/F 16 enables communication with other information processing devices via a network. These are connected to each other via bus 17 so that they can communicate with each other. The recipe creation device 130 does not have to be realized by a single information processing device, but may be realized by multiple information processing devices. It may also be virtualized. Furthermore, some or all of the functions of the recipe creation device 130 may be realized as a cloud application.

 以下の説明では、プログラムによる処理について説明する場合に、プログラムや機能部等を主体として説明する場合があるが、それらについてのハードウェアとしての主体は、プロセッサ、あるいはそのプロセッサ等を含んで構成される情報処理装置である。情報処理装置は、プロセッサによって、適宜にメモリや通信インタフェース等の資源を用いながら、メモリ上に読み出されたプログラムに従った処理を実行する。図1Bでは、プロセッサとしてCPUの例を示したが、GPU等を利用してもよい。また、機能を実現するための処理をソフトウェアプログラム処理に限らず、専用回路でも実装可能である。専用回路は、FPGA、ASIC等が適用可能である。 In the following explanation, when describing processing by a program, the program or functional units may be described as the main focus, but the main focus of the hardware in these cases is a processor, or an information processing device comprising such a processor. The information processing device executes processing in accordance with a program read into memory, using resources such as memory and communication interfaces as appropriate through the processor. While Figure 1B shows an example of a CPU as the processor, a GPU or the like may also be used. Furthermore, the processing to realize a function is not limited to software program processing, but can also be implemented using dedicated circuits. Dedicated circuits such as FPGAs and ASICs can be used.

 図2は、半導体検査システム801が実行する、試料109に対する検査のフローチャートである。撮像部101に試料109が載置され、検査フローが開始される。まず、レシピ作成装置130により、撮像フレーム数、スキャン方向などの撮像条件の設定や位置合わせ用のテンプレート画像の取得を行う撮像条件設定S01、及び検査箇所や検査検出機能に係る検査条件を設定する検査条件設定S02が行われる。この撮像条件設定S01と検査条件設定S02とによって設定される各種パラメータの値、及び位置合わせ用のテンプレート画像を検査用レシピと呼ぶ。レシピ作成装置130により作成された検査用レシピは、制御部120に送信され、制御部120は、検査用レシピにしたがってウェハ撮像S03及び検査S04を実施する。例えば、ウェハを撮像して回路パターン画像を取得し、回路パターン画像から欠陥位置を特定する。最後に、検査結果出力S05を実施する。例えば、特定した欠陥位置を画像情報や輝度情報と一緒に制御部120のGUIに表示する。このように、検査用レシピを作成し、半導体検査システムは検査用レシピにしたがって動作することにより、生産ラインを流れてくるウェハを次々に自動検査することが可能になる。 2 is a flowchart of the inspection of sample 109 performed by semiconductor inspection system 801. Sample 109 is placed on imaging unit 101, and the inspection flow begins. First, the recipe creation device 130 performs imaging condition setting S01, which sets imaging conditions such as the number of imaging frames and scan direction and acquires a template image for alignment, and inspection condition setting S02, which sets inspection conditions related to the inspection location and inspection detection function. The various parameter values set by imaging condition setting S01 and inspection condition setting S02, and the template image for alignment, are called an inspection recipe. The inspection recipe created by recipe creation device 130 is sent to control unit 120, which then performs wafer imaging S03 and inspection S04 in accordance with the inspection recipe. For example, the wafer is imaged to acquire a circuit pattern image, and defect locations are identified from the circuit pattern image. Finally, inspection result output S05 is performed. For example, the identified defect locations are displayed on the GUI of control unit 120 together with image information and brightness information. In this way, an inspection recipe is created and the semiconductor inspection system operates according to the inspection recipe, making it possible to automatically inspect wafers one after another as they flow down the production line.

 図3Aに従来の検査用レシピ作成フローを、図3Bに、図3Aのフローにより検査用レシピ作成を行うためのGUIを示す。本GUIは、レシピ作成装置130の表示装置に表示される。最初にレシピ作成画面200のレシピ名指定部201にて、作成するレシピ名を指定した後に、検査用レシピの作成が開始される。まず、試料で検査したい位置を設定するための撮像位置設定S11を行い、位置合わせ用のテンプレート画像を取得する。テンプレート画像には、光学顕微鏡により低倍率で大まかな位置合わせを行うOMテンプレート画像と、電子顕微鏡により高倍率で精密な位置合わせを行うSEMテンプレート画像とを含む。OMアライメント調整部202でOMテンプレート画像の取得条件を設定し、設定された取得条件は制御部120に送信され、撮像部101の図示しない光学顕微鏡により所望のOMテンプレート画像を取得する。同様に、SEMアライメント調整部203でSEMテンプレート画像の取得条件を設定し、設定された取得条件は制御部120に送信され、撮像部101により所望のSEMテンプレート画像を取得する。 3A shows a conventional inspection recipe creation flow, and FIG. 3B shows a GUI for creating an inspection recipe using the flow of FIG. 3A. This GUI is displayed on the display device of the recipe creation device 130. First, the name of the recipe to be created is specified in the recipe name specification section 201 on the recipe creation screen 200, and then creation of the inspection recipe begins. First, an imaging position setting S11 is performed to set the position to be inspected on the sample, and a template image for alignment is acquired. The template image includes an OM template image for rough alignment at low magnification using an optical microscope, and an SEM template image for precise alignment at high magnification using an electron microscope. The OM alignment adjustment section 202 sets the acquisition conditions for the OM template image, and the set acquisition conditions are sent to the control section 120. The desired OM template image is acquired by the optical microscope (not shown) of the imaging section 101. Similarly, the SEM alignment adjustment section 203 sets the acquisition conditions for the SEM template image, and the set acquisition conditions are sent to the control section 120. The desired SEM template image is acquired by the imaging section 101.

 続いて、撮像用光学条件設定S12を実施する。撮像用光学条件は、検査のための回路パターン画像を取得するための、スキャン速度、スキャン方向、フレーム数などの撮像部101に設定される光学条件であって、レシピ作成画面200のSEM撮像パラメータ設定部206において設定される。撮像用光学条件(撮像パラメータ)としては、数値が設定される場合もあり、モードが選択される場合もある。設定された撮像用光学条件は、制御部120に送信され、撮像部101によりウェハ撮像S13を行い、撮像された回路パターン画像はレシピ作成装置130に送信される。検査用レシピを作成する作業員は、表示装置に表示された回路パターン画像について、画質の目視確認S14を行い、検査を行う画像の画質として満足するものであるかを判断する。画質が不十分であると判断される場合には、満足となる画質を有する回路パターン画像を得るまで、撮像用光学条件設定S12に戻り、ステップS12~S14までの処理を繰り返す。 Next, the optical conditions for imaging (S12) are set. The optical conditions for imaging are optical conditions set in the imaging unit 101, such as the scan speed, scan direction, and number of frames, for acquiring a circuit pattern image for inspection. These are set in the SEM imaging parameter setting section 206 on the recipe creation screen 200. The optical conditions for imaging (imaging parameters) may be set as numerical values or as a selected mode. The set optical conditions for imaging are sent to the control unit 120, and the imaging unit 101 performs wafer imaging (S13). The captured circuit pattern image is then sent to the recipe creation device 130. The operator creating the inspection recipe visually checks the image quality of the circuit pattern image displayed on the display device (S14) and determines whether it is satisfactory for the image quality to be used in inspection. If the image quality is determined to be insufficient, the process returns to the optical conditions for imaging (S12) and repeats steps S12 to S14 until a circuit pattern image with satisfactory image quality is obtained.

 画質の目視確認S14で満足する画質が得られた場合、検査用条件設定S15に進み、検査箇所と検査方法、欠陥検出精度などの検査パラメータとを設定する。検査箇所は、レシピ作成画面200の検査箇所指定部204において、検査箇所の座標をリスト化した座標リストを選択することによって選択される。検査パラメータはレシピ作成画面200の欠陥検出機能選択部205により選択される。設定された撮像用光学条件(撮像パラメータ)及び検査用条件(検査パラメータ)は、制御部120に送信され、検査S16を実施し、回路パターン画像から、欠陥位置や欠陥特徴量などの検査結果を取得する。 If satisfactory image quality is obtained in the visual image quality confirmation S14, the process proceeds to inspection condition setting S15, where inspection parameters such as the inspection location, inspection method, and defect detection accuracy are set. The inspection location is selected by selecting from a coordinate list that lists the coordinates of the inspection location in the inspection location designation section 204 on the recipe creation screen 200. Inspection parameters are selected in the defect detection function selection section 205 on the recipe creation screen 200. The set optical conditions for imaging (imaging parameters) and inspection conditions (inspection parameters) are sent to the control unit 120, which then performs inspection S16 and obtains inspection results such as defect locations and defect features from the circuit pattern image.

 検査結果目視確認S17では、作業員は検査S16で得られた検査結果に対して、目視確認を行い、期待される結果に到達するまで、撮像用光学条件設定S12まで戻り、ステップS12~S17までの処理を繰り返す。 In the visual confirmation of inspection results S17, the operator visually confirms the inspection results obtained in the inspection S16, and returns to the imaging optical condition setting S12, repeating steps S12 to S17, until the expected results are achieved.

