[go: up one dir, main page]

WO2025088719A1 - Vehicle driving assistance device - Google Patents

Vehicle driving assistance device Download PDF

Info

Publication number
WO2025088719A1
WO2025088719A1 PCT/JP2023/038499 JP2023038499W WO2025088719A1 WO 2025088719 A1 WO2025088719 A1 WO 2025088719A1 JP 2023038499 W JP2023038499 W JP 2023038499W WO 2025088719 A1 WO2025088719 A1 WO 2025088719A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
road
road surface
unit
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2023/038499
Other languages
French (fr)
Japanese (ja)
Inventor
真一郎 中平
勇斗 藤井
直登 千葉
暢夫 森村
聡基 佐藤
拓郎 寺田
寛和 梶
進 山形
欽之助 増田
慎司 澤田
俊樹 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to PCT/JP2023/038499 priority Critical patent/WO2025088719A1/en
Publication of WO2025088719A1 publication Critical patent/WO2025088719A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/064Degree of grip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient

Definitions

  • the present invention relates to a vehicle driving assistance device.
  • the driving control unit in an autonomous driving mode, the driving control unit first checks the tire slip condition from the tire rotation speed and estimates the road friction coefficient. Then, based on this road friction coefficient, it is checked whether the road surface is slippery or not. If it is determined that the road surface is slippery, the driving control unit executes a low friction coefficient driving mode. In this low friction coefficient driving mode, the steering speed is slowed down, the braking timing is set earlier, and the upper limit speed and upper limit acceleration are set low.
  • the driving control unit detects the driver's level of anxiety from factors such as the frequency with which the driver moves their eyes. If it determines that the driver is feeling anxious, it further corrects the steering speed and braking timing. This is intended to ease the driver's anxiety.
  • JP 2023-1303513 A after detecting slippage occurring in the vehicle, the low friction coefficient driving mode is executed. Furthermore, at that time, the degree of anxiety of the driver is judged and the driver's anxiety is alleviated. This makes it easy for a momentary delay in control to occur when preventing slippage. Also, because control to alleviate anxiety is not executed until the driver feels anxiety, a momentary delay in control also occurs in this case.
  • the present invention aims to provide a vehicle driving assistance device that can suppress the occurrence of slippage and significantly reduce the anxiety felt by passengers, including the driver.
  • One aspect of the present invention has a driving environment information acquisition unit that acquires driving environment information ahead of the vehicle, and a control unit, the control unit including a road information acquisition unit that acquires road information based on the driving environment information acquired by the driving environment information acquisition unit, a minimum road friction coefficient detection unit that detects a minimum road friction coefficient based on the road information acquired by the road information acquisition unit, a driving force calculation unit that calculates a driving force based on the torque of a driving source, a road grip calculation unit that calculates the road grip of a driving wheel based on the minimum road friction coefficient detected by the minimum road friction coefficient detection unit, and
  • the vehicle includes a comparison unit that compares the driving force calculated by the power calculation unit with the road grip force calculated by the road grip force calculation unit, and a driving support control unit that executes driving support control when the comparison unit determines that the driving force exceeds the road grip force.
  • the control unit further includes a driving section setting unit that divides the driving route ahead of the vehicle according to predetermined driving section conditions, and the minimum road friction coefficient detection unit detects the minimum road friction coefficient within the driving section set by the driving section setting unit based on the driving environment information acquired by the driving environment information acquisition unit.
  • FIG. 13 is an explanatory diagram showing a manner in which road surface ⁇ is estimated for each section.
  • FIG. 2 is an explanatory diagram showing the relationship between the driving force of the driving tires and the road grip force.
  • reference numeral 1 denotes a drive control device.
  • This drive control device 1 is mounted on the host vehicle M (see Figure 5).
  • the host vehicle M is an electric vehicle. In the following description, the host vehicle M will be referred to as the electric vehicle M.
  • the drive control device 1 has a vehicle integrated control unit 2.
  • This vehicle integrated control unit 2 comprehensively performs various controls related to the drive of the electric vehicle M.
  • a camera control unit 3 and left and right side view cameras 7l, 7r are connected to this vehicle integrated control unit 2.
  • various sensors that obtain information required when driving the electric vehicle M are connected to the vehicle integrated control unit 2.
  • the vehicle integrated control unit 2 and the camera control unit 3 correspond to the control unit of the present invention.
  • Side view cameras 7l, 7r are attached to the left and right front parts of the vehicle body to capture images of the left and right sides of the vehicle body. From the images captured by each side view camera 7l, 7r, the vehicle integrated control unit 2 detects the moving speed of the road surface and the moving speed of the tires of the drive wheels Fl, Fr at their road contact positions.
  • an inverter control unit 5 is connected to the vehicle integrated control unit 2.
  • the vehicle integrated control unit 2 is connected to various control units so that bidirectional communication is possible.
  • Each of the control units 2, 3, 5, and the navigation system 8 described below, is composed of a microcontroller equipped with a CPU, RAM, ROM, rewritable non-volatile memory (flash memory or EEPROM), and peripheral devices.
  • the ROM stores programs and fixed data necessary for the CPU to execute each process.
  • the RAM is provided as a work area for the CPU, and temporarily stores various data for the CPU.
  • the CPU is also called an MPU (Microprocessor) or a processor.
  • a GPU Graphics Processing Unit
  • GSP Graph Streaming Processor
  • a selective combination of the CPU, GPU, and GSP may be used.
  • the inverter 12 of the electric powertrain 11 is connected to the inverter control unit 5.
  • the electric powertrain 11 includes the inverter 12, a high-voltage battery 13, and a drive motor 14 as a drive source.
  • the inverter 12 is operated by a command signal from the inverter control unit 5.
  • the inverter 12 converts direct current (DC) power from the high-voltage battery 13 into alternating current (AC) power and supplies it to the drive motor 14.
  • the inverter control unit 5 controls the driving force of the drive motor 14 by vector control.
  • the output shaft 21 of the drive motor 14 is connected to the drive shafts 22l, 22r of the left and right drive wheels Fl, Fr via a differential Df.
  • the drive motor 14 drives the drive wheels Fl, Fr with power supplied from the inverter 12 to power the electric vehicle M.
  • a camera unit 6 is installed at the front of the electric vehicle M as a driving environment detection unit.
  • the camera unit 6 is equipped with a stereo camera consisting of a main camera 6a and a sub-camera 6b.
  • This camera unit 6 is connected to the input side of the camera control unit 3.
  • the camera control unit 3 processes the images of the driving environment ahead of the electric vehicle M captured by both cameras 6a, 6b of the camera unit 6 to obtain information about the driving environment ahead.
  • the non-volatile memory 3a provided in the camera control unit 3 stores information about the tires currently installed. This tire information is input by the user or the driver when the tires are installed.
  • the tire information includes the type of tire, the replacement time, etc.
  • the type of tire includes whether it is a normal tire or a studless tire, the tire size, etc.
  • the maps include a basic road surface ⁇ setting map (see FIG. 4A) that is read in when setting the estimated ⁇ initial value, a weather correction coefficient setting map (see FIG. 4B), and a tire correction coefficient setting map (see FIG. 4C). Furthermore, a road surface ⁇ correction coefficient map (see FIG. 4D) is stored in the non-volatile memory 3a.
  • the basic road surface ⁇ map stores basic road surface ⁇ data that is preset for each road type.
  • Road types include paved roads (concrete road surface, asphalt road surface), unpaved roads (gravel road, dirt road), etc.
  • the basic road surface ⁇ for unpaved roads is set lower than that for paved roads.
  • the weather correction coefficient setting map has correction coefficients (however, correction coefficients ⁇ 1) set according to the weather.
  • the correction coefficients are set to decreasing values in the following order: sunny > cloudy > rain > snow.
  • the tire correction coefficient setting map has correction coefficients (however, correction coefficients ⁇ 1) set according to tire type.
  • the correction coefficient for normal tires is set higher than that for studless tires. Also, the higher the aspect ratio of the tire, the higher the correction coefficient is set.
  • the road surface ⁇ correction coefficient setting map has road surface ⁇ correction coefficients set according to the road surface type. Even on paved roads, the road surface ⁇ is lower on snowy or rainy roads than on dry roads.
  • the road surface ⁇ correction coefficient setting map is set with the percentage by which the road surface ⁇ is lowered for each road surface type, determined in advance through experiments, etc.
  • a navigation system 8 is connected to the camera control unit 3. Furthermore, a GNSS (Global Navigation Satellite System) receiver 9 and a road information transmission/reception unit 10 are connected to this navigation system 8.
  • GNSS Global Navigation Satellite System
  • the navigation system 8 acquires information on the vehicle's position (latitude, longitude, altitude) based on positioning signals received by a GNSS receiver 9 from multiple positioning satellites.
  • the navigation system 8 has a memory unit in which road map data is stored.
  • This road map data includes static information and dynamic information.
  • Static information includes road information such as paved roads and unpaved roads.
  • Dynamic information includes weather information that changes in real time.
  • Weather information includes weather conditions such as sunny/rainy/snowy, sunshine, amount of rainfall, amount of snowfall, temperature, humidity, air pressure, etc. Weather information may be obtained from meteorological information provided on a website.
  • the navigation system 8 plots the vehicle's estimated position based on the positioning signal received by the GNSS receiver 9 on road map data, and estimates the vehicle's current position on the road map and the direction of travel. The navigation system 8 then creates a driving route on the road map that connects the destination input by the driver or other person and the vehicle's position.
  • the navigation system 8 can access the cloud server 103 from the road information transmitting/receiving unit 10 via the base station 101 and the network 102.
  • the navigation system 8 acquires the latest road map data (static information, dynamic information) for the area around the vehicle from the cloud server 103.
  • the camera unit 6 and the navigation system 8 correspond to the driving environment information acquisition unit of the present invention.
  • the navigation system 8 also acquires road information around the vehicle based on road map data. This acquired road information is then sent to the camera control unit 3.
  • the camera control unit 3 sets the division conditions for dividing the driving route set on the road map into distances. These driving division conditions are set based on road information ahead of the vehicle position obtained by the navigation system 8, and driving environment information ahead of the vehicle obtained from images captured by the camera unit 6. Note that these division conditions are constantly updated. Therefore, while the electric vehicle M is traveling on the divided road, the driving route ahead is divided into driving sections.
