WO2025074519A1 - Seat recommendation device, seat recommendation method, and seat recommendation program - Google Patents
Seat recommendation device, seat recommendation method, and seat recommendation program Download PDFInfo
- Publication number
- WO2025074519A1 WO2025074519A1 PCT/JP2023/036120 JP2023036120W WO2025074519A1 WO 2025074519 A1 WO2025074519 A1 WO 2025074519A1 JP 2023036120 W JP2023036120 W JP 2023036120W WO 2025074519 A1 WO2025074519 A1 WO 2025074519A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seat
- user
- recommended
- recommendation
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/10—Office automation; Time management
Definitions
- the disclosed technology relates to a seat recommendation device, a seat recommendation method, and a seat recommendation program.
- an illuminance sensor is installed at each seat and seating arrangements are calculated to match the pre-registered illuminance preferences of each worker (see Non-Patent Document 2). From a similar perspective, it is also possible to grasp or estimate the spatial temperature distribution from sensors in the case of office air conditioning, and calculate seating arrangements that match the preferred temperature in a similar manner.
- Non-Patent Document 1 Even if a seating arrangement is calculated so that colleagues who should be encouraged to interact are placed close to each other, as in Non-Patent Document 1, there may be cases where there is a large discrepancy between the temperature at the seat and the worker's preferred temperature. Conversely, even if a seating arrangement is calculated based on the worker's preferred temperature, as in Non-Patent Document 2, there may be cases where colleagues who should be encouraged to interact are placed far apart.
- the disclosed technology has been developed in consideration of the above points, and aims to provide a seat recommendation device, a seat recommendation method, and a seat recommendation program that are capable of recommending seats that balance proximity between users and thermal comfort.
- the first aspect of the present disclosure is a seat recommendation device that receives user-related data and seat-related data as input, the user-related data defines at least a predetermined related user related to the user, the seat-related data defines temperature information related to the user and the seat, and includes a recommended seat calculation unit that outputs recommendation data indicating a recommended seat that achieves both proximity between users and thermal comfort.
- a second aspect of the present disclosure is a seat recommendation method in which user-related data and seat-related data are input, the user-related data defines at least a predetermined related user related to the user, the seat-related data defines temperature information related to the user and the seat, and a computer executes a process to output recommendation data indicating a recommended seat that achieves both proximity between users and thermal comfort.
- the disclosed technology makes it possible to recommend seats that balance proximity between users and thermal comfort.
- FIG. 1 is a block diagram showing the configuration of a seat recommendation device according to the present embodiment.
- FIG. 2 is a block diagram showing a hardware configuration of the seat recommendation device.
- FIG. 3 is a block diagram showing the functional configuration of the recommended seat calculation unit.
- FIG. 4 shows an example of relationship data between workers.
- FIG. 5 shows an example of data on desired temperatures of workers.
- FIG. 6 shows an example of the current location data of an office worker.
- FIG. 7 is an example of seat master data.
- FIG. 8 is an example of spatial temperature distribution data.
- FIG. 9 shows an example of recommendation candidate data.
- FIG. 10 shows an example of distance calculation result data between related parties.
- FIG. 11 is an example of calculated recommendation data.
- FIG. 12 is a flowchart showing the flow of the seat recommendation process performed by the seat recommendation device.
- FIG. 13 is a flowchart showing details of the recommended seat calculation process of the recommended seat calculation unit.
- FIG. 14 shows an example of a display result of recommendation data.
- FIG. 1 is a block diagram showing the configuration of the seat recommendation device of this embodiment.
- the seat recommendation device 100 includes an office worker-related data storage unit 102, a seat-related data storage unit 104, a startup unit 110, a recommended seat calculation unit 112, a recommended data storage unit 114, and a display unit 116.
- an example of a user will be an office worker, but the present invention is applicable to users in general who are located in spaces other than an office.
- the office worker-related data is an example of "user-related data" in this disclosure.
- FIG. 2 is a block diagram showing the hardware configuration of the seat recommendation device 100.
- the seat recommendation device 100 has a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a storage 14, an input unit 15, a display interface (I/F) 16, and a communication interface (I/F) 17.
- CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- storage 14 an input unit
- I/F Display interface
- I/F communication interface
- Each component is connected to each other so as to be able to communicate with each other via a bus 19.
- the CPU 11 is a central processing unit that executes various programs and controls each part. That is, the CPU 11 reads the programs from the ROM 12 or storage 14, and executes the programs using the RAM 13 as a working area. The CPU 11 controls each of the above components and performs various calculation processes according to the programs stored in the ROM 12 or storage 14. In this embodiment, a seat recommendation program is stored in the ROM 12 or storage 14.
- ROM 12 stores various programs and data.
- RAM 13 temporarily stores programs or data as a working area.
- Storage 14 is composed of a storage device such as a HDD (Hard Disk Drive) or SSD (Solid State Drive), and stores various programs including an operating system, and various data.
- HDD Hard Disk Drive
- SSD Solid State Drive
- the input unit 15 includes a pointing device such as a mouse and a keyboard, and is used to perform various input operations.
- the display interface 16 is, for example, a liquid crystal display, and displays various information.
- the display interface 16 may also function as the input unit 15 by adopting a touch panel system.
- the communication interface 17 is an interface for communicating with other devices such as terminals.
- a wired communication standard such as Ethernet (registered trademark) or FDDI
- a wireless communication standard such as 4G, 5G, or Wi-Fi (registered trademark) is used.
- the functional components of the seat recommendation device 100 will be described below. Each functional component is realized by the CPU 11 reading out a seat recommendation program stored in the ROM 12 or storage 14, expanding it in the RAM 13, and executing it.
- the worker-related data storage unit 102 stores, as worker-related data, relationship data between workers, current seat data of the workers, and desired temperature data of the workers.
- the seat-related data storage unit 104 stores, as seat-related data, spatial temperature distribution data, and seat master data. Examples of the storage manner of each data will be described later.
- the start-up unit 110 starts the processing of the recommended seat calculation unit 112 at a specified date and time.
- the recommended seat calculation unit 112 receives various data from the worker-related data storage unit 102 and the seat-related data storage unit 104 as input, and outputs the calculated recommended seat to the recommended data storage unit 114 as recommended data.
- the display unit 116 makes it possible to display information on the user interface of a specified device.
- the display unit 116 receives recommendation data from the recommended data storage unit 114 as input, and displays the seat position of the related user, reference information (temperature conditions of each seat), etc., along with the recommended seat of the recommendation data.
- the recommended seat calculation unit 112 has a function of calculating recommendation data that balances proximity between users and temperature comfort.
- the recommended seat calculation unit 112 includes a data acquisition unit 210, a combination unit 220, a temperature difference calculation unit 222, a travel distance calculation unit 224, a recommended candidate generation unit 226, a distance calculation unit 228 between related parties, an optimization calculation unit 230, and an output unit 232.
- the data acquisition unit 210 includes (1) a relationship data acquisition unit 310, (2) a current seat data acquisition unit 312, (3) a desired temperature data acquisition unit 314, (4) a temperature distribution data acquisition unit 316, and (5) a seat master data acquisition unit 318.
- the data acquisition unit 210 in the recommended seat calculation unit 112 acquires relationship data between workers, current seat data of the workers, and desired temperature data of the workers from the worker-related data storage unit 102 by each of the units (1) to (3). Meanwhile, each of units (4) and (5) acquires spatial temperature distribution data and seat master data from the seat-related data storage unit 104, respectively.
- the recommended seat calculation unit 112 performs processing using various data acquired by the data acquisition unit 210.
- the acquired worker's current seat data, worker's desired temperature data, spatial temperature distribution data, and seat master data are combined by the combination unit 220.
- relationship data between workers becomes input to the related party distance calculation unit 228, and recommendation result data is output to the recommended data storage unit 114 via the optimization calculation unit 230 and output unit 232. Details of the processing of each unit of the recommended seat calculation unit 112 will be described later in the flow explanation.
