[go: up one dir, main page]

WO2025084419A1 - Method for classifying skin type - Google Patents

Method for classifying skin type Download PDF

Info

Publication number
WO2025084419A1
WO2025084419A1 PCT/JP2024/037249 JP2024037249W WO2025084419A1 WO 2025084419 A1 WO2025084419 A1 WO 2025084419A1 JP 2024037249 W JP2024037249 W JP 2024037249W WO 2025084419 A1 WO2025084419 A1 WO 2025084419A1
Authority
WO
WIPO (PCT)
Prior art keywords
skin
genes
cluster
subject
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2024/037249
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 中村
直樹 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Publication of WO2025084419A1 publication Critical patent/WO2025084419A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to a method for classifying skin types using biometric information from the skin.
  • cosmetics have been provided to suit the skin characteristics and skin concerns of the cosmetic user.
  • cosmetics for different skin types such as for dry skin, combination skin, and oily skin
  • cosmetics to solve skin concerns such as blemishes, sagging skin, and wrinkles
  • cosmetics that block ultraviolet rays and a wide variety of other cosmetics.
  • Patent Document 1 discloses a method for evaluating human skin characteristics based on genetic factors using SNP analysis.
  • RNA contained in skin surface lipids can be used as a sample for biological analysis, and it has been reported that marker genes for the epidermis, sweat glands, hair follicles, and sebaceous glands can be detected from SSL (Patent Document 2).
  • Patent Document 1 International Publication No. 2021/029332
  • Patent Document 2 International Publication No. 2018/008319
  • the present invention relates to the following 1) and 2).
  • a method comprising: acquiring biometric information from the skin of a subject; and determining from the biometric information whether the subject is classified into one of the skin types.
  • Hierarchical clustering analysis using SSL-RNA Hierarchical clustering analysis of keratinization and immune response using SSL-RNA.
  • the present invention relates to providing a method for classifying the skin type of a subject who is a cosmetic user, using biometric information from the skin.
  • the inventors collected SSL from several healthy female subjects and performed cluster analysis based on the expression state of the RNA contained in the SSL to classify it into two clusters, revealing that each cluster has its own characteristic gene expression. Furthermore, they found that it is possible to classify the skin type of subjects who are cosmetic users based on these.
  • the present invention allows for classification of the skin of cosmetic users, contributing to the selection of optimal cosmetics for each skin type or the provision of customized cosmetics.
  • DNA includes cDNA, genomic DNA, and synthetic DNA
  • RNA includes total RNA, mRNA, rRNA, tRNA, non-coding RNA, and synthetic RNA.
  • the term "gene” refers to double-stranded DNA including human genomic DNA, as well as single-stranded DNA (positive strand) including cDNA, single-stranded DNA (complementary strand) having a sequence complementary to the positive strand, and fragments thereof, and refers to DNA in which some biological information is contained in the sequence information of the bases constituting the DNA.
  • the "gene” in question includes not only “genes” represented by a specific base sequence, but also nucleic acids encoding their homologues (i.e., homologs or orthologs), mutants such as gene polymorphisms, and derivatives.
  • the method for classifying skin of the present invention is a method for classifying a subject's skin into a skin type generated from two clusters recognized by a cluster analysis based on the expression states of genes contained in skin surface lipids of a plurality of healthy subjects,
  • the method includes a step of acquiring biometric information from the skin of a subject, and a step of determining, from the biometric information, to which of the skin types the subject is classified.
  • the expression states of genes contained in lipids on the skin surface of a plurality of healthy subjects are obtained in advance, and based on this, cluster analysis is performed to classify the skin into two clusters, and a skin type is generated based on the classified clusters.
  • the subject "healthy person” is a person with good skin condition, preferably a person who has not been diagnosed with a skin disease by a doctor.
  • the expression state of genes contained in the lipids on the skin surface of multiple healthy people for each age, generation, and sex may be obtained according to the age and sex of the subject to be subjected to skin classification, and a skin type may be generated for each.
  • the skin type is generated from the expression state of genes contained in the lipids on the skin surface of multiple healthy female people, if the subject is a man ... male people, if the subject is both male and female, the skin type is generated from the expression state of genes contained in the lipids on the skin surface of multiple healthy female people and healthy male people.
  • “plurality” refers to an integer of 2 or more, preferably 10 or more, more preferably 100 or more, even more preferably 150 or more, and still more preferably 250 or more.
  • the biological sample used for gene expression analysis is skin surface lipids (SSL).
  • SSL skin surface lipids
  • SSL skin surface lipids
  • SSL refers to the fat-soluble fraction present on the surface of the skin, and is also called sebum.
  • SSL mainly contains secretions from exocrine glands such as sebaceous glands in the skin, and exists on the skin surface in the form of a thin layer that covers the skin surface.
  • SSL contains RNA expressed in skin cells (see Patent Document 2).
  • skin is a general term for the area including the epidermis, dermis, hair follicles, and tissues such as sweat glands, sebaceous glands, and other glands on the body surface, unless otherwise specified.
  • any means used for recovering or removing SSL from the skin can be used.
  • an SSL absorbent material, an SSL adhesive material, or an instrument for scraping SSL from the skin which will be described later, can be used.
  • the SSL absorbent material or SSL adhesive material is not particularly limited as long as it is a material having affinity for SSL, and examples thereof include polypropylene, pulp, etc. More detailed examples of procedures for collecting SSL from the skin include a method of absorbing SSL into a sheet-like material such as oil blotting paper or oil blotting film, a method of adhering SSL to a glass plate, tape, etc., and a method of scraping SSL off and collecting it with a spatula, scraper, etc.
  • an SSL absorbent material that has been previously impregnated with a highly lipid-soluble solvent may be used.
  • the SSL absorbent material contains a low content of highly water-soluble solvent or water, since the adsorption of SSL is inhibited if the SSL absorbent material contains a highly water-soluble solvent or water.
  • the SSL absorbent material is preferably used in a dry state.
  • the site of skin from which SSL is collected is not particularly limited and may be any site of the body such as the head, face, neck, trunk, hands and feet, but is preferably from a site that secretes a lot of sebum, such as the skin of the face.
  • the collected RNA-containing SSL may be stored for a certain period of time. In order to minimize the degradation of the RNA contained therein, it is preferable to store the collected SSL under low-temperature conditions as soon as possible after collection.
  • the temperature conditions for storing the RNA-containing SSL in the present invention may be 0°C or lower, and are preferably -20 ⁇ 20°C to -80 ⁇ 20°C, more preferably -20 ⁇ 10°C to -80 ⁇ 10°C, even more preferably -20 ⁇ 20°C to -40 ⁇ 20°C, even more preferably -20 ⁇ 10°C to -40 ⁇ 10°C, even more preferably -20 ⁇ 10°C, and even more preferably -20 ⁇ 5°C.
  • the period for storing the RNA-containing SSL under the low-temperature conditions is not particularly limited, but is preferably 12 months or less, for example, 6 hours or more and 12 months or less, more preferably 6 months or less, for example, 1 day or more and 6 months or less, even more preferably 3 months or less, for example, 3 days or more and 3 months or less.
  • the expression state of a gene means an index showing the degree or tendency of gene expression
  • the expression state of a gene contained in an SSL is obtained by measuring the expression level (expression amount) of RNA, specifically, by converting RNA into cDNA by reverse transcription, and then measuring the cDNA or its amplification product.
  • RNA extraction reagent for extraction of RNA from SSL
  • a method that is usually used for extracting or purifying RNA from a biological sample such as the phenol/chloroform method, the AGPC (acid guanidinium thiocyanate-phenol-chloroform extraction) method, or a method using columns such as TRIzol (registered trademark), RNeasy (registered trademark), or QIAzol (registered trademark), a method using special silica-coated magnetic particles, a method using Solid Phase Reversible Immobilization magnetic particles, or extraction using a commercially available RNA extraction reagent such as ISOGEN, can be used.
  • a primer targeting a specific RNA to be analyzed may be used, but for more comprehensive nucleic acid storage and analysis, it is preferable to use a random primer.
  • a general reverse transcriptase or reverse transcription reagent kit can be used.
  • a highly accurate and efficient reverse transcriptase or reverse transcription reagent kit is used, and examples thereof include M-MLV Reverse Transcriptase and its variants, or commercially available reverse transcriptases or reverse transcription reagent kits, such as the PrimeScript (registered trademark) Reverse Transcriptase series (Takara Bio Inc.), the SuperScript (registered trademark) Reverse Transcriptase series (Thermo Scientific Inc.), and the like.
  • the temperature of the extension reaction in the reverse transcription is preferably adjusted to 42° C. ⁇ 1° C., more preferably 42° C. ⁇ 0.5° C., and even more preferably 42° C. ⁇ 0.25° C., while the reaction time is preferably adjusted to 60 minutes or more, more preferably 80 to 120 minutes.
  • RNA can be measured, for example, by quantifying the cDNA or its amplified product by real-time PCR, multiplex PCR, microarray, sequencing, chromatography, etc.
  • a library containing DNA derived from expressed genes is prepared using multiplex PCR, the prepared library is sequenced by a next-generation sequencer, and calculation is performed based on the number of reads created (read count).
  • Multiplex PCR is a method for amplifying multiple gene regions simultaneously by using multiple primer pairs in a PCR reaction system.
  • Multiplex PCR can be performed using a commercially available kit (e.g., Ion AmpliSeq Transcriptome Human Gene Expression Kit; Life Technologies Japan, Inc.) under conditions such as 99°C, 2 minutes ⁇ (99°C, 15 seconds ⁇ 62°C, 16 minutes) x 20 cycles ⁇ 4°C, hold.
  • kit e.g., Ion AmpliSeq Transcriptome Human Gene Expression Kit; Life Technologies Japan, Inc.
  • the purification of the reaction products obtained by the PCR is preferably carried out by size separation of the reaction products.
  • size separation By size separation, the target PCR reaction products can be separated from primers and other impurities contained in the PCR reaction solution.
  • Size separation of DNA can be carried out, for example, by using a size separation column, a size separation chip, magnetic beads that can be used for size separation, etc.
  • a preferred example of magnetic beads that can be used for size separation is Solid Phase Reversible Immobilization (SPRI) magnetic beads such as Ampure XP.
  • SPRI Solid Phase Reversible Immobilization
  • the purified PCR reaction products are prepared in an appropriate buffer solution, the PCR primer regions contained in the PCR-amplified DNA are cleaved, and an adapter sequence is further added to the amplified DNA.
  • the purified PCR reaction products are prepared in a buffer solution, the PCR primer sequences are removed from the amplified DNA and adapter ligation is performed, and the resulting reaction products are amplified as necessary to prepare a library for sequencing.
  • Sequencing can be performed using a next-generation sequencer (e.g., Ion S5/XL system, Life Technologies Japan, Inc.), and the gene derived from each read sequence is determined by genetically mapping each read sequence obtained by sequencing to the hg19 AmpliSeq Transcriptome ERCC v1, which is the reference sequence of the human genome. RNA expression levels are calculated based on the number of reads (read count) generated by sequencing.
  • a next-generation sequencer e.g., Ion S5/XL system, Life Technologies Japan, Inc.
  • the read count value which is expression level data obtained by sequencing, is appropriately corrected.
  • the corrected value for the read count value include an RPM value obtained by correcting the difference in the total number of reads between samples for the read count value, a value obtained by converting the RPM value to a logarithmic value with base 2 (Log 2 RPM value), or a logarithmic value with base 2 with an integer 1 added (Log 2 (RPM+1) value), or a count value corrected using DESeq2 (Love MI et al. Genome Biol. 2014) (Normalized count value), or a logarithmic value with base 2 with an integer 1 added (Log 2 (count+1) value), with the Normalized count value corrected using DESeq2 being preferred.
  • cluster analysis is performed.
  • the method of cluster analysis is not particularly limited as long as it can classify a plurality of objects into two or more clusters, and may be hierarchical clustering or non-hierarchical clustering.Cluster analysis can be performed by software capable of statistical analysis.
  • RNA is extracted in which the SSL-derived RNA expression ratio between the two clusters is 1.2 times or more and the corrected p-value (FDR) by a likelihood ratio test is less than 0.05
  • FDR corrected p-value
  • the keratinization-related genes with relatively high expression in Cluster 1 include genes annotated with GO terms such as skin development (GO: 0043588) and epidermis development (GO: 0008544), while the immune response-related genes with relatively high expression in Cluster 2 include genes annotated with GO terms such as immune system process (GO: 0002376) and response to cytokine (GO: 0034097).
  • GO terms Gene Ontology
  • GO terms are common vocabulary for explaining the biological concept of a gene (biological process of a gene, cellular components and molecular functions), and GO terms are annotated (linked) to genes whose functions have been clarified.
  • cluster analysis was performed based on information on the expression states of genes annotated with the keratinization-related GO terms skin development (GO:0043588) and epidermis development (GO:0008544), and genes annotated with the immune response-related GO terms immune system process (GO:0002376) and response to cytokine (GO:0034097).
  • the clusters classified into two were almost equivalent to Cluster 1 and Cluster 2 (Table 1).
  • Cluster 1 is a group of high expression of keratinization-related genes
  • Cluster 2 is a group of high expression of immune response-related genes. From these two clusters, two skin types are generated: a skin type with high expression of keratinization-related genes and a skin type with high expression of immune response-related genes, which are found in the skin of healthy women.
  • biological information is obtained from the skin of a subject, and it is determined from the biological information whether the subject is classified into one of the two skin types generated from the cluster analysis.
  • the "subject” may be a cosmetic product user or a potential user considering using the cosmetic product, and there are no limitations on gender or age.
  • biological information from the skin is not particularly limited as long as it is information obtainable from the skin, regardless of whether it is physiological information or physical information.
  • examples include information on gene expression state in the SSL used in the above-mentioned cluster analysis, information on protein expression state and metabolites in the SSL, information on gene expression state, protein expression state and metabolites in biological samples that can be collected from the face (skin biopsy, stratum corneum, sweat, tears, saliva, etc.), information on gene expression state, protein expression state and metabolites of the flora of normal skin bacteria or bacteria-derived gene expression state, protein expression state and metabolites, and measurement of skin property values by instrumental measurement.
  • Preferable instrumental measurements include transepidermal water loss, stratum corneum moisture content, sebum content, skin glycation degree, skin viscoelasticity, skin color, hemoglobin content, melanin content, skin blood flow, skin temperature, biophotons, etc.
  • information on the gene expression state in SSL is used as biological information from the skin, collection of SSL and measurement of gene expression levels in SSL can be performed in the same manner as described above.
  • the skin type of the subject based on the measured gene expression state can be determined, for example, by 1) determining the skin type from the distance between the center of gravity of the two pre-generated clusters (Cluster 1 and Cluster 2, or Cluster 1' and Cluster 2') and the subject's SSL-derived RNA expression level, or by 2) determining the skin type based on a comparison with the expression level of a specific gene related to keratinization or immune response.
  • the method of determining the distance between the center of gravity of the two clusters and the expression level of SSL-derived RNA of the subject can be carried out by calculating the distance (similarity) between the two clusters and the expression level of SSL-derived RNA obtained from the subject.
  • a center of gravity is calculated from a multidimensional vector with the SSL-derived RNA expression level as a variable, and the distance between the multidimensional vector based on the SSL-derived RNA expression level obtained from the subject and the center of gravity of the two clusters is calculated, and the cluster with a closer distance is determined as the type of the subject.
  • the distance it is also possible to calculate the Spearman's rank correlation coefficient ⁇ between the center of gravity and the subject's data as in the cluster analysis, and use 1- ⁇ .
  • variable that determines the center of gravity or the RNA expression level obtained from the subject it is also possible to narrow it down to genes that are relatively highly expressed in Cluster 1 compared to Cluster 2, or genes that are relatively highly expressed in Cluster 2 compared to Cluster 1, and genes that are annotated with GO terms related to keratinization or immune response.
  • a threshold for the expression level is set based on statistical values such as the average value and standard deviation, and the type can be determined from the SSL-derived RNA expression level of the relevant gene species obtained from the subject.
  • the specific gene related to keratinization or immune response is preferably selected from genes annotated with the keratinization-related or immune response-related GO terms, and from the viewpoint of the accuracy of distinguishing between the two clusters, it is more preferable to select from the 25 genes shown in Table 7 below.
  • the expression level of one or more genes selected from the 25 genes is obtained from a subject, and the expression level is compared with a reference value to determine the skin type of the subject.
  • the reference value can be a threshold value in the Youden index of the ROC curve.
  • the expression levels of one or more genes selected from specific genes related to keratinization or immune response are obtained from a subject, and the expression levels are substituted into a discriminant (discriminant model) for detecting skin type, thereby determining the skin type of the subject.
  • a discriminant equation can be constructed by machine learning using an arbitrary group as a teacher sample, obtaining the expression level of a specific gene related to keratinization or immune response from each person in the teacher sample as an explanatory variable and using each person's skin type as a target variable, and then measuring the expression level of the specific gene in the subject and substituting the expression level into the discriminant equation to discriminate the skin type of the subject.
  • the skin type of each person in the teacher sample can be determined by carrying out the above-mentioned cluster analysis based on information on the expression state of genes contained in the lipids on the skin surface of each person.
  • the specific genes related to keratinization or immune response used to construct the discriminant equation can be selected from genes annotated with the keratinization-related or immune response-related GO terms, but it is preferable to select one or more from the 25 genes shown in Table 7 below.
  • a prediction model As an algorithm for constructing the discriminant, known algorithms such as algorithms used in machine learning can be used. Examples of machine learning algorithms include random forest, decision tree, gradient boosting, XGBossti (eXtreme Gradient Boosting), lightGBM, support vector machine with linear kernel (SVM linear), support vector machine with rbf kernel (SVM rbf), logistic regression, and regularized logistic regression. Examples of such a prediction model include a generalized linear model, a regularized linear discriminant analysis, a k-nearest neighbors method, a neural net, a multi-layer perceptron, a convolutional neural network, and a recurrent neural network.
  • machine learning algorithms include random forest, decision tree, gradient boosting, XGBossti (eXtreme Gradient Boosting), lightGBM, support vector machine with linear kernel (SVM linear), support vector machine with rbf kernel (SVM rbf), logistic regression, and regularized logistic regression. Examples of such a prediction model include a generalized
  • Verification data is input into the constructed prediction model to calculate a predicted value, and the model whose predicted value is most compatible with the actual measured value, for example, the model with the highest accuracy, can be selected as the optimal prediction model.
  • the detection rate (Recall), accuracy (Precision), and their harmonic mean, the F-value are calculated from the predicted and measured values, and the model with the largest F-value can be selected as the optimal prediction model.
  • the biometric information is acquired in advance, and a criterion for classifying into one of the two clusters, such as a threshold, is set, or a discriminant for classifying into one of the two clusters by machine learning is constructed. Then, based on the biometric information acquired from the subject, it can be determined which of the two clusters generated skin types the subject falls into.
  • the method of classifying the subject's skin of the present invention can be performed using a computing device (computer). Therefore, in another aspect, the present invention provides a computing device for executing the above-mentioned method, a program for causing the computing device to execute the above-mentioned method, and an information recording medium on which the program is recorded and which can be read by the computing device.
  • the computing device of the present invention has a means for inputting biometric information obtained from the skin of a subject, and includes a step of executing the above-mentioned method of determining which of the above-mentioned skin types the subject is classified into from the biometric information, in accordance with a program for executing the method of classifying the subject's skin of the present invention.
  • Examples of information recording media readable by a computing device on which a program for executing the method of classifying a subject's skin of the present invention is recorded include magnetic disks, optical disks, magneto-optical disks, and flash memories. Note that in the present invention, "readable by a computing device" also includes cases where the program is distributed via a telecommunications line, etc.
  • the present invention further discloses the following aspects.
  • a method for classifying the skin of a subject the classification being into skin types generated from two clusters obtained by performing cluster analysis based on the expression states of genes contained in lipids on the skin surface of a plurality of healthy subjects;
  • a method comprising: acquiring biometric information from the skin of a subject; and determining from the biometric information whether the subject is classified into one of the skin types.
  • ⁇ 3> The method according to ⁇ 1> or ⁇ 2>, wherein the gene includes a gene annotated with at least one GO term selected from skin development (GO: 0043588), epidermis development (GO: 0008544), immune system process (GO: 0002376, and response to cytokine (GO: 0034097).
  • ⁇ 4> The method according to any one of ⁇ 1> to ⁇ 3>, wherein the biological information from the skin is an expression state of genes contained in lipids on the skin surface of the subject.
  • the expression state of the gene is an expression state of a gene annotated with at least one GO term selected from skin development (GO: 0043588), epidermis development (GO: 0008544), immune system process (GO: 0002376, and response to cytokine (GO: 0034097).
  • ⁇ 6> The method according to ⁇ 4>, wherein the expression state of the gene is the expression state of at least one gene selected from 25 genes: ASPRV1, KRT17, KRT80, KRT79, DNASE1L2, SPRR1A, DSP, CDSN, CST6, LCP1, KRT6B, LCE1C, CALML5, CD83, JUP, TYROBP, SPINT1, CNFN, TMSB4X, NFKB1, B2M, MSN, CXCL16, CD58 and KRT72.
  • the expression state of the gene is the expression state of at least one gene selected from 25 genes: ASPRV1, KRT17, KRT80, KRT79, DNASE1L2, SPRR1A, DSP, CDSN, CST6, LCP1, KRT6B, LCE1C, CALML5, CD83, JUP, TYROBP, SPINT1, CNFN, TMSB4X, NFKB1, B2M, MSN, CXCL16, CD58 and KRT72
  • the biological information from the skin of the subject is information selected from 1) information on the expression state of genes in the SSL used in the cluster analysis, the expression state of proteins in the SSL, or metabolites, 2) information on the expression state of genes, the expression state of proteins, or metabolites in a biological sample that can be taken from the face, 3) information on the flora of normal skin bacteria or the expression state of genes, the expression state of proteins, or metabolites derived from the bacteria, and 4) measurements of skin property values obtained by instrumental measurement.
  • the skin property values measured by an instrument are one or more selected from transepidermal water loss, stratum corneum moisture content, sebum content, skin glycation level, skin viscoelasticity, skin color, hemoglobin content, melanin content, skin blood flow, skin temperature, and biophotons.
  • ⁇ 9> The method according to ⁇ 7>, wherein the skin type of the subject based on the expression state of genes in SSL is determined by either 1) a method of determining from the distance between the center of gravity of two pre-generated clusters (Cluster 1 and Cluster 2, or Cluster 1' and Cluster 2') and the expression level of RNA derived from the subject's SSL, or 2) a method of determining based on a comparison with the expression level of a specific gene related to keratinization or immune response.
  • ⁇ 10> The method according to ⁇ 6>, further comprising obtaining an expression level of one or more genes selected from the 25 genes from a subject, and comparing the expression level with a reference value to determine the skin type of the subject.
  • ⁇ 11> A calculation device for executing the method according to any one of ⁇ 1> to ⁇ 10>, the device having a means for inputting biometric information from the skin of a subject, and executing a step of determining which of the skin types the subject is classified into from the biometric information in accordance with a program for executing a method for classifying the skin of the subject.
  • ⁇ 12> A program for causing a computer device to execute the method according to any one of ⁇ 1> to ⁇ 10>.
  • ⁇ 13> An information recording medium on which the program according to ⁇ 12> is recorded.
  • Example 1 Skin type classification analysis of SSL-RNA 1
  • SSL collection 281 sebum samples were collected from healthy female subjects aged 20 to 60 (24 samples in their 20s, 126 samples in their 30s, 29 samples in their 40s, and 102 samples over 50). Sebum was collected from the entire face of each subject using a sheet of oil blotting film (polypropylene, 5.0 cm x 8.0 cm, 3M).
  • RNA preparation and sequencing The oil blotting film from which sebum was collected in 1) above was cut to an appropriate size, and RNA was extracted using QIAzol Lysis Reagent (Qiagen) according to the attached protocol. Based on the extracted RNA, reverse transcription was performed at 42°C for 90 minutes using SuperScript VILO cDNA Synthesis kit (Life Technologies Japan, Inc.) to synthesize cDNA. The random primers included in the kit were used as primers for the reverse transcription reaction. A library containing DNA derived from the 20802 gene was prepared from the obtained cDNA by multiplex PCR.
  • the variance of the count value was corrected using a method called variance stabilizing transformation.
  • a hierarchical clustering analysis was performed in which the distance between samples was set to 1- ⁇ and the method of joining clusters was the Ward method.
  • the samples were divided into two clusters (Cluster 1 and Cluster 2) ( Figure 1).
  • RNA with an SSL-derived RNA expression ratio of 1.2 times or more between the two clusters and a corrected p-value (FDR) based on the likelihood ratio test of less than 0.05 614 genes with relatively high expression in Cluster 1 and 855 genes with relatively high expression in Cluster 2 were identified.
  • a search for biological process (BP) was performed by gene ontology (GO) enrichment analysis using the public database PANTHER.
  • GO gene ontology
  • 215 GO terms were obtained from the gene group with relatively high expression in Cluster 1
  • 1287 GO terms were obtained from the gene group with relatively high expression in Cluster 2.
  • Cluster 1 the terms with the lowest FDR are “skin development (GO: 0043588, FDR: 5.23E-18)” and “epidermis development (GO: 0008544, FDR: 8.66E-17)”. Three of the top five terms are related to keratinization. In Cluster 2, the terms with the lowest FDR are “immune system process (GO: 0002376, FDR: 1.84E-66)” and “response to cytokine (GO: 0034097, FDR: 7.22E-47)”. " Four of the top five terms were related to immune response, with "
  • Example 2 Skin type classification analysis using SSL-RNA related to keratinization and immune response 1) Data used As in Example 1, based on the expression levels of SSL-derived RNA from the subjects (normalized count values), only 2605 types of genes for which non-missing expression level data was obtained in 90% or more of all samples were used in the following analysis.
  • Example 1 Comparison of cluster analysis results The two clusters observed in Example 1 were compared with the two clusters observed from the above data analysis. Of the 107 samples belonging to Cluster 1, 106 samples were included in Cluster 1', and of the 174 samples belonging to Cluster 2, 135 samples were included in Cluster 2', with a concordance rate of 85% or more (Table 1).
  • Example 3 Estimation of skin type using cluster centroid 1 Data used The expression data (read count value) of SSL-derived RNA obtained in Example 1 was converted to an RPM value corrected for the difference in the total number of reads between samples. However, only 2605 types of genes for which expression data that was not a missing value was obtained in 90% or more of all samples were used in the following analysis. In order to approximate the RPM value according to the negative binomial distribution to a normal distribution, the RPM value converted to the logarithmic value of base 2 (Log2RPM value) was used to calculate the centroid of each cluster.
  • Log2RPM value logarithmic value
  • centroid Centroid 1 of the cluster can be expressed as (1/87) * (x_1 + x_2 + ... + x_87). The centroid calculated in this way was used to determine the skin type of the test sample.
  • Example 4 Selection of Marker Genes for Determining Skin Type 1
  • Data Used and Sample Division Data on the expression level of SSL-derived RNA (read count value) obtained in Example 1 was used as data.
  • the skin type of each sample was determined to be Cluster 1 or Cluster 2 as determined by the hierarchical clustering analysis in Example 1.
  • AUC area under the curve
  • summary statistics were obtained (Table 4).
  • 367 genes 93 genes with AUCs above the third quartile (0.808) were extracted.
  • the gene expression level in the Youden index of the ROC curve for each of the 93 genes was set as a threshold value, and the skin type of the training sample was discriminated.
  • the accuracy rate was calculated as an index of discrimination accuracy, and summary statistics were obtained (Table 5).
  • 25 genes with better discrimination accuracy in the test sample and a correct answer rate equal to or higher than the median value (0.796) in Table 6 are optimal skin type determination marker genes that can discriminate Cluster 1 or Cluster 2 with higher accuracy.
  • Table 7 shows the gene names of the 25 genes, the AUC of the ROC curve, the threshold used to discriminate the skin type, the discrimination method, the accuracy rate in the training sample (training accuracy rate), and the accuracy rate in the test sample (test accuracy rate).
  • Example 5 Construction of a skin type prediction model using skin type determination marker genes 1) Data used and division of samples The corrected values (Log2RPM values) of the data of the expression amount of SSL-derived RNA used in Example 3 were used. The samples were divided into training samples (227 samples) and test samples (54 samples) in the same manner as in Example 3. The skin type of each sample was determined to be the skin type (Cluster 1 or Cluster 2) recognized by the hierarchical clustering analysis in Example 1.
  • Model Construction A binary classification model was constructed using the expression amount data (Log2RPM value) of the feature (Feature) selected from the SSL-derived RNA of the training sample as the explanatory variable and the skin type (Cluster 1 or Cluster 2) as the objective variable. Logistic regression was used as the algorithm. Eight models were constructed using Features 1 to 8 as features. As mentioned above, Features 1 to 7 exist for the number of random extraction trials (10 times), so a total of 71 models were constructed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

