WO2025033237A1 - Information processing device, information processing system, information processing method, and recording medium - Google Patents
Information processing device, information processing system, information processing method, and recording medium Download PDFInfo
- Publication number
- WO2025033237A1 WO2025033237A1 PCT/JP2024/026994 JP2024026994W WO2025033237A1 WO 2025033237 A1 WO2025033237 A1 WO 2025033237A1 JP 2024026994 W JP2024026994 W JP 2024026994W WO 2025033237 A1 WO2025033237 A1 WO 2025033237A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- point cloud
- information
- dimensional point
- dimensional
- captured image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/70—Labelling scene content, e.g. deriving syntactic or semantic representations
Definitions
- This disclosure relates to an information processing device, an information processing system, an information processing method, and a recording medium.
- Patent Document 1 discloses a point cloud information processing device for improving robustness in aligning multiple pieces of point cloud information.
- the point cloud information processing device includes an image analysis unit, a point cloud labeling unit, and a point cloud integration unit.
- the image analysis unit analyzes image information captured from different viewpoints, recognizes different areas in each image, labels each area, and generates labeled image information.
- the point cloud labeling unit generates labeled point cloud information by labeling each point in the point cloud information from different viewpoints with a label of the corresponding area in the labeled image information based on the positional information of each point.
- the point cloud integration unit aligns the labeled point cloud information using labels that are common to multiple labeled point cloud information.
- the information processing device includes: a first acquisition means for generating a two-dimensional point cloud by converting the three-dimensional point cloud based on the radar information; a second acquisition means for acquiring, based on a captured image captured using light, a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud and label information assigned to an object included in the two-dimensional captured image; an assignment means for assigning the label information to the two-dimensional point cloud based on a positional relationship between the two-dimensional point cloud and the object in the two-dimensional captured image; and an output means for outputting output information in which the label information is added to a point cloud based on the radar information.
- the information processing system includes: a moving object that moves to generate the radar information by scanning a scanning area using a radar; an imaging device for imaging the scanning region to generate the imaging image;
- the information processing device includes: The moving body is a transmitting means for transmitting the radar to the scanning area; a receiving means for receiving the reflected wave of the transmitted radar and generating the radar information relating to the reflected wave; and transmitting means for transmitting the generated radar information.
- the information processing method includes: One or more computers A two-dimensional point cloud is generated by converting the three-dimensional point cloud based on the radar information; acquiring a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud and label information assigned to an object included in the two-dimensional captured image based on a captured image captured using light; assigning the label information to the two-dimensional point cloud based on a positional relationship between the two-dimensional point cloud and the object in the two-dimensional captured image; Output information is output in which the label information is added to a point cloud based on the radar information.
- the recording medium in the present disclosure is On one or more computers, A two-dimensional point cloud is generated by converting the three-dimensional point cloud based on the radar information; acquiring a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud and label information assigned to an object included in the two-dimensional captured image based on a captured image captured using light; assigning the label information to the two-dimensional point cloud based on a positional relationship between the two-dimensional point cloud and the object in the two-dimensional captured image; A program for executing the process of outputting output information in which the label information is added to a point cloud based on the radar information is recorded.
- This disclosure makes it possible to easily assign label information to point clouds.
- FIG. 1 is a block diagram illustrating a configuration example of a first information processing system according to the present disclosure.
- 1 is a block diagram showing a configuration example of a first information processing device according to the present disclosure.
- 11 is a flowchart illustrating an example of a processing operation of the first information processing device according to the present disclosure.
- 1A is a diagram showing an example of an image including a two-dimensional point cloud obtained by projecting a three-dimensional point cloud onto a two-dimensional point cloud on a projection plane
- FIG. 1B is a diagram showing an example of an image including a two-dimensional point cloud to which a frame surrounding an object has been added.
- FIG. 13 is a diagram showing an example of a two-dimensional captured image to which a frame surrounding an object has been added.
- FIG. 2 is a diagram illustrating an example of a physical configuration of a first information processing device according to the present disclosure.
- 2 is a block diagram showing a configuration example of a first acquisition unit according to the present disclosure.
- FIG. 10 is a flowchart illustrating an example of a processing operation of a first acquisition unit according to the present disclosure.
- 4 is a block diagram showing an example configuration of a second acquisition unit according to the present disclosure.
- FIG. 10 is a flowchart illustrating an example of a processing operation of a second acquisition unit according to the present disclosure.
- the information processing system 100 includes a moving object 110, an image capturing device 120, and an information processing device 130.
- the mobile body 110 moves to generate radar information by scanning a scanning area using a radar.
- the mobile body 110 includes a transmitter 111, a receiver 112, and a transmitter 113.
- the transmitter 111 transmits radar waves into the scanning area.
- the receiver 112 receives the reflected waves of the transmitted radar and generates radar information related to the reflected waves.
- the transmitter 113 transmits the generated radar information.
- the imaging device 120 is a device for capturing images of the scanning area and generating a captured image.
- the information processing device 130 includes a first acquisition unit 131, a second acquisition unit 132, an assignment unit 133, and an output unit 134.
- the first acquisition unit 131 generates a two-dimensional point cloud by converting the three-dimensional point cloud based on the radar information.
- the second acquisition unit 132 acquires, based on an image captured using light, a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud, and label information assigned to objects included in the two-dimensional captured image.
- the assignment unit 133 assigns label information to the two-dimensional point cloud based on the positional relationship between the two-dimensional point cloud and the object in the two-dimensional captured image.
- the output unit 134 outputs output information in which label information is added to the point cloud based on the radar information.
- This information processing system 100 can assign label information to a point cloud using a captured image. At least one captured image is sufficient. This makes it easy to assign label information to a point cloud.
- this information processing device 130 can assign label information to a point cloud using a captured image. At least one captured image is sufficient. This makes it easy to assign label information to a point cloud.
- the information processing device 130 executes information processing as shown in FIG. 3.
- the first acquisition unit 131 generates a two-dimensional point cloud by converting the three-dimensional point cloud based on the radar information (step S101).
- the second acquisition unit 132 acquires, based on the captured image captured using light, a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud, and label information assigned to objects included in the two-dimensional captured image (step S102).
- the assignment unit 133 assigns label information to the two-dimensional point cloud based on the positional relationship between the two-dimensional point cloud and the object in the two-dimensional captured image (step S103).
- the output unit 134 outputs output information in which label information is added to the point cloud based on the radar information (step S104).
- This information processing allows label information to be added to a point cloud using a captured image. At least one captured image is sufficient. This makes it easy to add label information to a point cloud.
- the moving body 110 is an air vehicle such as a drone that moves by remote control or operation by an operator or automatically according to a predetermined algorithm, etc.
- the moving body 110 may be equipped with devices, apparatuses, etc. that realize the functions of a transmitting unit 111, a receiving unit 112, a transmitting unit 113, etc.
- the moving body 110 is not limited to an aircraft, and may be a vehicle such as an automobile.
- the moving body 110 may further include a movement control unit (not shown) for controlling its movement.
- millimeter waves which are radio waves with wavelengths of 1 to 10 mm (millimeters).
- One characteristic of millimeter waves is that they penetrate materials better than light.
- Light includes visible light and infrared light, and this also applies below.
- radar can use radio waves of various wavelengths, not just millimeter waves.
- microwaves can be used, or microwaves with wavelengths longer than light.
- Microwaves are radio waves with wavelengths of 1 meter or less, such as ultra-high frequency waves, centimeter waves, millimeter waves, and submillimeter waves.
- Ultra-high frequency waves, centimeter waves, and submillimeter waves have wavelengths of 0.1 to 1 m (meters), 1 to 10 cm (centimeters), and 0.1 to 1 mm, respectively.
- the scanning area is an area that is predetermined to be scanned by the radar.
- the scanning area may be, for example, outdoors or indoors.
- the scanning area may be an area where a metal object or the like may be placed on the ground surface or may be partially or completely buried underground.
- the metal object or the like can be detected using radar information obtained by scanning such a scanning area with a radar.
- the scanning area may be a predetermined area of a building or the like.
- radar information obtained by scanning such a scanning area with a radar it is possible to detect the condition of pipes, reinforcing bars, etc. arranged inside or outside the walls of the building or the like, and to discover abnormalities in the pipes, reinforcing bars, etc.
- buildings include, but are not limited to, buildings and bridges.
- the mobile body 110 moves while the transmitter 111 emits radar and the receiver 112 receives the reflected waves. This allows the radar to scan the scanning area and obtain radar information related to the reflected waves.
- radar information is information obtained using the mobile body 110, and more specifically, information obtained using an aircraft such as a drone, a vehicle, etc.
- the mobile object 110 may transmit radar waves and receive the reflected waves while flying at a height of about 10 m.
- Various common methods may be used for the radar transmission method. Examples of radar transmission methods include frequency-controlled modulation (FMCW), pulse, continuous wave Doppler (CWD), two-frequency CW, and pulse compression.
- FMCW frequency-controlled modulation
- CWD continuous wave Doppler
- two-frequency CW two-frequency CW
- pulse compression two-frequency CW
- the transmitter 113 transmits the radar information to the information processing device 130, for example, via the network NT1.
- the network NT1 is typically a wireless line, but may also include at least a wired line in part.
- the transmitter 113 may transmit the radar information in real time, or may transmit multiple pieces of radar information generated at different times together.
- Radar information is, for example, information about the reflected waves of the radar emitted into the scanning space.
- radar information associates one or more of the intensity of the reflected waves, the observation position, the observation direction, the observation time, etc.
- the observation position is the position in real space where the observation is performed, and may be at least one of the following: the radar transmission position, the reception position of the reflected wave, a position obtained using the transmission position and reception position, such as a position midway between the transmission position and reception position.
- the observation position is expressed, for example, by latitude, longitude, height, etc., and may be obtained by equipping the mobile body 110 with a GPS (Global Positioning System) function. Note that the observation position is not limited to the examples given here.
- the observation direction may be at least one of the radar transmission direction, the reflected wave reception direction, a direction obtained using the transmission direction and reception direction, etc.
- the receiver 112 may include one or more antennas to obtain the reception direction.
- the observation time is information indicating the time of observation, for example, the observation time.
- the observation time may be at least one of the following: the radar transmission time (for example, the transmission time), the reception time of the reflected wave (for example, the transmission time), a time associated with the transmission time and the reception time, such as midway between the transmission time and the reception time.
- the observation time may be obtained by providing the mobile body 110 with a timekeeping function.
- the image capturing device 120 is a device for capturing an image of the operation area using light.
- the light includes visible light and infrared light.
- the image capturing device 120 is a visible light camera.
- the image capturing device 120 is an infrared camera, a near infrared camera, or a far infrared camera, respectively.
- the imaging device 120 generates an image of the scanning area and transmits the image to the information processing device 130, for example, via the network NT2.
- the captured image is, for example, a color image such as an RGB image.
- the captured image may also be a monochrome image.
- Network NT2 is typically a wireless line, but may include at least a wired line. Note that network NT1 and network NT2 may be partly or entirely a common network, or partly or entirely different networks.
- the image capturing device 120 may be fixed in position, or may be mounted on the above-mentioned mobile body 110 or a mobile body different from the mobile body 110.
- This mobile body may be an aerial vehicle such as a drone, or a vehicle such as an automobile.
- this mobile body may move by remote control or operation by an operator, or automatically by a predetermined algorithm, etc.
- the imaging device 120 is mounted on a moving body, it is preferable to image the scanning area by having the imaging device 120 capture images while moving.
- the imaging device 120 may capture images of the scanning area while moving.
- the imaging device 120 may transmit captured images in real time, or may transmit multiple images captured at different times together.
- the photographing device 120 may transmit photographing information that associates at least one of the photographing location and the photographing time with the photographed image.
- the shooting position is the position in real space where the image was captured.
- the shooting position is expressed, for example, by latitude, longitude, and altitude, and may be obtained by equipping the image capture device 120 or a mobile object carrying the image capture device 120 with a GPS (Global Positioning System) function. Note that the shooting position is not limited to the example given here.
- the first acquisition unit 131 (Example of functional configuration of information processing device 130) (Regarding the first acquisition unit 131)
- the first acquisition unit 131 generates a three-dimensional point cloud based on, for example, radar information transmitted from the transmission unit 113, and generates a two-dimensional point cloud by converting the three-dimensional point cloud.
- the first acquisition unit 131 generates three-dimensional information related to the three-dimensional point cloud based on the radar information transmitted from the transmission unit 113.
- the three-dimensional point cloud is a cloud of points in three-dimensional space that corresponds to the scanned area.
- the scanned area may be within an object, such as within the walls of a building, or may be underground.
- the three-dimensional point cloud may include a cloud of points that indicate within an object, such as within the walls of a building, or underground.
- the three-dimensional information is information in which a three-dimensional point cloud and a certainty factor are associated.
- the certainty factor is a value corresponding to the likelihood that an object exists in the associated three-dimensional point cloud.
- the certainty factor may be calculated according to the intensity of the reflected wave in the three-dimensional point cloud, and is, for example, a value indicating the probability that an object exists in the three-dimensional point cloud.
- the three-dimensional point cloud may be represented by identification information for identifying each of the three-dimensional point clouds and the position of each of the three-dimensional point clouds.
- the three-dimensional information is information that associates the identification information for identifying each of the three-dimensional point clouds, the position of each of the three-dimensional point clouds, and the reliability.
- the first acquisition unit 131 may, for example, calculate the distance at each point in the three-dimensional space using a fast Fourier transform (FFT) based on the radar information, and integrate the calculated distances to calculate the angle or position. Also, for example, the first acquisition unit 131 may determine, for each three-dimensional space, a reliability value that is larger the more an object exists at each point in the three-dimensional space, based on the radar information. This allows the first acquisition unit 131 to generate three-dimensional information.
- FFT fast Fourier transform
- the multiple pieces of radar information may be generated and transmitted by each of the multiple mobile bodies 110.
- the mobile body 110 may also have multiple sets of transmitters 111 and receivers 112.
- the multiple pieces of radar information may be generated by each of the multiple sets of transmitters 111 and receivers 112 and transmitted from one or multiple transmitters 113.
- the first acquisition unit 131 generates two-dimensional information related to the two-dimensional point cloud, for example, by converting the three-dimensional point cloud.
- This transformation is a projection onto a predetermined projection plane.
- the two-dimensional point cloud is a point cloud in which a three-dimensional point cloud is projected onto a projection plane.
- Figure 4(a) shows an example of projecting a three-dimensional point cloud onto a two-dimensional point cloud on a projection plane.
- the projection plane is a plane that corresponds to the ground surface included in the scanning area or a plane parallel to the ground surface at a predetermined distance in either the up or down direction from the ground surface.