- Figure 4 is an example of relationship data between workers. For each "worker ID”, the "worker ID” of the "related parties of the worker” who is a colleague that the worker with that ID would like to work nearby is stored. Alternatively, the "worker ID” of a colleague that the company recommends working nearby is stored. In other words, the IDs of related parties for each user are stored. Note that related parties associated with workers as shown in Figure 4 are an example of the specified related users of this disclosure. Also, while an example is shown where "related parties of the worker" are stored for each "worker ID”, this is not limited to this, and related parties may be associated with some workers.
- FIG. 5 is an example of the desired temperature data of an office worker.
- the preferred temperature at which the office worker feels comfortable is stored for each "office worker ID.”
- the temperature may be obtained by input from the office worker, or the preferred temperature may be estimated based on the average temperature at the seating position where the office worker sits most frequently.
- the desired temperature data is an example of the "user preferred temperature" of this disclosure.
- Figure 6 is an example of data on the current location of an office worker.
- the location of the office worker is obtained at regular intervals for each "office worker ID" and stored.
- the office can be meshed and the location recorded as a "mesh ID," but the method of recording is not important, and the location can be recorded as two-dimensional coordinate information, for example.
- Figure 7 is an example of seat master data.
- the X and Y coordinates that represent the position of that mesh, and the number of people that can be accommodated within that mesh are recorded for each "mesh ID" as in the example.
- a specific reference mesh may be set, and relative coordinate information indicating how many meshes away from that mesh on the X and Y axes, respectively, may be recorded.
- the number of people that can be accommodated is recorded as the number of people that can sit or work within that mesh.
- FIG. 8 is an example of spatial temperature distribution data.
- Humidity distribution data is an example of the "spatial temperature distribution in a space including seats" disclosed in this disclosure.
- Figure 9 is an example of recommendation candidate data.
- the number of people that can be accommodated in that mesh the number of people that can be accommodated in that mesh, the temperature difference between the reproduced temperature of that mesh and the preferred temperature of that worker, and the travel distance from that mesh to the mesh where the worker is currently located are recorded.
- Any scale can be used for the travel distance, such as Euclidean distance or Manhattan distance.
- Figure 10 shows an example of distance calculation result data between related parties, which is output from the related parties distance calculation unit 228. All combinations of "office worker ID”, “related parties of the office worker” in Figure 4 linked to the "office worker ID”, “mesh ID” that is a recommendation candidate for the former, and “mesh ID” that is a recommendation candidate for the latter are recorded. In addition, for each combination, the distance between the former and latter meshes is recorded as the "distance between related parties”.
- FIG 11 is an example of calculated recommendation data.
- the recommendation data records the "mesh ID" recommended for each "worker ID.”
- FIG. 12 is a flowchart showing the flow of the seat recommendation process by the seat recommendation device 100.
- the seat recommendation process is performed by the CPU 11 reading out a seat recommendation program from the ROM 12 or storage 14, expanding it into the RAM 13, and executing it.
- step S100 the CPU 11, functioning as the startup unit 110, starts the processing of the recommended seat calculation unit 112.
- step S102 the CPU 11 executes processing as the recommended seat calculation unit 112, and outputs the recommendation data obtained as a result of the processing to the recommendation data storage unit 114.
- step S104 the CPU 11 inputs the recommendation data from the recommendation data storage unit 114 to the display unit 116 and displays it in a predetermined display format.
- Figure 13 is a flowchart showing the details of the recommended seat calculation process in the recommended seat calculation unit 112.
- step S202 the CPU 11, as the integration unit 212, combines the worker's current seat data, the worker's desired temperature data, the spatial temperature distribution data, and the seat master data.
- step S204 the CPU 11, as the temperature difference calculation unit 222, calculates the temperature difference between the reproduced temperature of the mesh and the preferred temperature of the worker for the combination of the worker and the mesh.
- step S206 the CPU 11, as the movement distance calculation unit 224, calculates the movement distance from the mesh of the combination to the mesh in which the worker is currently located.
- step S208 the CPU 11, as the recommendation candidate generation unit 226, extracts records for combinations in which the calculated temperature difference or travel distance falls below a preset threshold, and generates recommendation candidate data.
- step S210 the CPU 11, as the related party distance calculation unit 228, combines the recommended candidate data with the relationship data between the workers and generates related party distance calculation result data.