  • the camera control unit 3 divides the driving route from the front of the vehicle to a preset distance according to the set driving section conditions. The camera control unit 3 then sets the smallest minimum road surface ⁇ min within the driving section. The camera control unit 3 sets this minimum road surface ⁇ min for each driving section.
  • the vehicle integrated control unit 2 controls the driving force P of the drive wheels Fl and Fr based on the minimum road surface ⁇ min set within that road segment.
  • is the road friction coefficient
  • Wf is the vehicle weight applied to the driving tires (front wheels)
  • W is the total vehicle weight
  • Wr is the vehicle weight applied to the driven tires (rear wheels).
  • the electric vehicle M can continue to run without causing slippage.
  • the camera control unit 3 sets the minimum road surface ⁇ min for each driving segment in accordance with the estimated road surface ⁇ setting routine shown in FIG. 2.
  • the camera control unit 3 first acquires vehicle position information estimated by the navigation system 8 (step S1). Next, the camera control unit 3 searches for a driving route ahead of the vehicle position from road map data based on the vehicle position, and acquires driving environment information on the driving route (step S2).
  • This driving environment information includes road information acquired based on images captured by the camera unit 6, and static and dynamic information stored in the road map data.
  • the processing in step S2 corresponds to the road information acquisition section of the present invention.
  • the camera control unit 3 sets the driving segment conditions based on the driving environment information (step S3).
  • the driving segment conditions are classified based on the travel distance from the position when the driving route was classified in the previous calculation, the preset time pitch, the lane after the electric vehicle M changes lanes, the road type (paved road, unpaved road, etc.), the sunlight on the road (sunny, shaded), the road surface condition (dry, wet), the snow surface condition (uncleared, cleared), etc.
  • the driving segment conditions are used to select which condition is used for the driving segment.
  • Figure 6 shows an example in which the driving segment is set as a condition for classifying the driving segment as paved road or unpaved road. This driving segment condition can be changed successively.
  • the camera control unit divides the driving route on which the electric vehicle M is traveling according to the set driving section conditions (step S4). Note that the processing in steps S3 and S4 corresponds to the driving section setting unit of the present invention.
  • driving section A where the electric vehicle M is currently driving is paved road
  • the next driving section B is unpaved road
  • the next driving section C is paved road. Note that this driving section is determined within a range where the road conditions can be recognized based on the images captured by the camera unit 6.
  • the camera control unit 3 refers to the basic road surface ⁇ map (FIG. 4A) based on the classified road type, and sets the basic road surface ⁇ corresponding to the acquired road type (step S5).
  • the basic road surface ⁇ map stores the road surface ⁇ set for each road type, which is obtained in advance through experiments, etc.
  • the camera control unit 3 sets the tire correction coefficient by referring to the tire correction coefficient setting map ( Figure 4C) based on the tire information of the electric vehicle M pre-stored in the non-volatile memory 3a (step S8).
  • the camera control unit 3 multiplies the basic road surface ⁇ set for each driving segment by the average value of the weather correction coefficient and the tire correction coefficient, or whichever is lower, to set the estimated road surface ⁇ initial value (step S9).
  • the cloud server 103 may be accessed to retrieve information on other vehicles in the driving segment (e.g., slip information and road surface ⁇ information), and this other vehicle information may be incorporated into the estimated road surface ⁇ initial value.
  • the camera control unit 3 sets the distribution of road surface types within the driving section (step S10).
  • driving sections A and B shown in Figure 6 are paved roads, but the road surface can be of any type, such as asphalt or concrete, and the road surface ⁇ differs depending on the type.
  • driving section C even on paved roads, there are some areas in the shade where snow has piled up or the road has become icy.
  • driving section B shown in Figure 6 even if the majority of the road is gravel, there are also some areas where the dirt road is exposed, the gravel is unevenly distributed, and the road is muddy. In this way, the road surface ⁇ differs depending on the condition of the road surface, whether the road type is paved or unpaved.
  • This road surface type distribution is based on the image of the road ahead captured by the camera unit 6, and is determined by dividing one frame of image data into road surface types using image recognition that utilizes AI (artificial intelligence), for example.
  • This road surface type is information that acquires the current changes in the road surface in real time.
  • the camera control unit 3 refers to a road surface ⁇ correction coefficient map (FIG. 4D) for each road surface type identified by the AI and sets a road surface ⁇ correction coefficient corresponding to the road surface type (step S11).
  • this road surface ⁇ correction coefficient map the correction coefficient for each road surface type is determined in advance through experiments, etc. and set.
  • the camera control unit 3 corrects the set initial estimated road surface ⁇ value with the road surface ⁇ correction coefficient, and sets the estimated road surface ⁇ for each road surface type (step S12).
  • the minimum estimated road surface ⁇ is selected from among the estimated road surface ⁇ set within the driving segment (step S13).
  • the selected minimum estimated road surface ⁇ is set as the minimum road surface ⁇ min (step S14).
  • Road surface information for the driving segment including this minimum road surface ⁇ min is sent as road information to the vehicle integrated control unit 2 (step S15), and the routine is exited. Note that the processing in steps S13 and S14 corresponds to the minimum road surface friction coefficient detection unit of the present invention.
  • the vehicle integrated control unit 2 reads road surface information for each driving section from the camera control unit 3 and detects whether or not slippage has occurred when the electric vehicle M is actually driven. The detection of whether or not slippage has occurred for each driving section executed by the vehicle integrated control unit 2 is specifically performed according to the slip detection routine for each driving section shown in FIG. 3.
  • the driving force of the drive motor 14 of the electric vehicle M is controlled by vector control.
  • Vector control separates the current flowing through the motor into a current component that generates torque (torque current component) and a current component that generates magnetic flux in the rotor (magnetic flux current component), and controls each independently.
  • the vehicle integrated control unit 2 first calculates the driving force P to be applied to the drive wheels Fl and Fr based on the torque current component (step S21).
  • the processing in step S21 corresponds to the driving force calculation section of the present invention.
  • the vehicle integrated control unit 2 reads the vehicle weight Wf applied to the tires of the drive wheels Fl and Fr (step S22). This vehicle weight Wf is pre-stored in the non-volatile memory 3a. In addition, the vehicle integrated control unit 2 reads the minimum road surface ⁇ min for the driving section in which the vehicle is currently traveling (step S23).
  • step S24 the road grip force calculation unit of this specification.
  • step S25 the vehicle integrated control unit 2 compares the driving force P with the road grip force F. Note that the process in step S25 corresponds to the comparison section of the present invention.
  • step S25 YES
  • step S25: NO the vehicle integrated control unit 2 determines that the possibility of slip occurring is low. If it predicts slip occurring, the vehicle integrated control unit 2 executes driving support control (step S28).
  • step S24 the road grip force F is calculated based on the minimum road surface ⁇ min, so that if P>F, it is possible to quickly predict the occurrence of slip.
  • the vehicle integrated control unit 2 determines that the possibility of slippage is low, it detects the moving speed of the road surface and the moving speed of the tires of the drive wheels Fl and Fr at their road contact positions based on the images captured by the left and right side view cameras 7l and 7r (step S26).
  • the vehicle integrated control unit 2 determines whether or not slip has occurred based on the road surface movement speed and the movement speed of the tires of the drive wheels Fl and Fr at the road contact position (step S27). As described above, when P>F, it is possible to predict the occurrence of slippage early. However, even if the minimum road surface ⁇ min is set, unexpected slippage may actually occur depending on the driving conditions.
  • the vehicle integrated control unit 2 verifies whether or not slippage has actually occurred. Then, if the difference between the moving speed on the road surface and the moving speed at the tire's road contact position is less than the slip determination speed set for determining the occurrence of slippage (step S27: NO), the vehicle integrated control unit 2 determines that no slippage has occurred and exits the routine.
  • step S27 YES
  • the vehicle integrated control unit 2 determines that slip has occurred. If it determines that slip has occurred, the vehicle integrated control unit 2 executes driving assistance (step S28).
  • the processing in step S28 corresponds to the driving assistance control unit of the present invention.
  • the driving support control executed by the vehicle integrated control unit 2 is a control for suppressing the occurrence of slippage.
  • Examples of driving support control include limiting the upper acceleration value of the electric vehicle M, lengthening the lower limit of the distance from the preceding vehicle, and setting a high collision prevention brake intervention threshold value for the electric vehicle M with respect to the preceding vehicle.
  • the vehicle integrated control unit 2 executes at least one of these controls, or a combination of two or more of them.
  • the driving support control executed by the vehicle integrated control unit 2 may be a control that only notifies the driver of the occurrence of slippage, instead of the above-mentioned control.
  • the control that notifies the driver of the occurrence of slippage is performed, for example, by applying a reaction force or vibration to the accelerator pedal and the brake pedal.
  • the means for applying the reaction force and vibration is provided by providing a pressure actuator to the accelerator pedal and brake pedal, and the vehicle integrated control unit 2 operates this pressure actuator.
  • the vehicle integrated control unit 2 updates the road map data stored in the navigation system 8 (step S29).
  • the road surface information for the current driving section is updated.
  • the road surface information to be updated includes the driving section where slippage was detected, the time at which it occurred, and the minimum road surface ⁇ min measured at that time, etc.
  • the vehicle integrated control unit 2 transmits this road surface information to the cloud server 103 via the network 102 (step S30) and exits the routine.
  • the cloud server 103 stores the received vehicle information as vehicle information for the driving section in which the electric vehicle M has traveled, and provides it to other vehicles.
  • the driving route on which the electric vehicle M travels is divided into predetermined driving section conditions. Then, the minimum road surface ⁇ min in the driving section is detected, and the road grip force F is calculated based on this minimum road surface ⁇ min. Therefore, if the electric vehicle M travels in a driving section with the relationship P ⁇ F, it is possible to prevent slippage from occurring.
  • the electric vehicle M may be a four-wheel drive vehicle.
  • the estimated road surface ⁇ setting routine shown in FIG. 2 may be executed by the vehicle integrated control unit 2. Furthermore, when the vehicle integrated control unit 2 detects the occurrence of slippage, it may notify the driver by voice or by displaying an image on a monitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

