WO2025094795A1 - Diagnostic method, program, and diagnostic system - Google Patents
Diagnostic method, program, and diagnostic system Download PDFInfo
- Publication number
- WO2025094795A1 WO2025094795A1 PCT/JP2024/037788 JP2024037788W WO2025094795A1 WO 2025094795 A1 WO2025094795 A1 WO 2025094795A1 JP 2024037788 W JP2024037788 W JP 2024037788W WO 2025094795 A1 WO2025094795 A1 WO 2025094795A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- state
- data
- condition
- satisfied
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
Definitions
- This disclosure relates to a diagnostic method for diagnosing the condition of a continuously operating device.
- Patent document 1 discloses a technology that uses operation history to diagnose the state of a device.
- a device that operates continuously such as a refrigerator
- certain controls such as controls to cool the interior of the refrigerator (e.g., controls to drive the compressor or open the damper) are performed continuously at irregular times that vary according to the temperature inside the refrigerator.
- the number of times the above-mentioned certain controls are performed for each fixed period may vary, and the results of compiling the operation history for each fixed period (e.g., the number of times temperature increases occurred or the number of times cooling occurred) may also vary. In such cases, it becomes difficult to accurately diagnose the condition of the device.
- the present disclosure provides a diagnostic method that makes it easier to accurately diagnose the condition of the device.
- the diagnostic method is a diagnostic method for diagnosing the state of a continuously operating device, and includes a collection step of collecting data for diagnosing the state of the device, the data being data spanning a predetermined period; a time determination step of determining, based on the data, each of the times at which a specific condition related to the device changes from an unsatisfied state to an satisfied state, the condition occurring continuously at irregular times during the predetermined period; a setting step of dividing the predetermined period by the time to generate a plurality of intervals that are consecutive in time, and setting each of the generated intervals as an aggregation interval that is an aggregation unit of the data; a generation step of generating diagnostic data by aggregating values of the control target of the device contained in the data for each of the plurality of aggregation intervals during the predetermined period; a state determination step of determining whether the state of the device is normal in each of the plurality of aggregation intervals based on the diagnostic data; and a diagnosis step of diagnosing
- the program disclosed herein is a program for causing a computer to execute the above diagnostic method.
- the diagnostic system is a diagnostic system for diagnosing the state of a continuously operating device, and includes a collection unit that collects data for diagnosing the state of the device, the data being data spanning a predetermined period; a time determination unit that determines, based on the data, the times at which a specific condition related to the device changes from an unsatisfied state to an satisfied state, the conditions occurring continuously at irregular times during the predetermined period; a setting unit that divides the predetermined period by the time to generate a plurality of time intervals that are consecutive in time, and sets each of the generated intervals as an aggregation interval that is an aggregation unit of the data; a generation unit that generates diagnostic data by aggregating values of the control target of the device contained in the data for each of the plurality of aggregation intervals during the predetermined period; a state determination unit that determines whether the state of the device is normal in each of the plurality of aggregation intervals based on the diagnostic data; and a diagnosis unit that diagnoses
- the diagnostic method disclosed herein makes it easier to accurately diagnose the condition of the device.
- FIG. 1 illustrates an example of a configuration of a diagnostic system according to an embodiment.
- 4 is a flowchart showing an example of an operation of the diagnostic system according to the embodiment.
- FIG. 2 is a diagram illustrating an example of the operation of the diagnostic system according to the embodiment.
- FIG. 13 illustrates an example of data for each time window.
- FIG. 13 is a diagram illustrating an example of data for each time window when a chronic defect occurs.
- FIG. 1 is a diagram showing an example of the configuration of a diagnostic system 100 according to an embodiment. In addition to the diagnostic system 100, FIG. 1 also shows a device 200.
- the diagnostic system 100 is a system for diagnosing the state of the device 200 that operates continuously.
- the device 200 is basically a device that operates all the time, such as a refrigerator.
- the refrigerator executes specific controls such as control to cool the inside of the refrigerator (for example, control to drive the compressor or open the damper) in order to keep the inside temperature constant.
- specific controls are started when the inside temperature exceeds a target temperature range and end when the inside temperature falls below the target temperature range, and are therefore executed continuously (for example, every tens of minutes) at irregular times that vary depending on the inside temperature.
- the specific control may also be control to warm the inside of the refrigerator (for example, control to defrost), in which case the specific control is started when a time equal to a parameter set according to the outside air temperature has elapsed since the start of the previous control, and ends when the outside air temperature exceeds a specific temperature.
- the device 200 executes the specific control continuously at irregular times while it is operating continuously.
- the diagnostic system 100 comprises a collection unit 10, a time determination unit 20, a setting unit 30, a generation unit 40, a status determination unit 50, and a diagnosis unit 60.
- the diagnostic system 100 is a computer including a processor (microprocessor) and a memory.
- the memory is a ROM (Read Only Memory) and a RAM (Random Access Memory), etc., and can store programs executed by the processor.
- the collection unit 10, the time determination unit 20, the setting unit 30, the generation unit 40, the status determination unit 50, and the diagnosis unit 60 are realized by a processor that executes programs stored in the memory, etc.
- the diagnostic system 100 may be a computer (device) in a single housing, or a system made up of multiple computers.
- the diagnostic system 100 may be a server. Note that the components of the diagnostic system 100 may be located in a single server, or may be distributed across multiple servers. In addition, for example, the diagnostic system 100 may be mounted on the device 200.
- the collection unit 10 collects data for a predetermined period of time for diagnosing the state of the device 200.
- the data for diagnosing the state of the device 200 is hereinafter also referred to as original data.
- the collection unit 10 collects original data for two days.
- the original data is data measured in the device 200 at regular intervals (for example, five minutes).
- the original data includes information such as the temperature inside the refrigerator (the temperature of the refrigerator compartment, vegetable compartment, freezer compartment, etc.), the compressor frequency, the open/closed state of the damper, and the operating state of the defroster.
- the diagnosis system 100 is equipped with a communication interface, and the diagnosis system 100 receives the original data from the device 200 wirelessly or via a wired connection, allowing the collection unit 10 to collect the data.
- the time determination unit 20 determines, based on the original data, the times at which a specific condition related to the device 200 changes from an unsatisfied state to a satisfied state, which occur continuously at irregular timings during a predetermined period (hereinafter also referred to as the times at which the specific condition is satisfied).
- the specific condition may be a condition such as a specific control being performed as shown in the above-mentioned operation example of the device 200, a condition such as a specific operation being performed by the user, or a condition such as the temperature inside the storage unit being equal to or higher than a predetermined temperature.
- the times at which the specific condition is satisfied are the start or end times of control to drive the compressor, control to open the damper, or control to defrost.
- the time determination unit 20 can determine the timing at which the compressor frequency changes from 0 Hz to 1 Hz or more as the start time of control to drive the compressor, the timing at which the damper opens as the start time of control to open the damper, and the timing at which defrosting starts as the start time of defrost control. In addition, by analyzing the original data, the time determination unit 20 can determine the timing when the compressor frequency changes from 1 Hz or more to 0 Hz as the end time of control to drive the compressor, the timing when the damper closes as the end time of control to open the damper, and the timing when defrosting ends as the end time of defrost control.
- the start time or end time is determined according to the irregular timing that varies depending on the temperature inside the refrigerator.
- the setting unit 30 divides a specified period by times that occur consecutively at irregular times during the specified period, as determined by the time determination unit 20, to generate a number of consecutive intervals, and sets each of the generated intervals as an aggregation interval, which is an aggregation unit of the original data.
- the generated intervals are arranged so that intervals between adjacent times are consecutively arranged in time during the specified period. For example, a specific condition is satisfied when the inside temperature exceeds a target temperature range, is no longer satisfied when it falls below the target temperature range, and is satisfied when the inside temperature subsequently exceeds the target temperature range, so that the interval between adjacent start times is the period from when the specific condition is satisfied until the next time the specific condition is satisfied. In other words, one aggregation interval is set corresponding to the period during which the specific condition is satisfied.
- the length of each of the multiple aggregation intervals in a given period is not fixed and may differ from the length of each of the other aggregation intervals.
- the generating unit 40 generates diagnostic data by aggregating the values of the control object of the device 200 included in the original data for each of a plurality of aggregation intervals in a predetermined period.
- the value of the control object of the device 200 is the inside temperature
- the generating unit 40 generates the result of aggregating the inside temperature for each of a plurality of aggregation intervals as diagnostic data.
- the aggregation process is a process of calculating a statistic (such as an average, median, maximum, or minimum value) of the values of the control object in the aggregation time interval, or a process of calculating the amount of change.
- the aggregation process may be performed on the values of the control object in a portion of the aggregation time interval. In other words, the aggregation process does not necessarily have to be performed on the values of the control object in the entire aggregation time interval.
- the aggregation process may be performed on the values of the control object of the device 200 between the time when a specific condition changes from an unsatisfied state to a satisfied state and the time when the specific condition changes from a satisfied state to an unsatisfied state (hereinafter also referred to as from the time when a specific condition is satisfied to the time when the specific condition is unsatisfied), or may be performed on the values of the control object of the device 200 between the time when a specific condition changes from a satisfied state to an unsatisfied state and the time when the specific condition next changes from an unsatisfied state to a satisfied state (hereinafter also referred to as from the time when a specific condition is unsatisfied to the time when the specific condition is next satisfied).
- the status determination unit 50 determines whether the status of the device 200 is normal in each of the multiple counting time periods based on the diagnostic data. The operation of the status determination unit 50 will be described in detail later.
- the diagnosis unit 60 diagnoses the state of the device 200 based on the results of the determination by the state determination unit 50 for a number of consecutive counting time periods among the number of counting time periods. Details of the operation of the diagnosis unit 60 will be described later.
- FIG. 2 is a flowchart showing an example of the operation of the diagnostic system 100 according to the embodiment. Since the diagnostic method according to the embodiment is a method executed by the diagnostic system 100, FIG. 2 is also a flowchart showing an example of the diagnostic method according to the embodiment.