- step S212 the CPU 11, as the optimization calculation unit 230, performs optimization calculations for combinations based on the recommendation candidate data and the distance calculation result data between related parties, and obtains recommendation data that indicates recommended seats.
- optimization is performed using an objective function, and the details of the mode will be described later.
- step S214 the CPU 11, acting as the output unit 232, outputs the calculated recommendation data to the recommendation data storage unit 114 for storage.
- the objective function and constraint equations used in the optimization calculation in step S212 are explained below.
- the objective function and constraints are used to balance the proximity between users and thermal comfort for the recommended data.
- a combinatorial optimization calculation for recommended seats is performed using an objective function that represents the good seating arrangement for users, and a constraint on the capacity that is set for each unit that grasps the seating situation, such as a mesh.
- an objective function that represents the goodness of the seating arrangement for example, the proximity between users is used as an index.
- the objective function of the following formula (1-1) is used.
- the objective function minimizes the sum of the expected travel distance per related person calculated for each user.
- the objective function is not limited to the expected travel distance, and any objective function that expresses the proximity between related people may be used, and an objective function that maximizes the expected travel distance may be set depending on the expression method. ... (1-1)
- the seat recommendation device 100 of this embodiment makes it possible to recommend seats that balance proximity between users and thermal comfort.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Human Resources & Organizations (AREA)
- Operations Research (AREA)
- Economics (AREA)
- Marketing (AREA)
- Data Mining & Analysis (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
開示の技術は、座席推薦装置、座席推薦方法、及び座席推薦プログラムに関する。 The disclosed technology relates to a seat recommendation device, a seat recommendation method, and a seat recommendation program.
オフィスにおける座席は、コミュニケーションの促進により生産性を高めるという目的で、業務の関連する同僚同士を近くに配置することが望ましいとされる場合がある。 In the office, it is sometimes desirable to position colleagues who work in related jobs close to each other in order to promote communication and increase productivity.
また、近しい観点から、ペアプログラミングの授業を対象とし、学習者の学力や友人同士の近接性を考慮した座席配置の最適化が検討されており、オフィスにおいても同様の方法で座席配置を計算することは可能である(非特許文献1参照)。 Also, from a similar perspective, optimization of seating arrangements has been studied for pair programming classes, taking into account the academic ability of students and the proximity of friends, and it is possible to calculate seating arrangements in the office in a similar way (see Non-Patent Document 1).
一方、執務者それぞれで好みの照度が異なる観点から、各座席に照度センサを設置し、事前登録した執務者の好みの照度に合わせた座席配置を計算している(非特許文献2参照)。近しい観点でオフィスの空調についても、空間的な温度分布をセンサから把握又は推定し、同様の方法で好みの温度に合った座席配置を計算することは可能である。 On the other hand, because each worker has a different preferred illuminance, an illuminance sensor is installed at each seat and seating arrangements are calculated to match the pre-registered illuminance preferences of each worker (see Non-Patent Document 2). From a similar perspective, it is also possible to grasp or estimate the spatial temperature distribution from sensors in the case of office air conditioning, and calculate seating arrangements that match the preferred temperature in a similar manner.
しかし、非特許文献1のように、交流を促すべき同僚同士が近くに配置されるような座席配置を計算しても、当該座席の気温と執務者の好みの気温との乖離が大きいケースが発生し得る。逆に非特許文献2のように、執務者の好みの気温に合わせた座席配置を計算しても、交流を促すべき同僚同士が遠くに配置されてしまうケースも発生し得る。 However, even if a seating arrangement is calculated so that colleagues who should be encouraged to interact are placed close to each other, as in Non-Patent Document 1, there may be cases where there is a large discrepancy between the temperature at the seat and the worker's preferred temperature. Conversely, even if a seating arrangement is calculated based on the worker's preferred temperature, as in Non-Patent Document 2, there may be cases where colleagues who should be encouraged to interact are placed far apart.