 検査結果の目視確認S17で満足する検査結果が得られた場合、画質改善条件設定S18に進む。半導体検査システム801では、回路パターン画像の画質を改善した改善画像から、作業員が目視で欠陥を分類する。このため、回路パターン画像について、欠陥の特徴を顕著に表現するよう画質を調整して改善画像とすることが望ましい。回路パターン画像の画質改善条件は、レシピ作成画面200の画質調整パラメータ調整部207にて設定される。設定された画質改善条件は、制御部120に送信され、回路パターン画像の画質改善処理S19を実行する。なお、本開示において、画質改善条件も検査用条件(検査パラメータ)の一部として扱う。 If satisfactory inspection results are obtained in visual confirmation of inspection results S17, the process proceeds to image quality improvement condition setting S18. In the semiconductor inspection system 801, an operator visually classifies defects from an improved image obtained by improving the image quality of a circuit pattern image. For this reason, it is desirable to improve the image quality of the circuit pattern image by adjusting the image quality so that the characteristics of the defects are clearly expressed. The image quality improvement conditions for the circuit pattern image are set in the image quality adjustment parameter adjustment unit 207 on the recipe creation screen 200. The set image quality improvement conditions are sent to the control unit 120, which then executes image quality improvement processing S19 for the circuit pattern image. Note that in this disclosure, the image quality improvement conditions are also treated as part of the inspection conditions (inspection parameters).

 改善後画像の目視確認S20では、作業員は画質改善処理S19で得られた改善画像に対して、目視確認を行い、画質に満足するまで、画質改善条件設定S18まで戻り、ステップS18~S20までの処理を繰り返す。作業員が感覚的に画質改善を行えるよう、画質調整パラメータ調整部207のパラメータの調整にスライドバーを用いている。 In visual confirmation of the improved image S20, the worker visually checks the improved image obtained in the image quality improvement process S19, and returns to image quality improvement condition setting S18 and repeats steps S18 to S20 until the worker is satisfied with the image quality. A slide bar is used to adjust the parameters in the image quality adjustment parameter adjustment unit 207 so that the worker can improve the image quality intuitively.

 最後に、撮像用光学条件設定S12から改善後画像目視確認S20までに設定されたすべてのパラメータの値とテンプレート画像とを含めて検査用レシピとして保存する(S21)。 Finally, all parameter values set from setting the optical conditions for imaging (S12) to visually checking the improved image (S20) along with the template image are saved as an inspection recipe (S21).

 このように、従来の検査用レシピ作成においては、撮像用光学条件設定S12、検査用条件設定S15、画質改善条件設定S18で適切なパラメータを決定するために多くの時間が必要であった。 As such, in conventional inspection recipe creation, it took a lot of time to determine appropriate parameters for setting the optical conditions for imaging (S12), setting the inspection conditions (S15), and setting the image quality improvement conditions (S18).

 これに対して、本実施例のレシピ作成装置130では、あらかじめ定められたデフォルト条件で取得される画像データと画像データに付されたキーワードに基づき、利活用可能な既存の検査用レシピデータを抽出可能とし、レシピ作成作業に要する時間を大幅に短縮可能とする。さらに、レシピ作成に必要な画像データは回路パターンが映り込んだ機密情報であり、このようなユーザIPに係る情報が外部に漏洩しないことが求められる。このため、本実施例のレシピ作成装置130では、画像データの傾向を示す画像分類データは暗号化によって隠蔽されており、また、レシピデータベースに登録される既存の検査用レシピからはユーザ固有の情報が削除されている。以下、レシピ作成装置130の機能について、検査用レシピを作成する運用フェーズと、運用フェーズに必要な画像分類データベースやレシピデータベースを作成する準備フェーズとに分けて説明する。 In contrast, the recipe creation device 130 of this embodiment is capable of extracting existing usable inspection recipe data based on image data acquired under predetermined default conditions and keywords attached to the image data, significantly reducing the time required for recipe creation work. Furthermore, the image data required for recipe creation is confidential information that contains circuit patterns, and it is necessary to prevent such information related to user IP from leaking to the outside. For this reason, the recipe creation device 130 of this embodiment conceals image classification data that indicates the tendency of the image data through encryption, and also deletes user-specific information from existing inspection recipes registered in the recipe database. Below, the functions of the recipe creation device 130 will be explained separately for the operation phase in which inspection recipes are created, and the preparation phase in which the image classification database and recipe database required for the operation phase are created.

 (運用フェーズ)
 図4に本実施例のレシピ作成装置130(運用フェーズ)の機能ブロック図を、図5に本実施例の検査用レシピ作成フローを、図6に、図5のフローにより検査用レシピ作成を行うためのGUIを示す。なお、図5は検査用レシピ作成フローにおける本実施例に特徴的なフローを抽出して示したものであり、本実施例の検査用レシピ作成の全体像を説明するため、図3Aの検査用レシピ作成フローを適宜参照しながら説明する。
(Operation phase)
Fig. 4 shows a functional block diagram of the recipe creation device 130 (operation phase) of this embodiment, Fig. 5 shows the inspection recipe creation flow of this embodiment, and Fig. 6 shows a GUI for creating an inspection recipe according to the flow of Fig. 5. Note that Fig. 5 shows an extracted flow characteristic of this embodiment in the inspection recipe creation flow, and in order to explain the overall picture of the inspection recipe creation of this embodiment, the description will be made with appropriate reference to the inspection recipe creation flow of Fig. 3A.

 図6に示すGUIは、レシピ作成装置130の表示装置に表示される。最初にレシピ作成画面200aのレシピ名指定部201にて、作成するレシピ名を指定し、このときAI提案取得ボタン211を押下すると、本実施例による検査用レシピの作成が開始される。最初に、撮像位置設定S11を従来と同様に実施する(図3A参照)。 The GUI shown in Figure 6 is displayed on the display device of the recipe creation device 130. First, the name of the recipe to be created is specified in the recipe name specification section 201 on the recipe creation screen 200a, and when the AI proposal acquisition button 211 is pressed at this time, creation of an inspection recipe according to this embodiment begins. First, imaging position setting S11 is performed in the same manner as in the conventional method (see Figure 3A).

 続いてキーワード指定部401は、レシピ作成画面200aのAI提案指定部212からキーワード指定S31を受ける。キーワードは特定の内容に限定するものではないが、画質改善処理の方向性を示すワードが選択可能となるように設定されていることが望ましい。同じ回路パターン画像であっても、検査位置がエッジ部分にある場合と平面部分にある場合とでは、欠陥の特徴を顕著に表現する画質が異なる。このような画像改善処理の方向性が特定できるよう、AI提案指定部212ではキーワード群213を表示し、作業員が注目する特徴を示すキーワードを選択可能とする。キーワードとしては、画像の特徴を示す一般的なワードに加え、ユーザ固有の画像の特徴を示すワードを含めてもよい。 The keyword specification unit 401 then receives a keyword specification S31 from the AI proposal specification unit 212 on the recipe creation screen 200a. Keywords are not limited to specific content, but it is desirable that they be set so that words indicating the direction of the image quality improvement process can be selected. Even for the same circuit pattern image, the image quality that prominently expresses the features of a defect differs depending on whether the inspection position is on an edge portion or a flat portion. To enable the direction of such image improvement process to be identified, the AI proposal specification unit 212 displays a keyword group 213, allowing the operator to select keywords that indicate features that interest them. Keywords may include general words that indicate image features, as well as words that indicate user-specific image features.

 レシピ調整部409は、レシピ作成画面200aの検査箇所指定部204において、作業員による座標リストの選択を受けて検査箇所を指定するとともに、それ以外の撮像パラメータ及び検査パラメータはあらかじめ定められたデフォルト条件とした初期レシピを作成する。「それ以外の撮像パラメータ及び検査パラメータ」とは、具体的には、レシピ作成画面200aの欠陥検出機能選択部205、SEM撮像パラメータ設定部206、及び画質調整パラメータ調整部207にて設定されるパラメータである。レシピ調整部409はこのように作成した初期レシピを制御部120に送信する。制御部120は初期レシピにしたがって撮像部101で回路パターン画像を取得し、レシピ作成装置130に送信する(S32)。なお、このとき取得する回路パターン画像は、座標リストの全ての検査箇所ではなく、1枚、または少数の回路パターン画像を取得すればよい。 The recipe adjustment unit 409 specifies the inspection location in response to the operator's selection from the coordinate list in the inspection location designation unit 204 on the recipe creation screen 200a, and creates an initial recipe in which other imaging parameters and inspection parameters are set to predetermined default conditions. Specifically, the "other imaging parameters and inspection parameters" are parameters set in the defect detection function selection unit 205, SEM imaging parameter setting unit 206, and image quality adjustment parameter adjustment unit 207 on the recipe creation screen 200a. The recipe adjustment unit 409 sends the initial recipe created in this manner to the control unit 120. The control unit 120 acquires a circuit pattern image using the imaging unit 101 in accordance with the initial recipe and sends it to the recipe creation device 130 (S32). Note that the circuit pattern image acquired at this time does not need to be for all inspection locations in the coordinate list, and it is sufficient to acquire one or a small number of circuit pattern images.