To provide a method for classifying the skin type of a subject who is a cosmetic user by using biological information from the skin. Provided is a method for classifying the skin of a subject, the classification being into skin types generated from two clusters obtained by performing cluster analysis and grouping based on the expression state of genes contained in skin surface lipids of a plurality of healthy persons. The method includes a step for acquiring biological information from the skin of the subject and a step for determining from the biological information the skin type classification of the subject.

Description

肌タイプの分類方法How to classify skin types

 本発明は、皮膚からの生体情報を用いた肌タイプの分類方法に関する。 The present invention relates to a method for classifying skin types using biometric information from the skin.

 近年、化粧品ユーザの肌特性や肌悩みに応じた様々な化粧品が提供されている。例えば、乾燥肌用、混合肌用、脂性肌用といった肌のタイプに応じた化粧品、しみ、たるみ、しわ等の肌悩みを解決するための化粧品の他、紫外線遮断用化粧品等、多様な化粧品が存在している。 In recent years, a wide variety of cosmetics have been provided to suit the skin characteristics and skin concerns of the cosmetic user. For example, there are cosmetics for different skin types, such as for dry skin, combination skin, and oily skin, cosmetics to solve skin concerns such as blemishes, sagging skin, and wrinkles, as well as cosmetics that block ultraviolet rays, and a wide variety of other cosmetics.

 従来、ユーザ個人の肌特性にあった化粧料を提供するためには、ユーザの自己診断によるアンケート結果や、キメ、皮膚バリア機能、水分含量、弾性、粘性などの肌情報の測定結果に基づいてカウンセリングすることが行われている。
 しかしながら、ユーザの自己診断は、あくまで主観的な判断であり、ユーザの肌特性を正確に反映しているとはいえない。また、機器により測定された客観的情報は、日々変化しうる肌状態について、測定可能な肌状態を一時的に数値化しているにすぎない。
Conventionally, in order to provide a cosmetic product suited to the individual skin characteristics of a user, counseling has been provided based on the results of a self-diagnosis questionnaire by the user and the measurement results of skin information such as texture, skin barrier function, moisture content, elasticity, and viscosity.
However, the user's self-diagnosis is a subjective judgment and does not accurately reflect the user's skin characteristics. Moreover, the objective information measured by the device is merely a temporary numerical representation of the measurable skin condition, which may change from day to day.

