WO2025023629A1 - Method and system for estimating risk of cardiac arrest and death - Google Patents
Method and system for estimating risk of cardiac arrest and death Download PDFInfo
- Publication number
- WO2025023629A1 WO2025023629A1 PCT/KR2024/010396 KR2024010396W WO2025023629A1 WO 2025023629 A1 WO2025023629 A1 WO 2025023629A1 KR 2024010396 W KR2024010396 W KR 2024010396W WO 2025023629 A1 WO2025023629 A1 WO 2025023629A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- real
- time information
- classification model
- subject
- risk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/021—Measuring pressure in heart or blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Measuring devices for evaluating the respiratory organs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
Definitions
- the present invention relates to a method and system for estimating the risk of cardiac arrest and death.
- the purpose of the present invention is to solve all of the problems of the above-mentioned prior art.
- the present invention has another purpose of allowing the risk of cardiac arrest and death of a subject to be estimated with high accuracy by allowing non-real-time information and real-time information related to the subject's bio-signals to be input as continuous information into a deep learning or artificial intelligence-based model, and further allowing the estimation results to be clinically meaningfully utilized.
- a representative configuration of the present invention to achieve the above purpose is as follows.
- a method for estimating a risk of cardiac arrest and death comprising the steps of: obtaining non-real-time information and real-time information associated with a bio-signal of a subject; applying a first classification model and a second classification model to the non-real-time information and the real-time information, respectively, to generate output information based on the non-real-time information and output information based on the real-time information; and combining the output information based on the non-real-time information and the output information based on the real-time information to estimate a risk of at least one of cardiac arrest and death of the subject.
- a system for estimating a risk of cardiac arrest and death comprising: an acquisition unit for acquiring non-real-time information and real-time information associated with a bio-signal of a subject; a generation unit for applying a first classification model and a second classification model to the non-real-time information and the real-time information, respectively, to generate output information based on the non-real-time information and output information based on the real-time information; and an estimation unit for estimating a risk of at least one of cardiac arrest and death of the subject by combining the output information based on the non-real-time information and the output information based on the real-time information.
- the subject's risk of cardiac arrest and death can be estimated with high accuracy, and furthermore, the estimation results can be clinically meaningfully utilized.
- FIG. 1 is a diagram schematically illustrating the configuration of an entire system for estimating the risk of cardiac arrest and death according to one embodiment of the present invention.
- FIG. 2 is a drawing detailing the internal configuration of an estimation system according to one embodiment of the present invention.
- FIG. 3 is a drawing exemplarily showing a process for estimating the risk of cardiac arrest and death according to the present invention.
- FIG. 1 is a diagram schematically illustrating the configuration of an entire system for estimating the risk of cardiac arrest and death according to one embodiment of the present invention.
- the entire system may include a communication network (100), an estimation system (200), a server (300), and a device (400).
- a communication network (100) may be configured regardless of a communication mode such as wired communication or wireless communication, and may be configured with various communication networks such as a local area network (LAN), a metropolitan area network (MAN), and a wide area network (WAN).
- the communication network (100) referred to in the present specification may be the well-known Internet or the World Wide Web (WWW).
- WWW World Wide Web
- the communication network (100) is not necessarily limited thereto, and may include at least a part of a well-known wired and wireless data communication network, a well-known telephone network, or a well-known wired and wireless television communication network.
- the communication network (100) may be a wireless data communication network that implements, at least in part, a conventional communication method such as WiFi communication, WiFi-Direct communication, Long Term Evolution (LTE) communication, 5G communication, Bluetooth communication (including Bluetooth Low Energy (BLE) communication), infrared communication, or ultrasonic communication.
- a conventional communication method such as WiFi communication, WiFi-Direct communication, Long Term Evolution (LTE) communication, 5G communication, Bluetooth communication (including Bluetooth Low Energy (BLE) communication), infrared communication, or ultrasonic communication.
- the estimation system (200) can perform communication with the server (300) and the device (400) described later through the communication network (100).
- the estimation system (200) can obtain non-real-time information and real-time information related to the bio-signal of the subject of measurement, apply a first classification model and a second classification model to the non-real-time information and the real-time information, respectively, to generate output information based on the non-real-time information and output information based on the real-time information, and perform a function of estimating the risk of at least one of cardiac arrest and death of the subject of measurement by combining the output information based on the non-real-time information and the output information based on the real-time information.
- the estimation system (200) may be a digital device equipped with a memory means and equipped with a microprocessor to have a computational ability, and may be, for example, a server system operating on the communication network (100).
- a server (300) may be installed within a medical institution such as a hospital or health center, and may perform a function of managing various events occurring within the medical institution.
- a server (300) can perform a function of storing and managing (e.g., updating) an electronic medical record (EMR) of a subject.
- EMR electronic medical record
- a subject's heart rate (HR), respiratory rate (RR), body temperature (BT), blood pressure (BP), and other bio-signals may be recorded in an electronic medical record (EMR).
- HR heart rate
- RR respiratory rate
- BT body temperature
- BP blood pressure
- bio-signals may be recorded in the electronic medical record (EMR) at predetermined time intervals, but may not be recorded in real time, and thus, bio-signals recorded in the electronic medical record (EMR) may include measurement gaps.
- the server (300) can communicate with the estimation system (200) through the communication network (100), and during this communication process, an electronic medical record (EMR) (or a bio-signal recorded in the electronic medical record (EMR)) can be transmitted from the server (300) to the estimation system (200).
- EMR electronic medical record
- EMR bio-signal recorded in the electronic medical record
- a device (400) may be configured to include a sensing means (not shown) (e.g., a contact electrode, etc.) attached to the body of a subject to measure a biosignal (e.g., an electrocardiogram (ECG), oxygen saturation (SpO 2 ; saturation of percutaneous oxygen), etc.) from the subject in real time, or may be linked with the sensing means.
- a sensing means e.g., a contact electrode, etc.
- a biosignal e.g., an electrocardiogram (ECG), oxygen saturation (SpO 2 ; saturation of percutaneous oxygen), etc.
- a device (400) may be configured to include a sensing means for measuring an electrocardiogram (ECG) based on a single or multiple leads by being attached to the body of a subject, or may be linked to the sensing means.
- ECG electrocardiogram
- such a device (400) may be configured in the form of a patient monitor (PM), a Holter, a patch, a wristwatch, etc.
- a device (400) may be configured to include a sensing means for measuring oxygen saturation (SpO 2 ) and the like based on a photoplethysmogram (PPG) by being attached to the body of a subject (specifically, a peripheral body part such as a fingertip) or may be linked with the sensing means.
- a device (400) may be configured in the form of a clip or the like.
- the device (400) can communicate with the estimation system (200) through the communication network (100), and during this communication process, a biosignal measured by the sensing means can be transmitted from the device (400) to the estimation system (200).
- FIG. 2 is a drawing showing in detail the internal configuration of an estimation system (200) according to one embodiment of the present invention.
- FIG. 3 is a drawing showing an example of a process for estimating the risk of cardiac arrest and death according to the present invention.
- the estimation system (200) may include an acquisition unit (210), a generation unit (220), an estimation unit (230), a communication unit (240), and a control unit (250).
- the acquisition unit (210), the generation unit (220), the estimation unit (230), the communication unit (240), and the control unit (250) of the estimation system (200) may be program modules that communicate with an external system (not shown).
- Such program modules may be included in the estimation system (200) in the form of an operating system, an application program module, or other program modules, and may be physically stored in various known memory devices.
- program modules may be stored in a remote memory device that can communicate with the estimation system (200).
- these program modules include, but are not limited to, routines, subroutines, programs, objects, components, data structures, etc. that perform specific tasks or execute specific abstract data types according to the present invention.
- estimation system (200) has been described as above, this description is exemplary, and it is obvious to those skilled in the art that at least some of the components or functions of the estimation system (200) may be realized within the server (300) and/or device (400) or included within an external system (not shown) as needed.
- the acquisition unit (210) can perform a function of acquiring non-real-time information (I1) and real-time information (I2) associated with the bio-signal of the subject.
- the acquisition unit (210) can acquire non-real-time information (I1) associated with a bio-signal of a subject from a server (300).
