WO2025029344A1 - Mappage de points de référence d'antenne sur des signaux de référence de positionnement de liaison latérale - Google Patents
Mappage de points de référence d'antenne sur des signaux de référence de positionnement de liaison latérale Download PDFInfo
- Publication number
- WO2025029344A1 WO2025029344A1 PCT/US2024/028101 US2024028101W WO2025029344A1 WO 2025029344 A1 WO2025029344 A1 WO 2025029344A1 US 2024028101 W US2024028101 W US 2024028101W WO 2025029344 A1 WO2025029344 A1 WO 2025029344A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mapping
- prs
- arp
- clause
- position estimation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/0009—Transmission of position information to remote stations
- G01S5/0072—Transmission between mobile stations, e.g. anti-collision systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/16—Interfaces between hierarchically similar devices
- H04W92/18—Interfaces between hierarchically similar devices between terminal devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
- G01S5/0236—Assistance data, e.g. base station almanac
Definitions
- Wireless communication systems have developed through various generations, including a first-generation analog wireless phone service (1G), a second-generation (2G) digital wireless phone service (including interim 2.5G and 2.75G networks), a third-generation (3G) high speed data, Internet-capable wireless service and a fourth-generation (4G) service (e.g., Long Term Evolution (LTE) or WiMax).
- 1G first-generation analog wireless phone service
- 2G second-generation digital wireless phone service
- 3G high speed data
- 4G fourth-generation
- 4G fourth-generation
- LTE Long Term Evolution
- PCS personal communications service
- Examples of known cellular systems include the cellular analog advanced mobile phone system (AMPS), and digital cellular systems based on code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), the Global System for Mobile communications (GSM), etc.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- GSM Global System for Mobile communications
- a fifth generation (5G) wireless standard referred to as New Radio (NR)
- NR New Radio
- the 5G standard according to the Next Generation Mobile Networks Alliance, is designed to provide higher data rates as compared to previous standards, more accurate positioning (e.g., based on reference signals for positioning (RS-P), such as downlink, uplink, or sidelink positioning reference signals (PRS)), and other technical 1 QC2306712WO Qualcomm Ref. No.2306712WO 2 enhancements.
- a method of operating a user equipment includes receiving a sidelink positioning reference signal (SL-PRS) resource configuration that configures a first SL- PRS and a second SL-PRS associated with a SL-based position estimation session; receiving a first mapping of a first antenna reception point (ARP) to the first SL-PRS; receiving a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are received via one or more SL messages; and performing one or more reception operations, one or more transmission operations, or both, for the SL-based position estimation session in accordance with the first mapping and the second mapping.
- SL-PRS sidelink positioning reference signal
- a method of operating a device includes transmitting a sidelink positioning reference signal (SL-PRS) resource configuration to a user equipment (UE) that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; transmitting a first mapping of a first antenna reception point (ARP) to the first SL-PRS; and transmitting a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are transmitted via one or more SL messages.
- SL-PRS sidelink positioning reference signal
- UE user equipment
- ARP antenna reception point
- a user equipment includes one or more memories; one or more transceivers; and one or more processors communicatively coupled to the one or more memories and the one or more transceivers, the one or more processors, either alone or in 2 QC2306712WO Qualcomm Ref.
- No.2306712WO 3 combination configured to: receive, via the one or more transceivers, a sidelink positioning reference signal (SL-PRS) resource configuration that configures a first SL- PRS and a second SL-PRS associated with a SL-based position estimation session; receive, via the one or more transceivers, a first mapping of a first antenna reception point (ARP) to the first SL-PRS; receive, via the one or more transceivers, a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are received via one or more SL messages; and perform one or more reception operations, one or more transmission operations, or both, for the SL-based position estimation session in accordance with the first mapping and the second mapping.
- SL-PRS sidelink positioning reference signal
- a device includes one or more memories; one or more transceivers; and one or more processors communicatively coupled to the one or more memories and the one or more transceivers, the one or more processors, either alone or in combination, configured to: transmit, via the one or more transceivers, a sidelink positioning reference signal (SL-PRS) resource configuration to a user equipment (UE) that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; transmit, via the one or more transceivers, a first mapping of a first antenna reception point (ARP) to the first SL-PRS; and transmit, via the one or more transceivers, a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are transmitted via one or more SL messages.
- SL-PRS sidelink positioning reference signal
- UE user equipment
- ARP antenna reception point
- a user equipment includes means for receiving a sidelink positioning reference signal (SL-PRS) resource configuration that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; means for receiving a first mapping of a first antenna reception point (ARP) to the first SL-PRS; means for receiving a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are received via one or more SL messages; and means for performing one or more reception operations, one or more transmission operations, or both, for the SL-based position estimation session in accordance with the first mapping and the second mapping.
- SL-PRS sidelink positioning reference signal
- a device includes means for transmitting a sidelink positioning reference signal (SL-PRS) resource configuration to a user equipment (UE) that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; means for transmitting a first mapping of a first antenna reception point (ARP) to the first 3 QC2306712WO Qualcomm Ref. No.2306712WO 4 SL-PRS; and means for transmitting a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are transmitted via one or more SL messages.
- SL-PRS sidelink positioning reference signal
- a non-transitory computer-readable medium storing computer-executable instructions that, when executed by a user equipment (UE), cause the UE to: receive a sidelink positioning reference signal (SL-PRS) resource configuration that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; receive a first mapping of a first antenna reception point (ARP) to the first SL- PRS; receive a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are received via one or more SL messages; and perform one or more reception operations, one or more transmission operations, or both, for the SL-based position estimation session in accordance with the first mapping and the second mapping.
- SL-PRS sidelink positioning reference signal
- a non-transitory computer-readable medium storing computer-executable instructions that, when executed by a device, cause the device to: transmit a sidelink positioning reference signal (SL-PRS) resource configuration to a user equipment (UE) that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; transmit a first mapping of a first antenna reception point (ARP) to the first SL-PRS; and transmit a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are transmitted via one or more SL messages.
- SL-PRS sidelink positioning reference signal
- UE user equipment
- ARP antenna reception point
- FIG. 1 illustrates an example wireless communications system, according to aspects of the disclosure.
- FIGS.2A, 2B, and 2C illustrate example wireless network structures, according to aspects of the disclosure. 4 QC2306712WO Qualcomm Ref. No.2306712WO 5 [0018] FIGS.
- FIG. 3A, 3B, and 3C are simplified block diagrams of several sample aspects of components that may be employed in a user equipment (UE), a base station, and a network entity, respectively, and configured to support communications as taught herein.
- FIG. 4 is a diagram illustrating an example frame structure, according to aspects of the disclosure.
- FIGS. 5A and 5B are diagrams of example sidelink slot structures with and without feedback resources, according to aspects of the disclosure.
- FIG. 6 is a diagram showing how a shared channel (SCH) is established on a sidelink between two or more UEs, according to aspects of the disclosure.
- SCH shared channel
- FIG.7 is a diagram illustrating an example of a resource pool for positioning configured within a sidelink resource pool for communication, according to aspects of the disclosure.
- FIGS.8A and 8B illustrate various scenarios of interest for sidelink-only or joint Uu and sidelink positioning, according to aspects of the disclosure.
- FIG. 9 illustrates a multi-antenna reception point (ARP) sidelink-based position estimation scheme, in accordance with aspects of the disclosure.
- FIG.10 illustrates an exemplary process of communications according to an aspect of the disclosure.
- FIG.11 illustrates an exemplary process of communications according to an aspect of the disclosure.
- FIG. 12 illustrates an example implementation of the process of FIG. 10, in accordance with aspects of the disclosure.
- FIG. 13 illustrates an example implementation of the process of FIG. 11, in accordance with aspects of the disclosure.
- DETAILED DESCRIPTION [0029] Aspects of the disclosure are provided in the following description and related drawings directed to various examples provided for illustration purposes. Alternate aspects may be devised without departing from the scope of the disclosure. Additionally, well-known elements of the disclosure will not be described in detail or will be omitted so as not to obscure the relevant details of the disclosure. [0030] Various aspects relate generally to mapping of antenna reference point to sidelink positioning reference signal. For sidelink (SL) positioning scenarios (e.g., V2X), the size QC2306712WO Qualcomm Ref.
- SL sidelink
- No.2306712WO 6 of the SL user equipment may sometimes be much larger than the regular NR UE, where the SL measurements can be obtained from multiple antenna panels.
- Particular aspects of the subject matter described in this disclosure can be implemented to realize one or more of the following potential advantages.
- Aspects of the disclosure are directed to a mapping scheme between ARPs and SL-PRS. Such aspects may provide various technical advantages, such as improving position estimation accuracy of SL- based position estimation (e.g., because ARP-specific locations may be factored into the position estimation, which matters particularly for larger UE-types such as vehicle UEs where the ARPs may be separated by a much greater distance than other UE types such as smart phones).
- data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description below may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof, depending in part on the particular application, in part on the desired design, in part on the corresponding technology, etc.
- ASICs application specific integrated circuits
- sequence(s) of actions described herein can be considered to be embodied entirely within any form of non- transitory computer-readable storage medium having stored therein a corresponding set of computer instructions that, upon execution, would cause or instruct an associated processor of a device to perform the functionality described herein.
- the various aspects of the disclosure may be embodied in a number of different forms, all of which 6 QC2306712WO Qualcomm Ref. No.2306712WO 7 have been contemplated to be within the scope of the claimed subject matter.
- the corresponding form of any such aspects may be described herein as, for example, “logic configured to” perform the described action.
- a UE may be any wireless communication device (e.g., a mobile phone, router, tablet computer, laptop computer, consumer asset locating device, wearable (e.g., smartwatch, glasses, augmented reality (AR) / virtual reality (VR) headset, etc.), vehicle (e.g., automobile, motorcycle, bicycle, etc.), Internet of Things (IoT) device, etc.) used by a user to communicate over a wireless communications network.
- a UE may be mobile or may (e.g., at certain times) be stationary, and may communicate with a radio access network (RAN).
- RAN radio access network
- the term “UE” may be referred to interchangeably as an “access terminal” or “AT,” a “client device,” a “wireless device,” a “subscriber device,” a “subscriber terminal,” a “subscriber station,” a “user terminal” or “UT,” a “mobile device,” a “mobile terminal,” a “mobile station,” or variations thereof.
- AT access terminal
- client device a “wireless device”
- subscriber device a “subscriber terminal”
- a “subscriber station” a “user terminal” or “UT”
- UEs can communicate with a core network via a RAN, and through the core network the UEs can be connected with external networks such as the Internet and with other UEs.
- a base station may operate according to one of several RATs in communication with UEs depending on the network in which it is deployed, and may be alternatively referred to as an access point (AP), a network node, a NodeB, an evolved NodeB (eNB), a next generation eNB (ng-eNB), a New Radio (NR) Node B (also referred to as a gNB or gNodeB), etc.
- AP access point
- eNB evolved NodeB
- ng-eNB next generation eNB
- NR New Radio
- a base station may be used primarily to support wireless access by UEs, including supporting data, voice, and/or signaling connections for the supported UEs. In some systems a base station may provide purely edge node signaling functions while in other systems it may provide additional control and/or network management functions.
- a communication link through which UEs can send signals to a base station is called an uplink (UL) channel (e.g., a reverse traffic channel, a reverse control channel, an access channel, etc.).
- UL uplink
- No.2306712WO 8 UEs is called a downlink (DL) or forward link channel (e.g., a paging channel, a control channel, a broadcast channel, a forward traffic channel, etc.).
- traffic channel can refer to either an uplink / reverse or downlink / forward traffic channel.
- base station may refer to a single physical transmission-reception point (TRP) or to multiple physical TRPs that may or may not be co-located.
- the physical TRP may be an antenna of the base station corresponding to a cell (or several cell sectors) of the base station.
- the physical TRPs may be an array of antennas (e.g., as in a multiple-input multiple-output (MIMO) system or where the base station employs beamforming) of the base station.
- the physical TRPs may be a distributed antenna system (DAS) (a network of spatially separated antennas connected to a common source via a transport medium) or a remote radio head (RRH) (a remote base station connected to a serving base station).
- DAS distributed antenna system
- RRH remote radio head
- the non-co-located physical TRPs may be the serving base station receiving the measurement report from the UE and a neighbor base station whose reference radio frequency (RF) signals the UE is measuring.
- RF radio frequency
- a TRP is the point from which a base station transmits and receives wireless signals
- references to transmission from or reception at a base station are to be understood as referring to a particular TRP of the base station.
- a base station may not support wireless access by UEs (e.g., may not support data, voice, and/or signaling connections for UEs), but may instead transmit reference signals to UEs to be measured by the UEs, and/or may receive and measure signals transmitted by the UEs.
- Such a base station may be referred to as a positioning beacon (e.g., when transmitting signals to UEs) and/or as a location measurement unit (e.g., when receiving and measuring signals from UEs).
- An “RF signal” comprises an electromagnetic wave of a given frequency that transports information through the space between a transmitter and a receiver.
- a transmitter may transmit a single “RF signal” or multiple “RF signals” to a receiver.
- the receiver may receive multiple “RF signals” corresponding to each transmitted RF signal due to the propagation characteristics of RF signals through multipath channels. The same transmitted RF signal on different paths between the 8 QC2306712WO Qualcomm Ref.
- FIG.1 illustrates an example wireless communications system 100, according to aspects of the disclosure.
- the wireless communications system 100 (which may also be referred to as a wireless wide area network (WWAN)) may include various base stations 102 (labeled “BS”) and various UEs 104.
- the base stations 102 may include macro cell base stations (high power cellular base stations) and/or small cell base stations (low power cellular base stations).
- the macro cell base stations may include eNBs and/or ng-eNBs where the wireless communications system 100 corresponds to an LTE network, or gNBs where the wireless communications system 100 corresponds to a NR network, or a combination of both, and the small cell base stations may include femtocells, picocells, microcells, etc.
- the base stations 102 may collectively form a RAN and interface with a core network 170 (e.g., an evolved packet core (EPC) or a 5G core (5GC)) through backhaul links 122, and through the core network 170 to one or more location servers 172 (e.g., a location management function (LMF) or a secure user plane location (SUPL) location platform (SLP)).
- the location server(s) 172 may be part of core network 170 or may be external to core network 170.
- a location server 172 may be integrated with a base station 102.
- a UE 104 may communicate with a location server 172 directly or indirectly.
- a UE 104 may communicate with a location server 172 via the base station 102 that is currently serving that UE 104.
- a UE 104 may also communicate with a location server 172 through another path, such as via an application server (not shown), via another network, such as via a wireless local area network (WLAN) access point (AP) (e.g., AP 150 described below), and so on.
- WLAN wireless local area network
- AP access point
- communication between a UE 104 and a location server 172 may be represented as an indirect connection (e.g., through the core network 170, etc.) or a direct connection (e.g., as shown via direct connection 128), with the intervening nodes (if any) omitted from a signaling diagram for clarity.
- the base stations 102 may perform functions that relate to one or more of transferring user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity), inter-cell interference coordination, connection setup and release, load 9 QC2306712WO Qualcomm Ref. No.2306712WO 10 balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, RAN sharing, multimedia broadcast multicast service (MBMS), subscriber and equipment trace, RAN information management (RIM), paging, positioning, and delivery of warning messages.
- NAS non-access stratum
- MBMS multimedia broadcast multicast service
- RIM RAN information management
- the base stations 102 may communicate with each other directly or indirectly (e.g., through the EPC / 5GC) over backhaul links 134, which may be wired or wireless. [0043]
- the base stations 102 may wirelessly communicate with the UEs 104.
- Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110.
- one or more cells may be supported by a base station 102 in each geographic coverage area 110.
- a “cell” is a logical communication entity used for communication with a base station (e.g., over some frequency resource, referred to as a carrier frequency, component carrier, carrier, band, or the like), and may be associated with an identifier (e.g., a physical cell identifier (PCI), an enhanced cell identifier (ECI), a virtual cell identifier (VCI), a cell global identifier (CGI), etc.) for distinguishing cells operating via the same or a different carrier frequency.
- PCI physical cell identifier
- ECI enhanced cell identifier
- VCI virtual cell identifier
- CGI cell global identifier
- different cells may be configured according to different protocol types (e.g., machine-type communication (MTC), narrowband IoT (NB-IoT), enhanced mobile broadband (eMBB), or others) that may provide access for different types of UEs.
- MTC machine-type communication
- NB-IoT narrowband IoT
- eMBB enhanced mobile broadband
- the term “cell” may refer to either or both of the logical communication entity and the base station that supports it, depending on the context.
- the terms “cell” and “TRP” may be used interchangeably.
- the term “cell” may also refer to a geographic coverage area of a base station (e.g., a sector), insofar as a carrier frequency can be detected and used for communication within some portion of geographic coverage areas 110.
- a base station e.g., a sector
- a carrier frequency can be detected and used for communication within some portion of geographic coverage areas 110.
- While neighboring macro cell base station 102 geographic coverage areas 110 may partially overlap (e.g., in a handover region), some of the geographic coverage areas 110 may be substantially overlapped by a larger geographic coverage area 110.
- a small cell base station 102' (labeled “SC” for “small cell”) may have a geographic coverage area 110' that substantially overlaps with the geographic coverage area 110 of one or more macro cell base stations 102.
- a network that includes both small cell and macro cell base stations may be known as a heterogeneous network.
- a heterogeneous 10 QC2306712WO Qualcomm Ref. No.2306712WO 11 network may also include home eNBs (HeNBs), which may provide service to a restricted group known as a closed subscriber group (CSG).
- HeNBs home eNBs
- the communication links 120 between the base stations 102 and the UEs 104 may include uplink (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
- the communication links 120 may use MIMO antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
- the communication links 120 may be through one or more carrier frequencies. Allocation of carriers may be asymmetric with respect to downlink and uplink (e.g., more or less carriers may be allocated for downlink than for uplink).
- the wireless communications system 100 may further include a wireless local area network (WLAN) access point (AP) 150 in communication with WLAN stations (STAs) 152 via communication links 154 in an unlicensed frequency spectrum (e.g., 5 GHz).
- WLAN STAs 152 and/or the WLAN AP 150 may perform a clear channel assessment (CCA) or listen before talk (LBT) procedure prior to communicating in order to determine whether the channel is available.
- CCA clear channel assessment
- LBT listen before talk
- the small cell base station 102' may operate in a licensed and/or an unlicensed frequency spectrum.
- the small cell base station 102' When operating in an unlicensed frequency spectrum, the small cell base station 102' may employ LTE or NR technology and use the same 5 GHz unlicensed frequency spectrum as used by the WLAN AP 150.
- NR in unlicensed spectrum may be referred to as NR-U.
- LTE in an unlicensed spectrum may be referred to as LTE-U, licensed assisted access (LAA), or MULTEFIRE®.
- LAA licensed assisted access
- the wireless communications system 100 may further include a millimeter wave (mmW) base station 180 that may operate in mmW frequencies and/or near mmW frequencies in communication with a UE 182.
- mmW millimeter wave
- EHF Extremely high frequency
- EHF Extremely high frequency
- 3 GHz Global System for Mobile Communications
- 3 GHz Global System for Mobile Communications
- SHF super high frequency
- 3 11 QC2306712WO Qualcomm Ref. No.2306712WO 12 GHz and 30 GHz also referred to as centimeter wave. Communications using the mmW/near mmW radio frequency band have high path loss and a relatively short range.
- the mmW base station 180 and the UE 182 may utilize beamforming (transmit and/or receive) over a mmW communication link 184 to compensate for the extremely high path loss and short range. Further, it will be appreciated that in alternative configurations, one or more base stations 102 may also transmit using mmW or near mmW and beamforming. Accordingly, it will be appreciated that the foregoing illustrations are merely examples and should not be construed to limit the various aspects disclosed herein. [0049] Transmit beamforming is a technique for focusing an RF signal in a specific direction. Traditionally, when a network node (e.g., a base station) broadcasts an RF signal, it broadcasts the signal in all directions (omni-directionally).
- a network node e.g., a base station
- the network node determines where a given target device (e.g., a UE) is located (relative to the transmitting network node) and projects a stronger downlink RF signal in that specific direction, thereby providing a faster (in terms of data rate) and stronger RF signal for the receiving device(s).
- a network node can control the phase and relative amplitude of the RF signal at each of the one or more transmitters that are broadcasting the RF signal.
- a network node may use an array of antennas (referred to as a “phased array” or an “antenna array”) that creates a beam of RF waves that can be “steered” to point in different directions, without actually moving the antennas.