 続いて、画像分類実行部403は、指定されたキーワード及び取得した初期レシピによる回路パターン画像を、画像分類モデル140を用いて画像分類S33を実施する。画像分類S33の処理について、図7A及び図7Bを用いて説明する。 Next, the image classification execution unit 403 performs image classification S33 on the circuit pattern image based on the specified keywords and the acquired initial recipe using the image classification model 140. The image classification S33 process will be explained using Figures 7A and 7B.

 図7Aは、画像分類モデル140が画像を分類するために形成する画像分類空間を示しており、図7Bは画像分類空間による学習用画像データ(回路パターン画像)の分類結果を表形式で表したものである。画像分類空間300は、ここでは単純化のため3次元空間の例を示しているが、回路パターン画像が位置付けられるn次元の空間である。丸印が画像分類空間300に位置付けられた画像の座標を示している。各次元に対応する座標軸は回路パターン画像またはキーワードから抽出された特徴量である。回路パターン画像から抽出される特徴量としては、エッジの状態を反映する輝度の高周波変動強度、背景の状態を反映する輝度の低周波変動強度などが挙げられる。キーワードから抽出される特徴量としては、選択されたキーワードの組み合わせパターンなどが挙げられる。後述する準備フェーズにおいて、画像分類空間300の次元数n、及びn次元の座標軸が定義され、画像分類空間300に半導体検査システム801が過去に作成した既存レシピに上述したデフォルト条件を適用することによって作成した初期レシピによって撮像された回路パターン画像を学習用画像データとして用いてトレーニングを行い、互いに類似する複数の回路パターン画像を画像群として分類する画像分類モデル140を得る。ここで、類似するとは、画像分類空間300において近傍に位置することを意味している。図7Aに示す画像群301~303はそれぞれ、図7Bに示す画像分類コード1~3に対応している。 Figure 7A shows the image classification space formed by the image classification model 140 to classify images, and Figure 7B shows in tabular form the classification results of training image data (circuit pattern images) using the image classification space. The image classification space 300 is an n-dimensional space in which circuit pattern images are positioned, although a three-dimensional space is shown here for simplicity's sake. Circles indicate the coordinates of images positioned in the image classification space 300. The coordinate axes corresponding to each dimension are features extracted from the circuit pattern image or keywords. Features extracted from circuit pattern images include the intensity of high-frequency fluctuations in brightness that reflect the state of the edge, and the intensity of low-frequency fluctuations in brightness that reflect the state of the background. Features extracted from keywords include combination patterns of selected keywords. In the preparation phase described below, the number of dimensions n of image classification space 300 and the n-dimensional coordinate axes are defined, and training is performed using, as learning image data, circuit pattern images captured using an initial recipe created by semiconductor inspection system 801 by applying the above-mentioned default conditions to an existing recipe previously created in image classification space 300, to obtain image classification model 140 that classifies multiple circuit pattern images that are similar to each other into image groups. Here, "similar" means that they are located nearby in image classification space 300. Image groups 301 to 303 shown in Figure 7A correspond to image classification codes 1 to 3 shown in Figure 7B, respectively.

 画像分類実行部403は、指定されたキーワード及び取得した初期レシピによる回路パターン画像を画像分類モデル140に入力し、どの画像群に分類されるか推論を行う。推論処理は、例えば、次のような処理に相当する。取得した回路パターン画像の画像分類空間300における座標を算出し、その座標が図7Aに示す座標311であったとする。この例では座標311に最も近い画像群は画像分類コード「3」の画像群303であるから、画像分類結果として画像分類コードである「3」を出力する。なお、ここでは最も画像分類空間300の距離の近い画像群の画像分類コードのみを出力するように説明したが、座標311から所定の距離内にある画像群が複数存在する場合には、複数の画像群の画像分類コードを出力してもよい。その場合には、座標311からの距離に応じた優先順位、あるいは分類の確からしさを付加して出力するとよい。 The image classification execution unit 403 inputs the circuit pattern image according to the specified keyword and the acquired initial recipe into the image classification model 140 and infers which image group it will be classified into. The inference process corresponds to the following process, for example: The coordinates of the acquired circuit pattern image in the image classification space 300 are calculated, and it is assumed that these coordinates are coordinates 311 shown in Figure 7A. In this example, the image group closest to coordinates 311 is image group 303 with image classification code "3," so the image classification code "3" is output as the image classification result. Note that while it has been explained here that only the image classification code of the image group closest in the image classification space 300 is output, if there are multiple image groups within a specified distance from coordinates 311, the image classification codes of multiple image groups may be output. In that case, it is advisable to add a priority order or classification certainty according to the distance from coordinates 311 before outputting.

 画像分類コード(この例では「3」)は、画像分類実行部403から暗号変換部405に転送され、暗号変換部405は画像分類コードに基づく暗号コード算出S34を実施する。ここで、暗号変換部405は、非可逆な暗号手法を用いる。一例として、暗号学的ハッシュ関数を採用するものとし、暗号コードはハッシュ値とも呼ぶ。ただし、使用するアルゴリズムはSHA-224の後に公開されたものとし、例えば、SHA-224,SHA-256,SHA-384,SHA-512,SHA3-224,SHA3-256,SHA3-512,Tiger(2)-192/140128,Whirlpool,MINMAX,RIPEMD-128/256,RIPEMD-140320などを用いるとよい。暗号学的ハッシュ関数はハッシュ関数のうち、暗号など情報セキュリティの用途に適する暗号数理的性質を持つものであり、任意の長さの入力を固定長の出力に変換する。ハッシュ値からは元の画像分類コードを求めることができない。このため、レシピを作成する作業員にとって分かりやすいように画像分類コードとして実際にはユーザIPやそれに関連する名称が用いられていても、その情報が外部に漏洩することはない。 The image classification code ("3" in this example) is transferred from the image classification execution unit 403 to the encryption conversion unit 405, which then performs encryption code calculation S34 based on the image classification code. Here, the encryption conversion unit 405 uses a non-reversible encryption method. As an example, a cryptographic hash function is adopted, and the encryption code is also called a hash value. However, the algorithm used should be one that was published after SHA-224, such as SHA-224, SHA-256, SHA-384, SHA-512, SHA3-224, SHA3-256, SHA3-512, Tiger(2)-192/140128, Whirlpool, MINMAX, RIPEMD-128/256, or RIPEMD-140320. A cryptographic hash function is a hash function with cryptographic mathematical properties suitable for information security applications such as encryption, converting an input of any length into an output of a fixed length. The original image classification code cannot be determined from the hash value. For this reason, even if the user's IP address or a related name is actually used as the image classification code to make it easier for the worker creating the recipe to understand, this information will not be leaked to the outside.

 暗号変換部405が算出した暗号コードはレシピ探索部407に転送され、レシピ探索部はレシピデータベース150と照合することにより、推奨レシピを抽出する(S35)。図8にレシピデータベース150のデータ構造を示す。暗号化コード151には、画像分類コードのハッシュ値が登録され、レシピ名152には当該画像分類コードに含まれる回路パターン画像の検査のために作成した検査用レシピのレシピ名が登録され、ピュアレシピ153には、当該レシピ名に対応する検査用レシピの内容が登録されている。ここで、ピュアレシピ153に登録される検査用レシピの内容は、検査用レシピからユーザIPに関わる固有情報(以下、固有情報という)を除いたものであり、以下ではピュアレシピと呼ぶ。例えば、レシピ作成画面200の欠陥検出機能選択部205、SEM撮像パラメータ設定部206、及び画質調整パラメータ調整部207にて設定されるパラメータはピュアレシピとして登録される内容に該当する。 The encryption code calculated by the encryption conversion unit 405 is transferred to the recipe search unit 407, which compares it with the recipe database 150 to extract a recommended recipe (S35). Figure 8 shows the data structure of the recipe database 150. The hash value of the image classification code is registered in the encryption code 151, the recipe name 152 is registered with the recipe name of the inspection recipe created for inspecting the circuit pattern image included in that image classification code, and the pure recipe 153 is registered with the contents of the inspection recipe corresponding to that recipe name. Here, the contents of the inspection recipe registered in the pure recipe 153 are the inspection recipe minus the unique information related to the user IP (hereinafter referred to as unique information), and are referred to as the pure recipe hereinafter. For example, the parameters set in the defect detection function selection unit 205, SEM imaging parameter setting unit 206, and image quality adjustment parameter adjustment unit 207 on the recipe creation screen 200 correspond to the contents registered as a pure recipe.