- the operation of the collection unit 10 corresponds to the collection step in the diagnostic method
- the operation of the time determination unit 20 corresponds to the time determination step in the diagnostic method
- the operation of the setting unit 30 corresponds to the setting step in the diagnostic method
- the operation of the generation unit 40 corresponds to the generation step in the diagnostic method
- the operation of the state determination unit 50 corresponds to the state determination step in the diagnostic method
- the operation of the diagnosis unit 60 corresponds to the diagnosis step in the diagnostic method.
- FIG. 3 is a diagram showing a schematic example of the operation of the diagnostic system 100 according to the embodiment.
- the collection unit 10 collects raw data over a predetermined period of time (step S11). For example, if the device 200 measures data every 5 minutes and the collection unit 10 collects raw data over a 300-minute period, the collection unit 10 collects raw data with a sequence length (number of data points) of 60, as shown in FIG. 3.
- the time determination unit 20 determines, based on the original data, each time a specific condition is satisfied (start time), which occurs consecutively at irregular times during a specified period of time in the device 200 (step S12). For example, the time when a specific condition is satisfied is the time when the compressor frequency goes from 0 Hz to 1 Hz or higher. For example, if the time determination unit 20 analyzes the original data and determines that the compressor frequency goes from 0 Hz to 1 Hz or higher five times during a specified period (e.g., 300 minutes), it determines each of the five times as the start time of control to operate the compressor.
- start time is the time when a specific condition is satisfied. For example, if the time determination unit 20 analyzes the original data and determines that the compressor frequency goes from 0 Hz to 1 Hz or higher five times during a specified period (e.g., 300 minutes), it determines each of the five times as the start time of control to operate the compressor.
- the setting unit 30 divides the predetermined period by the start time to generate multiple chronologically consecutive intervals, and sets each of the multiple intervals between the generated start times as an aggregation interval, which is an aggregation unit of the original data (step S13). For example, as shown in FIG. 3, the setting unit 30 sets the interval from the start time of the control executed for operating the compressor for a certain period of time that is executed for the first time in the predetermined period to the start time of the control of operating the compressor for a certain period of time that is executed for the second time as aggregation interval 1 with a series length of 10. Similarly, the setting unit 30 sets aggregation interval 2 with a series length of 12, aggregation interval 3 with a series length of 20, aggregation interval 4 with a series length of 8, and aggregation interval 5 with a series length of 10.
- the start time of a specific control to be determined in order to set the aggregation interval is determined according to the type of abnormality being diagnosed. Specifically, if the diagnosis target is an abnormality in device 200 related to the temperature inside the refrigerator, the start time of control to cool the refrigerator (e.g., control to drive the compressor or open the damper) or control to heat the refrigerator (e.g., control to defrost) is determined, and the aggregation interval is set according to that start time.
- the diagnosis target is an abnormality in device 200 related to the temperature inside the refrigerator
- the start time of control to cool the refrigerator e.g., control to drive the compressor or open the damper
- control to heat the refrigerator e.g., control to defrost
- the generating unit 40 generates diagnostic data by aggregating values of the control targets of the device 200 included in the original data for each of a plurality of aggregation time periods in a predetermined period (step S14). For example, as shown in FIG. 3, the generating unit 40 aggregates the internal temperature and the like for each of aggregation time periods 1 to 5, and generates diagnostic data with a sequence length of 5.
- the diagnostic data includes, for each of a number of aggregation intervals in a specified period, a change amount when a condition is met, which is the amount of change in the value of the controlled object of the device 200 between the time when a specific condition is met (e.g., the start time of a specific control) and the time when the specific condition is no longer met (e.g., the end time of the specific control that started at the start time).
- the change amount when a condition is met is the difference between the value of the controlled object at the start time and the value of the controlled object at the end time.
- the change amount when a condition is met is the amount of change in the temperature inside the cabinet while the compressor is operating or the amount of change in the temperature inside the cabinet while the damper is open.
- the diagnostic data includes, for each of a plurality of counting intervals, the amount of change when a condition is not met, which is the amount of change in the value of the controlled object of device 200 between the time when a specific condition is no longer met (e.g., the end time of a specific control) and the time when the specific condition is next met (the start time of a specific control in the next counting interval).
- the amount of change when a condition is not met is the difference between the value of the controlled object measured by device 200 immediately after the end time (e.g., 5 minutes later) and the value of the controlled object measured by device 200 immediately before the start time of the next counting interval (e.g., 5 minutes before).
- the amount of change when a condition is not met is the amount of change in the temperature inside the cabinet while the compressor is stopped or the amount of change in the temperature inside the cabinet while the damper is closed.
- the diagnostic data includes, for each of a plurality of time intervals, statistics of the values of the control object of the device 200 during the time interval.
- the statistics are the average, median, maximum, or minimum value of the values of the control object of the device 200 during the time interval.
- the type of tallying process to be performed is determined according to the type of abnormality to be diagnosed. Specifically, when a tallying period corresponding to control for cooling the inside of the cabinet is set, tallying processes are performed to calculate the amount of change when the condition is met when diagnosing an abnormality in which the inside temperature does not decrease, tallying processes are performed to calculate the amount of change when the condition is not met when diagnosing an abnormality in which the inside temperature does not increase, and tallying processes are performed to calculate statistics when diagnosing an abnormality in which the inside temperature is too high or too low.
- the state determination unit 50 determines whether the state of the device 200 is normal in each of the multiple counting intervals based on the diagnostic data (step S15). For example, the state determination unit 50 determines whether the state of the device 200 is normal in each counting interval by comparing the diagnostic data with the expected data for each counting interval.
- the expected data is data expected when a specific condition is satisfied, in other words, data expected when a specific control is executed. For example, it is possible to estimate how the value of the control target will change when a specific control is executed when the device 200 is normal, and it is possible to generate expected data expected when the specific control is executed for each counting interval.
- the diagnostic data by comparing the diagnostic data with the expected data expected when a specific condition is satisfied, it is possible to easily determine whether the counting result in the counting interval corresponding to the specific control is as expected, for example, when a specific control is executed in a certain period in which a specific condition is satisfied.
- the value of the control target may change depending on the value of the control target in the previous counting interval, so the expected data is also data that may change dynamically for each counting interval. In other words, the expected data is generated by estimation for each counting interval.
- the state determination unit 50 may determine whether the state of the device 200 in a counting time interval is normal by comparing (for example, by comparing for each counting time interval) the amount of change when the condition is met with the expected data corresponding to the amount of change when the condition is met that is expected when a specific condition is met (i.e., when a specific control is started).
- the state determination unit 50 may determine whether the state of the device 200 in the tabulation time interval is normal by comparing (for example, by comparing for each tabulation time interval) the amount of change when the condition is not met with the expected data corresponding to the amount of change when the condition is not met that is expected after the specific condition is no longer met (i.e. after the specific control is ended).
- the state determination unit 50 may determine whether the state of the device 200 in the counting interval is normal by comparing the statistics with expected data corresponding to the statistics expected when a specific condition is satisfied (for example, by comparing for each counting interval). By comparing the statistics with the expected data corresponding to the statistics, it is possible to determine whether the state of the device 200 in the counting interval is normal.
- the diagnosis unit 60 diagnoses the state of the device 200 based on the results of the determination by the state determination unit 50 for multiple consecutive time periods among the multiple time periods (step S16).
- the diagnostic unit 60 may diagnose the state of the device 200 based on the number of consecutive counting time windows determined to be abnormal. For example, the diagnostic unit 60 diagnoses the device 200 as having a chronic abnormality when the number of consecutive counting time windows determined to be abnormal is equal to or greater than a predetermined number.
- the predetermined number is not particularly limited. For example, when the predetermined number is three, counting time windows 1 and 2 shown in FIG. 3 are determined to be normal, and counting time windows 3 to 5 are determined to be abnormal, the number of consecutive counting time windows determined to be abnormal is three, and the diagnostic unit 60 diagnoses the device 200 as having a chronic abnormality. In this way, when the number of consecutive counting time windows determined to be abnormal is large, it can be diagnosed that a chronic defect has occurred.
- the diagnostic unit 60 diagnoses that a temporary increase in load has occurred on the device 200, such as when the refrigerator door is opened.
- the diagnostic unit 60 may diagnose the condition of the device 200 based on the duration of consecutive counting intervals determined to be abnormal. For example, the diagnostic unit 60 diagnoses the device 200 as having a chronic abnormality when the duration of consecutive counting intervals determined to be abnormal is equal to or longer than a predetermined time.
- the predetermined time is not particularly limited. For example, when the predetermined time is 180 minutes, counting intervals 1 and 2 shown in FIG. 3 are determined to be normal, and counting intervals 3 to 5 are determined to be abnormal, the duration of consecutive counting intervals determined to be abnormal is 190 minutes (series length 38 x 5 minutes), and the diagnostic unit 60 diagnoses the device 200 as having a chronic abnormality.
- the duration of consecutive counting intervals determined to be abnormal is long, it can be diagnosed that a chronic malfunction has occurred. For example, if time windows 1, 2, 4, and 5 shown in FIG. 3 are determined to be normal, and time window 3 is determined to be abnormal, the duration of the time windows determined to be abnormal is 100 minutes (sequence length 20 x 5 minutes), and the diagnoser 60 diagnoses that a temporary increase in load has occurred on the device 200, such as when the refrigerator door is opened.
- FIG 4 shows an example of data for each counting interval. Data for six consecutive counting intervals is shown in Figure 4.
- the shaded areas are periods during which specific control was performed to cool the interior of the storage unit (hereafter referred to as cooling periods).
- the length of the cooling period, the maximum temperature, and the minimum temperature are stable, and the condition of the device 200 can be diagnosed as normal.
- the cooling period is longer, and the maximum temperature is higher, and the condition of the device 200 can be diagnosed as normal.
- the length of the cooling period is stable, and the minimum temperature is higher, and the condition of the device 200 can be diagnosed as normal.