- the RF current from the transmitter is fed to the individual antennas with the correct phase relationship so that the radio waves from the separate antennas add together to increase the radiation in a desired direction, while cancelling to suppress radiation in undesired directions.
- Transmit beams may be quasi-co-located, meaning that they appear to the receiver (e.g., a UE) as having the same parameters, regardless of whether or not the transmitting antennas of the network node themselves are physically co-located.
- a QCL relation of a given type means that certain parameters about a second reference RF signal on a second beam can be derived from information about a source reference RF signal on a source beam.
- the receiver can use the source reference RF signal to estimate the Doppler shift, Doppler spread, average delay, and delay spread of a second reference RF signal transmitted on the same channel. If the source reference QC2306712WO Qualcomm Ref.
- No.2306712WO 13 RF signal is QCL Type B
- the receiver can use the source reference RF signal to estimate the Doppler shift and Doppler spread of a second reference RF signal transmitted on the same channel.
- the source reference RF signal is QCL Type C
- the receiver can use the source reference RF signal to estimate the Doppler shift and average delay of a second reference RF signal transmitted on the same channel.
- the source reference RF signal is QCL Type D
- the receiver can use the source reference RF signal to estimate the spatial receive parameter of a second reference RF signal transmitted on the same channel.
- receive beamforming the receiver uses a receive beam to amplify RF signals detected on a given channel.
- the receiver can increase the gain setting and/or adjust the phase setting of an array of antennas in a particular direction to amplify (e.g., to increase the gain level of) the RF signals received from that direction.
- a receiver when a receiver is said to beamform in a certain direction, it means the beam gain in that direction is high relative to the beam gain along other directions, or the beam gain in that direction is the highest compared to the beam gain in that direction of all other receive beams available to the receiver. This results in a stronger received signal strength (e.g., reference signal received power (RSRP), reference signal received quality (RSRQ), signal-to- interference-plus-noise ratio (SINR), etc.) of the RF signals received from that direction.
- RSRP reference signal received power
- RSRQ reference signal received quality
- SINR signal-to- interference-plus-noise ratio
- Transmit and receive beams may be spatially related.
- a spatial relation means that parameters for a second beam (e.g., a transmit or receive beam) for a second reference signal can be derived from information about a first beam (e.g., a receive beam or a transmit beam) for a first reference signal.
- a UE may use a particular receive beam to receive a reference downlink reference signal (e.g., synchronization signal block (SSB)) from a base station.
- the UE can then form a transmit beam for sending an uplink reference signal (e.g., sounding reference signal (SRS)) to that base station based on the parameters of the receive beam.
- an uplink reference signal e.g., sounding reference signal (SRS)
- a “downlink” beam may be either a transmit beam or a receive beam, depending on the entity forming it. For example, if a base station is forming the downlink beam to transmit a reference signal to a UE, the downlink beam is a transmit beam. If the UE is forming the downlink beam, however, it is a receive beam to receive the downlink reference signal.
- an “uplink” beam may be either a transmit beam or a receive beam, depending on the entity forming it. For example, if a base station is forming the QC2306712WO Qualcomm Ref.
- No.2306712WO 14 uplink beam it is an uplink receive beam, and if a UE is forming the uplink beam, it is an uplink transmit beam.
- the electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc.
- two initial operating bands have been identified as frequency range designations FR1 (410 MHz – 7.125 GHz) and FR2 (24.25 GHz – 52.6 GHz). It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles.
- FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz – 300 GHz) which is identified by the INTERNATIONAL TELECOMMUNICATION UNION® as a “millimeter wave” band.
- EHF extremely high frequency
- FR3 7.125 GHz – 24.25 GHz
- Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies.
- higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz.
- three higher operating bands have been identified as frequency range designations FR4a or FR4-1 (52.6 GHz – 71 GHz), FR4 (52.6 GHz – 114.25 GHz), and FR5 (114.25 GHz – 300 GHz). Each of these higher frequency bands falls within the EHF band.
- sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
- millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
- the anchor carrier is the carrier operating on the primary frequency (e.g., FR1) utilized by a UE 104/182 and the cell in which the UE 104/182 either performs the initial radio resource control (RRC) connection establishment procedure or initiates the RRC connection re-establishment procedure.
- RRC radio resource control
- the primary carrier carries all common and UE-specific control channels, and may be a carrier in a licensed frequency (however, this is not always the case).
- a secondary carrier is a carrier operating on a second frequency (e.g., FR2) that may be configured once the RRC connection is established between the UE 104 and the anchor carrier and that may be used to provide additional radio resources.
- the secondary carrier may be a carrier in an unlicensed frequency.
- the secondary carrier may contain only necessary signaling information and signals, for example, those that are UE-specific may not be present in the secondary carrier, since both primary uplink and downlink carriers are typically UE-specific. This means that different UEs 104/182 in a cell may have different downlink primary carriers. The same is true for the uplink primary carriers.
- the network is able to change the primary carrier of any UE 104/182 at any time. This is done, for example, to balance the load on different carriers. Because a “serving cell” (whether a PCell or an SCell) corresponds to a carrier frequency / component carrier over which some base station is communicating, the term “cell,” “serving cell,” “component carrier,” “carrier frequency,” and the like can be used interchangeably.
- a “serving cell” (whether a PCell or an SCell) corresponds to a carrier frequency / component carrier over which some base station is communicating
- the term “cell,” “serving cell,” “component carrier,” “carrier frequency,” and the like can be used interchangeably.
- one of the frequencies utilized by the macro cell base stations 102 may be an anchor carrier (or “PCell”) and other frequencies utilized by the macro cell base stations 102 and/or the mmW base station 180 may be secondary carriers (“SCells”).
- the simultaneous transmission and/or reception of multiple carriers enables the UE 104/182 to significantly increase its data transmission and/or reception rates. For example, two 20 MHz aggregated carriers in a multi-carrier system would theoretically lead to a two-fold increase in data rate (i.e., 40 MHz), compared to that attained by a single 20 MHz carrier.
- the wireless communications system 100 may further include a UE 164 that may communicate with a macro cell base station 102 over a communication link 120 and/or the mmW base station 180 over a mmW communication link 184.
- the macro cell base station 102 may support a PCell and one or more SCells for the UE 164 and the mmW base station 180 may support one or more SCells for the UE 164.
- QC2306712WO Qualcomm Ref. No.2306712WO 16 [0060]
- the UE 164 and the UE 182 may be capable of sidelink communication.
- Sidelink-capable UEs (SL-UEs) may communicate with base stations 102 over communication links 120 using the Uu interface (i.e., the air interface between a UE and a base station).
- SL-UEs may also communicate directly with each other over a wireless sidelink 160 using the PC5 interface (i.e., the air interface between sidelink-capable UEs).
- a wireless sidelink (or just “sidelink”) is an adaptation of the core cellular (e.g., LTE, NR) standard that allows direct communication between two or more UEs without the communication needing to go through a base station.
- Sidelink communication may be unicast or multicast, and may be used for device-to-device (D2D) media-sharing, vehicle-to-vehicle (V2V) communication, vehicle-to-everything (V2X) communication (e.g., cellular V2X (cV2X) communication, enhanced V2X (eV2X) communication, etc.), emergency rescue applications, etc.
- V2V vehicle-to-vehicle
- V2X vehicle-to-everything
- cV2X cellular V2X
- eV2X enhanced V2X
- One or more of a group of SL- UEs utilizing sidelink communications may be within the geographic coverage area 110 of a base station 102.
- Other SL-UEs in such a group may be outside the geographic coverage area 110 of a base station 102 or be otherwise unable to receive transmissions from a base station 102.
- groups of SL-UEs communicating via sidelink communications may utilize a one-to-many (1:M) system in which each SL-UE transmits to every other SL-UE in the group.
- a base station 102 facilitates the scheduling of resources for sidelink communications.
- sidelink communications are carried out between SL-UEs without the involvement of a base station 102.
- the sidelink 160 may operate over a wireless communication medium of interest, which may be shared with other wireless communications between other vehicles and/or infrastructure access points, as well as other RATs.
- a “medium” may be composed of one or more time, frequency, and/or space communication resources (e.g., encompassing one or more channels across one or more carriers) associated with wireless communication between one or more transmitter / receiver pairs.
- the medium of interest may correspond to at least a portion of an unlicensed frequency band shared among various RATs.
- different licensed frequency bands have been reserved for certain communication systems (e.g., by a government entity such as the Federal Communications Commission (FCC) in the United States), these systems, in particular those employing small cell access points, have recently extended operation into 16 QC2306712WO Qualcomm Ref.
- No.2306712WO 17 unlicensed frequency bands such as the Unlicensed National Information Infrastructure (U-NII) band used by wireless local area network (WLAN) technologies, most notably IEEE 802.11x WLAN technologies generally referred to as “Wi-Fi.”
- Example systems of this type include different variants of CDMA systems, TDMA systems, FDMA systems, orthogonal FDMA (OFDMA) systems, single-carrier FDMA (SC-FDMA) systems, and so on.
- FIG. 1 only illustrates two of the UEs as SL-UEs (i.e., UEs 164 and 182), any of the illustrated UEs may be SL-UEs.
- any of the illustrated UEs may be capable of beamforming.
- SL-UEs are capable of beamforming, they may beamform towards each other (i.e., towards other SL-UEs), towards other UEs (e.g., UEs 104), towards base stations (e.g., base stations 102, 180, small cell 102’, access point 150), etc.
- base stations e.g., base stations 102, 180, small cell 102’, access point 150
- UEs 164 and 182 may utilize beamforming over sidelink 160.
- any of the illustrated UEs may receive signals 124 from one or more Earth orbiting space vehicles (SVs) 112 (e.g., satellites).
- SVs Earth orbiting space vehicles
- the SVs 112 may be part of a satellite positioning system that a UE 104 can use as an independent source of location information.
- a satellite positioning system typically includes a system of transmitters (e.g., SVs 112) positioned to enable receivers (e.g., UEs 104) to determine their location on or above the Earth based, at least in part, on positioning signals (e.g., signals 124) received from the transmitters.
- Such a transmitter typically transmits a signal marked with a repeating pseudo-random noise (PN) code of a set number of chips. While typically located in SVs 112, transmitters may sometimes be located on ground-based control stations, base stations 102, and/or other UEs 104.
- a UE 104 may include one or more dedicated receivers specifically designed to receive signals 124 for deriving geo location information from the SVs 112.
- the use of signals 124 can be augmented by various satellite-based augmentation systems (SBAS) that may be associated with or otherwise enabled for use with one or more global and/or regional navigation satellite systems.
- SBAS satellite-based augmentation systems
- an SBAS may include an augmentation system(s) that provides integrity information, differential corrections, etc., such as the Wide Area Augmentation System (WAAS), the European Geostationary Navigation Overlay Service (EGNOS), the Multi- QC2306712WO Qualcomm Ref. No.2306712WO 18 functional Satellite Augmentation System (MSAS), the Global Positioning System (GPS) Aided Geo Augmented Navigation or GPS and Geo Augmented Navigation system (GAGAN), and/or the like.
- a satellite positioning system may include any combination of one or more global and/or regional navigation satellites associated with such one or more satellite positioning systems.
- SVs 112 may additionally or alternatively be part of one or more non- terrestrial networks (NTNs).
- NTNs non- terrestrial networks
- an SV 112 is connected to an earth station (also referred to as a ground station, NTN gateway, or gateway), which in turn is connected to an element in a 5G network, such as a modified base station 102 (without a terrestrial antenna) or a network node in a 5GC.
- This element would in turn provide access to other elements in the 5G network and ultimately to entities external to the 5G network, such as Internet web servers and other user devices.
- a UE 104 may receive communication signals (e.g., signals 124) from an SV 112 instead of, or in addition to, communication signals from a terrestrial base station 102.
- the wireless communications system 100 may further include one or more UEs, such as UE 190, that connects indirectly to one or more communication networks via one or more device-to-device (D2D) peer-to-peer (P2P) links (referred to as “sidelinks”).
- D2D device-to-device
- P2P peer-to-peer
- sidelinks referred to as “sidelinks”.
- UE 190 has a D2D P2P link 192 with one of the UEs 104 connected to one of the base stations 102 (e.g., through which UE 190 may indirectly obtain cellular connectivity) and a D2D P2P link 194 with WLAN STA 152 connected to the WLAN AP 150 (through which UE 190 may indirectly obtain WLAN-based Internet connectivity).
- FIG.2A illustrates an example wireless network structure 200.
- a 5GC 210 also referred to as a Next Generation Core (NGC)
- C-plane control plane
- U-plane user plane
- NG-U User plane interface
- NG-C control plane interface
- ng-eNB 18 QC2306712WO Qualcomm Ref. No.2306712WO 19 224 may also be connected to the 5GC 210 via NG-C 215 to the control plane functions 214 and NG-U 213 to user plane functions 212. Further, ng-eNB 224 may directly communicate with gNB 222 via a backhaul connection 223.
- a Next Generation RAN (NG-RAN) 220 may have one or more gNBs 222, while other configurations include one or more of both ng-eNBs 224 and gNBs 222. Either (or both) gNB 222 or ng-eNB 224 may communicate with one or more UEs 204 (e.g., any of the UEs described herein).
- a location server 230 may be in communication with the 5GC 210 to provide location assistance for UE(s) 204.
- the location server 230 can be implemented as a plurality of separate servers (e.g., physically separate servers, different software modules on a single server, different software modules spread across multiple physical servers, etc.), or alternately may each correspond to a single server.
- the location server 230 can be configured to support one or more location services for UEs 204 that can connect to the location server 230 via the core network, 5GC 210, and/or via the Internet (not illustrated). Further, the location server 230 may be integrated into a component of the core network, or alternatively may be external to the core network (e.g., a third party server, such as an original equipment manufacturer (OEM) server or service server).
- FIG.2B illustrates another example wireless network structure 240.
- a 5GC 260 (which may correspond to 5GC 210 in FIG. 2A) can be viewed functionally as control plane functions, provided by an access and mobility management function (AMF) 264, and user plane functions, provided by a user plane function (UPF) 262, which operate cooperatively to form the core network (i.e., 5GC 260).
- AMF access and mobility management function
- UPF user plane function
- the functions of the AMF 264 include registration management, connection management, reachability management, mobility management, lawful interception, transport for session management (SM) messages between one or more UEs 204 (e.g., any of the UEs described herein) and a session management function (SMF) 266, transparent proxy services for routing SM messages, access authentication and access authorization, transport for short message service (SMS) messages between the UE 204 and the short message service function (SMSF) (not shown), and security anchor functionality (SEAF).
- the AMF 264 also interacts with an authentication server function (AUSF) (not shown) and the UE 204, and receives the intermediate key that was established as a result of the UE 204 authentication 19 QC2306712WO Qualcomm Ref.
- AUSF authentication server function
- No.2306712WO 20 process In the case of authentication based on a UMTS (universal mobile telecommunications system) subscriber identity module (USIM), the AMF 264 retrieves the security material from the AUSF.
- the functions of the AMF 264 also include security context management (SCM).
- SCM receives a key from the SEAF that it uses to derive access-network specific keys.
- the functionality of the AMF 264 also includes location services management for regulatory services, transport for location services messages between the UE 204 and a location management function (LMF) 270 (which acts as a location server 230), transport for location services messages between the NG-RAN 220 and the LMF 270, evolved packet system (EPS) bearer identifier allocation for interworking with the EPS, and UE 204 mobility event notification.
- LMF location management function
- EPS evolved packet system
- the AMF 264 also supports functionalities for non-3GPP® (Third Generation Partnership Project) access networks.
- Functions of the UPF 262 include acting as an anchor point for intra/inter-RAT mobility (when applicable), acting as an external protocol data unit (PDU) session point of interconnect to a data network (not shown), providing packet routing and forwarding, packet inspection, user plane policy rule enforcement (e.g., gating, redirection, traffic steering), lawful interception (user plane collection), traffic usage reporting, quality of service (QoS) handling for the user plane (e.g., uplink/ downlink rate enforcement, reflective QoS marking in the downlink), uplink traffic verification (service data flow (SDF) to QoS flow mapping), transport level packet marking in the uplink and downlink, downlink packet buffering and downlink data notification triggering, and sending and forwarding of one or more “end markers” to the source RAN node.
- QoS quality of service
- the UPF 262 may also support transfer of location services messages over a user plane between the UE 204 and a location server, such as an SLP 272.
- the functions of the SMF 266 include session management, UE Internet protocol (IP) address allocation and management, selection and control of user plane functions, configuration of traffic steering at the UPF 262 to route traffic to the proper destination, control of part of policy enforcement and QoS, and downlink data notification.
- IP Internet protocol
- the interface over which the SMF 266 communicates with the AMF 264 is referred to as the N11 interface.
- Another optional aspect may include an LMF 270, which may be in communication with the 5GC 260 to provide location assistance for UEs 204.
- the LMF 270 can be QC2306712WO Qualcomm Ref.
- No.2306712WO 21 implemented as a plurality of separate servers (e.g., physically separate servers, different software modules on a single server, different software modules spread across multiple physical servers, etc.), or alternately may each correspond to a single server.
- the LMF 270 can be configured to support one or more location services for UEs 204 that can connect to the LMF 270 via the core network, 5GC 260, and/or via the Internet (not illustrated).
- the SLP 272 may support similar functions to the LMF 270, but whereas the LMF 270 may communicate with the AMF 264, NG-RAN 220, and UEs 204 over a control plane (e.g., using interfaces and protocols intended to convey signaling messages and not voice or data), the SLP 272 may communicate with UEs 204 and external clients (e.g., third-party server 274) over a user plane (e.g., using protocols intended to carry voice and/or data like the transmission control protocol (TCP) and/or IP).
- TCP transmission control protocol
- Yet another optional aspect may include a third-party server 274, which may be in communication with the LMF 270, the SLP 272, the 5GC 260 (e.g., via the AMF 264 and/or the UPF 262), the NG-RAN 220, and/or the UE 204 to obtain location information (e.g., a location estimate) for the UE 204.
- the third-party server 274 may be referred to as a location services (LCS) client or an external client.
- LCS location services
- the third- party server 274 can be implemented as a plurality of separate servers (e.g., physically separate servers, different software modules on a single server, different software modules spread across multiple physical servers, etc.), or alternately may each correspond to a single server.
- User plane interface 263 and control plane interface 265 connect the 5GC 260, and specifically the UPF 262 and AMF 264, respectively, to one or more gNBs 222 and/or ng-eNBs 224 in the NG-RAN 220.
- the interface between gNB(s) 222 and/or ng-eNB(s) 224 and the AMF 264 is referred to as the “N2” interface
- the interface between gNB(s) 222 and/or ng-eNB(s) 224 and the UPF 262 is referred to as the “N3” interface
- the gNB(s) 222 and/or ng-eNB(s) 224 of the NG-RAN 220 may communicate directly with each other via backhaul connections 223, referred to as the “Xn-C” interface.
- One or more of gNBs 222 and/or ng-eNBs 224 may communicate with one or more UEs 204 over a wireless interface, referred to as the “Uu” interface.
- a gNB 222 may be divided between a gNB central unit (gNB-CU) 226, one or more gNB distributed units (gNB-DUs) 228, and one or more gNB radio units (gNB-RUs) 229.
- gNB-CU 226 is a logical node that includes the base station functions QC2306712WO Qualcomm Ref. No.2306712WO 22 of transferring user data, mobility control, radio access network sharing, positioning, session management, and the like, except for those functions allocated exclusively to the gNB-DU(s) 228.
- the gNB-CU 226 generally host the radio resource control (RRC), service data adaptation protocol (SDAP), and packet data convergence protocol (PDCP) protocols of the gNB 222.
- RRC radio resource control
- SDAP service data adaptation protocol
- PDCP packet data convergence protocol
- a gNB-DU 228 is a logical node that generally hosts the radio link control (RLC) and medium access control (MAC) layer of the gNB 222. Its operation is controlled by the gNB-CU 226.
- One gNB-DU 228 can support one or more cells, and one cell is supported by only one gNB-DU 228.
- the interface 232 between the gNB-CU 226 and the one or more gNB-DUs 228 is referred to as the “F1” interface.
- the physical (PHY) layer functionality of a gNB 222 is generally hosted by one or more standalone gNB-RUs 229 that perform functions such as power amplification and signal transmission/reception.
- the interface between a gNB-DU 228 and a gNB-RU 229 is referred to as the “Fx” interface.