 レシピ調整部409は、初期レシピとして設定されていたデフォルト条件を抽出された推奨レシピのピュアレシピに規定されている撮像用光学条件及び検査用条件に置き換えて、試行用レシピを作成する。レシピ調整部409はこのように作成した試行用レシピを制御部120に送信する。制御部120は試行用レシピにしたがって検査試行S36を実施する。試行結果を確認し(S37)、期待される結果が得られれば、試行用レシピを検査用レシピとして決定する。一方、期待される結果が得られていない場合には、期待される結果に到達するまで、図3Aのフローにしたがって、撮像用光学条件設定S12からパラメータ調整を行い、期待される結果が得られれば、パラメータ調整を行った試行用レシピを検査用レシピとして決定する。新規レシピ保存部411は、決定した検査用レシピを保存する(S21)。なお、複数の推奨レシピが得られている場合には、各推奨レシピに基づき、複数の試行用レシピを作成し、最良の試行結果が得られる試行用レシピを作業員が選択し、必要に応じてそのパラメータ調整を実施するとよい。 The recipe adjustment unit 409 creates a trial recipe by replacing the default conditions set as the initial recipe with the optical conditions for imaging and the inspection conditions specified in the pure recipe of the extracted recommended recipe. The recipe adjustment unit 409 sends the trial recipe created in this way to the control unit 120. The control unit 120 performs an inspection trial (S36) according to the trial recipe. The trial results are confirmed (S37), and if the expected results are obtained, the trial recipe is selected as the inspection recipe. On the other hand, if the expected results are not obtained, parameters are adjusted from the optical conditions for imaging (S12) according to the flow of Figure 3A until the expected results are achieved. If the expected results are obtained, the trial recipe with the adjusted parameters is selected as the inspection recipe. The new recipe storage unit 411 stores the selected inspection recipe (S21). Note that if multiple recommended recipes are available, multiple trial recipes can be created based on each recommended recipe, and the operator can select the trial recipe that produces the best trial results and adjust its parameters as necessary.

 なお、非可逆的な暗号手法は、暗号学的ハッシュ関数に限られず、非可逆圧縮関数などを用いることができる。非可逆圧縮関数を用いる場合、その暗号コードは圧縮後コードであり、ハッシュ値を圧縮後コードに読み替える。 Note that irreversible encryption methods are not limited to cryptographic hash functions; lossy compression functions can also be used. When a lossy compression function is used, the encryption code is a compressed code, and the hash value is converted to the compressed code.

 本実施例による検査用レシピの作成方法では、試行用レシピがそのまま検査用レシピとして決定できる場合はもちろんのこと、パラメータ調整を要する場合でも、既に比較的良好な画質が得られるようなパラメータから調整をスタートできるので、従来のゼロベースからの調整を要するレシピ作成方法よりも速やかに検査用レシピを作成することが可能になる。 In the inspection recipe creation method according to this embodiment, not only can the trial recipe be determined as the inspection recipe as is, but even in cases where parameter adjustment is required, adjustments can be started from parameters that already provide relatively good image quality, making it possible to create an inspection recipe more quickly than conventional recipe creation methods that require adjustments from scratch.

 (準備フェーズ)
 図9に本実施例のレシピ作成装置130(準備フェーズ)の機能ブロック図を、図10に画像分類データベース及びレシピデータベース作成フローを、図11に、図10のフローにおける画像分類データベース作成を行うためのGUIを示す。
(Preparation phase)
FIG. 9 shows a functional block diagram of the recipe creation device 130 (preparation phase) of this embodiment, FIG. 10 shows the flow of creating an image classification database and a recipe database, and FIG. 11 shows a GUI for creating an image classification database in the flow of FIG.

 図11に示すGUIは、レシピ作成装置130の表示装置に表示される。最初に学習画面500の学習対象指定部501において、画像分類モデル140(図7B参照)に登録される回路パターン画像を取得するための設定を行う。まず、レシピ指定部502にて、検査用レシピを指定する(S41)。以下では、既存の検査用レシピを指定して準備フェーズを実行する例を説明するが、図3Aに示した新規の検査用レシピの作成と並行して準備フェーズを実行してもよい。 The GUI shown in Figure 11 is displayed on the display device of the recipe creation device 130. First, in the learning target designation section 501 of the learning screen 500, settings are made to acquire circuit pattern images to be registered in the image classification model 140 (see Figure 7B). First, in the recipe designation section 502, an inspection recipe is designated (S41). Below, an example is described in which an existing inspection recipe is designated and the preparation phase is executed, but the preparation phase may also be executed in parallel with the creation of a new inspection recipe as shown in Figure 3A.

 続いてキーワード指定部401は、学習画面500の注目特徴指定部504からキーワード指定S42を受ける。注目特徴指定部504で選択可能なキーワード群505は、レシピ作成画面200aのAI提案指定部212において選択可能なキーワード群213と同一である。 The keyword designation unit 401 then receives a keyword designation S42 from the feature of interest designation unit 504 on the learning screen 500. The keyword group 505 selectable in the feature of interest designation unit 504 is the same as the keyword group 213 selectable in the AI proposal designation unit 212 on the recipe creation screen 200a.

 次に、画像分類モデル140のトレーニングに使用する回路パターン画像(学習用画像データ)を取得する(S43)。画像分類モデル140のトレーニングに使用する回路パターン画像は、検査用レシピの撮像パラメータ及び検査パラメータをあらかじめ定められたデフォルト条件に置き換えた初期レシピにしたがって取得された回路パターン画像である。このデフォルト条件は、運用フェーズで作成される初期レシピのデフォルト条件と同一である。作業員が学習画面500の学習用画像データ取得部503において、「初期レシピを実行し撮像する」取得方法を選択した場合には、レシピ調整部409は、指定された検査用レシピの一部をデフォルト条件に置き換えて初期レシピを作成する。レシピ調整部409はこのように作成した初期レシピを制御部120に送信する。制御部120は初期レシピにしたがって撮像部101で回路パターン画像を取得し、レシピ作成装置130に送信する(S43)。なお、既に初期レシピにより撮像した回路パターン画像がある場合には、作業員は、学習画面500の学習用画像データ取得部503において、「既存画像」を選択し、当該画像が保存されたデータパスを入力する。画像分類学習部413は入力されたデータパスにアクセスすることにより、回路パターン画像を取得することができる。学習用画像データを追加する場合(S44でYes)には、ステップS41から繰り返す。学習用画像データを追加しない場合(S44でNo)には、ステップS45に進む。 Next, a circuit pattern image (learning image data) to be used for training the image classification model 140 is acquired (S43). The circuit pattern image used for training the image classification model 140 is a circuit pattern image acquired according to an initial recipe in which the imaging parameters and inspection parameters of the inspection recipe have been replaced with predetermined default conditions. These default conditions are the same as the default conditions of the initial recipe created in the operation phase. If the operator selects the acquisition method "Execute initial recipe and capture image" in the learning image data acquisition section 503 of the learning screen 500, the recipe adjustment section 409 creates an initial recipe by replacing part of the specified inspection recipe with the default conditions. The recipe adjustment section 409 sends the initial recipe created in this manner to the control unit 120. The control unit 120 acquires a circuit pattern image using the imaging unit 101 in accordance with the initial recipe and sends it to the recipe creation device 130 (S43). Note that if a circuit pattern image has already been captured according to the initial recipe, the operator selects "Existing Image" in the learning image data acquisition section 503 of the learning screen 500 and inputs the data path in which the image is saved. The image classification learning unit 413 can acquire the circuit pattern image by accessing the input data path. If learning image data is to be added (Yes in S44), the process repeats from step S41. If learning image data is not to be added (No in S44), the process proceeds to step S45.

 画像分類学習部413は、学習用画像データを用いて画像分類モデル140をトレーニングする(S45)。例えば、取得された回路パターン画像及び指定されたキーワードから抽出される特徴量に基づき、各回路パターン画像をn次元の画像分類空間に投影することにより、互いに類似する複数の回路パターン画像を画像群に分類する。画像分類には、K-means法、混合正規分布、ウォード法、重心法、最短(最長)距離法、群平均法、教師あり学習を用いたパターン認識モデルSupport Vector Machineなどの手法が適用できる。あるいは、特徴量を求めることなく、深層学習による画像分類、トランスフォーマ技術を応用したChatGPTのような深層学習ネットワークといった手法を用いてもよい。作業員は、画像分類S45を実施するため、学習制御用パラメータ設定部511にて画像分類モデル140のトレーニングに必要なパラメータを設定する。設定が必要なパラメータの種類は、画像分類モデルに応じて異なるものになる。また、学習画面500の学習過程表示部521に、画像分類空間300を表示し、回路パターン画像の画像分類空間300への投影状況及び回路パターン画像の分類状況を表示するようにするとよい。画像分類学習部413は、分類された画像群を一意に特定する画像分類コード(ラベル)を付する。例えば、図11に示す画像群301~303に対して、画像分類コード1~3を付する。 The image classification learning unit 413 trains the image classification model 140 using the training image data (S45). For example, by projecting each circuit pattern image into an n-dimensional image classification space based on features extracted from the acquired circuit pattern image and specified keywords, multiple similar circuit pattern images are classified into image groups. Methods that can be applied to image classification include the K-means algorithm, mixed normal distribution, Ward's method, centroid method, shortest (longest) distance method, group average method, and the Support Vector Machine, a pattern recognition model using supervised learning. Alternatively, methods such as image classification using deep learning or deep learning networks such as ChatGPT, which apply transformer technology, may be used without obtaining features. To perform image classification S45, the worker sets the parameters required for training the image classification model 140 in the learning control parameter setting unit 511. The types of parameters that need to be set vary depending on the image classification model. Additionally, the learning progress display section 521 of the learning screen 500 may display the image classification space 300, and may display the projection status of the circuit pattern images into the image classification space 300 and the classification status of the circuit pattern images. The image classification learning section 413 assigns image classification codes (labels) that uniquely identify the classified image groups. For example, image classification codes 1 to 3 are assigned to the image groups 301 to 303 shown in FIG. 11.