- the non-real-time information (I1) may include a bio-signal recorded in an electronic medical record (EMR) of the subject.
- the bio-signal recorded in the electronic medical record (EMR) of the subject may include, as described above, the heart rate (HR), respiratory rate (RR), body temperature (BT), blood pressure (BP), etc. of the subject.
- HR heart rate
- RR respiratory rate
- BT body temperature
- BP blood pressure
- bio-signals since such bio-signals may include measurement gaps in the recording process as described above, they may be understood to lack real-time properties and thus be included in the non-real-time information (I1).
- the acquisition unit (210) can acquire real-time information (I2) associated with a bio-signal of a subject from the device (400).
- the real-time information (I2) may include a bio-signal of the subject measured by the device (400).
- the bio-signal of the subject measured by the device (400) may include, as described above, an electrocardiogram (ECG), oxygen saturation (SpO 2 ), etc. of the subject.
- ECG electrocardiogram
- SpO 2 oxygen saturation
- the acquisition unit (210) may receive non-real-time information (I1) and real-time information (I2) from the server (300) and the device (400), respectively.
- the acquisition unit (210) receives the non-real-time information (I1) and real-time information (I2) as a single module, but it may also be understood that the first acquisition unit (not shown) and the second acquisition unit (not shown) included in the acquisition unit (210) independently receive the non-real-time information (I1) and real-time information (I2) as separate modules.
- the non-real-time information (I1) is received by the first acquisition unit
- the real-time information (I2) is received by the second acquisition unit.
- non-real-time information (I1) may include measurement gaps, which may be replaced with valid information (or valid values) through a predetermined processing process (which processing process may correspond to a preprocessing process).
- the acquisition unit (210) can replace the measurement gap with valid information using at least one statistical method in response to the inclusion of a measurement gap in the non-real-time information (I1).
- the acquisition unit (210) may replace a measurement gap with valid information by using a method such as using a trend of a plurality of bio-signals recorded at a time point prior to the time point at which a measurement gap occurred, a trend of a plurality of bio-signals recorded at a time point after the time point at which a measurement gap occurred, an average of a plurality of bio-signals recorded within a predetermined time interval including the time point at which a measurement gap occurred, etc.
- a method such as using a trend of a plurality of bio-signals recorded at a time point prior to the time point at which a measurement gap occurred, a trend of a plurality of bio-signals recorded at a time point after the time point at which a measurement gap occurred, an average of a plurality of bio-signals recorded within a predetermined time interval including the time point at which a measurement gap occurred, etc.
- the method of replacing a measurement gap with valid information is not necessarily limited to what has been listed above, and it is to be noted that various methods may be used, such as a method of replacing a measurement gap with information identical to a bio-signal recorded at a point in time immediately before the occurrence of the measurement gap (forward fill), and a method of replacing a measurement gap with information identical to a bio-signal recorded at a point in time immediately after the occurrence of the measurement gap (backward fill).
- the generation unit (220) can apply the first classification model (M1) and the second classification model (M2) to the non-real-time information (I1) and the real-time information (I2) obtained as described above, respectively, to generate output information based on the non-real-time information (I1) and output information based on the real-time information (I2).
- the generation unit (220) can allow non-real-time information (I1) to be input as input data for the first classification model (M1), and can allow real-time information (I2) to be input as input data for the second classification model (M2).
- the generation unit (220) when real-time information (I2) is input to a second classification model (M2), the generation unit (220) according to one embodiment of the present invention can divide the real-time information (I2) (e.g., divide it into fixed sizes) into time-series elements (sequences) and input these time-series elements into the second classification model (M2).
- the time-series elements can be configured in a lower dimension than the real-time information (I2).
- the first classification model (M1) and the second classification model (M2) may correspond to different deep learning (or artificial intelligence)-based classification models.
- the first classification model (M1) may be a classification model based on at least one of a recurrent neural network (RNN) and a convolutional neural network (CNN)
- the second classification model (M2) may be a classification model based on at least one of a convolutional neural network (CNN) and a vision transformer (ViT).
- the first classification model (M1) and the second classification model (M2) may correspond to different deep learning-based classification models as described above, but may be models learned in common to generate (or output) a risk of cardiac arrest and death.
- output information based on non-real-time information (I1) may be generated
- output information based on real-time information (I2) may be generated
- output information based on real-time information (I2) may be generated.
- Each of the output information generated by the first classification model (M1) and the second classification model (M2) may include a risk level regarding cardiac arrest and death.
- the first classification model (M1) and the second classification model (M2) can receive information having different attributes (i.e., non-real-time or real-time) and generate information having the same attributes.
- the estimation unit (230) can perform a function of finally estimating the risk of at least one of cardiac arrest and death of the subject by combining output information based on non-real-time information (I1) and output information based on real-time information (I2).
- the estimation unit (230) can allow an ensemble model (M3) that combines each output information generated from the first classification model (M1) and the second classification model (M2) (or combines the first classification model (M1) and the second classification model (M2)) to estimate the risk of at least one of cardiac arrest and death of the subject.
- M3 an ensemble model that combines each output information generated from the first classification model (M1) and the second classification model (M2) (or combines the first classification model (M1) and the second classification model (M2)) to estimate the risk of at least one of cardiac arrest and death of the subject.
- the estimation unit (230) may estimate the risk of at least one of cardiac arrest and death of the subject by using a method such as voting on information output from the first classification model (M1) (i.e., output information based on non-real-time information (I1)) and information output from the second classification model (M2) (i.e., output information based on real-time information (I2)).
- M1 i.e., output information based on non-real-time information (I1)
- M2 i.e., output information based on real-time information (I2)
- the ensemble model (M3) is depicted as being placed after the first classification model (M1) and the second classification model (M2) in FIG. 3, it may be understood that the ensemble model (M3) includes the first classification model (M1) and the second classification model (M2).
- the estimation unit (230) can convert each risk estimated from the ensemble model (M3) into a score within a predetermined range and output it.
- each risk estimated in the ensemble model (M3) can be expressed in the form of a probability
- the estimation unit (230) can convert each risk expressed in the form of a probability into the form of a score and output it as a score (S1) regarding the risk of cardiac arrest and a score (S2) regarding the risk of death.
- the score converted by the estimation unit (230) can be converted to a specific value within a range set between 0 and 100, but it should be noted that the range is not necessarily limited to the above-described range and can be variously changed within a range that can achieve the purpose of the present invention.
- the communication unit (240) can perform a function that enables data transmission and reception from/to the acquisition unit (210), the generation unit (220), and the estimation unit (230).
- control unit (250) can perform a function of controlling the flow of data between the acquisition unit (210), the generation unit (220), the estimation unit (230), and the communication unit (240). That is, the control unit (250) according to one embodiment of the present invention can control the flow of data from/to the outside of the estimation system (200) or the flow of data between each component of the estimation system (200), thereby controlling the acquisition unit (210), the generation unit (220), the estimation unit (230), and the communication unit (240) to perform their own functions.
- the embodiments of the present invention described above may be implemented in the form of program commands that can be executed through various computer components and recorded on a computer-readable recording medium.
- the computer-readable recording medium may include program commands, data files, data structures, etc., alone or in combination.
- the program commands recorded on the computer-readable recording medium may be those specially designed and configured for the present invention or those known and available to those skilled in the art of computer software.
- Examples of the computer-readable recording medium include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical recording media such as CD-ROMs and DVDs, magneto-optical media such as floptical disks, and hardware devices specially configured to store and execute program commands, such as ROMs, RAMs, and flash memories.
- Examples of the program commands include not only machine language codes generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter, etc.
- the hardware devices may be changed into one or more software modules to perform processing according to the present invention, and vice versa.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Pulmonology (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- Epidemiology (AREA)
- Databases & Information Systems (AREA)
- Primary Health Care (AREA)
- Vascular Medicine (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
Abstract
Description
본 발명은 심정지 및 사망에 관한 위험도를 추정하기 위한 방법 및 시스템에 관한 것이다.The present invention relates to a method and system for estimating the risk of cardiac arrest and death.