- a UE 204 communicates with the gNB-CU 226 via the RRC, SDAP, and PDCP layers, with a gNB-DU 228 via the RLC and MAC layers, and with a gNB-RU 229 via the PHY layer.
- Deployment of communication systems such as 5G NR systems, may be arranged in multiple manners with various components or constituent parts.
- a network node In a 5G NR system, or network, a network node, a network entity, a mobility element of a network, a RAN node, a core network node, a network element, or a network equipment, such as a base station, or one or more units (or one or more components) performing base station functionality, may be implemented in an aggregated or disaggregated architecture.
- a base station such as a Node B (NB), evolved NB (eNB), NR base station, 5G NB, access point (AP), a transmit receive point (TRP), or a cell, etc.
- NB Node B
- eNB evolved NB
- 5G NB access point
- AP access point
- TRP transmit receive point
- a cell etc.
- an aggregated base station also known as a standalone base station or a monolithic base station
- disaggregated base station also known as a standalone base station or a monolithic base station
- An aggregated base station may be configured to utilize a radio protocol stack that is physically or logically integrated within a single RAN node.
- a disaggregated base station may be configured to utilize a protocol stack that is physically or logically distributed among two or more units (such as one or more central or centralized units (CUs), one or more distributed units (DUs), or one or more radio units (RUs)).
- CUs central or centralized units
- DUs distributed units
- RUs radio units
- a CU may be implemented within a RAN node, and one or more DUs may be co-located with the CU, or alternatively, may be geographically or virtually distributed throughout one or QC2306712WO Qualcomm Ref. No.2306712WO 23 multiple other RAN nodes.
- the DUs may be implemented to communicate with one or more RUs.
- Each of the CU, DU and RU also can be implemented as virtual units, i.e., a virtual central unit (VCU), a virtual distributed unit (VDU), or a virtual radio unit (VRU).
- VCU virtual central unit
- VDU virtual distributed unit
- VRU virtual radio unit
- Base station-type operation or network design may consider aggregation characteristics of base station functionality.
- disaggregated base stations may be utilized in an integrated access backhaul (IAB) network, an open radio access network (O-RAN (such as the network configuration sponsored by the O-RAN ALLIANCE®)), or a virtualized radio access network (vRAN, also known as a cloud radio access network (C- RAN)).
- IAB integrated access backhaul
- O-RAN open radio access network
- vRAN virtualized radio access network
- C- RAN cloud radio access network
- Disaggregation may include distributing functionality across two or more units at various physical locations, as well as distributing functionality for at least one unit virtually, which can enable flexibility in network design.
- the various units of the disaggregated base station, or disaggregated RAN architecture can be configured for wired or wireless communication with at least one other unit.
- FIG. 2C illustrates an example disaggregated base station architecture 250, according to aspects of the disclosure.
- the disaggregated base station architecture 250 may include one or more central units (CUs) 280 (e.g., gNB-CU 226) that can communicate directly with a core network 267 (e.g., 5GC 210, 5GC 260) via a backhaul link, or indirectly with the core network 267 through one or more disaggregated base station units (such as a Near-Real Time (Near-RT) RAN Intelligent Controller (RIC) 259 via an E2 link, or a Non-Real Time (Non-RT) RIC 257 associated with a Service Management and Orchestration (SMO) Framework 255, or both).
- CUs central units
- a CU 280 may communicate with one or more DUs 285 (e.g., gNB-DUs 228) via respective midhaul links, such as an F1 interface.
- the DUs 285 may communicate with one or more radio units (RUs) 287 (e.g., gNB-RUs 229) via respective fronthaul links.
- the RUs 287 may communicate with respective UEs 204 via one or more radio frequency (RF) access links.
- RF radio frequency
- the UE 204 may be simultaneously served by multiple RUs 287.
- Each of the units may include one or more interfaces or be coupled to one or more interfaces configured to receive or transmit signals, data, or information (collectively, signals) via a wired or wireless transmission medium.
- Each of the units, or an associated processor or controller providing instructions to the communication interfaces of the units can be configured to communicate with one QC2306712WO Qualcomm Ref. No.2306712WO 24 or more of the other units via the transmission medium.
- the units can include a wired interface configured to receive or transmit signals over a wired transmission medium to one or more of the other units.
- the units can include a wireless interface, which may include a receiver, a transmitter or transceiver (such as a RF transceiver), configured to receive or transmit signals, or both, over a wireless transmission medium to one or more of the other units.
- the CU 280 may host one or more higher layer control functions. Such control functions can include RRC, PDCP, service data adaptation protocol (SDAP), or the like. Each control function can be implemented with an interface configured to communicate signals with other control functions hosted by the CU 280.
- the CU 280 may be configured to handle user plane functionality (i.e., Central Unit – User Plane (CU- UP)), control plane functionality (i.e., Central Unit – Control Plane (CU-CP)), or a combination thereof.
- the CU 280 can be logically split into one or more CU-UP units and one or more CU-CP units.
- the CU-UP unit can communicate bidirectionally with the CU-CP unit via an interface, such as the E1 interface when implemented in an O-RAN configuration.
- the CU 280 can be implemented to communicate with the DU 285, as necessary, for network control and signaling.
- the DU 285 may correspond to a logical unit that includes one or more base station functions to control the operation of one or more RUs 287.
- the DU 285 may host one or more of a RLC layer, a MAC layer, and one or more high PHY layers (such as modules for forward error correction (FEC) encoding and decoding, scrambling, modulation and demodulation, or the like) depending, at least in part, on a functional split, such as those defined by the 3rd Generation Partnership Project (3GPP®).
- the DU 285 may further host one or more low PHY layers.
- Each layer (or module) can be implemented with an interface configured to communicate signals with other layers (and modules) hosted by the DU 285, or with the control functions hosted by the CU 280.
- Lower-layer functionality can be implemented by one or more RUs 287.
- an RU 287, controlled by a DU 285, may correspond to a logical node that hosts RF processing functions, or low-PHY layer functions (such as performing fast Fourier transform (FFT), inverse FFT (iFFT), digital beamforming, physical random QC2306712WO Qualcomm Ref. No.2306712WO 25 access channel (PRACH) extraction and filtering, or the like), or both, based at least in part on the functional split, such as a lower layer functional split.
- FFT fast Fourier transform
- iFFT inverse FFT
- PRACH physical random QC2306712WO Qualcomm Ref. No.2306712WO 25 access channel
- the RU(s) 287 can be implemented to handle over the air (OTA) communication with one or more UEs 204.
- OTA over the air
- real-time and non-real-time aspects of control and user plane communication with the RU(s) 287 can be controlled by the corresponding DU 285.
- this configuration can enable the DU(s) 285 and the CU 280 to be implemented in a cloud-based RAN architecture, such as a vRAN architecture.
- the SMO Framework 255 may be configured to support RAN deployment and provisioning of non-virtualized and virtualized network elements.
- the SMO Framework 255 may be configured to support the deployment of dedicated physical resources for RAN coverage requirements which may be managed via an operations and maintenance interface (such as an O1 interface).
- the SMO Framework 255 may be configured to interact with a cloud computing platform (such as an open cloud (O-Cloud) 269) to perform network element life cycle management (such as to instantiate virtualized network elements) via a cloud computing platform interface (such as an O2 interface).
- a cloud computing platform such as an open cloud (O-Cloud) 269
- network element life cycle management such as to instantiate virtualized network elements
- cloud computing platform interface such as an O2 interface
- Such virtualized network elements can include, but are not limited to, CUs 280, DUs 285, RUs 287 and Near-RT RICs 259.
- the SMO Framework 255 can communicate with a hardware aspect of a 4G RAN, such as an open eNB (O-eNB) 261, via an O1 interface. Additionally, in some implementations, the SMO Framework 255 can communicate directly with one or more RUs 287 via an O1 interface.
- the SMO Framework 255 also may include a Non-RT RIC 257 configured to support functionality of the SMO Framework 255. [0085]
- the Non-RT RIC 257 may be configured to include a logical function that enables non- real-time control and optimization of RAN elements and resources, artificial intelligence/machine learning (AI/ML) workflows including model training and updates, or policy-based guidance of applications/features in the Near-RT RIC 259.
- AI/ML artificial intelligence/machine learning
- the Non-RT RIC 257 may be coupled to or communicate with (such as via an A1 interface) the Near- RT RIC 259.
- the Near-RT RIC 259 may be configured to include a logical function that enables near-real-time control and optimization of RAN elements and resources via data collection and actions over an interface (such as via an E2 interface) connecting one or QC2306712WO Qualcomm Ref. No.2306712WO 26 more CUs 280, one or more DUs 285, or both, as well as an O-eNB, with the Near-RT RIC 259.
- the Non-RT RIC 257 may receive parameters or external enrichment information from external servers.
- Such information may be utilized by the Near-RT RIC 259 and may be received at the SMO Framework 255 or the Non-RT RIC 257 from non-network data sources or from network functions.
- the Non-RT RIC 257 or the Near-RT RIC 259 may be configured to tune RAN behavior or performance.
- the Non-RT RIC 257 may monitor long-term trends and patterns for performance and employ AI/ML models to perform corrective actions through the SMO Framework 255 (such as reconfiguration via O1) or via creation of RAN management policies (such as A1 policies).
- 3A, 3B, and 3C illustrate several example components (represented by corresponding blocks) that may be incorporated into a UE 302 (which may correspond to any of the UEs described herein), a base station 304 (which may correspond to any of the base stations described herein), and a network entity 306 (which may correspond to or embody any of the network functions described herein, including the location server 230 and the LMF 270, or alternatively may be independent from the NG-RAN 220 and/or 5GC 210/260 infrastructure depicted in FIGS. 2A and 2B, such as a private network) to support the operations described herein.
- a UE 302 which may correspond to any of the UEs described herein
- a base station 304 which may correspond to any of the base stations described herein
- a network entity 306 which may correspond to or embody any of the network functions described herein, including the location server 230 and the LMF 270, or alternatively may be independent from the NG-RAN 220 and/or 5GC
- these components may be implemented in different types of apparatuses in different implementations (e.g., in an ASIC, in a system-on-chip (SoC), etc.).
- the illustrated components may also be incorporated into other apparatuses in a communication system.
- other apparatuses in a system may include components similar to those described to provide similar functionality.
- a given apparatus may contain one or more of the components.
- an apparatus may include multiple transceiver components that enable the apparatus to operate on multiple carriers and/or communicate via different technologies.
- the UE 302 and the base station 304 each include one or more wireless wide area network (WWAN) transceivers 310 and 350, respectively, providing means for communicating (e.g., means for transmitting, means for receiving, means for measuring, means for tuning, means for refraining from transmitting, etc.) via one or more wireless communication networks (not shown), such as an NR network, an LTE network, a GSM network, and/or QC2306712WO Qualcomm Ref. No.2306712WO 27 the like.
- WWAN wireless wide area network
- the WWAN transceivers 310 and 350 may each be connected to one or more antennas 316 and 356, respectively, for communicating with other network nodes, such as other UEs, access points, base stations (e.g., eNBs, gNBs), etc., via at least one designated RAT (e.g., NR, LTE, GSM, etc.) over a wireless communication medium of interest (e.g., some set of time/frequency resources in a particular frequency spectrum).
- a wireless communication medium of interest e.g., some set of time/frequency resources in a particular frequency spectrum.
- the WWAN transceivers 310 and 350 may be variously configured for transmitting and encoding signals 318 and 358 (e.g., messages, indications, information, and so on), respectively, and, conversely, for receiving and decoding signals 318 and 358 (e.g., messages, indications, information, pilots, and so on), respectively, in accordance with the designated RAT.
- the WWAN transceivers 310 and 350 include one or more transmitters 314 and 354, respectively, for transmitting and encoding signals 318 and 358, respectively, and one or more receivers 312 and 352, respectively, for receiving and decoding signals 318 and 358, respectively.
- the UE 302 and the base station 304 each also include, at least in some cases, one or more short-range wireless transceivers 320 and 360, respectively.
- the short-range wireless transceivers 320 and 360 may be connected to one or more antennas 326 and 366, respectively, and provide means for communicating (e.g., means for transmitting, means for receiving, means for measuring, means for tuning, means for refraining from transmitting, etc.) with other network nodes, such as other UEs, access points, base stations, etc., via at least one designated RAT (e.g., Wi-Fi, LTE Direct, BLUETOOTH®, ZIGBEE®, Z-WAVE®, PC5, dedicated short-range communications (DSRC), wireless access for vehicular environments (WAVE), near-field communication (NFC), ultra- wideband (UWB), etc.) over a wireless communication medium of interest.
- RAT e.g., Wi-Fi, LTE Direct, BLUETOOTH®, ZIGBEE®, Z
- the short- range wireless transceivers 320 and 360 may be variously configured for transmitting and encoding signals 328 and 368 (e.g., messages, indications, information, and so on), respectively, and, conversely, for receiving and decoding signals 328 and 368 (e.g., messages, indications, information, pilots, and so on), respectively, in accordance with the designated RAT.
- the short-range wireless transceivers 320 and 360 include one or more transmitters 324 and 364, respectively, for transmitting and encoding signals 328 and 368, respectively, and one or more receivers 322 and 362, respectively, for receiving and decoding signals 328 and 368, respectively.
- the short-range wireless transceivers 320 and 360 may be Wi-Fi transceivers, QC2306712WO Qualcomm Ref. No.2306712WO 28 BLUETOOTH® transceivers, ZIGBEE® and/or Z-WAVE® transceivers, NFC transceivers, UWB transceivers, or vehicle-to-vehicle (V2V) and/or vehicle-to- everything (V2X) transceivers.
- V2V vehicle-to-vehicle
- V2X vehicle-to- everything
- the UE 302 and the base station 304 also include, at least in some cases, satellite signal receivers 330 and 370.
- the satellite signal receivers 330 and 370 may be connected to one or more antennas 336 and 376, respectively, and may provide means for receiving and/or measuring satellite positioning/communication signals 338 and 378, respectively.
- the satellite positioning/communication signals 338 and 378 may be global positioning system (GPS) signals, global navigation satellite system (GLONASS®) signals, Galileo signals, Beidou signals, Indian Regional Navigation Satellite System (NAVIC), Quasi- Zenith Satellite System (QZSS), etc.
- GPS global positioning system
- GLONASS® global navigation satellite system
- Galileo signals Galileo signals
- Beidou signals Beidou signals
- NAVIC Indian Regional Navigation Satellite System
- QZSS Quasi- Zenith Satellite System
- the satellite positioning/communication signals 338 and 378 may be communication signals (e.g., carrying control and/or user data) originating from a 5G network.
- the satellite signal receivers 330 and 370 may comprise any suitable hardware and/or software for receiving and processing satellite positioning/communication signals 338 and 378, respectively.
- the satellite signal receivers 330 and 370 may request information and operations as appropriate from the other systems, and, at least in some cases, perform calculations to determine locations of the UE 302 and the base station 304, respectively, using measurements obtained by any suitable satellite positioning system algorithm.
- the base station 304 and the network entity 306 each include one or more network transceivers 380 and 390, respectively, providing means for communicating (e.g., means for transmitting, means for receiving, etc.) with other network entities (e.g., other base stations 304, other network entities 306).
- the base station 304 may employ the one or more network transceivers 380 to communicate with other base stations 304 or network entities 306 over one or more wired or wireless backhaul links.
- the network entity 306 may employ the one or more network transceivers 390 to communicate with one or more base station 304 over one or more wired or wireless backhaul links, or with other network entities 306 over one or more wired or wireless core network interfaces.
- a transceiver may be configured to communicate over a wired or wireless link.
- a transceiver (whether a wired transceiver or a wireless transceiver) includes transmitter circuitry (e.g., transmitters 314, 324, 354, 364) and receiver circuitry (e.g., receivers 312, 322, 352, 362).
- a transceiver may be an integrated device (e.g., embodying transmitter circuitry and receiver circuitry in a single device) in some implementations, may comprise separate transmitter circuitry and separate receiver circuitry in some implementations, or may be embodied in other ways in other implementations.
- the transmitter circuitry and receiver circuitry of a wired transceiver may be coupled to one or more wired network interface ports.
- Wireless transmitter circuitry e.g., transmitters 314, 324, 354, 364
- wireless receiver circuitry may include or be coupled to a plurality of antennas (e.g., antennas 316, 326, 356, 366), such as an antenna array, that permits the respective apparatus (e.g., UE 302, base station 304) to perform receive beamforming, as described herein.
- the transmitter circuitry and receiver circuitry may share the same plurality of antennas (e.g., antennas 316, 326, 356, 366), such that the respective apparatus can only receive or transmit at a given time, not both at the same time.
- a wireless transceiver may also include a network listen module (NLM) or the like for performing various measurements.
- NLM network listen module
- the various wireless transceivers e.g., transceivers 310, 320, 350, and 360, and network transceivers 380 and 390 in some implementations
- wired transceivers e.g., network transceivers 380 and 390 in some implementations
- a transceiver “at least one transceiver,” or “one or more transceivers.” As such, whether a particular transceiver is a wired or wireless transceiver may be inferred from the type of communication performed.
- backhaul communication between network devices or servers will generally relate to signaling via a wired transceiver
- wireless communication between a UE (e.g., UE 302) and a base station (e.g., base station 304) will generally relate to signaling via a wireless transceiver.
- a UE e.g., UE 302
- a base station e.g., base station 30
- the UE 302, the base station 304, and the network entity 306 also include other components that may be used in conjunction with the operations as disclosed herein.
- the UE 302, the base station 304, and the network entity 306 include one or more processors 332, 384, and 394, respectively, for providing functionality relating to, for example, wireless communication, and for providing other processing functionality.
- the processors 332, 384, and 394 may therefore provide means for processing, such as means for determining, means for calculating, means for receiving, means for transmitting, means for indicating, etc.
- the processors 332, 384, and 394 may include, for example, one or more general purpose processors, multi-core processors, central processing units (CPUs), ASICs, digital signal processors (DSPs), field programmable gate arrays (FPGAs), other programmable logic devices or processing circuitry, or various combinations thereof.
- the UE 302, the base station 304, and the network entity 306 include memory circuitry implementing memories 340, 386, and 396 (e.g., each including a memory device), respectively, for maintaining information (e.g., information indicative of reserved resources, thresholds, parameters, and so on).
- the memories 340, 386, and 396 may therefore provide means for storing, means for retrieving, means for maintaining, etc.
- the UE 302, the base station 304, and the network entity 306 may include SL-PRS mapping component 342, 388, and 398, respectively.
- the SL-PRS mapping component 342, 388, and 398 may be hardware circuits that are part of or coupled to the processors 332, 384, and 394, respectively, that, when executed, cause the UE 302, the base station 304, and the network entity 306 to perform the functionality described herein. In other aspects, the SL-PRS mapping component 342, 388, and 398 may be external to the processors 332, 384, and 394 (e.g., part of a modem processing system, integrated with another processing system, etc.).
- the SL-PRS mapping component 342, 388, and 398 may be memory modules stored in the memories 340, 386, and 396, respectively, that, when executed by the processors 332, 384, and 394 (or a modem processing system, another processing system, etc.), cause the UE 302, the base station 304, and the network entity 306 to perform the functionality described herein.
- FIG. 3A illustrates possible locations of the SL-PRS mapping component 342, which may be, for example, part of the one or more WWAN transceivers 310, the memory 340, the one or more processors 332, or any combination thereof, or may be a standalone component. QC2306712WO Qualcomm Ref.
- FIG.3B illustrates possible locations of the SL-PRS mapping component 388, which may be, for example, part of the one or more WWAN transceivers 350, the memory 386, the one or more processors 384, or any combination thereof, or may be a standalone component.
- FIG. 3C illustrates possible locations of the SL-PRS mapping component 398, which may be, for example, part of the one or more network transceivers 390, the memory 396, the one or more processors 394, or any combination thereof, or may be a standalone component.
- the UE 302 may include one or more sensors 344 coupled to the one or more processors 332 to provide means for sensing or detecting movement and/or orientation information that is independent of motion data derived from signals received by the one or more WWAN transceivers 310, the one or more short-range wireless transceivers 320, and/or the satellite signal receiver 330.
- the sensor(s) 344 may include an accelerometer (e.g., a micro-electrical mechanical systems (MEMS) device), a gyroscope, a geomagnetic sensor (e.g., a compass), an altimeter (e.g., a barometric pressure altimeter), and/or any other type of movement detection sensor.
- MEMS micro-electrical mechanical systems
- the senor(s) 344 may include a plurality of different types of devices and combine their outputs in order to provide motion information.