また、従来の技術は計算した座席配置通りにユーザが着席することを前提としている。しかし、執務者に座席を推薦するような用途を考えた場合、実際には推薦通りに着席する執務者は限定的なため、意図した改善とはならず、逆の座席配置となってしまうケース等が考えられる。具体的には、ある執務者は推薦通りに移動したが、一緒に働きたい同僚は移動しておらず、反って遠ざかるようなケースや、推薦通りの席に移動しようとしたが、席が埋まったままであったというケースが考えられる。 In addition, conventional technology is based on the assumption that users will sit according to the calculated seating arrangement. However, when considering applications such as recommending seats to workers, in reality, only a limited number of workers will sit as recommended, so the intended improvement will not be achieved and seating arrangements may end up being reversed. Specifically, there may be cases where a worker moves as recommended, but a colleague they want to work with does not move, and ends up moving farther away, or where they try to move to a seat as recommended, but the seat remains taken.
開示の技術は、上記の点に鑑みてなされたものであり、ユーザ間の近接性と温度の快適性を両立する座席の推薦が可能な座席推薦装置、座席推薦方法、及び座席推薦プログラムを提供することを目的とする。 The disclosed technology has been developed in consideration of the above points, and aims to provide a seat recommendation device, a seat recommendation method, and a seat recommendation program that are capable of recommending seats that balance proximity between users and thermal comfort.
本開示の第1態様は、座席推薦装置であって、ユーザ関連データと、座席関連データとを入力とし、前記ユーザ関連データには、ユーザに関する所定の関連ユーザが少なくとも定められ、前記座席関連データには、ユーザ及び座席に関する温度情報が定められており、ユーザ間の近接性及び温度の快適性を両立する推薦座席を示す推薦データを出力する推薦座席計算部を含む。 The first aspect of the present disclosure is a seat recommendation device that receives user-related data and seat-related data as input, the user-related data defines at least a predetermined related user related to the user, the seat-related data defines temperature information related to the user and the seat, and includes a recommended seat calculation unit that outputs recommendation data indicating a recommended seat that achieves both proximity between users and thermal comfort.
本開示の第2態様は、座席推薦方法であって、ユーザ関連データと、座席関連データとを入力とし、前記ユーザ関連データには、ユーザに関する所定の関連ユーザが少なくとも定められ、前記座席関連データには、ユーザ及び座席に関する温度情報が定められており、ユーザ間の近接性及び温度の快適性を両立する推薦座席を示す推薦データを出力する、処理をコンピュータが実行する。 A second aspect of the present disclosure is a seat recommendation method in which user-related data and seat-related data are input, the user-related data defines at least a predetermined related user related to the user, the seat-related data defines temperature information related to the user and the seat, and a computer executes a process to output recommendation data indicating a recommended seat that achieves both proximity between users and thermal comfort.
開示の技術によれば、ユーザ間の近接性と温度の快適性を両立する座席の推薦を可能とする。 The disclosed technology makes it possible to recommend seats that balance proximity between users and thermal comfort.
以下、開示の技術の実施形態の一例を、図面を参照しつつ説明する。なお、各図面において同一又は等価な構成要素及び部分には同一の参照符号を付与している。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Below, an example of an embodiment of the disclosed technology will be described with reference to the drawings. Note that the same reference symbols are used for identical or equivalent components and parts in each drawing. Also, the dimensional ratios in the drawings have been exaggerated for the convenience of explanation and may differ from the actual ratios.
以下、本実施形態の構成について説明する。図1は、本実施形態の座席推薦装置の構成を示すブロック図である。座席推薦装置100は、執務者関連データ記憶部102と、座席関連データ記憶部104と、起動部110と、推薦座席計算部112と、推薦データ記憶部114と、表示部116とを含んで構成されている。なお、以下の説明では、ユーザの一例をオフィスの執務者である場合を例に説明するが、オフィス以外にも空間に所在するユーザ全般に適用可能である。執務者関連データが本開示の「ユーザ関連データ」の一例である。 The configuration of this embodiment will be described below. FIG. 1 is a block diagram showing the configuration of the seat recommendation device of this embodiment. The seat recommendation device 100 includes an office worker-related data storage unit 102, a seat-related data storage unit 104, a startup unit 110, a recommended seat calculation unit 112, a recommended data storage unit 114, and a display unit 116. Note that in the following description, an example of a user will be an office worker, but the present invention is applicable to users in general who are located in spaces other than an office. The office worker-related data is an example of "user-related data" in this disclosure.