최근 의료 기관 내에서 의료 인력의 부족이 심화됨에 따라 이러한 인적 자원의 한계를 극복하기 위한 다양한 기술이 개발되고 있다. 이러한 기술 중 하나로 비연속적인 생체 신호만을 이용하여 피측정자의 심정지 및 사망에 관한 위험도를 추정(또는 예측)하는 기술이 소개된 바 있으나, 이러한 기술은 오탐(false alarm)이 상당히 많아 그 추정 결과가 임상적으로 유의미하게 활용될 수 없다는 한계가 있다.Recently, as the shortage of medical personnel in medical institutions has become more severe, various technologies are being developed to overcome the limitations of such human resources. One of these technologies has been introduced to estimate (or predict) the risk of cardiac arrest and death of a subject using only discontinuous bio-signals. However, this technology has a limitation in that the estimated results cannot be used clinically meaningfully because there are many false alarms.
본 발명은 전술한 종래 기술의 문제점을 모두 해결하는 것을 그 목적으로 한다.The purpose of the present invention is to solve all of the problems of the above-mentioned prior art.
또한, 본 발명은, 딥러닝 내지 인공지능 기반의 모델에 피측정자의 생체 신호와 연관되는 비실시간 정보 및 실시간 정보가 연속적인 정보로 입력되도록 함으로써, 피측정자의 심정지 및 사망에 관한 위험도가 높은 정확도로 추정되도록 하고, 나아가 그 추정 결과가 임상적으로 유의미하게 활용될 수 있도록 하는 것을 다른 목적으로 한다.In addition, the present invention has another purpose of allowing the risk of cardiac arrest and death of a subject to be estimated with high accuracy by allowing non-real-time information and real-time information related to the subject's bio-signals to be input as continuous information into a deep learning or artificial intelligence-based model, and further allowing the estimation results to be clinically meaningfully utilized.
상기 목적을 달성하기 위한 본 발명의 대표적인 구성은 다음과 같다.A representative configuration of the present invention to achieve the above purpose is as follows.
본 발명의 일 태양에 따르면, 심정지 및 사망에 관한 위험도를 추정하기 위한 방법으로서, 피측정자의 생체 신호와 연관되는 비실시간 정보 및 실시간 정보를 획득하는 단계, 상기 비실시간 정보 및 상기 실시간 정보에 각각 제1 분류 모델 및 제2 분류 모델을 적용하여 상기 비실시간 정보에 기초한 출력 정보 및 상기 실시간 정보에 기초한 출력 정보가 생성되도록 하는 단계, 및 상기 비실시간 정보에 기초한 출력 정보 및 상기 실시간 정보에 기초한 출력 정보를 조합하여 상기 피측정자의 심정지 및 사망 중 적어도 하나에 관한 위험도를 추정하는 단계를 포함하는 방법이 제공된다.According to one aspect of the present invention, a method for estimating a risk of cardiac arrest and death is provided, the method comprising the steps of: obtaining non-real-time information and real-time information associated with a bio-signal of a subject; applying a first classification model and a second classification model to the non-real-time information and the real-time information, respectively, to generate output information based on the non-real-time information and output information based on the real-time information; and combining the output information based on the non-real-time information and the output information based on the real-time information to estimate a risk of at least one of cardiac arrest and death of the subject.
본 발명의 다른 태양에 따르면, 심정지 및 사망에 관한 위험도를 추정하기 위한 시스템으로서, 피측정자의 생체 신호와 연관되는 비실시간 정보 및 실시간 정보를 획득하는 획득부, 상기 비실시간 정보 및 상기 실시간 정보에 각각 제1 분류 모델 및 제2 분류 모델을 적용하여 상기 비실시간 정보에 기초한 출력 정보 및 상기 실시간 정보에 기초한 출력 정보가 생성되도록 하는 생성부, 및 상기 비실시간 정보에 기초한 출력 정보 및 상기 실시간 정보에 기초한 출력 정보를 조합하여 상기 피측정자의 심정지 및 사망 중 적어도 하나에 관한 위험도를 추정하는 추정부를 포함하는 시스템이 제공된다.According to another aspect of the present invention, a system for estimating a risk of cardiac arrest and death is provided, comprising: an acquisition unit for acquiring non-real-time information and real-time information associated with a bio-signal of a subject; a generation unit for applying a first classification model and a second classification model to the non-real-time information and the real-time information, respectively, to generate output information based on the non-real-time information and output information based on the real-time information; and an estimation unit for estimating a risk of at least one of cardiac arrest and death of the subject by combining the output information based on the non-real-time information and the output information based on the real-time information.
이 외에도, 본 발명을 구현하기 위한 다른 방법, 다른 시스템 및 상기 방법을 실행하기 위한 컴퓨터 프로그램을 기록하는 비일시성의 컴퓨터 판독 가능한 기록 매체가 더 제공된다.In addition, other methods for implementing the present invention, other systems, and non-transitory computer-readable recording media recording a computer program for executing the above methods are further provided.
본 발명에 의하면, 딥러닝 내지 인공지능 기반의 모델에 피측정자의 생체 신호와 연관되는 비실시간 정보 및 실시간 정보가 연속적인 정보로 입력되도록 함으로써, 피측정자의 심정지 및 사망에 관한 위험도가 높은 정확도로 추정될 수 있고, 나아가 그 추정 결과가 임상적으로 유의미하게 활용될 수 있다.According to the present invention, by allowing non-real-time information and real-time information related to the subject's bio-signals to be input as continuous information into a deep learning or artificial intelligence-based model, the subject's risk of cardiac arrest and death can be estimated with high accuracy, and furthermore, the estimation results can be clinically meaningfully utilized.
도 1은 본 발명의 일 실시예에 따라 심정지 및 사망에 관한 위험도를 추정하기 위한 전체 시스템의 개략적인 구성을 나타내는 도면이다.FIG. 1 is a diagram schematically illustrating the configuration of an entire system for estimating the risk of cardiac arrest and death according to one embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 추정 시스템의 내부 구성을 상세하게 도시하는 도면이다.FIG. 2 is a drawing detailing the internal configuration of an estimation system according to one embodiment of the present invention.
도 3은 본 발명의 따라 심정지 및 사망에 관한 위험도를 추정하는 과정을 예시적으로 나타내는 도면이다.FIG. 3 is a drawing exemplarily showing a process for estimating the risk of cardiac arrest and death according to the present invention.
<부호의 설명><Explanation of symbols>
100: 통신망100: Communication network
200: 추정 시스템200: Estimation System
210: 획득부210: Acquisition Department
220: 생성부220: Generation Unit
230: 추정부230: Estimated
240: 통신부240: Communications Department
250: 제어부250: Control Unit
300: 서버300: Server
400: 디바이스400: Device
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이러한 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 본 명세서에 기재되어 있는 특정 형상, 구조 및 특성은 본 발명의 정신과 범위를 벗어나지 않으면서 일 실시예로부터 다른 실시예로 변경되어 구현될 수 있다. 또한, 각각의 실시예 내의 개별 구성요소의 위치 또는 배치도 본 발명의 정신과 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 행하여지는 것이 아니며, 본 발명의 범위는 특허청구범위의 청구항들이 청구하는 범위 및 그와 균등한 모든 범위를 포괄하는 것으로 받아들여져야 한다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 구성요소를 나타낸다.The detailed description of the present invention set forth below refers to the accompanying drawings which illustrate specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It should be understood that the various embodiments of the present invention, while different from each other, are not necessarily mutually exclusive. For example, specific shapes, structures, and characteristics described herein may be modified and implemented from one embodiment to another without departing from the spirit and scope of the invention. It should also be understood that the positions or arrangements of individual components within each embodiment may be changed without departing from the spirit and scope of the invention. Accordingly, the detailed description set forth below is not to be taken in a limiting sense, and the scope of the present invention is to be taken to encompass the scope of the claims and all equivalents thereof. Like reference numerals in the drawings represent the same or similar elements throughout the several aspects.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 여러 바람직한 실시예에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, various preferred embodiments of the present invention will be described in detail with reference to the attached drawings so that a person having ordinary skill in the art to which the present invention pertains can easily practice the present invention.