- the sensor(s) 344 may use a combination of a multi-axis accelerometer and orientation sensors to provide the ability to compute positions in two-dimensional (2D) and/or three-dimensional (3D) coordinate systems.
- the UE 302 includes a user interface 346 providing means for providing indications (e.g., audible and/or visual indications) to a user and/or for receiving user input (e.g., upon user actuation of a sensing device such a keypad, a touch screen, a microphone, and so on).
- the base station 304 and the network entity 306 may also include user interfaces.
- IP packets from the network entity 306 may be provided to the processor 384.
- the one or more processors 384 may implement functionality for an RRC layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
- the one or more processors 384 may provide RRC layer functionality associated with broadcasting of system information (e.g., master information block (MIB), system information blocks (SIBs)), RRC connection control (e.g., RRC QC2306712WO Qualcomm Ref.
- MIB master information block
- SIBs system information blocks
- RRC connection control e.g., RRC QC2306712WO Qualcomm Ref.
- No.2306712WO 32 connection paging, RRC connection establishment, RRC connection modification, and RRC connection release), inter-RAT mobility, and measurement configuration for UE measurement reporting;
- PDCP layer functionality associated with header compression/decompression, security (ciphering, deciphering, integrity protection, integrity verification), and handover support functions;
- RLC layer functionality associated with the transfer of upper layer PDUs, error correction through automatic repeat request (ARQ), concatenation, segmentation, and reassembly of RLC service data units (SDUs), re-segmentation of RLC data PDUs, and reordering of RLC data PDUs;
- MAC layer functionality associated with mapping between logical channels and transport channels, scheduling information reporting, error correction, priority handling, and logical channel prioritization.
- the transmitter 354 and the receiver 352 may implement Layer-1 (L1) functionality associated with various signal processing functions.
- Layer-1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
- FEC forward error correction
- the transmitter 354 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), M-phase-shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
- BPSK binary phase-shift keying
- QPSK quadrature phase-shift keying
- M-PSK M-phase-shift keying
- M-QAM M-quadrature amplitude modulation
- Each stream may then be mapped to an orthogonal frequency division multiplexing (OFDM) subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an inverse fast Fourier transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
- OFDM symbol stream is spatially precoded to produce multiple spatial streams.
- Channel estimates from a channel estimator may be used to determine the coding and modulation scheme, as well as for spatial processing.
- the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 302.
- Each spatial stream may then be provided to one or more different antennas 356.
- the transmitter 354 may modulate an RF carrier with a respective spatial stream for transmission.
- the receiver 312 receives a signal through its respective antenna(s) 316.
- the receiver 312 recovers information modulated onto an RF carrier and provides the information to the one or more processors 332.
- the transmitter 314 and the receiver 312 implement Layer-1 functionality associated with various signal processing functions.
- the receiver 312 may perform spatial processing on the information to recover any spatial streams destined for the UE 302. If multiple spatial streams are destined for the UE 302, they may be combined by the receiver 312 into a single OFDM symbol stream.
- the receiver 312 then converts the OFDM symbol stream from the time-domain to the frequency domain using a fast Fourier transform (FFT).
- FFT fast Fourier transform
- the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
- the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 304. These soft decisions may be based on channel estimates computed by a channel estimator.
- the soft decisions are then decoded and de-interleaved to recover the data and control signals that were originally transmitted by the base station 304 on the physical channel.
- the data and control signals are then provided to the one or more processors 332, which implements Layer-3 (L3) and Layer-2 (L2) functionality.
- the one or more processors 332 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the core network.
- the one or more processors 332 are also responsible for error detection.
- the one or more processors 332 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression/decompression, and security (ciphering, deciphering, integrity protection, integrity verification); RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs), demultiplexing of QC2306712WO Qualcomm Ref.
- RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
- PDCP layer functionality associated with header compression/decompression, and security (ciphering, deciphering, integrity protection,
- No.2306712WO 34 MAC SDUs from TBs scheduling information reporting, error correction through hybrid automatic repeat request (HARQ), priority handling, and logical channel prioritization.
- Channel estimates derived by the channel estimator from a reference signal or feedback transmitted by the base station 304 may be used by the transmitter 314 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
- the spatial streams generated by the transmitter 314 may be provided to different antenna(s) 316.
- the transmitter 314 may modulate an RF carrier with a respective spatial stream for transmission.
- the uplink transmission is processed at the base station 304 in a manner similar to that described in connection with the receiver function at the UE 302.
- the receiver 352 receives a signal through its respective antenna(s) 356.
- the receiver 352 recovers information modulated onto an RF carrier and provides the information to the one or more processors 384.
- the one or more processors 384 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 302. IP packets from the one or more processors 384 may be provided to the core network.
- the one or more processors 384 are also responsible for error detection.
- the UE 302, the base station 304, and/or the network entity 306 are shown in FIGS.3A, 3B, and 3C as including various components that may be configured according to the various examples described herein.
- FIGS. 3A to 3C are optional in alternative configurations and the various aspects include configurations that may vary due to design choice, costs, use of the device, or other considerations.
- a particular implementation of UE 302 may omit the WWAN transceiver(s) 310 (e.g., a wearable device or tablet computer or personal computer (PC) or laptop may have Wi-Fi and/or BLUETOOTH® capability without cellular capability), or may omit the short- range wireless transceiver(s) 320 (e.g., cellular-only, etc.), or may omit the satellite signal receiver 330, or may omit the sensor(s) 344, and so on.
- WWAN transceiver(s) 310 e.g., a wearable device or tablet computer or personal computer (PC) or laptop may have Wi-Fi and/or BLUETOOTH® capability without cellular capability
- the short- range wireless transceiver(s) 320 e.g., cellular-only, etc.
- satellite signal receiver 330 e.g., cellular-only, etc.
- a particular implementation of the base station 304 may omit the WWAN transceiver(s) 350 (e.g., a Wi-Fi “hotspot” access point without cellular capability), or QC2306712WO Qualcomm Ref. No.2306712WO 35 may omit the short-range wireless transceiver(s) 360 (e.g., cellular-only, etc.), or may omit the satellite signal receiver 370, and so on.
- WWAN transceiver(s) 350 e.g., a Wi-Fi “hotspot” access point without cellular capability
- QC2306712WO Qualcomm Ref. No.2306712WO 35 may omit the short-range wireless transceiver(s) 360 (e.g., cellular-only, etc.), or may omit the satellite signal receiver 370, and so on.
- the various components of the UE 302, the base station 304, and the network entity 306 may be communicatively coupled to each other over data buses 334, 382, and 392, respectively.
- the data buses 334, 382, and 392 may form, or be part of, a communication interface of the UE 302, the base station 304, and the network entity 306, respectively.
- the data buses 334, 382, and 392 may provide communication between them.
- FIGS.3A, 3B, and 3C may be implemented in various ways. In some implementations, the components of FIGS.
- 3A, 3B, and 3C may be implemented in one or more circuits such as, for example, one or more processors and/or one or more ASICs (which may include one or more processors).
- each circuit may use and/or incorporate at least one memory component for storing information or executable code used by the circuit to provide this functionality.
- some or all of the functionality represented by blocks 310 to 346 may be implemented by processor and memory component(s) of the UE 302 (e.g., by execution of appropriate code and/or by appropriate configuration of processor components).
- some or all of the functionality represented by blocks 350 to 388 may be implemented by processor and memory component(s) of the base station 304 (e.g., by execution of appropriate code and/or by appropriate configuration of processor components).
- blocks 390 to 398 may be implemented by processor and memory component(s) of the network entity 306 (e.g., by execution of appropriate code and/or by appropriate configuration of processor components).
- processor and memory component(s) of the network entity 306 e.g., by execution of appropriate code and/or by appropriate configuration of processor components.
- various operations, acts, and/or functions are described herein as being performed “by a UE,” “by a base station,” “by a network entity,” etc.
- the network entity 306 may be implemented as a core network component.
- the network entity 306 may be distinct from a network operator or operation of the cellular network infrastructure (e.g., NG RAN 220 and/or 5GC 210/260).
- the network entity 306 may be a component of a private network that may be configured to communicate with the UE 302 via the base station 304 or independently from the base station 304 (e.g., over a non-cellular communication link, such as Wi-Fi).
- Various frame structures may be used to support downlink and uplink transmissions between network nodes (e.g., base stations and UEs).
- FIG.4 is a diagram 400 illustrating an example frame structure, according to aspects of the disclosure.
- the frame structure may be a downlink or uplink frame structure.
- Other wireless communications technologies may have different frame structures and/or different channels.
- LTE and in some cases NR, utilizes orthogonal frequency-division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
- OFDM orthogonal frequency-division multiplexing
- SC-FDM single-carrier frequency division multiplexing
- OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data.
- modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
- the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
- the spacing of the subcarriers may be 15 kilohertz (kHz) and the minimum resource allocation (resource block) may be 12 subcarriers (or 180 kHz). Consequently, the nominal fast Fourier transform (FFT) size may be equal to 128, 256, 512, 1024, or 2048 for system bandwidth of 1.25, 2.5, 5, 10, or 20 megahertz (MHz), respectively.
- the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks), and there may be 1, 2, 4, 8, or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10, or 20 MHz, respectively.
- LTE supports a single numerology (subcarrier spacing (SCS), symbol length, etc.).
- ⁇ subcarrier spacing
- there is one slot per subframe 10 slots per frame, the slot duration is 1 QC2306712WO Qualcomm Ref.
- For 120 kHz SCS ( ⁇ 3), there are eight slots per subframe, 80 slots per frame, the slot duration is 0.125 ms, the symbol duration is 8.33 ⁇ s, and the maximum nominal system bandwidth (in MHz) with a 4K FFT size is 400.
- For 240 kHz SCS ( ⁇ 4), there are 16 slots per subframe, 160 slots per frame, the slot duration is 0.0625 ms, the symbol duration is 4.17 ⁇ s, and the maximum nominal system bandwidth (in MHz) with a 4K FFT size is 800.
- a numerology of 15 kHz is used.
- a 10 ms frame is divided into 10 equally sized subframes of 1 ms each, and each subframe includes one time slot.
- time is represented horizontally (on the X axis) with time increasing from left to right, while frequency is represented vertically (on the Y axis) with frequency increasing (or decreasing) from bottom to top.
- a resource grid may be used to represent time slots, each time slot including one or more time-concurrent resource blocks (RBs) (also referred to as physical RBs (PRBs)) in the frequency domain.
- RBs time-concurrent resource blocks
- PRBs physical RBs
- the resource grid is further divided into multiple resource elements (REs).
- An RE may correspond to one symbol length in the time domain and one subcarrier in the frequency domain.
- an RB may contain 12 consecutive subcarriers in the frequency domain and seven consecutive symbols in the time domain, for a total of 84 REs.
- an RB may contain 12 consecutive subcarriers in the frequency domain and six consecutive symbols in the time domain, for a total of 72 REs.
- the number of bits carried by each RE depends on the modulation scheme.
- Some of the REs may carry reference (pilot) signals (RS).
- the reference signals may include positioning reference signals (PRS), tracking reference signals (TRS), phase tracking reference signals (PTRS), cell-specific reference signals (CRS), channel state information reference signals (CSI-RS), demodulation reference signals (DMRS), primary synchronization signals (PSS), secondary synchronization signals (SSS), QC2306712WO Qualcomm Ref. No.2306712WO 38 synchronization signal blocks (SSBs), sounding reference signals (SRS), etc., depending on whether the illustrated frame structure is used for uplink or downlink communication.
- FIG.4 illustrates example locations of REs carrying a reference signal (labeled “R”).
- a collection of resource elements (REs) that are used for transmission of PRS is referred to as a “PRS resource.”
- the collection of resource elements can span multiple PRBs in the frequency domain and ‘N’ (such as 1 or more) consecutive symbol(s) within a slot in the time domain. In a given OFDM symbol in the time domain, a PRS resource occupies consecutive PRBs in the frequency domain.
- the transmission of a PRS resource within a given PRB has a particular comb size (also referred to as the “comb density”).
- a comb size ‘N’ represents the subcarrier spacing (or frequency/tone spacing) within each symbol of a PRS resource configuration.
- PRS are transmitted in every Nth subcarrier of a symbol of a PRB.
- REs corresponding to every fourth subcarrier such as subcarriers 0, 4, 8 are used to transmit PRS of the PRS resource.
- comb sizes of comb-2, comb-4, comb-6, and comb-12 are supported for DL-PRS.
- FIG. 4 illustrates an example PRS resource configuration for comb-4 (which spans four symbols). That is, the locations of the shaded REs (labeled “R”) indicate a comb-4 PRS resource configuration.
- a DL-PRS resource may span 2, 4, 6, or 12 consecutive symbols within a slot with a fully frequency-domain staggered pattern.
- a DL-PRS resource can be configured in any higher layer configured downlink or flexible (FL) symbol of a slot.
- FL downlink or flexible
- 2-symbol comb-2 ⁇ 0, 1 ⁇ ; 4-symbol comb-2: ⁇ 0, 1, 0, 1 ⁇ ; 6-symbol comb-2: ⁇ 0, 1, 0, 1, 0, 1 ⁇ ; 12-symbol comb-2: ⁇ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 ⁇ ; 4-symbol comb-4: ⁇ 0, 2, 1, 3 ⁇ (as in the example of FIG.
- a “PRS resource set” is a set of PRS resources used for the transmission of PRS signals, where each PRS resource has a PRS resource ID.
- the PRS resources in a PRS resource set are associated with the same TRP.
- a PRS resource set is identified by a PRS QC2306712WO Qualcomm Ref.
- No.2306712WO 39 resource set ID and is associated with a particular TRP (identified by a TRP ID).
- the PRS resources in a PRS resource set have the same periodicity, a common muting pattern configuration, and the same repetition factor (such as “PRS- ResourceRepetitionFactor”) across slots.
- the periodicity is the time from the first repetition of the first PRS resource of a first PRS instance to the same first repetition of the same first PRS resource of the next PRS instance.
- the repetition factor may have a length selected from ⁇ 1, 2, 4, 6, 8, 16, 32 ⁇ slots.
- a PRS resource ID in a PRS resource set is associated with a single beam (or beam ID) transmitted from a single TRP (where a TRP may transmit one or more beams). That is, each PRS resource of a PRS resource set may be transmitted on a different beam, and as such, a “PRS resource,” or simply “resource,” also can be referred to as a “beam.” Note that this does not have any implications on whether the TRPs and the beams on which PRS are transmitted are known to the UE.
- a “PRS instance” or “PRS occasion” is one instance of a periodically repeated time window (such as a group of one or more consecutive slots) where PRS are expected to be transmitted.
- a PRS occasion also may be referred to as a “PRS positioning occasion,” a “PRS positioning instance, a “positioning occasion,” “a positioning instance,” a “positioning repetition,” or simply an “occasion,” an “instance,” or a “repetition.”
- a “positioning frequency layer” (also referred to simply as a “frequency layer”) is a collection of one or more PRS resource sets across one or more TRPs that have the same values for certain parameters.
- the collection of PRS resource sets has the same subcarrier spacing and cyclic prefix (CP) type (meaning all numerologies supported for the physical downlink shared channel (PDSCH) are also supported for PRS), the same Point A, the same value of the downlink PRS bandwidth, the same start PRB (and center frequency), and the same comb-size.
- the Point A parameter takes the value of the parameter “ARFCN-ValueNR” (where “ARFCN” stands for “absolute radio-frequency channel number”) and is an identifier/code that specifies a pair of physical radio channel used for transmission and reception.
- the downlink PRS bandwidth may have a granularity of four PRBs, with a minimum of 24 PRBs and a maximum of 272 PRBs.
- a UE may indicate the number of frequency layers it can support when it sends the network its positioning capabilities, such as during an LTE positioning protocol (LPP) session. For example, a UE may indicate whether it can support one or four positioning frequency layers.
- LPF LTE positioning protocol
- positioning reference signal generally refer to specific reference signals that are used for positioning in NR and LTE systems.
- the terms “positioning reference signal” and “PRS” may also refer to any type of reference signal that can be used for positioning, such as but not limited to, PRS as defined in LTE and NR, TRS, PTRS, CRS, CSI-RS, DMRS, PSS, SSS, SSB, SRS, UL-PRS, etc.
- the terms “positioning reference signal” and “PRS” may refer to downlink, uplink, or sidelink positioning reference signals, unless otherwise indicated by the context.
- a downlink positioning reference signal may be referred to as a “DL-PRS”
- an uplink positioning reference signal e.g., an SRS-for-positioning, PTRS
- a sidelink positioning reference signal may be referred to as an “SL-PRS.”
- the signals may be prepended with “DL,” “UL,” or “SL” to distinguish the direction.
- “UL-DMRS” is different from “DL-DMRS.”
- SRS transmitted by a UE may be used by a base station to obtain the channel state information (CSI) for the transmitting UE.
- CSI describes how an RF signal propagates from the UE to the base station and represents the combined effect of scattering, fading, and power decay with distance.
- the system uses the SRS for resource scheduling, link adaptation, massive MIMO, beam management, etc.
- SRS resource A collection of REs that are used for transmission of SRS is referred to as an “SRS resource,” and may be identified by the parameter “SRS-ResourceId.”
- No.2306712WO 41 resource elements can span multiple PRBs in the frequency domain and ‘N’ (e.g., one or more) consecutive symbol(s) within a slot in the time domain.
- N e.g., one or more
- SRS resource occupies one or more consecutive PRBs.
- An “SRS resource set” is a set of SRS resources used for the transmission of SRS signals, and is identified by an SRS resource set ID (“SRS-ResourceSetId”).
- SRS-ResourceSetId SRS resource set ID
- the transmission of SRS resources within a given PRB has a particular comb size (also referred to as the “comb density”).
- a comb size ‘N’ represents the subcarrier spacing (or frequency/tone spacing) within each symbol of an SRS resource configuration.
- SRS are transmitted in every Nth subcarrier of a symbol of a PRB.
- REs corresponding to every fourth subcarrier such as subcarriers 0, 4, 8 are used to transmit SRS of the SRS resource.
- the illustrated SRS is comb- 4 over four symbols. That is, the locations of the shaded SRS REs indicate a comb-4 SRS resource configuration.
- an SRS resource may span 1, 2, 4, 8, or 12 consecutive symbols within a slot with a comb size of comb-2, comb-4, or comb-8.
- a UE transmits SRS to enable the receiving base station (either the serving base station or a neighboring base station) to measure the channel quality (i.e., CSI) between the UE and the base station.
- the receiving base station either the serving base station or a neighboring base station
- the channel quality i.e., CSI
- SRS can also be specifically configured as uplink positioning reference signals for uplink-based positioning procedures, such as uplink time difference of arrival (UL-TDOA), round-trip-time (RTT), uplink angle-of-arrival (UL-AoA), etc.
- UL-TDOA uplink time difference of arrival
- RTT round-trip-time
- U-AoA uplink angle-of-arrival
- SRS may refer to SRS configured for channel quality measurements or SRS configured for positioning purposes.
- the former may be referred to herein as “SRS-for-communication” and/or the latter may be referred to as “SRS-for-positioning” or “positioning SRS” when needed to distinguish the two types of SRS. 41 QC2306712WO Qualcomm Ref.
- SRS-for- positioning also referred to as “UL-PRS”
- a new staggered pattern within an SRS resource except for single-symbol/comb-2
- a new comb type for SRS new sequences for SRS
- a higher number of SRS resource sets per component carrier and a higher number of SRS resources per component carrier.
- the parameters “SpatialRelationInfo” and “PathLossReference” are to be configured based on a downlink reference signal or SSB from a neighboring TRP.
- one SRS resource may be transmitted outside the active BWP, and one SRS resource may span across multiple component carriers.
- SRS may be configured in RRC connected state and only transmitted within an active BWP. Further, there may be no frequency hopping, no repetition factor, a single antenna port, and new lengths for SRS (e.g., 8 and 12 symbols). There also may be open-loop power control and not closed-loop power control, and comb- 8 (i.e., an SRS transmitted every eighth subcarrier in the same symbol) may be used.
- the UE may transmit through the same transmit beam from multiple SRS resources for UL-AoA.
- Sidelink communication takes place in transmission or reception resource pools.
- the minimum resource allocation unit is a sub-channel (e.g., a collection of consecutive PRBs in the frequency domain).
- resource allocation is in one slot intervals. However, some slots are not available for sidelink, and some slots contain feedback resources.
- sidelink resources can be (pre)configured to occupy fewer than the 14 symbols of a slot.
- Sidelink resources are configured at the radio resource control (RRC) layer.