- a general technique for transforming an image such as an affine transformation or a homography transformation.
- the conversion from a three-dimensional point cloud to a two-dimensional point cloud is not limited to a general technique for transforming an image, and for example, a technique for transforming a coordinate system may also be used.
- the projection plane is not limited to the one exemplified here, and for example does not have to be parallel to the earth's surface, and may be defined using altitude, etc., instead of distance to the earth's surface.
- the two-dimensional information is information for associating, for each two-dimensional point cloud, at least a portion of the following: identification information for identifying each two-dimensional point cloud, a position on the projection plane, a corresponding three-dimensional point cloud, and a confidence level, which is a value corresponding to the likelihood that an object exists.
- the corresponding 3D point cloud is information about the 3D point cloud from which it is projected.
- the corresponding three-dimensional point clouds may be identification information for identifying each of the three-dimensional point clouds. This makes it possible to associate each piece of information included in the three-dimensional information with each of the two-dimensional point clouds using the identification information and the three-dimensional information.
- the corresponding three-dimensional point cloud may include one or more of the pieces of information included in the three-dimensional information, namely, identification information for identifying each of the three-dimensional point clouds, the position of each of the three-dimensional point clouds, and the reliability.
- the two-dimensional information can directly include information on the corresponding three-dimensional point cloud, thereby associating information on the three-dimensional point cloud from which it is projected.
- the degree of confidence contained in the two-dimensional information may be set based on the degree of confidence assigned to the corresponding three-dimensional point cloud.
- the degree of confidence contained in the two-dimensional information may be the same as the degree of confidence assigned to the corresponding three-dimensional point cloud, for example.
- multiple 3D point groups may be projected onto a common position on the projection plane.
- the corresponding 3D point cloud may be the plurality of 3D point clouds, or may be a 3D point cloud that is representative of the plurality of 3D point clouds (e.g., the 3D point cloud closest to the projection plane, the 3D point cloud associated with the greatest confidence, etc.).
- the confidence level included in the two-dimensional information may be, for example, the average of the confidence levels associated with the plurality of such three-dimensional point clouds. If the corresponding three-dimensional point cloud is a three-dimensional point cloud closest to the projection plane, the confidence level included in the two-dimensional information may be, for example, the confidence level associated with the closest three-dimensional point cloud. If the corresponding three-dimensional point cloud is a three-dimensional point cloud with which the maximum confidence level is associated, the confidence level included in the two-dimensional information may be, for example, the confidence level of the three-dimensional point cloud.
- the second acquisition unit 132 acquires a two-dimensional captured image and label information assigned to an object included in the two-dimensional captured image based on the captured image of the scanning area transmitted from the imaging device 120 .
- a two-dimensional captured image is an image obtained by deforming the captured image of the scanning area so that the coordinate system used for the captured image of the scanning area is a common coordinate system for the two-dimensional point cloud.
- a two-dimensional captured image can also be said to be a captured image of the scanning area expressed in a common coordinate system for the two-dimensional point cloud.
- the captured image may also be a two-dimensional image, but in this disclosure, in order to distinguish between images before and after deformation, the image before deformation is referred to as the captured image, and the image after deformation is referred to as the two-dimensional captured image.
- the target object is a predefined object.
- the target object may be any object that may be present in the scanning area.
- the label information may include at least one of class identification information and class confidence.
- Class identification information is information for identifying the class (type of object) to which an object belongs.
- the class (type of object) may be one or more of, for example, metal objects, plants, rocks, etc.
- the class identification information may be represented, for example, by one or more combinations of letters, numbers, symbols, etc. that are assigned in advance to each class.
- the class confidence is a value that indicates the likelihood that an object belongs to a class, and is expressed, for example, as a continuous value in a predetermined range.
- Such label information may be obtained by human input or automatically using an object detection model.
- the object detection model is a machine learning model for detecting objects and assigning class information to the objects, and when an image is input, it may output class information associated with the object contained in the image.
- the object detection model may perform learning using a learning image and ground truth data that includes class information of the object in the image.
- Such an object detection model may be a general machine learning model for detecting objects from images.
- Examples of techniques that may be applied to such object detection models include R-CNN, YOLO, SSD, Fast R-CNN, and Faster R-CNN.
- label information for the object may be assigned by placing a marker on the ground that indicates the object's position, and the label information may be assigned to the buried object through human input or automatic detection using an object detection model.
- the label information may be associated with the position of a frame (e.g., a rectangular frame circumscribing the object) surrounding the object in the two-dimensional captured image.
- FIG. 5 is a diagram showing an example of a two-dimensional captured image to which a frame surrounding the object has been added.
- the area corresponding to the object in the two-dimensional captured image (the image of the second areas Qa to Qc) is shown by hatching.
- the label information may further include the position of the frame surrounding the object in the two-dimensional captured image.
- the frame is not limited to a rectangle, and the shape, etc. may be changed as appropriate.
- the label information may be associated with each pixel corresponding to an object.
- the label information may be associated with the position of a frame that surrounds the object in the two-dimensional captured image (e.g., a rectangular frame that circumscribes the object).
- the label information may be associated with a region (mask) that corresponds to the object in the two-dimensional captured image.
- the assigning unit 133 assigns label information to the two-dimensional point cloud based on the positional relationship between the two-dimensional point cloud and an object in the two-dimensional captured image.
- the two-dimensional point cloud and the two-dimensional captured image share a common coordinate system. Therefore, for example, the two-dimensional point cloud included in the region of the object in the two-dimensional captured image may be regarded as a point cloud corresponding to the object, and the assigning unit 133 may assign label information to the two-dimensional point cloud.
- the label information may be associated with each of the two-dimensional point clouds.
- the label information may be associated with the position of a frame (e.g., a rectangular frame circumscribing the object) that surrounds the object in the two-dimensional point cloud.
- the point cloud corresponding to the object is shown as a set of points.
- the label information may further include the position of the frame that surrounds the object in the two-dimensional point cloud.
- the frame is not limited to a rectangle, and the shape, etc., may be changed as appropriate.
- the label information is not limited to a frame that surrounds the object, and may be associated with at least one of the two-dimensional point clouds in an appropriate manner, such as a region (mask) that corresponds to the object in the two-dimensional point cloud.
- the assigning unit 133 may assign label information to the two-dimensional point cloud associated with the degree of certainty.
- the label information may be assigned to the two-dimensional point cloud whose degree of certainty is equal to or greater than a predetermined reference value.
- the assigning unit 133 may assign the label information to a three-dimensional point group corresponding to the two-dimensional point group to which the label information is assigned, using the two-dimensional point group to which the label information is assigned and the two-dimensional information. This allows the label information to be assigned to the three-dimensional point group.
- the label information may be assigned to the two-dimensional point group based on the positional relationship, and may be assigned to the three-dimensional point group associated with the two-dimensional point group by the two-dimensional information.
- the label information may be associated with each of the three-dimensional point clouds.
- the label information may be associated with the position of a frame that surrounds an object in the three-dimensional point cloud (e.g., a rectangular frame that circumscribes the object).
- the label information may be associated with a region (mask) that corresponds to the object in the three-dimensional point cloud.
- the assigning unit 133 may assign label information to a point group in a specific region different from the two-dimensional point group and the three-dimensional point group based on the two-dimensional point group to which the label information has been assigned. That is, the label information may be further assigned to a point group in a specified specific region based on the two-dimensional point group to which the label information has been assigned.
- the specific area is an area that is appropriately specified.
- a specific plane different from the projection plane may be specified, and the specific area may be defined based on the specific plane.
- the specific plane may be specified, for example, using a distance from the ground surface (e.g., height).
- the specific area is, for example, an area in the vicinity of the specific plane.
- the specific area is an area within a predetermined range in the vertical direction from the specific plane. This predetermined range may be a height specified by the user, or may be determined in advance.
- the label information may be associated with each point cloud of the specific region.
- the label information may be associated with the position of a frame that surrounds an object in the point cloud of the specific region (e.g., a rectangular frame that circumscribes the object).
- the label information may be associated with a region (mask) that corresponds to the object in the point cloud of the specific region.
- the label information may be preferentially selected from the two-dimensional point clouds with the highest reliability associated with them, and assigned to the point cloud of the specific region corresponding to the selected two-dimensional point cloud.
- the output unit 134 outputs output information in which label information is added to a point cloud based on the radar information.
- This point cloud may be one or more of a two-dimensional point cloud, a three-dimensional point cloud, and a point cloud within a specific region.
- the output information may be information in which label information is added to a two-dimensional point cloud.
- the output information may be information in which label information is added to a three-dimensional point cloud.
- the output information may be information in which label information is added to a point cloud within a specific region.
- the destination of the output information may be one or more of another device connected via a network, a storage unit (not shown), a display unit (not shown), etc.
- a storage unit not shown
- a display unit not shown
- Each of the storage unit and the display unit may be provided in the other device.
- the information processing device 130 physically includes, for example, a bus 1010, a processor 1020, a memory 1030, a storage device 1040, a network interface 1050, an input interface 1060, and an output interface 1070.
- the bus 1010 is a data transmission path for the processor 1020, memory 1030, storage device 1040, network interface 1050, input interface 1060, and output interface 1070 to transmit and receive data to and from each other.
- the method of connecting the processor 1020 and other components to each other is not limited to bus connection.
- the processor 1020 is a processor realized by a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit).
- Memory 1030 is a main storage device realized by a RAM (Random Access Memory) or the like.
- the storage device 1040 is an auxiliary storage device realized by a hard disk drive (HDD), a solid state drive (SSD), a memory card, or a read only memory (ROM).
- the storage device 1040 stores program modules for realizing the functions of the information processing device 130 that includes it.
- the processor 1020 loads each of these program modules into the memory 1030 and executes them to realize the function corresponding to that program module.
- the network interface 1050 is an interface for connecting the information processing device 130 that is equipped with it to the network NT.
- the input interface 1060 is an interface through which the user inputs information.
- the input interface 1060 is composed of, for example, a touch panel, a keyboard, a mouse, etc.
- the output interface 1070 is an interface for presenting information to the user.
- the output interface 1070 is composed of, for example, a liquid crystal panel, an organic EL (Electro-Luminescence) panel, etc.
- the physical configuration of the information processing device 130 is not limited to this.
- the information processing device 130 may be composed of multiple devices.
- each device may be, for example, a computer or the like having a similar physical configuration to the information processing device 130 shown in FIG. 6.
- the information processing device 130 includes the first acquisition unit 131, the second acquisition unit 132, the assignment unit 133, and the output unit 134.
- the first acquisition unit 131 generates a two-dimensional point cloud by converting the three-dimensional point cloud based on the radar information.
- the second acquisition unit 132 acquires a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud and label information assigned to objects included in the two-dimensional captured image based on an image captured using light.
- the assignment unit 133 assigns label information to the two-dimensional point cloud based on the positional relationship between the two-dimensional point cloud and the objects in the two-dimensional captured image.
- the output unit 134 outputs output information in which label information has been assigned to the point cloud based on the radar information.
- the two-dimensional point cloud is a point cloud in which the three-dimensional point cloud is projected onto a projection plane.
- label information is further added to the 3D point cloud.
- the output information is information in which the label information is added to the 3D point cloud.
- output information in which label information has been added to the 3D point cloud can be used, for example, as training data when training a machine learning model to detect objects contained in a 3D point cloud using the 3D point cloud as input.
- output information in which label information has been added to the 3D point cloud it becomes possible to facilitate training of a machine learning model to detect objects contained in a 3D point cloud.
- label information is further assigned to the point cloud within the specified specific region based on the two-dimensional point cloud to which the label information has been assigned.
- the output information is information in which the label information has been assigned to the point cloud within the specific region.
- the label information includes at least one of class identification information for identifying the class to which the object belongs and a class confidence indicating the likelihood that the object belongs to the class.
- two-dimensional information is generated for each of the two-dimensional point clouds to associate a position on the projection plane, a corresponding three-dimensional point cloud, and a certainty value that corresponds to the likelihood that an object exists.
- Label information is assigned to the two-dimensional point cloud based on the positional relationship, and is assigned to the three-dimensional point cloud associated with the two-dimensional point cloud by the two-dimensional information.
- label information is assigned to two-dimensional point clouds whose confidence level is equal to or greater than a predetermined reference value.
- 2D point clouds with low confidence are usually point clouds where it is ambiguous whether an object exists or not, and it is possible to reduce the number of such 2D point clouds to be assigned label information. This makes it possible to improve the accuracy of assigning label information.
- three-dimensional information is further generated based on radar information, in which a three-dimensional point cloud is associated with a certainty, which is a value corresponding to the likelihood that an object exists in the three-dimensional point cloud.
- the certainty of the two-dimensional point cloud obtained by projecting the multiple three-dimensional point clouds onto the projection plane is one of the following (1) to (3): (1) The certainty of the three-dimensional point cloud that is closest to the projection plane among the multiple three-dimensional point clouds. (2) The average value of the certainty of the multiple three-dimensional point clouds. (3) The maximum value of the certainty of the multiple three-dimensional point clouds.
- the first acquisition unit 131 includes a radar information acquisition unit 131a, a three-dimensional information acquisition unit 131b, and a projection unit 131c, as shown in FIG. 7, for example.
- the radar information acquisition unit 131a acquires radar information.
- the three-dimensional information acquisition unit 131b acquires three-dimensional information related to the three-dimensional point cloud based on the radar information acquired by the radar information acquisition unit 131a.
- the projection unit 131c uses the three-dimensional information acquired by the three-dimensional information acquisition unit 131b to generate two-dimensional information about a two-dimensional point cloud by projecting the three-dimensional point cloud onto a projection plane.
- the first acquisition unit 131 executes a first acquisition process (step S101) as shown in FIG. 8, for example.
- the radar information acquisition unit 131a acquires radar information from the transmission unit 113, for example, via the network NT1 (step S101a).
- the three-dimensional information acquisition unit 131b acquires three-dimensional information related to the three-dimensional point cloud based on the radar information acquired in step S101a (step S101b).
- the projection unit 131c uses the three-dimensional information acquired in step S101b to generate two-dimensional information about the two-dimensional point cloud by projecting the three-dimensional point cloud onto the projection plane (step S101c), and returns to information processing (see FIG. 3).
- the projection unit 131c when the projection unit 131c receives information for identifying the projection plane, it projects the three-dimensional point group onto the projection plane to generate a two-dimensional point group on the projection plane.
- the projection unit 131c assigns identification information to each of the two-dimensional point groups according to a predetermined rule.
- the projection unit 131c associates this identification information with the position of the two-dimensional point group on the projection plane.