 近年では、生体試料中のDNAやRNA等の核酸の解析によりヒトの生体内の現在さらには将来の生理状態を調べる技術が開発され、SNP解析により遺伝要素に基づいてヒトの肌特性を評価する方法が報告されている(特許文献1)。 In recent years, technology has been developed to investigate the current and future physiological state of the human body by analyzing nucleic acids such as DNA and RNA in biological samples, and a method has been reported for evaluating human skin characteristics based on genetic factors using SNP analysis (Patent Document 1).

 一方、皮膚表上脂質(skin surface lipids;SSL)に含まれるRNAが生体の解析用の試料として使用できることが見出され、SSLから表皮、汗腺、毛包及び皮脂腺のマーカー遺伝子が検出できることが報告されている(特許文献2)。 On the other hand, it has been discovered that RNA contained in skin surface lipids (SSL) can be used as a sample for biological analysis, and it has been reported that marker genes for the epidermis, sweat glands, hair follicles, and sebaceous glands can be detected from SSL (Patent Document 2).

  〔特許文献1〕国際公開第2021/029332号
  〔特許文献2〕国際公開第2018/008319号
[Patent Document 1] International Publication No. 2021/029332 [Patent Document 2] International Publication No. 2018/008319

 本発明は、以下の1)~2)に係るものである。
 1)被検者の肌を分類する方法であって、該分類は複数の健常者の皮膚表上脂質に含まれる遺伝子の発現状態を基にクラスタ解析して認められた2つのクラスタから生成された肌タイプへの分類であり、
 被検者の皮膚から生体情報を取得する工程、及び
 当該生体情報から当該被検者が前記肌タイプのいずれに分類されるかを決定する工程、を含む、方法。
 2)1)に記載の方法を実行するための計算装置であって、被検者から取得された皮膚からの生体情報をインプットするための手段を有し、被検者の肌を分類する方法を実行させるためのプログラムに従って、当該生体情報から当該被検者が前記肌タイプのいずれに分類されるかを決定する工程を実行する、装置。
The present invention relates to the following 1) and 2).
1) A method for classifying the skin of a subject, the classification being based on the expression state of genes contained in lipids on the skin surface of a plurality of healthy subjects and being generated from two clusters observed;
A method comprising: acquiring biometric information from the skin of a subject; and determining from the biometric information whether the subject is classified into one of the skin types.
2) A computing device for executing the method described in 1), the device having a means for inputting biometric information from the skin obtained from a subject, and executing a step of determining which of the skin types the subject is classified into from the biometric information in accordance with a program for executing a method for classifying the subject's skin.

SSL-RNAによる階層クラスタリング解析。Hierarchical clustering analysis using SSL-RNA. 角化・免疫応答に関するSSL-RNAによる階層クラスタリング解析。Hierarchical clustering analysis of keratinization and immune response using SSL-RNA.

発明の詳細な説明Detailed Description of the Invention

 本発明は、皮膚からの生体情報を用いて、化粧品ユーザである被検者の肌タイプを分類する方法を提供することに関する。 The present invention relates to providing a method for classifying the skin type of a subject who is a cosmetic user, using biometric information from the skin.

 本発明者らは、複数の女性健常人からSSLを採取し、SSL中に含まれるRNAの発現状態に基づいてクラスタ解析を実施して、2つのクラスタに分類したところ、それぞれのクラスタに特徴的な遺伝子発現があることを明らかにした。さらに、それらに基づいて化粧品ユーザである被検者の肌タイプを分類できることを見出した。 The inventors collected SSL from several healthy female subjects and performed cluster analysis based on the expression state of the RNA contained in the SSL to classify it into two clusters, revealing that each cluster has its own characteristic gene expression. Furthermore, they found that it is possible to classify the skin type of subjects who are cosmetic users based on these.

 本発明によれば、化粧品ユーザの肌を分類でき、各肌タイプに最適な化粧品選択あるいはカスタマイズされた化粧品提供に寄与できる。 The present invention allows for classification of the skin of cosmetic users, contributing to the selection of optimal cosmetics for each skin type or the provision of customized cosmetics.

 本明細書中で引用された全ての特許文献、非特許文献、及びその他の刊行物は、その全体が本明細書中において参考として援用される。 All patents, non-patent documents, and other publications cited herein are hereby incorporated by reference in their entirety.

 本発明において、「DNA」には、cDNA、ゲノムDNA、及び合成DNAのいずれもが含まれ、「RNA」には、total RNA、mRNA、rRNA、tRNA、non-coding RNA及び合成のRNAのいずれもが含まれる。 In the present invention, "DNA" includes cDNA, genomic DNA, and synthetic DNA, and "RNA" includes total RNA, mRNA, rRNA, tRNA, non-coding RNA, and synthetic RNA.

 本発明において「遺伝子」とは、ヒトゲノムDNAを含む2本鎖DNAの他、cDNAを含む1本鎖DNA(正鎖)、当該正鎖と相補的な配列を有する1本鎖DNA(相補鎖)、及びこれらの断片を包含するものであって、DNAを構成する塩基の配列情報の中に、何らかの生物学的情報が含まれているものを意味する。
 また、当該「遺伝子」は特定の塩基配列で表される「遺伝子」だけではなく、これらの同族体(すなわち、ホモログもしくはオーソログ)、遺伝子多型等の変異体、及び誘導体をコードする核酸が包含される。
In the present invention, the term "gene" refers to double-stranded DNA including human genomic DNA, as well as single-stranded DNA (positive strand) including cDNA, single-stranded DNA (complementary strand) having a sequence complementary to the positive strand, and fragments thereof, and refers to DNA in which some biological information is contained in the sequence information of the bases constituting the DNA.
Furthermore, the "gene" in question includes not only "genes" represented by a specific base sequence, but also nucleic acids encoding their homologues (i.e., homologs or orthologs), mutants such as gene polymorphisms, and derivatives.

 本発明の肌を分類する方法は、複数の健常者の皮膚表上脂質に含まれる遺伝子の発現状態を基にクラスタ解析して認められた2つのクラスタから生成された肌タイプに被検者の肌を分類する方法であり、
 被検者の皮膚からの生体情報を取得する工程、及び
 当該生体情報から当該被検者が前記肌タイプのいずれに分類されるかを決定する工程、を含むものである。
The method for classifying skin of the present invention is a method for classifying a subject's skin into a skin type generated from two clusters recognized by a cluster analysis based on the expression states of genes contained in skin surface lipids of a plurality of healthy subjects,
The method includes a step of acquiring biometric information from the skin of a subject, and a step of determining, from the biometric information, to which of the skin types the subject is classified.

1.肌タイプの生成
 本発明の肌を分類する方法においては、予め、複数の健常者の皮膚表上脂質に含まれる遺伝子の発現状態を取得し、これを基にクラスタ解析して、2つのクラスタに分類し、該分類されたクラスタに基づいて肌タイプが生成される。
 ここで、対象である「健常者」としては、肌状態が良好である者であり、好ましくは医師による皮膚疾患の診断を受けていない者が挙げられる。また、年齢や性別は問われないが、肌分類を実施する被検者の年齢や性別に合わせて、年齢や年代毎、性別毎に複数の健常者の皮膚表上脂質に含まれる遺伝子の発現状態を取得し、各々について肌タイプを生成させても良い。例えば、被検者が女性であれば複数の女性健常者、男性であれば男性健常者、男女を問わない場合は複数の女性及び男性健常者の皮膚表上脂質に含まれる遺伝子の発現状態から肌タイプを生成させる。
 ここで、「複数」とは2以上の整数を指すが、好ましくは10以上であり、より好ましくは100以上であり、さらに好ましくは150以上であり、よりさらに好ましくは250以上である。
1. Generation of Skin Type In the method of classifying skin of the present invention, the expression states of genes contained in lipids on the skin surface of a plurality of healthy subjects are obtained in advance, and based on this, cluster analysis is performed to classify the skin into two clusters, and a skin type is generated based on the classified clusters.
Here, the subject "healthy person" is a person with good skin condition, preferably a person who has not been diagnosed with a skin disease by a doctor. In addition, although age and sex are not important, the expression state of genes contained in the lipids on the skin surface of multiple healthy people for each age, generation, and sex may be obtained according to the age and sex of the subject to be subjected to skin classification, and a skin type may be generated for each. For example, if the subject is a woman, the skin type is generated from the expression state of genes contained in the lipids on the skin surface of multiple healthy female people, if the subject is a man ... male people, if the subject is both male and female, the skin type is generated from the expression state of genes contained in the lipids on the skin surface of multiple healthy female people and healthy male people.
Here, "plurality" refers to an integer of 2 or more, preferably 10 or more, more preferably 100 or more, even more preferably 150 or more, and still more preferably 250 or more.

 本発明において、遺伝子発現解析に用いられる生体試料には、皮膚表上脂質(SSL)が用いられる。「皮膚表上脂質(SSL)」とは、皮膚の表上に存在する脂溶性画分をいい、皮脂と呼ばれることもある。一般に、SSLは、皮膚にある皮脂腺等の外分泌腺から分泌された分泌物を主に含み、皮膚表面を覆う薄い層の形で皮膚表上に存在している。SSLは、皮膚細胞で発現したRNAを含む(前記特許文献2参照)。また本明細書において、「皮膚」とは、特に限定しない限り、体表の表皮、真皮、毛包、ならびに汗腺、皮脂腺及びその他の腺等の組織を含む領域の総称である。 In the present invention, the biological sample used for gene expression analysis is skin surface lipids (SSL). "Skin surface lipids (SSL)" refers to the fat-soluble fraction present on the surface of the skin, and is also called sebum. In general, SSL mainly contains secretions from exocrine glands such as sebaceous glands in the skin, and exists on the skin surface in the form of a thin layer that covers the skin surface. SSL contains RNA expressed in skin cells (see Patent Document 2). In this specification, "skin" is a general term for the area including the epidermis, dermis, hair follicles, and tissues such as sweat glands, sebaceous glands, and other glands on the body surface, unless otherwise specified.

 皮膚からのSSLの採取には、皮膚からのSSLの回収又は除去に用いられているあらゆる手段を採用することができる。好ましくは、後述するSSL吸収性素材、SSL接着性素材、又は皮膚からSSLをこすり落とす器具を使用することができる。SSL吸収性素材又はSSL接着性素材としては、SSLに親和性を有する素材であれば特に限定されず、例えばポリプロピレン、パルプ等が挙げられる。皮膚からのSSLの採取手順のより詳細な例としては、あぶら取り紙、あぶら取りフィルム等のシート状素材へSSLを吸収させる方法、ガラス板、テープ等へSSLを接着させる方法、スパーテル、スクレイパー等によりSSLをこすり落として回収する方法、等が挙げられる。SSLの吸着性を向上させるため、脂溶性の高い溶媒を予め含ませたSSL吸収性素材を用いてもよい。一方、SSL吸収性素材は、水溶性の高い溶媒や水分を含んでいるとSSLの吸着が阻害されるため、水溶性の高い溶媒や水分の含有量が少ないことが好ましい。SSL吸収性素材は、乾燥した状態で用いることが好ましい。
 SSLが採取される皮膚の部位としては、特に限定されず、頭、顔、首、体幹、手足等の身体の任意の部位の皮膚が挙げられるが、皮脂の分泌が多い部位、例えば顔の皮膚が好ましい。
To collect SSL from the skin, any means used for recovering or removing SSL from the skin can be used. Preferably, an SSL absorbent material, an SSL adhesive material, or an instrument for scraping SSL from the skin, which will be described later, can be used. The SSL absorbent material or SSL adhesive material is not particularly limited as long as it is a material having affinity for SSL, and examples thereof include polypropylene, pulp, etc. More detailed examples of procedures for collecting SSL from the skin include a method of absorbing SSL into a sheet-like material such as oil blotting paper or oil blotting film, a method of adhering SSL to a glass plate, tape, etc., and a method of scraping SSL off and collecting it with a spatula, scraper, etc. In order to improve the adsorption of SSL, an SSL absorbent material that has been previously impregnated with a highly lipid-soluble solvent may be used. On the other hand, it is preferable that the SSL absorbent material contains a low content of highly water-soluble solvent or water, since the adsorption of SSL is inhibited if the SSL absorbent material contains a highly water-soluble solvent or water. The SSL absorbent material is preferably used in a dry state.
The site of skin from which SSL is collected is not particularly limited and may be any site of the body such as the head, face, neck, trunk, hands and feet, but is preferably from a site that secretes a lot of sebum, such as the skin of the face.

 採取されたRNA含有SSLは一定期間保存されてもよい。採取されたSSLは、含有するRNAの分解を極力抑えるために、採取後できるだけ速やかに低温条件で保存することが好ましい。本発明における該RNA含有SSLの保存の温度条件は、0℃以下であればよく、好ましくは-20±20℃~-80±20℃、より好ましくは-20±10℃~-80±10℃、さらに好ましくは-20±20℃~-40±20℃、さらに好ましくは-20±10℃~-40±10℃、さらに好ましくは-20±10℃、さらに好ましくは-20±5℃である。該RNA含有SSLの該低温条件での保存の期間は、特に限定されないが、好ましくは12か月以下、例えば6時間以上12ヶ月以下、より好ましくは6ヶ月以下、例えば1日間以上6ヶ月以下、さらに好ましくは3ヶ月以下、例えば3日間以上3ヶ月以下である。 The collected RNA-containing SSL may be stored for a certain period of time. In order to minimize the degradation of the RNA contained therein, it is preferable to store the collected SSL under low-temperature conditions as soon as possible after collection. The temperature conditions for storing the RNA-containing SSL in the present invention may be 0°C or lower, and are preferably -20±20°C to -80±20°C, more preferably -20±10°C to -80±10°C, even more preferably -20±20°C to -40±20°C, even more preferably -20±10°C to -40±10°C, even more preferably -20±10°C, and even more preferably -20±5°C. The period for storing the RNA-containing SSL under the low-temperature conditions is not particularly limited, but is preferably 12 months or less, for example, 6 hours or more and 12 months or less, more preferably 6 months or less, for example, 1 day or more and 6 months or less, even more preferably 3 months or less, for example, 3 days or more and 3 months or less.

 本発明において、遺伝子の発現状態とは、遺伝子発現の程度又は傾向を示す指標を意味するが、SSLに含まれる遺伝子の発現状態の取得には、RNAの発現レベル(発現量)、具体的にはRNAを逆転写によりcDNAに変換した後、該cDNA又はその増幅産物が測定される。
 SSLからのRNAの抽出には、生体試料からのRNAの抽出又は精製に通常使用される方法、例えば、フェノール/クロロホルム法、AGPC(acid guanidinium thiocyanate-phenol-chloroform extraction)法、又はTRIzol(登録商標)、RNeasy(登録商標)、QIAzol(登録商標)等のカラムを用いた方法、シリカをコーティングした特殊な磁性体粒子を用いる方法、Solid Phase Reversible Immobilization磁性体粒子を用いる方法、ISOGEN等の市販のRNA抽出試薬による抽出等を用いることができる。
In the present invention, the expression state of a gene means an index showing the degree or tendency of gene expression, and the expression state of a gene contained in an SSL is obtained by measuring the expression level (expression amount) of RNA, specifically, by converting RNA into cDNA by reverse transcription, and then measuring the cDNA or its amplification product.
For extraction of RNA from SSL, a method that is usually used for extracting or purifying RNA from a biological sample, such as the phenol/chloroform method, the AGPC (acid guanidinium thiocyanate-phenol-chloroform extraction) method, or a method using columns such as TRIzol (registered trademark), RNeasy (registered trademark), or QIAzol (registered trademark), a method using special silica-coated magnetic particles, a method using Solid Phase Reversible Immobilization magnetic particles, or extraction using a commercially available RNA extraction reagent such as ISOGEN, can be used.