- RRC radio resource control
- FIG. 5A is a diagram 500 of an example slot structure without feedback resources, according to aspects of the disclosure.
- time is represented horizontally and frequency is represented vertically.
- the length of each block is one orthogonal frequency division multiplexing (OFDM) symbol, and the 14 symbols make up a slot.
- the height of each block is one sub-channel.
- the (pre)configured sub-channel size can be selected from the set of ⁇ 10, 15, 20, 25, 50, 75, 100 ⁇ physical resource blocks (PRBs).
- PRBs physical resource blocks
- the first symbol is a repetition of the preceding symbol and is used for automatic gain control (AGC) setting. This is illustrated in FIG. 5A by the vertical and horizontal hashing.
- AGC automatic gain control
- FIG. 5A for sidelink, the physical sidelink control channel (PSCCH) and the physical sidelink shared channel (PSSCH) are transmitted in the same slot. Similar to the physical downlink control channel (PDCCH), the PSCCH carries control information about sidelink resource allocation and descriptions about sidelink data transmitted to the UE.
- PDCCH physical downlink control channel
- FIG.5B is a diagram 550 of an example slot structure with feedback resources, according to aspects of the disclosure.
- time is represented horizontally and frequency is represented vertically.
- the length of each block is one OFDM symbol, and the 14 symbols make up a slot.
- the height of each block is one sub-channel.
- the slot structure illustrated in FIG. 5B is similar to the slot structure illustrated in FIG.
- the slot structure illustrated in FIG. 5B includes feedback resources.
- the first PSFCH symbol is a repetition of the second PSFCH symbol for AGC setting.
- resources for the PSFCH can be configured with a periodicity selected from the set of ⁇ 0, 1, 2, 4 ⁇ slots.
- the physical sidelink control channel (PSCCH) carries sidelink control information (SCI).
- SCI-1 is transmitted on the PSCCH and contains information for resource allocation and decoding second stage SCI (referred to as “SCI- 2”).
- SCI-2 is transmitted on the physical sidelink shared channel (PSSCH) and contains information for decoding the data that will be transmitted on the shared channel (SCH) of the sidelink.
- PSSCH physical sidelink shared channel
- SCI-1 information is decodable by all UEs, whereas SCI-2 information may include formats that are only decodable by certain UEs. This ensures that new features QC2306712WO Qualcomm Ref. No.2306712WO 44 can be introduced in SCI-2 while maintaining resource reservation backward compatibility in SCI-1.
- Both SCI-1 and SCI-2 use the physical downlink control channel (PDCCH) polar coding chain, illustrated in FIG. 6.
- FIG. 6 physical downlink control channel
- FIG. 6 is a diagram 600 showing how the shared channel (SCH) is established on a sidelink between two or more UEs, according to aspects of the disclosure.
- information in the SCI-1602 is used for resource allocation 604 (by the network or the involved UEs) for the SCI-2 606 and SCH 608.
- information in the 6CI-1602 is used to determine/decode the contents of the SCI-2606 transmitted on the allocated resources.
- a receiver UE needs both the resource allocation 604 and the SCI-1602 to decode the SCI-2606.
- Information in the SCI-2606 is then used to determine/decode the SCH 608.
- a sidelink resource pool may include resources for sidelink communication (transmission and/or reception), sidelink positioning (referred to as a resource pool for positioning (RP-P)), or both communication and positioning.
- a resource pool configured for both communication and positioning is referred to as a “shared” resource pool.
- the RP-P is indicated by an offset, periodicity, number of consecutive symbols within a slot (e.g., as few as one symbol), and/or the bandwidth within a component carrier (or the bandwidth across multiple component carriers).
- the RP-P can be associated with a zone or a distance from a reference location.
- a base station (or a UE, depending on the resource allocation mode) can assign, to another UE, one or more resource configurations from the RP-Ps.
- a UE e.g., a relay or a remote UE
- QoS quality of service
- a base station or a UE can configure/assign rate matching resources or RP-P for rate matching and/or muting to a sidelink UE such that when a collision exists between the assigned resources and another resource pool that contains data (PSSCH) and/or control (PSCCH), the sidelink UE is expected to rate match, mute, and/or puncture the data, 44 QC2306712WO Qualcomm Ref. No.2306712WO 45 DMRS, and/or CSI-RS within the colliding resources. This would enable orthogonalization between positioning and data transmissions for increased coverage of PRS signals.
- FIG. 7 is a diagram 700 illustrating an example of a resource pool for positioning configured within a sidelink resource pool for communication (i.e., a shared resource pool), according to aspects of the disclosure.
- time is represented horizontally and frequency is represented vertically.
- the length of each block is an orthogonal frequency division multiplexing (OFDM) symbol, and the 14 symbols make up a slot.
- OFDM orthogonal frequency division multiplexing
- the height of each block is a sub- channel.
- the entire slot (except for the first and last symbols) can be a resource pool for sidelink communication. That is, any of the symbols other than the first and last can be allocated for sidelink communication.
- an RP-P is allocated in the last four pre-gap symbols of the slot.
- non-sidelink positioning data such as user data (PSSCH), CSI-RS, and control information
- PSSCH user data
- CSI-RS CSI-RS
- control information can only be transmitted in the first eight post-AGC symbols and not in the last four pre-gap symbols to prevent a collision with the configured RP-P.
- the non-sidelink positioning data that would otherwise be transmitted in the last four pre-gap symbols can be punctured or muted, or the non- sidelink data that would normally span more than the eight post-AGC symbols can be rate matched to fit into the eight post-AGC symbols.
- S-PRS Sidelink positioning reference signals
- an SL-PRS resource is composed of one or more resource elements (i.e., one OFDM symbol in the time domain and one subcarrier in the frequency domain).
- SL-PRS resources have been designed with a comb-based pattern to enable fast Fourier transform (FFT)-based processing at the receiver.
- FFT fast Fourier transform
- SL-PRS resources are composed of unstaggered, or only partially staggered, resource elements in the frequency domain to provide small time of arrival (TOA) uncertainty and reduced overhead of each SL-PRS resource.
- SL-PRS may also be associated with specific RP-Ps (e.g., certain SL-PRS may be allocated in certain RP-Ps).
- SL-PRS have also been defined with intra-slot repetition (not shown in FIG. 7) to allow for combining gains (if needed).
- NR supports a number of cellular network-based positioning technologies, including downlink-based, uplink-based, and downlink-and-uplink-based positioning methods.
- Downlink-based positioning methods include observed time difference of arrival (OTDOA) in LTE, downlink time difference of arrival (DL-TDOA) in NR, and downlink angle-of-departure (DL-AoD) in NR.
- OTDOA observed time difference of arrival
- DL-TDOA downlink time difference of arrival
- DL-AoD downlink angle-of-departure
- a UE measures the differences between the times of arrival (ToAs) of reference signals (e.g., positioning reference signals (PRS)) received from pairs of base stations, referred to as reference signal time difference (RSTD) or time difference of arrival (TDOA) measurements, and reports them to a positioning entity. More specifically, the UE receives the identifiers (IDs) of a reference base station (e.g., a serving base station) and multiple non-reference base stations in assistance data. The UE then measures the RSTD between the reference base station and each of the non-reference base stations.
- ToAs times of arrival
- PRS positioning reference signals
- RSTD reference signal time difference
- TDOA time difference of arrival
- the positioning entity e.g., the UE for UE-based positioning or a location server for UE- assisted positioning
- the positioning entity uses a measurement report from the UE of received signal strength measurements of multiple downlink transmit beams to determine the angle(s) between the UE and the transmitting base station(s). The positioning entity can then estimate the location of the UE based on the determined angle(s) and the known location(s) of the transmitting base station(s).
- Uplink-based positioning methods include uplink time difference of arrival (UL-TDOA) and uplink angle-of-arrival (UL-AoA).
- UL-TDOA is similar to DL-TDOA, but is based on uplink reference signals (e.g., sounding reference signals (SRS)) transmitted by the UE to multiple base stations.
- uplink reference signals e.g., sounding reference signals (SRS)
- SRS sounding reference signals
- a UE transmits one or more uplink reference signals that are measured by a reference base station and a plurality of non-reference base stations.
- Each base station then reports the reception time (referred to as the relative time of arrival (RTOA)) of the reference signal(s) to a positioning entity (e.g., a location server) that knows the locations and relative timing of the involved base stations.
- RTOA relative time of arrival
- the positioning entity can estimate the location of the UE using TDOA.
- one or more base stations measure the received signal strength of one or more uplink reference signals (e.g., SRS) received from a UE on one or more uplink receive beams.
- the positioning entity uses the signal strength measurements and the angle(s) of the receive beam(s) to determine the angle(s) between the UE and the base station(s).
- Downlink-and-uplink-based positioning methods include enhanced cell-ID (E-CID) positioning and multi-round-trip-time (RTT) positioning (also referred to as “multi-cell RTT” and “multi-RTT”).
- E-CID enhanced cell-ID
- RTT multi-round-trip-time
- a first entity e.g., a base station or a UE transmits a first RTT-related signal (e.g., a PRS or SRS) to a second entity (e.g., a UE or base station), which transmits a second RTT-related signal (e.g., an SRS or PRS) back to the first entity.
- a first RTT-related signal e.g., a PRS or SRS
- a second entity e.g., a UE or base station
- a second RTT-related signal e.g., an SRS or PRS
- Each entity measures the time difference between the time of arrival (ToA) of the received RTT-related signal and the transmission time of the transmitted RTT-related signal. This time difference is referred to as a reception-to-transmission (Rx- Tx) time difference.
- the Rx-Tx time difference measurement may be made, or may be adjusted, to include only a time difference between nearest slot boundaries for the received and transmitted signals. Both entities may then send their Rx-Tx time difference measurement to a location server (e.g., an LMF 270), which calculates the round trip propagation time (i.e., RTT) between the two entities from the two Rx-Tx time difference measurements (e.g., as the sum of the two Rx-Tx time difference measurements). Alternatively, one entity may send its Rx-Tx time difference measurement to the other entity, which then calculates the RTT. The distance between the two entities can be determined from the RTT and the known signal speed (e.g., the speed of light).
- a location server e.g., an LMF 270
- RTT round trip propagation time
- the distance between the two entities can be determined from the RTT and the known signal speed (e.g., the speed of light).
- a first entity e.g., a UE or base station
- performs an RTT positioning procedure with multiple second entities e.g., multiple base stations or UEs
- second entities e.g., multiple base stations or UEs
- RTT and multi-RTT methods can be combined with other positioning techniques, such as UL-AoA and DL-AoD, to improve location accuracy.
- QC2306712WO Qualcomm Ref. No.2306712WO 48 [0150]
- the E-CID positioning method is based on radio resource management (RRM) measurements.
- the UE reports the serving cell ID, the timing advance (TA), and the identifiers, estimated timing, and signal strength of detected neighbor base stations. The location of the UE is then estimated based on this information and the known locations of the base station(s).
- a location server e.g., location server 230, LMF 270, SLP 272 may provide assistance data to the UE.
- the assistance data may include identifiers of the base stations (or the cells/TRPs of the base stations) from which to measure reference signals, the reference signal configuration parameters (e.g., the number of consecutive slots including PRS, periodicity of the consecutive slots including PRS, muting sequence, frequency hopping sequence, reference signal identifier, reference signal bandwidth, etc.), and/or other parameters applicable to the particular positioning method.
- the assistance data may originate directly from the base stations themselves (e.g., in periodically broadcasted overhead messages, etc.).
- the UE may be able to detect neighbor network nodes itself without the use of assistance data.
- the assistance data may further include an expected RSTD value and an associated uncertainty, or search window, around the expected RSTD.
- the value range of the expected RSTD may be +/- 500 microseconds ( ⁇ s).
- the value range for the uncertainty of the expected RSTD may be +/- 32 ⁇ s.
- the value range for the uncertainty of the expected RSTD may be +/- 8 ⁇ s.
- a location estimate may be referred to by other names, such as a position estimate, location, position, position fix, fix, or the like.
- a location estimate may be geodetic and comprise coordinates (e.g., latitude, longitude, and possibly altitude) or may be civic and comprise a street address, postal address, or some other verbal description of a location.
- a location estimate may further be defined relative to some other known location or defined in absolute terms (e.g., using latitude, longitude, and possibly altitude).
- a location estimate may include an expected error or uncertainty (e.g., by including an area or volume within which the location is expected to be included with some specified or default level of confidence).
- FIG. 8A illustrates various scenarios of interest for sidelink-only or joint Uu and sidelink positioning, according to aspects of the disclosure.
- at least one peer UE with a known location can improve the Uu-based positioning (e.g., multi-cell round-trip-time (RTT), downlink time difference of arrival (DL-TDOA), etc.) of a target UE by providing an additional anchor (e.g., using sidelink RTT (SL-RTT)).
- RTT multi-cell round-trip-time
- DL-TDOA downlink time difference of arrival
- SL-RTT sidelink RTT
- a low-end target UE may obtain the assistance of premium UEs to determine its location using, e.g., sidelink positioning and ranging procedures with the premium UEs.
- the premium UEs may have more capabilities, such as more sensors, a faster processor, more memory, more antenna elements, higher transmit power capability, access to additional frequency bands, or any combination thereof.
- a relay UE e.g., with a known location participates in the positioning estimation of a remote UE without performing uplink positioning reference signal (PRS) transmission over the Uu interface.
- Scenario 840 illustrates the joint positioning of multiple UEs.
- FIG. 8B illustrates additional scenarios of interest for sidelink-only or joint Uu and sidelink positioning, according to aspects of the disclosure.
- UEs used for public safety e.g., by police, firefighters, and/or the like
- P2P peer-to-peer
- the public safety UEs may be out of coverage of a network and determine a location or a relative distance and a relative position among the public safety UEs using sidelink positioning techniques.
- scenario 860 shows multiple UEs that are out of coverage and determine a location or a relative distance and a relative position using sidelink positioning techniques, such as SL-RTT.
- SCI-1 includes the following content: • Priority (QoS value) • PSSCH resource assignment (frequency/time resource for PSSCH) • Resource reservation period (if enabled) • PSSCH DMRS pattern (if more than one patterns are (pre)configured) • 2nd SCI format (e.g. information on the size of 2nd SCI) 49 QC2306712WO Qualcomm Ref. No.2306712WO 50 • 2-bit beta offset for 2 nd -stage control resource allocation.
- SCI-2 formats are not currently finalized. However, it is contemplated that the general design for SCI-2 will include the following content (used for determination of transport block (TB) retransmission, new TB, etc.): • HARQ process ID • NDI • Source ID • Destination ID • CSI report trigger (applicable to unicast only) [0158] In some designs, for Groupcast Option 1 (NACK-only distance-based feedback), SCI-2 may include: • Zone ID indicating the location of the transmitter. • Maximum communication range for sending feedback.
- FIG. 9 illustrates a multi-antenna reception point (ARP) SL-based position estimation scheme 900, in accordance with aspects of the disclosure.
- anchor UE is configured with Tx ARPs 910 and 920
- a target UE is configured with Rx ARPs 930 and 940.
- the anchor UE transmits SL-PRS 912 via Tx ARP 910 on SL-PRS resource 1, which is received/measured by Rx ARPs 930 and 940 at the target UE.
- the anchor UE transmits SL-PRS 922 via Tx ARP 920 on SL-PRS resource 2, which is received/measured by Rx ARPs 930 and 940 at the target UE.
- the use of multiple antenna panels increases not only the number of distance and/or angle measurements, but also the geometric constraint of multiple panels on Tx or Rx UE, which can improve SL positioning accuracy. For supporting the use of the measurements from multiple antenna panels for positioning, there is a need to define the antenna reference point (ARP) for each panel.
- ARP antenna reference point
- aspects of the disclosure are directed to a mapping scheme between ARPs and SL-PRS. Such aspects may provide various technical advantages, such as improving position estimation accuracy of SL-based position estimation (e.g., because ARP-specific locations may be factored into the position estimation, which matters particularly for larger UE-types such as vehicle UEs where the ARPs may be separated by a much greater distance than other UE types such as smart phones).
- FIG.10 illustrates an exemplary process 1000 of communications according to an aspect of the disclosure.
- the process 1000 of FIG.10 is performed by a UE, such as UE 302.
- the UE e.g., receiver 312 or 322, etc.
- receives a sidelink positioning reference signal (SL-PRS) resource configuration that configures a first SL- PRS and a second SL-PRS associated with a SL-based position estimation session.
- SL-PRS sidelink positioning reference signal
- a means for performing the reception of 1010 may include receiver 312 or 322, etc., of FIG.3A.
- the UE receives a first mapping of a first antenna reception point (ARP) to the first SL-PRS.
- ARP antenna reception point
- a means for performing the reception of 1020 may include receiver 312 or 322, etc., of FIG. 3A.
- the UE receives a second mapping of a second ARP to the second SL-PRS.
- the first mapping and the second mapping are received via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL-PRS resource for the first SL-PRS or the second SL-PRS or both.
- a means for performing the reception of 1030 may include receiver 312 or 322, etc., of FIG.3A. [0167] Referring to FIG.
- the UE e.g., receiver 312 or 322, transmitter 314 or 324, SL-PRS mapping component 342, processor(s) 332, etc.
- the UE performs one or more reception operations, one or more transmission operations, or both, for the SL-based position estimation session in accordance with the first mapping and the second mapping.
- a means for performing the operations of 1040 may include receiver 312 or 322, transmitter 314 or 324, SL-PRS mapping component 342, processor(s) 332, etc., of FIG. 3A. 51 QC2306712WO Qualcomm Ref. No.2306712WO 52 [0168]
- FIG.11 illustrates an exemplary process 1100 of communications according to an aspect of the disclosure. The process 1100 of FIG.
- a device such as a UE (e.g., anchor UE), a gNB/BS 304 or O-RAN component (e.g., RU/DU/CU/etc.), a network component such as LMF, etc.
- the device e.g., transmitter 314 or 324 or 354 or 364, network transceiver(s) 380 or 390, etc.
- SL-PRS sidelink positioning reference signal
- UE user equipment
- a means for performing the transmission of 1110 may include transmitter 314 or 324 or 354 or 364, network transceiver(s) 380 or 390, etc., of FIGS.3A-3C.
- the device e.g., transmitter 314 or 324 or 354 or 364, network transceiver(s) 380 or 390, etc.
- ARP antenna reception point
- a means for performing the transmission of 1120 may include transmitter 314 or 324 or 354 or 364, network transceiver(s) 380 or 390, etc., of FIGS.3A-3C.
- the device e.g., transmitter 314 or 324 or 354 or 364, network transceiver(s) 380 or 390, etc. transmits a second mapping of a second ARP to the second SL-PRS.
- the first mapping and the second mapping are transmitted via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL-PRS resource for the first SL-PRS or the second SL-PRS or both.
- AD positioning assistance data
- IUC inter-UE coordination
- SCI SL control information
- a means for performing the transmission of 1130 may include transmitter 314 or 324 or 354 or 364, network transceiver(s) 380 or 390, etc., of FIGS.3A-3C.
- the first mapping and the second mapping are received via the positioning AD.
- the first mapping and the second mapping are fixed at least for a duration of the SL-based position estimation session.
- the first mapping maps the first ARP to a first SL-PRS resource identifier associated with the first SL-PRS
- the second mapping maps second first ARP to a second SL-PRS resource identifier associated with the second SL-PRS.
- the first mapping and the second mapping are received via the IUC signaling.
- the first mapping is associated with a first validity time, or the first mapping is associated with the first validity time or a second QC2306712WO Qualcomm Ref. No.2306712WO 53 validity time, or a combination thereof.
- the first mapping is updated at least once during the SL-based position estimation session, or the second mapping is updated at least once during the SL-based position estimation session, or a combination thereof.
- the UCI signaling is received via medium access control command element (MAC-CE) only or via MAC-CE and SCI-2C or via physical sidelink feedback channel (PFSCH).
- MAC-CE medium access control command element
- PFSCH physical sidelink feedback channel
- the first mapping and the second mapping are received via SCI.
- the first mapping and the second mapping are received via SCI-1, and the SL-PRS resource configuration is associated with a dedicated resource pool (RP).
- the first mapping and the second mapping are received via SCI-2, and the SL-PRS resource configuration is associated with a shared resource pool (RP).
- the first mapping and the second mapping are each valid for a single respective SL-PRS occasion or SL-PRS resource reservation or SL-PRS resource without periodic reservation.