A vehicle driving assistance device according to the present invention comprises a control unit. The control unit comprises: a road information acquisition unit that acquires road information on the basis of travel environment information; a minimum road surface friction coefficient detection unit that detects a minimum road surface friction coefficient on the basis of the road information; a driving force calculation unit that calculates a driving force on the basis of a torque of a driving source; a road surface grip force calculation unit that calculates a road surface grip force of a driving wheel on the basis of the minimum road surface friction coefficient detected by the minimum road surface friction coefficient detection unit; a comparison unit that compares the driving force with the road surface grip force; and a travel assistance control unit that executes travel assistance control when the comparison unit determines that the driving force exceeds the road surface grip force. The control unit further comprises a travel segment setting unit that segments a travel route ahead of a host vehicle in accordance with a prescribed travel segment condition, and the minimum road surface friction coefficient detection unit detects the minimum road surface friction coefficient in a travel segment on the basis of the travel environment information.

Description

車両の運転支援装置Vehicle driving support device

 本発明は、車両の運転支援装置に関する。 The present invention relates to a vehicle driving assistance device.

 運転者が自車両を運転中に、道路状況や天候の変化により、自車両が運転者の予期しない挙動を示す場合がある。例えば、路面の一部が凍結しており自車両が凍結路面を通過する際に一瞬スリップが発生することがある。 When a driver is driving their vehicle, changes in road conditions or weather can cause the vehicle to behave in ways that the driver does not anticipate. For example, if part of the road surface is frozen, the vehicle may slip for a moment when passing over the frozen surface.

 更に、橋梁の継ぎ目に設けられている金属製ジョイント、雪や落ち葉等をタイヤが踏みしめて通過する際にも一瞬スリップが発生する場合がある。駆動輪が操舵輪を兼用している前輪駆動車では、前輪がスリップした場合、車両を操舵することも困難となる。 Furthermore, momentary slippage can occur when tires pass over metal joints at bridge joints, or snow or fallen leaves. In front-wheel drive vehicles, where the driving wheels also serve as steering wheels, if the front wheels slip, it becomes difficult to steer the vehicle.

 自車両の走行時にスリップが発生すると、車両の挙動が不安定となり、運転者を含む乗員に不安感を抱かせてしまうことになる。 If slippage occurs while the vehicle is moving, the vehicle's behavior becomes unstable, causing anxiety to the driver and other passengers.

 例えば、日本国特開2023-1303513号公報に開示されている技術は、先ず、自動運転モードにおいて、走行制御部は、タイヤの回転速度からタイヤのスリップ状況を確認して路面摩擦係数を推定する。そして、この路面摩擦係数に基づいて滑りやすい路面か否かを調べる。滑りやすい路面であると判定した場合、走行制御部は、低摩擦係数走行モードを実行する。この低摩擦係数走行モードでは、転舵速度をゆっくりとさせ、ブレーキタイミングを早めに設定し、上限速度、及び上限加速度を低く設定する。 For example, in the technology disclosed in Japanese Patent Publication No. 2023-1303513, in an autonomous driving mode, the driving control unit first checks the tire slip condition from the tire rotation speed and estimates the road friction coefficient. Then, based on this road friction coefficient, it is checked whether the road surface is slippery or not. If it is determined that the road surface is slippery, the driving control unit executes a low friction coefficient driving mode. In this low friction coefficient driving mode, the steering speed is slowed down, the braking timing is set earlier, and the upper limit speed and upper limit acceleration are set low.

 走行制御部は、低摩擦係数走行モードを実行している際に、運転者の視線の移動頻度等から不安度を検出する。そして、運転者が不安を感じていると判定した場合は、転舵速度及びブレーキタイミングを更に補正する。これにより、運転者の不安を和らげるようにしている。 When the low-friction coefficient driving mode is in operation, the driving control unit detects the driver's level of anxiety from factors such as the frequency with which the driver moves their eyes. If it determines that the driver is feeling anxious, it further corrects the steering speed and braking timing. This is intended to ease the driver's anxiety.

 ところで、路面の状況は走行環境によって刻々と変化している。走行中の車両に対し、スリップの発生を未然に防止するためには、これから発生するであろう路面摩擦係数の変化を早期に予測する必要がある。 By the way, road surface conditions change from moment to moment depending on the driving environment. In order to prevent slippage from occurring while a vehicle is moving, it is necessary to predict upcoming changes in the road surface friction coefficient at an early stage.

 しかし、日本国特開2023-1303513号公報に開示されている技術では、自車両に発生したスリップを検出した後に、低摩擦係数走行モードを実行している。更に、そのとき、運転者の不安の程度を判定し、運転者の不安を和らげるようにしている。そのため、スリップを防止する際の制御に一瞬の遅れが生じ易くなる。又、運転者が不安を感じるまでは不安を和らげる制御が実行されないため、この場合も、一瞬の制御遅れが生じる。 However, in the technology disclosed in JP 2023-1303513 A, after detecting slippage occurring in the vehicle, the low friction coefficient driving mode is executed. Furthermore, at that time, the degree of anxiety of the driver is judged and the driver's anxiety is alleviated. This makes it easy for a momentary delay in control to occur when preventing slippage. Also, because control to alleviate anxiety is not executed until the driver feels anxiety, a momentary delay in control also occurs in this case.

 本発明は、上記事情に鑑み、スリップ発生を抑制し、運転者を含む乗員が感じる不安を大幅に軽減させることのできる車両の運転支援装置を提供することを目的とする。 In view of the above circumstances, the present invention aims to provide a vehicle driving assistance device that can suppress the occurrence of slippage and significantly reduce the anxiety felt by passengers, including the driver.

 本発明の一態様は、自車両前方の走行環境情報を取得する走行環境情報取得部と、制御部とを有し、前記制御部は、前記走行環境情報取得部で取得した前記走行環境情報に基づいて道路情報を取得する道路情報取得部と、前記道路情報取得部で取得した前記道路情報に基づいて最小路面摩擦係数を検出する最小路面摩擦係数検出部と、駆動源のトルクに基づいて駆動力を算出する駆動力算出部と、前記最小路面摩擦係数検出部で検出した前記最小路面摩擦係数に基づいて駆動輪の路面グリップ力を算出する路面グリップ力算出部と、前記駆動力算出部で算出した前記駆動力と前記路面グリップ力算出部で算出した前記路面グリップ力とを比較する比較部と、前記比較部で前記駆動力が前記路面グリップ力を越えていると判定した場合、走行支援制御を実行する走行支援制御部とを備え、前記制御部は、前記自車両前方の走行ルートを所定の走行区分条件に従って区分する走行区分設定部を更に備え、前記最小路面摩擦係数検出部は、前記走行環境情報取得部で取得した前記走行環境情報に基づいて前記走行区分設定部で設定した走行区分内での前記最小路面摩擦係数を検出する。 One aspect of the present invention has a driving environment information acquisition unit that acquires driving environment information ahead of the vehicle, and a control unit, the control unit including a road information acquisition unit that acquires road information based on the driving environment information acquired by the driving environment information acquisition unit, a minimum road friction coefficient detection unit that detects a minimum road friction coefficient based on the road information acquired by the road information acquisition unit, a driving force calculation unit that calculates a driving force based on the torque of a driving source, a road grip calculation unit that calculates the road grip of a driving wheel based on the minimum road friction coefficient detected by the minimum road friction coefficient detection unit, and The vehicle includes a comparison unit that compares the driving force calculated by the power calculation unit with the road grip force calculated by the road grip force calculation unit, and a driving support control unit that executes driving support control when the comparison unit determines that the driving force exceeds the road grip force. The control unit further includes a driving section setting unit that divides the driving route ahead of the vehicle according to predetermined driving section conditions, and the minimum road friction coefficient detection unit detects the minimum road friction coefficient within the driving section set by the driving section setting unit based on the driving environment information acquired by the driving environment information acquisition unit.