 該逆転写には、解析したい特定のRNAを標的としたプライマーを用いてもよいが、より包括的な核酸の保存及び解析のためにはランダムプライマーを用いることが好ましい。該逆転写には、一般的な逆転写酵素又は逆転写試薬キットを使用することができる。好適には、正確性及び効率性の高い逆転写酵素又は逆転写試薬キットが用いられ、その例としては、M-MLV Reverse Transcriptase及びその改変体、あるいは市販の逆転写酵素又は逆転写試薬キット、例えばPrimeScript(登録商標)Reverse Transcriptaseシリーズ(タカラバイオ社)、SuperScript(登録商標)Reverse Transcriptaseシリーズ(Thermo Scientific社)等が挙げられる。SuperScript(登録商標)III Reverse Transcriptase、SuperScript(登録商標)VILO cDNA Synthesis kit(いずれもThermo Scientific社)等が好ましく用いられる。
 該逆転写における伸長反応は、温度を好ましくは42℃±1℃、より好ましくは42℃±0.5℃、さらに好ましくは42℃±0.25℃に調整し、一方、反応時間を好ましくは60分間以上、より好ましくは80~120分間に調整するのが好ましい。
For the reverse transcription, a primer targeting a specific RNA to be analyzed may be used, but for more comprehensive nucleic acid storage and analysis, it is preferable to use a random primer. For the reverse transcription, a general reverse transcriptase or reverse transcription reagent kit can be used. Preferably, a highly accurate and efficient reverse transcriptase or reverse transcription reagent kit is used, and examples thereof include M-MLV Reverse Transcriptase and its variants, or commercially available reverse transcriptases or reverse transcription reagent kits, such as the PrimeScript (registered trademark) Reverse Transcriptase series (Takara Bio Inc.), the SuperScript (registered trademark) Reverse Transcriptase series (Thermo Scientific Inc.), and the like. SuperScript (registered trademark) III Reverse Transcriptase, SuperScript (registered trademark) VILO cDNA Synthesis kit (both manufactured by Thermo Scientific), etc. are preferably used.
The temperature of the extension reaction in the reverse transcription is preferably adjusted to 42° C.±1° C., more preferably 42° C.±0.5° C., and even more preferably 42° C.±0.25° C., while the reaction time is preferably adjusted to 60 minutes or more, more preferably 80 to 120 minutes.

 RNAの発現レベルの測定は、例えば、リアルタイムPCR、マルチプレックスPCR、マイクロアレイ、シーケンシング、クロマトグラフィーなどにより該cDNA又はその増幅産物を定量する方法が挙げられる。本発明の方法の一実施形態においてはマルチプレックスPCRを用いて発現遺伝子に由来するDNAを含むライブラリーを調製し、調製したライブラリーを次世代シーケンサーによってシーケンシングし、作成されたリードの数(リードカウント)に基づいて算出することにより行うことができる。 The expression level of RNA can be measured, for example, by quantifying the cDNA or its amplified product by real-time PCR, multiplex PCR, microarray, sequencing, chromatography, etc. In one embodiment of the method of the present invention, a library containing DNA derived from expressed genes is prepared using multiplex PCR, the prepared library is sequenced by a next-generation sequencer, and calculation is performed based on the number of reads created (read count).

 マルチプレックスPCRは、PCR反応系に複数のプライマー対を同時に使用することで、複数の遺伝子領域を同時に増幅する方法である。マルチプレックスPCRは、市販のキット(例えば、Ion AmpliSeqTranscriptome Human Gene Expression Kit;ライフテクノロジーズジャパン株式会社等)を用いて、例えば、99℃、2分→(99℃、15秒→62℃、16分)×20サイクル→4℃、Holdの条件で実施することができる。 Multiplex PCR is a method for amplifying multiple gene regions simultaneously by using multiple primer pairs in a PCR reaction system. Multiplex PCR can be performed using a commercially available kit (e.g., Ion AmpliSeq Transcriptome Human Gene Expression Kit; Life Technologies Japan, Inc.) under conditions such as 99°C, 2 minutes → (99°C, 15 seconds → 62°C, 16 minutes) x 20 cycles → 4°C, hold.

 当該PCRで得られた反応産物の精製は、反応産物のサイズ分離によって行われることが好ましい。サイズ分離により、目的のPCR反応産物を、PCR反応液中に含まれるプライマーやその他の不純物から分離することができる。DNAのサイズ分離は、例えば、サイズ分離カラムや、サイズ分離チップ、サイズ分離に利用可能な磁気ビーズ等によって行うことができる。サイズ分離に利用可能な磁気ビーズの好ましい例としては、Ampure XP等のSolid Phase Reversible Immobilization(SPRI)磁性ビーズが挙げられる。 The purification of the reaction products obtained by the PCR is preferably carried out by size separation of the reaction products. By size separation, the target PCR reaction products can be separated from primers and other impurities contained in the PCR reaction solution. Size separation of DNA can be carried out, for example, by using a size separation column, a size separation chip, magnetic beads that can be used for size separation, etc. A preferred example of magnetic beads that can be used for size separation is Solid Phase Reversible Immobilization (SPRI) magnetic beads such as Ampure XP.

 精製したPCR反応産物に対して、DNAのシーケンシングのために、精製したPCR反応産物を、適切なバッファー溶液へと調製したり、PCR増幅されたDNAに含まれるPCRプライマー領域を切断したり、増幅されたDNAにアダプター配列がさらに付加される。例えば、精製したPCR反応産物をバッファー溶液へと調製し、増幅DNAに対してPCRプライマー配列の除去及びアダプターライゲーションを行い、得られた反応産物を、必要に応じて増幅して、シーケンシングのためのライブラリーが調製される。これらの操作は、例えば、SuperScript(登録商標)VILO cDNA Synthesis kit(ライフテクノロジーズジャパン株式会社)に付属している5×VILO RT Reaction Mix、及びIon AmpliSeq Transcriptome Human Gene Expression Kit(ライフテクノロジーズジャパン株式会社)に付属している5×Ion AmpliSeq HiFi Mix、及びIon AmpliSeq Transcriptome Human Gene Expression Core Panelを用いて、各キット付属のプロトコルに従って行うことができる。 For DNA sequencing, the purified PCR reaction products are prepared in an appropriate buffer solution, the PCR primer regions contained in the PCR-amplified DNA are cleaved, and an adapter sequence is further added to the amplified DNA. For example, the purified PCR reaction products are prepared in a buffer solution, the PCR primer sequences are removed from the amplified DNA and adapter ligation is performed, and the resulting reaction products are amplified as necessary to prepare a library for sequencing. These operations can be performed, for example, using the 5x VILO RT Reaction Mix included with the SuperScript (registered trademark) VILO cDNA Synthesis kit (Life Technologies Japan, Inc.) and the 5x Ion AmpliSeq HiFi Mix and Ion AmpliSeq Transcriptome Human Gene Expression Kit (Life Technologies Japan, Inc.) according to the protocols included with each kit.

 シーケンシングは、次世代シーケンサー(例えばIon S5/XLシステム、ライフテクノロジーズジャパン株式会社)を用いて行うことができ、シーケンシングで得られた各リード配列をヒトゲノムのリファレンス配列であるhg19 AmpliSeq Transcriptome ERCC v1に対して遺伝子マッピングすることで、各リード配列に由来する遺伝子が決定される。RNA発現量は、シーケンシングで作成されたリードの数(リードカウント)に基づいて算出される。 Sequencing can be performed using a next-generation sequencer (e.g., Ion S5/XL system, Life Technologies Japan, Inc.), and the gene derived from each read sequence is determined by genetically mapping each read sequence obtained by sequencing to the hg19 AmpliSeq Transcriptome ERCC v1, which is the reference sequence of the human genome. RNA expression levels are calculated based on the number of reads (read count) generated by sequencing.

 シーケンシングにより取得された発現量のデータであるリードカウント値は、適宜補正される。
 ここで、リードカウント値の補正値としては、該リードカウント値をサンプル間の総リード数の違いを補正したRPM値、当該RPM値を底2の対数値に変換した値(LogRPM値)又は整数1を加算した底2の対数値(Log(RPM+1)値)、あるいはDESeq2(Love MI et al. Genome Biol. 2014)を用いて補正されたカウント値(Normalized count値)又は整数1を加算した底2の対数値(Log(count+1)値)等が挙げられるが、DESeq2を用いて補正されたNormalized count値が好ましい。
The read count value, which is expression level data obtained by sequencing, is appropriately corrected.
Here, examples of the corrected value for the read count value include an RPM value obtained by correcting the difference in the total number of reads between samples for the read count value, a value obtained by converting the RPM value to a logarithmic value with base 2 (Log 2 RPM value), or a logarithmic value with base 2 with an integer 1 added (Log 2 (RPM+1) value), or a count value corrected using DESeq2 (Love MI et al. Genome Biol. 2014) (Normalized count value), or a logarithmic value with base 2 with an integer 1 added (Log 2 (count+1) value), with the Normalized count value corrected using DESeq2 being preferred.

 得られた皮膚表上脂質に含まれる遺伝子の発現状態についての情報を基に、クラスタ解析が実行される。クラスタ解析の手法としては、複数の対象を2以上のクラスタに分類できる限り特に制限されず、階層的クラスタリングであってもよいし、非階層的クラスタリングであってもよい。クラスタ解析は、統計解析が可能なソフトウェアにより行うことができる。
 例えば、後述する実施例に示すように、20~60歳の女性健常者の全顔から採取した281のSSLサンプルを対象とし、そのSSL由来のRNAの発現量(Normalized count値)を基に、サンプル間のスピアマンの順位相関分析による相関係数ρを算出し、サンプル間の距離を1-ρとして階層クラスタリング解析を実施することにより、図1に示すように、Cluster1及びCluster2の2つのクラスタに分類される。
Based on the obtained information on the expression state of genes contained in the lipids on the skin surface, cluster analysis is performed.The method of cluster analysis is not particularly limited as long as it can classify a plurality of objects into two or more clusters, and may be hierarchical clustering or non-hierarchical clustering.Cluster analysis can be performed by software capable of statistical analysis.
For example, as shown in the Examples described later, 281 SSL samples taken from the entire face of healthy female subjects aged 20 to 60 years were targeted, and based on the expression levels of RNA derived from the SSL (normalized count values), a correlation coefficient ρ was calculated by Spearman's rank correlation analysis between the samples, and a hierarchical clustering analysis was performed with the distance between the samples set to 1-ρ, resulting in classification into two clusters, Cluster 1 and Cluster 2, as shown in FIG. 1.

 本発明では、当該2クラスタを特徴付ける遺伝子発現情報に基づいて、それぞれのクラスタに紐づけられる肌タイプを生成することができる。 In the present invention, it is possible to generate skin types associated with each of the two clusters based on the gene expression information that characterizes the clusters.

 遺伝子発現情報に基づいて肌タイプを生成する場合、後述する実施例に示すように、当該2クラスタの間でSSL由来RNA発現量比が1.2倍以上かつ尤度比検定によるp値の補正値(FDR)が0.05未満となるRNAを抽出すると、Cluster2に比較してCluster1で相対的に発現が高い遺伝子が614種、Cluster1に比較してCluster2で相対的に発現が高い遺伝子が855種同定され、遺伝子オントロジー(GO)エンリッチメント解析により、Cluster1で相対的に発現が高い遺伝子群には表皮の角化に関連する遺伝子が多く含まれ、Cluster2で相対的に発現が高い遺伝子群には免疫応答に関連する遺伝子が多く含まれることが確認された。すなわち、Cluster1で相対的に発現が高い角化関連遺伝子には、skin development(GO:0043588)、epidermis development(GO:0008544)等で示されるGOタームがアノテーションされた遺伝子が、Cluster2で相対的に発現が高い免疫応答関連遺伝子には、immune system process(GO:0002376)、response to cytokine(GO:0034097)等で示されるGOタームがアノテーションされた遺伝子が含まれていた。尚、GOターム(Gene Ontology)とは、遺伝子の生物学的な概念(遺伝子の生物的プロセス、細胞の構成要素及び分子機能)を説明するための共通語彙であり、機能が明らかになった遺伝子について、GOタームがアノテーション(紐づけ)されている。これにより、各遺伝子には機能を説明するGOタームが割り当てられ、GOタームからはタームが付けられた遺伝子を確認することができる。
 そして、後述する実施例で示すように、角化関連のGOタームであるskin development(GO:0043588)及びepidermis development(GO:0008544)がアノテーションされた遺伝子、並びに免疫応答関連のGOタームであるimmune system process(GO:0002376)及びresponse to cytokine(GO:0034097)がアノテーションされた遺伝子の発現状態についての情報を基にクラスタ解析を実施して2つに分類されたクラスタ(Cluster1’及びCluster2’、図2)は、Cluster1及びCluster2とほぼ同等であった(表1)。したがって、Cluster1は角化関連遺伝子高発現群であり、Cluster2は免疫応答関連遺伝子高発現群であると云え、斯かる2つのクラスタからは、健常女性の肌に認められる角化関連遺伝子高発現の肌タイプと免疫応答関連遺伝子高発現の肌タイプの2つの肌タイプが生成される。
When generating a skin type based on gene expression information, as shown in the Examples described below, when RNA is extracted in which the SSL-derived RNA expression ratio between the two clusters is 1.2 times or more and the corrected p-value (FDR) by a likelihood ratio test is less than 0.05, 614 genes whose expression is relatively higher in Cluster 1 compared to Cluster 2 and 855 genes whose expression is relatively higher in Cluster 2 compared to Cluster 1 are identified. It was confirmed by gene ontology (GO) enrichment analysis that the group of genes whose expression is relatively higher in Cluster 1 includes many genes related to epidermal keratinization, and the group of genes whose expression is relatively higher in Cluster 2 includes many genes related to immune response. That is, the keratinization-related genes with relatively high expression in Cluster 1 include genes annotated with GO terms such as skin development (GO: 0043588) and epidermis development (GO: 0008544), while the immune response-related genes with relatively high expression in Cluster 2 include genes annotated with GO terms such as immune system process (GO: 0002376) and response to cytokine (GO: 0034097). Note that GO terms (Gene Ontology) are common vocabulary for explaining the biological concept of a gene (biological process of a gene, cellular components and molecular functions), and GO terms are annotated (linked) to genes whose functions have been clarified. This allows each gene to be assigned a GO term that describes its function, and the GO term can be used to identify the gene to which the term is assigned.
As shown in the Examples described later, cluster analysis was performed based on information on the expression states of genes annotated with the keratinization-related GO terms skin development (GO:0043588) and epidermis development (GO:0008544), and genes annotated with the immune response-related GO terms immune system process (GO:0002376) and response to cytokine (GO:0034097). The clusters classified into two (Cluster 1' and Cluster 2', FIG. 2) were almost equivalent to Cluster 1 and Cluster 2 (Table 1). Therefore, it can be said that Cluster 1 is a group of high expression of keratinization-related genes, and Cluster 2 is a group of high expression of immune response-related genes. From these two clusters, two skin types are generated: a skin type with high expression of keratinization-related genes and a skin type with high expression of immune response-related genes, which are found in the skin of healthy women.