- the UE may further transmit a request or receive an instruction (and the device may further receive the request or transmit the instruction) associated with: • muting one or more ARPs for a period of time, or • modifying the first mapping or the second mapping or both, or • establishing one or more preferred mappings, or • any combination thereof.
- the UE may further receive (and the device may further transmit), • via higher-layer signaling, a first set of candidate mappings of the first ARP to a first set of SL-PRS, the first set of candidate mappings including the first mapping; • via higher-layer signaling, a second set of candidate mappings of the second ARP to a second set of SL-PRS, the second set of candidate mappings including the second mapping; and • via lower-layer signaling, an instruction to use the first mapping and the second mapping for at least part of the SL-based position estimation session [0177] Referring to FIGS. 10-11, in some designs, the UE may further transmit (and the device may further receive), UE capability information that includes: QC2306712WO Qualcomm Ref.
- the first mapping further maps the first ARP to a first uplink sounding reference signal (UL-SRS), or the second mapping further maps the second ARP to a second UL-SRS, or a combination thereof.
- the device may correspond to an anchor UE. In an aspect, the device may transmit a report comprising an indication of the first mapping and the second mapping to a position estimation entity.
- the position estimation entity configures, e.g.: • a periodicity associated with the report, or • a maximum number of mappings transmitted per report, or • a combination thereof.
- the device corresponds to a position estimation entity (e.g., UE, LMF, etc.). In this case, the device may further derive a position estimate of the UE.
- Rx UE may be aware of which ARP used by transmitter to transmit the SL-PRS signal.
- Option 1 - Static mapping LMF/ gNB will provide the static mapping information in AD.
- the static mapping information includes which SL-PRS resource ID is transmitted through which ARP.
- UE will transmit the SL-PRS through ARP with mapping provided in the AD. Mapping will be shared with both receiving and transmitting SL UEs.
- Option 2 - Semi Static mapping Anchor UE will share the ARP ⁇ -> SL-PRS mapping through “inter UE coordination’s” signaling. Each mapping will have some time associated with, after that mapping is not valid. Anchor UE may need to share this mapping many times through positioning sessions.
- Anchor UE will share the ARP ⁇ -> SL-PRS mapping through “SCI”, e.g., either SCI-1 (for the case of single-stage SCI, as is the scenario of 54 QC2306712WO Qualcomm Ref. No.2306712WO 55 positioning in dedicated RP) or SCI-2 (for the case of shared RP).
- SCI e.g., either SCI-1 (for the case of single-stage SCI, as is the scenario of 54 QC2306712WO Qualcomm Ref. No.2306712WO 55 positioning in dedicated RP) or SCI-2 (for the case of shared RP).
- SCI2 for the case of single-stage SCI, as is the scenario of 54 QC2306712WO Qualcomm Ref. No.2306712WO 55 positioning in dedicated RP
- SCI-2 for the case of shared RP
- the SL-PRS resource to ARP-ID association is only valid for the transmission that was reserved through the corresponding SCI.
- the ARP ⁇ -> PRS mapping may be on- demand.
- LMF/ gNB can demand the anchored UE to transmit the ARP ⁇ -> SL-PRS mapping in particular order (e.g., option of muting a few ARPs for some time ⁇ period, option of changing the mapping on the fly, etc.).
- SL UE can request anchor UE to transmit the SL-PRS resource from given ARP.
- SL UE may suggest/request a specific ARP ⁇ -> SL-PRS mapping or association. In an aspect, SL UE may suggest to mute ARP for some duration. In some designs, a SL UE requests another UE to transmit SL-PRS resources from all the available ARPs. [0186] Referring to FIGS.10-11, in a specific example, LMF/ RRC/ Anchor UE can provide the multiple ARP ⁇ -> SL-PRS mapping set to the SL UE. Then, a procedure to activate/deactivate the mapping in the set through higher layer and lower layer. In some designs, higher-layer refers to RRC or LMF-level communication, and lower layer refers to SCI or MAC-CE.
- higher-layer configures SL-PRS1 with a first set of ARP mapping options ⁇ ARP1, ARP2 ⁇ and SL-PRS2 with a second set of ARP options ⁇ ARP3, ARP4 ⁇ . Then, a lower-layer may activate a particular mapping, e.g., SL-PRS1 ⁇ -> ARP1.
- Anchor UE may store all the SL-PRS resource ⁇ -> ARP mapping in their database. Anchor UE may periodically update the past mapping used in the periodic report.
- Anchor UE may be free to choose and change the SL-PRS resource ⁇ -> ARP mapping on the fly (e.g., this aspect may be up to UE implementations rather than pre-defined).
- LMF/gNB may configure periodic past mapping reporting and provide the periodicity of the report. LMF may also provide the maximum number of associations that anchor UE can report in the one periodic report.
- a UE may be configured through SLPP to provide periodic mapping of ARP ⁇ ->SL-PRSs to another UE [0188] Referring to FIGS. 10-11, in a specific example, a new UE capability to indicate the “Resources Transmission can be FDM’ed across the ARP” may be defined. In case of QC2306712WO Qualcomm Ref.
- UE also provide how many ARP can be FDM’ed by the UE (e.g., which is particularly beneficial in a scenario where a distance between ARP is on the order of meters).
- LMF/RRC/Anchor UE may provide the information to all the SL UE in participation (e.g., information about the ARP’s that are FDM’ed in transmission side).
- a device provides an association between: ARP-IDs ⁇ -> SL-PRS and ARP-IDs ⁇ -> UL-SRS.
- the same ARP- ID can be associated with the both a SL-PRS and an UL-SRS and it is interpreted that both resources (SL-PRS and UL-SRS) are transmitted from the same antenna from the UE.
- a device provides an association between: ARP-IDs ⁇ -> SL-RSTD/Rx- Tx/AoA/RSRPP/RSRP/Phase and ARP-IDs ⁇ -> DL-RSTD/Rx- Tx/AoA/RSRP/RSRPP/Phase.
- the same ARP-ID can be associated with both a SL measurement and a DL measurement and it is interpreted that both measurements in SL Rx and DL Rx happened from the same antenna reference point from the UE.
- ARP1 may be used for (or shared by) both SL-PRS and Uu PRS (e.g., DL- PRS / UL-SRS-P), and the mapping of ARP1 to both SL and Uu PRS may be known.
- some ARPs may be dedicated to SL-PRS only while other ARPs are dedicated to Uu PRS only.
- FIG. 12 illustrates an example implementation 1200 of the process 1000 of FIG.
- the UE receives a sidelink positioning reference signal (SL-PRS) resource configuration that configures a first SL- PRS and a second SL-PRS associated with a SL-based position estimation session.
- SL-PRS sidelink positioning reference signal
- a means for performing the reception of 1210 may include receiver 312 or 322, etc., of FIG.3A.
- the UE receives a first mapping of a first antenna reception point (ARP) to the first SL-PRS.
- ARP antenna reception point
- a means for performing the reception of 1220 may include receiver 312 or 322, etc., of FIG. 3A.
- the UE e.g., receiver 312 or 322, etc.
- the first mapping and the 56 QC2306712WO Qualcomm Ref. No.2306712WO 57 second mapping are received via one or more SL messages.
- a means for performing the reception of 1230 may include receiver 312 or 322, etc., of FIG.3A. [0195] Referring to FIG.
- the UE e.g., receiver 312 or 322, transmitter 314 or 324, SL-PRS mapping component 342, processor(s) 332, etc.
- the UE performs one or more reception operations, one or more transmission operations, or both, for the SL-based position estimation session in accordance with the first mapping and the second mapping.
- a means for performing the operations of 1240 may include receiver 312 or 322, transmitter 314 or 324, SL-PRS mapping component 342, processor(s) 332, etc., of FIG. 3A.
- the first mapping and the second mapping are received via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL-PRS resource for the first SL-PRS or the second SL-PRS or both.
- AD positioning assistance data
- IUC inter-UE coordination
- SCI SL control information
- the first mapping maps the first ARP to a first SL- PRS resource identifier associated with the first SL-PRS
- the second mapping maps second first ARP to a second SL-PRS resource identifier associated with the second SL- PRS.
- the first mapping is associated with a first validity time, or the first mapping is associated with the first validity time or a second validity time, or a combination thereof.
- the first mapping is updated at least once during the SL-based position estimation session, or the second mapping is updated at least once during the SL-based position estimation session, or a combination thereof.
- the UE further transmits a request to a device, and the first mapping and the second mapping are received in response to the request.
- the request requests modification to one or more mappings associated with the first ARP or the second ARP or both, or the request comprises an indication of the first mapping or the second mapping or both.
- the UE further receives, via higher-layer signaling a first set of candidate mappings of the first ARP to a first set of SL-PRS, the first set of QC2306712WO Qualcomm Ref.
- No.2306712WO 58 candidate mappings including the first mapping receives, via higher-layer signaling a second set of candidate mappings of the second ARP to a second set of SL-PRS, the second set of candidate mappings including the second mapping, and receives, via lower- layer signaling an instruction to use the first mapping and the second mapping for at least part of the SL-based position estimation session.
- the UE further transmits ARP reception capability information of the UE to a device.
- the ARP reception capability information comprises: a number of resources that the UE is capable of frequency duplex multiplexing (FDMing) resources per ARP, or a number of ARPs that the UE is capable of FDMing, or a combination thereof.
- the first mapping further maps the first ARP to a first uplink sounding reference signal (UL-SRS), or the second mapping further maps the second ARP to a second UL-SRS, or a combination thereof.
- FIG. 13 illustrates an example implementation 1300 of the process 1100 of FIG. 11, in accordance with aspects of the disclosure.
- the device e.g., transmitter 314 or 324 or 354 or 364, network transceiver(s) 380 or 390, etc. transmits a sidelink positioning reference signal (SL-PRS) resource configuration to a user equipment (UE) that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session.
- SL-PRS sidelink positioning reference signal
- UE user equipment
- a means for performing the transmission of 1310 may include transmitter 314 or 324 or 354 or 364, network transceiver(s) 380 or 390, etc., of FIGS.3A-3C.
- the device e.g., transmitter 314 or 324 or 354 or 364, network transceiver(s) 380 or 390, etc. transmits a first mapping of a first antenna reception point (ARP) to the first SL-PRS.
- a means for performing the transmission of 1320 may include transmitter 314 or 324 or 354 or 364, network transceiver(s) 380 or 390, etc., of FIGS.3A-3C.
- the device transmits a second mapping of a second ARP to the second SL-PRS.
- the first mapping and the second mapping are transmitted via one or more SL messages.
- a means for performing the transmission of 1330 may include transmitter 314 or 324 or 354 or 364, network transceiver(s) 380 or 390, etc., of FIGS.3A-3C. 58 QC2306712WO Qualcomm Ref. No.2306712WO 59 [0209] Referring to FIG.13, in some designs, the device corresponds to an anchor UE.
- the device further transmits a report comprising an indication of the first mapping and the second mapping to a position estimation entity.
- the position estimation entity configures: a periodicity associated with the report, or a maximum number of mappings transmitted per report, or a combination thereof.
- the device corresponds to a position estimation entity.
- the first mapping and the second mapping are transmitted via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL-PRS resource for the first SL-PRS or the second SL-PRS or both.
- AD positioning assistance data
- IUC inter-UE coordination
- SCI SL control information
- the first mapping maps the first ARP to a first SL- PRS resource identifier associated with the first SL-PRS
- the second mapping maps second first ARP to a second SL-PRS resource identifier associated with the second SL- PRS.
- the first mapping is associated with a first validity time, or the first mapping is associated with the first validity time or a second validity time, or a combination thereof.
- the first mapping is updated at least once during the SL-based position estimation session, or the second mapping is updated at least once during the SL-based position estimation session, or a combination thereof.
- the device further receives a request from the UE, and the first mapping and the second mapping are transmitted in response to the request.
- the request requests modification to one or more mappings associated with the first ARP or the second ARP or both, or the request comprises an indication of the first mapping or the second mapping or both.
- the device further transmits via higher-layer signaling a first set of candidate mappings of the first ARP to a first set of SL-PRS, the first set of candidate mappings including the first mapping, transmits, via higher-layer 59 QC2306712WO Qualcomm Ref.
- No.2306712WO 60 signaling a second set of candidate mappings of the second ARP to a second set of SL- PRS, the second set of candidate mappings including the second mapping, and transmits, via lower-layer signaling an instruction to use the first mapping and the second mapping for at least part of the SL-based position estimation session.
- the device further receives ARP reception capability information of the UE.
- the ARP reception capability information that comprises: a number of resources that the UE is capable of frequency duplex multiplexing (FDMing) resources per ARP, or a number of ARPs that the UE is capable of FDMing, or a combination thereof.
- FDMing frequency duplex multiplexing
- the first mapping further maps the first ARP to a first uplink sounding reference signal (UL-SRS), or the second mapping further maps the second ARP to a second UL-SRS, or a combination thereof.
- UL-SRS uplink sounding reference signal
- each dependent clause can refer in the clauses to a specific combination with one of the other clauses, the aspect(s) of that dependent clause are not limited to the specific combination. It will be appreciated that other example clauses can also include a combination of the dependent clause aspect(s) with the subject matter of any other dependent clause or independent clause or a combination of any feature with other dependent and independent clauses.
- the various aspects disclosed herein expressly include these combinations, unless it is explicitly expressed or can be readily inferred that a specific combination is not intended (e.g., contradictory aspects, such as defining an element as both an electrical insulator and an electrical conductor). Furthermore, it is also intended that aspects of a clause can be included in any other independent clause, even if the clause is not directly dependent on the independent clause.
- a method of operating a user equipment comprising: receiving a sidelink positioning reference signal (SL-PRS) resource configuration that configures a first SL- 60 QC2306712WO Qualcomm Ref.
- S-PRS sidelink positioning reference signal
- No.2306712WO 61 PRS and a second SL-PRS associated with a SL-based position estimation session receiving a first mapping of a first antenna reception point (ARP) to the first SL-PRS; receiving a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are received via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL-PRS resource for the first SL-PRS or the second SL-PRS or both; and performing one or more reception operations, one or more transmission operations, or both, for the SL-based position estimation session in accordance with the first mapping and the second mapping.
- ARP antenna reception point
- IUC inter-UE coordination
- SCI SL control information
- FDMing frequency duplex multiplexing
- Clause 16 The method of any of clauses 1 to 15, wherein the first mapping further maps the first ARP to a first uplink sounding reference signal (UL-SRS), or wherein the second mapping further maps the second ARP to a second UL-SRS, or a combination thereof.
- UL-SRS uplink sounding reference signal
- a method of operating a device comprising: transmitting a sidelink positioning reference signal (SL-PRS) resource configuration to a user equipment (UE) that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; transmitting a first mapping of a first antenna reception point (ARP) to the first SL-PRS; and transmitting a second mapping of a second ARP to the second QC2306712WO Qualcomm Ref.
- SL-PRS sidelink positioning reference signal
- UE user equipment
- ARP antenna reception point
- Clause 31 The method of any of clauses 29 to 30, wherein the first mapping and the second mapping are received via SCI-2, and wherein the SL-PRS resource configuration is associated with a shared resource pool (RP).
- Clause 32 The method of clause 31, wherein the first mapping and the second mapping are each valid for a single respective SL-PRS occasion or SL-PRS resource reservation or SL-PRS resource without periodic reservation.
- a user equipment comprising: one or more memories; one or more transceivers; and one or more processors communicatively coupled to the one or more memories and the one or more transceivers, the one or more processors, either alone or in 64 QC2306712WO Qualcomm Ref.
- No.2306712WO 65 combination configured to: receive, via the one or more transceivers, a sidelink positioning reference signal (SL-PRS) resource configuration that configures a first SL- PRS and a second SL-PRS associated with a SL-based position estimation session; receive, via the one or more transceivers, a first mapping of a first antenna reception point (ARP) to the first SL-PRS; receive, via the one or more transceivers, a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are received via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL-PRS resource for the first SL-PRS or the second SL-PRS or both; and perform one or more reception operations, one or more transmission operations, or both, for the SL-based position estimation session in accordance with the first mapping and the second mapping.
- Clause 38 The UE of clause 37, the first mapping and the second mapping are received via the positioning AD.
- Clause 39 The UE of clause 38, wherein the first mapping and the second mapping are fixed at least for a duration of the SL-based position estimation session.
- Clause 40 The UE of any of clauses 38 to 39, wherein the first mapping maps the first ARP to a first SL-PRS resource identifier associated with the first SL-PRS, and wherein the second mapping maps second first ARP to a second SL-PRS resource identifier associated with the second SL-PRS.
- Clause 41 Clause 41.
- Clause 42 The UE of clause 41, wherein the first mapping is associated with a first validity time, or wherein the first mapping is associated with the first validity time or a second validity time, or a combination thereof.
- Clause 43 The UE of any of clauses 41 to 42, wherein the first mapping is updated at least once during the SL-based position estimation session, or wherein the second mapping is updated at least once during the SL-based position estimation session, or a combination thereof.
- the one or more processors are further configured to: receive, via the one or more transceivers, via higher-layer signaling a first set of candidate mappings of the first ARP to a first set of SL-PRS, the first set of candidate mappings including the first mapping; receive, via the one or more transceivers, via higher-layer signaling a second set of candidate mappings of the second ARP to a second set of SL-PRS, the second set of candidate mappings including the second mapping; and receive, via the one or more transceivers, via lower-layer signaling an instruction to use the first mapping and the second mapping for at least part of the SL-based position estimation session.
- Clause 51 The UE of any of clauses 37 to 50, wherein the one or more processors, either alone or in combination, are further configured to: transmit, via the one or more transceivers, UE capability information that comprises: a number of resources that the UE is capable of frequency duplex multiplexing (FDMing) resources per ARP, or a number of ARPs that the UE is capable of FDMing, or a combination thereof.
- FDMing frequency duplex multiplexing
- a device comprising: one or more memories; one or more transceivers; and one or more processors communicatively coupled to the one or more memories and the one or more transceivers, the one or more processors, either alone or in combination, configured to: transmit, via the one or more transceivers, a sidelink positioning reference signal (SL-PRS) resource configuration to a user equipment (UE) that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; transmit, via the one or more transceivers, a first mapping of a first antenna reception point (ARP) to the first SL-PRS; and transmit, via the one or more transceivers, a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are transmitted via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL-PRS
- Clause 54 The device of clause 53, wherein the device corresponds to an anchor UE.
- Clause 55 The device of clause 54, wherein the one or more processors, either alone or in combination, are further configured to: transmit, via the one or more transceivers, a report comprising an indication of the first mapping and the second mapping to a position estimation entity.
- Clause 56 The device of clause 55, wherein the position estimation entity configures: a periodicity associated with the report, or a maximum number of mappings transmitted per report, or a combination thereof.
- Clause 57 The device of any of clauses 53 to 56, wherein the device corresponds to a position estimation entity.
- Clause 58 The device of any of clauses 53 to 56, wherein the device corresponds to a position estimation entity.
- the device of any of clauses 53 to 57, the first mapping and the second mapping are transmitted via the positioning AD.
- Clause 59. The device of clause 58, wherein the first mapping and the second mapping are fixed at least for a duration of the SL-based position estimation session.
- Clause 60. The device of any of clauses 58 to 59, wherein the first mapping maps the first ARP to a first SL-PRS resource identifier associated with the first SL-PRS, and wherein QC2306712WO Qualcomm Ref. No.2306712WO 68 the second mapping maps second first ARP to a second SL-PRS resource identifier associated with the second SL-PRS.
- Clause 62 The device of clause 61, wherein the first mapping is associated with a first validity time, or wherein the first mapping is associated with the first validity time or a second validity time, or a combination thereof.
- Clause 63 The device of any of clauses 61 to 62, wherein the first mapping is updated at least once during the SL-based position estimation session, or wherein the second mapping is updated at least once during the SL-based position estimation session, or a combination thereof.
- Clause 64 Clause 64.
- the one or more processors are further configured to: receive, via the one or more transceivers, a request from the UE or transmitting an instruction to the UE associated with: mute one or more ARPs for a period of time, or modify the first mapping or the second mapping or both, or establish one or more preferred mappings, or any combination thereof.
- 68 QC2306712WO Qualcomm Ref. No.2306712WO 69 [0292] Clause 70.
- the one or more processors are further configured to: transmit, via the one or more transceivers, via higher-layer signaling a first set of candidate mappings of the first ARP to a first set of SL-PRS, the first set of candidate mappings including the first mapping; transmit, via the one or more transceivers, via higher-layer signaling a second set of candidate mappings of the second ARP to a second set of SL-PRS, the second set of candidate mappings including the second mapping; and transmit, via the one or more transceivers, via lower-layer signaling an instruction to use the first mapping and the second mapping for at least part of the SL-based position estimation session.