 画像分類学習部413が設定した画像分類コード(この例では「1」~「3」)は、画像分類学習部413から暗号変換部405に転送され、暗号変換部405は画像分類コードに基づく暗号コード算出S46を実施する。 The image classification code ("1" to "3" in this example) set by the image classification learning unit 413 is transferred from the image classification learning unit 413 to the encryption conversion unit 405, which then performs encryption code calculation S46 based on the image classification code.

 一方、レシピ調整部409は、ステップS41で指定された検査用レシピから固有情報を削除して、ピュアレシピを作成する(S47)。 Meanwhile, the recipe adjustment unit 409 deletes the unique information from the inspection recipe specified in step S41 and creates a pure recipe (S47).

 レシピ登録部417は、画像分類モデル140及び、ステップS46で得られた暗号コード及びステップS47で得られたピュアレシピを用いて、レシピデータベース150(図8参照)を作成する。具体的には、画像分類コード1の画像群に含まれる回路パターン画像が、どの既存の検査用レシピの初期レシピで取得されたものであるかを特定し、当該画像分類コードのハッシュ値が登録された暗号化コードに対応するレシピ名152を特定し、そのピュアレシピを登録することで、レシピデータベース150を構成し、登録する(S48)。ハッシュ値からは元の画像分類コードを求めることができない。このため、レシピを作成する作業員にとって分かりやすいように画像分類コードとして実際にはユーザIPに関わる名称が用いられていても、その情報が外部に漏洩することはない。 The recipe registration unit 417 creates the recipe database 150 (see Figure 8) using the image classification model 140, the encryption code obtained in step S46, and the pure recipe obtained in step S47. Specifically, it identifies which existing inspection recipe's initial recipe the circuit pattern image included in the image group with image classification code 1 was acquired from, identifies the recipe name 152 corresponding to the encrypted code with the registered hash value of the image classification code, and registers that pure recipe, thereby constructing and registering the recipe database 150 (S48). The original image classification code cannot be determined from the hash value. For this reason, even if a name related to the user IP address is actually used as the image classification code to make it easier for the worker creating the recipe to understand, this information will not be leaked to the outside.

 (変形例)
 図12は、図4に示すレシピ作成装置130(運用フェーズ)の機能ブロック図と図9に示すレシピ作成装置130(準備フェーズ)の機能ブロック図とを統合した機能ブロック図に相当する。また、図12では、運用フェーズにおける機能ブロック間の作用を実線、準備フェーズにおける機能ブロック間の作用を破線にて示している。
(Modification)
Fig. 12 corresponds to a functional block diagram that integrates the functional block diagram of the recipe creation device 130 (operation phase) shown in Fig. 4 and the functional block diagram of the recipe creation device 130 (preparation phase) shown in Fig. 9. In Fig. 12, the actions between the functional blocks in the operation phase are indicated by solid lines, and the actions between the functional blocks in the preparation phase are indicated by dashed lines.

 例えば、本実施例において、パラメータ調整を行った検査用レシピが新たに新規レシピ保存部411によって保存されたとする。この場合、新たに作成された検査用レシピについて、上述した準備フェーズを実施して追加学習を行うことにより、画像分類モデル140及びレシピデータベース150を更新することができる。 For example, in this embodiment, assume that an inspection recipe for which parameters have been adjusted is newly saved by the new recipe saving unit 411. In this case, the image classification model 140 and recipe database 150 can be updated by carrying out the above-described preparation phase and performing additional learning on the newly created inspection recipe.

 実施例2では、複数の半導体検査システム801がネットワーク802を経由し、各半導体検査システム801が作成している画像分類モデル140及びレシピデータベース150を統合し、統合画像分類モデル812及び統合レシピデータベース813を作成する。通常、ユーザIPに係る情報はユーザの機密情報管理下にあり、例えば工場の外部に持ち出すことは許されていない。しかしながら、実施例1における半導体検査システム801では、画像分類モデル140はその出力が暗号コードに変換されることにより、またレシピデータベース150は画像分類コードが暗号コードに変換されて登録されていることにより、ユーザIPの情報を外部に漏洩しない形態で、外部に持ち出すことができる。実施例2では、本開示の方法の機密性の高さを利用して、複数の半導体検査システム801で作成した画像分類モデルを統合して、統合画像分類モデルを作成する。 In Example 2, multiple semiconductor inspection systems 801 integrate the image classification models 140 and recipe databases 150 created by each semiconductor inspection system 801 via network 802 to create an integrated image classification model 812 and an integrated recipe database 813. Normally, information related to a user IP is kept under confidential information management by the user and is not permitted to be taken outside the factory, for example. However, in the semiconductor inspection system 801 of Example 1, the output of the image classification model 140 is converted into an encrypted code, and the image classification code is converted into an encrypted code and registered in the recipe database 150, so that user IP information can be taken outside in a form that does not leak to the outside. In Example 2, the high confidentiality of the method disclosed herein is utilized to integrate the image classification models created by multiple semiconductor inspection systems 801 to create an integrated image classification model.

 図13Aには、3つの半導体検査システム801a~c及びレシピ作成ツール統合装置803がネットワーク802で結合されている様子を示している。ここで、半導体検査システム801a~bは同じ工場(FabXX)の互いに異なる生産ラインに配置された半導体検査システムであり、半導体検査システム801cは異なる工場(FabAA)のある生産ラインに配置された半導体検査システムである。また、図13Bに、レシピ作成ツール統合装置803の機能ブロック図を示す。レシピ作成ツール統合装置803もまた、図1Bに示す情報処理装置(コンピュータ)10により実現される。レシピ作成ツール統合装置803の一部、あるいはすべての機能をクラウド上のアプリケーションとして実現してもよい。 Figure 13A shows three semiconductor inspection systems 801a-c and a recipe creation tool integration device 803 connected via a network 802. Here, semiconductor inspection systems 801a-b are semiconductor inspection systems located on different production lines in the same factory (FabXX), and semiconductor inspection system 801c is a semiconductor inspection system located on a production line in a different factory (FabAA). Figure 13B also shows a functional block diagram of recipe creation tool integration device 803. Recipe creation tool integration device 803 is also realized by information processing device (computer) 10 shown in Figure 1B. Some or all of the functions of recipe creation tool integration device 803 may be realized as a cloud application.

 統合部811は、半導体検査システム801a~cのレシピ作成装置130のそれぞれが作成した画像分類モデル140について連合学習を行うことにより、統合画像分類モデル812を作成する。連合学習を行うことにより、レシピ作成ツール統合装置803には、例えば、画像分類モデル140のトレーニングに使用した学習用画像データなどの機密性の高い情報を外部装置であるレシピ作成ツール統合装置803に送ることなく、画像分類モデル140を取得して連合学習を行うことにより、統合画像分類モデルを作成することができる。統合部811は、連合学習により複数の画像分類空間を統合するとともに、各レシピ作成装置130が作成したレシピデータベース150を統合することにより、統合レシピデータベース813を作成する。これにより、複数の半導体検査システムのそれぞれで構築されたレシピ作成ツールを一つに集約でき、エンジニアの知識と経験の統合を実現できる。 The integration unit 811 creates an integrated image classification model 812 by performing federated learning on the image classification models 140 created by each of the recipe creation devices 130 of the semiconductor inspection systems 801a-c. By performing federated learning, the recipe creation tool integration device 803 can create an integrated image classification model by acquiring the image classification models 140 and performing federated learning without sending highly confidential information, such as learning image data used to train the image classification models 140, to the recipe creation tool integration device 803, which is an external device. The integration unit 811 integrates multiple image classification spaces through federated learning and creates an integrated recipe database 813 by integrating the recipe databases 150 created by each recipe creation device 130. This allows the recipe creation tools built by each of the multiple semiconductor inspection systems to be consolidated into one, integrating the knowledge and experience of engineers.