 さらに、Cluster1やCluster1’の角化関連遺伝子高発現群とCluster2やCluster2’の免疫応答関連遺伝子高発現群、それぞれの群に属する健常者の皮膚からの各種生体情報を解析することにより、それぞれに特徴的な生体情報を前記生成された2つの肌タイプに紐付けすることができる。皮膚からの生体情報としては、皮膚から取得可能な情報であれば、生理的情報、物理的情報問わず利用可能である。 Furthermore, by analyzing various biological information from the skin of healthy individuals belonging to the Cluster 1 and Cluster 1' high keratinization-related gene expression group and the Cluster 2 and Cluster 2' high immune response-related gene expression group, it is possible to link the characteristic biological information of each group to the two skin types generated. As biological information from the skin, any information that can be obtained from the skin can be used, regardless of whether it is physiological information or physical information.

2.被検者における肌タイプの分類
 本発明では、被検者の皮膚からの生体情報を取得し、当該生体情報から当該被験者が前記クラスタ解析から生成された2つの肌タイプのいずれに分類されるかが決定される。
 ここで、「被検者」は、化粧品のユーザ又は使用を検討しているユーザ候補であり得、性別や年齢は限定されない。
 「皮膚からの生体情報」とは、皮膚から取得可能な情報であれば、生理的情報、物理的情報問わず特に制限されない。具体的には、上述したクラスタ解析で使用したSSL中の遺伝子の発現状態やSSL中のタンパク質発現状態や代謝物についての情報、あるいは顔から採取可能な生体試料(皮膚生検・角層・汗・涙・唾液等)中の遺伝子発現状態、タンパク質発現状態及び代謝物についての情報、皮膚常在菌の菌叢あるいは菌由来の遺伝子発現状態、タンパク質発現状態及び代謝物についての情報、機器測定による肌性状値の測定などが挙げられる。機器測定値として好ましくは、経皮水分蒸散量、角層水分量、皮脂量、皮膚糖化度、皮膚粘弾性、皮膚色、ヘモグロビン量、メラニン量、皮膚血流量、皮膚温、バイオフォトンなどがあげられる。
 皮膚からの生体情報としてSSL中の遺伝子発現状態についての情報を使用する場合、SSLの採取、及びSSL中の遺伝子発現レベルの測定は、上述した方法と同様に行うことができる。
2. Classification of Skin Type of a Subject In the present invention, biological information is obtained from the skin of a subject, and it is determined from the biological information whether the subject is classified into one of the two skin types generated from the cluster analysis.
Here, the "subject" may be a cosmetic product user or a potential user considering using the cosmetic product, and there are no limitations on gender or age.
The term "biological information from the skin" is not particularly limited as long as it is information obtainable from the skin, regardless of whether it is physiological information or physical information. Specifically, examples include information on gene expression state in the SSL used in the above-mentioned cluster analysis, information on protein expression state and metabolites in the SSL, information on gene expression state, protein expression state and metabolites in biological samples that can be collected from the face (skin biopsy, stratum corneum, sweat, tears, saliva, etc.), information on gene expression state, protein expression state and metabolites of the flora of normal skin bacteria or bacteria-derived gene expression state, protein expression state and metabolites, and measurement of skin property values by instrumental measurement. Preferable instrumental measurements include transepidermal water loss, stratum corneum moisture content, sebum content, skin glycation degree, skin viscoelasticity, skin color, hemoglobin content, melanin content, skin blood flow, skin temperature, biophotons, etc.
When information on the gene expression state in SSL is used as biological information from the skin, collection of SSL and measurement of gene expression levels in SSL can be performed in the same manner as described above.

 測定された遺伝子の発現状態に基づく当該被検者の肌タイプの決定は、例えば1)予め生成された前記2クラスタ(Cluster1及びCluster2、又はCluster1’及びCluster2’)の重心と被検者のSSL由来RNA発現量との距離から決定する方法、2)角化あるいは免疫応答に関する特定の遺伝子の発現量との比較に基づき決定する方法等が挙げられる。
 前記2クラスタの重心と被検者のSSL由来RNA発現量との距離から決定する方法は、前記2クラスタと、被検者から取得されたSSL由来RNA発現量との距離(類似度)を計算することにより実施することができる。
 例えば、母集団である2クラスタ(Cluster1及びCluster2、又はCluster1’及びCluster2’)について、SSL由来RNA発現量を変数とする多次元ベクトルから重心を算出し、被検者から取得されたSSL由来RNA発現量を基にした多次元ベクトルと、2クラスタの重心との距離を計算することで、距離の近いクラスタを当該被検者のタイプと判定する。距離としては、クラスタ解析と同様に重心と被検者のデータ間でスピアマンの順位相関係数ρを算出し、1-ρを用いることも可能である。また、この際に重心を決定する変数あるいは被検者から取得するRNA発現量として、前記Cluster2に比較してCluster1で相対的に発現が高い遺伝子あるいはCluster1に比較してCluster2で相対的に発現が高い遺伝子、前記角化あるいは免疫応答に関するGOタームがアノテーションされた遺伝子に絞って実施することも可能である。
The skin type of the subject based on the measured gene expression state can be determined, for example, by 1) determining the skin type from the distance between the center of gravity of the two pre-generated clusters (Cluster 1 and Cluster 2, or Cluster 1' and Cluster 2') and the subject's SSL-derived RNA expression level, or by 2) determining the skin type based on a comparison with the expression level of a specific gene related to keratinization or immune response.
The method of determining the distance between the center of gravity of the two clusters and the expression level of SSL-derived RNA of the subject can be carried out by calculating the distance (similarity) between the two clusters and the expression level of SSL-derived RNA obtained from the subject.
For example, for two clusters (Cluster 1 and Cluster 2, or Cluster 1' and Cluster 2') that are populations, a center of gravity is calculated from a multidimensional vector with the SSL-derived RNA expression level as a variable, and the distance between the multidimensional vector based on the SSL-derived RNA expression level obtained from the subject and the center of gravity of the two clusters is calculated, and the cluster with a closer distance is determined as the type of the subject. As for the distance, it is also possible to calculate the Spearman's rank correlation coefficient ρ between the center of gravity and the subject's data as in the cluster analysis, and use 1-ρ. In addition, at this time, as the variable that determines the center of gravity or the RNA expression level obtained from the subject, it is also possible to narrow it down to genes that are relatively highly expressed in Cluster 1 compared to Cluster 2, or genes that are relatively highly expressed in Cluster 2 compared to Cluster 1, and genes that are annotated with GO terms related to keratinization or immune response.

 角化あるいは免疫応答に関する特定の遺伝子の発現量との比較に基づき肌タイプを決定する方法においては、母集団である2クラスタ(Cluster1及びCluster2、又はCluster1’及びCluster2’)間で発現量の重なりが無いあるいはより少ない遺伝子種を1種以上選択して、発現量の閾値を平均値や標準偏差等の統計的数値に基づいて設定し、被検者から取得された該当遺伝子種のSSL由来RNA発現量からタイプを判定することができる。ここで、角化あるいは免疫応答に関する特定の遺伝子は、前記角化関連あるいは免疫応答関連のGOタームがアノテーションされた遺伝子から選択されることが好ましく、2クラスタを判別する精度の観点から、後述する表7に示す25遺伝子から選択されるのがより好ましい。 In a method for determining skin type based on a comparison with the expression levels of specific genes related to keratinization or immune response, one or more gene species with no or less overlap in expression levels between two clusters (Cluster 1 and Cluster 2, or Cluster 1' and Cluster 2') that are the population are selected, a threshold for the expression level is set based on statistical values such as the average value and standard deviation, and the type can be determined from the SSL-derived RNA expression level of the relevant gene species obtained from the subject. Here, the specific gene related to keratinization or immune response is preferably selected from genes annotated with the keratinization-related or immune response-related GO terms, and from the viewpoint of the accuracy of distinguishing between the two clusters, it is more preferable to select from the 25 genes shown in Table 7 below.

 一実施形態においては、被検者から前記25遺伝子から選択される1種以上の遺伝子の発現量を取得し、該発現量を参照値と比較して被検者の肌タイプを判別することができる。ここで参照値としては、前記ROC曲線のYouden indexにおける閾値を用いることができる。 In one embodiment, the expression level of one or more genes selected from the 25 genes is obtained from a subject, and the expression level is compared with a reference value to determine the skin type of the subject. Here, the reference value can be a threshold value in the Youden index of the ROC curve.

 別の一実施形態として、被検者から角化あるいは免疫応答に関する特定の遺伝子から選択される1種以上の遺伝子の発現量を取得し、該発現量を、肌タイプを検出する判別式(判別モデル)に代入し、被検者の肌タイプを判別することができる。
 具体的には、予め任意の集団を教師サンプルとして、教師サンプルの各人から角化あるいは免疫応答に関する特定の遺伝子の発現量を取得し、該発現量を説明変数とし、各人の肌タイプを目的変数とする機械学習により、判別式を構築することができる。そして、被検者における当該特定遺伝子の発現量を測定し、該発現量を当該判別式に代入することで、被検者における肌タイプを判別することができる。
 ここで、教師サンプルの各人の肌タイプは、各人の皮膚表上脂質に含まれる遺伝子の発現状態の情報を基に、前述したクラスタ解析を実行することで決定することができる。
In another embodiment, the expression levels of one or more genes selected from specific genes related to keratinization or immune response are obtained from a subject, and the expression levels are substituted into a discriminant (discriminant model) for detecting skin type, thereby determining the skin type of the subject.
Specifically, a discriminant equation can be constructed by machine learning using an arbitrary group as a teacher sample, obtaining the expression level of a specific gene related to keratinization or immune response from each person in the teacher sample as an explanatory variable and using each person's skin type as a target variable, and then measuring the expression level of the specific gene in the subject and substituting the expression level into the discriminant equation to discriminate the skin type of the subject.
Here, the skin type of each person in the teacher sample can be determined by carrying out the above-mentioned cluster analysis based on information on the expression state of genes contained in the lipids on the skin surface of each person.

 前記判別式の構築に用いる角化あるは免疫応答に関する特定遺伝子は、前記角化関連あるいは免疫応答関連のGOタームがアノテーションされた遺伝子から選択することができるが、後述する表7に示す25遺伝子から1種又は2種以上を選択するのが好ましい。 The specific genes related to keratinization or immune response used to construct the discriminant equation can be selected from genes annotated with the keratinization-related or immune response-related GO terms, but it is preferable to select one or more from the 25 genes shown in Table 7 below.

 判別式の構築におけるアルゴリズムとしては、機械学習に用いるアルゴリズムなどの公知のものを利用することができる。機械学習アルゴリズムの例としては、ランダムフォレスト(Random forest)、決定木(Decision tree)、勾配ブースティング(Gradient boosting)、XGBossti(eXtreme Gradient Boosting)、ライトGBM(LightGBM)線形カーネルのサポートベクターマシン(SVM linear)、rbfカーネルのサポートベクターマシン(SVM rbf)、ロジスティック回帰(Logistic regression)、正則化ロジスティック回帰(Regularized logistic regression)、一般線形モデル(Generalized linear model)、正則化線形判別分析(Regularized linear discriminant analysis)、k近傍法(k-nearest neighbors)、ニューラルネットワーク(Nerural net)、多層パーセプトロン(Multi-layer perceptron)、畳み込みニューラルネットワーク(Convotional neural network)、リカレントニューラルネットワーク(Recurrent neural network)などが挙げられる。構築した予測モデルに検証用のデータを入力して予測値を算出し、該予測値が実測値と最も適合するモデル、例えば正解率(Accuracy)が最も大きいモデルを最適な予測モデルとして選抜することができる。また、予測値と実測値から検出率(Recall)、精度(Precision)、及びそれらの調和平均であるF値を計算し、そのF値が最も大きいモデルを最適な予測モデルとして選抜することができる。 As an algorithm for constructing the discriminant, known algorithms such as algorithms used in machine learning can be used. Examples of machine learning algorithms include random forest, decision tree, gradient boosting, XGBossti (eXtreme Gradient Boosting), lightGBM, support vector machine with linear kernel (SVM linear), support vector machine with rbf kernel (SVM rbf), logistic regression, and regularized logistic regression. Examples of such a prediction model include a generalized linear model, a regularized linear discriminant analysis, a k-nearest neighbors method, a neural net, a multi-layer perceptron, a convolutional neural network, and a recurrent neural network. Verification data is input into the constructed prediction model to calculate a predicted value, and the model whose predicted value is most compatible with the actual measured value, for example, the model with the highest accuracy, can be selected as the optimal prediction model. In addition, the detection rate (Recall), accuracy (Precision), and their harmonic mean, the F-value, are calculated from the predicted and measured values, and the model with the largest F-value can be selected as the optimal prediction model.

 皮膚からの生体情報としてSSL中の遺伝子発現状態についての情報以外の情報を用いる場合、生成された前記2クラスタ(Cluster1及びCluster2、又はCluster1’及びCluster2’)に紐づけられた生体情報を用いることが好ましい。母集団である2クラスタ(Cluster1及びCluster2、又はCluster1’及びCluster2’)において、予めそれらの生体情報を取得し、2クラスタのいずれに分類されるかの基準、例えば閾値を設定したり、機械学習により2クラスタのいずれかに分類するための判別式を構築する。そして被検者から取得された生体情報に基づいて、2クラスタから生成された肌タイプのいずれに該当するかを判定することができる。 When using information other than information on gene expression state in SSL as biometric information from the skin, it is preferable to use biometric information linked to the two clusters (Cluster 1 and Cluster 2, or Cluster 1' and Cluster 2') that have been generated. For the two clusters (Cluster 1 and Cluster 2, or Cluster 1' and Cluster 2') that are the population, the biometric information is acquired in advance, and a criterion for classifying into one of the two clusters, such as a threshold, is set, or a discriminant for classifying into one of the two clusters by machine learning is constructed. Then, based on the biometric information acquired from the subject, it can be determined which of the two clusters generated skin types the subject falls into.

 本発明の被検者の肌を分類する方法は、計算装置(コンピュータ)を用いて行うことができる。したがって、本発明は別の態様として、上述の方法を実行するための計算装置、該計算装置に上述の方法を実行させるためのプログラム、及び該プログラムが記録された、計算装置が読み取り可能な情報記録媒体を提供する。 The method of classifying the subject's skin of the present invention can be performed using a computing device (computer). Therefore, in another aspect, the present invention provides a computing device for executing the above-mentioned method, a program for causing the computing device to execute the above-mentioned method, and an information recording medium on which the program is recorded and which can be read by the computing device.

 本発明の計算装置は、被検者から取得された皮膚からの生体情報をインプットするための手段を有し、本発明の被検者の肌を分類する方法を実行させるためのプログラムに従って、当該生体情報から当該被検者が上述した肌タイプのいずれに分類されるかを決定する、上述した方法を実行させる工程を含む。 The computing device of the present invention has a means for inputting biometric information obtained from the skin of a subject, and includes a step of executing the above-mentioned method of determining which of the above-mentioned skin types the subject is classified into from the biometric information, in accordance with a program for executing the method of classifying the subject's skin of the present invention.