전체 시스템의 구성Composition of the entire system
도 1은 본 발명의 일 실시예에 따라 심정지 및 사망에 관한 위험도를 추정하기 위한 전체 시스템의 개략적인 구성을 나타내는 도면이다.FIG. 1 is a diagram schematically illustrating the configuration of an entire system for estimating the risk of cardiac arrest and death according to one embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 전체 시스템은 통신망(100), 추정 시스템(200), 서버(300) 및 디바이스(400)를 포함할 수 있다.As illustrated in FIG. 1, the entire system according to one embodiment of the present invention may include a communication network (100), an estimation system (200), a server (300), and a device (400).
먼저, 본 발명의 일 실시예에 따른 통신망(100)은 유선 통신이나 무선 통신과 같은 통신 양태를 가리지 않고 구성될 수 있으며, 근거리 통신망(LAN; Local Area Network), 도시권 통신망(MAN; Metropolitan Area Network), 광역 통신망(WAN; Wide Area Network) 등 다양한 통신망으로 구성될 수 있다. 바람직하게는, 본 명세서에서 말하는 통신망(100)은 공지의 인터넷 또는 월드 와이드 웹(WWW; World Wide Web)일 수 있다. 그러나, 통신망(100)은, 굳이 이에 국한될 필요 없이, 공지의 유무선 데이터 통신망, 공지의 전화망 또는 공지의 유무선 텔레비전 통신망을 그 적어도 일부에 있어서 포함할 수도 있다.First, a communication network (100) according to an embodiment of the present invention may be configured regardless of a communication mode such as wired communication or wireless communication, and may be configured with various communication networks such as a local area network (LAN), a metropolitan area network (MAN), and a wide area network (WAN). Preferably, the communication network (100) referred to in the present specification may be the well-known Internet or the World Wide Web (WWW). However, the communication network (100) is not necessarily limited thereto, and may include at least a part of a well-known wired and wireless data communication network, a well-known telephone network, or a well-known wired and wireless television communication network.
예를 들면, 통신망(100)은 무선 데이터 통신망으로서, 와이파이(WiFi) 통신, 와이파이 다이렉트(WiFi-Direct) 통신, 롱텀 에볼루션(LTE; Long Term Evolution) 통신, 5G 통신, 블루투스 통신(저전력 블루투스(BLE; Bluetooth Low Energy) 통신 포함), 적외선 통신, 초음파 통신 등과 같은 종래의 통신 방법을 적어도 그 일부분에 있어서 구현하는 것일 수 있다.For example, the communication network (100) may be a wireless data communication network that implements, at least in part, a conventional communication method such as WiFi communication, WiFi-Direct communication, Long Term Evolution (LTE) communication, 5G communication, Bluetooth communication (including Bluetooth Low Energy (BLE) communication), infrared communication, or ultrasonic communication.
다음으로, 본 발명의 일 실시예에 따른 추정 시스템(200)은 통신망(100)을 통하여 후술할 서버(300) 및 디바이스(400)와의 통신을 수행할 수 있다. 또한, 본 발명의 일 실시예에 따른 추정 시스템(200)은, 피측정자의 생체 신호와 연관되는 비실시간 정보 및 실시간 정보를 획득하고, 비실시간 정보 및 실시간 정보에 각각 제1 분류 모델 및 제2 분류 모델을 적용하여 비실시간 정보에 기초한 출력 정보 및 실시간 정보에 기초한 출력 정보가 생성되도록 하고, 비실시간 정보에 기초한 출력 정보 및 실시간 정보에 기초한 출력 정보를 조합하여 피측정자의 심정지 및 사망 중 적어도 하나에 관한 위험도를 추정하는 기능을 수행할 수 있다. 한편, 이러한 추정 시스템(200)은 메모리 수단을 구비하고 마이크로 프로세서를 탑재하여 연산 능력을 갖춘 디지털 기기일 수 있으며, 예를 들어 통신망(100)상에서 운영되는 서버 시스템일 수 있다.Next, the estimation system (200) according to one embodiment of the present invention can perform communication with the server (300) and the device (400) described later through the communication network (100). In addition, the estimation system (200) according to one embodiment of the present invention can obtain non-real-time information and real-time information related to the bio-signal of the subject of measurement, apply a first classification model and a second classification model to the non-real-time information and the real-time information, respectively, to generate output information based on the non-real-time information and output information based on the real-time information, and perform a function of estimating the risk of at least one of cardiac arrest and death of the subject of measurement by combining the output information based on the non-real-time information and the output information based on the real-time information. Meanwhile, the estimation system (200) may be a digital device equipped with a memory means and equipped with a microprocessor to have a computational ability, and may be, for example, a server system operating on the communication network (100).
본 발명의 일 실시예에 따른 추정 시스템(200)의 구성과 기능에 관하여는 이하의 상세한 설명을 통하여 자세하게 알아보기로 한다.The configuration and function of the estimation system (200) according to one embodiment of the present invention will be described in detail below.
다음으로, 본 발명의 일 실시예에 따른 서버(300)는, 병원, 보건소 등의 의료 기관 내부에 구비될 수 있으며, 의료 기관 내에서 이루어지는 다양한 이벤트를 관리하는 기능을 수행할 수 있다.Next, a server (300) according to one embodiment of the present invention may be installed within a medical institution such as a hospital or health center, and may perform a function of managing various events occurring within the medical institution.
특히, 본 발명의 일 실시예에 따른 서버(300)는, 피측정자의 전자의무기록(EMR; Electronic Medical Record)을 저장하고 관리(예컨대 업데이트)하는 기능을 수행할 수 있다.In particular, a server (300) according to one embodiment of the present invention can perform a function of storing and managing (e.g., updating) an electronic medical record (EMR) of a subject.
여기서, 본 발명의 일 실시예에 따르면, 전자의무기록(EMR)에는 피측정자의 심박 주기(HR; Heart Rate), 호흡 주기(RR; Respiratory Rate), 체온(BT; Body Temperature), 혈압(BP; Blood Pressure) 등의 생체 신호가 기록될 수 있다. 본 발명의 일 실시예에 따르면, 전자의무기록(EMR)에는 생체 신호가 소정 시간 간격으로 기록되되 실시간으로는 기록되지 않을 수 있는데, 이에 따라 전자의무기록(EMR)에 기록되는 생체 신호에는 측정 공백이 포함될 수 있다.Here, according to one embodiment of the present invention, a subject's heart rate (HR), respiratory rate (RR), body temperature (BT), blood pressure (BP), and other bio-signals may be recorded in an electronic medical record (EMR). According to one embodiment of the present invention, bio-signals may be recorded in the electronic medical record (EMR) at predetermined time intervals, but may not be recorded in real time, and thus, bio-signals recorded in the electronic medical record (EMR) may include measurement gaps.
한편, 본 발명의 일 실시예에 따르면, 서버(300)는 통신망(100)을 통하여 추정 시스템(200)과 통신할 수 있는데, 이러한 통신 과정에서 전자의무기록(EMR)(또는 전자의무기록(EMR)에 기록된 생체 신호)이 서버(300)에서 추정 시스템(200)으로 전송될 수 있다.Meanwhile, according to one embodiment of the present invention, the server (300) can communicate with the estimation system (200) through the communication network (100), and during this communication process, an electronic medical record (EMR) (or a bio-signal recorded in the electronic medical record (EMR)) can be transmitted from the server (300) to the estimation system (200).
다음으로, 본 발명의 일 실시예에 따른 디바이스(400)는, 피측정자의 신체에 부착되어 피측정자로부터 생체 신호(예컨대 심전도(ECG; electrocardiogram), 산소 포화도(SpO2; saturation of percutaneous oxygen) 등)를 실시간으로 측정하기 위한 센싱 수단(미도시됨)(예컨대 접촉 전극 등)을 포함하여 구성되거나 해당 센싱 수단과 연동될 수 있다.Next, a device (400) according to one embodiment of the present invention may be configured to include a sensing means (not shown) (e.g., a contact electrode, etc.) attached to the body of a subject to measure a biosignal (e.g., an electrocardiogram (ECG), oxygen saturation (SpO 2 ; saturation of percutaneous oxygen), etc.) from the subject in real time, or may be linked with the sensing means.