- the projection unit 131c also determines the certainty of the two-dimensional point group based on the certainty associated with the three-dimensional point group corresponding to the two-dimensional point group.
- the projection unit 131c then generates two-dimensional information in which each of the two-dimensional point groups is associated with the identification information, the position of the two-dimensional point group on the projection plane, the corresponding three-dimensional point group, and a certainty that is a value corresponding to the likelihood that an object exists in the two-dimensional point group. Generating two-dimensional information to generate two-dimensional information.
- the first acquisition unit 131 includes the radar information acquisition unit 131a, the three-dimensional information acquisition unit 131b, and the projection unit 131c.
- the radar information acquisition unit 131a acquires radar information.
- the three-dimensional information acquisition unit 131b acquires three-dimensional information about a three-dimensional point cloud based on the radar information acquired by the radar information acquisition unit 131a.
- the projection unit 131c uses the three-dimensional information acquired by the three-dimensional information acquisition unit 131b to generate two-dimensional information about a two-dimensional point cloud by projecting the three-dimensional point cloud onto a projection plane.
- the second acquisition unit 132 includes a captured image acquisition unit 132a, an image transformation unit 132b, and an image label acquisition unit 132c, as shown in FIG. 9, for example.
- the captured image acquisition unit 132a acquires the captured image taken using light.
- the image transformation unit 132b transforms the captured image acquired by the captured image acquisition unit 132a into a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud.
- the image label acquisition unit 132c acquires the label information assigned to the object contained in the two-dimensional captured image acquired by the image transformation unit 132b.
- the second acquisition unit 132 executes a second acquisition process (step S102) as shown in FIG. 10, for example.
- the captured image acquisition unit 132a acquires captured images from the imaging device 120, for example, via the network NT2 (step S102a).
- the image transformation unit 132b transforms the captured image acquired in step S101a into a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud (step S102b).
- the image transformation unit 132b transforms the captured image into a two-dimensional captured image so that the positions in real space of the pixels contained in the captured image coincide with the positions in real space of the two-dimensional point cloud.
- step S102b may be performed as necessary.
- the process of step S102b may be performed when the coordinate systems of the captured image acquired in step S101a and the two-dimensional point cloud generated in step S101c are different, but may not be performed when they are the same.
- the image label acquisition unit 132c acquires the label information assigned to the object contained in the two-dimensional captured image acquired in step S102b (step S102c), and returns to information processing (see FIG. 3).
- the label information may be obtained by human input as described above, or may be obtained using an object detection model.
- the two-dimensional captured image is an image obtained by deforming the captured image, the objects contained in the two-dimensional captured image and the captured image are the same. Therefore, in step S102c, instead of obtaining label information that has been applied to objects contained in the two-dimensional captured image, label information that has been applied to objects contained in the captured image may be obtained.
- the second acquiring unit 132 includes the captured image acquiring unit 132a, the image transforming unit 132b, and the image label acquiring unit 132c.
- the captured image acquisition unit 132a acquires a captured image captured using light.
- the image transformation unit 132b transforms the acquired captured image into a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud.
- the image label acquisition unit 132c acquires label information assigned to objects included in the two-dimensional captured image.
- a first acquisition means for generating a two-dimensional point cloud by converting the three-dimensional point cloud based on the radar information
- a second acquisition means for acquiring, based on a captured image captured using light, a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud and label information assigned to an object included in the two-dimensional captured image
- an assignment means for assigning the label information to the two-dimensional point cloud based on a positional relationship between the two-dimensional point cloud and the object in the two-dimensional captured image
- output means for outputting output information in which the label information is added to a point cloud based on the radar information.
- the information processing device wherein the two-dimensional point cloud is a point cloud obtained by projecting the three-dimensional point cloud onto a projection plane. 3.
- the label information is further assigned to the three-dimensional point cloud; 3.
- the information processing device according to 1. or 2., wherein the output information is information in which the label information is added to the three-dimensional point cloud.
- the label information is further assigned to a point cloud within a specified specific region based on the two-dimensional point cloud to which the label information is assigned; 3.
- the information processing device according to 1. or 2., wherein the output information is information in which the label information is added to a point cloud within the specific region. 5. 5.
- the information processing device according to any one of 1.
- the label information includes at least one of class identification information for identifying a class to which the object belongs and a class confidence indicating a likelihood that the object belongs to the class.
- the label information includes at least one of class identification information for identifying a class to which the object belongs and a class confidence indicating a likelihood that the object belongs to the class.
- two-dimensional information is generated for associating, for each of the two-dimensional point clouds, a position on the projection plane, the corresponding three-dimensional point cloud, and a certainty value that is a value corresponding to the likelihood that an object exists; 2.
- the information processing device wherein the label information is assigned to the two-dimensional point cloud based on the positional relationship, and is assigned to the three-dimensional point cloud associated with the two-dimensional point cloud by the two-dimensional information. 7. 7.
- the information processing apparatus wherein the label information is assigned to the two-dimensional point cloud whose certainty is equal to or greater than a predetermined reference value.
- the label information is assigned to the two-dimensional point cloud whose certainty is equal to or greater than a predetermined reference value.
- three-dimensional information is further generated in which the three-dimensional point cloud is associated with a certainty factor, which is a value corresponding to the likelihood that an object exists in the three-dimensional point cloud, based on the radar information; 8.
- the information processing device when a plurality of the three-dimensional point clouds are projected onto a common position on the projection plane, the certainty factor for the two-dimensional point cloud obtained by projecting the plurality of three-dimensional point clouds onto the projection plane is any one of the certainty factor of a three-dimensional point cloud that is closest to the projection plane among the plurality of three-dimensional point clouds, the average value of the certainty factors of the plurality of three-dimensional point clouds, and the maximum value of the certainty factors of the plurality of three-dimensional point clouds.
- the first acquisition means is A radar information acquisition means for acquiring the radar information; a three-dimensional information acquisition means for acquiring three-dimensional information regarding the three-dimensional point cloud based on the acquired radar information; 3.
- the information processing apparatus further comprising: a projection means for generating, using the three-dimensional information, two-dimensional information related to the two-dimensional point cloud by projecting the three-dimensional point cloud onto the projection plane.
- the second acquisition means is An image capturing means for capturing an image captured using the light; an image transformation means for transforming the acquired photographed image into a two-dimensional photographed image expressed in a coordinate system common to the two-dimensional point cloud; and an image label acquisition unit that acquires the label information assigned to the object included in the two-dimensional captured image.
- the moving body is a transmitting means for transmitting the radar to the scanning area; a receiving means for receiving the reflected wave of the transmitted radar and generating the radar information relating to the reflected wave; and a transmitting means for transmitting the generated radar information.
- a two-dimensional point cloud is generated by converting the three-dimensional point cloud based on the radar information; acquiring a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud and label information assigned to an object included in the two-dimensional captured image based on a captured image captured using light; assigning the label information to the two-dimensional point cloud based on a positional relationship between the two-dimensional point cloud and the object in the two-dimensional captured image; and outputting output information obtained by adding the label information to a point cloud based on the radar information. 13.
- a two-dimensional point cloud is generated by converting the three-dimensional point cloud based on the radar information; acquiring a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud and label information assigned to an object included in the two-dimensional captured image based on a captured image captured using light; assigning the label information to the two-dimensional point cloud based on a positional relationship between the two-dimensional point cloud and the object in the two-dimensional captured image; A program for executing the step of outputting output information in which the label information is added to a point cloud based on the radar information.
- Information processing system 110 Mobile body 111 Transmission unit 112 Reception unit 113 Transmission unit 120 Photographing device 130 Information processing device 131 First acquisition unit 131a Radar information acquisition unit 131b Three-dimensional information acquisition unit 131c Projection unit 132 Second acquisition unit 132a Photographed image acquisition unit 132b Image deformation unit 132c Image label acquisition unit 133 Assignment unit 134 Output unit
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Computational Linguistics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
本開示は、情報処理装置、情報処理システム、情報処理方法及び記録媒体に関する。 This disclosure relates to an information processing device, an information processing system, an information processing method, and a recording medium.
例えば特許文献1には、複数の点群情報の位置合わせにおけるロバスト性を向上させるための点群情報処理装置が開示されている。特許文献1によれば、点群情報処理装置は、画像解析部と、点群ラベル付与部と、点群統合部とを備える。 For example, Patent Document 1 discloses a point cloud information processing device for improving robustness in aligning multiple pieces of point cloud information. According to Patent Document 1, the point cloud information processing device includes an image analysis unit, a point cloud labeling unit, and a point cloud integration unit.
画像解析部は、異なる視点から撮像された画像情報を解析して、各画像内における異なる領域を認識し、各領域にラベル付けを行い、ラベル付き画像情報を生成する。点群ラベル付与部は、異なる視点の点群情報の各点に対して当該各点の位置情報に基づきラベル付き画像情報において対応する領域のラベルを付与してラベル付き点群情報を生成する。点群統合部は、複数のラベル付き点群情報において共通するラベルを用いて、ラベル付き点群情報間の位置合わせを行う。 The image analysis unit analyzes image information captured from different viewpoints, recognizes different areas in each image, labels each area, and generates labeled image information. The point cloud labeling unit generates labeled point cloud information by labeling each point in the point cloud information from different viewpoints with a label of the corresponding area in the labeled image information based on the positional information of each point. The point cloud integration unit aligns the labeled point cloud information using labels that are common to multiple labeled point cloud information.
特許文献1に記載された点群情報処理装置では、点群にラベル情報を付与するために、異なる視点から撮像された画像情報が用いられる。そのため、点群にラベル情報を付与することが困難であるという課題がある。 In the point cloud information processing device described in Patent Document 1, image information captured from different viewpoints is used to assign label information to a point cloud. This poses the problem that it is difficult to assign label information to a point cloud.
本開示における情報処理装置は、
レーダ情報に基づいて、3次元点群を変換した2次元点群を生成する第1取得手段と、
光を用いて撮影された撮影画像に基づいて、前記2次元点群と共通の座標系で表された2次元撮影画像と、当該2次元撮影画像に含まれる対象物に付与されたラベル情報と、を取得する第2取得手段と、
前記2次元点群と前記2次元撮影画像における前記対象物との位置関係に基づいて、前記2次元点群に前記ラベル情報を付与する付与手段と、
前記レーダ情報に基づく点群に前記ラベル情報を付与した出力情報を出力する出力手段とを備える。
The information processing device according to the present disclosure includes:
a first acquisition means for generating a two-dimensional point cloud by converting the three-dimensional point cloud based on the radar information;
a second acquisition means for acquiring, based on a captured image captured using light, a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud and label information assigned to an object included in the two-dimensional captured image;
an assignment means for assigning the label information to the two-dimensional point cloud based on a positional relationship between the two-dimensional point cloud and the object in the two-dimensional captured image;
and an output means for outputting output information in which the label information is added to a point cloud based on the radar information.
本開示における情報処理システムは、
レーダを用いて走査領域を走査した前記レーダ情報を生成するために移動する移動体と、
前記走査領域を撮影して前記撮影画像を生成するための撮影装置と、
上記情報処理装置とを備え、
前記移動体は、
前記走査領域に前記レーダを発信する発信手段と、
前記発信されたレーダの反射波を受信して、当該反射波に関する前記レーダ情報を生成する受信手段と、
前記生成されたレーダ情報を送信する送信手段とを含む。
The information processing system according to the present disclosure includes:
a moving object that moves to generate the radar information by scanning a scanning area using a radar;
an imaging device for imaging the scanning region to generate the imaging image;
The information processing device includes:
The moving body is
a transmitting means for transmitting the radar to the scanning area;
a receiving means for receiving the reflected wave of the transmitted radar and generating the radar information relating to the reflected wave;
and transmitting means for transmitting the generated radar information.
本開示における情報処理方法は、
1つ以上のコンピュータが、
レーダ情報に基づいて、3次元点群を変換した2次元点群を生成し、
光を用いて撮影された撮影画像に基づいて、前記2次元点群と共通の座標系で表された2次元撮影画像と、当該2次元撮影画像に含まれる対象物に付与されたラベル情報と、を取得し、
前記2次元点群と前記2次元撮影画像における前記対象物との位置関係に基づいて、前記2次元点群に前記ラベル情報を付与し、
前記レーダ情報に基づく点群に前記ラベル情報を付与した出力情報を出力する。
The information processing method according to the present disclosure includes:
One or more computers
A two-dimensional point cloud is generated by converting the three-dimensional point cloud based on the radar information;
acquiring a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud and label information assigned to an object included in the two-dimensional captured image based on a captured image captured using light;
assigning the label information to the two-dimensional point cloud based on a positional relationship between the two-dimensional point cloud and the object in the two-dimensional captured image;
Output information is output in which the label information is added to a point cloud based on the radar information.
本開示における記録媒体は、
1つ以上のコンピュータに、
レーダ情報に基づいて、3次元点群を変換した2次元点群を生成し、
光を用いて撮影された撮影画像に基づいて、前記2次元点群と共通の座標系で表された2次元撮影画像と、当該2次元撮影画像に含まれる対象物に付与されたラベル情報と、を取得し、
前記2次元点群と前記2次元撮影画像における前記対象物との位置関係に基づいて、前記2次元点群に前記ラベル情報を付与し、
前記レーダ情報に基づく点群に前記ラベル情報を付与した出力情報を出力することを実行させるためのプログラムが記録されたものである。
The recording medium in the present disclosure is
On one or more computers,
A two-dimensional point cloud is generated by converting the three-dimensional point cloud based on the radar information;
acquiring a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud and label information assigned to an object included in the two-dimensional captured image based on a captured image captured using light;
assigning the label information to the two-dimensional point cloud based on a positional relationship between the two-dimensional point cloud and the object in the two-dimensional captured image;
A program for executing the process of outputting output information in which the label information is added to a point cloud based on the radar information is recorded.
本開示によれば、点群にラベル情報を容易に付与することが可能になる。 This disclosure makes it possible to easily assign label information to point clouds.
以下、本開示において図面は、1以上の実施の形態に関連付けられる。また、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, in this disclosure, the drawings relate to one or more embodiments. In addition, in all drawings, similar components are given similar reference symbols and descriptions are omitted as appropriate.