- Figure 5 shows an example of data for each aggregation period when a chronic defect occurs.
- the shaded areas are cooling periods, just like Figure 4.
- one aggregation interval is set corresponding to a period during which a specific condition is satisfied, and the values of the control target of the device 200 are aggregated for each of the multiple aggregation intervals that have been set. Therefore, for example, when a specific control is executed during a period during which a specific condition is satisfied, it becomes easy to determine whether the aggregation result in the aggregation interval corresponding to the specific control is as expected, that is, whether the state of the device 200 is normal. Furthermore, by using the results of the determination for multiple consecutive aggregation intervals, it becomes possible to diagnose whether a temporary increase in load has occurred, whether a chronic defect has occurred, and so on. In this way, it becomes easy to accurately diagnose the state of the device 200.
- the present disclosure can be realized as a program for causing a computer (processor) to execute the steps included in the diagnostic method.
- the present disclosure can be realized as a non-transitory computer-readable recording medium, such as a CD-ROM, on which the program is recorded.
- each step is performed by running the program using hardware resources such as a computer's CPU, memory, and input/output circuits.
- hardware resources such as a computer's CPU, memory, and input/output circuits.
- each step is performed by the CPU obtaining data from memory or input/output circuits, etc., performing calculations, and outputting the results of the calculations to memory or input/output circuits, etc.
- each component included in diagnostic system 100 may be configured with dedicated hardware, or may be realized by executing a software program suitable for each component.
- Each component may be realized by a program execution unit such as a CPU or processor reading and executing a software program recorded on a recording medium such as a hard disk or semiconductor memory.
- LSI is an integrated circuit. These may be individually integrated into a single chip, or may be integrated into a single chip that includes some or all of the functions. Furthermore, the integrated circuit is not limited to an LSI, and may be realized using a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connections and settings of circuit cells inside the LSI may also be used.
- FPGA Field Programmable Gate Array
- each component included in the diagnostic system 100 may be integrated using that technology.
- this disclosure also includes forms obtained by applying various modifications to the embodiments that a person skilled in the art may conceive, and forms realized by arbitrarily combining the components and functions of each embodiment within the scope that does not deviate from the spirit of this disclosure.
- a diagnostic method for diagnosing the state of a continuously operating device including: a collection step of collecting data for diagnosing the state of the device over a predetermined period of time; a time determination step of determining, based on the data, a time at which a specific condition related to the device changes from an unsatisfied state to an satisfied state, the condition occurring continuously at irregular times during the predetermined period of time; a setting step of dividing the predetermined period by the time to generate a plurality of intervals that are consecutive in time, and setting each of the generated intervals as an aggregation interval that is an aggregation unit of the data; a generation step of generating diagnostic data by aggregating values of the control target of the device contained in the data for each of the plurality of aggregation intervals during the predetermined period of time; a state determination step of determining, based on the diagnostic data, whether the state of the device is normal in each of the plurality of aggregation intervals; and a diagnosis step of diagnosing the state
- one aggregation interval is set corresponding to a period in which a specific condition is satisfied, and the values of the controlled object of the equipment are aggregated for each of the multiple aggregation intervals that have been set. For example, when a specific control is executed in a period in which a specific condition is satisfied, it becomes easy to determine whether the aggregation result in the aggregation interval corresponding to the specific control is as expected, that is, whether the condition of the equipment is normal. Furthermore, by using the results of the judgment for multiple consecutive aggregation intervals, it is possible to diagnose whether a temporary increase in load has occurred, whether a chronic defect has occurred, and so on. In this way, the diagnostic method disclosed herein makes it easy to accurately diagnose the condition of the equipment.
- the diagnostic method described in Technology 1 diagnoses the state of the device based on the duration of the counting intervals determined to be abnormal.
- the diagnostic method described in any one of techniques 1 to 3 determines whether the state of the device in the aggregation period is normal by comparing the diagnostic data with assumed data that is expected when the specific condition is satisfied.
- the diagnostic data includes, for each of the multiple aggregation intervals, a change amount when a condition is met, which is the amount of change in the value of the controlled object of the device between the time when the specific condition changes from an unsatisfied state to a satisfied state and the time when the specific condition changes from a satisfied state to an unsatisfied state, and in the state determination step, the change amount when the condition is met is compared with expected data corresponding to the change amount when the condition is met that is expected when the specific condition is satisfied, thereby determining whether the state of the device in the aggregation interval is normal or not.
- the diagnostic data includes, for each of the multiple aggregation intervals, a change amount when a condition is not met, which is the amount of change in the value of the controlled object of the device between the time when the specific condition changes from a satisfied state to an unsatisfied state and the next time when the specific condition changes from an unsatisfied state to a satisfied state, and in the state determination step, the change amount when a condition is not met is compared with expected data corresponding to the change amount when a condition is not met that is expected after the specific condition is no longer satisfied, thereby determining whether the state of the device in the aggregation interval is normal or not.
- the diagnostic method disclosed herein makes it easier to accurately diagnose the condition of a refrigerator.
- a diagnostic system for diagnosing the state of a continuously operating device comprising: a collection unit that collects data for diagnosing the state of the device, the data being data spanning a predetermined period; a time determination unit that determines, based on the data, times at which specific conditions related to the device are satisfied, which occur continuously at irregular times during the predetermined period; a setting unit that divides the predetermined period by the time to generate a plurality of time intervals that are consecutive in time, and sets each of the generated intervals as an aggregation interval that is an aggregation unit for the data; a generation unit that generates diagnostic data by aggregating values of the control target of the device contained in the data for each of the plurality of aggregation intervals during the predetermined period; a state determination unit that determines, based on the diagnostic data, whether the state of the device is normal in each of the plurality of aggregation intervals; and a diagnosis unit that diagnoses the state of the device based on the results of the determination for a
- This disclosure can be applied to systems for diagnosing the condition of refrigerators, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
Description
本開示は、連続的に稼働する機器の状態を診断する診断方法などに関する。 This disclosure relates to a diagnostic method for diagnosing the condition of a continuously operating device.
特許文献1には、動作履歴を用いて機器の状態を診断する技術が開示されている。
冷蔵庫のように連続的に稼働する機器では、庫内を冷やす制御(例えば圧縮機の駆動またはダンパを開く制御)などの特定の制御が庫内温度に応じて変動する不規則的なタイミングで連続的に行われる。特許文献1に開示された技術のように、固定の期間ごとの動作履歴を用いて機器の状態を診断する場合、固定の期間ごとに上記特定の制御が行われる回数がばらつき、固定の期間ごとの動作履歴の集計結果(例えば温度上昇の発生回数または冷却の回数など)もばらつく場合がある。その場合には、機器の状態を正確に診断することが難しくなる。
In a device that operates continuously, such as a refrigerator, certain controls such as controls to cool the interior of the refrigerator (e.g., controls to drive the compressor or open the damper) are performed continuously at irregular times that vary according to the temperature inside the refrigerator. When diagnosing the condition of the device using an operation history for each fixed period, as in the technology disclosed in
そこで、本開示は、機器の状態を正確に診断しやすくなる診断方法などを提供する。 The present disclosure provides a diagnostic method that makes it easier to accurately diagnose the condition of the device.
本開示に係る診断方法は、連続的に稼働する機器の状態を診断する診断方法であって、所定の期間にわたるデータであって、前記機器の状態を診断するためのデータを収集する収集ステップと、前記データに基づいて、前記所定の期間において不規則的なタイミングで連続的に発生する、前記機器に関する特定の条件が満たされない状態から満たされる状態に変化する時刻をそれぞれ判定する時刻判定ステップと、前記所定の期間を前記時刻で分割して時間的に連続する複数の区間を生成し、生成した前記複数の区間のそれぞれを、前記データの集計単位である集計区間に設定する設定ステップと、前記所定の期間における複数の前記集計区間のそれぞれについて、前記データに含まれる前記機器の制御対象の値を集計処理することで、診断用データを生成する生成ステップと、前記診断用データに基づいて、複数の前記集計区間のそれぞれにおける前記機器の状態が正常であるか否かを判定する状態判定ステップと、複数の前記集計区間のうち連続する複数の前記集計区間についての前記判定の結果に基づいて、前記機器の状態を診断する診断ステップと、を含む。 The diagnostic method according to the present disclosure is a diagnostic method for diagnosing the state of a continuously operating device, and includes a collection step of collecting data for diagnosing the state of the device, the data being data spanning a predetermined period; a time determination step of determining, based on the data, each of the times at which a specific condition related to the device changes from an unsatisfied state to an satisfied state, the condition occurring continuously at irregular times during the predetermined period; a setting step of dividing the predetermined period by the time to generate a plurality of intervals that are consecutive in time, and setting each of the generated intervals as an aggregation interval that is an aggregation unit of the data; a generation step of generating diagnostic data by aggregating values of the control target of the device contained in the data for each of the plurality of aggregation intervals during the predetermined period; a state determination step of determining whether the state of the device is normal in each of the plurality of aggregation intervals based on the diagnostic data; and a diagnosis step of diagnosing the state of the device based on the results of the determination for a plurality of consecutive aggregation intervals among the plurality of aggregation intervals.
本開示に係るプログラムは、上記の診断方法をコンピュータに実行させるためのプログラムである。 The program disclosed herein is a program for causing a computer to execute the above diagnostic method.