車両の運転支援装置の概略構成図Schematic diagram of a vehicle driving assistance device 推定路面μ設定ルーチンを示すフローチャートFlowchart showing the routine for setting estimated road surface μ 走行区分別スリップ抑制制御ルーチンを示すフローチャートFlowchart showing a routine for slip suppression control according to driving conditions 道路種類別に基づく基本路面μ設定マップの概念図Conceptual diagram of basic road surface μ setting map based on road type 天候補正係数設定マップの概念図Weather correction factor setting map concept タイヤ補正係数設定マップの概念図Conceptual diagram of tire correction coefficient setting map 路面種別に基づく路面μ補正係数設定マップの概念図Conceptual diagram of road surface μ correction coefficient setting map based on road surface type 路面μを区分毎に推定する態様を示す説明図FIG. 13 is an explanatory diagram showing a manner in which road surface μ is estimated for each section. 駆動タイヤの駆動力と路面グリップ力との関係を示す説明図FIG. 2 is an explanatory diagram showing the relationship between the driving force of the driving tires and the road grip force.

 以下、図面に基づいて本発明の一実施形態を説明する。尚、図面は模式的なものであり、各部材の厚みと幅との関係、それぞれの部材の厚みの比率などは現実のものとは異なることに留意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Below, one embodiment of the present invention will be described with reference to the drawings. It should be noted that the drawings are schematic, and that the relationship between the thickness and width of each component, the thickness ratio of each component, and the like differ from the actual ones, and of course there are parts in which the dimensional relationships and ratios differ between the drawings.

 図1の符号1は駆動制御装置である。この駆動制御装置1は自車両M(図5参照)に搭載されている。自車両Mは電動車両である。以下、自車両Mを電動車両Mと称して説明する。 In Figure 1, reference numeral 1 denotes a drive control device. This drive control device 1 is mounted on the host vehicle M (see Figure 5). The host vehicle M is an electric vehicle. In the following description, the host vehicle M will be referred to as the electric vehicle M.

 駆動制御装置1は、車両統合制御ユニット2を有している。この車両統合制御ユニット2は電動車両Mの駆動に関する種々の制御を総合的に行うものである。この車両統合制御ユニット2にカメラ制御ユニット3、左右のサイドビューカメラ7l,7rが接続されている。尚、図示しないが、車両統合制御ユニット2には、電動車両Mを駆動するに際して必要とする情報を取得する種々のセンサ類が接続されている。又、車両統合制御ユニット2、カメラ制御ユニット3が、本発明の制御部に対応している。 The drive control device 1 has a vehicle integrated control unit 2. This vehicle integrated control unit 2 comprehensively performs various controls related to the drive of the electric vehicle M. A camera control unit 3 and left and right side view cameras 7l, 7r are connected to this vehicle integrated control unit 2. Although not shown, various sensors that obtain information required when driving the electric vehicle M are connected to the vehicle integrated control unit 2. Furthermore, the vehicle integrated control unit 2 and the camera control unit 3 correspond to the control unit of the present invention.

 サイドビューカメラ7l,7rは、左右の車体前側部に取付けられて車体の左右側方を撮像する。車両統合制御ユニット2は、各サイドビューカメラ7l,7rで撮像した画像から、路面の移動速度と駆動輪Fl,Frのタイヤにおける路面接地位置での移動速度とを検出する。 Side view cameras 7l, 7r are attached to the left and right front parts of the vehicle body to capture images of the left and right sides of the vehicle body. From the images captured by each side view camera 7l, 7r, the vehicle integrated control unit 2 detects the moving speed of the road surface and the moving speed of the tires of the drive wheels Fl, Fr at their road contact positions.

 又、車両統合制御ユニット2に、インバータ制御ユニット5が接続されている。尚、図示しないが、車両統合制御ユニット2は種々の制御ユニットと双方向通信自在に接続されている。 In addition, an inverter control unit 5 is connected to the vehicle integrated control unit 2. Although not shown, the vehicle integrated control unit 2 is connected to various control units so that bidirectional communication is possible.

 各制御ユニット2,3,5、及び後述するナビゲーションシステム8は、CPU、RAM、ROM、書き換え可能な不揮発性メモリ(フラッシュメモリ又はEEPROM)、及び周辺機器を備えるマイクロコントローラで構成されている。ROMにはCPUにおいて各処理を実行させるために必要なプログラムや固定データ等が記憶されている。又、RAMはCPUのワークエリアとして提供され、CPUでの各種データが一時記憶される。尚、CPUはMPU(Microprocessor)、プロセッサとも呼ばれている。又、CPUに代えてGPU(Graphics Processing Unit)やGSP(Graph Streaming Processor)を用いても良い。或いはCPUとGPUとGSPとを選択的に組み合わせて用いても良い。 Each of the control units 2, 3, 5, and the navigation system 8 described below, is composed of a microcontroller equipped with a CPU, RAM, ROM, rewritable non-volatile memory (flash memory or EEPROM), and peripheral devices. The ROM stores programs and fixed data necessary for the CPU to execute each process. The RAM is provided as a work area for the CPU, and temporarily stores various data for the CPU. The CPU is also called an MPU (Microprocessor) or a processor. A GPU (Graphics Processing Unit) or a GSP (Graph Streaming Processor) may be used instead of the CPU. Alternatively, a selective combination of the CPU, GPU, and GSP may be used.

 インバータ制御ユニット5に電動パワートレイン11のインバータ12が接続されている。電動パワートレイン11は、インバータ12と高電圧バッテリ13と駆動源としての駆動モータ14とを備えている。インバータ12はインバータ制御ユニット5からの指令信号によって動作される。インバータ12は、インバータ制御ユニット5からの指令信号に従い、高電圧バッテリ13の直流電力(DC)を交流電力(AC)に変換して駆動モータ14に給電する。インバータ制御ユニット5は、駆動モータ14の駆動力をベクトル制御によって制御する。 The inverter 12 of the electric powertrain 11 is connected to the inverter control unit 5. The electric powertrain 11 includes the inverter 12, a high-voltage battery 13, and a drive motor 14 as a drive source. The inverter 12 is operated by a command signal from the inverter control unit 5. In accordance with the command signal from the inverter control unit 5, the inverter 12 converts direct current (DC) power from the high-voltage battery 13 into alternating current (AC) power and supplies it to the drive motor 14. The inverter control unit 5 controls the driving force of the drive motor 14 by vector control.

 駆動モータ14の出力軸21には、デファレンシャルDfを介して、左右駆動輪Fl,Frの駆動軸22l,22rに連設されている。駆動モータ14はインバータ12から給電された電力で駆動輪Fl,Frを駆動させて電動車両Mを力行させる。 The output shaft 21 of the drive motor 14 is connected to the drive shafts 22l, 22r of the left and right drive wheels Fl, Fr via a differential Df. The drive motor 14 drives the drive wheels Fl, Fr with power supplied from the inverter 12 to power the electric vehicle M.

 又、電動車両Mの前部に、走行環境検出部としてのカメラユニット6が設置されている。カメラユニット6はメインカメラ6aとサブカメラ6bとからなるステレオカメラを備えている。 In addition, a camera unit 6 is installed at the front of the electric vehicle M as a driving environment detection unit. The camera unit 6 is equipped with a stereo camera consisting of a main camera 6a and a sub-camera 6b.

 このカメラユニット6がカメラ制御ユニット3の入力側に接続されている。カメラ制御ユニット3は、カメラユニット6の両カメラ6a,6bで撮像した、電動車両Mの前方の走行環境画像を画像処理して前方走行環境情報を取得する。 This camera unit 6 is connected to the input side of the camera control unit 3. The camera control unit 3 processes the images of the driving environment ahead of the electric vehicle M captured by both cameras 6a, 6b of the camera unit 6 to obtain information about the driving environment ahead.

 又、カメラ制御ユニット3に設けられている不揮発性メモリ3aには、現在装着されているタイヤの情報が格納されている。このタイヤ情報はタイヤ装着時にユーザ或いは運転者が入力する。タイヤ情報としてはタイヤの種別、交換時期等がある。タイヤの種別としてはノーマルタイヤ、スタッドレスタイヤの別、タイヤサイズ等がある。 In addition, the non-volatile memory 3a provided in the camera control unit 3 stores information about the tires currently installed. This tire information is input by the user or the driver when the tires are installed. The tire information includes the type of tire, the replacement time, etc. The type of tire includes whether it is a normal tire or a studless tire, the tire size, etc.

 更に、この不揮発性メモリ3aには種々のマップが格納されている。各マップは、推定μ初期値を設定する際に読込む基本路面μ設定マップ(図4A参照)、天候補正係数設定マップ(図4B参照)、タイヤ補正係数設定マップ(図4C参照)がある。更に、不揮発性メモリ3aには路面μ補正係数マップ(図4D参照)が格納されている。 Furthermore, various maps are stored in this non-volatile memory 3a. The maps include a basic road surface μ setting map (see FIG. 4A) that is read in when setting the estimated μ initial value, a weather correction coefficient setting map (see FIG. 4B), and a tire correction coefficient setting map (see FIG. 4C). Furthermore, a road surface μ correction coefficient map (see FIG. 4D) is stored in the non-volatile memory 3a.