[実施形態1]
(概要)
情報処理システム100は、図1に示すように、移動体110、撮影装置120及び情報処理装置130を備える。
[Embodiment 1]
(overview)
As shown in FIG. 1, the
移動体110は、レーダを用いて走査領域を走査したレーダ情報を生成するために移動する。移動体110は、発信部111と、受信部112と、送信部113とを含む。
The
発信部111と、走査領域にレーダを発信する。受信部112は、発信されたレーダの反射波を受信して、当該反射波に関するレーダ情報を生成する。送信部113は、生成されたレーダ情報を送信する。
The
撮影装置120は、走査領域を撮影して撮影画像を生成するための装置である。
The
情報処理装置130は、図2に示すように、第1取得部131と、第2取得部132と、付与部133と、出力部134とを備える。
As shown in FIG. 2, the
第1取得部131は、レーダ情報に基づいて、3次元点群を変換した2次元点群を生成する。
The
第2取得部132は、光を用いて撮影された撮影画像に基づいて、2次元点群と共通の座標系で表された2次元撮影画像と、当該2次元撮影画像に含まれる対象物に付与されたラベル情報と、を取得する。
The
付与部133は、2次元点群と2次元撮影画像における対象物との位置関係に基づいて、2次元点群にラベル情報を付与する。
The
出力部134は、レーダ情報に基づく点群にラベル情報を付与した出力情報を出力する。
The
この情報処理システム100によれば、撮影画像を用いて、点群にラベル情報を付与することができる。撮影画像は、少なくとも1つであれば良い。従って、点群にラベル情報を容易に付与することが可能になる。
This
また、この情報処理装置130によれば、撮影画像を用いて、点群にラベル情報を付与することができる。撮影画像は、少なくとも1つであれば良い。従って、点群にラベル情報を容易に付与することが可能になる。
In addition, this
情報処理装置130は、図3に示すような情報処理を実行する。
The
第1取得部131は、レーダ情報に基づいて、3次元点群を変換した2次元点群を生成する(ステップS101)。
The
第2取得部132は、光を用いて撮影された撮影画像に基づいて、2次元点群と共通の座標系で表された2次元撮影画像と、当該2次元撮影画像に含まれる対象物に付与されたラベル情報と、を取得する(ステップS102)。
The
付与部133は、2次元点群と2次元撮影画像における対象物との位置関係に基づいて、2次元点群にラベル情報を付与する(ステップS103)。
The
出力部134は、レーダ情報に基づく点群にラベル情報を付与した出力情報を出力する(ステップS104)。
The
この情報処理によれば、撮影画像を用いて、点群にラベル情報を付与することができる。撮影画像は、少なくとも1つであれば良い。従って、点群にラベル情報を容易に付与することが可能になる。 This information processing allows label information to be added to a point cloud using a captured image. At least one captured image is sufficient. This makes it easy to add label information to a point cloud.
(詳細例)
以下、情報処理システム100等の詳細例について説明する。
(Detailed example)
A detailed example of the
(移動体110の構成例)
移動体110は、操作者の遠隔操作又は操縦によって或いは予め定められたアルゴリズム等によって自動的に移動するドローン等の飛行体である。移動体110には例えば、発信部111、受信部112、送信部113等の機能を実現する機器、装置等が搭載されるとよい。
(Configuration example of moving body 110)
The moving
なお、移動体110は、飛行体に限らず、自動車等の車両であってもよい。また、移動体110は、その移動を制御するための移動制御部(図示せず)をさらに含んでもよい。
Note that the moving
レーダには、例えば、波長が1~10[mm(ミリメートル)]の電波であるミリ波が好適に用いられる。ミリ波の特性として、光よりも物質の透過性がよい。「光」は、可視光及び赤外線を含み、以下においても同様である。 For radar, millimeter waves, which are radio waves with wavelengths of 1 to 10 mm (millimeters), are preferably used. One characteristic of millimeter waves is that they penetrate materials better than light. "Light" includes visible light and infrared light, and this also applies below.
なお、レーダには、ミリ波に限らず種々の波長の電波が用いられてよく、例えば、マイクロ波が用いられてもよく、光よりも長波長のマイクロ波が用いられてもよい。マイクロ波は、極超短波、センチ波、ミリ波、サブミリ波等の波長が1メートル以下の電波である。極超短波、センチ波、サブミリ波は、それぞれ、波長が0.1~1[m(メートル)]、1~10[cm(センチメートル)]、0.1~1[mm]である。 Note that radar can use radio waves of various wavelengths, not just millimeter waves. For example, microwaves can be used, or microwaves with wavelengths longer than light. Microwaves are radio waves with wavelengths of 1 meter or less, such as ultra-high frequency waves, centimeter waves, millimeter waves, and submillimeter waves. Ultra-high frequency waves, centimeter waves, and submillimeter waves have wavelengths of 0.1 to 1 m (meters), 1 to 10 cm (centimeters), and 0.1 to 1 mm, respectively.
走査領域は、レーダで走査するために予め定められた領域である。走査領域は、例えば、屋外であってもよく、屋内であってもよい。 The scanning area is an area that is predetermined to be scanned by the radar. The scanning area may be, for example, outdoors or indoors.
詳細には例えば、走査領域は、金属物等が地表に置かれている可能性或いは地中に一部又は全部が埋没している可能性がある領域であってもよい。このような走査領域をレーダで走査して得られるレーダ情報を用いて、当該金属物等を検出することができる。 In more detail, for example, the scanning area may be an area where a metal object or the like may be placed on the ground surface or may be partially or completely buried underground. The metal object or the like can be detected using radar information obtained by scanning such a scanning area with a radar.
また例えば、走査領域は、建造物等の予め定められた領域であってもよい。このような走査領域をレーダで走査して得られるレーダ情報を用いて、建造物等の壁内、壁外等に配設された配管、鉄筋等の状態を検出し、配管、鉄筋等の異常等を発見することができる。建造物は、例えば、ビル、橋等であるが、これらに限られない。 Also, for example, the scanning area may be a predetermined area of a building or the like. By using radar information obtained by scanning such a scanning area with a radar, it is possible to detect the condition of pipes, reinforcing bars, etc. arranged inside or outside the walls of the building or the like, and to discover abnormalities in the pipes, reinforcing bars, etc. Examples of buildings include, but are not limited to, buildings and bridges.
移動体110は、例えば、発信部111がレーダを発信し、受信部112がその反射波を受信しながら移動する。これにより、走査領域をレーダで走査し、反射波に関するレーダ情報を取得することができる。すなわち、レーダ情報は、移動体110を用いて取得される情報であって、詳細には例えばドローン等の飛行体、車両等を用いて取得される情報である。
The
例えば移動体110がドローンである場合、10m程度の高さを飛行しながら、レーダの発信及びその反射波の受信を行うとよい。レーダの発信方式には種々の一般的な方式が適用されてよい。レーダの発信方式の例として、周波数連続変調(FMCW)、パルス、連続波ドプラ法(CWD)、2周波CW、パルス圧縮を挙げることができる。
For example, if the
そして、受信部112が、受信した反射波に関するレーダ情報を生成すると、送信部113は、例えばネットワークNT1を介して情報処理装置130へレーダ情報を送信する。ネットワークNT1は、典型的には無線回線であるが、有線回線を少なくとも一部に含んでもよい。送信部113は、リアルタイムでレーダ情報を送信してもよく、異なる時点で生成された複数のレーダ情報をまとめて送信してもよい。
Then, when the
レーダ情報は、例えば、走査空間に発信されたレーダの反射波に関する情報である。詳細には例えば、レーダ情報は、反射波の強度、観測位置、観測方向、観測時期等の1つ又は複数を関連付ける。 Radar information is, for example, information about the reflected waves of the radar emitted into the scanning space. In detail, for example, radar information associates one or more of the intensity of the reflected waves, the observation position, the observation direction, the observation time, etc.
観測位置は、観測が行われた実空間上の位置であって、例えば、レーダの発信位置、反射波の受信位置、発信位置及び受信位置の中間等の発信位置及び受信位置を用いて得られる位置等の少なくとも1つでよい。観測位置は、例えば、緯度、経度、高さ等で表され、移動体110がGPS(Global Positioning System)機能を備えることで取得されるとよい。なお、観測位置は、ここで例示したものに限られない。
The observation position is the position in real space where the observation is performed, and may be at least one of the following: the radar transmission position, the reception position of the reflected wave, a position obtained using the transmission position and reception position, such as a position midway between the transmission position and reception position. The observation position is expressed, for example, by latitude, longitude, height, etc., and may be obtained by equipping the
観測方向は、レーダの発信方向、反射波の受信方向、発信方向及び受信方向を用いて得られる方向等の少なくとも1つでよい。また、受信部112は、受信方向を得るために、1つ以上のアンテナを含むとよい。
The observation direction may be at least one of the radar transmission direction, the reflected wave reception direction, a direction obtained using the transmission direction and reception direction, etc. Also, the
観測時期は、観測した時期を示す情報であって、例えば観測時刻である。観測時期は、レーダの発信時期(例えば、発信時刻)、反射波の受信時期(例えば、発信時刻)、発信時期及び受信時期の中間等の発信時期及び受信時期に関連付けられた時期等の少なくとも1つでよい。観測時期は、移動体110が計時機能を備えることで取得されるとよい。
The observation time is information indicating the time of observation, for example, the observation time. The observation time may be at least one of the following: the radar transmission time (for example, the transmission time), the reception time of the reflected wave (for example, the transmission time), a time associated with the transmission time and the reception time, such as midway between the transmission time and the reception time. The observation time may be obtained by providing the
(撮影装置120の構成例)
撮影装置120は、光を用いて操作領域を撮影するための装置である。光は上述の通り可視光及び赤外線を含む。例えば可視光を用いる場合の撮影装置120は、可視光カメラである。例えば赤外線、近赤外線、遠赤外線を用いる場合の撮影装置120は、それぞれ、赤外線カメラ、近赤外線カメラ、遠赤外線カメラである。
(Example of configuration of the imaging device 120)
The
撮影装置120は、走査領域を撮影した撮影画像を生成し、撮影画像を例えばネットワークNT2を介して情報処理装置130へ撮影画像を送信する。
The
撮影画像は、例えば、RGB画像のようなカラー画像である。なお、撮影画像は、モノクロ画像であってもよい。 The captured image is, for example, a color image such as an RGB image. The captured image may also be a monochrome image.
ネットワークNT2は、典型的には無線回線であるが、有線回線を少なくとも一部に含んでもよい。なお、ネットワークNT1及びネットワークNT2は、一部又は全体が共通のネットワークであってもよく、一部又は全体が異なるネットワークであってもよい。 Network NT2 is typically a wireless line, but may include at least a wired line. Note that network NT1 and network NT2 may be partly or entirely a common network, or partly or entirely different networks.
撮影装置120は、位置が固定されていてもよく、上述の移動体110又は移動体110とは異なる移動体に搭載されてもよい。この移動体は、ドローン等の飛行体、自動車等の車両でよい。また、この移動体は、操作者の遠隔操作又は操縦によって或いは予め定められたアルゴリズム等によって自動的に移動するとよい。
The
撮影装置120が移動体に搭載される場合、撮影装置120が移動しながら撮影することで走査領域を撮影するとよい。
If the
例えば撮影装置120が移動体に搭載される場合、撮影装置120が移動しながら撮影することで走査領域を撮影するとよい。この場合、撮影装置120は、撮影された画像をリアルタイムで送信してもよく、異なる時点に撮影された複数の画像をまとめて送信してもよい。
For example, if the
撮影装置120は、撮影画像に、撮影位置、撮影時期の少なくとも1つを関連付けた撮影情報を送信してもよい。
The photographing
撮影位置は、撮影が行われた実空間上の位置である。撮影位置は、例えば、緯度、経度及び高さで表され、撮影装置120又はこれを搭載する移動体がGPS(Global Positioning System)機能を備えることで取得されるとよい。なお、撮影位置は、ここで例示したものに限られない。
The shooting position is the position in real space where the image was captured. The shooting position is expressed, for example, by latitude, longitude, and altitude, and may be obtained by equipping the
撮影時期は、撮影が行われた時期であって、例えば撮影時刻である。なお、撮影時期は、ここで例示したものに限られない。 The shooting time is the time when the image was taken, for example the time of the image. Note that the shooting time is not limited to the examples given here.
(情報処理装置130の機能的な構成例)
(第1取得部131について)
第1取得部131は、例えば、送信部113から送信されたレーダ情報に基づいて、3次元点群を生成し、3次元点群を変換することで2次元点群を生成する。
(Example of functional configuration of information processing device 130)
(Regarding the first acquisition unit 131)
The
詳細には例えば、第1取得部131は、送信部113から送信されたレーダ情報に基づいて、3次元点群に関する3次元情報を生成する。
In detail, for example, the
3次元点群は、走査領域に対応する3次元空間における点群である。例えば、走査領域は上述の通り、建造物等の壁内のような物体内であってもよく、地中であってもよい。従って、3次元点群は、建造物の壁内等の物体内、又は地中を示す点群を含んでもよい。 The three-dimensional point cloud is a cloud of points in three-dimensional space that corresponds to the scanned area. For example, as described above, the scanned area may be within an object, such as within the walls of a building, or may be underground. Thus, the three-dimensional point cloud may include a cloud of points that indicate within an object, such as within the walls of a building, or underground.
例えば、3次元情報は、3次元点群と確信度とが関連付けられた情報である。確信度は、関連付けられた3次元点群に物体が存在する確からしさに対応する値である。確信度は、3次元点群における反射波の強度に応じて求められるとよく、例えば当該3次元点群に物体が存在する確率を示す値である。 For example, the three-dimensional information is information in which a three-dimensional point cloud and a certainty factor are associated. The certainty factor is a value corresponding to the likelihood that an object exists in the associated three-dimensional point cloud. The certainty factor may be calculated according to the intensity of the reflected wave in the three-dimensional point cloud, and is, for example, a value indicating the probability that an object exists in the three-dimensional point cloud.
詳細には例えば、3次元点群は、3次元点群の各々を識別するための識別情報と、3次元点群の各々の位置とで表されてもよい。この場合の3次元情報は、3次元点群の各々を識別するための識別情報、3次元点群の各々の位置、及び信頼度が関連付けられた情報である。 In more detail, for example, the three-dimensional point cloud may be represented by identification information for identifying each of the three-dimensional point clouds and the position of each of the three-dimensional point clouds. In this case, the three-dimensional information is information that associates the identification information for identifying each of the three-dimensional point clouds, the position of each of the three-dimensional point clouds, and the reliability.