本開示に係る診断システムは、連続的に稼働する機器の状態を診断する診断システムであって、所定の期間にわたるデータであって、前記機器の状態を診断するためのデータを収集する収集部と、前記データに基づいて、前記所定の期間において不規則的なタイミングで連続的に発生する、前記機器に関する特定の条件が満たされない状態から満たされる状態に変化する時刻をそれぞれ判定する時刻判定部と、前記所定の期間を前記時刻で分割して時間的に連続する複数の区間を生成し、生成した前記複数の区間のそれぞれを、前記データの集計単位である集計区間に設定する設定部と、前記所定の期間における複数の前記集計区間のそれぞれについて、前記データに含まれる前記機器の制御対象の値を集計処理することで、診断用データを生成する生成部と、前記診断用データに基づいて、複数の前記集計区間のそれぞれにおける前記機器の状態が正常であるか否かを判定する状態判定部と、複数の前記集計区間のうち連続する複数の前記集計区間についての前記判定の結果に基づいて、前記機器の状態を診断する診断部と、を備える。 The diagnostic system according to the present disclosure is a diagnostic system for diagnosing the state of a continuously operating device, and includes a collection unit that collects data for diagnosing the state of the device, the data being data spanning a predetermined period; a time determination unit that determines, based on the data, the times at which a specific condition related to the device changes from an unsatisfied state to an satisfied state, the conditions occurring continuously at irregular times during the predetermined period; a setting unit that divides the predetermined period by the time to generate a plurality of time intervals that are consecutive in time, and sets each of the generated intervals as an aggregation interval that is an aggregation unit of the data; a generation unit that generates diagnostic data by aggregating values of the control target of the device contained in the data for each of the plurality of aggregation intervals during the predetermined period; a state determination unit that determines whether the state of the device is normal in each of the plurality of aggregation intervals based on the diagnostic data; and a diagnosis unit that diagnoses the state of the device based on the results of the determination for a plurality of consecutive aggregation intervals among the plurality of aggregation intervals.
なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 These comprehensive or specific aspects may be realized as a system, method, integrated circuit, computer program, or computer-readable recording medium such as a CD-ROM, or may be realized as any combination of a system, method, integrated circuit, computer program, and recording medium.
本開示における診断方法などによれば、機器の状態を正確に診断しやすくなる。 The diagnostic method disclosed herein makes it easier to accurately diagnose the condition of the device.
以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Below, the embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of matters that are already well known or duplicate explanations of substantially identical configurations may be omitted. This is to avoid the following explanation becoming unnecessarily redundant and to make it easier for those skilled in the art to understand.
なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 The inventors provide the attached drawings and the following description to enable those skilled in the art to fully understand the present disclosure, and do not intend for them to limit the subject matter described in the claims.
(実施の形態)
以下、図1から図5を用いて実施の形態に係る診断方法および診断システムを説明する。
(Embodiment)
A diagnostic method and a diagnostic system according to an embodiment will be described below with reference to FIGS.
図1は、実施の形態に係る診断システム100の構成の一例を示す図である。なお、図1には、診断システム100の他に機器200も示されている。
FIG. 1 is a diagram showing an example of the configuration of a
診断システム100は、連続的に稼働する機器200の状態を診断するシステムである。機器200は、基本的には常時稼働している機器であり、例えば冷蔵庫である。冷蔵庫は、庫内温度を一定に保つために、庫内を冷やす制御(例えば圧縮機の駆動またはダンパを開く制御)などの特定の制御を実行する。このような特定の制御は、庫内温度が目標温度範囲を上回ると開始され、目標温度範囲を下回ると終了するため、庫内温度によって変動する不規則的なタイミングで連続的に(例えば数十分ごとに)実行される。なお、特定の制御は、庫内を温める制御(例えば除霜する制御)であってもよく、この場合、特定の制御は、前回の制御開始から、外気温に応じて設定されるパラメータだけ時間が経過した場合に開始され、特定の温度を上回ると終了する。いずれにしても、機器200は、連続的に稼働している間に、特定の制御を不規則的なタイミングで連続的に実行する。
The
診断システム100は、収集部10、時刻判定部20、設定部30、生成部40、状態判定部50および診断部60を備える。診断システム100は、プロセッサ(マイクロプロセッサ)およびメモリなどを含むコンピュータである。メモリは、ROM(Read Only Memory)およびRAM(Random Access Memory)などであり、プロセッサにより実行されるプログラムを記憶することができる。収集部10、時刻判定部20、設定部30、生成部40、状態判定部50および診断部60は、メモリに格納されたプログラムを実行するプロセッサなどによって実現される。
The
例えば、診断システム100は、1つの筐体のコンピュータ(装置)であってもよいし、複数のコンピュータからなるシステムであってもよい。例えば、診断システム100は、サーバであってもよい。なお、診断システム100が備える構成要素は、1つのサーバに配置されていてもよいし、複数のサーバに分散して配置されていてもよい。また、例えば、診断システム100は、機器200に搭載されてもよい。
For example, the
収集部10は、所定の期間にわたるデータであって、機器200の状態を診断するためのデータを収集する。機器200の状態を診断するためのデータを以下元データとも呼ぶ。例えば、所定の期間が2日間である場合、収集部10は、2日間にわたる元データを収集する。例えば、元データは、機器200において一定の期間(例えば5分など)ごとに測定されたデータである。例えば、元データには、冷蔵庫の庫内温度(冷蔵室、野菜室または冷凍室などの温度)、圧縮機の周波数、ダンパの開閉状態、および、除霜の稼働状態などの情報が含まれる。例えば、診断システム100は、通信インタフェースを備えており、診断システム100が無線または有線により元データを機器200から受信することで、収集部10は、当該データを収集することができる。
The
時刻判定部20は、元データに基づいて、所定の期間において不規則的なタイミングで連続的に発生する、機器200に関する特定の条件が満たされない状態から満たされる状態に変化する時刻(以下、特定の条件が満たされる時刻とも記載する)をそれぞれ判定する。特定の条件は、上記機器200の動作例に示したような特定の制御を受けているといった条件であってもよいし、ユーザによって特定の操作がされているといった条件であってもよいし、庫内温度が所定の温度以上であるといった条件であってもよい。例えば、特定の条件が満たされる時刻は、圧縮機を駆動させる制御、ダンパを開く制御または除霜する制御の開始時刻または終了時刻である。時刻判定部20は、元データを解析することで、圧縮機の周波数が0Hzから1Hz以上となったタイミングを、圧縮機を駆動させる制御の開始時刻と判定し、ダンパが開いたタイミングを、ダンパを開く制御の開始時刻と判定し、除霜が開始されたタイミングを除霜制御の開始時刻と判定することができる。また、時刻判定部20は、元データを解析することで、圧縮機の周波数が1Hz以上から0Hzとなったタイミングを、圧縮機を駆動させる制御の終了時刻と判定し、ダンパが閉じたタイミングを、ダンパを開く制御の終了時刻と判定し、除霜が終了したタイミングを除霜制御の終了時刻と判定することができる。圧縮機を駆動させる制御、ダンパを開く制御または除霜する制御といった特定の制御は、不規則的なタイミングで連続的に(例えば数十分ごとに)実行されるため、庫内温度によって変動する不規則的なタイミングに応じた開始時刻または終了時刻がそれぞれ判定される。
The
設定部30は、時刻判定部20で判定された、所定の期間において不規則的なタイミングで連続的に発生する時刻で所定の期間を分割して時間的に連続する複数の区間を生成し、生成した複数の区間のそれぞれを、元データの集計単位である集計区間に設定する。生成した複数の区間は、所定の期間において、隣接する上記時刻の間の区間が、時間的に連続して配置されている。例えば、特定の条件は、庫内温度が目標温度範囲を上回ると満たされ、その後目標温度範囲を下回ると満たされなくなり、その後庫内温度が目標温度範囲を上回ると満たされるため、隣接する開始時刻間の区間は、特定の条件が満たされ、次に特定の条件が満たされるまでの期間となる。つまり、特定の条件が満たされる期間に対応して1つの集計区間が設定される。
The
また、特定の条件が満たされる時刻は庫内温度によって変動する不規則的なタイミングであるため、所定の期間における複数の集計区間のそれぞれの時間長は、固定ではなく他の集計区間の時間長と異なり得る。 In addition, because the time at which a particular condition is met varies irregularly depending on the temperature inside the storage unit, the length of each of the multiple aggregation intervals in a given period is not fixed and may differ from the length of each of the other aggregation intervals.