 図4Aに示すように基本路面μマップには、道路種類別毎に予め設定した基本の路面μデータが格納されている。道路種別としては舗装路(コンクリート路面、アスファルト路面)、未舗装路(砂利道、土道)等がある。舗装路よりも未舗装路の基本路面μが低く設定されている。 As shown in Figure 4A, the basic road surface μ map stores basic road surface μ data that is preset for each road type. Road types include paved roads (concrete road surface, asphalt road surface), unpaved roads (gravel road, dirt road), etc. The basic road surface μ for unpaved roads is set lower than that for paved roads.

 図4Bに示すように天候補正係数設定マップには、天候に応じた補正係数(但し、補正係数≦1)が設定されている。この補正係数は、晴天>曇天>降雨>降雪の順で低い値に設定されている。 As shown in Figure 4B, the weather correction coefficient setting map has correction coefficients (however, correction coefficients ≦ 1) set according to the weather. The correction coefficients are set to decreasing values in the following order: sunny > cloudy > rain > snow.

 図4Cに示すようにタイヤ補正係数設定マップには、タイヤ種別に応じた補正係数(但し、補正係数≦1)が設定されている。スタッドレスタイヤよりもノーマルタイヤの補正係数が高く設定されている。又、タイヤの偏平率が高いほど高い値の補正係数が設定されている。 As shown in FIG. 4C, the tire correction coefficient setting map has correction coefficients (however, correction coefficients≦1) set according to tire type. The correction coefficient for normal tires is set higher than that for studless tires. Also, the higher the aspect ratio of the tire, the higher the correction coefficient is set.

 図4Dに示すように路面μ補正係数設定マップには、路面種別に応じた路面μ補正係数が設定されている。舗装路であっても、ドライ路面よりも雪路や雨路は路面μが低くなる。路面μ補正係数設定マップには路面μの低くなる割合を路面種別毎に予め実験などから求めて設定されている。 As shown in Figure 4D, the road surface μ correction coefficient setting map has road surface μ correction coefficients set according to the road surface type. Even on paved roads, the road surface μ is lower on snowy or rainy roads than on dry roads. The road surface μ correction coefficient setting map is set with the percentage by which the road surface μ is lowered for each road surface type, determined in advance through experiments, etc.

 更に、カメラ制御ユニット3にナビゲーションシステム8が接続されている。又、このナビゲーションシステム8にGNSS(Global Navigation Satellite System / 全球測位衛星システム)受信機9、及び道路情報送受信部10が接続されている。 Furthermore, a navigation system 8 is connected to the camera control unit 3. Furthermore, a GNSS (Global Navigation Satellite System) receiver 9 and a road information transmission/reception unit 10 are connected to this navigation system 8.

 ナビゲーションシステム8はGNSS受信機9で受信した複数の測位衛星からの測位信号に基づいて自車位置(緯度、経度、高度)の情報を取得する。ナビゲーションシステム8は道路地図データが記憶された記憶部を有している。この道路地図データは、静的情報と動的情報がある。静的情報には舗装道路、未舗装道路等の道路情報がある。動的情報にはリアルタイムに変化する天候情報がある。 The navigation system 8 acquires information on the vehicle's position (latitude, longitude, altitude) based on positioning signals received by a GNSS receiver 9 from multiple positioning satellites. The navigation system 8 has a memory unit in which road map data is stored. This road map data includes static information and dynamic information. Static information includes road information such as paved roads and unpaved roads. Dynamic information includes weather information that changes in real time.

 天候情報としては、晴雨雪状況等の天候、日照状態、降雨量、降雪量、気温、湿度、気圧等がある。尚、天候情報は、ウェブサイトで提供している気象情報から取得するようにしてもよい。 Weather information includes weather conditions such as sunny/rainy/snowy, sunshine, amount of rainfall, amount of snowfall, temperature, humidity, air pressure, etc. Weather information may be obtained from meteorological information provided on a website.

 ナビゲーションシステム8は、GNSS受信機9で受信した測位信号に基づいて推定した自車位置を道路地図データ上にプロットして、道路地図上の現在の自車位置、及び進行方向を推定する。そして、ナビゲーションシステム8は、運転者等が入力した目的地と自車位置とを結ぶ走行ルートを道路地図上に構築する。 The navigation system 8 plots the vehicle's estimated position based on the positioning signal received by the GNSS receiver 9 on road map data, and estimates the vehicle's current position on the road map and the direction of travel. The navigation system 8 then creates a driving route on the road map that connects the destination input by the driver or other person and the vehicle's position.

 更に、ナビゲーションシステム8は、道路情報送受信部10から、基地局101、ネットワーク102を介してクラウドサーバ103にアクセス可能となっている。ナビゲーションシステム8は、クラウドサーバ103から、自車両周辺における最新の道路地図データ(静的情報、動的情報)を取得する。尚、カメラユニット6及びナビゲーションシステム8が、本発明の走行環境情報取得部に対応している。 Furthermore, the navigation system 8 can access the cloud server 103 from the road information transmitting/receiving unit 10 via the base station 101 and the network 102. The navigation system 8 acquires the latest road map data (static information, dynamic information) for the area around the vehicle from the cloud server 103. The camera unit 6 and the navigation system 8 correspond to the driving environment information acquisition unit of the present invention.

 又、ナビゲーションシステム8は道路地図データに基づいて自車両周辺の道路情報を取得する。この取得した道路情報をカメラ制御ユニット3へ送信する。 The navigation system 8 also acquires road information around the vehicle based on road map data. This acquired road information is then sent to the camera control unit 3.

 カメラ制御ユニット3は、道路地図上に設定した走行ルートをどの距離で区分するかの区分条件を設定する。この走行区分条件は、ナビゲーションシステム8で取得した自車位置前方の道路情報、及びカメラユニット6が撮像した画像から取得した自車両前方の走行環境情報に基づいて設定する。尚、この区分条件は常に更新される。従って、走行区分した道路を電動車両Mが走行している間に、前方の走行ルートが走行区分される。 The camera control unit 3 sets the division conditions for dividing the driving route set on the road map into distances. These driving division conditions are set based on road information ahead of the vehicle position obtained by the navigation system 8, and driving environment information ahead of the vehicle obtained from images captured by the camera unit 6. Note that these division conditions are constantly updated. Therefore, while the electric vehicle M is traveling on the divided road, the driving route ahead is divided into driving sections.

 カメラ制御ユニット3は、設定した走行区分条件に従い、自車両前方から予め設定した距離までの走行ルートを区分する。そして、カメラ制御ユニット3は、走行区分内において最も小さい最小路面μminを設定する。カメラ制御ユニット3は、この最小路面μminの設定を走行区分毎に行う。 The camera control unit 3 divides the driving route from the front of the vehicle to a preset distance according to the set driving section conditions. The camera control unit 3 then sets the smallest minimum road surface μmin within the driving section. The camera control unit 3 sets this minimum road surface μmin for each driving section.

 車両統合制御ユニット2は、電動車両Mが走行区分した道路に進入した際に、当該走行区分内で設定した最小路面μminに基づいて、駆動輪Fl,Frの駆動力Pを制御する。 When the electric vehicle M enters a road segment, the vehicle integrated control unit 2 controls the driving force P of the drive wheels Fl and Fr based on the minimum road surface μmin set within that road segment.

 ところで、電動車両Mの走行において、駆動モータ14が駆動輪Fl,Frのタイヤ(「駆動タイヤ」と称する)に与える駆動力Pが、駆動タイヤに作用する路面からのグリップ力(「路面グリップ力」と称する)Ftを超えた場合(P>Ft)、スリップが発生する
 図7に示すように、電動車両Mにおける駆動タイヤ(図においては前輪)の駆動力Pは、
P=T/r …(1)
で求められる。ここで、T:トルク、r:駆動タイヤの有効半径である。
Meanwhile, when the electric vehicle M is traveling, if the driving force P applied by the drive motor 14 to the tires of the drive wheels Fl, Fr (referred to as "drive tires") exceeds the grip force from the road surface acting on the drive tires (referred to as "road surface grip force") Ft (P>Ft), slippage occurs. As shown in FIG. 7, the driving force P of the drive tires (front wheels in the figure) in the electric vehicle M is expressed as follows:
P = T / r ... (1)
Here, T is the torque, and r is the effective radius of the driving tire.

 又、路面グリップ力Fは、
F=μ・Wf …(2)
で求められる。ここで、μ:路面摩擦係数、Wf:駆動タイヤ(前輪)にかかる車体重量である。因みに、図7において、W:車体総重量、Wr:従動タイヤ(後輪)にかかる車体重量である。
The road grip force F is
F=μ・Wf…(2)
Here, μ is the road friction coefficient, Wf is the vehicle weight applied to the driving tires (front wheels), and in FIG. 7, W is the total vehicle weight, and Wr is the vehicle weight applied to the driven tires (rear wheels).

 従って、最小路面μminに基づいて路面グリップ力Fを設定し、P≦Fの関係が常に維持されるように、駆動力Pを設定すれば、電動車両Mは、スリップを発生させることなく走行を継続させることが可能となる。 Therefore, if the road grip force F is set based on the minimum road surface μmin, and the driving force P is set so that the relationship P≦F is always maintained, the electric vehicle M can continue to run without causing slippage.

 カメラ制御ユニット3による走行区分毎の最小路面μminの設定は、具体的には、図2に示す推定路面μ設定ルーチンに従って行われる。 The camera control unit 3 sets the minimum road surface μmin for each driving segment in accordance with the estimated road surface μ setting routine shown in FIG. 2.