第1取得部131は、例えば、レーダ情報に基づいて、3次元空間上の各点において高速フーリエ変換(FFT)により距離を算出し、算出された距離を統合して角度又は位置を算出するとよい。また例えば、第1取得部131は、レーダ情報に基づいて、3次元空間上の各点に物体が存在する程大きな値を持つような信頼度を、3次元空間ごとに求めるとよい。これにより、第1取得部131は、3次元情報を生成することができる。
The
なお、レーダ情報は、複数であってもよい。この場合、複数のレーダ情報は、複数の移動体110のそれぞれで生成されて送信されてもよい。また、移動体110が複数組の発信部111及び受信部112を備えてもよい。複数のレーダ情報は、当該複数組の発信部111及び受信部112のそれぞれで生成されて、1つ又は複数の送信部113から送信されてもよい。
Note that there may be multiple pieces of radar information. In this case, the multiple pieces of radar information may be generated and transmitted by each of the multiple
第1取得部131は、例えば、3次元点群を変換することで、2次元点群に関する2次元情報を生成する。
The
この変換は、予め定められる射影平面への射影である。すなわち、2次元点群は、3次元点群が射影平面に射影された点群である。図4(a)は、3次元点群を射影平面の2次元点群に射影する例を示す図である。 This transformation is a projection onto a predetermined projection plane. In other words, the two-dimensional point cloud is a point cloud in which a three-dimensional point cloud is projected onto a projection plane. Figure 4(a) shows an example of projecting a three-dimensional point cloud onto a two-dimensional point cloud on a projection plane.
射影平面は、走査領域に含まれる地表又は当該地表から上下いずれかの方向に予め定められた距離の、地表と平行な面に対応する平面である。 The projection plane is a plane that corresponds to the ground surface included in the scanning area or a plane parallel to the ground surface at a predetermined distance in either the up or down direction from the ground surface.
このような3次元点群から2次元点群への変換には、例えば、アファイン変換、ホモグラフィ変換等の、画像を変形するための一般的な技術が用いられるとよい。なお、3次元点群から2次元点群への変換は、画像を変形するための一般的な技術に限られず、例えば座標系を変換するための技術等が用いられてもよい。 For such a conversion from a three-dimensional point cloud to a two-dimensional point cloud, it is advisable to use a general technique for transforming an image, such as an affine transformation or a homography transformation. Note that the conversion from a three-dimensional point cloud to a two-dimensional point cloud is not limited to a general technique for transforming an image, and for example, a technique for transforming a coordinate system may also be used.
なお、射影平面は、ここで例示したものに限られず、例えば地表に対して平行でなくてもよく、地表に対する距離の代わりに標高等を用いて規定されてもよい。 Note that the projection plane is not limited to the one exemplified here, and for example does not have to be parallel to the earth's surface, and may be defined using altitude, etc., instead of distance to the earth's surface.
例えば、2次元情報は、2次元点群の各々について、2次元点群の各々を識別するための識別情報、射影平面における位置、対応する3次元点群、物体が存在する確からしさに対応する値である確信度、の少なくとも一部を関連付けるための情報である。 For example, the two-dimensional information is information for associating, for each two-dimensional point cloud, at least a portion of the following: identification information for identifying each two-dimensional point cloud, a position on the projection plane, a corresponding three-dimensional point cloud, and a confidence level, which is a value corresponding to the likelihood that an object exists.
対応する3次元点群は、射影元の3次元点群に関する情報である。 The corresponding 3D point cloud is information about the 3D point cloud from which it is projected.
例えば、対応する3次元点群は、3次元点群の各々を識別するための識別情報であってもよい。これにより、当該識別情報と3次元情報とを用いて、2次元点群の各々に、3次元情報に含まれる各情報を関連付けることができる。 For example, the corresponding three-dimensional point clouds may be identification information for identifying each of the three-dimensional point clouds. This makes it possible to associate each piece of information included in the three-dimensional information with each of the two-dimensional point clouds using the identification information and the three-dimensional information.
また例えば、対応する3次元点群は、3次元情報に含まれる各情報、すなわち次元点群の各々を識別するための識別情報、3次元点群の各々の位置、及び信頼度の1つ又は複数を含んでもよい。これにより、2次元情報が対応する3次元点群の情報を直接含むことで、射影元の3次元点群に関する情報を関連付けることができる。 For example, the corresponding three-dimensional point cloud may include one or more of the pieces of information included in the three-dimensional information, namely, identification information for identifying each of the three-dimensional point clouds, the position of each of the three-dimensional point clouds, and the reliability. In this way, the two-dimensional information can directly include information on the corresponding three-dimensional point cloud, thereby associating information on the three-dimensional point cloud from which it is projected.
2次元情報に含まれる確信度は、対応する3次元点群に付与された確信度に基づいて設定されるとよい。2次元情報に含まれる確信度は、例えば、対応する3次元点群に付与された確信度と同じであってもよい。 The degree of confidence contained in the two-dimensional information may be set based on the degree of confidence assigned to the corresponding three-dimensional point cloud. The degree of confidence contained in the two-dimensional information may be the same as the degree of confidence assigned to the corresponding three-dimensional point cloud, for example.
ただし、射影平面に射影を行う場合、複数の3次元点群が射影平面における共通の位置に射影されることがある。 However, when projecting onto a projection plane, multiple 3D point groups may be projected onto a common position on the projection plane.
このような場合、対応する3次元点群は、当該複数の3次元点群であってもよく、当該複数の3次元点群を代表する3次元点群(例えば、射影平面に最も近い3次元点群、最大の確信度が関連付けられた3次元点群等)であってもよい。 In such cases, the corresponding 3D point cloud may be the plurality of 3D point clouds, or may be a 3D point cloud that is representative of the plurality of 3D point clouds (e.g., the 3D point cloud closest to the projection plane, the 3D point cloud associated with the greatest confidence, etc.).
また、対応する3次元点群が当該複数の3次元点群である場合、2次元情報に含まれる確信度は、例えば、当該複数の3次元点群に関連付けられた確信度の平均値でよい。対応する3次元点群が射影平面に最も近い3次元点群である場合、2次元情報に含まれる確信度は、例えば、当該最も近い3次元点群に関連付けられた確信度でよい。対応する3次元点群が、最大の確信度が関連付けられた3次元点群である場合、2次元情報に含まれる確信度は、例えば、当該3次元点群の確信度でよい。 Furthermore, if the corresponding three-dimensional point cloud is a plurality of such three-dimensional point clouds, the confidence level included in the two-dimensional information may be, for example, the average of the confidence levels associated with the plurality of such three-dimensional point clouds. If the corresponding three-dimensional point cloud is a three-dimensional point cloud closest to the projection plane, the confidence level included in the two-dimensional information may be, for example, the confidence level associated with the closest three-dimensional point cloud. If the corresponding three-dimensional point cloud is a three-dimensional point cloud with which the maximum confidence level is associated, the confidence level included in the two-dimensional information may be, for example, the confidence level of the three-dimensional point cloud.
(第2取得部132について)
第2取得部132は、撮影装置120から送信された走査領域の撮影画像に基づいて、2次元撮影画像と、当該2次元撮影画像に含まれる対象物に付与されたラベル情報と、を取得する。
(Regarding the second acquisition unit 132)
The
2次元撮影画像は、走査領域の撮影画像に用いられる座標系が2次元点群と共通の座標系となるように、走査領域の撮影画像を変形した画像である。すなわち、2次元撮影画像は、2次元点群と共通の座標系で表された走査領域の撮影画像とも言える。なお、撮影画像も2次元の画像でよいが、本開示では、変形前後の画像を区別するために、変形前の画像を撮影画像、変形後の画像を2次元撮影画像と称している。 A two-dimensional captured image is an image obtained by deforming the captured image of the scanning area so that the coordinate system used for the captured image of the scanning area is a common coordinate system for the two-dimensional point cloud. In other words, a two-dimensional captured image can also be said to be a captured image of the scanning area expressed in a common coordinate system for the two-dimensional point cloud. Note that the captured image may also be a two-dimensional image, but in this disclosure, in order to distinguish between images before and after deformation, the image before deformation is referred to as the captured image, and the image after deformation is referred to as the two-dimensional captured image.
対象物は、予め定められる物である。例えば、対象物は、走査領域に存在する可能性がある物であればよい。 The target object is a predefined object. For example, the target object may be any object that may be present in the scanning area.
ラベル情報は、クラス識別情報と、クラス信頼度との少なくとも1つを含むとよい。 The label information may include at least one of class identification information and class confidence.
クラス識別情報は、対象物が属するクラス(対象物の種類)を識別するための情報である。クラス(対象物の種類)は、例えば金属物、植物、岩石等の1つ以上である。 Class identification information is information for identifying the class (type of object) to which an object belongs. The class (type of object) may be one or more of, for example, metal objects, plants, rocks, etc.
クラス識別情報は、例えば、クラス毎に予め付与された文字、数字、記号等の1つ又は複数の組み合わせで表されるとよい。 The class identification information may be represented, for example, by one or more combinations of letters, numbers, symbols, etc. that are assigned in advance to each class.
なお、クラス及びこれを表す方法は、ここで例示したものに限られない。 Note that the classes and the methods of expressing them are not limited to those exemplified here.
クラス信頼度は、対象物がクラスに属する確からしさを示す値であって、例えば予め定められた範囲の連続値で表される。 The class confidence is a value that indicates the likelihood that an object belongs to a class, and is expressed, for example, as a continuous value in a predetermined range.
このようなラベル情報は、人の入力によって取得されてもよく、物体検出モデルを用いて自動的に取得されてもよい。 Such label information may be obtained by human input or automatically using an object detection model.
物体検出モデルは、対象物を検出して対象物にクラス情報を付与するための機械学習モデルであって、画像を入力すると、当該画像に含まれる対象物に関連付けられたクラス情報を出力するとよい。物体検知モデルは、学習用の画像と、当該画像に対象物のクラス情報とを含む正解データを用いて、学習を行うとよい。 The object detection model is a machine learning model for detecting objects and assigning class information to the objects, and when an image is input, it may output class information associated with the object contained in the image. The object detection model may perform learning using a learning image and ground truth data that includes class information of the object in the image.
このような物体検出モデルは、画像から物体を検出するための一般的な機械学習モデルであってよい。このような物体検出モデルに適用される技術の例として、R-CNN、YOLO、SSD、Fast R-CNN、Faster R-CNNを挙げることができる。 Such an object detection model may be a general machine learning model for detecting objects from images. Examples of techniques that may be applied to such object detection models include R-CNN, YOLO, SSD, Fast R-CNN, and Faster R-CNN.
例えば対象物が地中に埋没している場合等には、当該対象物のラベル情報は、対象物の位置を示すマーカを地表に設け、人の入力又は物体検出モデルを用いた自動検出によって、地中に埋没した対象物にラベル情報が付与されてもよい。 For example, if an object is buried underground, label information for the object may be assigned by placing a marker on the ground that indicates the object's position, and the label information may be assigned to the buried object through human input or automatic detection using an object detection model.
ラベル情報は、2次元撮影画像において対象物を囲む枠(例えば、対象物に外接する矩形の枠)の位置に関連付けられてもよい。図5は、対象物を囲む枠を付与した2次元撮影画像の一例を示す図である。図5では、2次元撮影画像において、対象物に対応する領域(第2領域Qa~Qcの画像)をハッチングで示している。この場合のラベル情報は、2次元撮影画像において対象物を囲む枠の位置をさらに含むとよい。なお、枠は、矩形に限られず、形状等が適宜変更されてもよい。 The label information may be associated with the position of a frame (e.g., a rectangular frame circumscribing the object) surrounding the object in the two-dimensional captured image. FIG. 5 is a diagram showing an example of a two-dimensional captured image to which a frame surrounding the object has been added. In FIG. 5, the area corresponding to the object in the two-dimensional captured image (the image of the second areas Qa to Qc) is shown by hatching. In this case, the label information may further include the position of the frame surrounding the object in the two-dimensional captured image. Note that the frame is not limited to a rectangle, and the shape, etc. may be changed as appropriate.
ラベル情報を2次元撮影画像に付与する場合、ラベル情報は、対象物に対応する画素の各々に関連付けられてもよい。ラベル情報は、2次元撮影画像において対象物を囲む枠(例えば、対象物に外接する矩形の枠)の位置に関連付けられてもよい。ラベル情報は、2次元撮影画像において対象物に対応する領域(マスク)に関連付けられてもよい。 When label information is assigned to a two-dimensional captured image, the label information may be associated with each pixel corresponding to an object. The label information may be associated with the position of a frame that surrounds the object in the two-dimensional captured image (e.g., a rectangular frame that circumscribes the object). The label information may be associated with a region (mask) that corresponds to the object in the two-dimensional captured image.
(付与部133について)
付与部133は、2次元点群と2次元撮影画像における対象物との位置関係に基づいて、2次元点群にラベル情報を付与する。
(Regarding the assignment unit 133)
The assigning
(2次元点群へのラベル情報の付与)
上述の通り、2次元点群と2次元撮影画像とは、これらを表す座標系が共通である。そのため、例えば、2次元撮影画像における対象物の領域に含まれる2次元点群が、対象物に対応する点群であるものとして、付与部133は、当該2次元点群にラベル情報を付与するとよい。
(Assignment of label information to 2D point clouds)
As described above, the two-dimensional point cloud and the two-dimensional captured image share a common coordinate system. Therefore, for example, the two-dimensional point cloud included in the region of the object in the two-dimensional captured image may be regarded as a point cloud corresponding to the object, and the assigning
ラベル情報を2次元点群に付与する場合、ラベル情報は、2次元点群の各々に関連付けられてもよい。ラベル情報は、2次元点群において対象物を囲む枠(例えば、対象物に外接する矩形の枠)の位置に関連付けられてもよい。図4(b)では、対象物に対応する点群(第1領域Pa~Pcの点群)を点の集合で示している。この場合のラベル情報は、2次元点群において対象物を囲む枠の位置をさらに含むとよい。なお、枠は、矩形に限られず、形状等が適宜変更されてもよい。またラベル情報は、対象物を囲む枠に限らず、例えば2次元点群において対象物に対応する領域(マスク)等の適宜の方法で2次元点群の少なくとも1つに関連付けられてもよい。 When label information is assigned to two-dimensional point clouds, the label information may be associated with each of the two-dimensional point clouds. The label information may be associated with the position of a frame (e.g., a rectangular frame circumscribing the object) that surrounds the object in the two-dimensional point cloud. In FIG. 4(b), the point cloud corresponding to the object (the point cloud of the first area Pa to Pc) is shown as a set of points. In this case, the label information may further include the position of the frame that surrounds the object in the two-dimensional point cloud. Note that the frame is not limited to a rectangle, and the shape, etc., may be changed as appropriate. Furthermore, the label information is not limited to a frame that surrounds the object, and may be associated with at least one of the two-dimensional point clouds in an appropriate manner, such as a region (mask) that corresponds to the object in the two-dimensional point cloud.