生成部40は、所定の期間における複数の集計区間のそれぞれについて、元データに含まれる機器200の制御対象の値を集計処理することで、診断用データを生成する。例えば、機器200の制御対象の値は、庫内温度であり、生成部40は、複数の集計区間のそれぞれについて、庫内温度を集計処理した結果を診断用データとして生成する。
The generating
集計処理は、集計区間における制御対象の値の統計量(平均値、中央値、最大値もしくは最小値など)を算出する処理、または、変化量を算出する処理などである。また、集計処理は、集計区間における一部の区間の制御対象の値に対して行われてもよい。つまり、集計処理は、必ずしも集計区間全体の制御対象の値に対して行われなくてもよい。具体的には、集計処理は、特定の条件が満たされない状態から満たされる状態に変化する時刻から当該特定の条件が満たされる状態から満たされなくなる状態に変化する時刻(以下、特定の条件が満たされる時刻から当該特定の条件が満たされなくなる時刻とも記載する)までの間の機器200の制御対象の値に対して行われてもよいし、特定の条件が満たされる状態から満たされなくなる状態に変化する時刻から次に特定の条件が満たされない状態から満たされる状態に変化する時刻(以下、特定の条件が満たされなくなる時刻から次に特定の条件が満たされる時刻とも記載する)までの間の機器200の制御対象の値に対して行われてもよい。
The aggregation process is a process of calculating a statistic (such as an average, median, maximum, or minimum value) of the values of the control object in the aggregation time interval, or a process of calculating the amount of change. The aggregation process may be performed on the values of the control object in a portion of the aggregation time interval. In other words, the aggregation process does not necessarily have to be performed on the values of the control object in the entire aggregation time interval. Specifically, the aggregation process may be performed on the values of the control object of the
状態判定部50は、診断用データに基づいて、複数の集計区間のそれぞれにおける機器200の状態が正常であるか否かを判定する。状態判定部50の動作の詳細については、後述する。
The
診断部60は、複数の集計区間のうち連続する複数の集計区間についての状態判定部50の判定の結果に基づいて、機器200の状態を診断する。診断部60の動作の詳細については、後述する。
The
次に、診断システム100の動作の詳細について図2および図3を用いて具体例をあげながら説明する。なお、以下では、特定の条件が満たされる時刻を、特定の制御が開始される開始時刻として説明する。
Next, the details of the operation of the
図2は、実施の形態に係る診断システム100の動作の一例を示すフローチャートである。なお、実施の形態に係る診断方法は、診断システム100によって実行される方法であるため、図2は、実施の形態に係る診断方法の一例を示すフローチャートでもある。収集部10の動作は診断方法における収集ステップに対応し、時刻判定部20の動作は診断方法における時刻判定ステップに対応し、設定部30の動作は診断方法における設定ステップに対応し、生成部40の動作は診断方法における生成ステップに対応し、状態判定部50の動作は診断方法における状態判定ステップに対応し、診断部60の動作は診断方法における診断ステップに対応する。
FIG. 2 is a flowchart showing an example of the operation of the
図3は、実施の形態に係る診断システム100の動作例を模式的に示す図である。
FIG. 3 is a diagram showing a schematic example of the operation of the
まず、収集部10は、所定の期間にわたる元データを収集する(ステップS11)。例えば、機器200が5分ごとにデータを測定している場合において、収集部10が300分間にわたる元データを収集する場合、図3に示されるように、収集部10は、系列長(データ点数)60の元データを収集する。
First, the
次に、時刻判定部20は、元データに基づいて、機器200が所定の期間において不規則的なタイミングで連続的に発生する、特定の条件が満たされる時刻(開始時刻)をそれぞれ判定する(ステップS12)。例えば、特定の条件が満たされる時刻は、圧縮機の周波数が0Hzから1Hz以上となる時刻である。例えば、時刻判定部20は、元データを解析することで、圧縮機の周波数が0Hzから1Hz以上となったタイミングが所定の期間(例えば300分間)に5回あることを判定した場合、5回のタイミングをそれぞれ、圧縮機を駆動させる制御の開始時刻と判定する。
Next, the
次に、設定部30は、所定の期間を開始時刻で分割して時間的に連続する複数の区間を生成し、生成した開始時刻間の複数の区間のそれぞれを、元データの集計単位である集計区間に設定する(ステップS13)。例えば、設定部30は、図3に示されるように、所定の期間において1回目に実行された圧縮機を一定期間駆動させる制御の開始時刻から2回目に実行された圧縮機を一定期間駆動させる制御の開始時刻までの区間を、系列長10の集計区間1に設定する。同様に、設定部30は、系列長12の集計区間2、系列長20の集計区間3、系列長8の集計区間4および系列長10の集計区間5を設定する。
Then, the setting
例えば、集計区間を設定するためにどのような特定の制御の開始時刻が判定されるかは、診断対象の異常の種類に応じて決定される。具体的には、診断対象が庫内温度に関連する機器200の異常である場合には、庫内を冷やす制御(例えば圧縮機の駆動またはダンパを開く制御など)、または、庫内を温める制御(例えば除霜する制御)の開始時刻が判定され、当該開始時刻に応じて集計区間が設定される。
For example, the start time of a specific control to be determined in order to set the aggregation interval is determined according to the type of abnormality being diagnosed. Specifically, if the diagnosis target is an abnormality in
生成部40は、所定の期間における複数の集計区間のそれぞれについて、元データに含まれる機器200の制御対象の値を集計処理することで、診断用データを生成する(ステップS14)。例えば、生成部40は、図3に示されるように、集計区間1~5のそれぞれについて、庫内温度などを集計処理し、系列長5の診断用データを生成する。
The generating
例えば、診断用データは、所定の期間における複数の集計区間のそれぞれについて、特定の条件が満たされる時刻(例えば特定の制御の開始時刻)から当該特定の条件が満たされなくなる時刻(例えば、上記開始時刻に開始された特定の制御の終了時刻)までの間の機器200の制御対象の値の変化量である条件適合時変化量を含む。具体的には、条件適合時変化量は、開始時刻での制御対象の値と終了時刻での制御対象の値との差分である。例えば、条件適合時変化量は、圧縮機が稼働している間の庫内温度の変化量またはダンパが開いている間の庫内温度の変化量である。
For example, the diagnostic data includes, for each of a number of aggregation intervals in a specified period, a change amount when a condition is met, which is the amount of change in the value of the controlled object of the
また、例えば、診断用データは、複数の集計区間のそれぞれについて、特定の条件が満たされなくなる時刻(例えば、特定の制御の終了時刻)から次に特定の条件が満たされるまでの時刻(次の集計区間における特定の制御の開始時刻)までの間の機器200の制御対象の値の変化量である条件非適合時変化量を含む。具体的には、条件非適合時変化量は、終了時刻の直後のタイミング(例えば5分後)に機器200で測定された制御対象の値と次の集計区間における開始時刻の直前のタイミング(例えば5分前)に機器200で測定された制御対象の値との差分である。例えば、条件非適合時変化量は、圧縮機が停止している間の庫内温度の変化量またはダンパが閉じている間の庫内温度の変化量である。
Furthermore, for example, the diagnostic data includes, for each of a plurality of counting intervals, the amount of change when a condition is not met, which is the amount of change in the value of the controlled object of
また、例えば、診断用データは、複数の集計区間のそれぞれについて、集計区間中の機器200の制御対象の値の統計量を含む。具体的には、統計量は、集計区間中の機器200の制御対象の値の平均値、中央値、最大値または最小値である。
Furthermore, for example, the diagnostic data includes, for each of a plurality of time intervals, statistics of the values of the control object of the
例えば、どのような集計処理が行われるかは、診断対象の異常の種類に応じて決定される。具体的には、庫内を冷やす制御に対応する集計区間が設定された場合において、庫内温度が下がらない異常を診断する場合には条件適合時変化量を算出する集計処理が行われ、庫内温度が上がらない異常を診断する場合には条件非適合時変化量を算出する集計処理が行われ、庫内温度が高すぎるまたは低すぎる異常を診断する場合には統計量を算出する集計処理が行われる。 For example, the type of tallying process to be performed is determined according to the type of abnormality to be diagnosed. Specifically, when a tallying period corresponding to control for cooling the inside of the cabinet is set, tallying processes are performed to calculate the amount of change when the condition is met when diagnosing an abnormality in which the inside temperature does not decrease, tallying processes are performed to calculate the amount of change when the condition is not met when diagnosing an abnormality in which the inside temperature does not increase, and tallying processes are performed to calculate statistics when diagnosing an abnormality in which the inside temperature is too high or too low.
状態判定部50は、診断用データに基づいて、複数の集計区間のそれぞれにおける機器200の状態が正常であるか否かを判定する(ステップS15)。例えば、状態判定部50は、診断用データと想定データとを集計区間ごとに比較することで、集計区間における機器200の状態が正常であるか否かを判定する。想定データは、特定の条件が満たされることで期待されるデータ、言い換えると、特定の制御が実行されることで期待されるデータである。例えば、機器200が正常なときに特定の制御が実行されることで、制御対象の値がどのように変化していくかを推定することができ、特定の制御が実行されることで期待される想定データを集計区間ごとに生成することができる。したがって、診断用データと、特定の条件が満たされることで期待される想定データとを比較することで、例えば、特定の条件が満たされるある期間において特定の制御が実行された場合に、当該特定の制御に対応する集計区間での集計結果が想定通りとなっているか否かを容易に判定することができる。なお、制御対象の値は、前回の集計区間における制御対象の値に応じて変化し得るため、想定データも集計区間ごとに動的に変化し得るデータとなっている。つまり、想定データは、集計区間ごとに推定されることで生成される。
The
例えば、機器200が正常なときの特定の制御の開始時刻から終了時刻までの間の制御対象の値の変化量(想定データ)を推定する、または、予め決めることができる。このため、状態判定部50は、条件適合時変化量と、特定の条件が満たされる(つまり特定の制御が開始される)ことで期待される条件適合時変化量に対応する想定データとを比較することで(例えば集計区間ごとに比較することで)、集計区間における機器200の状態が正常であるか否かを判定してもよい。条件適合時変化量と条件適合時変化量に対応する想定データとを比較することで、集計区間に含まれる特定の条件が満たされてから満たされなくなるまでの期間における機器200の状態が、正常であるか否かを判定することができる。
For example, the amount of change (expected data) in the value of the controlled object between the start time and the end time of a specific control when the
例えば、機器200が正常なときの特定の制御の終了時刻から次の集計区間の特定の制御の開始時刻までの間の制御対象の値の変化量(想定データ)を推定する、または、予め決めることができる。このため、状態判定部50は、条件非適合時変化量と、特定の条件が満たされなくなった後(つまり特定の制御が終了した後)に期待される条件非適合時変化量に対応する想定データとを比較することで(例えば集計区間ごとに比較することで)、集計区間における機器200の状態が正常であるか否かを判定してもよい。条件非適合時変化量と条件非適合時変化量に対応する想定データとを比較することで、集計区間に含まれる特定の条件が満たされなくなってから次に特定の条件が満たされるまでの期間における機器200の状態が、正常であるか否かを判定することができる。
For example, the amount of change (expected data) in the value of the controlled object between the end time of a specific control when the
例えば、機器200が正常なときの集計区間の制御対象の値の統計量を推定する、または、予め決めることができる。このため、状態判定部50は、統計量と、特定の条件が満たされることで期待される統計量に対応する想定データとを比較することで(例えば集計区間ごとに比較することで)、集計区間における機器200の状態が正常であるかを判定してもよい。統計量と統計量に対応する想定データとを比較することで、集計区間における機器200の状態が正常であるか否かを判定することができる。
For example, the statistics of the values of the controlled object in the counting interval when the
そして、診断部60は、複数の集計区間のうち連続する複数の集計区間についての状態判定部50での判定の結果に基づいて、機器200の状態を診断する(ステップS16)。
Then, the
例えば、診断部60は、異常と判定された集計区間が連続する回数に基づいて、機器200の状態を診断してもよい。例えば、診断部60は、異常と判定された集計区間が連続する回数が所定の回数以上である場合に、機器200が慢性的な異常であると診断する。所定の回数は特に限定されない。例えば、所定の回数が3回である場合に、図3に示される集計区間1および2では正常と判定され、集計区間3~5では異常と判定された場合には、異常と判定された集計区間が連続する回数が3回となり、診断部60は、機器200が慢性的な異常であると診断する。このように、異常と判定された集計区間が連続する回数が多い場合には、慢性的な不良が発生していると診断することができる。なお、例えば、図3に示される集計区間1、2、4および5では正常と判定され、集計区間3では異常と判定された場合には、異常と判定された集計区間が連続する回数が1回となり、診断部60は、冷蔵庫のドアが開かれるなど機器200に一時的な負荷の増大が発生したと診断する。
For example, the
例えば、診断部60は、異常と判定された集計区間が連続する時間に基づいて、機器200の状態を診断してもよい。例えば、診断部60は、異常と判定された集計区間が連続する時間が所定の時間以上である場合に、機器200が慢性的な異常であると診断する。所定の時間は特に限定されない。例えば、所定の時間が180分である場合に、図3に示される集計区間1および2では正常と判定され、集計区間3~5では異常と判定された場合には、異常と判定された集計区間が連続する時間が190分(系列長38×5分)となり、診断部60は、機器200が慢性的な異常であると診断する。このように、異常と判定された集計区間が連続する時間が長い場合には、慢性的な不良が発生していると診断することができる。なお、例えば、図3に示される集計区間1、2、4および5では正常と判定され、集計区間3では異常と判定された場合には、異常と判定された集計区間が連続する時間が100分(系列長20×5分)となり、診断部60は、冷蔵庫のドアが開かれるなど機器200に一時的な負荷の増大が発生したと診断する。
For example, the
次に、集計区間ごとのデータの例について図4を用いて説明する。 Next, we will explain an example of data for each aggregation window using Figure 4.