- Clause 71 The device of any of clauses 53 to 70, wherein the one or more processors, either alone or in combination, are further configured to: receive, via the one or more transceivers, UE capability information that comprises: a number of resources that the UE is capable of frequency duplex multiplexing (FDMing) resources per ARP, or a number of ARPs that the UE is capable of FDMing, or a combination thereof.
- FDMing frequency duplex multiplexing
- Clause 72 The device of any of clauses 53 to 71, wherein the first mapping further maps the first ARP to a first uplink sounding reference signal (UL-SRS), or wherein the second mapping further maps the second ARP to a second UL-SRS, or a combination thereof.
- UL-SRS uplink sounding reference signal
- a user equipment comprising: means for receiving a sidelink positioning reference signal (SL-PRS) resource configuration that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; means for receiving a first mapping of a first antenna reception point (ARP) to the first SL-PRS; means for receiving a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are received via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL-PRS resource for the first SL-PRS or the second SL-PRS or both; and means for performing one or more reception operations, one or more transmission operations, or both, for the SL-based position estimation session in accordance with the first mapping and the second mapping.
- SL-PRS sidelink positioning reference signal
- Clause 74 The UE of clause 73, the first mapping and the second mapping are received via the positioning AD.
- Clause 75 The UE of clause 74, wherein the first mapping and the second mapping are fixed at least for a duration of the SL-based position estimation session. 69 QC2306712WO Qualcomm Ref. No.2306712WO 70
- Clause 76 The UE of any of clauses 74 to 75, wherein the first mapping maps the first ARP to a first SL-PRS resource identifier associated with the first SL-PRS, and wherein the second mapping maps second first ARP to a second SL-PRS resource identifier associated with the second SL-PRS. [0299] Clause 77.
- Clause 78 The UE of clause 77, wherein the first mapping is associated with a first validity time, or wherein the first mapping is associated with the first validity time or a second validity time, or a combination thereof.
- Clause 79 The UE of any of clauses 77 to 78, wherein the first mapping is updated at least once during the SL-based position estimation session, or wherein the second mapping is updated at least once during the SL-based position estimation session, or a combination thereof.
- Clause 80 Clause 80.
- the UE of any of clauses 73 to 85 further comprising: means for receiving via higher-layer signaling a first set of candidate mappings of the first ARP to a first set of SL-PRS, the first set of candidate mappings including the first mapping; means for receiving via higher-layer signaling a second set of candidate mappings of the second ARP to a second set of SL-PRS, the second set of candidate mappings including the second mapping; and means for receiving via lower-layer signaling an instruction to use the first mapping and the second mapping for at least part of the SL-based position estimation session.
- the UE of any of clauses 73 to 86 further comprising: means for transmitting UE capability information that comprises: a number of resources that the UE is capable of frequency duplex multiplexing (FDMing) resources per ARP, or a number of ARPs that the UE is capable of FDMing, or a combination thereof.
- FDMing frequency duplex multiplexing
- Clause 88 The UE of any of clauses 73 to 87, wherein the first mapping further maps the first ARP to a first uplink sounding reference signal (UL-SRS), or wherein the second mapping further maps the second ARP to a second UL-SRS, or a combination thereof.
- UL-SRS uplink sounding reference signal
- a device comprising: means for transmitting a sidelink positioning reference signal (SL-PRS) resource configuration to a user equipment (UE) that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; means for transmitting a first mapping of a first antenna reception point (ARP) to the first SL-PRS; and means for transmitting a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are transmitted via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL-PRS resource for the first SL-PRS or the second SL-PRS or both.
- SL-PRS sidelink positioning reference signal
- UE user equipment
- ARP antenna reception point
- SCI SL control information
- Clause 90 The device of clause 89, wherein the device corresponds to an anchor UE.
- Clause 91 The device of clause 90, further comprising: means for transmitting a report comprising an indication of the first mapping and the second mapping to a position estimation entity.
- Clause 92 The device of clause 91, wherein the position estimation entity configures: a periodicity associated with the report, or a maximum number of mappings transmitted per report, or a combination thereof.
- QC2306712WO Qualcomm Ref. No.2306712WO 72 [0315]
- Clause 93 The device of any of clauses 89 to 92, wherein the device corresponds to a position estimation entity.
- Clause 94 The device of any of clauses 89 to 92, wherein the device corresponds to a position estimation entity.
- the device of any of clauses 89 to 93, the first mapping and the second mapping are transmitted via the positioning AD.
- Clause 95. The device of clause 94, wherein the first mapping and the second mapping are fixed at least for a duration of the SL-based position estimation session.
- Clause 96. The device of any of clauses 94 to 95, wherein the first mapping maps the first ARP to a first SL-PRS resource identifier associated with the first SL-PRS, and wherein the second mapping maps second first ARP to a second SL-PRS resource identifier associated with the second SL-PRS.
- Clause 98 The device of clause 97, wherein the first mapping is associated with a first validity time, or wherein the first mapping is associated with the first validity time or a second validity time, or a combination thereof.
- Clause 99 The device of any of clauses 97 to 98, wherein the first mapping is updated at least once during the SL-based position estimation session, or wherein the second mapping is updated at least once during the SL-based position estimation session, or a combination thereof.
- Clause 104 The device of any of clauses 101 to 102, wherein the first mapping and the second mapping are received via SCI-2, and wherein the SL-PRS resource configuration is associated with a shared resource pool (RP). QC2306712WO Qualcomm Ref. No.2306712WO 73 [0326]
- Clause 104 The device of clause 103, wherein the first mapping and the second mapping are each valid for a single respective SL-PRS occasion or SL-PRS resource reservation or SL-PRS resource without periodic reservation.
- Clause 105 Clause 105.
- the device of any of clauses 89 to 104 further comprising: means for receiving a request from the UE or transmitting an instruction to the UE associated with: means for muting one or more ARPs for a period of time, or means for modifying the first mapping or the second mapping or both, or means for establishing one or more preferred mappings, or any combination thereof.
- Clause 106 means for receiving a request from the UE or transmitting an instruction to the UE associated with: means for muting one or more ARPs for a period of time, or means for modifying the first mapping or the second mapping or both, or means for establishing one or more preferred mappings, or any combination thereof.
- the device of any of clauses 89 to 105 further comprising: means for transmitting via higher-layer signaling a first set of candidate mappings of the first ARP to a first set of SL-PRS, the first set of candidate mappings including the first mapping; means for transmitting via higher-layer signaling a second set of candidate mappings of the second ARP to a second set of SL-PRS, the second set of candidate mappings including the second mapping; and means for transmitting via lower-layer signaling an instruction to use the first mapping and the second mapping for at least part of the SL- based position estimation session.
- the device of any of clauses 89 to 106 further comprising: means for receiving UE capability information that comprises: a number of resources that the UE is capable of frequency duplex multiplexing (FDMing) resources per ARP, or a number of ARPs that the UE is capable of FDMing, or a combination thereof.
- FDMing frequency duplex multiplexing
- Clause 108 The device of any of clauses 89 to 107, wherein the first mapping further maps the first ARP to a first uplink sounding reference signal (UL-SRS), or wherein the second mapping further maps the second ARP to a second UL-SRS, or a combination thereof.
- UL-SRS uplink sounding reference signal
- a non-transitory computer-readable medium storing computer-executable instructions that, when executed by a user equipment (UE), cause the UE to: receive a sidelink positioning reference signal (SL-PRS) resource configuration that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; receive a first mapping of a first antenna reception point (ARP) to the first SL- PRS; receive a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are received via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or QC2306712WO Qualcomm Ref.
- SL-PRS sidelink positioning reference signal
- ARP antenna reception point
- IUC inter-UE coordination
- SCI SL control information reserving at least one SL-PRS resource for the first SL-PRS or the second SL-PRS or both; and perform one or more reception operations, one or more transmission operations, or both, for the SL-based position estimation session in accordance with the first mapping and the second mapping.
- SCI SL control information
- Clause 110 The non-transitory computer-readable medium of clause 109, the first mapping and the second mapping are received via the positioning AD.
- Clause 111 The non-transitory computer-readable medium of clause 110, wherein the first mapping and the second mapping are fixed at least for a duration of the SL-based position estimation session.
- Clause 119 The non-transitory computer-readable medium of any of clauses 117 to 118, wherein the first mapping and the second mapping are received via SCI-2, and wherein the SL-PRS resource configuration is associated with a shared resource pool (RP).
- Clause 120 The non-transitory computer-readable medium of clause 119, wherein the first mapping and the second mapping are each valid for a single respective SL-PRS occasion or SL-PRS resource reservation or SL-PRS resource without periodic reservation.
- Clause 121 Clause 121.
- non-transitory computer-readable medium of any of clauses 109 to 120 further comprising computer-executable instructions that, when executed by the UE, cause the UE to: transmit a request or receiving an instruction associated with: mute one or more ARPs for a period of time, or modify the first mapping or the second mapping or both, or establish one or more preferred mappings, or any combination thereof.
- non-transitory computer-readable medium of any of clauses 109 to 121 further comprising computer-executable instructions that, when executed by the UE, cause the UE to: receive via higher-layer signaling a first set of candidate mappings of the first ARP to a first set of SL-PRS, the first set of candidate mappings including the first mapping; receive via higher-layer signaling a second set of candidate mappings of the second ARP to a second set of SL-PRS, the second set of candidate mappings including the second mapping; and receive via lower-layer signaling an instruction to use the first mapping and the second mapping for at least part of the SL-based position estimation session.
- Clause 123 Clause 123.
- the non-transitory computer-readable medium of any of clauses 109 to 122 further comprising computer-executable instructions that, when executed by the UE, cause the UE to: transmit UE capability information that comprises: a number of resources that the UE is capable of frequency duplex multiplexing (FDMing) resources per ARP, or a number of ARPs that the UE is capable of FDMing, or a combination thereof.
- FDMing frequency duplex multiplexing
- Clause 124 The non-transitory computer-readable medium of any of clauses 109 to 123, wherein the first mapping further maps the first ARP to a first uplink sounding reference signal (UL-SRS), or wherein the second mapping further maps the second ARP to a second UL-SRS, or a combination thereof.
- UL-SRS uplink sounding reference signal
- a non-transitory computer-readable medium storing computer-executable instructions that, when executed by a device, cause the device to: transmit a sidelink positioning reference signal (SL-PRS) resource configuration to a user equipment (UE) that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; transmit a first mapping of a first antenna reception point (ARP) to the first SL-PRS; and transmit a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are transmitted via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL- PRS resource for the first SL-PRS or the second SL-PRS or both.
- SL-PRS sidelink positioning reference signal
- UE user equipment
- ARP antenna reception point
- SCI SL control information
- Clause 126 The non-transitory computer-readable medium of clause 125, wherein the device corresponds to an anchor UE.
- Clause 127 The non-transitory computer-readable medium of clause 126, further comprising computer-executable instructions that, when executed by the device, cause the device to: transmit a report comprising an indication of the first mapping and the second mapping to a position estimation entity.
- Clause 128 The non-transitory computer-readable medium of clause 127, wherein the position estimation entity configures: a periodicity associated with the report, or a maximum number of mappings transmitted per report, or a combination thereof.
- Clause 129 Clause 129.
- Clause 130 The non-transitory computer-readable medium of any of clauses 125 to 129, the first mapping and the second mapping are transmitted via the positioning AD.
- Clause 131 The non-transitory computer-readable medium of clause 130, wherein the first mapping and the second mapping are fixed at least for a duration of the SL-based position estimation session.
- Clause 132 Clause 132.
- the non-transitory computer-readable medium of any of clauses 125 to 140 further comprising computer-executable instructions that, when executed by the device, cause the device to: receive a request from the UE or transmitting an instruction to the UE associated with: mute one or more ARPs for a period of time, or modify the first mapping or the second mapping or both, or establish one or more preferred mappings, or any combination thereof.
- Clause 142 The non-transitory computer-readable medium of any of clauses 125 to 141, further comprising computer-executable instructions that, when executed by the device, cause the device to: transmit via higher-layer signaling a first set of candidate mappings QC2306712WO Qualcomm Ref.
- the non-transitory computer-readable medium of any of clauses 125 to 142 further comprising computer-executable instructions that, when executed by the device, cause the device to: receive UE capability information that comprises: a number of resources that the UE is capable of frequency duplex multiplexing (FDMing) resources per ARP, or a number of ARPs that the UE is capable of FDMing, or a combination thereof.
- FDMing frequency duplex multiplexing
- Clause 144 The non-transitory computer-readable medium of any of clauses 125 to 143, wherein the first mapping further maps the first ARP to a first uplink sounding reference signal (UL-SRS), or wherein the second mapping further maps the second ARP to a second UL-SRS, or a combination thereof.
- UL-SRS uplink sounding reference signal
- a method of operating a user equipment comprising: receiving a sidelink positioning reference signal (SL-PRS) resource configuration that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; receiving a first mapping of a first antenna reception point (ARP) to the first SL- PRS; receiving a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are received via one or more SL messages; and performing one or more reception operations, one or more transmission operations, or both, for the SL-based position estimation session in accordance with the first mapping and the second mapping.
- SL-PRS sidelink positioning reference signal
- Additional Clause 2 The method of Additional Clause 1, the first mapping and the second mapping are received via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL-PRS resource for the first SL-PRS or the second SL-PRS or both.
- QC2306712WO Qualcomm Ref. No.2306712WO 79 Additional Clause 3. The method of any of Additional Clauses 1 to 2, wherein the first mapping and the second mapping are fixed at least for a duration of the SL-based position estimation session.
- Additional Clause 7 The method of any of Additional Clauses 1 to 6, further comprising: transmitting a request to a device, wherein the first mapping and the second mapping are received in response to the request.
- Additional Clause 8 The method of Additional Clause 7, wherein the request requests modification to one or more mappings associated with the first ARP or the second ARP or both, or wherein the request comprises an indication of the first mapping or the second mapping or both.
- Additional Clause 10 The method of any of Additional Clauses 1 to 9, further comprising: receiving via higher-layer signaling a first set of candidate mappings of the first ARP to a first set of SL-PRS, the first set of candidate mappings including the first mapping; receiving via higher-layer signaling a second set of candidate mappings of the second ARP to a second set of SL-PRS, the second set of candidate mappings including the second mapping; and receiving via lower-layer signaling an instruction to use the first mapping and the second mapping for at least part of the SL-based position estimation session.
- Additional Clause 10 The method of any of Additional Clauses 1 to 9, further comprising: transmitting ARP reception capability information of the UE to a device. QC2306712WO Qualcomm Ref.
- Additional Clause 11 The method of Additional Clause 10, wherein the ARP reception capability information comprises: a number of resources that the UE is capable of frequency duplex multiplexing (FDMing) resources per ARP, or a number of ARPs that the UE is capable of FDMing, or a combination thereof.
- Additional Clause 12 The method of any of Additional Clauses 1 to 11, wherein the first mapping further maps the first ARP to a first uplink sounding reference signal (UL-SRS), or wherein the second mapping further maps the second ARP to a second UL-SRS, or a combination thereof.
- Additional Clause 13 The method of any of Additional Clauses 1 to 11, wherein the first mapping further maps the first ARP to a first uplink sounding reference signal (UL-SRS), or wherein the second mapping further maps the second ARP to a second UL-SRS, or a combination thereof.
- a method of operating a device comprising: transmitting a sidelink positioning reference signal (SL-PRS) resource configuration to a user equipment (UE) that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; transmitting a first mapping of a first antenna reception point (ARP) to the first SL-PRS; and transmitting a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are transmitted via one or more SL messages.
- SL-PRS sidelink positioning reference signal
- UE user equipment
- ARP antenna reception point
- Additional Clauses 13 to 14 further comprising: transmitting a report comprising an indication of the first mapping and the second mapping to a position estimation entity.
- Additional Clause 16 The method of Additional Clause 15, wherein the position estimation entity configures: a periodicity associated with the report, or a maximum number of mappings transmitted per report, or a combination thereof.
- Additional Clause 17 The method of any of Additional Clauses 13 to 16, wherein the device corresponds to a position estimation entity.
- the first mapping and the second mapping are transmitted via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL-PRS resource for the first SL-PRS or the second SL-PRS or both.
- AD positioning assistance data
- IUC inter-UE coordination
- SCI SL control information
- Additional Clause 19 The method of any of Additional Clauses 13 to 18, wherein the first mapping and the second mapping are fixed at least for a duration of the SL-based position estimation session.
- Additional Clause 23 The method of any of Additional Clauses 13 to 22, receiving a request from the UE, wherein the first mapping and the second mapping are transmitted in response to the request.
- Additional Clause 24 The method of Additional Clause 23, wherein the request requests modification to one or more mappings associated with the first ARP or the second ARP or both, or wherein the request comprises an indication of the first mapping or the second mapping or both.
- Additional Clauses 13 to 24 further comprising: transmitting via higher-layer signaling a first set of candidate mappings of the first ARP to a first set of SL-PRS, the first set of candidate mappings including the first mapping; transmitting via higher-layer signaling a second set of candidate mappings of the second ARP to a second set of SL-PRS, the second set of candidate mappings including the second mapping; and transmitting via lower-layer signaling an instruction to use the first mapping and the second mapping for at least part of the SL-based position estimation session.
- Additional Clause 26 The method of any of Additional Clauses 13 to 25, further comprising: receiving ARP reception capability information of the UE. 81 QC2306712WO Qualcomm Ref.
- Additional Clause 27 The method of Additional Clause 26, wherein the ARP reception capability information that comprises: a number of resources that the UE is capable of frequency duplex multiplexing (FDMing) resources per ARP, or a number of ARPs that the UE is capable of FDMing, or a combination thereof.
- Additional Clause 28 The method of any of Additional Clauses 13 to 27, wherein the first mapping further maps the first ARP to a first uplink sounding reference signal (UL- SRS), or wherein the second mapping further maps the second ARP to a second UL-SRS, or a combination thereof.
- Additional Clause 29 The method of any of Additional Clauses 13 to 27, wherein the first mapping further maps the first ARP to a first uplink sounding reference signal (UL- SRS), or wherein the second mapping further maps the second ARP to a second UL-SRS, or a combination thereof.
- a user equipment comprising: one or more memories; one or more transceivers; and one or more processors communicatively coupled to the one or more memories and the one or more transceivers, the one or more processors, either alone or in combination, configured to: receive, via the one or more transceivers, a sidelink positioning reference signal (SL-PRS) resource configuration that configures a first SL- PRS and a second SL-PRS associated with a SL-based position estimation session; receive, via the one or more transceivers, a first mapping of a first antenna reception point (ARP) to the first SL-PRS; receive, via the one or more transceivers, a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are received via one or more SL messages; and perform one or more reception operations, one or more transmission operations, or both, for the SL-based position estimation session in accordance with the first mapping and the second mapping.
- SL-PRS sidelink
- Additional Clause 30 The UE of Additional Clause 29, the first mapping and the second mapping are received via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL-PRS resource for the first SL-PRS or the second SL-PRS or both.
- Additional Clause 31 The UE of any of Additional Clauses 29 to 30, wherein the first mapping and the second mapping are fixed at least for a duration of the SL-based position estimation session.
- Additional Clause 32 The UE of any of Additional Clauses 29 to 30, wherein the first mapping and the second mapping are fixed at least for a duration of the SL-based position estimation session.
- Additional Clause 35 The UE of any of Additional Clauses 29 to 34, wherein the one or more processors, either alone or in combination, are further configured to: transmit, via the one or more transceivers, a request to a device, wherein the first mapping and the second mapping are received in response to the request.
- Additional Clause 37 The UE of any of Additional Clauses 29 to 36, wherein the one or more processors, either alone or in combination, are further configured to: receive, via the one or more transceivers, via higher-layer signaling a first set of candidate mappings of the first ARP to a first set of SL-PRS, the first set of candidate mappings including the first mapping; receive, via the one or more transceivers, via higher-layer signaling a second set of candidate mappings of the second ARP to a second set of SL-PRS, the second set of candidate mappings including the second mapping; and receive, via the one or more transceivers, via lower-layer signaling an instruction to use the first mapping and the second mapping for at least part of the SL-based position estimation session.
- Additional Clause 38 The UE of any of Additional Clauses 29 to 37, wherein the one or more processors, either alone or in combination, are further configured to: transmit, via the one or more transceivers, ARP reception capability information of the UE to a device.