このとき、付与部133は、2次元情報にて確信度が予め定められた基準値以上である場合に、当該確信度が関連付けられた2次元点群にラベル情報を付与してもよい。すなわち、ラベル情報は、確信度が予め定められた基準値以上である2次元点群に付与されてもよい。
At this time, when the degree of certainty in the two-dimensional information is equal to or greater than a predetermined reference value, the assigning
(3次元点群へのラベル情報の付与)
また上述の通り、2次元情報は、2次元点群と、その射影元の3次元点群とを対応付ける。そのため、付与部133は、ラベル情報が付与された2次元点群と、2次元情報とを用いて、ラベル情報が付与された2次元点群に対応する3次元点群に当該ラベル情報を付与してもよい。これにより、3次元点群にラベル情報を付与することができる。すなわち、ラベル情報は、位置関係に基づいて2次元点群に付与され、2次元情報にて2次元点群に関連付けられた3次元点群に付与されてもよい。
(Assignment of label information to 3D point clouds)
As described above, the two-dimensional information associates the two-dimensional point group with the three-dimensional point group from which it is projected. Therefore, the assigning
ラベル情報を3次元点群に付与する場合、ラベル情報は、3次元点群の各々に関連付けられてもよい。ラベル情報は、3次元点群において対象物を囲む枠(例えば、対象物に外接する矩形の枠)の位置に関連付けられてもよい。ラベル情報は、3次元点群において対象物に対応する領域(マスク)に関連付けられてもよい。 When label information is assigned to a three-dimensional point cloud, the label information may be associated with each of the three-dimensional point clouds. The label information may be associated with the position of a frame that surrounds an object in the three-dimensional point cloud (e.g., a rectangular frame that circumscribes the object). The label information may be associated with a region (mask) that corresponds to the object in the three-dimensional point cloud.
(特定領域内の点群へのラベル情報の付与)
さらに、付与部133は、ラベル情報が付与された2次元点群に基づいて、2次元点群及び3次元点群とは異なる特定領域内の点群にラベル情報を付与してもよい。すなわち、ラベル情報は、ラベル情報が付与された2次元点群に基づいて、指定される特定領域内の点群にさらに付与されてもよい。
(Assigning label information to points within a specific area)
Furthermore, the assigning
特定領域は、適宜指定される領域である。特定領域は、例えば、射影平面とは異なる特定平面が指定され、当該特定平面を基準に定められるとよい。 The specific area is an area that is appropriately specified. For example, a specific plane different from the projection plane may be specified, and the specific area may be defined based on the specific plane.
特定平面は、例えば、地表からの距離(例えば、高さ)を用いて指定されるとよい。特定領域は、例えば、特定平面近傍の領域である。詳細には例えば、特定領域は、特定平面から、上下の高さ方向に所定範囲の領域である。この所定範囲は、ユーザによって指定される高さであってもよく、予め定められてもよい。 The specific plane may be specified, for example, using a distance from the ground surface (e.g., height). The specific area is, for example, an area in the vicinity of the specific plane. In detail, for example, the specific area is an area within a predetermined range in the vertical direction from the specific plane. This predetermined range may be a height specified by the user, or may be determined in advance.
ラベル情報を特定領域の点群に付与する場合、ラベル情報は、特定領域の点群の各々に関連付けられてもよい。ラベル情報は、特定領域の点群において対象物を囲む枠(例えば、対象物に外接する矩形の枠)の位置に関連付けられてもよい。ラベル情報は、特定領域の点群において対象物に対応する領域(マスク)に関連付けられてもよい。 When label information is assigned to a point cloud of a specific region, the label information may be associated with each point cloud of the specific region. The label information may be associated with the position of a frame that surrounds an object in the point cloud of the specific region (e.g., a rectangular frame that circumscribes the object). The label information may be associated with a region (mask) that corresponds to the object in the point cloud of the specific region.
ここで、例えば特定領域の点群に対応する2次元点群のうち、ラベル情報が付与された2次元点群が複数存在することがある。この場合、ラベル情報は、2次元点群に関連付けられた信頼度が大きいものから優先的に選定し、当該選定された2次元点群に対応する特定領域の点群に付与されてもよい。 Here, for example, among the two-dimensional point clouds corresponding to the point cloud of a specific region, there may be multiple two-dimensional point clouds to which label information has been assigned. In this case, the label information may be preferentially selected from the two-dimensional point clouds with the highest reliability associated with them, and assigned to the point cloud of the specific region corresponding to the selected two-dimensional point cloud.
(出力部134について)
出力部134は、レーダ情報に基づく点群にラベル情報を付与した出力情報を出力する。この点群は、2次元点群、3次元点群、特定領域内の点群の1つ又は複数でよい。
(Regarding the output unit 134)
The
すなわち、出力情報は、2次元点群にラベル情報を付与した情報であってもよい。出力情報は、3次元点群にラベル情報を付与した情報であってもよい。出力情報は、特定領域内の点群にラベル情報を付与した情報であってもよい。 In other words, the output information may be information in which label information is added to a two-dimensional point cloud. The output information may be information in which label information is added to a three-dimensional point cloud. The output information may be information in which label information is added to a point cloud within a specific region.
出力情報の出力先は、ネットワークを介して接続された他の装置、図示しない記憶部、図示しない表示部等の1つ以上でよい。記憶部及び表示部の各々は、他の装置が備えてもよい。 The destination of the output information may be one or more of another device connected via a network, a storage unit (not shown), a display unit (not shown), etc. Each of the storage unit and the display unit may be provided in the other device.
(情報処理装置130の物理的な構成例)
情報処理装置130は、図6に示すように、物理的に例えば、バス1010、プロセッサ1020、メモリ1030、ストレージデバイス1040、ネットワークインタフェース1050、入力インタフェース1060、出力インタフェース1070を有する。
(Example of physical configuration of information processing device 130)
As shown in FIG. 6, the
バス1010は、プロセッサ1020、メモリ1030、ストレージデバイス1040、ネットワークインタフェース1050、入力インタフェース1060、出力インタフェース1070が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ1020などを互いに接続する方法は、バス接続に限定されない。
The
プロセッサ1020は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)などで実現されるプロセッサである。
The
メモリ1030は、RAM(Random Access Memory)などで実現される主記憶装置である。
ストレージデバイス1040は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、メモリカード、又はROM(Read Only Memory)などで実現される補助記憶装置である。ストレージデバイス1040は、これを備える情報処理装置130の機能を実現するためのプログラムモジュールを記憶している。プロセッサ1020がこれら各プログラムモジュールをメモリ1030に読み込んで実行することで、そのプログラムモジュールに対応する機能が実現される。
The
ネットワークインタフェース1050は、これを備える情報処理装置130をネットワークNTに接続するためのインタフェースである。
The
入力インタフェース1060は、ユーザが情報を入力するためのインタフェースである。入力インタフェース1060は、例えば、タッチパネル、キーボード、マウスなどから構成される。
The
出力インタフェース1070は、ユーザに情報を提示するためのインタフェースである。出力インタフェース1070は、例えば、液晶パネル、有機EL(Electro-Luminescence)パネルなどから構成される。
The
なお、情報処理装置130の物理的な構成は、これに限られない。例えば、情報処理装置130は、複数の装置から構成されてもよい。この場合の各装置は、例えば、図6に示す情報処理装置130と物理的に同様の構成を備えるコンピュータ等でよい。
Note that the physical configuration of the
(作用・効果)
以上、本実施形態によれば、情報処理装置130は、第1取得部131と、第2取得部132と、付与部133と、出力部134とを備える。
(Action and Effects)
As described above, according to this embodiment, the
第1取得部131は、レーダ情報に基づいて、3次元点群を変換した2次元点群を生成する。第2取得部132は、光を用いて撮影された撮影画像に基づいて、2次元点群と共通の座標系で表された2次元撮影画像と、当該2次元撮影画像に含まれる対象物に付与されたラベル情報と、を取得する。付与部133は、2次元点群と2次元撮影画像における対象物との位置関係に基づいて、2次元点群にラベル情報を付与する。出力部134は、レーダ情報に基づく点群にラベル情報を付与した出力情報を出力する。
The
これにより、撮影画像を用いて、点群にラベル情報を付与することができる。撮影画像は、少なくとも1つであれば良い。従って、点群にラベル情報を容易に付与することが可能になる。 This allows label information to be added to the point cloud using the captured image. At least one captured image is sufficient. This makes it easy to add label information to the point cloud.
本実施形態によれば、2次元点群は、3次元点群が射影平面に射影された点群である。 According to this embodiment, the two-dimensional point cloud is a point cloud in which the three-dimensional point cloud is projected onto a projection plane.
これにより、撮影画像に付与されたラベル情報を適用可能な2次元点群を容易に生成することができる。従って、点群にラベル情報を容易に付与することが可能になる。 This makes it easy to generate a two-dimensional point cloud to which the label information added to the captured image can be applied. Therefore, it becomes possible to easily add label information to the point cloud.
本実施形態によれば、ラベル情報は、3次元点群にさらに付与される。出力情報は、3次元点群にラベル情報を付与した情報である。 According to this embodiment, label information is further added to the 3D point cloud. The output information is information in which the label information is added to the 3D point cloud.
これにより、3次元点群にラベル情報を付与した出力情報を出力することができる。このような出力情報は、例えば3次元点群を入力として、3次元点群に含まれる対象物を検出するための機械学習モデルの学習時の学習データとして用いることができる。一般的に3次元点群は、人が見ても対象物がどこにあるかを特定することが困難なことが多く、このような学習データの作成が困難である。3次元点群にラベル情報を付与した出力情報を用いることで、3次元点群に含まれる対象物を検出するための機械学習モデルの学習を容易にすることが可能になる。 This makes it possible to output output information in which label information has been added to the 3D point cloud. Such output information can be used, for example, as training data when training a machine learning model to detect objects contained in a 3D point cloud using the 3D point cloud as input. Generally, it is often difficult for a human to identify where an object is located in a 3D point cloud, making it difficult to create such training data. By using output information in which label information has been added to the 3D point cloud, it becomes possible to facilitate training of a machine learning model to detect objects contained in a 3D point cloud.
本実施形態によれば、ラベル情報は、ラベル情報が付与された2次元点群に基づいて、指定された特定領域内の点群にさらに付与される。出力情報は、特定領域内の点群にラベル情報を付与した情報である。 According to this embodiment, label information is further assigned to the point cloud within the specified specific region based on the two-dimensional point cloud to which the label information has been assigned. The output information is information in which the label information has been assigned to the point cloud within the specific region.
これにより、任意の領域内に点群ラベル情報を付与することができる。従って、任意の領域内に点群にラベル情報を容易に付与することが可能になる。 This allows point cloud label information to be added within any area. Therefore, it becomes possible to easily add label information to a point cloud within any area.
本実施形態によれば、ラベル情報は、対象物が属するクラスを識別するためのクラス識別情報と、対象物が前記クラスに属する確からしさを示すクラス信頼度との少なくとも1つを含む。 According to this embodiment, the label information includes at least one of class identification information for identifying the class to which the object belongs and a class confidence indicating the likelihood that the object belongs to the class.
これにより、出力情報を学習データとして用いたり、出力情報を表示部で容易に視認したりすることができる。従って、出力情報を種々の用途に活用することが可能になる。 This allows the output information to be used as learning data and easily viewed on the display. This makes it possible to utilize the output information for a variety of purposes.
本実施形態によれば、2次元点群を生成することでは、当該2次元点群の各々について、射影平面における位置、対応する3次元点群、物体が存在する確からしさに対応する値である確信度と、を関連付けるための2次元情報が生成される。ラベル情報は、位置関係に基づいて2次元点群に付与され、2次元情報にて2次元点群に関連付けられた3次元点群に付与される。 In this embodiment, by generating a two-dimensional point cloud, two-dimensional information is generated for each of the two-dimensional point clouds to associate a position on the projection plane, a corresponding three-dimensional point cloud, and a certainty value that corresponds to the likelihood that an object exists. Label information is assigned to the two-dimensional point cloud based on the positional relationship, and is assigned to the three-dimensional point cloud associated with the two-dimensional point cloud by the two-dimensional information.
これにより、3次元点群にラベル情報を付与することができる。従って、出力情報を種々の用途に活用することが可能になる。 This allows label information to be added to the 3D point cloud, making it possible to use the output information for a variety of purposes.
本実施形態によれば、ラベル情報は、確信度が予め定められた基準値以上である2次元点群に付与される。 According to this embodiment, label information is assigned to two-dimensional point clouds whose confidence level is equal to or greater than a predetermined reference value.
これにより、確信度が低い2次元点群は通常、対象物が存在するか否かあいまいな点群であり、そのような2次元点群にラベル情報が付与されることを減らすことができる。従って、ラベル情報を付与する精度の向上を図ることが可能になる。 As a result, 2D point clouds with low confidence are usually point clouds where it is ambiguous whether an object exists or not, and it is possible to reduce the number of such 2D point clouds to be assigned label information. This makes it possible to improve the accuracy of assigning label information.
本実施形態によれば、2次元点群を生成することでは、レーダ情報に基づいて、3次元点群と当該3次元点群に物体が存在する確からしさに対応する値である確信度とが関連付けられた3次元情報がさらに生成される。複数の3次元点群が射影平面における共通の位置に射影される場合、当該複数の3次元点群を射影平面に射影した2次元点群に関する確信度は、次の(1)~(3)のいずれかである。(1)複数の3次元点群のうち射影平面に最も近い3次元点群の確信度。(2)複数の3次元点群の確信度の平均値。(3)複数の3次元点群の確信度の最大値。 According to this embodiment, when generating a two-dimensional point cloud, three-dimensional information is further generated based on radar information, in which a three-dimensional point cloud is associated with a certainty, which is a value corresponding to the likelihood that an object exists in the three-dimensional point cloud. When multiple three-dimensional point clouds are projected onto a common position on a projection plane, the certainty of the two-dimensional point cloud obtained by projecting the multiple three-dimensional point clouds onto the projection plane is one of the following (1) to (3): (1) The certainty of the three-dimensional point cloud that is closest to the projection plane among the multiple three-dimensional point clouds. (2) The average value of the certainty of the multiple three-dimensional point clouds. (3) The maximum value of the certainty of the multiple three-dimensional point clouds.
これにより、2次元点群に適切な確信度を容易に関連付け、この確信度を用いて、2次元点群にラベル情報を付与することができる。従って、2次元点群にラベル情報を精度良くかつ容易に付与することが可能になる。 This makes it easy to associate an appropriate confidence level with a two-dimensional point cloud, and to assign label information to the two-dimensional point cloud using this confidence level. Therefore, it becomes possible to assign label information to a two-dimensional point cloud with high accuracy and ease.