図4は、集計区間ごとのデータの一例を示す図である。図4には、6つの連続する集計区間のデータが示されている。網掛け部分は、特定の制御として庫内を冷やす制御が行われた期間(以下冷却期間と呼ぶ)である。 Figure 4 shows an example of data for each counting interval. Data for six consecutive counting intervals is shown in Figure 4. The shaded areas are periods during which specific control was performed to cool the interior of the storage unit (hereafter referred to as cooling periods).
1つ目の集計区間および2つ目の集計区間では冷却期間の長さ、最高温度および最低温度が安定しており、機器200の状態が正常と診断することができる。3つ目の集計区間および4つ目の集計区間では冷却期間が長くなっており、最高温度が高くなっていると診断することができる。5つ目の集計区間および6つ目の集計区間では冷却期間の長さが安定しており、最低温度が高くなっていると診断することができる。
In the first and second counting intervals, the length of the cooling period, the maximum temperature, and the minimum temperature are stable, and the condition of the
次に慢性的な不良が発生しているときの集計区間ごとのデータの例について図5を用いて説明する。 Next, we will use Figure 5 to explain an example of data for each aggregation period when chronic defects are occurring.
図5は、慢性的な不良が発生しているときの集計区間ごとのデータの一例を示す図である。網掛け部分は、図4と同様に冷却期間である。 Figure 5 shows an example of data for each aggregation period when a chronic defect occurs. The shaded areas are cooling periods, just like Figure 4.
図5に示されるように、14:00以降において、冷却中であるのに庫内温度が上昇していき、温度が高い状態が維持されているため、慢性的な不良が発生していると診断することができる。 As shown in Figure 5, after 14:00, the temperature inside the cabinet rises even though the cooling is in progress, and the high temperature state is maintained, so it can be diagnosed as a chronic defect.
以上説明したように、特定の条件が満たされる期間に対応して1つの集計区間が設定され、設定された複数の集計区間のそれぞれについて、機器200の制御対象の値が集計処理されるため、例えば、特定の条件が満たされる期間において特定の制御が実行された場合に、当該特定の制御に対応する集計区間での集計結果が想定通りとなっているか否か、つまり機器200の状態が正常であるか否かを判定しやすくなる。さらに、連続する複数の集計区間についての判定の結果を用いることで、一時的な負荷の増大が発生したか、慢性的な不良が発生しているかなどを診断することができる。このように、機器200の状態を正確に診断しやすくなる。
As explained above, one aggregation interval is set corresponding to a period during which a specific condition is satisfied, and the values of the control target of the
(その他の実施の形態)
以上のように、本出願において開示する技術の例示として、実施の形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略等を行った実施の形態にも適応可能である。また、上記実施の形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
Other Embodiments
As described above, the embodiments have been described as examples of the technology disclosed in this application. However, the technology in this disclosure is not limited to these, and can be applied to embodiments in which modifications, substitutions, additions, omissions, etc. are appropriately made. In addition, it is also possible to combine the components described in the above embodiments to create new embodiments.
例えば、本開示は、診断方法に含まれるステップを、コンピュータ(プロセッサ)に実行させるためのプログラムとして実現できる。さらに、本開示は、そのプログラムを記録したCD-ROM等である非一時的なコンピュータ読み取り可能な記録媒体として実現できる。 For example, the present disclosure can be realized as a program for causing a computer (processor) to execute the steps included in the diagnostic method. Furthermore, the present disclosure can be realized as a non-transitory computer-readable recording medium, such as a CD-ROM, on which the program is recorded.
例えば、本開示が、プログラム(ソフトウェア)で実現される場合には、コンピュータのCPU、メモリおよび入出力回路などのハードウェア資源を利用してプログラムが実行されることによって、各ステップが実行される。つまり、CPUがデータをメモリまたは入出力回路などから取得して演算したり、演算結果をメモリまたは入出力回路などに出力したりすることによって、各ステップが実行される。 For example, when the present disclosure is realized as a program (software), each step is performed by running the program using hardware resources such as a computer's CPU, memory, and input/output circuits. In other words, each step is performed by the CPU obtaining data from memory or input/output circuits, etc., performing calculations, and outputting the results of the calculations to memory or input/output circuits, etc.
なお、上記実施の形態において、診断システム100に含まれる各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
In the above embodiment, each component included in
上記実施の形態に係る診断システム100の機能の一部または全ては典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。また、集積回路化はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、またはLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
Some or all of the functions of the
さらに、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて、診断システム100に含まれる各構成要素の集積回路化が行われてもよい。
Furthermore, if an integrated circuit technology that can replace LSIs emerges due to advances in semiconductor technology or other derived technologies, it is natural that each component included in the
その他、実施の形態に対して当業者が思いつく各種変形を施して得られる形態、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, this disclosure also includes forms obtained by applying various modifications to the embodiments that a person skilled in the art may conceive, and forms realized by arbitrarily combining the components and functions of each embodiment within the scope that does not deviate from the spirit of this disclosure.
(付記)
以上の実施の形態の記載により、下記の技術が開示される。
(Additional Note)
The above description of the embodiments discloses the following techniques.
(技術1)連続的に稼働する機器の状態を診断する診断方法であって、所定の期間にわたるデータであって、前記機器の状態を診断するためのデータを収集する収集ステップと、前記データに基づいて、前記所定の期間において不規則的なタイミングで連続的に発生する、前記機器に関する特定の条件が満たされない状態から満たされる状態に変化する時刻をそれぞれ判定する時刻判定ステップと、前記所定の期間を前記時刻で分割して時間的に連続する複数の区間を生成し、生成した前記複数の区間のそれぞれを、前記データの集計単位である集計区間に設定する設定ステップと、前記所定の期間における複数の前記集計区間のそれぞれについて、前記データに含まれる前記機器の制御対象の値を集計処理することで、診断用データを生成する生成ステップと、前記診断用データに基づいて、複数の前記集計区間のそれぞれにおける前記機器の状態が正常であるか否かを判定する状態判定ステップと、複数の前記集計区間のうち連続する複数の前記集計区間についての前記判定の結果に基づいて、前記機器の状態を診断する診断ステップと、を含む診断方法。 (Technology 1) A diagnostic method for diagnosing the state of a continuously operating device, the method including: a collection step of collecting data for diagnosing the state of the device over a predetermined period of time; a time determination step of determining, based on the data, a time at which a specific condition related to the device changes from an unsatisfied state to an satisfied state, the condition occurring continuously at irregular times during the predetermined period of time; a setting step of dividing the predetermined period by the time to generate a plurality of intervals that are consecutive in time, and setting each of the generated intervals as an aggregation interval that is an aggregation unit of the data; a generation step of generating diagnostic data by aggregating values of the control target of the device contained in the data for each of the plurality of aggregation intervals during the predetermined period of time; a state determination step of determining, based on the diagnostic data, whether the state of the device is normal in each of the plurality of aggregation intervals; and a diagnosis step of diagnosing the state of the device based on the results of the determination for a plurality of consecutive aggregation intervals among the plurality of aggregation intervals.
これによれば、特定の条件が満たされる期間に対応して1つの集計区間が設定され、設定された複数の集計区間のそれぞれについて、機器の制御対象の値が集計処理されるため、例えば、特定の条件が満たされる期間において特定の制御が実行された場合に、当該特定の制御に対応する集計区間での集計結果が想定通りとなっているか否か、つまり機器の状態が正常であるか否かを判定しやすくなる。さらに、連続する複数の集計区間についての判定の結果を用いることで、一時的な負荷の増大が発生したか、慢性的な不良が発生しているかなどを診断することができる。このように、本開示における診断方法によれば、機器の状態を正確に診断しやすくなる。 In this way, one aggregation interval is set corresponding to a period in which a specific condition is satisfied, and the values of the controlled object of the equipment are aggregated for each of the multiple aggregation intervals that have been set. For example, when a specific control is executed in a period in which a specific condition is satisfied, it becomes easy to determine whether the aggregation result in the aggregation interval corresponding to the specific control is as expected, that is, whether the condition of the equipment is normal. Furthermore, by using the results of the judgment for multiple consecutive aggregation intervals, it is possible to diagnose whether a temporary increase in load has occurred, whether a chronic defect has occurred, and so on. In this way, the diagnostic method disclosed herein makes it easy to accurately diagnose the condition of the equipment.