 図14に、統合部811に連合学習を行わせるためのGUIを示す。図14に示すGUIは、レシピ作成ツール統合装置803の表示装置に表示される。最初に連合学習画面600の連合学習情報指定部601において、連合学習の対象とする半導体検査システムの指定を行う。統合データパス指定部602にてデータパスを指定すると、レシピ作成ツール統合装置803がアクセス可能な半導体検査システムのリスト604が連合学習対象選択部603に表示される。作業員は、連合学習を行わせる半導体検査システムを指定し、学習開始ボタン605を押下することにより、連合学習が開始される。このとき、作業員は、連合学習制御用パラメータ設定部611にて連合学習に必要なパラメータを設定する。また、連合学習画面600の学習過程表示部621に、連合学習の進捗状況を表示するようにするとよい。 Figure 14 shows a GUI for causing the integration unit 811 to perform associative learning. The GUI shown in Figure 14 is displayed on the display device of the recipe creation tool integration device 803. First, in the associative learning information specification section 601 of the associative learning screen 600, the semiconductor inspection system to be the target of associative learning is specified. When a data path is specified in the integrated data path specification section 602, a list 604 of semiconductor inspection systems accessible by the recipe creation tool integration device 803 is displayed in the associative learning target selection section 603. The operator specifies the semiconductor inspection system for which associative learning is to be performed and presses the start learning button 605 to start associative learning. At this time, the operator sets the parameters required for associative learning in the associative learning control parameter setting section 611. It is also recommended that the progress of associative learning be displayed in the learning progress display section 621 of the associative learning screen 600.

 レシピ作成ツール統合装置803で作成された統合画像分類モデル812と統合レシピデータベース813は、ネットワーク802を経由し、半導体検査システム801a~cのレシピ作成装置130に送信し、画像分類モデル140及びレシピデータベース150として使用する。図15Aに、各半導体検査システム801のレシピ作成装置130が、レシピ作成ツール(画像分類モデル及びレシピデータベース)をレシピ作成ツール統合装置803が作成したレシピ作成ツール(統合画像分類モデル及び統合レシピデータベース)に更新するためのGUIを示す。図15Aに示すGUIは、レシピ作成装置130の表示装置に表示される。統合画像分類モデル及び統合レシピデータベースはその作成ごとに、元にした画像分類モデル及びレシピデータベースが異なっているので、統合部811の統合管理データベース815によってバージョン管理がなされている。例えば、図15Bに示すバージョン管理の例では、作成日付をキーとしてバージョン管理が行われている。なお、バージョン管理のキーは作成タイミングに限られず、例えば、複数の観点から検索可能としてもよい。作業員は、レシピ作成ツール更新画面700により、そのレシピ作成ツールを更新する。AIコンポーネントパス指定部701にてデータパスを指定すると、統合管理データベース815のバージョン管理情報を読み込み、連合学習対象選択部702にバージョンリスト703が表示される。バージョンリスト703の中のいずれかのバージョンを指定し、更新開始ボタン704を押下することにより、レシピ作成装置130のレシピ作成ツールの更新が開始される。 The integrated image classification model 812 and integrated recipe database 813 created by the recipe creation tool integration device 803 are transmitted via the network 802 to the recipe creation devices 130 of the semiconductor inspection systems 801a-c, where they are used as the image classification model 140 and recipe database 150. Figure 15A shows a GUI used by the recipe creation device 130 of each semiconductor inspection system 801 to update the recipe creation tool (image classification model and recipe database) to the recipe creation tool (integrated image classification model and integrated recipe database) created by the recipe creation tool integration device 803. The GUI shown in Figure 15A is displayed on the display device of the recipe creation device 130. Since the original image classification model and recipe database differ for each integrated image classification model and integrated recipe database, version management is performed by the integration management database 815 of the integration unit 811. For example, in the version management example shown in Figure 15B, version management is performed using the creation date as a key. Note that the key for version management is not limited to creation timing, and for example, search may be possible from multiple perspectives. The worker updates the recipe creation tool using the recipe creation tool update screen 700. When a data path is specified in the AI component path specification section 701, version management information from the integrated management database 815 is read, and a version list 703 is displayed in the federated learning target selection section 702. By specifying one of the versions in the version list 703 and pressing the update start button 704, the update of the recipe creation tool in the recipe creation device 130 begins.

 本開示は上記した実施の形態に限定されるものではなく、様々な変形が含まれる。例えば、上記した実施の形態は本開示を分かりやすくするために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例、変形例の構成の一部を他の実施例、変形例の構成に置き換えることが可能であり、また、ある実施例、変形例の構成に他の実施例、変形例の構成を加えることも可能である。また、各実施例、変形例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present disclosure is not limited to the above-described embodiments, but includes various modifications. For example, the above-described embodiments have been described in detail to make the present disclosure easier to understand, and are not necessarily limited to those including all of the configurations described. Furthermore, it is possible to replace part of the configuration of one embodiment or modification with the configuration of another embodiment or modification, and it is also possible to add the configuration of another embodiment or modification to the configuration of one embodiment or modification. Furthermore, it is possible to add, delete, or replace part of the configuration of each embodiment or modification with other configurations.

10:情報処理装置(コンピュータ)、11:プロセッサ(CPU)、12:メモリ、13:ストレージ装置、14:入力インタフェース、15:出力インタフェース、16:通信インタフェース、17:バス、101:撮像部、102:電子源、103:加速電極、105:1次電子ビーム、107:傾斜用偏向器、108:BSE検出器、109:試料、110:ステージ、111:A/D変換器、112:SE検出器、113:制御信号、114:デジタル信号、120:制御部、121:CPU、122:メモリ、123:画像処理ハードウェア、130:レシピ作成装置、140:画像分類モデル、150:レシピデータベース、151:暗号化コード、152:レシピ名、153:ピュアレシピ、200:レシピ作成画面、201:レシピ名指定部、202:OMアライメント調整部、203:SEMアライメント調整部、204:検査箇所指定部、205:欠陥検出機能選択部、206:SEM撮像パラメータ設定部、207:画質調整パラメータ調整部、211:AI提案取得ボタン、212:AI提案指定部、213,505:キーワード群、300:画像分類空間、301,302,303:画像群、311:座標、401:キーワード指定部、403:画像分類実行部、405:暗号変換部、407:レシピ探索部、409:レシピ調整部、411:新規レシピ保存部、413:画像分類学習部、417:レシピ登録部、500:学習画面、501:学習対象指定部、502:レシピ指定部、503:学習用画像データ取得部、504:注目特徴指定部、506:学習開始ボタン、511:学習制御用パラメータ設定部、521:学習過程表示部、600:連合学習画面、601:連合学習情報指定部、602:統合データパス指定部、603:連合学習対象選択部、604:リスト、605:学習開始ボタン、611:連合学習制御用パラメータ設定部、621:学習過程表示部、700:レシピ作成ツール更新画面、701:AIコンポーネントパス指定部、702:連合学習対象選択部、703:バージョンリスト、704:更新開始ボタン、801:半導体検査システム、802:ネットワーク、803:レシピ作成ツール統合装置、811:統合部、812:統合画像分類モデル、813:統合レシピデータベース、815:統合管理データベース。 10: Information processing device (computer), 11: Processor (CPU), 12: Memory, 13: Storage device, 14: Input interface, 15: Output interface, 16: Communication interface, 17: Bus, 101: Imaging unit, 102: Electron source, 103: Acceleration electrode, 105: Primary electron beam, 107: Tilt deflector, 108: BSE detector, 109: Sample, 110: Stage, 111: A/D converter, 112: SE detector, 113: Control signal, 114: Digital signal, 120: Control unit, 121: CPU, 122: Memory, 123: Image processing hardware hardware, 130: recipe creation device, 140: image classification model, 150: recipe database, 151: encryption code, 152: recipe name, 153: pure recipe, 200: recipe creation screen, 201: recipe name specification section, 202: OM alignment adjustment section, 203: SEM alignment adjustment section, 204: inspection location specification section, 205: defect detection function selection section, 206: SEM imaging parameter setting section, 207: image quality adjustment parameter adjustment section, 211: AI proposal acquisition button, 212: AI proposal specification section, 213, 505: keyword group, 300: image classification space, 30 1, 302, 303: Image group, 311: Coordinates, 401: Keyword specification unit, 403: Image classification execution unit, 405: Encryption conversion unit, 407: Recipe search unit, 409: Recipe adjustment unit, 411: New recipe storage unit, 413: Image classification learning unit, 417: Recipe registration unit, 500: Learning screen, 501: Learning target specification unit, 502: Recipe specification unit, 503: Learning image data acquisition unit, 504: Noteworthy feature specification unit, 506: Learning start button, 511: Learning control parameter setting unit, 521: Learning process display unit, 600: Associative learning screen, 601: Associative learning information specification unit, 602: Integration Combined data path designation unit, 603: federated learning target selection unit, 604: list, 605: learning start button, 611: federated learning control parameter setting unit, 621: learning process display unit, 700: recipe creation tool update screen, 701: AI component path designation unit, 702: federated learning target selection unit, 703: version list, 704: update start button, 801: semiconductor inspection system, 802: network, 803: recipe creation tool integration device, 811: integration unit, 812: integrated image classification model, 813: integrated recipe database, 815: integration management database.