 カメラ制御ユニット3は、先ず、ナビゲーションシステム8で推定した自車位置情報を取得する(ステップS1)。次に、カメラ制御ユニット3は、自車位置に基づき道路地図データから、自車位置前方の走行ルートを探索し、走行ルート上の走行環境情報を取得する(ステップS2)。この走行環境情報としては、カメラユニット6で撮像した画像に基づいて取得した道路情報、及び道路地図データに記憶されている静的情報、及び動的情報である。尚、このステップS2での処理が、本発明の道路情報取得部に対応している。 The camera control unit 3 first acquires vehicle position information estimated by the navigation system 8 (step S1). Next, the camera control unit 3 searches for a driving route ahead of the vehicle position from road map data based on the vehicle position, and acquires driving environment information on the driving route (step S2). This driving environment information includes road information acquired based on images captured by the camera unit 6, and static and dynamic information stored in the road map data. The processing in step S2 corresponds to the road information acquisition section of the present invention.

 次いで、カメラ制御ユニット3は、走行環境情報に基づき走行区分条件を設定する(ステップS3)。走行区分条件は、前回の演算時に走行ルートを区分したとき位置からの移動距離、予め設定した時間ピッチ、電動車両Mが車線変更した後の車線、道路種別(舗装路、未舗装路等)、道路の日差し(日向、日陰)、路面状況(ドライ、ウエット)、雪面状況(未除雪、除雪済み)等に基づいて区分する。更に、走行区分条件は、何れの条件で走行区分するかを選択する。図6には、走行区分を舗装路か未舗装路かで区分する条件に設定した態様が示されている。この走行区分条件は逐次変更することが可能である。 Then, the camera control unit 3 sets the driving segment conditions based on the driving environment information (step S3). The driving segment conditions are classified based on the travel distance from the position when the driving route was classified in the previous calculation, the preset time pitch, the lane after the electric vehicle M changes lanes, the road type (paved road, unpaved road, etc.), the sunlight on the road (sunny, shaded), the road surface condition (dry, wet), the snow surface condition (uncleared, cleared), etc. Furthermore, the driving segment conditions are used to select which condition is used for the driving segment. Figure 6 shows an example in which the driving segment is set as a condition for classifying the driving segment as paved road or unpaved road. This driving segment condition can be changed successively.

 そして、カメラ制御ユニットは設定した走行区分条件に従って、電動車両Mが走行している走行ルートを区分する(ステップS4)。尚、ステップS3,S4での処理が、本発明の走行区分設定部に対応している。 Then, the camera control unit divides the driving route on which the electric vehicle M is traveling according to the set driving section conditions (step S4). Note that the processing in steps S3 and S4 corresponds to the driving section setting unit of the present invention.

 走行区分条件が舗装路か未舗装路かに設定されている場合、図6に示されている走行ルートでは、電動車両Mが現在走行している走行区分Aが舗装路、次の走行区分Bが未舗装路、その次の走行区分Cが舗装路で、それぞれ区分される。尚、この走行区分は、カメラユニット6で撮像した画像に基づき道路状況が認識できる範囲内で行う。 When the driving section condition is set to paved road or unpaved road, the driving route shown in Figure 6 is divided into sections: driving section A where the electric vehicle M is currently driving is paved road, the next driving section B is unpaved road, and the next driving section C is paved road. Note that this driving section is determined within a range where the road conditions can be recognized based on the images captured by the camera unit 6.

 その後、カメラ制御ユニット3は、区分した道路の種別に基づき基本路面μマップ(図4A)を参照して、取得した道路種類別に対応する基本路面μを設定する(ステップS5)。基本路面μマップには、道路種類別毎に設定した路面μが、予め実験などから求めて記憶されている。 Then, the camera control unit 3 refers to the basic road surface μ map (FIG. 4A) based on the classified road type, and sets the basic road surface μ corresponding to the acquired road type (step S5). The basic road surface μ map stores the road surface μ set for each road type, which is obtained in advance through experiments, etc.

 又、道路地図データの動的情報、或いはウェブサイトで提供している気象情報から、自車位置周辺における現在の天候情報を取得する(ステップS6)。そして、この天候情報に基づき天候補正係数設定マップ(図4B)を参照して、天候補正係数を設定する(ステップS7)。 Current weather information around the vehicle's position is also obtained from dynamic information in road map data or weather information provided on a website (step S6). Then, based on this weather information, the weather correction coefficient is set by referring to the weather correction coefficient setting map (Figure 4B) (step S7).

 更に、カメラ制御ユニット3は、不揮発性メモリ3aに予め記憶されている電動車両Mのタイヤ情報に基づきタイヤ補正係数設定マップ(図4C)を参照してタイヤ補正係数を設定する(ステップS8)。 Furthermore, the camera control unit 3 sets the tire correction coefficient by referring to the tire correction coefficient setting map (Figure 4C) based on the tire information of the electric vehicle M pre-stored in the non-volatile memory 3a (step S8).

 そして、カメラ制御ユニット3は、走行区分毎に設定した基本路面μに、天候補正係数とタイヤ補正係数との平均値、或いは何れか低い方の値を乗算して推定路面μ初期値を設定する(ステップS9)。尚、この推定路面μ初期値を設定するに際し、クラウドサーバ103にアクセスして、当該走行区分における他車の情報(例えば、スリップ情報や路面μ情報)を取り込み、この他車情報を推定路面μ初期値に織り込むようにしても良い。 Then, the camera control unit 3 multiplies the basic road surface μ set for each driving segment by the average value of the weather correction coefficient and the tire correction coefficient, or whichever is lower, to set the estimated road surface μ initial value (step S9). Note that when setting this estimated road surface μ initial value, the cloud server 103 may be accessed to retrieve information on other vehicles in the driving segment (e.g., slip information and road surface μ information), and this other vehicle information may be incorporated into the estimated road surface μ initial value.

 その後、カメラ制御ユニット3は、走行区分内の路面種別分布を設定する(ステップS10)。例えば、図6に示す走行区分A,Bは舗装路であっても、路面にはアスファルト舗装やコンクリート舗装等の種別があり、この種別によって路面μが異なる。又、走行区分Cに示すように、舗装路であっても日陰では、雪の吹き溜まりやアイスバーンとなっている部分もある。更に、図6に示す走行区分Bのように未舗装路では、大部分が砂利路であっても、土路が露出していたり、砂利が偏っていたり、泥るみとなっている部分も存在する。このように、道路種別が舗装路、未舗装路であっても路面の状態によって路面μが異なる。 Then, the camera control unit 3 sets the distribution of road surface types within the driving section (step S10). For example, driving sections A and B shown in Figure 6 are paved roads, but the road surface can be of any type, such as asphalt or concrete, and the road surface μ differs depending on the type. Also, as shown in driving section C, even on paved roads, there are some areas in the shade where snow has piled up or the road has become icy. Furthermore, on unpaved roads such as driving section B shown in Figure 6, even if the majority of the road is gravel, there are also some areas where the dirt road is exposed, the gravel is unevenly distributed, and the road is muddy. In this way, the road surface μ differs depending on the condition of the road surface, whether the road type is paved or unpaved.

 この路面種別分布は、カメラユニット6で撮像した前方の画像に基づき、例えばAI(人工知能)を活用した画像認識によって、1フレームの画像データを路面種別毎に分割して識別する。この路面種別は現在の路面の変化をリアルタイムに取得する情報である。 This road surface type distribution is based on the image of the road ahead captured by the camera unit 6, and is determined by dividing one frame of image data into road surface types using image recognition that utilizes AI (artificial intelligence), for example. This road surface type is information that acquires the current changes in the road surface in real time.

 次に、カメラ制御ユニット3は、AIにて識別された路面種別毎に路面μ補正係数マップ(図4D)を参照して、路面種別に応じた路面μ補正係数を設定する(ステップS11)。この路面μ補正係数マップには、路面種別毎の補正係数が予め実験等から求めて設定されている。 Next, the camera control unit 3 refers to a road surface μ correction coefficient map (FIG. 4D) for each road surface type identified by the AI and sets a road surface μ correction coefficient corresponding to the road surface type (step S11). In this road surface μ correction coefficient map, the correction coefficient for each road surface type is determined in advance through experiments, etc. and set.

 そして、カメラ制御ユニット3は、設定した推定路面μ初期値を路面μ補正係数で補正して、推定路面μを路面種別毎に設定する(ステップS12)。 Then, the camera control unit 3 corrects the set initial estimated road surface μ value with the road surface μ correction coefficient, and sets the estimated road surface μ for each road surface type (step S12).

 続いて、走行区分内で設定した各推定路面μの中で最小の推定路面μを選択する(ステップS13)。選択した最小の推定路面μを最小路面μminとして設定する(ステップS14)。この最小路面μminを含む走行区分の路面情報を道路情報として車両統合制御ユニット2へ送信し(ステップS15)、ルーチンを抜ける。尚、ステップS13,S14での処理が、本発明の最小路面摩擦係数検出部に対応している。 Next, the minimum estimated road surface μ is selected from among the estimated road surface μ set within the driving segment (step S13). The selected minimum estimated road surface μ is set as the minimum road surface μmin (step S14). Road surface information for the driving segment including this minimum road surface μmin is sent as road information to the vehicle integrated control unit 2 (step S15), and the routine is exited. Note that the processing in steps S13 and S14 corresponds to the minimum road surface friction coefficient detection unit of the present invention.