(技術2)前記診断ステップでは、異常と判定された前記集計区間が連続する回数に基づいて、前記機器の状態を診断する技術1に記載の診断方法。
(Technology 2) In the diagnosis step, the diagnostic method described in
これによれば、異常と判定された集計区間が連続する回数が多い場合には、慢性的な不良が発生していると診断することができる。 Accordingly, if there are many consecutive counting periods that are determined to be abnormal, it can be diagnosed as a chronic defect.
(技術3)前記診断ステップでは、異常と判定された前記集計区間が連続する時間に基づいて、前記機器の状態を診断する技術1に記載の診断方法。
(Technology 3) In the diagnosis step, the diagnostic method described in
これによれば、異常と判定された集計区間が連続する時間が長い場合には、慢性的な不良が発生していると診断することができる。 With this, if the duration of a counting period in which an abnormality is determined is long, it can be diagnosed as a chronic defect.
(技術4)前記状態判定ステップでは、前記診断用データと、前記特定の条件が満たされることで期待される想定データとを比較することで、前記集計区間における前記機器の状態が正常であるか否かを判定する技術1~3のいずれかに記載の診断方法。
(Technology 4) In the state determination step, the diagnostic method described in any one of
これによれば、診断用データと、特定の条件が満たされることで期待される想定データとを比較することで、例えば、特定の条件が満たされるある期間において特定の制御に対応する集計区間での集計結果が想定通りとなっているか否かを容易に判定することができる。 By comparing the diagnostic data with the expected data that is expected when certain conditions are met, it is possible to easily determine, for example, whether the aggregation results in an aggregation interval that corresponds to a specific control during a certain period when certain conditions are met are as expected.
(技術5)前記診断用データは、複数の前記集計区間のそれぞれについて、前記特定の条件が満たされない状態から満たされる状態に変化する時刻から当該特定の条件が満たされる状態から満たされなくなる状態に変化する時刻までの間の前記機器の制御対象の値の変化量である条件適合時変化量を含み、前記状態判定ステップでは、前記条件適合時変化量と、前記特定の条件が満たされることで期待される前記条件適合時変化量に対応する想定データとを比較することで、前記集計区間における前記機器の状態が正常であるか否かを判定する技術4に記載の診断方法。 (Technology 5) The diagnostic data includes, for each of the multiple aggregation intervals, a change amount when a condition is met, which is the amount of change in the value of the controlled object of the device between the time when the specific condition changes from an unsatisfied state to a satisfied state and the time when the specific condition changes from a satisfied state to an unsatisfied state, and in the state determination step, the change amount when the condition is met is compared with expected data corresponding to the change amount when the condition is met that is expected when the specific condition is satisfied, thereby determining whether the state of the device in the aggregation interval is normal or not.
このように、条件適合時変化量と条件適合時変化量に対応する想定データとを比較することで、集計区間に含まれる特定の条件が満たされてから満たされなくなるまでの期間における機器の状態が、正常であるか否かを判定することができる。 In this way, by comparing the amount of change when a condition is met with the expected data that corresponds to the amount of change when a condition is met, it is possible to determine whether the condition of the equipment is normal during the period from when a specific condition included in the aggregation period is met to when it is no longer met.
(技術6)前記診断用データは、複数の前記集計区間のそれぞれについて、前記特定の条件が満たされる状態から満たされなくなる状態に変化する時刻から次に前記特定の条件が満たされない状態から満たされる状態に変化する時刻までの間の前記機器の制御対象の値の変化量である条件非適合時変化量を含み、前記状態判定ステップでは、前記条件非適合時変化量と、前記特定の条件が満たされなくなった後に期待される前記条件非適合時変化量に対応する想定データとを比較することで、前記集計区間における前記機器の状態が正常であるか否かを判定する技術4または5に記載の診断方法。 (Technology 6) The diagnostic data includes, for each of the multiple aggregation intervals, a change amount when a condition is not met, which is the amount of change in the value of the controlled object of the device between the time when the specific condition changes from a satisfied state to an unsatisfied state and the next time when the specific condition changes from an unsatisfied state to a satisfied state, and in the state determination step, the change amount when a condition is not met is compared with expected data corresponding to the change amount when a condition is not met that is expected after the specific condition is no longer satisfied, thereby determining whether the state of the device in the aggregation interval is normal or not.
このように、条件非適合時変化量と条件非適合時変化量に対応する想定データとを比較することで、集計区間に含まれる特定の条件が満たされなくなってから次に特定の条件が満たされるまでの期間における機器の状態が、正常であるか否かを判定することができる。 In this way, by comparing the amount of change when the condition is not met with the expected data corresponding to the amount of change when the condition is not met, it is possible to determine whether the condition of the equipment is normal during the period from when a specific condition included in the aggregation period is no longer met to when the specific condition is next met.
(技術7)前記診断用データは、複数の前記集計区間のそれぞれについて、前記集計区間中の前記機器の制御対象の値の統計量を含み、前記状態判定ステップでは、前記統計量と、前記特定の条件が満たされることで期待される前記統計量に対応する想定データとを比較することで、前記集計区間における前記機器の状態が正常であるかを判定する技術4~6のいずれかに記載の診断方法。
(Technology 7) A diagnostic method according to any one of
このように、統計量と統計量に対応する想定データとを比較することで、集計区間における機器の状態が正常であるか否かを判定することができる。 In this way, by comparing the statistics with the expected data corresponding to the statistics, it is possible to determine whether the equipment condition in the aggregation period is normal or not.
(技術8)前記機器は、冷蔵庫であり、前記機器の制御対象の値は、庫内温度である技術1~7のいずれかに記載の診断方法。
(Technique 8) The diagnostic method according to any one of
本開示における診断方法によれば、冷蔵庫の状態を正確に診断しやすくなる。 The diagnostic method disclosed herein makes it easier to accurately diagnose the condition of a refrigerator.
(技術9)前記特定の条件が満たされる時刻は、圧縮機を駆動させる制御、ダンパを開く制御または除霜する制御の開始時刻または終了時刻である技術8に記載の診断方法。
(Technology 9) A diagnostic method according to
これによれば、圧縮機を駆動させる制御、ダンパを開く制御または除霜する制御に関連する冷蔵庫の状態を正確に診断しやすくなる。 This makes it easier to accurately diagnose the state of the refrigerator related to the control of driving the compressor, opening the damper, or defrosting.
(技術10)技術1~9のいずれかに記載の診断方法をコンピュータに実行させるためのプログラム。
(Technology 10) A program for causing a computer to execute the diagnostic method described in any one of
これによれば、機器の状態を正確に診断しやすくなるプログラムを提供できる。 This makes it possible to provide a program that makes it easier to accurately diagnose the condition of the equipment.
(技術11)連続的に稼働する機器の状態を診断する診断システムであって、所定の期間にわたるデータであって、前記機器の状態を診断するためのデータを収集する収集部と、前記データに基づいて、前記所定の期間において不規則的なタイミングで連続的に発生する、前記機器に関する特定の条件が満たされる時刻をそれぞれ判定する時刻判定部と、前記所定の期間を前記時刻で分割して時間的に連続する複数の区間を生成し、生成した前記複数の区間のそれぞれを、前記データの集計単位である集計区間に設定する設定部と、前記所定の期間における複数の前記集計区間のそれぞれについて、前記データに含まれる前記機器の制御対象の値を集計処理することで、診断用データを生成する生成部と、前記診断用データに基づいて、複数の前記集計区間のそれぞれにおける前記機器の状態が正常であるか否かを判定する状態判定部と、複数の前記集計区間のうち連続する複数の前記集計区間についての前記判定の結果に基づいて、前記機器の状態を診断する診断部と、を備える診断システム。 (Technology 11) A diagnostic system for diagnosing the state of a continuously operating device, comprising: a collection unit that collects data for diagnosing the state of the device, the data being data spanning a predetermined period; a time determination unit that determines, based on the data, times at which specific conditions related to the device are satisfied, which occur continuously at irregular times during the predetermined period; a setting unit that divides the predetermined period by the time to generate a plurality of time intervals that are consecutive in time, and sets each of the generated intervals as an aggregation interval that is an aggregation unit for the data; a generation unit that generates diagnostic data by aggregating values of the control target of the device contained in the data for each of the plurality of aggregation intervals during the predetermined period; a state determination unit that determines, based on the diagnostic data, whether the state of the device is normal in each of the plurality of aggregation intervals; and a diagnosis unit that diagnoses the state of the device based on the results of the determination for a plurality of consecutive aggregation intervals among the plurality of aggregation intervals.
これによれば、機器の状態を正確に診断しやすくなる診断システムを提供できる。 This makes it possible to provide a diagnostic system that makes it easier to accurately diagnose the condition of the equipment.
本開示は、冷蔵庫などの状態を診断するためのシステムに適用できる。 This disclosure can be applied to systems for diagnosing the condition of refrigerators, etc.