 本発明の被検者の肌を分類する方法を実行させるためのプログラムが記録される、計算装置が読み取り可能な情報記録媒体としては、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリなどが挙げられる。なお本発明において、計算装置が読み取り可能とは、電気通信回線などを介して配信される場合も含むものとする。  Examples of information recording media readable by a computing device on which a program for executing the method of classifying a subject's skin of the present invention is recorded include magnetic disks, optical disks, magneto-optical disks, and flash memories. Note that in the present invention, "readable by a computing device" also includes cases where the program is distributed via a telecommunications line, etc.

 上述した実施形態に関し、本発明においてはさらに以下の態様が開示される。
 <1>被検者の肌を分類する方法であって、該分類は複数の健常者の皮膚表上脂質に含まれる遺伝子の発現状態を基にクラスタ解析して分割した2つのクラスタから生成された肌タイプへの分類であり、
 被検者の皮膚から生体情報を取得する工程、及び
 当該生体情報から当該被検者が前記肌タイプのいずれに分類されるかを決定する工程、を含む、方法。
 <2>複数の健常者の皮膚表上脂質に含まれる遺伝子の発現状態を基にクラスタ解析して2つのクラスタに分割し、それぞれのクラスタから肌タイプを生成する準備工程を含む、<1>に記載の方法。
 <3>前記遺伝子が、skin development(GO:0043588)、epidermis development(GO:0008544)、immune system process(GO:0002376及びresponse to cytokine(GO:0034097)から選ばれる少なくとも1つのGOタームでアノテーションされた遺伝子を含む、<1>又は<2>に記載の方法。
 <4>皮膚からの生体情報が、被検者の皮膚表上脂質に含まれる遺伝子の発現状態である、<1>~<3>のいずれかに記載の方法。
 <5>前記遺伝子の発現状態が、skin development(GO:0043588)、epidermis development(GO:0008544)、immune system process(GO:0002376及びresponse to cytokine(GO:0034097)から選ばれる少なくとも1つのGOタームでアノテーションされた遺伝子の発現状態である、<4>に記載の方法。
 <6>前記遺伝子の発現状態が、ASPRV1、KRT17、KRT80、KRT79、DNASE1L2、SPRR1A、DSP、CDSN、CST6、LCP1、KRT6B、LCE1C、CALML5、CD83、JUP、TYROBP、SPINT1、CNFN、TMSB4X、NFKB1、B2M、MSN、CXCL16、CD58及びKRT72の25遺伝子より選択される少なくとも1つの遺伝子の発現状態である、<4>に記載の方法。
 <7>被検者の皮膚からの生体情報が、1)クラスタ解析で使用したSSL中の遺伝子の発現状態、SSL中のタンパク質発現状態又は代謝物についての情報、2)顔から採取可能な生体試料中の遺伝子発現状態、タンパク質発現状態又は代謝物についての情報、3)皮膚常在菌の菌叢あるいは菌由来の遺伝子発現状態、タンパク質発現状態又は代謝物についての情報、及び4)機器測定による肌性状値の測定から選ばれる情報である、<1>~<6>のいずれかに記載の方法。
 <8>機器測定による肌性状値が経皮水分蒸散量、角層水分量、皮脂量、皮膚糖化度、皮膚粘弾性、皮膚色、ヘモグロビン量、メラニン量、皮膚血流量、皮膚温、及びバイオフォトンから選ばれる1種以上である、<7>に記載の方法。
 <9>SSL中の遺伝子の発現状態に基づく被検者の肌タイプの決定が、1)予め生成された2クラスタ(Cluster1及びCluster2、又はCluster1’及びCluster2’)の重心と被検者のSSL由来RNA発現量との距離から決定する方法、2)角化あるいは免疫応答に関する特定の遺伝子の発現量との比較に基づき決定する方法のいずれかである、<7>に記載の方法。
 <10>被検者から前記25遺伝子から選択される1種以上の遺伝子の発現量を取得し、該発現量を参照値と比較して被検者の肌タイプを判別する、<6>に記載の方法。
 <11><1>~<10>のいずれかに記載の方法を実行するための計算装置であって、被検者から取得された皮膚からの生体情報をインプットするための手段を有し、被検者の肌を分類する方法を実行させるためのプログラムに従って、当該生体情報から当該被検者が前記肌タイプのいずれに分類されるかを決定する工程を実行する、装置。
 <12><1>~<10>のいずれかに記載の方法を計算装置に実行させるためのプログラム。
 <13>前記<12>に記載のプログラムが記録された情報記録媒体。
In relation to the above-described embodiment, the present invention further discloses the following aspects.
<1> A method for classifying the skin of a subject, the classification being into skin types generated from two clusters obtained by performing cluster analysis based on the expression states of genes contained in lipids on the skin surface of a plurality of healthy subjects;
A method comprising: acquiring biometric information from the skin of a subject; and determining from the biometric information whether the subject is classified into one of the skin types.
<2> The method described in <1>, comprising a preparatory step of performing cluster analysis based on the expression state of genes contained in the skin surface lipids of multiple healthy subjects, dividing the subjects into two clusters, and generating skin types from each cluster.
<3> The method according to <1> or <2>, wherein the gene includes a gene annotated with at least one GO term selected from skin development (GO: 0043588), epidermis development (GO: 0008544), immune system process (GO: 0002376, and response to cytokine (GO: 0034097).
<4> The method according to any one of <1> to <3>, wherein the biological information from the skin is an expression state of genes contained in lipids on the skin surface of the subject.
<5> The method according to <4>, wherein the expression state of the gene is an expression state of a gene annotated with at least one GO term selected from skin development (GO: 0043588), epidermis development (GO: 0008544), immune system process (GO: 0002376, and response to cytokine (GO: 0034097).
<6> The method according to <4>, wherein the expression state of the gene is the expression state of at least one gene selected from 25 genes: ASPRV1, KRT17, KRT80, KRT79, DNASE1L2, SPRR1A, DSP, CDSN, CST6, LCP1, KRT6B, LCE1C, CALML5, CD83, JUP, TYROBP, SPINT1, CNFN, TMSB4X, NFKB1, B2M, MSN, CXCL16, CD58 and KRT72.
<7> The method according to any one of <1> to <6>, wherein the biological information from the skin of the subject is information selected from 1) information on the expression state of genes in the SSL used in the cluster analysis, the expression state of proteins in the SSL, or metabolites, 2) information on the expression state of genes, the expression state of proteins, or metabolites in a biological sample that can be taken from the face, 3) information on the flora of normal skin bacteria or the expression state of genes, the expression state of proteins, or metabolites derived from the bacteria, and 4) measurements of skin property values obtained by instrumental measurement.
<8> The method according to <7>, wherein the skin property values measured by an instrument are one or more selected from transepidermal water loss, stratum corneum moisture content, sebum content, skin glycation level, skin viscoelasticity, skin color, hemoglobin content, melanin content, skin blood flow, skin temperature, and biophotons.
<9> The method according to <7>, wherein the skin type of the subject based on the expression state of genes in SSL is determined by either 1) a method of determining from the distance between the center of gravity of two pre-generated clusters (Cluster 1 and Cluster 2, or Cluster 1' and Cluster 2') and the expression level of RNA derived from the subject's SSL, or 2) a method of determining based on a comparison with the expression level of a specific gene related to keratinization or immune response.
<10> The method according to <6>, further comprising obtaining an expression level of one or more genes selected from the 25 genes from a subject, and comparing the expression level with a reference value to determine the skin type of the subject.
<11> A calculation device for executing the method according to any one of <1> to <10>, the device having a means for inputting biometric information from the skin of a subject, and executing a step of determining which of the skin types the subject is classified into from the biometric information in accordance with a program for executing a method for classifying the skin of the subject.
<12> A program for causing a computer device to execute the method according to any one of <1> to <10>.
<13> An information recording medium on which the program according to <12> is recorded.

 以下、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。
実施例1 SSL-RNAの肌タイプ分類解析
1)SSL採取
 20~60歳の女性健常者から281サンプル(20代24サンプル、30代126サンプル、40代29サンプル、50代以上102サンプル)の皮脂を採取した。皮脂は、あぶら取りフィルム(ポリプロピレン製、5.0cm×8.0cm、3M社)1枚を用いて各被験者の全顔から採取した。
The present invention will be described in more detail below based on examples, but the present invention is not limited to these examples.
Example 1 Skin type classification analysis of SSL-RNA 1) SSL collection 281 sebum samples were collected from healthy female subjects aged 20 to 60 (24 samples in their 20s, 126 samples in their 30s, 29 samples in their 40s, and 102 samples over 50). Sebum was collected from the entire face of each subject using a sheet of oil blotting film (polypropylene, 5.0 cm x 8.0 cm, 3M).

2)RNA調製及びシーケンシング
 上記1)で皮脂を採取したあぶら取りフィルムを適当な大きさに切断し、QIAzol Lysis Reagent(Qiagen)を用いて、付属のプロトコルに準じてRNAを抽出した。抽出されたRNAを元に、SuperScript VILO cDNA Synthesis kit(ライフテクノロジーズジャパン株式会社)を用いて42℃、90分間逆転写を行いcDNAの合成を行った。逆転写反応のプライマーには、キットに付属しているランダムプライマーを使用した。得られたcDNAから、マルチプレックスPCRにより20802遺伝子に由来するDNAを含むライブラリーを調製した。マルチプレックスPCRは、Ion AmpliSeqTranscriptome Human Gene Expression Kit(ライフテクノロジーズジャパン株式会社)を用いて、[99℃、2分→(99℃、15秒→62℃、16分)×20サイクル→4℃、Hold]の条件で行った。得られたPCR産物は、Ampure XP(ベックマン・コールター株式会社)で精製した後に、バッファーの再構成、プライマー配列の消化、アダプターライゲーションと精製、増幅を行い、ライブラリーを調製した。調製したライブラリーをIon 540 Chipにローディングし、Ion S5/XLシステム(ライフテクノロジーズジャパン株式会社)を用いてシーケンシングした。シーケンシングで得られた各リード配列をヒトゲノムのリファレンス配列であるhg19 AmpliSeq Transcriptome ERCC v1に対して遺伝子マッピングすることで、各リード配列の由来する遺伝子を決定した。
2) RNA preparation and sequencing The oil blotting film from which sebum was collected in 1) above was cut to an appropriate size, and RNA was extracted using QIAzol Lysis Reagent (Qiagen) according to the attached protocol. Based on the extracted RNA, reverse transcription was performed at 42°C for 90 minutes using SuperScript VILO cDNA Synthesis kit (Life Technologies Japan, Inc.) to synthesize cDNA. The random primers included in the kit were used as primers for the reverse transcription reaction. A library containing DNA derived from the 20802 gene was prepared from the obtained cDNA by multiplex PCR. Multiplex PCR was performed using Ion AmpliSeqTranscriptome Human Gene Expression Kit (Life Technologies Japan, Inc.) under the conditions of [99°C, 2 minutes → (99°C, 15 seconds → 62°C, 16 minutes) × 20 cycles → 4°C, Hold]. The obtained PCR product was purified with Ampure XP (Beckman Coulter, Inc.), and then buffer reconstitution, digestion of primer sequences, adapter ligation and purification, and amplification were performed to prepare a library. The prepared library was loaded onto an Ion 540 Chip and sequenced using an Ion S5/XL system (Life Technologies Japan, Inc.). Each read sequence obtained by sequencing was genetically mapped to hg19 AmpliSeq Transcriptome ERCC v1, which is a reference sequence of the human genome, to determine the gene from which each read sequence originated.

3)データ解析
 上記2)で取得した被験者のSSL由来のRNAの発現量のデータ(リードカウント値)を、DESeq2(Love MI et al. Genome Biol. 2014)という手法を用いて補正した。但し、4161個以上の遺伝子が検出されていないサンプルは除外し、除外後の全サンプル中被験者の発現量データのうち90%以上のサンプル被験者で欠損値ではない発現量データが得られた2605種の遺伝子のみ以下の解析に使用した。解析には、DESeq2という手法を用いて補正されたカウント値(Normalized count値)を用いた。
 上記で得られたSSL由来RNA発現量(Normalized count値)を基に、サンプル間のスピアマンの順位相関分析による相関係数ρを算出した。この際、Valiance Stabilizing Transformationという手法を用いてカウント値の分散を補正した。相関係数ρを基に、サンプル間の距離を1-ρとし、クラスタ間の結合方法をウォード法とする階層クラスタリング解析を実施した。解析より得られたデンドログラムをもとにサンプルを2クラスタ(Cluster1及びCluster2)に分割した(図1)。
3) Data Analysis The data of the expression amount (read count value) of the SSL-derived RNA of the subject obtained in 2) above was corrected using a method called DESeq2 (Love MI et al. Genome Biol. 2014). However, samples in which 4161 or more genes were not detected were excluded, and only 2605 types of genes for which expression amount data that was not a missing value was obtained in 90% or more of the sample subjects among the expression amount data of all samples after the exclusion were used in the following analysis. For the analysis, the count value corrected using the method called DESeq2 (Normalized count value) was used.
Based on the SSL-derived RNA expression level (normalized count value) obtained above, the correlation coefficient ρ was calculated by Spearman's rank correlation analysis between samples. At this time, the variance of the count value was corrected using a method called variance stabilizing transformation. Based on the correlation coefficient ρ, a hierarchical clustering analysis was performed in which the distance between samples was set to 1-ρ and the method of joining clusters was the Ward method. Based on the dendrogram obtained from the analysis, the samples were divided into two clusters (Cluster 1 and Cluster 2) (Figure 1).

 2クラスタの間でSSL由来RNA発現量比が1.2倍以上かつ尤度比検定によるp値の補正値(FDR)が0.05未満となるRNAを抽出することにより、Cluster1で相対的に発現が高い遺伝子が614種、Cluster2で相対的に発現が高い遺伝子が855種同定された。
 公共データベースであるPANTHERを用いて遺伝子オントロジー(GO)エンリッチメント解析によるbiological process(BP)の探索を行った。その結果、Cluster1で相対的に発現が高い遺伝子群から215種のGOターム、Cluster2で相対的に発現が高い遺伝子群から1287種のGOタームが得られた。これらの中には、表皮角層の主要な機能である角化や免疫応答に関連するものが含まれており、Cluster1では、最もFDRが低いタームは「skin development(GO:0043588,FDR:5.23E-18)」、「epidermis development(GO:0008544,FDR:8.66E-17) 」を筆頭に、上位の5タームのうち3タームが角化に関連するタームであり、Cluster2では、最もFDRが低いタームは「immune system process(GO:0002376,FDR:1.84E-66)」、 「response to cytokine(GO:0034097,FDR:7.22E-47) 」を筆頭に、上位5タームのうち4タームが免疫応答に関連するタームであった。
By extracting RNA with an SSL-derived RNA expression ratio of 1.2 times or more between the two clusters and a corrected p-value (FDR) based on the likelihood ratio test of less than 0.05, 614 genes with relatively high expression in Cluster 1 and 855 genes with relatively high expression in Cluster 2 were identified.
A search for biological process (BP) was performed by gene ontology (GO) enrichment analysis using the public database PANTHER. As a result, 215 GO terms were obtained from the gene group with relatively high expression in Cluster 1, and 1287 GO terms were obtained from the gene group with relatively high expression in Cluster 2. Among these, there are terms related to keratinization and immune response, which are the main functions of the epidermal stratum corneum. In Cluster 1, the terms with the lowest FDR are "skin development (GO: 0043588, FDR: 5.23E-18)" and "epidermis development (GO: 0008544, FDR: 8.66E-17)". Three of the top five terms are related to keratinization. In Cluster 2, the terms with the lowest FDR are "immune system process (GO: 0002376, FDR: 1.84E-66)" and "response to cytokine (GO: 0034097, FDR: 7.22E-47)". " Four of the top five terms were related to immune response, with "

実施例2 角化・免疫応答に関するSSL-RNAによる肌タイプ分類解析
1)使用データ
 実施例1と同様、被験者のSSL由来RNA発現量(Normalized count値)を基に、全サンプル中90%以上のサンプルで欠損値ではない発現量データが得られている2605種の遺伝子のみ以下の解析に使用した。
Example 2 Skin type classification analysis using SSL-RNA related to keratinization and immune response 1) Data used As in Example 1, based on the expression levels of SSL-derived RNA from the subjects (normalized count values), only 2605 types of genes for which non-missing expression level data was obtained in 90% or more of all samples were used in the following analysis.