 車両統合制御ユニット2は、カメラ制御ユニット3からの走行区分毎の路面情報を読込み、電動車両Mを実際に走行させた際のスリップ発生の有無を検出する。車両統合制御ユニット2で実行される走行区分別のスリップが発生したか否かの検出は、具体的には、図3に示す走行区分別スリップ検出ルーチンに従って行われる。 The vehicle integrated control unit 2 reads road surface information for each driving section from the camera control unit 3 and detects whether or not slippage has occurred when the electric vehicle M is actually driven. The detection of whether or not slippage has occurred for each driving section executed by the vehicle integrated control unit 2 is specifically performed according to the slip detection routine for each driving section shown in FIG. 3.

 電動車両Mの駆動モータ14は、ベクトル制御によって駆動力が制御される。ベクトル制御は、モータに流れる電流を、トルクを発生させる電流成分(トルク電流成分)と回転子に磁束を発生させる電流成分(磁束電流成分)に分離し、それぞれを独立に制御している。車両統合制御ユニット2は、先ず、トルク電流成分に基づき駆動輪Fl,Frに与える駆動力Pを算出する(ステップS21)。尚、ステップS21での処理が、本発明の駆動力算出部に対応している。 The driving force of the drive motor 14 of the electric vehicle M is controlled by vector control. Vector control separates the current flowing through the motor into a current component that generates torque (torque current component) and a current component that generates magnetic flux in the rotor (magnetic flux current component), and controls each independently. The vehicle integrated control unit 2 first calculates the driving force P to be applied to the drive wheels Fl and Fr based on the torque current component (step S21). The processing in step S21 corresponds to the driving force calculation section of the present invention.

 次に、車両統合制御ユニット2は、駆動輪Fl,Frのタイヤにかかる車体重量Wfを読込む(ステップS22)。この車体重量Wfは不揮発性メモリ3aに予め記憶されている。又、現在走行している走行区分の最小路面μminを読込む(ステップS23)。 Next, the vehicle integrated control unit 2 reads the vehicle weight Wf applied to the tires of the drive wheels Fl and Fr (step S22). This vehicle weight Wf is pre-stored in the non-volatile memory 3a. In addition, the vehicle integrated control unit 2 reads the minimum road surface μmin for the driving section in which the vehicle is currently traveling (step S23).

 そして、車体重量Wfと最小路面μminとに基づいて駆動タイヤの路面グリップ力Fを算出する(F=μmin・Wf:ステップS24)。尚、ステップS24での処理が、本は対名の路面グリップ力算出部に対応している。 Then, the road grip force F of the driving tires is calculated based on the vehicle weight Wf and the minimum road surface μmin (F = μmin · Wf: step S24). Note that the process in step S24 corresponds to the road grip force calculation unit of this specification.

 その後、車両統合制御ユニット2は、駆動力Pと路面グリップ力Fとを比較する(ステップS25)。尚、このステップS25での処理が、本発明の比較部に対応している。 Then, the vehicle integrated control unit 2 compares the driving force P with the road grip force F (step S25). Note that the process in step S25 corresponds to the comparison section of the present invention.

 そして、P>Fの場合(ステップS25:YES)、スリップが発生すると予測する。又、車両統合制御ユニット2は、P≦Fの場合(ステップS25:NO)、スリップ発生の可能性は低いと判定する。車両統合制御ユニット2は、スリップ発生を予測した場合、走行支援制御を実行する(ステップS28)。ステップS24では、路面グリップ力Fを最小路面μminに基づいて算出されているため、P>Fの関係では、スリップの発生をいち早く予測することができる。 If P>F (step S25: YES), it predicts that slip will occur. If P≦F (step S25: NO), the vehicle integrated control unit 2 determines that the possibility of slip occurring is low. If it predicts slip occurring, the vehicle integrated control unit 2 executes driving support control (step S28). In step S24, the road grip force F is calculated based on the minimum road surface μmin, so that if P>F, it is possible to quickly predict the occurrence of slip.

 又、車両統合制御ユニット2は、スリップ発生の可能性は低いと判定した場合、左右のサイドビューカメラ7l,7rで検出した画像に基づいて、路面の移動速度と駆動輪Fl,Frのタイヤにおける路面接地位置での移動速度とを検出する(ステップS26)。 If the vehicle integrated control unit 2 determines that the possibility of slippage is low, it detects the moving speed of the road surface and the moving speed of the tires of the drive wheels Fl and Fr at their road contact positions based on the images captured by the left and right side view cameras 7l and 7r (step S26).

 車両統合制御ユニット2は、路面の移動速度と駆動輪Fl,Frのタイヤにおける路面接地位置での移動速度とに基づいてスリップ発生の有無を判定する(ステップS27)。上述したように、P>Fの関係では、いち早くスリップの発生を予測することができる。しかし、最小路面μminを設定した場合であっても、走行条件によっては予期しないスリップが実際に発生する可能性がある。 The vehicle integrated control unit 2 determines whether or not slip has occurred based on the road surface movement speed and the movement speed of the tires of the drive wheels Fl and Fr at the road contact position (step S27). As described above, when P>F, it is possible to predict the occurrence of slippage early. However, even if the minimum road surface μmin is set, unexpected slippage may actually occur depending on the driving conditions.

 そのため、車両統合制御ユニット2は、実際にスリップが発生しているか否かを検証する。そして、車両統合制御ユニット2は、路面の移動速度とタイヤの路面接地位置での移動速度との差分がスリップ発生を判定するために設定したスリップ判定速度未満の場合(ステップS27:NO)、スリップなしと判定し、ルーチンを抜ける。 Therefore, the vehicle integrated control unit 2 verifies whether or not slippage has actually occurred. Then, if the difference between the moving speed on the road surface and the moving speed at the tire's road contact position is less than the slip determination speed set for determining the occurrence of slippage (step S27: NO), the vehicle integrated control unit 2 determines that no slippage has occurred and exits the routine.

 一方、車両統合制御ユニット2は、路面の移動速度に対して駆動輪Fl,Frのタイヤにおける路面接地位置での移動速度が速く、且つその差分がスリップ判定速度以上の場合(ステップS27:YES)、スリップ発生と判定する。車両統合制御ユニット2は、スリップ発生と判定した場合、走行支援を実行する(ステップS28)。尚、ステップS28での処理が、本発明の走行支援制御部に対応している。 On the other hand, if the moving speed at the road contact position of the tires of the drive wheels Fl and Fr is faster than the moving speed of the road surface and the difference is equal to or greater than the slip determination speed (step S27: YES), the vehicle integrated control unit 2 determines that slip has occurred. If it determines that slip has occurred, the vehicle integrated control unit 2 executes driving assistance (step S28). The processing in step S28 corresponds to the driving assistance control unit of the present invention.

 ここで、車両統合制御ユニット2が実行する走行支援制御は、スリップ発生を抑制するための制御である。走行支援制御としては、電動車両Mの加速度上限値を制限することや、先行車との車間距離下限値を長くすることや、先行車に対する電動車両Mの衝突防止ブレーキ介入閾値を高く設定すること等がある。車両統合制御ユニット2は、これらの制御の少なくとも一つ、或いは2つ以上を組み合わせて実行する。 Here, the driving support control executed by the vehicle integrated control unit 2 is a control for suppressing the occurrence of slippage. Examples of driving support control include limiting the upper acceleration value of the electric vehicle M, lengthening the lower limit of the distance from the preceding vehicle, and setting a high collision prevention brake intervention threshold value for the electric vehicle M with respect to the preceding vehicle. The vehicle integrated control unit 2 executes at least one of these controls, or a combination of two or more of them.

 又、車両統合制御ユニット2が実行する走行支援制御としては、上述した制御に代えて、運転者に対してスリップ発生を報知するのみの制御であってもよい。運転者にスリップ発生を報知する制御は、例えば、アクセルペダル、及びブレーキペダルに反力や振動を付与することで行う。 In addition, the driving support control executed by the vehicle integrated control unit 2 may be a control that only notifies the driver of the occurrence of slippage, instead of the above-mentioned control. The control that notifies the driver of the occurrence of slippage is performed, for example, by applying a reaction force or vibration to the accelerator pedal and the brake pedal.

 アクセルペダル、及びブレーキペダルに反力や振動を付与することで、運転者はアクセルペダルやブレーキペダルを必要以上に踏み込むことがなくなる。これにより、スリップ発生を抑制することができる。尚、反力や振動を付与する手段としては、アクセルペダル、及びブレーキペダルに加圧アクチュエータを設け、車両統合制御ユニット2が、この加圧アクチュエータを動作させることで行う。 By applying a reaction force and vibration to the accelerator pedal and brake pedal, the driver will not press the accelerator pedal or brake pedal more than necessary. This makes it possible to prevent slipping. The means for applying the reaction force and vibration is provided by providing a pressure actuator to the accelerator pedal and brake pedal, and the vehicle integrated control unit 2 operates this pressure actuator.

 その後、車両統合制御ユニット2は、ナビゲーションシステム8に記憶されている道路地図データを更新する(ステップS29)。更新する対象は現在の走行区分の路面情報である。更新する路面情報は、スリップ発生を検出した走行区分、そのときの時間、及びそのとき計測した最小路面μmin等である。 Then, the vehicle integrated control unit 2 updates the road map data stored in the navigation system 8 (step S29). The road surface information for the current driving section is updated. The road surface information to be updated includes the driving section where slippage was detected, the time at which it occurred, and the minimum road surface μmin measured at that time, etc.