10 収集部
20 時刻判定部
30 設定部
40 生成部
50 状態判定部
60 診断部
100 診断システム
200 機器
REFERENCE SIGNS
Claims (11)
所定の期間にわたるデータであって、前記機器の状態を診断するためのデータを収集する収集ステップと、
前記データに基づいて、前記所定の期間において不規則的なタイミングで連続的に発生する、前記機器に関する特定の条件が満たされない状態から満たされる状態に変化する時刻をそれぞれ判定する時刻判定ステップと、
前記所定の期間を前記時刻で分割して時間的に連続する複数の区間を生成し、生成した前記複数の区間のそれぞれを、前記データの集計単位である集計区間に設定する設定ステップと、
前記所定の期間における複数の前記集計区間のそれぞれについて、前記データに含まれる前記機器の制御対象の値を集計処理することで、診断用データを生成する生成ステップと、
前記診断用データに基づいて、複数の前記集計区間のそれぞれにおける前記機器の状態が正常であるか否かを判定する状態判定ステップと、
複数の前記集計区間のうち連続する複数の前記集計区間についての前記判定の結果に基づいて、前記機器の状態を診断する診断ステップと、を含む
診断方法。 A diagnostic method for diagnosing a condition of a continuously operating device, comprising:
a collection step of collecting data over a predetermined period of time, the data being used to diagnose a condition of the device;
a time determination step of determining, based on the data, times at which a specific condition related to the device changes from an unsatisfied state to a satisfied state, the times occurring consecutively at irregular timings during the predetermined period;
a setting step of dividing the predetermined period by the time to generate a plurality of time intervals that are consecutive in time, and setting each of the generated intervals as an aggregation time interval that is a unit of aggregation of the data;
generating diagnostic data by aggregating values of the control targets of the device included in the data for each of the plurality of time windows in the predetermined period;
a status determination step of determining whether a status of the device is normal in each of the plurality of time windows based on the diagnostic data;
and diagnosing a state of the device based on the results of the determination for a plurality of consecutive time windows among the plurality of time windows.
請求項1に記載の診断方法。 The diagnostic method according to claim 1 , wherein in the diagnosing step, the condition of the device is diagnosed based on the number of consecutive time windows in which the device is determined to be abnormal.
請求項1に記載の診断方法。 The diagnostic method according to claim 1 , wherein in the diagnosing step, the condition of the device is diagnosed based on a duration of the time period during which the time windows determined to be abnormal continue.
請求項1に記載の診断方法。 2. The diagnostic method according to claim 1, wherein the state determination step determines whether the state of the device in the time window is normal by comparing the diagnostic data with estimated data that is expected when the specific condition is satisfied.
前記状態判定ステップでは、前記条件適合時変化量と、前記特定の条件が満たされることで期待される前記条件適合時変化量に対応する想定データとを比較することで、前記集計区間における前記機器の状態が正常であるか否かを判定する
請求項4に記載の診断方法。 the diagnostic data includes, for each of the plurality of time windows, a change amount when a condition is satisfied, which is an amount of change in a value of a control target of the device between a time point when the specific condition changes from an unsatisfied state to a satisfied state to a time point when the specific condition changes from a satisfied state to an unsatisfied state,
5. The diagnostic method according to claim 4, wherein in the state determination step, the amount of change when a condition is met is compared with expected data corresponding to the amount of change when a condition is met that is expected when the specific condition is satisfied, thereby determining whether or not the state of the device in the aggregation time window is normal.
前記状態判定ステップでは、前記条件非適合時変化量と、前記特定の条件が満たされなくなった後に期待される前記条件非適合時変化量に対応する想定データとを比較することで、前記集計区間における前記機器の状態が正常であるか否かを判定する
請求項4に記載の診断方法。 the diagnostic data includes, for each of the plurality of time windows, an amount of change when a condition is not satisfied, which is an amount of change in a value of a control target of the device between a time point at which the specific condition changes from a satisfied state to an unsatisfied state to a time point at which the specific condition next changes from an unsatisfied state to a satisfied state;
5. The diagnostic method according to claim 4, wherein in the state determination step, the amount of change when a condition is not met is compared with estimated data corresponding to the amount of change when a condition is not met that is expected after the specific condition is no longer satisfied, thereby determining whether the state of the device in the aggregation time window is normal.
前記状態判定ステップでは、前記統計量と、前記特定の条件が満たされることで期待される前記統計量に対応する想定データとを比較することで、前記集計区間における前記機器の状態が正常であるかを判定する
請求項4に記載の診断方法。 the diagnostic data includes, for each of the plurality of time windows, statistics of values of the control targets of the device during the time windows;
5. The diagnostic method according to claim 4, wherein in the state determination step, it is determined whether the state of the device in the aggregation time window is normal by comparing the statistical amount with expected data corresponding to the statistical amount that is expected when the specific condition is satisfied.
前記機器の制御対象の値は、庫内温度である
請求項1に記載の診断方法。 The appliance is a refrigerator,
The diagnostic method according to claim 1 , wherein the value of the control target of the device is an inside temperature of a storage unit.
請求項8に記載の診断方法。 The diagnostic method according to claim 8 , wherein the time at which the specific condition is satisfied is a start time or an end time of control for driving a compressor, control for opening a damper, or control for defrosting.
所定の期間にわたるデータであって、前記機器の状態を診断するためのデータを収集する収集部と、
前記データに基づいて、前記所定の期間において不規則的なタイミングで連続的に発生する、前記機器に関する特定の条件が満たされない状態から満たされる状態に変化する時刻をそれぞれ判定する時刻判定部と、
前記所定の期間を前記時刻で分割して時間的に連続する複数の区間を生成し、生成した前記複数の区間のそれぞれを、前記データの集計単位である集計区間に設定する設定部と、
前記所定の期間における複数の前記集計区間のそれぞれについて、前記データに含まれる前記機器の制御対象の値を集計処理することで、診断用データを生成する生成部と、
前記診断用データに基づいて、複数の前記集計区間のそれぞれにおける前記機器の状態が正常であるか否かを判定する状態判定部と、
複数の前記集計区間のうち連続する複数の前記集計区間についての前記判定の結果に基づいて、前記機器の状態を診断する診断部と、を備える
診断システム。 A diagnostic system for diagnosing a condition of a continuously operating device, comprising:
A collection unit that collects data for a predetermined period of time for diagnosing a state of the device;
a time determination unit that determines, based on the data, times at which a specific condition related to the device changes from an unsatisfied state to a satisfied state, the times occurring consecutively at irregular timings during the predetermined period;
a setting unit that divides the predetermined period by the time to generate a plurality of time intervals that are consecutive in time, and sets each of the generated intervals as an aggregation time window that is a unit of aggregation of the data;
a generation unit that generates diagnostic data by aggregating values of the control targets of the device included in the data for each of the plurality of time windows in the predetermined period;
a status determination unit that determines whether a status of the device is normal in each of the plurality of time windows based on the diagnostic data;
a diagnosis unit configured to diagnose a state of the device based on results of the determination for a plurality of consecutive time windows among the plurality of time windows.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2023187199 | 2023-10-31 | ||
| JP2023-187199 | 2023-10-31 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025094795A1 true WO2025094795A1 (en) | 2025-05-08 |
Family
ID=95582261
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2024/037788 Pending WO2025094795A1 (en) | 2023-10-31 | 2024-10-23 | Diagnostic method, program, and diagnostic system |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025094795A1 (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006105412A (en) * | 2004-09-30 | 2006-04-20 | Sanyo Electric Co Ltd | Equipment operating condition monitoring device |
| US20110088415A1 (en) * | 2009-10-21 | 2011-04-21 | Diehl Ako Stiftung & Co. Kg | Adaptive defrost controller for a refrigeration device |
| WO2022123640A1 (en) * | 2020-12-08 | 2022-06-16 | Jfeスチール株式会社 | Time series signal trigger condition determination method, method for diagnosing abnormality in monitored facility, and time series signal trigger condition determination device |
-
2024
- 2024-10-23 WO PCT/JP2024/037788 patent/WO2025094795A1/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006105412A (en) * | 2004-09-30 | 2006-04-20 | Sanyo Electric Co Ltd | Equipment operating condition monitoring device |
| US20110088415A1 (en) * | 2009-10-21 | 2011-04-21 | Diehl Ako Stiftung & Co. Kg | Adaptive defrost controller for a refrigeration device |
| WO2022123640A1 (en) * | 2020-12-08 | 2022-06-16 | Jfeスチール株式会社 | Time series signal trigger condition determination method, method for diagnosing abnormality in monitored facility, and time series signal trigger condition determination device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7870440B2 (en) | Method and apparatus for detecting multiple anomalies in a cluster of components | |
| CN111103851B (en) | System and method for anomaly characterization based on joint history and time series analysis | |
| US20070089011A1 (en) | Method and apparatus to monitor stress conditions in a system | |
| US20060293777A1 (en) | Automated and adaptive threshold setting | |
| WO2014051603A1 (en) | Predicting failure of a storage device | |
| CN108009692A (en) | Maintenance of equipment information processing method, device, computer equipment and storage medium | |
| WO2013153467A1 (en) | Cooling system control and servicing based on time-based variation of an operational variable | |
| CN110689141B (en) | Fault diagnosis method and equipment for wind turbine | |
| US20200162342A1 (en) | Cognitive data center management | |
| JP7449771B2 (en) | home appliance system | |
| US20240044539A1 (en) | Data processing apparatus and data processing method | |
| CN110500825A (en) | Electronic expansion valve fault diagnosis method and device, air conditioner and storage medium | |
| JP2009539061A (en) | Neural network based refrigerant charge detection algorithm for vapor compression system | |
| CN117312094A (en) | A server hardware monitoring and collection method based on time series analysis algorithm | |
| WO2025094795A1 (en) | Diagnostic method, program, and diagnostic system | |
| CN118468169A (en) | Equipment fault monitoring method, device, equipment and storage medium based on Internet of things | |
| CN115900215A (en) | Fault detection method and device for refrigerator | |
| US9104792B2 (en) | Modular refrigeration unit health monitoring | |
| CN108197717B (en) | Signal-based equipment maintenance system and method | |
| CN111504673A (en) | Fault diagnosis method and system for water chilling unit and air conditioner | |
| JP3979232B2 (en) | Failure diagnosis apparatus and failure diagnosis method | |
| EP3839682B1 (en) | Weight assignment for fusion of prognostic estimators | |
| JP2024101610A (en) | Diagnostic system, diagnostic method, program, and air conditioner | |
| WO2012029114A1 (en) | Storage medium diagnosis device, storage medium diagnosis method, and storage medium diagnosis programme | |
| CN120778409A (en) | Efficacy abnormality diagnosis method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24885568 Country of ref document: EP Kind code of ref document: A1 |