예를 들어, 본 발명의 일 실시예에 따른 디바이스(400)는, 피측정자의 신체에 부착됨으로써 단일 또는 복수의 리드(lead)를 기반으로 심전도(ECG)를 측정하는 센싱 수단을 포함하여 구성되거나 해당 센싱 수단과 연동될 수 있다. 본 발명의 일 실시예에 따르면, 이러한 디바이스(400)는 환자감시장치(PM; Patient Monitor), 홀터(Holter), 패치, 손목 시계 등의 형태로 구성될 수 있다.For example, a device (400) according to one embodiment of the present invention may be configured to include a sensing means for measuring an electrocardiogram (ECG) based on a single or multiple leads by being attached to the body of a subject, or may be linked to the sensing means. According to one embodiment of the present invention, such a device (400) may be configured in the form of a patient monitor (PM), a Holter, a patch, a wristwatch, etc.
다른 예를 들어, 본 발명의 일 실시예에 따른 디바이스(400)는, 피측정자의 신체(구체적으로, 손가락 끝과 같은 신체 말초 부분)에 부착됨으로써 광용적맥파(PPG; photoplethysmogram)를 기반으로 산소 포화도(SpO2) 등을 측정하는 센싱 수단을 포함하여 구성되거나 해당 센싱 수단과 연동될 수 있다. 본 발명의 일 실시예에 따르면, 이러한 는 디바이스(400)는 클립 등의 형태로 구성될 수 있다.For another example, a device (400) according to one embodiment of the present invention may be configured to include a sensing means for measuring oxygen saturation (SpO 2 ) and the like based on a photoplethysmogram (PPG) by being attached to the body of a subject (specifically, a peripheral body part such as a fingertip) or may be linked with the sensing means. According to one embodiment of the present invention, such a device (400) may be configured in the form of a clip or the like.
한편, 본 발명의 일 실시예에 따르면, 디바이스(400)는 통신망(100)을 통하여 추정 시스템(200)과 통신할 수 있는데, 이러한 통신 과정에서 센싱 수단에 의해 측정된 생체 신호가 디바이스(400)에서 추정 시스템(200)으로 전송될 수 있다.Meanwhile, according to one embodiment of the present invention, the device (400) can communicate with the estimation system (200) through the communication network (100), and during this communication process, a biosignal measured by the sensing means can be transmitted from the device (400) to the estimation system (200).
추정 시스템의 구성Composition of the estimation system
이하에서는, 도 2를 참조하여 추정 시스템(200)의 내부 구성을 살펴보고, 도 3을 참조하여 추정 시스템(200)의 기능이 실현됨에 따라 심정지 및 사망에 관한 위험도가 추정되는 과정을 살펴보기로 한다.Below, the internal configuration of the estimation system (200) will be examined with reference to FIG. 2, and the process of estimating the risk of cardiac arrest and death as the function of the estimation system (200) is realized will be examined with reference to FIG. 3.
도 2는 본 발명의 일 실시예에 따른 추정 시스템(200)의 내부 구성을 상세하게 도시하는 도면이다. 또한, 도 3은 본 발명의 따라 심정지 및 사망에 관한 위험도를 추정하는 과정을 예시적으로 나타내는 도면이다.FIG. 2 is a drawing showing in detail the internal configuration of an estimation system (200) according to one embodiment of the present invention. In addition, FIG. 3 is a drawing showing an example of a process for estimating the risk of cardiac arrest and death according to the present invention.
도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 추정 시스템(200)은 획득부(210), 생성부(220), 추정부(230), 통신부(240) 및 제어부(250)를 포함할 수 있다. 본 발명의 일 실시예에 따르면, 추정 시스템(200)의 획득부(210), 생성부(220), 추정부(230), 통신부(240) 및 제어부(250)는 그 중 적어도 일부가 외부의 시스템(미도시됨)과 통신하는 프로그램 모듈일 수 있다. 이러한 프로그램 모듈은 운영 시스템, 응용 프로그램 모듈 또는 기타 프로그램 모듈의 형태로 추정 시스템(200)에 포함될 수 있고, 물리적으로는 여러 가지 공지의 기억 장치에 저장될 수 있다. 또한, 이러한 프로그램 모듈은 추정 시스템(200)과 통신 가능한 원격 기억 장치에 저장될 수도 있다. 한편, 이러한 프로그램 모듈은 본 발명에 따라 후술할 특정 업무를 수행하거나 특정 추상 데이터 유형을 실행하는 루틴, 서브루틴, 프로그램, 오브젝트, 컴포넌트, 데이터 구조 등을 포괄하지만, 이에 제한되지는 않는다.As illustrated in FIG. 2, the estimation system (200) according to one embodiment of the present invention may include an acquisition unit (210), a generation unit (220), an estimation unit (230), a communication unit (240), and a control unit (250). According to one embodiment of the present invention, at least some of the acquisition unit (210), the generation unit (220), the estimation unit (230), the communication unit (240), and the control unit (250) of the estimation system (200) may be program modules that communicate with an external system (not shown). Such program modules may be included in the estimation system (200) in the form of an operating system, an application program module, or other program modules, and may be physically stored in various known memory devices. In addition, such program modules may be stored in a remote memory device that can communicate with the estimation system (200). Meanwhile, these program modules include, but are not limited to, routines, subroutines, programs, objects, components, data structures, etc. that perform specific tasks or execute specific abstract data types according to the present invention.
한편, 추정 시스템(200)에 관하여 위와 같이 설명되었으나, 이러한 설명은 예시적인 것이고, 추정 시스템(200)의 구성요소 또는 기능 중 적어도 일부가 필요에 따라 서버(300) 및/또는 디바이스(400) 내에서 실현되거나 외부 시스템(미도시됨) 내에 포함될 수도 있음은 당업자에게 자명하다.Meanwhile, although the estimation system (200) has been described as above, this description is exemplary, and it is obvious to those skilled in the art that at least some of the components or functions of the estimation system (200) may be realized within the server (300) and/or device (400) or included within an external system (not shown) as needed.
먼저, 본 발명의 일 실시예에 따른 획득부(210)는, 피측정자의 생체 신호와 연관되는 비실시간 정보(I1) 및 실시간 정보(I2)를 획득하는 기능을 수행할 수 있다.First, the acquisition unit (210) according to one embodiment of the present invention can perform a function of acquiring non-real-time information (I1) and real-time information (I2) associated with the bio-signal of the subject.
예를 들어, 본 발명의 일 실시예에 따른 획득부(210)는, 서버(300)로부터 피측정자의 생체 신호와 연관되는 비실시간 정보(I1)를 획득할 수 있다. 여기서, 본 발명의 일 실시예에 따르면, 비실시간 정보(I1)에는 피측정자의 전자의무기록(EMR)에 기록된 생체 신호가 포함될 수 있다. 본 발명의 일 실시예에 따르면, 피측정자의 전자의무기록(EMR)에 기록된 생체 신호에는, 전술한 바와 같이 피측정자의 심박 주기(HR), 호흡 주기(RR), 체온(BT), 혈압(BP) 등이 포함될 수 있다. 본 발명의 일 실시예에 따르면, 이러한 생체 신호는 전술한 바와 같이 그 기록 과정에서 측정 공백이 포함될 수 있으므로, 실시간성이 결여된 것으로 보아 비실시간 정보(I1)에 포함되는 것으로 이해될 수 있다.For example, the acquisition unit (210) according to one embodiment of the present invention can acquire non-real-time information (I1) associated with a bio-signal of a subject from a server (300). Here, according to one embodiment of the present invention, the non-real-time information (I1) may include a bio-signal recorded in an electronic medical record (EMR) of the subject. According to one embodiment of the present invention, the bio-signal recorded in the electronic medical record (EMR) of the subject may include, as described above, the heart rate (HR), respiratory rate (RR), body temperature (BT), blood pressure (BP), etc. of the subject. According to one embodiment of the present invention, since such bio-signals may include measurement gaps in the recording process as described above, they may be understood to lack real-time properties and thus be included in the non-real-time information (I1).