Claims (19)

 荷電粒子線装置によりウェハ上の回路パターンの画像データを取得し、前記画像データの画像から前記回路パターンの検査または計測を行うシステムに、前記検査または計測を自動で行わせるレシピを作成するレシピ作成装置であって、
 画像分類モデルを用いて前記荷電粒子線装置によりデフォルト条件を含む第1初期レシピにしたがって取得された第1画像データの画像分類コードを求める画像分類実行部と、
 前記第1画像データの画像分類コードを非可逆な暗号手法により第1暗号コードに変換する暗号変換部と、
 前記第1暗号コードとレシピデータベースとを照合して推奨レシピを抽出するレシピ探索部とを有し、
 前記画像分類モデルは学習用画像データを用いてトレーニングされており、前記学習用画像データは、前記荷電粒子線装置により第2初期レシピにしたがって取得された画像データであり、前記第2初期レシピは、所定の検査または計測のために作成された既存レシピを、前記デフォルト条件を含むように変更したレシピであって、
 前記レシピデータベースは、画像分類コードを前記暗号変換部で前記暗号手法により変換した暗号コードと、当該画像分類コードに分類された学習用画像データの既存レシピから固有情報を削除した推奨レシピとを登録していることを特徴とするレシピ作成装置。
A recipe creation device that acquires image data of a circuit pattern on a wafer using a charged particle beam device, and creates a recipe for a system that inspects or measures the circuit pattern from an image of the image data to automatically perform the inspection or measurement,
an image classification execution unit that uses an image classification model to determine an image classification code of first image data acquired by the charged particle beam device according to a first initial recipe including default conditions;
a cryptographic conversion unit that converts the image classification code of the first image data into a first cryptographic code by a non-reversible cryptographic method;
a recipe search unit that compares the first encryption code with a recipe database to extract recommended recipes,
the image classification model is trained using learning image data, the learning image data being image data acquired by the charged particle beam device in accordance with a second initial recipe, the second initial recipe being a recipe obtained by modifying an existing recipe created for a predetermined inspection or measurement so as to include the default conditions,
The recipe database is characterized in that it registers an encrypted code obtained by converting an image classification code using the encryption method in the encryption conversion unit, and a recommended recipe obtained by deleting unique information from an existing recipe for learning image data classified with the image classification code.
 請求項1において、
 前記画像分類モデルは、前記第1画像データ及び前記第1画像データに付された第1キーワードに基づき、前記第1画像データの画像分類コードを求め、
 前記画像分類モデルは、前記学習用画像データ及び前記学習用画像データに付された第2キーワードを用いてトレーニングされており、
 前記第1キーワード及び前記第2キーワードは、前記画像データの画像に対して行われる画質改善処理の方向性を示すキーワードを含む、予め定められたキーワード群から選択されることを特徴とするレシピ作成装置。
In claim 1,
the image classification model determines an image classification code for the first image data based on the first image data and a first keyword assigned to the first image data;
the image classification model is trained using the training image data and a second keyword assigned to the training image data;
A recipe creation device characterized in that the first keyword and the second keyword are selected from a predetermined group of keywords including a keyword indicating a direction of image quality improvement processing to be performed on an image of the image data.
 請求項1において、
 前記レシピは、少なくとも前記荷電粒子線装置により前記画像データを取得するときの撮像用光学条件を規定する撮像パラメータと前記画像データの画像から前記回路パターンの検査または計測を行うときの検査または計測条件を規定する検査または計測パラメータとを含むことを特徴とするレシピ作成装置。
In claim 1,
The recipe creation device is characterized in that the recipe includes at least imaging parameters that specify the optical conditions for imaging when acquiring the image data using the charged particle beam device, and inspection or measurement parameters that specify the inspection or measurement conditions when inspecting or measuring the circuit pattern from an image of the image data.
 請求項3において、
 前記デフォルト条件は、前記撮像用光学条件及び前記検査あるいは計測条件を含むことを特徴とするレシピ作成装置。
In claim 3,
The recipe creating device is characterized in that the default conditions include the imaging optical conditions and the inspection or measurement conditions.
 請求項4において、
 前記第1初期レシピの前記デフォルト条件を、前記レシピ探索部で抽出された推奨レシピに置換することにより試行用レシピを作成するレシピ調整部をさらに有することを特徴とするレシピ作成装置。
In claim 4,
a recipe adjustment unit that creates a trial recipe by replacing the default conditions of the first initial recipe with the recommended recipe extracted by the recipe search unit;
 請求項5において、
 前記試行用レシピに含まれる撮像パラメータまたは検査または計測パラメータを調整して作成した新規レシピを保存する新規レシピ保存部をさらに有することを特徴とするレシピ作成装置。
In claim 5,
A recipe creating device further comprising a new recipe saving unit for saving a new recipe created by adjusting an imaging parameter or an inspection or measurement parameter included in the trial recipe.
 荷電粒子線装置によりウェハ上の回路パターンの画像データを取得し、前記画像データの画像から前記回路パターンの検査または計測を行うシステムに、前記検査または計測を自動で行わせるレシピを作成するレシピ作成装置であって、
 学習用画像データを用いて、前記画像データを分類する画像分類モデルをトレーニングする画像分類学習部と、
 前記画像分類モデルが分類する画像分類コードをそれぞれ非可逆な暗号手法により暗号コードに変換する暗号変換部と、
 前記画像分類コードを変換した暗号コードと推奨レシピとを対応付けて登録するレシピデータベースを作成するレシピ登録部とを有し、
 前記学習用画像データは、前記荷電粒子線装置により第2初期レシピにしたがって取得された画像データであり、前記第2初期レシピは、所定の検査または計測のために作成された既存レシピを、デフォルト条件を含むように変更したレシピであって、
 前記推奨レシピは、対応付けられた前記画像分類コードに分類された学習用画像データの前記既存レシピから固有情報を削除したことを特徴とするレシピ作成装置。
A recipe creation device that acquires image data of a circuit pattern on a wafer using a charged particle beam device, and creates a recipe for a system that inspects or measures the circuit pattern from an image of the image data to automatically perform the inspection or measurement,
an image classification learning unit that uses learning image data to train an image classification model that classifies the image data;
a cryptography conversion unit that converts each image classification code classified by the image classification model into a cryptography code using a non-reversible cryptography method;
a recipe registration unit that creates a recipe database in which the encryption code converted from the image classification code and the recommended recipes are registered in association with each other;
the learning image data is image data acquired by the charged particle beam device in accordance with a second initial recipe, the second initial recipe being a recipe obtained by modifying an existing recipe created for a predetermined inspection or measurement so as to include default conditions,
The recipe creation device is characterized in that the recommended recipe is obtained by deleting unique information from the existing recipe of the learning image data classified with the associated image classification code.
 請求項7において、
 前記レシピは、少なくとも前記荷電粒子線装置により前記画像データを取得するときの撮像用光学条件を規定する撮像パラメータと前記画像データの画像から前記回路パターンの検査または計測を行うときの検査または計測条件を規定する検査または計測パラメータとを含むことを特徴とするレシピ作成装置。
In claim 7,
The recipe creation device is characterized in that the recipe includes at least imaging parameters that specify the optical conditions for imaging when acquiring the image data using the charged particle beam device, and inspection or measurement parameters that specify the inspection or measurement conditions when inspecting or measuring the circuit pattern from an image of the image data.
 請求項8において、
 前記デフォルト条件は、前記撮像用光学条件及び前記検査あるいは計測条件を含むことを特徴とするレシピ作成装置。
In claim 8,
The recipe creating device is characterized in that the default conditions include the imaging optical conditions and the inspection or measurement conditions.
 請求項9において、
 前記画像分類モデルは、前記学習用画像データ及び前記学習用画像データに付された第2キーワードを用いてトレーニングされており、
 前記第2キーワードは、前記画像データの画像に対して行われる画質改善処理の方向性を示すキーワードを含む、予め定められたキーワード群から選択されることを特徴とするレシピ作成装置。
In claim 9,
the image classification model is trained using the training image data and a second keyword assigned to the training image data;
The recipe creating device is characterized in that the second keyword is selected from a predetermined group of keywords including a keyword indicating a direction of image quality improvement processing to be performed on an image of the image data.
 請求項10において、
 前記画像分類モデルを用いて前記荷電粒子線装置により前記デフォルト条件を含む第1初期レシピにしたがって取得された第1画像データの画像分類コードを求める画像分類実行部と、
 前記第1画像データの画像分類コードを前記暗号変換部で前記暗号手法により変換した第1暗号コードと前記レシピデータベースとを照合して推奨レシピを抽出するレシピ探索部とを有することを特徴とするレシピ作成装置。
In claim 10,
an image classification execution unit that uses the image classification model to determine an image classification code of first image data acquired by the charged particle beam device according to a first initial recipe including the default conditions;
a recipe search unit that compares a first cryptographic code obtained by converting the image classification code of the first image data using the cryptographic method in the cryptographic conversion unit with the recipe database to extract recommended recipes.
 請求項11において、
 前記画像分類モデルは、前記第1画像データ及び前記第1画像データに付された第1キーワードに基づき、前記第1画像データの画像分類コードを求め、
 前記第1キーワードは、前記キーワード群から選択されることを特徴とするレシピ作成装置。
In claim 11,
the image classification model determines an image classification code for the first image data based on the first image data and a first keyword assigned to the first image data;
The recipe creation device is characterized in that the first keyword is selected from the keyword group.
 請求項12において、
 前記第1初期レシピの前記デフォルト条件を、前記レシピ探索部で抽出された推奨レシピに置換することにより試行用レシピを作成するレシピ調整部をさらに有することを特徴とするレシピ作成装置。
In claim 12,
a recipe adjustment unit that creates a trial recipe by replacing the default conditions of the first initial recipe with the recommended recipe extracted by the recipe search unit;
 請求項13において、
 前記試行用レシピに含まれる撮像パラメータまたは検査または計測パラメータを調整して作成した新規レシピを保存する新規レシピ保存部をさらに有することを特徴とするレシピ作成装置。
In claim 13,
A recipe creating device further comprising a new recipe saving unit for saving a new recipe created by adjusting an imaging parameter or an inspection or measurement parameter included in the trial recipe.
 請求項14において、
 前記新規レシピが作成された場合に、前記新規レシピを前記レシピデータベースに追加するための追加学習を行うことを特徴とするレシピ作成装置。
In claim 14,
When the new recipe is created, the recipe creation device performs additional learning to add the new recipe to the recipe database.
 ウェハ上の回路パターンの画像データを取得し、前記画像データの画像から前記回路パターンの検査または計測を行う荷電粒子線装置及び前記検査または計測を自動で行わせるレシピを作成するレシピ作成装置を備えた、複数のシステムにネットワークで接続されるレシピ作成ツール統合装置であって、
 前記複数のシステムのそれぞれが備える前記レシピ作成装置は、
 学習用画像データを用いて、前記画像データを分類する画像分類モデルをトレーニングする画像分類学習部と、
 前記画像分類モデルが分類する画像分類コードをそれぞれ非可逆な暗号手法により暗号コードに変換する暗号変換部と、
 前記画像分類コードを変換した暗号コードと推奨レシピとを対応付けて登録するレシピデータベースを作成するレシピ登録部とを備え、
 前記レシピ作成ツール統合装置は、
 前記複数のシステムのそれぞれの前記レシピ作成装置から前記画像分類モデルを取得して連合学習をおこなって統合画像分類モデルを作成し、前記複数のシステムのそれぞれの前記レシピ作成装置から前記レシピデータベースを統合して統合レシピデータベースを作成する統合部を備え、
 前記学習用画像データは、前記荷電粒子線装置により第2初期レシピにしたがって取得された画像データであり、前記第2初期レシピは、所定の検査または計測のために作成された既存レシピを、デフォルト条件を含むように変更したレシピであって、
 前記推奨レシピは、対応付けられた前記画像分類コードに分類された学習用画像データの前記既存レシピから固有情報を削除したことを特徴とするレシピ作成ツール統合装置。
A recipe creation tool integration device connected to a plurality of systems via a network, the recipe creation tool integration device comprising: a charged particle beam device that acquires image data of a circuit pattern on a wafer and inspects or measures the circuit pattern from the image of the image data; and a recipe creation device that creates a recipe for automatically performing the inspection or measurement,
the recipe creation device provided in each of the plurality of systems,
an image classification learning unit that uses learning image data to train an image classification model that classifies the image data;
a cryptography conversion unit that converts each image classification code classified by the image classification model into a cryptography code using a non-reversible cryptography method;
a recipe registration unit that creates a recipe database in which the encryption code converted from the image classification code and the recommended recipes are registered in association with each other;
The recipe creation tool integration device includes:
an integration unit that acquires the image classification model from each of the recipe creation devices of the plurality of systems, performs federated learning to create an integrated image classification model, and integrates the recipe databases from each of the recipe creation devices of the plurality of systems to create an integrated recipe database;
the learning image data is image data acquired by the charged particle beam device in accordance with a second initial recipe, the second initial recipe being a recipe obtained by modifying an existing recipe created for a predetermined inspection or measurement so as to include default conditions,
The recipe creation tool integration device is characterized in that the recommended recipe is obtained by deleting unique information from the existing recipe of the learning image data classified with the associated image classification code.
 請求項16において、
 前記統合部は、前記複数のシステムのうち、前記画像分類モデル及び前記レシピデータベースを統合するシステムを選択可能とされることを特徴とするレシピ作成ツール統合装置。
In claim 16,
The recipe creation tool integration device is characterized in that the integration unit is capable of selecting a system from the plurality of systems to integrate the image classification model and the recipe database.
 請求項16において、
 前記統合部は、作成タイミングをキーとして、前記統合画像分類モデル及び前記統合レシピデータベースをバージョン管理することを特徴とするレシピ作成ツール統合装置。
In claim 16,
The recipe creation tool integration device is characterized in that the integration unit performs version management of the integrated image classification model and the integrated recipe database using creation timing as a key.
 請求項16において、
 前記複数のシステムのそれぞれが備える前記レシピ作成装置の前記画像分類モデル及び前記レシピデータベースをそれぞれ、前記統合画像分類モデル及び前記統合レシピデータベースに更新するため、前記統合画像分類モデル及び前記統合レシピデータベースを前記レシピ作成装置に送信することを特徴とするレシピ作成ツール統合装置。
In claim 16,
A recipe creation tool integration device characterized by transmitting the integrated image classification model and the integrated recipe database to the recipe creation device in order to update the image classification model and the recipe database of the recipe creation device provided in each of the multiple systems to the integrated image classification model and the integrated recipe database, respectively.
PCT/JP2024/002514 2024-01-26 2024-01-26 Recipe creation device and recipe creation tool integration device Pending WO2025158668A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2024/002514 WO2025158668A1 (en) 2024-01-26 2024-01-26 Recipe creation device and recipe creation tool integration device
TW113150204A TW202531418A (en) 2024-01-26 2024-12-23 Recipe making device and recipe making tool integrated device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2024/002514 WO2025158668A1 (en) 2024-01-26 2024-01-26 Recipe creation device and recipe creation tool integration device