図2は、座席推薦装置100のハードウェア構成を示すブロック図である。図2に示すように、座席推薦装置100は、CPU(Central Processing Unit)11、ROM(Read Only Memory)12、RAM(Random Access Memory)13、ストレージ14、入力部15、表示インタフェース(I/F)16及び通信インタフェース(I/F)17を有する。各構成は、バス19を介して相互に通信可能に接続されている。 FIG. 2 is a block diagram showing the hardware configuration of the seat recommendation device 100. As shown in FIG. 2, the seat recommendation device 100 has a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a storage 14, an input unit 15, a display interface (I/F) 16, and a communication interface (I/F) 17. Each component is connected to each other so as to be able to communicate with each other via a bus 19.
CPU11は、中央演算処理ユニットであり、各種プログラムを実行したり、各部を制御したりする。すなわち、CPU11は、ROM12又はストレージ14からプログラムを読み出し、RAM13を作業領域としてプログラムを実行する。CPU11は、ROM12又はストレージ14に記憶されているプログラムに従って、上記各構成の制御及び各種の演算処理を行う。本実施形態では、ROM12又はストレージ14には、座席推薦プログラムが格納されている。 The CPU 11 is a central processing unit that executes various programs and controls each part. That is, the CPU 11 reads the programs from the ROM 12 or storage 14, and executes the programs using the RAM 13 as a working area. The CPU 11 controls each of the above components and performs various calculation processes according to the programs stored in the ROM 12 or storage 14. In this embodiment, a seat recommendation program is stored in the ROM 12 or storage 14.
ROM12は、各種プログラム及び各種データを格納する。RAM13は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ14は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)等の記憶装置により構成され、オペレーティングシステムを含む各種プログラム、及び各種データを格納する。 ROM 12 stores various programs and data. RAM 13 temporarily stores programs or data as a working area. Storage 14 is composed of a storage device such as a HDD (Hard Disk Drive) or SSD (Solid State Drive), and stores various programs including an operating system, and various data.
入力部15は、マウス等のポインティングデバイス、及びキーボードを含み、各種の入力を行うために使用される。 The input unit 15 includes a pointing device such as a mouse and a keyboard, and is used to perform various input operations.
表示インタフェース16は、例えば、液晶ディスプレイであり、各種の情報を表示する。表示インタフェース16は、タッチパネル方式を採用して、入力部15として機能してもよい。 The display interface 16 is, for example, a liquid crystal display, and displays various information. The display interface 16 may also function as the input unit 15 by adopting a touch panel system.
通信インタフェース17は、端末等の他の機器と通信するためのインタフェースである。当該通信には、例えば、イーサネット(登録商標)若しくはFDDI等の有線通信の規格、又は、4G、5G、若しくはWi-Fi(登録商標)等の無線通信の規格が用いられる。 The communication interface 17 is an interface for communicating with other devices such as terminals. For this communication, for example, a wired communication standard such as Ethernet (registered trademark) or FDDI, or a wireless communication standard such as 4G, 5G, or Wi-Fi (registered trademark) is used.
座席推薦装置100の各機能構成について説明する。各機能構成は、CPU11がROM12又はストレージ14に記憶された座席推薦プログラムを読み出し、RAM13に展開して実行することにより実現される。執務者関連データ記憶部102には、執務者関連データとして、執務者間の関係性データ、執務者の現在座席データ、及び執務者の希望温度データが格納されている。座席関連データ記憶部104には、座席関連データとして、空間的な温度分布データ、及び座席マスタデータが格納されている。各データの格納態様の例については後述する。 The functional components of the seat recommendation device 100 will be described below. Each functional component is realized by the CPU 11 reading out a seat recommendation program stored in the ROM 12 or storage 14, expanding it in the RAM 13, and executing it. The worker-related data storage unit 102 stores, as worker-related data, relationship data between workers, current seat data of the workers, and desired temperature data of the workers. The seat-related data storage unit 104 stores, as seat-related data, spatial temperature distribution data, and seat master data. Examples of the storage manner of each data will be described later.