다른 예를 들어, 본 발명의 일 실시예에 따른 획득부(210)는, 디바이스(400)로부터 피측정자의 생체 신호와 연관되는 실시간 정보(I2)를 획득할 수 있다. 여기서, 본 발명의 일 실시예에 따르면, 실시간 정보(I2)에는 디바이스(400)에 의해 측정된 피측정자의 생체 신호가 포함될 수 있다. 본 발명의 일 실시예에 따르면, 디바이스(400)에 의해 측정된 피측정자의 생체 신호에는, 전술한 바와 같이 피측정자의 심전도(ECG), 산소 포화도(SpO2) 등이 포함될 수 있다. 본 발명의 일 실시예에 따르면, 이러한 생체 신호는 전술한 바와 같이 디바이스(400)에 의해 실시간으로 측정될 수 있으므로, 실시간성이 충족되는 것으로 보아 실시간 정보(I2)에 포함되는 것으로 이해될 수 있다.For another example, the acquisition unit (210) according to one embodiment of the present invention can acquire real-time information (I2) associated with a bio-signal of a subject from the device (400). Here, according to one embodiment of the present invention, the real-time information (I2) may include a bio-signal of the subject measured by the device (400). According to one embodiment of the present invention, the bio-signal of the subject measured by the device (400) may include, as described above, an electrocardiogram (ECG), oxygen saturation (SpO 2 ), etc. of the subject. According to one embodiment of the present invention, since such bio-signals can be measured in real time by the device (400) as described above, it can be understood that real-time property is satisfied and thus they are included in the real-time information (I2).
한편, 본 발명의 일 실시예에 따르면, 획득부(210)는 비실시간 정보(I1)와 실시간 정보(I2)를 각각 서버(300)와 디바이스(400)로부터 전송받을 수 있는데, 이 때 이러한 비실시간 정보(I1)와 실시간 정보(I2)를 획득부(210)가 단일의 모듈로서 통합적으로 전송받는 것으로 이해될 수도 있지만, 획득부(210) 내에 포함되는 제1 획득부(미도시됨)와 제2 획득부(미도시됨)가 별개의 모듈로서 비실시간 정보(I1)와 실시간 정보(I2)를 독립적으로 전송받는 것으로 이해될 수도 있다. 예를 들어, 비실시간 정보(I1)는 제1 획득부가 전송받고, 실시간 정보(I2)는 제2 획득부가 전송받는 것으로 이해될 수도 있다.Meanwhile, according to one embodiment of the present invention, the acquisition unit (210) may receive non-real-time information (I1) and real-time information (I2) from the server (300) and the device (400), respectively. At this time, it may be understood that the acquisition unit (210) receives the non-real-time information (I1) and real-time information (I2) as a single module, but it may also be understood that the first acquisition unit (not shown) and the second acquisition unit (not shown) included in the acquisition unit (210) independently receive the non-real-time information (I1) and real-time information (I2) as separate modules. For example, it may be understood that the non-real-time information (I1) is received by the first acquisition unit, and the real-time information (I2) is received by the second acquisition unit.
다른 한편, 전술한 바에 따르면 비실시간 정보(I1)에는 측정 공백이 포함될 수 있는데, 이러한 측정 공백은 소정의 처리 과정(이러한 처리 과정은 전처리(preprocessing) 과정에 해당할 수 있음)을 거쳐 유효한 정보(또는 유효한 값)로 대체될 수 있다.On the other hand, as described above, non-real-time information (I1) may include measurement gaps, which may be replaced with valid information (or valid values) through a predetermined processing process (which processing process may correspond to a preprocessing process).
구체적으로, 본 발명의 일 실시예에 따른 획득부(210)는, 비실시간 정보(I1)에 측정 공백이 포함된 것에 대응하여, 적어도 하나의 통계적 방식을 이용하여 해당 측정 공백을 유효한 정보로 대체할 수 있다.Specifically, the acquisition unit (210) according to one embodiment of the present invention can replace the measurement gap with valid information using at least one statistical method in response to the inclusion of a measurement gap in the non-real-time information (I1).
예를 들어, 본 발명의 일 실시예에 따른 획득부(210)는, 측정 공백이 발생한 시점의 이전 시점에 기록된 복수의 생체 신호의 추세, 측정 공백이 발생한 시점의 이후 시점에 기록된 복수의 생체 신호의 추세, 측정 공백이 발생한 시점을 포함하는 소정의 시간 간격 내에 기록된 복수의 생체 신호의 평균 등을 이용하는 것과 같은 방식을 이용하여 측정 공백을 유효한 정보로 대체할 수 있다.For example, the acquisition unit (210) according to one embodiment of the present invention may replace a measurement gap with valid information by using a method such as using a trend of a plurality of bio-signals recorded at a time point prior to the time point at which a measurement gap occurred, a trend of a plurality of bio-signals recorded at a time point after the time point at which a measurement gap occurred, an average of a plurality of bio-signals recorded within a predetermined time interval including the time point at which a measurement gap occurred, etc.
다만, 본 발명의 일 실시예에 따르면, 측정 공백을 유효한 정보로 대체하는 방식이 반드시 상기 열거한 바에 한정되는 것은 아니며, 측정 공백을 해당 측정 공백이 발생한 시점의 직전 시점에 기록된 생체 신호와 동일한 정보로 대체하는 방식(forward fill), 측정 공백을 해당 측정 공백이 발생한 시점의 직후 시점에 기록된 생체 신호와 동일한 정보로 대체하는 방식(backward fill) 등의 다양한 방식이 이용될 수 있음을 밝혀 둔다.However, according to one embodiment of the present invention, the method of replacing a measurement gap with valid information is not necessarily limited to what has been listed above, and it is to be noted that various methods may be used, such as a method of replacing a measurement gap with information identical to a bio-signal recorded at a point in time immediately before the occurrence of the measurement gap (forward fill), and a method of replacing a measurement gap with information identical to a bio-signal recorded at a point in time immediately after the occurrence of the measurement gap (backward fill).
다음으로, 본 발명의 일 실시예에 따른 생성부(220)는, 위와 같이 획득된 비실시간 정보(I1) 및 실시간 정보(I2)에 각각 제1 분류 모델(M1) 및 제2 분류 모델(M2)을 적용하여 비실시간 정보(I1)에 기초한 출력 정보 및 실시간 정보(I2)에 기초한 출력 정보가 생성되도록 할 수 있다.Next, the generation unit (220) according to one embodiment of the present invention can apply the first classification model (M1) and the second classification model (M2) to the non-real-time information (I1) and the real-time information (I2) obtained as described above, respectively, to generate output information based on the non-real-time information (I1) and output information based on the real-time information (I2).
구체적으로, 본 발명의 일 실시예에 따른 생성부(220)는, 제1 분류 모델(M1)에 대한 입력 데이터로써 비실시간 정보(I1)가 입력되도록 할 수 있고, 제2 분류 모델(M2)에 대한 입력 데이터로써 실시간 정보(I2)가 입력되도록 할 수 있다.Specifically, the generation unit (220) according to one embodiment of the present invention can allow non-real-time information (I1) to be input as input data for the first classification model (M1), and can allow real-time information (I2) to be input as input data for the second classification model (M2).
특히, 본 발명의 일 실시예에 따른 생성부(220)는, 제2 분류 모델(M2)에 실시간 정보(I2)가 입력되도록 할 경우, 실시간 정보(I2)를 분할(예컨대 고정된 크기로 분할)하여 시계열적인 요소(sequence)로 구성하고, 이러한 시계열적인 요소가 제2 분류 모델(M2)에 입력되도록 할 수 있다. 여기서, 본 발명의 일 실시예에 따르면, 시계열적인 요소는 실시간 정보(I2)에 비해 저차원으로 구성될 수 있다.In particular, when real-time information (I2) is input to a second classification model (M2), the generation unit (220) according to one embodiment of the present invention can divide the real-time information (I2) (e.g., divide it into fixed sizes) into time-series elements (sequences) and input these time-series elements into the second classification model (M2). Here, according to one embodiment of the present invention, the time-series elements can be configured in a lower dimension than the real-time information (I2).