[実施形態2]
本実施形態では、第1取得部131及びこれが実行する第1処理の詳細例について説明する。
[Embodiment 2]
In this embodiment, a detailed example of the
第1取得部131は、例えば図7に示すように、レーダ情報取得部131aと、3次元情報取得部131bと、射影部131cとを含む。
The
レーダ情報取得部131aは、レーダ情報を取得する。
The radar
3次元情報取得部131bは、レーダ情報取得部131aが取得したレーダ情報に基づいて、3次元点群に関する3次元情報を取得する。
The three-dimensional
射影部131cは、3次元情報取得部131bが取得した3次元情報を用いて、3次元点群を射影平面に射影した2次元点群に関する2次元情報を生成する。
The
第1取得部131は、例えば図8に示すような第1取得処理(ステップS101)を実行する。
The
レーダ情報取得部131aは、例えばネットワークNT1を介して送信部113から、レーダ情報を取得する(ステップS101a)。
The radar
3次元情報取得部131bは、ステップS101aにて取得されたレーダ情報に基づいて、3次元点群に関する3次元情報を取得する(ステップS101b)。
The three-dimensional
射影部131cは、ステップS101bにて取得された3次元情報を用いて、3次元点群を射影平面に射影した2次元点群に関する2次元情報を生成し(ステップS101c)、情報処理(図3参照)に戻る。
The
例えば、射影部131cは、射影平面を特定するための情報を受け付けると、3次元点群を射影平面に射影し、射影平面上の2次元点群を生成する。射影部131cは、2次元点群の各々に識別情報を予め定められた規則に従って付与する。射影部131cは、この識別情報と、射影平面における2次元点群の位置とを関連付ける。また、射影部131cは、2次元点群に対応する3次元点群に関連付けられた確信度に基いて、2次元点群の確信度を求める。そして、射影部131cは、2次元点群の各々に識別情報、射影平面における2次元点群の位置、対応する3次元点群、2次元点群に物体が存在する確からしさに対応する値である確信度と、を関連付けた2次元情報を生成する。2次元情報を生成する2次元情報を生成する。
For example, when the
(作用・効果)
以上、本実施形態によれば、第1取得部131は、レーダ情報取得部131aと、3次元情報取得部131bと、射影部131cとを含む。
(Action and Effects)
As described above, according to this embodiment, the
レーダ情報取得部131aは、レーダ情報を取得する。3次元情報取得部131bは、レーダ情報取得部131aが取得したレーダ情報に基づいて、3次元点群に関する3次元情報を取得する。射影部131cは、3次元情報取得部131bが取得した3次元情報を用いて、3次元点群を射影平面に射影した2次元点群に関する2次元情報を生成する。
The radar
これにより、3次元点群を射影平面に射影した2次元点群に関する2次元情報を生成することができる。従って、2次元点群に関する2次元情報を容易に生成することが可能になる。 This makes it possible to generate two-dimensional information about a two-dimensional point cloud by projecting a three-dimensional point cloud onto a projection plane. Therefore, it becomes possible to easily generate two-dimensional information about a two-dimensional point cloud.
[実施形態3]
本実施形態では、第2取得部132及びこれが実行する第2処理の詳細例について説明する。
[Embodiment 3]
In this embodiment, a detailed example of the
第2取得部132は、例えば図9に示すように、撮影画像取得部132aと、画像変形部132bと、画像ラベル取得部132cとを含む。
The
撮影画像取得部132aは、光を用いて撮影された撮影画像を取得する。
The captured
画像変形部132bは、撮影画像取得部132aが取得した撮影画像を、2次元点群と共通の座標系で表された2次元撮影画像に変形する。
The
画像ラベル取得部132cは、画像変形部132bが取得した2次元撮影画像に含まれる対象物に付与されたラベル情報を取得する。
The image
第2取得部132は、例えば図10に示すような第2取得処理(ステップS102)を実行する。
The
撮影画像取得部132aは、例えばネットワークNT2を介して撮影装置120から、撮影画像を取得する(ステップS102a)。
The captured
画像変形部132bは、ステップS101aにて取得された撮影画像を、2次元点群と共通の座標系で表された2次元撮影画像に変形する(ステップS102b)。
The
例えば、画像変形部132bは、撮影画像に含まれる画素の実空間における位置と、2次元点群の実空間における位置と、が一致するように、撮影画像を2次元撮影画像に変形する。
For example, the
なお、ステップS102bの処理は、必要に応じて行われればよい。例えば、ステップS102bの処理は、ステップS101aにて取得された撮影画像と、ステップS101cにて生成された2次元点群と、の座標系が異なる場合に実行されればよく、共通である場合には実行されなくてよい。 The process of step S102b may be performed as necessary. For example, the process of step S102b may be performed when the coordinate systems of the captured image acquired in step S101a and the two-dimensional point cloud generated in step S101c are different, but may not be performed when they are the same.
画像ラベル取得部132cは、ステップS102bにて取得された2次元撮影画像に含まれる対象物に付与されたラベル情報を取得し(ステップS102c)、情報処理(図3参照)に戻る。
The image
ステップS102cにおいてラベル情報は、上述のように、人の入力によって取得されてもよく、物体検出モデルを用いて取得されてもよい。また、2次元撮影画像は、撮影画像を変形した画像であるので、2次元撮影画像と撮影画像とで各々に含まれる対象物は共通している。そのため、ステップS102cにて、2次元撮影画像に含まれる対象物に付与されたラベル情報が取得される代わりに、撮影画像に含まれる対象物に付与されたラベル情報が取得されてもよい。 In step S102c, the label information may be obtained by human input as described above, or may be obtained using an object detection model. In addition, since the two-dimensional captured image is an image obtained by deforming the captured image, the objects contained in the two-dimensional captured image and the captured image are the same. Therefore, in step S102c, instead of obtaining label information that has been applied to objects contained in the two-dimensional captured image, label information that has been applied to objects contained in the captured image may be obtained.
(作用・効果)
以上、本実施形態によれば、第2取得部132は、撮影画像取得部132aと、画像変形部132bと、画像ラベル取得部132cとを含む。
(Action and Effects)
As described above, according to this embodiment, the second acquiring
撮影画像取得部132aは、光を用いて撮影された撮影画像を取得する。画像変形部132bは、取得された撮影画像を、2次元点群と共通の座標系で表された2次元撮影画像に変形する。画像ラベル取得部132cは、2次元撮影画像に含まれる対象物に付与されたラベル情報を取得する。
The captured
これにより、2次元撮影画像に含まれる対象物に付与されたラベル情報を取得することができる。従って、対象物に付与されたラベル情報を容易に取得することが可能になる。 This makes it possible to obtain label information attached to objects contained in two-dimensional captured images. Therefore, it becomes possible to easily obtain label information attached to objects.
以上、実施の形態を参照して本開示を説明したが、本開示は上述の実施の形態に限定されるものではない。本開示の構成や詳細には、本開示のスコープ内で当業者が理解し得る様々な変更をすることができる。そして、各実施の形態は、適宜他の実施の形態と組み合わせることができる。 The present disclosure has been described above with reference to the embodiments, but the present disclosure is not limited to the above-mentioned embodiments. Various modifications that can be understood by those skilled in the art can be made to the configuration and details of the present disclosure within the scope of the present disclosure. Furthermore, each embodiment can be combined with other embodiments as appropriate.
また、上述の説明で用いた複数のフローチャートでは、複数の工程(処理)が順番に記載されているが、各実施形態で実行される工程の実行順序は、その記載の順番に制限されない。各実施形態では、図示される工程の順番を内容的に支障のない範囲で変更することができる。 In addition, in the multiple flowcharts used in the above explanation, multiple steps (processing) are described in order, but the order in which the steps are executed in each embodiment is not limited to the order described. In each embodiment, the order of the steps shown in the figures can be changed to the extent that does not interfere with the content.
上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下に限られない。 Some or all of the above embodiments can be described as follows, but are not limited to the following:
1.
レーダ情報に基づいて、3次元点群を変換した2次元点群を生成する第1取得手段と、
光を用いて撮影された撮影画像に基づいて、前記2次元点群と共通の座標系で表された2次元撮影画像と、当該2次元撮影画像に含まれる対象物に付与されたラベル情報と、を取得する第2取得手段と、
前記2次元点群と前記2次元撮影画像における前記対象物との位置関係に基づいて、前記2次元点群に前記ラベル情報を付与する付与手段と、
前記レーダ情報に基づく点群に前記ラベル情報を付与した出力情報を出力する出力手段とを備える
情報処理装置。
2.
前記2次元点群は、前記3次元点群が射影平面に射影された点群である
1.に記載の情報処理装置。
3.
前記ラベル情報は、前記3次元点群にさらに付与され、
前記出力情報は、前記3次元点群に前記ラベル情報を付与した情報である
1.又は2.に記載の情報処理装置。
4.
前記ラベル情報は、前記ラベル情報が付与された前記2次元点群に基づいて、指定された特定領域内の点群にさらに付与され、
前記出力情報は、前記特定領域内の点群に前記ラベル情報を付与した情報である
1.又は2.に記載の情報処理装置。
5.
前記ラベル情報は、前記対象物が属するクラスを識別するためのクラス識別情報と、前記対象物が前記クラスに属する確からしさを示すクラス信頼度との少なくとも1つを含む
1.から4.のいずれか1つに記載の情報処理装置。
6.
前記2次元点群を生成することでは、当該2次元点群の各々について、前記射影平面における位置、対応する前記3次元点群、物体が存在する確からしさに対応する値である確信度と、を関連付けるための2次元情報が生成され、
前記ラベル情報は、前記位置関係に基づいて前記2次元点群に付与され、前記2次元情報にて前記2次元点群に関連付けられた前記3次元点群に付与される
2.に記載の情報処理装置。
7.
前記ラベル情報は、前記確信度が予め定められた基準値以上である前記2次元点群に付与される
6.に記載の情報処理装置。
8.
前記2次元点群を生成することでは、前記レーダ情報に基づいて、3次元点群と当該3次元点群に物体が存在する確からしさに対応する値である確信度とが関連付けられた3次元情報がさらに生成され、
複数の前記3次元点群が前記射影平面における共通の位置に射影される場合、当該複数の3次元点群を前記射影平面に射影した前記2次元点群に関する前記確信度は、前記複数の3次元点群のうち前記射影平面に最も近い3次元点群の前記確信度、前記複数の3次元点群の前記確信度の平均値、前記複数の3次元点群の前記確信度の最大値のいずれかである
2、6又は7に記載の情報処理装置。
9.
前記第1取得手段は、
前記レーダ情報を取得するレーダ情報取得手段と、
前記取得されたレーダ情報に基づいて、前記3次元点群に関する3次元情報を取得する3次元情報取得手段と、
前記3次元情報を用いて、前記3次元点群を前記射影平面に射影した前記2次元点群に関する2次元情報を生成する射影手段とを含む
2.に記載の情報処理装置。
10.
前記第2取得手段は、
前記光を用いて撮影された撮影画像を取得する撮影画像取得手段と、
前記取得された撮影画像を、前記2次元点群と共通の座標系で表された2次元撮影画像に変形する画像変形手段と、
前記2次元撮影画像に含まれる前記対象物に付与された前記ラベル情報を取得する画像ラベル取得手段とを含む
1.から9.のいずれか1つに記載の情報処理装置。
11.
レーダを用いて走査領域を走査した前記レーダ情報を生成するために移動する移動体と、
前記走査領域を撮影して前記撮影画像を生成するための撮影装置と、
1.から10.のいずれか1つに記載の情報処理装置とを備え、
前記移動体は、
前記走査領域に前記レーダを発信する発信手段と、
前記発信されたレーダの反射波を受信して、当該反射波に関する前記レーダ情報を生成する受信手段と、
前記生成されたレーダ情報を送信する送信手段とを含む
情報処理システム。
12.
1つ以上のコンピュータが、
レーダ情報に基づいて、3次元点群を変換した2次元点群を生成し、
光を用いて撮影された撮影画像に基づいて、前記2次元点群と共通の座標系で表された2次元撮影画像と、当該2次元撮影画像に含まれる対象物に付与されたラベル情報と、を取得し、
前記2次元点群と前記2次元撮影画像における前記対象物との位置関係に基づいて、前記2次元点群に前記ラベル情報を付与し、
前記レーダ情報に基づく点群に前記ラベル情報を付与した出力情報を出力する
情報処理方法。
13.
1つ以上のコンピュータに、
レーダ情報に基づいて、3次元点群を変換した2次元点群を生成し、
光を用いて撮影された撮影画像に基づいて、前記2次元点群と共通の座標系で表された2次元撮影画像と、当該2次元撮影画像に含まれる対象物に付与されたラベル情報と、を取得し、
前記2次元点群と前記2次元撮影画像における前記対象物との位置関係に基づいて、前記2次元点群に前記ラベル情報を付与し、
前記レーダ情報に基づく点群に前記ラベル情報を付与した出力情報を出力することを実行させるためのプログラム。
1.
a first acquisition means for generating a two-dimensional point cloud by converting the three-dimensional point cloud based on the radar information;
a second acquisition means for acquiring, based on a captured image captured using light, a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud and label information assigned to an object included in the two-dimensional captured image;
an assignment means for assigning the label information to the two-dimensional point cloud based on a positional relationship between the two-dimensional point cloud and the object in the two-dimensional captured image;
and output means for outputting output information in which the label information is added to a point cloud based on the radar information.
2.
2. The information processing device according to 1., wherein the two-dimensional point cloud is a point cloud obtained by projecting the three-dimensional point cloud onto a projection plane.
3.
The label information is further assigned to the three-dimensional point cloud;
3. The information processing device according to 1. or 2., wherein the output information is information in which the label information is added to the three-dimensional point cloud.
4.
The label information is further assigned to a point cloud within a specified specific region based on the two-dimensional point cloud to which the label information is assigned;
3. The information processing device according to 1. or 2., wherein the output information is information in which the label information is added to a point cloud within the specific region.
5.
5. The information processing device according to any one of 1. to 4., wherein the label information includes at least one of class identification information for identifying a class to which the object belongs and a class confidence indicating a likelihood that the object belongs to the class.
6.
In generating the two-dimensional point cloud, two-dimensional information is generated for associating, for each of the two-dimensional point clouds, a position on the projection plane, the corresponding three-dimensional point cloud, and a certainty value that is a value corresponding to the likelihood that an object exists;
2. The information processing device according to 1, wherein the label information is assigned to the two-dimensional point cloud based on the positional relationship, and is assigned to the three-dimensional point cloud associated with the two-dimensional point cloud by the two-dimensional information.
7.