起動部110は、所定の日時に推薦座席計算部112の処理を開始させる。推薦座席計算部112は、執務者関連データ記憶部102と座席関連データ記憶部104との各種データを入力とし、計算した推薦座席を推薦データとして推薦データ記憶部114に出力する。表示部116は、所定のデバイスのユーザインタフェースに情報を表示可能とする。表示部116は、推薦データ記憶部114の推薦データを入力とし、推薦データの推薦座席と共に、関連ユーザの座席位置、参考情報(各座席の温度状況)等を表示する。 The start-up unit 110 starts the processing of the recommended seat calculation unit 112 at a specified date and time. The recommended seat calculation unit 112 receives various data from the worker-related data storage unit 102 and the seat-related data storage unit 104 as input, and outputs the calculated recommended seat to the recommended data storage unit 114 as recommended data. The display unit 116 makes it possible to display information on the user interface of a specified device. The display unit 116 receives recommendation data from the recommended data storage unit 114 as input, and displays the seat position of the related user, reference information (temperature conditions of each seat), etc., along with the recommended seat of the recommendation data.
次に、推薦座席計算部112について説明する。推薦座席計算部112は、ユーザ間の近接性及び温度の快適性を両立する推薦データを計算する機能を有する。 Next, we will explain the recommended seat calculation unit 112. The recommended seat calculation unit 112 has a function of calculating recommendation data that balances proximity between users and temperature comfort.
図3は、推薦座席計算部112の機能構成を示すブロック図である。推薦座席計算部112は、データ取得部210と、結合部220と、温度差計算部222と、移動距離計算部224と、推薦候補生成部226と、関係者間の距離計算部228と、最適化計算部230と、出力部232とを含んで構成されている。また、データ取得部210は、(1)関係性データ取得部310と、(2)現在座席データ取得部312と、(3)希望温度データ取得部314と、(4)温度分布データ取得部316と、(5)座席マスタデータ取得部318とを含んで構成されている。推薦座席計算部112内のデータ取得部210では、(1)~(3)の各部により、執務者関連データ記憶部102から執務者間の関係性データ、執務者の現在座席データ、執務者の希望温度データをそれぞれ取得する。一方で、(4)、(5)の各部により、座席関連データ記憶部104から空間的な温度分布データ、座席マスタデータをそれぞれ取得する。 3 is a block diagram showing the functional configuration of the recommended seat calculation unit 112. The recommended seat calculation unit 112 includes a data acquisition unit 210, a combination unit 220, a temperature difference calculation unit 222, a travel distance calculation unit 224, a recommended candidate generation unit 226, a distance calculation unit 228 between related parties, an optimization calculation unit 230, and an output unit 232. The data acquisition unit 210 includes (1) a relationship data acquisition unit 310, (2) a current seat data acquisition unit 312, (3) a desired temperature data acquisition unit 314, (4) a temperature distribution data acquisition unit 316, and (5) a seat master data acquisition unit 318. The data acquisition unit 210 in the recommended seat calculation unit 112 acquires relationship data between workers, current seat data of the workers, and desired temperature data of the workers from the worker-related data storage unit 102 by each of the units (1) to (3). Meanwhile, each of units (4) and (5) acquires spatial temperature distribution data and seat master data from the seat-related data storage unit 104, respectively.