본 발명의 일 실시예에 따르면, 제1 분류 모델(M1)과 제2 분류 모델(M2)은 상이한 딥러닝(또는 인공지능) 기반 분류 모델에 해당할 수 있다. 예를 들어, 제1 분류 모델(M1)은 순환 신경망(RNN; Recurrent Neural Network) 및 합성곱 신경망(CNN; Convolutional Neural Network) 중 적어도 하나를 기반으로 하는 분류 모델일 수 있고, 제2 분류 모델(M2)은 합성곱 신경망(CNN) 및 비전 트랜스포머(ViT; Vision Transformer) 중 적어도 하나를 기반으로 하는 분류 모델일 수 있다.According to one embodiment of the present invention, the first classification model (M1) and the second classification model (M2) may correspond to different deep learning (or artificial intelligence)-based classification models. For example, the first classification model (M1) may be a classification model based on at least one of a recurrent neural network (RNN) and a convolutional neural network (CNN), and the second classification model (M2) may be a classification model based on at least one of a convolutional neural network (CNN) and a vision transformer (ViT).
한편, 본 발명의 일 실시예에 따르면, 제1 분류 모델(M1)과 제2 분류 모델(M2)은, 상술한 바와 같이 상이한 딥러닝 기반 분류 모델에 해당할 수 있지만, 공통적으로는 심정지 및 사망에 관한 위험도를 생성(또는 출력)하도록 학습된 모델일 수 있다.Meanwhile, according to one embodiment of the present invention, the first classification model (M1) and the second classification model (M2) may correspond to different deep learning-based classification models as described above, but may be models learned in common to generate (or output) a risk of cardiac arrest and death.
구체적으로, 본 발명의 일 실시예에 따르면, 제1 분류 모델(M1)이 비실시간 정보(I1)를 처리한 결과로 비실시간 정보(I1)에 기초한 출력 정보가 생성될 수 있고, 제2 분류 모델(M2)이 실시간 정보(I2)를 처리한 결과로 실시간 정보(I2)에 기초한 출력 정보가 생성될 수 있는데, 제1 분류 모델(M1)과 제2 분류 모델(M2)에서 생성된 각각의 출력 정보는 심정지 및 사망에 관한 위험도를 포함할 수 있다.Specifically, according to one embodiment of the present invention, as a result of processing non-real-time information (I1) by a first classification model (M1), output information based on non-real-time information (I1) may be generated, and as a result of processing real-time information (I2) by a second classification model (M2), output information based on real-time information (I2) may be generated. Each of the output information generated by the first classification model (M1) and the second classification model (M2) may include a risk level regarding cardiac arrest and death.
즉, 본 발명의 일 실시예에 따르면, 제1 분류 모델(M1)과 제2 분류 모델(M2)은 상이한 속성(즉, 비실시간 또는 실시간)을 갖는 정보를 입력받아 동일한 속성을 갖는 정보를 생성할 수 있다.That is, according to one embodiment of the present invention, the first classification model (M1) and the second classification model (M2) can receive information having different attributes (i.e., non-real-time or real-time) and generate information having the same attributes.
다음으로, 본 발명의 일 실시예에 따른 추정부(230)는, 비실시간 정보(I1)에 기초한 출력 정보 및 실시간 정보(I2)에 기초한 출력 정보를 조합하여 피측정자의 심정지 및 사망 중 적어도 하나에 관한 위험도를 최종적으로 추정하는 기능을 수행할 수 있다.Next, the estimation unit (230) according to one embodiment of the present invention can perform a function of finally estimating the risk of at least one of cardiac arrest and death of the subject by combining output information based on non-real-time information (I1) and output information based on real-time information (I2).
구체적으로, 본 발명의 일 실시예에 따른 추정부(230)는, 제1 분류 모델(M1)과 제2 분류 모델(M2)에서 생성된 각각의 출력 정보를 조합(또는 제1 분류 모델(M1)과 제2 분류 모델(M2)을 조합)하는 앙상블 모델(M3)이 피측정자의 심정지 및 사망 중 적어도 하나에 관한 위험도를 추정하도록 할 수 있다.Specifically, the estimation unit (230) according to one embodiment of the present invention can allow an ensemble model (M3) that combines each output information generated from the first classification model (M1) and the second classification model (M2) (or combines the first classification model (M1) and the second classification model (M2)) to estimate the risk of at least one of cardiac arrest and death of the subject.
예를 들어, 본 발명의 일 실시예에 따른 추정부(230)는, 앙상블 모델(M3)이 제1 분류 모델(M1)에서 출력되는 정보(즉, 비실시간 정보(I1)에 기초한 출력 정보)와 제2 분류 모델(M2)에서 출력되는 정보(즉, 실시간 정보(I2)에 기초한 출력 정보)에 대해 보팅(voting) 등의 방식을 이용하여 피측정자의 심정지 및 사망 중 적어도 하나에 관한 위험도를 추정하도록 할 수 있다.For example, the estimation unit (230) according to one embodiment of the present invention may estimate the risk of at least one of cardiac arrest and death of the subject by using a method such as voting on information output from the first classification model (M1) (i.e., output information based on non-real-time information (I1)) and information output from the second classification model (M2) (i.e., output information based on real-time information (I2)).
본 발명의 일 실시예에 따르면, 도 3에서는 제1 분류 모델(M1)과 제2 분류 모델(M2)의 후단에 앙상블 모델(M3)이 배치되는 것으로 도시되었으나, 앙상블 모델(M3)에 제1 분류 모델(M1)과 제2 분류 모델(M2)이 포함되는 것으로 이해될 수도 있다.According to one embodiment of the present invention, although the ensemble model (M3) is depicted as being placed after the first classification model (M1) and the second classification model (M2) in FIG. 3, it may be understood that the ensemble model (M3) includes the first classification model (M1) and the second classification model (M2).
계속해서, 본 발명의 일 실시예에 따른 추정부(230)는, 앙상블 모델(M3)에서 추정된 각 위험도를 소정 범위 내의 스코어로 변환하여 출력할 수 있다.Continuing, the estimation unit (230) according to one embodiment of the present invention can convert each risk estimated from the ensemble model (M3) into a score within a predetermined range and output it.
구체적으로, 본 발명의 일 실시예에 따르면, 앙상블 모델(M3)에서 추정된 각 위험도는 확률 형태로 표현될 수 있는데, 추정부(230)는 이와 같이 확률 형태로 표현된 각 위험도를 스코어 형태로 변환하여 심정지 위험도에 관한 스코어(S1) 및 사망 위험도에 관한 스코어(S2)로 출력할 수 있다.Specifically, according to one embodiment of the present invention, each risk estimated in the ensemble model (M3) can be expressed in the form of a probability, and the estimation unit (230) can convert each risk expressed in the form of a probability into the form of a score and output it as a score (S1) regarding the risk of cardiac arrest and a score (S2) regarding the risk of death.
여기서, 본 발명의 일 실시예에 따르면, 추정부(230)에 의해 변환된 스코어는 0 내지 100 사이로 설정되는 범위 내에서 특정한 값으로 변환될 수 있으나, 그 범위가 반드시 상술한 범위에 한정되는 것은 아니며 본 발명의 목적을 달성할 수 있는 범위 내에서 다양하게 변경될 수 있음을 밝혀 둔다.Here, according to one embodiment of the present invention, the score converted by the estimation unit (230) can be converted to a specific value within a range set between 0 and 100, but it should be noted that the range is not necessarily limited to the above-described range and can be variously changed within a range that can achieve the purpose of the present invention.
다음으로, 본 발명의 일 실시예에 따른 통신부(240)는 획득부(210), 생성부(220) 및 추정부(230)로부터의/로의 데이터 송수신이 가능하도록 하는 기능을 수행할 수 있다.Next, the communication unit (240) according to one embodiment of the present invention can perform a function that enables data transmission and reception from/to the acquisition unit (210), the generation unit (220), and the estimation unit (230).
마지막으로, 본 발명의 일 실시예에 따른 제어부(250)는 획득부(210), 생성부(220), 추정부(230) 및 통신부(240) 간의 데이터의 흐름을 제어하는 기능을 수행할 수 있다. 즉, 본 발명의 일 실시예에 따른 제어부(250)는 추정 시스템(200)의 외부로부터의/로의 데이터 흐름 또는 추정 시스템(200)의 각 구성요소 간의 데이터 흐름을 제어함으로써, 획득부(210), 생성부(220), 추정부(230) 및 통신부(240)에서 각각 고유 기능을 수행하도록 제어할 수 있다.Finally, the control unit (250) according to one embodiment of the present invention can perform a function of controlling the flow of data between the acquisition unit (210), the generation unit (220), the estimation unit (230), and the communication unit (240). That is, the control unit (250) according to one embodiment of the present invention can control the flow of data from/to the outside of the estimation system (200) or the flow of data between each component of the estimation system (200), thereby controlling the acquisition unit (210), the generation unit (220), the estimation unit (230), and the communication unit (240) to perform their own functions.