2)角化・免疫応答関連遺伝子の選択
 2605種の遺伝子から、角化に関連する遺伝子としてGOターム「skin development(GO:0043588)」がアノテーションされている76遺伝子及び「epidermis development(GO:0008544)」がアノテーションされている83遺伝子を抽出し、免疫応答に関連する遺伝子としてGOターム「immune system process(GO:0002376)」がアノテーションされている453遺伝子及び「response to cytokine(GO:0034097) 」がアノテーションされている227遺伝子を抽出した。
2) Selection of keratinization/immune response-related genes From the 2,605 types of genes, 76 genes annotated with the GO term “skin development (GO:0043588)” and 83 genes annotated with “epidermis development (GO:0008544)” were extracted as genes related to keratinization, and 453 genes annotated with the GO term “immune system process (GO:0002376)” and 227 genes annotated with “response to cytokine (GO:0034097)” were extracted as genes related to immune response.

3)データ解析
 SSL由来RNAのうち、2)で選択された角化・免疫応答関連の特定GOタームがアノテーションされた遺伝子計606種の発現量(Normalized count値)を基に、サンプル間のスピアマンの順位相関分析による相関係数ρを算出した。この際、Valiance Stabilizing Transformationという手法を用いてカウント値の分散を補正した。相関係数ρを基に、サンプル間の距離を1-ρとし、クラスタ間の結合方法をウォード法とする階層クラスタリング解析を実施した。解析より得られたデンドログラムをもとにサンプルを2クラスタ(Cluster1’及びCluster2’)に分割した(図2)。
3) Data Analysis Based on the expression levels (normalized count values) of a total of 606 genes annotated with specific GO terms related to keratinization and immune response selected in 2) from the SSL-derived RNA, the correlation coefficient ρ was calculated by Spearman's rank correlation analysis between samples. At this time, the variance of the count values was corrected using a method called Valence Stabilizing Transformation. Based on the correlation coefficient ρ, a hierarchical clustering analysis was performed in which the distance between samples was set to 1-ρ and the method of joining clusters was the Ward method. Based on the dendrogram obtained by the analysis, the samples were divided into two clusters (Cluster 1' and Cluster 2') (Figure 2).

4)クラスタ解析結果の比較
 実施例1で認められた2クラスタと上記データ解析から認められた2クラスタを比較した。Cluster1に属する107サンプル中106サンプルがCluster1’に含まれており、Cluster2に属する174サンプル中135サンプルがCluster2’に含まれており、その一致率は85%以上であった(表1)。
4) Comparison of cluster analysis results The two clusters observed in Example 1 were compared with the two clusters observed from the above data analysis. Of the 107 samples belonging to Cluster 1, 106 samples were included in Cluster 1', and of the 174 samples belonging to Cluster 2, 135 samples were included in Cluster 2', with a concordance rate of 85% or more (Table 1).

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

実施例3 クラスタ重心を利用した肌タイプの推定
1)使用データ
 実施例1で取得したSSL由来RNAの発現量のデータ(リードカウント値)を、サンプル間の総リード数の違いを補正したRPM値に変換した。但し、全サンプル中90%以上のサンプルで欠損値ではない発現量データが得られている2605種の遺伝子のみ以下の解析に使用した。各クラスタの重心の算出には、負の二項分布に従うRPM値を正規分布に近似するため、底2の対数値に変換したRPM値(Log2RPM値)を用いた。
Example 3: Estimation of skin type using cluster centroid 1) Data used The expression data (read count value) of SSL-derived RNA obtained in Example 1 was converted to an RPM value corrected for the difference in the total number of reads between samples. However, only 2605 types of genes for which expression data that was not a missing value was obtained in 90% or more of all samples were used in the following analysis. In order to approximate the RPM value according to the negative binomial distribution to a normal distribution, the RPM value converted to the logarithmic value of base 2 (Log2RPM value) was used to calculate the centroid of each cluster.

2)サンプルの分割
 サンプルを訓練サンプル(227サンプル)とテストサンプル(54サンプル)に分割した。各サンプルの肌タイプは、実施例1の階層クラスタリング解析で認められたCluster1あるいはCluster2とした。このとき、訓練サンプルとテストサンプルのそれぞれに属するCluster1とCluster2の割合に偏りが無いように分割した(表2)。
2) Sample division The samples were divided into training samples (227 samples) and test samples (54 samples). The skin type of each sample was determined to be Cluster 1 or Cluster 2 as determined by the hierarchical clustering analysis in Example 1. The division was performed so that there was no bias in the proportion of Cluster 1 and Cluster 2 belonging to the training samples and the test samples, respectively (Table 2).

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

3)クラスタ重心の算出
 訓練サンプルのSSL由来RNAの前記解析対象遺伝子の発現量データ(Log2RPM値)(訓練データ)を変数とし、各クラスタ(Cluster1, Cluster2)の重心(Centroid1,Centroid2)を算出した。重心の算出には、各サンプルの発現量データを各遺伝子の発現量を成分とするベクトルとして表現することで、発現量データを解析対象遺伝子数である2605次元空間上の1つのデータ点として位置づけ、全サンプルのデータ点の位置ベクトルの平均を重心としている。例えば、Cluster1に属するデータ点をx_1,x_2,・・・,x_87とした場合、そのクラスタの重心Centroid1は(1/87)*(x_1+x_2+・・・+x_87)と表現することができる。このようにして算出された重心を用いて、テストサンプルの肌タイプの判定を行った。
3) Calculation of the cluster centroid The expression amount data (Log2RPM value) (training data) of the gene to be analyzed of the SSL-derived RNA of the training sample was used as a variable, and the centroid (Centroid 1, Centroid 2) of each cluster (Cluster 1, Cluster 2) was calculated. In calculating the centroid, the expression amount data of each sample is expressed as a vector with the expression amount of each gene as a component, and the expression amount data is positioned as one data point in a 2605-dimensional space, which is the number of genes to be analyzed, and the average of the position vectors of the data points of all samples is used as the centroid. For example, if the data points belonging to Cluster 1 are x_1, x_2, ..., x_87, the centroid Centroid 1 of the cluster can be expressed as (1/87) * (x_1 + x_2 + ... + x_87). The centroid calculated in this way was used to determine the skin type of the test sample.

4)重心に基づいた肌タイプ判定
 テストサンプルのSSL由来RNAの前記解析対象遺伝子の発現量データ(Log2RPM値)(テストデータ)を変数とし、テストサンプルにおけるCentoroid1及びCentroid2とのユークリッド距離を算出した。各テストサンプルのCentroid1との距離と、Centroid2との距離を比較し、より距離が近い重心のもととなったクラスタを各テストサンプルの肌タイプ(Cluster1及びCluster2)と判定した。
4) Skin type determination based on centroid The expression amount data (Log2RPM value) (test data) of the gene to be analyzed in the SSL-derived RNA of the test sample was used as a variable, and the Euclidean distance between Centroid 1 and Centroid 2 in the test sample was calculated. The distance between Centroid 1 and Centroid 2 of each test sample were compared, and the cluster that was the basis of the centroid with the closer distance was determined to be the skin type (Cluster 1 and Cluster 2) of each test sample.

5)判定精度の検証
 テストサンプルについて、実施例1で認められた肌タイプと前記の訓練データの重心を基に判定した肌タイプを比較したところ、その正答率(一致率)は95%以上であった(表3)。
5) Verification of Judgment Accuracy When the skin types of the test samples recognized in Example 1 were compared with the skin types judged based on the centroids of the training data, the accuracy rate (match rate) was 95% or higher (Table 3).

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

実施例4 肌タイプ判定マーカー遺伝子の選抜
1)使用データ及びサンプルの分割
 実施例1で取得したSSL由来RNAの発現量のデータ(リードカウント値)をデータとして利用した。実施例3と同様に、サンプルを訓練サンプル(227サンプル)とテストサンプル(54サンプル)に分割した(表2)。各サンプルの肌タイプは、実施例1の階層クラスタリング解析で認められたCluster1あるいはCluster2とした。
Example 4 Selection of Marker Genes for Determining Skin Type 1) Data Used and Sample Division Data on the expression level of SSL-derived RNA (read count value) obtained in Example 1 was used as data. As in Example 3, samples were divided into training samples (227 samples) and test samples (54 samples) (Table 2). The skin type of each sample was determined to be Cluster 1 or Cluster 2 as determined by the hierarchical clustering analysis in Example 1.

2)訓練データの解析
 訓練サンプルのSSL由来のRNAの発現量のデータ(リードカウント値)を、DESeq2を用いて補正し、訓練データとした。訓練データのうち90%以上のサンプル被験者で欠損値ではない発現量データが得られた2563種の遺伝子のみ以下の解析に使用した。解析には、DESeq2という手法を用いて補正されたカウント値(Normalized count値)を用いた。
 訓練サンプルの2つの肌タイプ間で、訓練データのSSL由来RNA発現量比が1.2倍以上かつ尤度比検定によるp値の補正値(FDR)が0.05未満となるRNAを抽出することにより、Cluster1で相対的に発現が高い遺伝子が591種、Cluster2で相対的に発現が高い遺伝子が823種同定された。
2) Analysis of training data The data on the expression levels (read count values) of the SSL-derived RNA of the training samples were corrected using DESeq2 to prepare training data. Only 2563 types of genes for which expression level data that was not a missing value was obtained in 90% or more of the sample subjects among the training data were used in the following analysis. For the analysis, count values corrected using a method called DESeq2 (normalized count values) were used.
By extracting RNA in which the SSL-derived RNA expression ratio of the training data was 1.2 times or more and the corrected p-value (FDR) by the likelihood ratio test was less than 0.05 between the two skin types of the training sample, 591 genes with relatively high expression in Cluster 1 and 823 genes with relatively high expression in Cluster 2 were identified.

3)発現差異のある角化・免疫応答関連遺伝子の選択
 2)の訓練データの解析においてCluster1で相対的に高い発現を示した591遺伝子のうち、角化に関連する遺伝子として、GOターム「skin development(GO:0043588)」及び「epidermis development(GO:0008544)」のいずれかがアノテーションされている54遺伝子を抽出した。また、Cluster2で相対的に高い発現を示した823遺伝子のうち、免疫応答に関連する遺伝子として、GOターム「immune system process(GO:0002376)」及び「response to cytokine(GO:0034097) 」のいずれかがアノテーションされている313遺伝子を抽出した。
3) Selection of differentially expressed keratinization/immune response-related genes Among the 591 genes that showed relatively high expression in Cluster 1 in the analysis of the training data in 2), 54 genes annotated with either the GO term "skin development (GO: 0043588)" or "epidermis development (GO: 0008544)" were extracted as genes related to keratinization. In addition, among the 823 genes that showed relatively high expression in Cluster 2, 313 genes annotated with either the GO term "immune system process (GO: 0002376)" or "response to cytokine (GO: 0034097)" were extracted as genes related to immune response.

4)訓練サンプルにおける個別遺伝子の判別精度評価
 3)で抽出した367遺伝子それぞれについてその発現量データ(Log2RPM値)を変数とするROC曲線を描写して、訓練サンプルのCluster1あるいはCluster2を判別するのにより適した遺伝子を抽出し、該遺伝子を用いた判別精度の評価を行った。ROC曲線は、ある連続値の大小を指標として、あるサンプルが陰性であるか陽性であるかを判別する際に、陰性群と陽性群において、縦軸に陽性群において陽性の結果がでる確率(感度又は真陽性率)と、横軸に陰性群において陰性の結果がでる確率(特異度)を1から減算した値(偽陽性率)がプロットされる。ROC曲線の曲線下面積(AUC)が大きいほど、2群の判別精度は高いと判断される。今回は、367遺伝子のAUCを算出し、要約統計量を求めた(表4)。367遺伝子のうち、第3四分位数(0.808)以上のAUCをもつ93遺伝子を抽出した。
 次に、93遺伝子それぞれのROC曲線のYouden indexにおける遺伝子発現量を閾値に設定し、訓練サンプルの肌タイプの判別を行った。その正答率を判別精度の指標として算出し、その要約統計量を求めた(表5)。
4) Evaluation of the discrimination accuracy of individual genes in training samples For each of the 367 genes extracted in 3), an ROC curve was drawn using the expression data (Log2RPM value) as a variable, and genes more suitable for discriminating Cluster 1 or Cluster 2 of the training samples were extracted, and the discrimination accuracy was evaluated using the genes. When a sample is discriminated as being negative or positive using the magnitude of a certain continuous value as an index, the ROC curve plots the probability of a positive result in the positive group (sensitivity or true positive rate) on the vertical axis and the value obtained by subtracting the probability of a negative result in the negative group (specificity) from 1 (false positive rate) on the horizontal axis in the negative and positive groups. The larger the area under the curve (AUC) of the ROC curve, the higher the discrimination accuracy of the two groups is judged to be. In this case, the AUC of 367 genes was calculated and summary statistics were obtained (Table 4). Of the 367 genes, 93 genes with AUCs above the third quartile (0.808) were extracted.
Next, the gene expression level in the Youden index of the ROC curve for each of the 93 genes was set as a threshold value, and the skin type of the training sample was discriminated. The accuracy rate was calculated as an index of discrimination accuracy, and summary statistics were obtained (Table 5).

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

5)テストサンプルにおける個別遺伝子の判別精度評価
 4)で判別精度を評価した93遺伝子のうち、判別精度がより優れている、正答率が表5の中央値(0.795)以上であった46遺伝子を抽出した。該46遺伝子について、4)の訓練サンプルの肌タイプ判別で設定した閾値を使用し、該閾値とテストサンプルの発現量データ(Log2RPM値)とを比較し、テストサンプルの肌タイプの判別を行った。その正答率を判別精度の指標として算出し、要約統計量を求めた(表6)。判別に使用した46遺伝子のうち、テストサンプルにおける判別精度がより優れている、正答率が表6の中央値(0.796)以上であった25遺伝子は、より高い精度でCluster1あるいはCluster2を判別することができる最適な肌タイプ判定マーカー遺伝子である。
 表7に、該25遺伝子の遺伝子名、ROC曲線のAUC、肌タイプの判別で使用した閾値、判別方法、訓練サンプルにおける正答率(訓練正答率)、テストサンプルにおける正答率(テスト正答率)を示す。
5) Evaluation of the discrimination accuracy of individual genes in test samples Among the 93 genes evaluated for discrimination accuracy in 4), 46 genes with better discrimination accuracy and a correct answer rate equal to or higher than the median value (0.795) in Table 5 were extracted. For the 46 genes, the threshold value set in the skin type discrimination of the training sample in 4) was used, and the threshold value was compared with the expression amount data (Log2RPM value) of the test sample to discriminate the skin type of the test sample. The correct answer rate was calculated as an index of discrimination accuracy, and summary statistics were obtained (Table 6). Among the 46 genes used for discrimination, 25 genes with better discrimination accuracy in the test sample and a correct answer rate equal to or higher than the median value (0.796) in Table 6 are optimal skin type determination marker genes that can discriminate Cluster 1 or Cluster 2 with higher accuracy.
Table 7 shows the gene names of the 25 genes, the AUC of the ROC curve, the threshold used to discriminate the skin type, the discrimination method, the accuracy rate in the training sample (training accuracy rate), and the accuracy rate in the test sample (test accuracy rate).

Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

実施例5 肌タイプ判定マーカー遺伝子を用いた肌タイプ予測モデルの構築
1)使用データ及びサンプルの分割
 実施例3で使用したSSL由来RNAの発現量のデータの補正値(Log2RPM値)を用いた。サンプルの分割も実施例3と同様に、訓練サンプル(227サンプル)とテストサンプル(54サンプル)に分割した。各サンプルの肌タイプは、実施例1の階層クラスタリング解析で認められた肌タイプ(Cluster1あるいはCluster2)とした。
Example 5: Construction of a skin type prediction model using skin type determination marker genes 1) Data used and division of samples The corrected values (Log2RPM values) of the data of the expression amount of SSL-derived RNA used in Example 3 were used. The samples were divided into training samples (227 samples) and test samples (54 samples) in the same manner as in Example 3. The skin type of each sample was determined to be the skin type (Cluster 1 or Cluster 2) recognized by the hierarchical clustering analysis in Example 1.

2)特徴量の選択
 実施例4の5)で肌タイプ判定マーカーとした25遺伝子から、数遺伝子をランダムに抽出し、その抽出した遺伝子セットを特徴量(Feature)とした。
 具体的には、25遺伝子から2遺伝子を抽出した特徴量をFeature1、25遺伝子から3遺伝子を抽出した特徴量をFeature2、25遺伝子から4遺伝子を抽出した特徴量をFeature3、25遺伝子から5遺伝子を抽出した特徴量をFeature4、25遺伝子から10遺伝子を抽出した特徴量をFeature5、25遺伝子から15遺伝子を抽出した特徴量をFeature6、25遺伝子から20遺伝子を抽出した特徴量をFeature7、25遺伝子全てを特徴量とする場合をFeature8とした。Feature1~8に係る特徴量の抽出は、それぞれのFeature毎に10回ずつ試行した。
 それぞれのFeatureにおいて特徴量として抽出された遺伝子(gene)を表8-1~7に示す。
2) Selection of Feature A few genes were randomly extracted from the 25 genes used as skin type determination markers in 5) of Example 4, and the extracted gene set was used as a feature.
Specifically, a feature amount obtained by extracting 2 genes from 25 genes was designated Feature 1, a feature amount obtained by extracting 3 genes from 25 genes was designated Feature 2, a feature amount obtained by extracting 4 genes from 25 genes was designated Feature 3, a feature amount obtained by extracting 5 genes from 25 genes was designated Feature 4, a feature amount obtained by extracting 10 genes from 25 genes was designated Feature 5, a feature amount obtained by extracting 15 genes from 25 genes was designated Feature 6, a feature amount obtained by extracting 20 genes from 25 genes was designated Feature 7, and a case in which all 25 genes were used as features was designated Feature 8. Extraction of features related to Features 1 to 8 was attempted 10 times for each Feature.
The genes extracted as feature quantities for each Feature are shown in Tables 8-1 to 8-7.

3)モデル構築
 訓練サンプルのSSL由来RNAから選択された前記特徴量(Feature)の発現量データ(Log2RPM値)を説明変数とし、肌タイプ(Cluster1あるいはCluster2)を目的変数とした、2値分類モデルの構築を実施した。アルゴリズムにはロジスティック回帰を使用した。Feature1~8のそれぞれを特徴量とする8種のモデルを構築した。また前記の通りFeature1~7はランダム抽出の試行回数分(10回分)存在するため、合計71種のモデルを構築した。
3) Model Construction A binary classification model was constructed using the expression amount data (Log2RPM value) of the feature (Feature) selected from the SSL-derived RNA of the training sample as the explanatory variable and the skin type (Cluster 1 or Cluster 2) as the objective variable. Logistic regression was used as the algorithm. Eight models were constructed using Features 1 to 8 as features. As mentioned above, Features 1 to 7 exist for the number of random extraction trials (10 times), so a total of 71 models were constructed.

 4)判別モデルの検証
 Feature1~7を用いて構築された各10モデル(Model1~10)及びFeature8を用いて構築されたモデルに、訓練サンプルの特徴量の発現量データ(Log2RPM値)を入力し、訓練サンプルの肌タイプを判別した。実施例1で認められた訓練サンプルの肌タイプに対する、モデルから判別された訓練サンプルの肌タイプの正答率(一致率)を、表8―1~7に訓練正答率として示す。また、Feature8(25遺伝子)を用いて構築されたモデルの場合の訓練正答率は1.00であった。
 いずれのモデルを用いたでも高い正答率であり、3)で構築された判別モデルが肌タイプの判別モデルとして機能し得ることが確認された。
4) Verification of the discrimination model The expression amount data (Log2RPM value) of the feature of the training sample was input to each of the 10 models (Models 1 to 10) constructed using Features 1 to 7 and the model constructed using Feature 8, and the skin type of the training sample was discriminated. The accuracy rate (match rate) of the skin type of the training sample discriminated from the model with respect to the skin type of the training sample recognized in Example 1 is shown as the training accuracy rate in Tables 8-1 to 8-7. In addition, the training accuracy rate in the case of the model constructed using Feature 8 (25 genes) was 1.00.
A high accuracy rate was achieved using either model, and it was confirmed that the discrimination model constructed in 3) can function as a discrimination model for skin types.

 5)テストサンプルの肌タイプの判別
 Feature1~7を用いて構築された各10モデル(Model1~10)及びFeature8を用いて構築されたモデルに、テストサンプルの特徴量の発現量データ(Log2RPM値)を入力し、テストサンプルの肌タイプを判別した。実施例1で認められたテストサンプルの肌タイプに対する、モデルから判別されたテストサンプルの肌タイプの正答率(一致率)を、表8―1~7にテスト正答率として示す。また、Feature8(25遺伝子)を用いて構築されたモデルの場合のテスト正答率は0.981であった。
 テストサンプルを用いた場合でも、訓練サンプルの場合と同様に、いずれのモデルを用いたでも高い正答率であり、表7に示す25遺伝子は肌タイプの判別マーカーとして有用であることが示された。
5) Identification of skin type of test sample The expression amount data (Log2RPM value) of the feature of the test sample was input to each of 10 models (Models 1 to 10) constructed using Features 1 to 7 and a model constructed using Feature 8, and the skin type of the test sample was determined. The accuracy rate (match rate) of the skin type of the test sample determined by the model with respect to the skin type of the test sample recognized in Example 1 is shown as the test accuracy rate in Tables 8-1 to 8-7. In addition, the test accuracy rate in the case of the model constructed using Feature 8 (25 genes) was 0.981.
As with the training samples, the accuracy rate was high for both models when the test samples were used, demonstrating that the 25 genes shown in Table 7 are useful as markers for discriminating skin types.

Claims (7)

 被検者の肌を分類する方法であって、該分類は複数の健常者の皮膚表上脂質に含まれる遺伝子の発現状態を基にクラスタ解析して分割した2つのクラスタから生成された肌タイプへの分類であり、
 被検者の皮膚から生体情報を取得する工程、及び
 当該生体情報から当該被検者が前記肌タイプのいずれに分類されるかを決定する工程、を含む、方法。
A method for classifying the skin of a subject, the classification being into skin types generated from two clusters obtained by performing cluster analysis based on expression states of genes contained in lipids on the skin surface of a plurality of healthy subjects;
A method comprising: acquiring biometric information from the skin of a subject; and determining from the biometric information whether the subject is classified into one of the skin types.
 複数の健常者の皮膚表上脂質に含まれる遺伝子の発現状態を基にクラスタ解析して2つのクラスタに分割し、それぞれのクラスタから肌タイプを生成する準備工程を含む、請求項1記載の方法。 The method according to claim 1, which includes a preparatory step of dividing the skin into two clusters by cluster analysis based on the expression state of genes contained in lipids on the skin surface of a plurality of healthy subjects, and generating skin types from each cluster.  前記遺伝子が、skin development(GO:0043588)、epidermis development(GO:0008544)、immune system process(GO:0002376及びresponse to cytokine(GO:0034097)から選ばれる少なくとも1つのGOタームでアノテーションされた遺伝子を含む、請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the genes include genes annotated with at least one GO term selected from skin development (GO:0043588), epidermis development (GO:0008544), immune system process (GO:0002376, and response to cytokine (GO:0034097).  皮膚からの生体情報が、被検者の皮膚表上脂質に含まれる遺伝子の発現状態である、請求項1~3のいずれか1項記載の方法。 The method according to any one of claims 1 to 3, wherein the biological information from the skin is the expression state of genes contained in lipids on the surface of the subject's skin.  前記遺伝子の発現状態が、skin development(GO:0043588)、epidermis development(GO:0008544)、immune system process(GO:0002376及びresponse to cytokine(GO:0034097)から選ばれる少なくとも1つのGOタームでアノテーションされた遺伝子の発現状態である、請求項4記載の方法。 The method according to claim 4, wherein the expression state of the gene is an expression state of a gene annotated with at least one GO term selected from skin development (GO:0043588), epidermis development (GO:0008544), immune system process (GO:0002376, and response to cytokine (GO:0034097).  前記遺伝子の発現状態が、ASPRV1、KRT17、KRT80、KRT79、DNASE1L2、SPRR1A、DSP、CDSN、CST6、LCP1、KRT6B、LCE1C、CALML5、CD83、JUP、TYROBP、SPINT1、CNFN、TMSB4X、NFKB1、B2M、MSN、CXCL16、CD58及びKRT72の25遺伝子より選択される少なくとも1つの遺伝子の発現状態である、請求項4記載の方法。 The method according to claim 4, wherein the expression state of the gene is the expression state of at least one gene selected from the following 25 genes: ASPRV1, KRT17, KRT80, KRT79, DNASE1L2, SPRR1A, DSP, CDSN, CST6, LCP1, KRT6B, LCE1C, CALML5, CD83, JUP, TYROBP, SPINT1, CNFN, TMSB4X, NFKB1, B2M, MSN, CXCL16, CD58, and KRT72.  請求項1~6のいずれかに記載の方法を実行するための計算装置であって、被検者から取得された皮膚からの生体情報をインプットするための手段を有し、被検者の肌を分類する方法を実行させるためのプログラムに従って、当該生体情報から当該被検者が前記肌タイプのいずれに分類されるかを決定する工程を実行する、装置。 A computing device for executing the method according to any one of claims 1 to 6, the device having a means for inputting biometric information obtained from the skin of a subject, and executing a step of determining which of the skin types the subject is classified into from the biometric information according to a program for executing a method for classifying the subject's skin.
PCT/JP2024/037249 2023-10-20 2024-10-18 Method for classifying skin type Pending WO2025084419A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-181440 2023-10-20
JP2023181440 2023-10-20

Publications (1)

Publication Number Publication Date
WO2025084419A1 true WO2025084419A1 (en) 2025-04-24

Family

ID=95448807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/037249 Pending WO2025084419A1 (en) 2023-10-20 2024-10-18 Method for classifying skin type

Country Status (2)

Country Link
JP (1) JP2025071065A (en)
WO (1) WO2025084419A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178390A (en) * 2006-12-27 2008-08-07 Nippon Menaade Keshohin Kk Method for evaluating skin condition and use thereof
WO2018008319A1 (en) * 2016-07-08 2018-01-11 花王株式会社 Method for preparing nucleic acid sample
JP2022554046A (en) * 2020-08-10 2022-12-28 カティス バイオメディカル リサーチ センター Diagnostic Kit for Minimally Invasive Skin Condition Containing Microneedle Patch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178390A (en) * 2006-12-27 2008-08-07 Nippon Menaade Keshohin Kk Method for evaluating skin condition and use thereof
WO2018008319A1 (en) * 2016-07-08 2018-01-11 花王株式会社 Method for preparing nucleic acid sample
JP2022554046A (en) * 2020-08-10 2022-12-28 カティス バイオメディカル リサーチ センター Diagnostic Kit for Minimally Invasive Skin Condition Containing Microneedle Patch

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS : "Development of skin type classification based on sebum RNA: Discovery of two skin types with different gene expression (RNA) characteristics", KAO, 19 February 2024 (2024-02-19), pages 1 - 4, XP093306608, Retrieved from the Internet <URL:https://www.kao.com/jp/newsroom/news/release/2024/20240219-001/> [retrieved on 20241125] *
ANONYMOUS: "Kao and iStyle: Applying sebum RNA monitoring technology to discover cosmetics that suit your skin. Starting in spring 2022, the two companies will launch a joint initiative aimed at improving customer satisfaction and reducing product waste.", KAO, 7 March 2022 (2022-03-07), pages 1 - 4, XP093306604, Retrieved from the Internet <URL:https://www.kao.com/jp/newsroom/news/release/2022/20220307-001/> [retrieved on 20241125] *

Also Published As

Publication number Publication date
JP2025071065A (en) 2025-05-02

Similar Documents

Publication Publication Date Title
CN113366122B (en) Characteristics of free DNA ends
US20210166813A1 (en) Systems and methods for evaluating longitudinal biological feature data
CN112908414A (en) Large-scale single cell typing method, system and storage medium
WO2020191413A1 (en) De novo compartment deconvolution and weight estimation of tumor tissue samples using decoder
KR102124193B1 (en) Method for screening makers for predicting depressive disorder or suicide risk using machine learning, markers for predicting depressive disorder or suicide risk, method for predicting depressive disorder or suicide risk
CN111540410B (en) System and method for predicting a smoking status of an individual
CN113823356B (en) Methylation site identification method and device
CN109642256A (en) Rna editing as the biomarker tested for emotional handicap
JP5307996B2 (en) Method, system and computer software program for identifying discriminant factor set
WO2025084419A1 (en) Method for classifying skin type
JP2022534236A (en) A method for discovering a marker for predicting depression or suicide risk using multiple omics analysis, a marker for predicting depression or suicide risk, and a method for predicting depression or suicide risk using multiple omics analysis
JP7655527B2 (en) A novel method for integrating single-cell genome and metagenomic sequences
CN117594133A (en) Screening method of biomarker for distinguishing uterine lesion type and application thereof
CN116635526A (en) Method for detecting the severity of atopic dermatitis
JP2022174645A (en) Biological age prediction method
WO2025201556A1 (en) Methylation and aging
KR20190126606A (en) IDENTIFYING METHOD FOR TUMOR PATIENT BASED ON miRNA IN EXOSOME AND APPARATUS FOR THE SAME
JP7623827B2 (en) Sleep state marker and method for detecting sleep state using the same
Bai et al. Deep Learning Driven Cell-Type-Specific Embedding for Inference of Single-Cell Co-expression Networks
JP7655721B2 (en) Fatigue marker and method for detecting fatigue using same
CN120183500A (en) Method and device for screening gene expression marker combination for judging tuberculosis infection
WO2025234441A1 (en) Information processing device
JP2023069499A (en) Method for detecting deterioration of skin surface shape due to dryness
WO2023073075A1 (en) Biomarker for immune checkpoint inhibitor sensitive cancer
CN119351554A (en) A marker, primer set and artificial neural network detection model for detecting non-small cell lung cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24879839

Country of ref document: EP

Kind code of ref document: A1