- ARP reception capability information comprises: a number of resources that the UE is capable of frequency duplex multiplexing (FDMing) resources per ARP, or a number of ARPs that the UE is capable of FDMing, or a combination thereof.
- FDMing frequency duplex multiplexing
- a device comprising: one or more memories; one or more transceivers; and one or more processors communicatively coupled to the one or more memories and the one or more transceivers, the one or more processors, either alone or in combination, configured to: transmit, via the one or more transceivers, a sidelink positioning reference signal (SL-PRS) resource configuration to a user equipment (UE) that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; transmit, via the one or more transceivers, a first mapping of a first antenna reception point (ARP) to the first SL-PRS; and transmit, via the one or more transceivers, a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are transmitted via one or more SL messages.
- SL-PRS sidelink positioning reference signal
- UE user equipment
- ARP antenna reception point
- Additional Clause 42 The device of Additional Clause 41, wherein the device corresponds to an anchor UE.
- Additional Clause 43 The device of any of Additional Clauses 41 to 42, wherein the one or more processors, either alone or in combination, are further configured to: transmit, via the one or more transceivers, a report comprising an indication of the first mapping and the second mapping to a position estimation entity.
- Additional Clause 44 The device of Additional Clause 43, wherein the position estimation entity configures: a periodicity associated with the report, or a maximum number of mappings transmitted per report, or a combination thereof.
- Additional Clause 45 Additional Clause 45.
- Additional Clause 46 The device of any of Additional Clauses 41 to 45, wherein the device corresponds to a position estimation entity.
- Additional Clause 46 The device of any of Additional Clauses 41 to 45, the first mapping and the second mapping are transmitted via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL-PRS resource for the first SL-PRS or the second SL-PRS or both.
- Additional Clause 47 The device of any of Additional Clauses 41 to 46, wherein the first mapping and the second mapping are fixed at least for a duration of the SL-based position estimation session.
- Additional Clause 48 The device of any of Additional Clauses 41 to 47, wherein the first mapping maps the first ARP to a first SL-PRS resource identifier associated with the first SL-PRS, and wherein the second mapping maps second first ARP to a second SL-PRS resource identifier associated with the second SL-PRS.
- Additional Clause 49 The device of any of Additional Clauses 41 to 48, wherein the first mapping is associated with a first validity time, or wherein the first mapping is associated with the first validity time or a second validity time, or a combination thereof.
- Additional Clause 51 The device of any of Additional Clauses 41 to 50, receive, via the one or more transceivers, a request from the UE, wherein the first mapping and the second mapping are transmitted in response to the request.
- Additional Clause 52 The device of Additional Clause 51, wherein the request requests modification to one or more mappings associated with the first ARP or the second ARP or both, or wherein the request comprises an indication of the first mapping or the second mapping or both.
- the one or more processors are further configured to: transmit, via the one or more transceivers, via higher-layer signaling a first set of candidate mappings of the first ARP to a first set of SL-PRS, the first set of candidate mappings including the first mapping; transmit, via the one or more transceivers, via higher-layer signaling a second set of candidate mappings of the second ARP to a second set of SL- PRS, the second set of candidate mappings including the second mapping; and transmit, via the one or more transceivers, via lower-layer signaling an instruction to use the first mapping and the second mapping for at least part of the SL-based position estimation session.
- Additional Clause 54 The device of any of Additional Clauses 41 to 53, wherein the one or more processors, either alone or in combination, are further configured to: receive, via the one or more transceivers, ARP reception capability information of the UE.
- ARP reception capability information that comprises: a number of resources that the UE is capable of frequency duplex multiplexing (FDMing) resources per ARP, or a number of ARPs that the UE is capable of FDMing, or a combination thereof.
- FDMing frequency duplex multiplexing
- a user equipment comprising: means for receiving a sidelink positioning reference signal (SL-PRS) resource configuration that configures a first SL- PRS and a second SL-PRS associated with a SL-based position estimation session; means for receiving a first mapping of a first antenna reception point (ARP) to the first SL-PRS; means for receiving a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are received via one or more SL messages; and means for performing one or more reception operations, one or more transmission operations, or both, for the SL-based position estimation session in accordance with the first mapping and the second mapping.
- SL-PRS sidelink positioning reference signal
- the UE of Additional Clause 57 the first mapping and the second mapping are received via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL-PRS resource for the first SL-PRS or the second SL-PRS or both.
- AD positioning assistance data
- IUC inter-UE coordination
- SCI SL control information
- Additional Clause 61 The UE of any of Additional Clauses 57 to 60, wherein the first mapping maps the first ARP to a first SL-PRS resource identifier associated with the first SL-PRS, and wherein the second mapping maps second first ARP to a second SL-PRS resource identifier associated with the second SL-PRS.
- Additional Clause 61 The UE of any of Additional Clauses 57 to 60, wherein the first mapping is associated with a first validity time, or wherein the first mapping is associated with the first validity time or a second validity time, or a combination thereof.
- Additional Clause 63 The UE of any of Additional Clauses 57 to 62, further comprising: means for transmitting a request to a device, wherein the first mapping and the second mapping are received in response to the request.
- Additional Clause 64 The UE of Additional Clause 63, wherein the request requests modification to one or more mappings associated with the first ARP or the second ARP or both, or wherein the request comprises an indication of the first mapping or the second mapping or both.
- Additional Clause 65 The UE of any of Additional Clauses 57 to 64, further comprising: means for receiving via higher-layer signaling a first set of candidate mappings of the first ARP to a first set of SL-PRS, the first set of candidate mappings including the first mapping; means for receiving via higher-layer signaling a second set of candidate mappings of the second ARP to a second set of SL-PRS, the second set of candidate mappings including the second mapping; and means for receiving via lower-layer signaling an instruction to use the first mapping and the second mapping for at least part of the SL-based position estimation session.
- Additional Clause 66 Additional Clause 66.
- Additional Clause 67 The UE of Additional Clause 66, wherein the ARP reception capability information comprises: a number of resources that the UE is capable of frequency duplex multiplexing (FDMing) resources per ARP, or a number of ARPs that the UE is capable of FDMing, or a combination thereof.
- FDMing frequency duplex multiplexing
- UL-SRS uplink sounding reference signal
- the second mapping further maps the second ARP to a second UL-SRS, or a combination thereof.
- a device comprising: means for transmitting a sidelink positioning reference signal (SL-PRS) resource configuration to a user equipment (UE) that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; means for transmitting a first mapping of a first antenna reception point (ARP) to the first SL-PRS; and means for transmitting a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are transmitted via one or more SL messages.
- SL-PRS sidelink positioning reference signal
- UE user equipment
- ARP antenna reception point
- the device of any of Additional Clauses 69 to 70 further comprising: means for transmitting a report comprising an indication of the first mapping and the second mapping to a position estimation entity.
- Additional Clause 72 The device of Additional Clause 71, wherein the position estimation entity configures: a periodicity associated with the report, or a maximum number of mappings transmitted per report, or a combination thereof.
- Additional Clause 73 The device of any of Additional Clauses 69 to 72, wherein the device corresponds to a position estimation entity.
- Additional Clause 74 Additional Clause 74.
- the device of any of Additional Clauses 69 to 73, the first mapping and the second mapping are transmitted via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL-PRS resource for the first SL-PRS or the second SL-PRS or both.
- AD positioning assistance data
- IUC inter-UE coordination
- SCI SL control information
- Additional Clause 81 The device of any of Additional Clauses 69 to 77, wherein the first mapping is updated at least once during the SL-based position estimation session, or wherein the second mapping is updated at least once during the SL-based position estimation session, or a combination thereof.
- Additional Clause 79 The device of any of Additional Clauses 69 to 78, means for receiving a request from the UE, wherein the first mapping and the second mapping are transmitted in response to the request.
- Additional Clause 80 The device of Additional Clause 79, wherein the request requests modification to one or more mappings associated with the first ARP or the second ARP or both, or wherein the request comprises an indication of the first mapping or the second mapping or both.
- Additional Clause 81 The device of Additional Clause 81.
- the device of any of Additional Clauses 69 to 80 further comprising: means for transmitting via higher-layer signaling a first set of candidate mappings of the first ARP to a first set of SL-PRS, the first set of candidate mappings including the first mapping; means for transmitting via higher-layer signaling a second set of candidate mappings of the second ARP to a second set of SL-PRS, the second set of candidate mappings including the second mapping; and means for transmitting via lower-layer signaling an instruction to use the first mapping and the second mapping for at least part of the SL-based position estimation session.
- Additional Clause 82 The device of any of Additional Clauses 69 to 81, further comprising: means for receiving ARP reception capability information of the UE.
- Additional Clause 83 The device of Additional Clause 82, wherein the ARP reception capability information that comprises: a number of resources that the UE is capable of frequency duplex multiplexing (FDMing) resources per ARP, or a number of ARPs that the UE is capable of FDMing, or a combination thereof.
- Additional Clause 84 The device of any of Additional Clauses 69 to 83, wherein the first mapping further maps the first ARP to a first uplink sounding reference signal (UL-SRS), or wherein the second mapping further maps the second ARP to a second UL-SRS, or a combination thereof.
- Additional Clause 85 Additional Clause 85.
- a non-transitory computer-readable medium storing computer- executable instructions that, when executed by a user equipment (UE), cause the UE to: receive a sidelink positioning reference signal (SL-PRS) resource configuration that 89 QC2306712WO Qualcomm Ref.
- S-PRS sidelink positioning reference signal
- No.2306712WO 90 configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; receive a first mapping of a first antenna reception point (ARP) to the first SL-PRS; receive a second mapping of a second ARP to the second SL-PRS, wherein the first mapping and the second mapping are received via one or more SL messages; and perform one or more reception operations, one or more transmission operations, or both, for the SL-based position estimation session in accordance with the first mapping and the second mapping.
- ARP antenna reception point
- the non-transitory computer-readable medium of Additional Clause 85 the first mapping and the second mapping are received via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL- PRS resource for the first SL-PRS or the second SL-PRS or both.
- Additional Clause 87 The non-transitory computer-readable medium of any of Additional Clauses 85 to 86, wherein the first mapping and the second mapping are fixed at least for a duration of the SL-based position estimation session.
- Additional Clause 88 Additional Clause 88.
- Additional Clause 91 The non-transitory computer-readable medium of any of Additional Clauses 85 to 90, further comprising computer-executable instructions that, when executed by the UE, cause the UE to: transmit a request to a device, wherein the first mapping and the second mapping are received in response to the request.
- 90 QC2306712WO Qualcomm Ref. No.2306712WO 91
- Additional Clause 92 Additional Clause 92.
- Additional Clause 94 Additional Clause 94.
- Additional Clause 95 The non-transitory computer-readable medium of Additional Clause 94, wherein the ARP reception capability information comprises: a number of resources that the UE is capable of frequency duplex multiplexing (FDMing) resources per ARP, or a number of ARPs that the UE is capable of FDMing, or a combination thereof.
- Additional Clause 96 Additional Clause 96.
- a non-transitory computer-readable medium storing computer- executable instructions that, when executed by a device, cause the device to: transmit a sidelink positioning reference signal (SL-PRS) resource configuration to a user equipment (UE) that configures a first SL-PRS and a second SL-PRS associated with a SL-based position estimation session; transmit a first mapping of a first antenna reception point (ARP) to the first SL-PRS; and transmit a second mapping of a second ARP to the 91 QC2306712WO Qualcomm Ref. No.2306712WO 92 second SL-PRS, wherein the first mapping and the second mapping are transmitted via one or more SL messages.
- S-PRS sidelink positioning reference signal
- UE user equipment
- ARP antenna reception point
- Additional Clause 99 The non-transitory computer-readable medium of any of Additional Clauses 97 to 98, further comprising computer-executable instructions that, when executed by the device, cause the device to: transmit a report comprising an indication of the first mapping and the second mapping to a position estimation entity.
- Additional Clause 100 The non-transitory computer-readable medium of Additional Clause 99, wherein the position estimation entity configures: a periodicity associated with the report, or a maximum number of mappings transmitted per report, or a combination thereof.
- Additional Clause 101 Additional Clause 101.
- Additional Clause 102 The non-transitory computer-readable medium of any of Additional Clauses 97 to 100, wherein the device corresponds to a position estimation entity.
- Additional Clause 102 The non-transitory computer-readable medium of any of Additional Clauses 97 to 101, the first mapping and the second mapping are transmitted via positioning assistance data (AD) or inter-UE coordination (IUC) signaling associated with coordination of multiple UEs or SL control information (SCI) reserving at least one SL-PRS resource for the first SL-PRS or the second SL-PRS or both.
- AD positioning assistance data
- IUC inter-UE coordination
- SCI SL control information
- Additional Clause 104 The non-transitory computer-readable medium of any of Additional Clauses 97 to 103, wherein the first mapping maps the first ARP to a first SL- PRS resource identifier associated with the first SL-PRS, and wherein the second mapping maps second first ARP to a second SL-PRS resource identifier associated with the second SL-PRS.
- Additional Clause 105 Additional Clause 105.
- the non-transitory computer-readable medium of any of Additional Clauses 97 to 106 receive a request from the UE, wherein the first mapping and the second mapping are transmitted in response to the request.
- Additional Clause 108 The non-transitory computer-readable medium of Additional Clause 107, wherein the request requests modification to one or more mappings associated with the first ARP or the second ARP or both, or wherein the request comprises an indication of the first mapping or the second mapping or both.
- Additional Clause 109 Additional Clause 109.
- Additional Clause 111 The non-transitory computer-readable medium of Additional Clause 110, wherein the ARP reception capability information that comprises: a number of resources that the UE is capable of frequency duplex multiplexing (FDMing) resources per ARP, or a number of ARPs that the UE is capable of FDMing, or a combination thereof.
- FDMing frequency duplex multiplexing
- DSP digital signal processor
- ASIC application-specific integrated circuit
- FPGA field-programable gate array
- a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
- a processor may also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
- the methods, sequences and/or algorithms described in connection with the aspects disclosed herein may be embodied directly in hardware, in a software module executed 94 QC2306712WO Qualcomm Ref. No.2306712WO 95 by a processor, or in a combination of the two.
- a software module may reside in random access memory (RAM), flash memory, read-only memory (ROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
- An example storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
- the storage medium may be integral to the processor.
- the processor and the storage medium may reside in an ASIC.
- the ASIC may reside in a user terminal (e.g., UE).
- the processor and the storage medium may reside as discrete components in a user terminal.
- the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
- Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
- a storage media may be any available media that can be accessed by a computer.
- such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
- any connection is properly termed a computer-readable medium.
- the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
- the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
- Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
- the terms “has,” “have,” “having,” “comprises,” “comprising,” “includes,” “including,” and the like does not preclude the presence of one or more additional elements (e.g., an element “having” A may also have B).
- the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
- the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or,” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of”) or the alternatives are mutually exclusive (e.g., “one or more” should not be interpreted as “one and more”).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Sont divulguées des techniques de communication sans fil. Selon un aspect, une configuration de ressources de signal de référence de positionnement de liaison latérale (SL-PRS) configure un premier SL-PRS et un deuxième SL-PRS associés à une session d'estimation de position basée sur SL. Un premier mappage d'un premier point de réception d'antenne (ARP) sur le premier SL-PRS est défini, et un deuxième mappage d'un deuxième ARP sur le deuxième SL-PRS est défini. Selon un aspect, le premier mappage et le deuxième mappage sont communiqués par l'intermédiaire d'une signalisation de données d'aide au positionnement (AD) ou de coordination inter-UE (IUC) associée à la coordination de multiples UE ou d'informations de commande SL (SCI) réservant au moins une ressource SL-PRS pour le premier SL-PRS ou le deuxième SL-PRS, ou les deux.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GR20230100631 | 2023-07-28 | ||
| GR20230100631 | 2023-07-28 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025029344A1 true WO2025029344A1 (fr) | 2025-02-06 |
Family
ID=91375168
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2024/028101 Pending WO2025029344A1 (fr) | 2023-07-28 | 2024-05-07 | Mappage de points de référence d'antenne sur des signaux de référence de positionnement de liaison latérale |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025029344A1 (fr) |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2022212533A1 (fr) * | 2021-03-30 | 2022-10-06 | Idac Holdings, Inc. | Procédés de positionnement de nouvelle radio (nr) pour la fourniture de ressources dans un positionnement de liaison latérale |
-
2024
- 2024-05-07 WO PCT/US2024/028101 patent/WO2025029344A1/fr active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2022212533A1 (fr) * | 2021-03-30 | 2022-10-06 | Idac Holdings, Inc. | Procédés de positionnement de nouvelle radio (nr) pour la fourniture de ressources dans un positionnement de liaison latérale |
Non-Patent Citations (2)
| Title |
|---|
| LG ELECTRONICS: "Discussion on measurements and reporting for SL positioning", vol. RAN WG1, no. Electronics; 20230522 - 20230526, 15 May 2023 (2023-05-15), XP052385953, Retrieved from the Internet <URL:https://ftp.3gpp.org/tsg_ran/WG1_RL1/TSGR1_113/Docs/R1-2305635.zip R1-2305635 Discussion on measurements and reporting for SL positioning.docx> [retrieved on 20230515] * |
| MODERATOR (INTEL CORPORATION): "Feature Lead Summary#3 for E-mail Discussion [106-e-NR-ePos- 02]", vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 26 August 2021 (2021-08-26), XP052042590, Retrieved from the Internet <URL:https://ftp.3gpp.org/tsg_ran/WG1_RL1/TSGR1_106-e/Inbox/R1-2108291.zip R1-2108291_106-e-NR-ePos-02.docx> [retrieved on 20210826] * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20250294605A1 (en) | Sidelink positioning reference signal based on candidate sensing resource configuration | |
| US20250203571A1 (en) | Position estimation of a user equipment via a wireless node associated with multiple area identifiers | |
| WO2025014583A1 (fr) | Données d'assistance pour procédure d'estimation de position basée sur une liaison latérale sans session | |
| US20250323770A1 (en) | Two-part positioning reference signal (prs) | |
| US20250334663A1 (en) | Reporting positioning error causes during positioning session | |
| WO2024238437A1 (fr) | Multiples mesures de phase de porteuse associées à une couche de fréquence de positionnement et rapport de mesure de phase de porteuse différentielle | |
| US12153152B2 (en) | User equipment (UE) handling of delayed sounding reference signal (SRS) configuration for downlink-and-uplink-based positioning methods | |
| US20250172650A1 (en) | Timing synchronization correction for position estimation based on time difference of arrival | |
| US12273789B2 (en) | Measurement of sounding reference signal via uplink relay | |
| US20240381141A1 (en) | Multiple carrier phase measurements associated with positioning frequency layer and differential carrier phase measurement reporting | |
| US20240306117A1 (en) | Resolving ambiguity in cases of repeater-based positioning | |
| US20250175939A1 (en) | Timing synchronization correction for position estimation based on time difference of arrival | |
| US20250180689A1 (en) | Position estimation of a user equipment based on beam ridge information | |
| US20250330939A1 (en) | Status change notifications for positioning | |
| US20240340140A1 (en) | Comb offset indication for sidelink positioning reference signal | |
| US20240340139A1 (en) | Comb patterns for sidelink positioning reference signal | |
| US20250373393A1 (en) | Scheduling restriction interval for positioning reference signal (prs) muting | |
| WO2025029344A1 (fr) | Mappage de points de référence d'antenne sur des signaux de référence de positionnement de liaison latérale | |
| WO2025075738A1 (fr) | Configuration d'exclusion de ressources pour groupe de ressources de liaison latérale | |
| WO2024210982A1 (fr) | Indicateur de configuration de transmission unifiée (tci) pour positionner des signaux de référence | |
| WO2025122367A1 (fr) | Temps d'occupation de canal associé à un groupe de ressources de liaison latérale pour le positionnement | |
| WO2025034454A1 (fr) | Indication de capacité de liaison latérale d'équipement utilisateur | |
| WO2025117254A1 (fr) | Communication inter-couche de ressources candidates à partir de groupes de ressources de liaison latérale agrégés pour la transmission d'une liaison latérale signal de référence de positionnement | |
| WO2025174565A1 (fr) | Communication inter-couche de ressources candidates à partir d'un groupe de ressources de liaison latérale pour la transmission d'un signal de référence de positionnement de liaison latérale | |
| WO2024238170A1 (fr) | Gestion de paquets de données de correction de phase de porteuse associés à une session d'estimation de position d'un équipement utilisateur |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24730503 Country of ref document: EP Kind code of ref document: A1 |