이상 설명된 본 발명에 따른 실시예는 다양한 컴퓨터 구성요소를 통하여 실행될 수 있는 프로그램 명령어의 형태로 구현되어 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 컴퓨터 판독 가능한 기록 매체에 기록되는 프로그램 명령어는 본 발명을 위하여 특별히 설계되고 구성된 것이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수 있다. 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등과 같은, 프로그램 명령어를 저장하고 실행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령어의 예에는, 컴파일러에 의하여 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용하여 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함된다. 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위하여 하나 이상의 소프트웨어 모듈로 변경될 수 있으며, 그 역도 마찬가지이다.The embodiments of the present invention described above may be implemented in the form of program commands that can be executed through various computer components and recorded on a computer-readable recording medium. The computer-readable recording medium may include program commands, data files, data structures, etc., alone or in combination. The program commands recorded on the computer-readable recording medium may be those specially designed and configured for the present invention or those known and available to those skilled in the art of computer software. Examples of the computer-readable recording medium include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical recording media such as CD-ROMs and DVDs, magneto-optical media such as floptical disks, and hardware devices specially configured to store and execute program commands, such as ROMs, RAMs, and flash memories. Examples of the program commands include not only machine language codes generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter, etc. The hardware devices may be changed into one or more software modules to perform processing according to the present invention, and vice versa.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항과 한정된 실시예 및 도면에 의하여 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위하여 제공된 것일 뿐, 본 발명이 상기 실시예에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정과 변경을 꾀할 수 있다.Although the present invention has been described above with reference to specific details such as specific components and limited examples and drawings, these have been provided only to help a more general understanding of the present invention, and the present invention is not limited to the above examples, and those with common knowledge in the technical field to which the present invention pertains may make various modifications and changes based on this description.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 또는 이로부터 등가적으로 변경된 모든 범위는 본 발명의 사상의 범주에 속한다고 할 것이다.Therefore, the idea of the present invention should not be limited to the embodiments described above, and not only the scope of the patent claims described below but also all scopes equivalent to or equivalently modified from the scope of the patent claims are included in the scope of the idea of the present invention.
Claims (13)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020230097000A KR102681050B1 (en) | 2023-07-25 | 2023-07-25 | Method and system for estimating risk of cardiac arrest and death |
| KR10-2023-0097000 | 2023-07-25 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025023629A1 true WO2025023629A1 (en) | 2025-01-30 |
Family
ID=91948931
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/KR2024/010396 Pending WO2025023629A1 (en) | 2023-07-25 | 2024-07-18 | Method and system for estimating risk of cardiac arrest and death |
Country Status (2)
| Country | Link |
|---|---|
| KR (1) | KR102681050B1 (en) |
| WO (1) | WO2025023629A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102681050B1 (en) * | 2023-07-25 | 2024-07-05 | 주식회사 휴이노에임 | Method and system for estimating risk of cardiac arrest and death |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20180110310A (en) * | 2017-03-28 | 2018-10-10 | 한국전자통신연구원 | System and method for predicting and analysis stroke |
| KR20200069212A (en) * | 2018-12-06 | 2020-06-16 | 한국전자통신연구원 | Device for ensembling data received from prediction devices and operating method thereof |
| KR20200075477A (en) * | 2018-12-18 | 2020-06-26 | 연세대학교 산학협력단 | Methods for pedicting mortality risk and devices for pedicting mortality risk using the same |
| KR20220095949A (en) * | 2020-12-30 | 2022-07-07 | 재단법인 아산사회복지재단 | Method of multivariate missing value imputation in electronic medical records |
| KR102681050B1 (en) * | 2023-07-25 | 2024-07-05 | 주식회사 휴이노에임 | Method and system for estimating risk of cardiac arrest and death |
-
2023
- 2023-07-25 KR KR1020230097000A patent/KR102681050B1/en active Active
-
2024
- 2024-07-18 WO PCT/KR2024/010396 patent/WO2025023629A1/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20180110310A (en) * | 2017-03-28 | 2018-10-10 | 한국전자통신연구원 | System and method for predicting and analysis stroke |
| KR20200069212A (en) * | 2018-12-06 | 2020-06-16 | 한국전자통신연구원 | Device for ensembling data received from prediction devices and operating method thereof |
| KR20200075477A (en) * | 2018-12-18 | 2020-06-26 | 연세대학교 산학협력단 | Methods for pedicting mortality risk and devices for pedicting mortality risk using the same |
| KR20220095949A (en) * | 2020-12-30 | 2022-07-07 | 재단법인 아산사회복지재단 | Method of multivariate missing value imputation in electronic medical records |
| KR102681050B1 (en) * | 2023-07-25 | 2024-07-05 | 주식회사 휴이노에임 | Method and system for estimating risk of cardiac arrest and death |
Also Published As
| Publication number | Publication date |
|---|---|
| KR102681050B1 (en) | 2024-07-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102886070B1 (en) | Method, system and non-transitory computer-readable recording medium for estimating arrhythmia by using artificial neural network | |
| Gradl et al. | Real-time ECG monitoring and arrhythmia detection using Android-based mobile devices | |
| KR20140063100A (en) | Apparatus and methods for remote cardiac disease management | |
| WO2016195366A1 (en) | Device for predicting venticular arrhythmia and method therefor | |
| US11426113B2 (en) | System and method for the prediction of atrial fibrillation (AF) | |
| CN108523879A (en) | A kind of electrocardiogram detection system and detection method | |
| WO2022059989A1 (en) | Method for predicting medical event from electronic medical record by using pre-trained artificial neural network, and apparatus therefor | |
| WO2025023629A1 (en) | Method and system for estimating risk of cardiac arrest and death | |
| WO2023022521A9 (en) | Electrocardiogram reading system in which deep learning-based model and rule-based model are integrated | |
| WO2023022507A1 (en) | Method for generating synchronous electrocardiograms on basis of two lead asynchronous electrocardiograms | |
| WO2025143713A1 (en) | System for estimating emotion and stress index from brainwave signals and facial image | |
| WO2024049052A1 (en) | Method, system, and non-transitory computer-readable recording medium for estimating arrhythmia by using composite artificial neural network | |
| WO2023048502A1 (en) | Method, program, and device for diagnosing thyroid dysfunction on basis of electrocardiogram | |
| WO2022131698A1 (en) | Method, server, device, and non-transitory computer-readable recording medium for monitoring biosignals using wearable device | |
| WO2022177330A1 (en) | Non-face-to-face health management system using wearable device and non-face-to-face health management method using same | |
| WO2022085972A1 (en) | Photoplethysmography-based real-time blood pressure monitoring system using convolutional·bidirectional short- and long-term memory recurrent neural network, and real-time blood pressure monitoring method using same | |
| WO2020091229A1 (en) | Method and system for recognizing arrhythmia by using artificial neural networks, and non-transitory computer-readable recording medium | |
| WO2016144094A1 (en) | Method, system, and non-transitory computer-readable recording medium for measuring multiple bio-signals | |
| Augustyniak | Remotely programmable architecture of a multi-purpose physiological recorder | |
| Liu et al. | Real-time health monitoring system based on wearable devices | |
| CN118352055A (en) | Remote nursing method and system for child internal medicine patient | |
| WO2023022516A1 (en) | Method for generating multiple pieces of standard electrocardiogram data on basis of deep learning algorithm | |
| WO2025230144A1 (en) | Method and system for labeling biosignal data using inference model | |
| WO2025187995A1 (en) | Method and system for providing analysis information related to bio-signal data | |
| WO2023287118A1 (en) | Method, system, and non-transitory computer-readable recording medium for managing output data of analysis model for bio-signal |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24845931 Country of ref document: EP Kind code of ref document: A1 |