 更に、車両統合制御ユニット2は、この路面情報を、ネットワーク102を経由してクラウドサーバ103に送信し(ステップS30)、ルーチンを抜ける。クラウドサーバ103は受信した車両情報を、電動車両Mが走行した走行区分における車両情報として記憶し、他の車両に提供する。 Furthermore, the vehicle integrated control unit 2 transmits this road surface information to the cloud server 103 via the network 102 (step S30) and exits the routine. The cloud server 103 stores the received vehicle information as vehicle information for the driving section in which the electric vehicle M has traveled, and provides it to other vehicles.

 このように、本実施形態では、電動車両Mが走行する走行ルートを、予め設定した走行区分条件で区分する。そして、走行区分内の最小路面μminを検出し、この最小路面μminに基づいて路面グリップ力Fを算出する。従って、P≦Fの関係で走行区分を走行すれば、スリップ発生を未然に防止することができる。 In this way, in this embodiment, the driving route on which the electric vehicle M travels is divided into predetermined driving section conditions. Then, the minimum road surface μmin in the driving section is detected, and the road grip force F is calculated based on this minimum road surface μmin. Therefore, if the electric vehicle M travels in a driving section with the relationship P≦F, it is possible to prevent slippage from occurring.

 更に、P≦Fと推定した場合であっても、実際にスリップが発生する可能性はある。そのため、本実施形態では、P≦Fと推定した場合には、サイドビューカメラ7l,7rで撮像した画像に基づき、実際にスリップが発生しているか否かを調べる。そして、スリップ発生が検出された場合は、運転支援を実行するようにしているため、スリップ発生が抑制され、より高い走行安定性を得ることができる。その結果、運転者を含む乗員が感じる不安を大幅に軽減させることができる。 Furthermore, even if it is estimated that P≦F, there is still a possibility that slippage will actually occur. Therefore, in this embodiment, when it is estimated that P≦F, it is checked whether or not slippage has actually occurred based on the images captured by the side view cameras 7l, 7r. Then, if slippage is detected, driving assistance is executed, so that slippage is suppressed and higher driving stability can be obtained. As a result, the anxiety felt by the occupants, including the driver, can be significantly reduced.

 尚、電動車両Mは四輪駆動車であっても良い。又、図2に示す推定路面μ設定ルーチンは、車両統合制御ユニット2で実行させても良い。更に、車両統合制御ユニット2がスリップ発生を検出した場合、音声やモニタの画像で報知するようにしても良い。 The electric vehicle M may be a four-wheel drive vehicle. The estimated road surface μ setting routine shown in FIG. 2 may be executed by the vehicle integrated control unit 2. Furthermore, when the vehicle integrated control unit 2 detects the occurrence of slippage, it may notify the driver by voice or by displaying an image on a monitor.

Claims (5)

 自車両前方の走行環境情報を取得する走行環境情報取得部と、
 制御部と
を有し、
 前記制御部は、
 前記走行環境情報取得部で取得した前記走行環境情報に基づいて道路情報を取得する道路情報取得部と、
 前記道路情報取得部で取得した前記道路情報に基づいて最小路面摩擦係数を検出する最小路面摩擦係数検出部と、
 駆動源のトルクに基づいて駆動力を算出する駆動力算出部と、
 前記最小路面摩擦係数検出部で検出した前記最小路面摩擦係数に基づいて駆動輪の路面グリップ力を算出する路面グリップ力算出部と、
 前記駆動力算出部で算出した前記駆動力と前記路面グリップ力算出部で算出した前記路面グリップ力とを比較する比較部と、
 前記比較部で前記駆動力が前記路面グリップ力を越えていると判定した場合、走行支援制御を実行する走行支援制御部と
を備え、
 前記制御部は、
 前記自車両前方の走行ルートを所定の走行区分条件に従って区分する走行区分設定部を更に備え、
 前記最小路面摩擦係数検出部は、前記走行環境情報取得部で取得した前記走行環境情報に基づいて前記走行区分設定部で設定した走行区分内での前記最小路面摩擦係数を検出する
ことを特徴とする車両の運転支援装置。
A driving environment information acquisition unit that acquires driving environment information ahead of the host vehicle;
A control unit,
The control unit is
a road information acquisition unit that acquires road information based on the traveling environment information acquired by the traveling environment information acquisition unit;
a minimum road friction coefficient detection unit that detects a minimum road friction coefficient based on the road information acquired by the road information acquisition unit;
a driving force calculation unit that calculates a driving force based on a torque of a driving source;
a road grip calculation unit that calculates a road grip of a driving wheel based on the minimum road friction coefficient detected by the minimum road friction coefficient detection unit;
a comparison unit that compares the driving force calculated by the driving force calculation unit with the road grip force calculated by the road grip force calculation unit;
a driving assistance control unit that executes driving assistance control when the comparison unit determines that the driving force exceeds the road surface grip force,
The control unit is
A driving section setting unit that divides a driving route ahead of the vehicle in accordance with a predetermined driving section condition,
The minimum road friction coefficient detection unit detects the minimum road friction coefficient within the driving section set by the driving section setting unit based on the driving environment information acquired by the driving environment information acquisition unit.
 前記走行区分条件は、前回の演算時に走行ルートを区分したときの位置からの移動距離、及び予め設定した時間ピッチ及び、前記自車両が車線変更した後の車線、及び道路種別、及び道路の日差し、及び路面状況、及び雪面状況の少なくとも1つである
ことを特徴とする請求項1記載の車両の運転支援装置。
The vehicle driving assistance device according to claim 1, characterized in that the driving segment conditions are at least one of a travel distance from a position when the driving route was segmented in the previous calculation, a preset time pitch, a lane after the vehicle changes lanes, a road type, sunlight on the road, road surface conditions, and snow surface conditions.
 前記走行区分条件は変更可能である
ことを特徴とする請求項2記載の車両の運転支援装置。
3. The vehicle driving support device according to claim 2, wherein the driving section conditions are changeable.
 前記走行支援制御部で実行する前記走行支援制御は、スリップを抑制するための制御である
ことを特徴とする請求項1記載の車両の運転支援装置。
2. The vehicle driving support device according to claim 1, wherein the driving support control executed by the driving support control unit is a control for suppressing slippage.
 前記制御部は、前記道路情報取得部で取得した前記道路情報を、ネットワークを経由してクラウドサーバに送信する
ことを特徴とする請求項1~4の何れか1項に記載の車両の運転支援装置。
5. The vehicle driving assistance device according to claim 1, wherein the control unit transmits the road information acquired by the road information acquisition unit to a cloud server via a network.
PCT/JP2023/038499 2023-10-25 2023-10-25 Vehicle driving assistance device Pending WO2025088719A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/038499 WO2025088719A1 (en) 2023-10-25 2023-10-25 Vehicle driving assistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/038499 WO2025088719A1 (en) 2023-10-25 2023-10-25 Vehicle driving assistance device

Publications (1)

Publication Number Publication Date
WO2025088719A1 true WO2025088719A1 (en) 2025-05-01

Family

ID=95515450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038499 Pending WO2025088719A1 (en) 2023-10-25 2023-10-25 Vehicle driving assistance device

Country Status (1)

Country Link
WO (1) WO2025088719A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166623A (en) * 2008-01-15 2009-07-30 Toyota Motor Corp Traveling locus generating apparatus and traveling locus generating method
JP2021026387A (en) * 2019-08-01 2021-02-22 株式会社Subaru Vehicle traveling control device
JP2023027475A (en) * 2021-08-17 2023-03-02 株式会社Subaru Driving support device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166623A (en) * 2008-01-15 2009-07-30 Toyota Motor Corp Traveling locus generating apparatus and traveling locus generating method
JP2021026387A (en) * 2019-08-01 2021-02-22 株式会社Subaru Vehicle traveling control device
JP2023027475A (en) * 2021-08-17 2023-03-02 株式会社Subaru Driving support device

Similar Documents

Publication Publication Date Title
US10875534B2 (en) Vehicle control device
JP6364580B2 (en) Active steering system and method for controlling vehicle travel
US11186285B2 (en) Method for estimating a friction coefficient of a roadway by a transportation vehicle, control device, and transportation vehicle
US8078381B2 (en) Vehicle speed control apparatus in accordance with curvature of vehicle trajectory
US8200407B2 (en) Vehicle control device
EP1495904B1 (en) Road-surface friction coefficient estimating device and road-surface friction coefficient estimating method
US8180527B2 (en) Driver assistance method
US7925413B2 (en) Vehicle control system
US7433772B2 (en) Target speed control system for a vehicle
US7200478B2 (en) Lane departure prevention apparatus
US11080949B1 (en) Predictive vehicle operating assistance
US20100023213A1 (en) Vehicle control device
CN110588651B (en) Driving support device for vehicle
JP4946702B2 (en) Travel control device
JP2020005401A (en) Control device of automatic operation vehicle
US20180203461A1 (en) Vehicle control system
CN119975415A (en) Intelligent driving adaptive control method and control system
JP2020090174A (en) Travel control method and travel control device for vehicle
JP2019166949A (en) Drive assist system of vehicle
US20240042994A1 (en) Vehicle control device
WO2025088719A1 (en) Vehicle driving assistance device
KR20190062154A (en) Control apparatus for safe driving of automatic driving vehicle
US20170015311A1 (en) A Vehicle Control System
WO2025088720A1 (en) Control device for electric vehicle
US20250299583A1 (en) Lane hazard mitigation strategy in advanced driver assistance system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23956774

Country of ref document: EP

Kind code of ref document: A1