7. The information processing apparatus according to 6., wherein the label information is assigned to the two-dimensional point cloud whose certainty is equal to or greater than a predetermined reference value.
8.
In the generating of the two-dimensional point cloud, three-dimensional information is further generated in which the three-dimensional point cloud is associated with a certainty factor, which is a value corresponding to the likelihood that an object exists in the three-dimensional point cloud, based on the radar information;
8. The information processing device according to claim 2, 6 or 7, wherein, when a plurality of the three-dimensional point clouds are projected onto a common position on the projection plane, the certainty factor for the two-dimensional point cloud obtained by projecting the plurality of three-dimensional point clouds onto the projection plane is any one of the certainty factor of a three-dimensional point cloud that is closest to the projection plane among the plurality of three-dimensional point clouds, the average value of the certainty factors of the plurality of three-dimensional point clouds, and the maximum value of the certainty factors of the plurality of three-dimensional point clouds.
9.
The first acquisition means is
A radar information acquisition means for acquiring the radar information;
a three-dimensional information acquisition means for acquiring three-dimensional information regarding the three-dimensional point cloud based on the acquired radar information;
3. The information processing apparatus according to 2., further comprising: a projection means for generating, using the three-dimensional information, two-dimensional information related to the two-dimensional point cloud by projecting the three-dimensional point cloud onto the projection plane.
10.
The second acquisition means is
An image capturing means for capturing an image captured using the light;
an image transformation means for transforming the acquired photographed image into a two-dimensional photographed image expressed in a coordinate system common to the two-dimensional point cloud;
and an image label acquisition unit that acquires the label information assigned to the object included in the two-dimensional captured image.
11.
a moving object that moves to generate the radar information by scanning a scanning area using a radar;
an imaging device for imaging the scanning region to generate the imaging image;
The information processing device according to any one of claims 1 to 10,
The moving body is
a transmitting means for transmitting the radar to the scanning area;
a receiving means for receiving the reflected wave of the transmitted radar and generating the radar information relating to the reflected wave;
and a transmitting means for transmitting the generated radar information.
12.
One or more computers
A two-dimensional point cloud is generated by converting the three-dimensional point cloud based on the radar information;
acquiring a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud and label information assigned to an object included in the two-dimensional captured image based on a captured image captured using light;
assigning the label information to the two-dimensional point cloud based on a positional relationship between the two-dimensional point cloud and the object in the two-dimensional captured image;
and outputting output information obtained by adding the label information to a point cloud based on the radar information.
13.
On one or more computers,
A two-dimensional point cloud is generated by converting the three-dimensional point cloud based on the radar information;
acquiring a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud and label information assigned to an object included in the two-dimensional captured image based on a captured image captured using light;
assigning the label information to the two-dimensional point cloud based on a positional relationship between the two-dimensional point cloud and the object in the two-dimensional captured image;
A program for executing the step of outputting output information in which the label information is added to a point cloud based on the radar information.
この出願は、2023年8月9日に出願された日本出願特願2023-129864号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2023-129864, filed on August 9, 2023, the entire disclosure of which is incorporated herein by reference.
100 情報処理システム
110 移動体
111 発信部
112 受信部
113 送信部
120 撮影装置
130 情報処理装置
131 第1取得部
131a レーダ情報取得部
131b 3次元情報取得部
131c 射影部
132 第2取得部
132a 撮影画像取得部
132b 画像変形部
132c 画像ラベル取得部
133 付与部
134 出力部
REFERENCE SIGNS
Claims (10)
光を用いて撮影された撮影画像に基づいて、前記2次元点群と共通の座標系で表された2次元撮影画像と、当該2次元撮影画像に含まれる対象物に付与されたラベル情報と、を取得する第2取得手段と、
前記2次元点群と前記2次元撮影画像における前記対象物との位置関係に基づいて、前記2次元点群に前記ラベル情報を付与する付与手段と、
前記レーダ情報に基づく点群に前記ラベル情報を付与した出力情報を出力する出力手段とを備える
情報処理装置。 a first acquisition means for generating a two-dimensional point cloud by converting the three-dimensional point cloud based on the radar information;
a second acquisition means for acquiring, based on a captured image captured using light, a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud and label information assigned to an object included in the two-dimensional captured image;
an assignment means for assigning the label information to the two-dimensional point cloud based on a positional relationship between the two-dimensional point cloud and the object in the two-dimensional captured image;
and output means for outputting output information in which the label information is added to a point cloud based on the radar information.
請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1 , wherein the two-dimensional point cloud is a point cloud obtained by projecting the three-dimensional point cloud onto a projection plane.
前記出力情報は、前記3次元点群に前記ラベル情報を付与した情報である
請求項1又は2に記載の情報処理装置。 The label information is further assigned to the three-dimensional point cloud;
The information processing apparatus according to claim 1 , wherein the output information is information in which the label information is added to the three-dimensional point cloud.
前記出力情報は、前記特定領域内の点群に前記ラベル情報を付与した情報である
請求項1又は2に記載の情報処理装置。 The label information is further assigned to a point cloud within a specified specific region based on the two-dimensional point cloud to which the label information is assigned;
The information processing apparatus according to claim 1 , wherein the output information is information in which the label information is added to a point cloud within the specific region.
請求項1から4のいずれか1項に記載の情報処理装置。 The information processing device according to claim 1 , wherein the label information includes at least one of class identification information for identifying a class to which the object belongs and a class confidence indicating a likelihood that the object belongs to the class.
前記ラベル情報は、前記位置関係に基づいて前記2次元点群に付与され、前記2次元情報にて前記2次元点群に関連付けられた前記3次元点群に付与される
請求項2に記載の情報処理装置。 In generating the two-dimensional point cloud, two-dimensional information is generated for associating, for each of the two-dimensional point clouds, a position on the projection plane, the corresponding three-dimensional point cloud, and a certainty value that is a value corresponding to the likelihood that an object exists;
The information processing apparatus according to claim 2 , wherein the label information is assigned to the two-dimensional point cloud based on the positional relationship, and is assigned to the three-dimensional point cloud associated with the two-dimensional point cloud by the two-dimensional information.
複数の前記3次元点群が前記射影平面における共通の位置に射影される場合、当該複数の3次元点群を前記射影平面に射影した前記2次元点群に関する前記確信度は、前記複数の3次元点群のうち前記射影平面に最も近い3次元点群の前記確信度、前記複数の3次元点群の前記確信度の平均値、前記複数の3次元点群の前記確信度の最大値のいずれかである
請求項2又は6に記載の情報処理装置。 In the generating of the two-dimensional point cloud, three-dimensional information is further generated in which the three-dimensional point cloud is associated with a certainty factor, which is a value corresponding to the likelihood that an object exists in the three-dimensional point cloud, based on the radar information;
7. The information processing device according to claim 2 or 6, wherein when a plurality of the three-dimensional point clouds are projected onto a common position on the projection plane, the certainty factor for the two-dimensional point cloud obtained by projecting the plurality of three-dimensional point clouds onto the projection plane is any one of the certainty factor of a three-dimensional point cloud that is closest to the projection plane among the plurality of three-dimensional point clouds, an average value of the certainty factors of the plurality of three-dimensional point clouds, and a maximum value of the certainty factors of the plurality of three-dimensional point clouds.
前記走査領域を撮影して前記撮影画像を生成するための撮影装置と、
請求項1又は2に記載の情報処理装置とを備え、
前記移動体は、
前記走査領域に前記レーダを発信する発信手段と、
前記発信されたレーダの反射波を受信して、当該反射波に関する前記レーダ情報を生成する受信手段と、
前記生成されたレーダ情報を送信する送信手段とを含む
情報処理システム。 a moving object that moves to generate the radar information by scanning a scanning area using a radar;
an imaging device for imaging the scanning region to generate the imaging image;
The information processing device according to claim 1 or 2,
The moving body is
a transmitting means for transmitting the radar to the scanning area;
a receiving means for receiving the reflected wave of the transmitted radar and generating the radar information relating to the reflected wave;
and a transmitting means for transmitting the generated radar information.
レーダ情報に基づいて、3次元点群を変換した2次元点群を生成し、
光を用いて撮影された撮影画像に基づいて、前記2次元点群と共通の座標系で表された2次元撮影画像と、当該2次元撮影画像に含まれる対象物に付与されたラベル情報と、を取得し、
前記2次元点群と前記2次元撮影画像における前記対象物との位置関係に基づいて、前記2次元点群に前記ラベル情報を付与し、
前記レーダ情報に基づく点群に前記ラベル情報を付与した出力情報を出力する
情報処理方法。 One or more computers
A two-dimensional point cloud is generated by converting the three-dimensional point cloud based on the radar information;
acquiring a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud and label information assigned to an object included in the two-dimensional captured image based on a captured image captured using light;
assigning the label information to the two-dimensional point cloud based on a positional relationship between the two-dimensional point cloud and the object in the two-dimensional captured image;
and outputting output information obtained by adding the label information to a point cloud based on the radar information.
レーダ情報に基づいて、3次元点群を変換した2次元点群を生成し、
光を用いて撮影された撮影画像に基づいて、前記2次元点群と共通の座標系で表された2次元撮影画像と、当該2次元撮影画像に含まれる対象物に付与されたラベル情報と、を取得し、
前記2次元点群と前記2次元撮影画像における前記対象物との位置関係に基づいて、前記2次元点群に前記ラベル情報を付与し、
前記レーダ情報に基づく点群に前記ラベル情報を付与した出力情報を出力することを実行させるためのプログラムが記録された記録媒体。 On one or more computers,
A two-dimensional point cloud is generated by converting the three-dimensional point cloud based on the radar information;
acquiring a two-dimensional captured image expressed in a coordinate system common to the two-dimensional point cloud and label information assigned to an object included in the two-dimensional captured image based on a captured image captured using light;
assigning the label information to the two-dimensional point cloud based on a positional relationship between the two-dimensional point cloud and the object in the two-dimensional captured image;
A recording medium having a program recorded thereon for executing the process of outputting output information in which the label information is added to a point cloud based on the radar information.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2023-129864 | 2023-08-09 | ||
| JP2023129864 | 2023-08-09 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025033237A1 true WO2025033237A1 (en) | 2025-02-13 |
Family
ID=94534703
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2024/026994 Pending WO2025033237A1 (en) | 2023-08-09 | 2024-07-29 | Information processing device, information processing system, information processing method, and recording medium |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025033237A1 (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012084056A (en) * | 2010-10-14 | 2012-04-26 | Foundation For The Promotion Of Industrial Science | Object detection device |
| US20190387216A1 (en) * | 2018-06-13 | 2019-12-19 | Luminar Technologies, Inc. | Post-processing by lidar system guided by camera information |
| CN111652060A (en) * | 2020-04-27 | 2020-09-11 | 宁波吉利汽车研究开发有限公司 | A lidar-based height limit warning method, device, electronic device and storage medium |
| WO2021241533A1 (en) * | 2020-05-29 | 2021-12-02 | 富士フイルム株式会社 | Imaging system, imaging method, imaging program, and information acquisition method |
-
2024
- 2024-07-29 WO PCT/JP2024/026994 patent/WO2025033237A1/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012084056A (en) * | 2010-10-14 | 2012-04-26 | Foundation For The Promotion Of Industrial Science | Object detection device |
| US20190387216A1 (en) * | 2018-06-13 | 2019-12-19 | Luminar Technologies, Inc. | Post-processing by lidar system guided by camera information |
| CN111652060A (en) * | 2020-04-27 | 2020-09-11 | 宁波吉利汽车研究开发有限公司 | A lidar-based height limit warning method, device, electronic device and storage medium |
| WO2021241533A1 (en) * | 2020-05-29 | 2021-12-02 | 富士フイルム株式会社 | Imaging system, imaging method, imaging program, and information acquisition method |
Non-Patent Citations (1)
| Title |
|---|
| ISHIKAWA, KIICHIRO; ONO, SHYUHEI; AMANO, YOSHIHARU; HASHIZUME, TAKUMI; OOTA, KAZUHIRO; TAKIGUCHI; JUN-ICHI: "3D Road Environmental Modeling using Mobile Mapping System", PROCEEDINGS OF THE ANNUAL CONFERENCE OF THE VIRTUAL REALITY SOCIETY OF JAPAN, VIRTUAL REALITY SOCIETY OF JAPAN, JAPAN, vol. 13, 24 September 2008 (2008-09-24) - 26 September 2008 (2008-09-26), Japan , pages 592 - 595, XP009560778, ISSN: 1349-5062 * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12229990B2 (en) | Positioning method and apparatus | |
| US10353053B2 (en) | Object detection using radar and machine learning | |
| US20190213790A1 (en) | Method and System for Semantic Labeling of Point Clouds | |
| CN108139475A (en) | Signal handling equipment, signal processing method and program | |
| CN112017251A (en) | Calibration method and device, road side equipment and computer readable storage medium | |
| US10877143B2 (en) | Method and device for geo-referencing aerial image data with the aid of SAR image data | |
| US20170221241A1 (en) | System, method and apparatus for generating building maps | |
| US12061252B2 (en) | Environment model using cross-sensor feature point referencing | |
| JP2019185528A (en) | Information processing apparatus, program, and information processing method | |
| CN111862208B (en) | Vehicle positioning method, device and server based on screen optical communication | |
| JP6616961B2 (en) | Component positioning using electromagnetic identification (EMID) tags for contextual visualization | |
| WO2022044187A1 (en) | Data processing device, data processing method, and program | |
| JP7719426B2 (en) | Earth surface situation assessment method, earth surface situation assessment device, and earth surface situation assessment program | |
| WO2025033237A1 (en) | Information processing device, information processing system, information processing method, and recording medium | |
| WO2025028225A1 (en) | Information processing device, information processing method, and recording medium | |
| KR101773425B1 (en) | Method and apparatus for controlling position of underwater robot and underwater robot having the same | |
| EP4636694A1 (en) | Depth estimation method, and apparatus | |
| WO2025047248A1 (en) | Information processing device, information processing method, and recording medium | |
| US12117536B2 (en) | Systems and methods for transforming autonomous aerial vehicle sensor data between platforms | |
| US11175399B2 (en) | Information processing device, information processing method, and storage medium | |
| CN116047537B (en) | Road information generation method and system based on laser radar | |
| WO2020133206A1 (en) | Radar simulation method and apparatus | |
| WO2025047249A1 (en) | Information processing device, information processing method, and recording medium | |
| EP4556946A1 (en) | A system for operating in a maritime environment | |
| KR102794964B1 (en) | Apparatus and method for transmitting selective data to establish facility information |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24851662 Country of ref document: EP Kind code of ref document: A1 |