Publications (1)

Publication Number Publication Date
WO2025158668A1 true WO2025158668A1 (en) 2025-07-31

Family

ID=96545081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/002514 Pending WO2025158668A1 (en) 2024-01-26 2024-01-26 Recipe creation device and recipe creation tool integration device

Country Status (2)

Country Link
TW (1) TW202531418A (en)
WO (1) WO2025158668A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517807A (en) * 2008-03-08 2011-06-16 東京エレクトロン株式会社 Biology-based autonomous learning tool
WO2022264195A1 (en) * 2021-06-14 2022-12-22 株式会社日立ハイテク Computer system, dimension measurement method, and storage medium
JP7298016B2 (en) * 2020-03-30 2023-06-26 株式会社日立ハイテク diagnostic system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517807A (en) * 2008-03-08 2011-06-16 東京エレクトロン株式会社 Biology-based autonomous learning tool
JP7298016B2 (en) * 2020-03-30 2023-06-26 株式会社日立ハイテク diagnostic system
WO2022264195A1 (en) * 2021-06-14 2022-12-22 株式会社日立ハイテク Computer system, dimension measurement method, and storage medium

Also Published As

Publication number Publication date
TW202531418A (en) 2025-08-01

Similar Documents

Publication Publication Date Title
KR102218364B1 (en) Pattern inspection system
US12085523B2 (en) Adaptive specimen image acquisition using an artificial neural network
US11836906B2 (en) Image processing system and computer program for performing image processing
US20130294680A1 (en) Image classification method and image classification apparatus
US9401015B2 (en) Defect classification method, and defect classification system
JP4199939B2 (en) Semiconductor inspection system
TWI821330B (en) Multimode defect classification in semiconductor inspection
KR20080065584A (en) Method and system for the establishment of inspection recipe
US9280814B2 (en) Charged particle beam apparatus that performs image classification assistance
IL154676A (en) Method for classifying defects
JP2023002201A (en) Sample observation device and method
WO2025158668A1 (en) Recipe creation device and recipe creation tool integration device
WO2016092614A1 (en) Defect inspection device, display device, and defect classification device
JP2019067365A (en) IMAGE PROCESSING APPARATUS, IMAGE PROCESSING SYSTEM, IMAGE PROCESSING METHOD, AND PROGRAM
JP7438311B2 (en) Image processing system and image processing method
TW201713937A (en) Range-based real-time scanning electron microscope non-visual binner
JP4262288B2 (en) Pattern matching method and apparatus
US20090030867A1 (en) Reviewing apparatus, recipe setting method for reviewing apparatus and reviewing system
CN105717789A (en) Control System For A Microscope And Method For Controlling A Microscope
WO2021075152A1 (en) Defect-classifying device and defect-classifying program
US20250124566A1 (en) Defect Inspection System and Defect Inspection Method
WO2025258074A1 (en) Image information management device
JP2025174458A (en) Information processing system, information processing method, and program
WO2023188803A1 (en) Automatic defect classification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24920218

Country of ref document: EP

Kind code of ref document: A1