推薦座席計算部112ではデータ取得部210で取得した各種データを用いて処理を行う。取得された執務者の現在座席データ、執務者の希望温度データ、空間的な温度分布データ、及び座席マスタデータは結合部220で結合処理が施される。そして、温度差計算部222、移動距離計算部224、推薦候補生成部226での処理を経て、関係者間の距離計算部228及び最適化計算部230の入力となる。一方で執務者間の関係性データは、関係者間の距離計算部228の入力となり、最適化計算部230と出力部232を経て、推薦データ記憶部114へと推薦結果データが出力される。推薦座席計算部112の各部の処理の詳細についてはフローの説明において後述する。 The recommended seat calculation unit 112 performs processing using various data acquired by the data acquisition unit 210. The acquired worker's current seat data, worker's desired temperature data, spatial temperature distribution data, and seat master data are combined by the combination unit 220. Then, after processing by the temperature difference calculation unit 222, travel distance calculation unit 224, and recommendation candidate generation unit 226, they become input to the related party distance calculation unit 228 and optimization calculation unit 230. On the other hand, relationship data between workers becomes input to the related party distance calculation unit 228, and recommendation result data is output to the recommended data storage unit 114 via the optimization calculation unit 230 and output unit 232. Details of the processing of each unit of the recommended seat calculation unit 112 will be described later in the flow explanation.
図4は、執務者間の関係性データの例である。“執務者ID”毎に、当該IDの執務者が近くで働きたい同僚の“執務者の関係者”の“執務者ID”を記憶する。あるいは近くで働くことを会社側が推奨する同僚の“執務者ID”を記憶する。すなわち各ユーザについての関係者のIDを記憶する。なお、図4に示したような執務者に対応付けられた関係者が本開示の所定の関連ユーザの一例である。また、“執務者ID”毎に“執務者の関係者”を記憶した場合を例としているが、これに限定されるものではなく、一部の執務者について関係者を対応付けるようにしてもよい。 Figure 4 is an example of relationship data between workers. For each "worker ID", the "worker ID" of the "related parties of the worker" who is a colleague that the worker with that ID would like to work nearby is stored. Alternatively, the "worker ID" of a colleague that the company recommends working nearby is stored. In other words, the IDs of related parties for each user are stored. Note that related parties associated with workers as shown in Figure 4 are an example of the specified related users of this disclosure. Also, while an example is shown where "related parties of the worker" are stored for each "worker ID", this is not limited to this, and related parties may be associated with some workers.
図5は、執務者の希望温度データの例である。“執務者ID”毎に、執務者が快適となる嗜好温度を記憶する。当該温度は、執務者の入力により取得したものでも、座る頻度が高い座席位置における平均的な温度をもとに、嗜好する温度を推定して取得しても良い。希望温度データが本開示の「ユーザの嗜好温度」の一例である。 FIG. 5 is an example of the desired temperature data of an office worker. The preferred temperature at which the office worker feels comfortable is stored for each "office worker ID." The temperature may be obtained by input from the office worker, or the preferred temperature may be estimated based on the average temperature at the seating position where the office worker sits most frequently. The desired temperature data is an example of the "user preferred temperature" of this disclosure.
図6は、執務者の現在位置データの例である。“執務者ID”毎に、一定間隔で取得した執務者のオフィス内の位置を記憶する。位置は例のようにオフィス内をメッシュ化して“メッシュID”として記録する方法があるが、2次元の座標情報として記録するなど、記録の方法は問わない。 Figure 6 is an example of data on the current location of an office worker. The location of the office worker is obtained at regular intervals for each "office worker ID" and stored. As in the example, the office can be meshed and the location recorded as a "mesh ID," but the method of recording is not important, and the location can be recorded as two-dimensional coordinate information, for example.
図7は、座席マスタデータの例である。オフィス内をメッシュ化して記録する場合には、例のように“メッシュID”毎に、当該メッシュの位置を表すX座標、Y座標、及び当該メッシュ内の収容可能人数を記録する。X座標やY座標には、特定の基準となるメッシュを設け、当該メッシュからX軸やY軸にそれぞれ何メッシュ分移動した位置にあるかという相対的な座標情報を記録しても良い。収容可能人数は当該メッシュ内で着席あるいは作業可能な人数を記録する。 Figure 7 is an example of seat master data. When dividing the inside of an office into meshes and recording them, the X and Y coordinates that represent the position of that mesh, and the number of people that can be accommodated within that mesh are recorded for each "mesh ID" as in the example. For the X and Y coordinates, a specific reference mesh may be set, and relative coordinate information indicating how many meshes away from that mesh on the X and Y axes, respectively, may be recorded. The number of people that can be accommodated is recorded as the number of people that can sit or work within that mesh.
図8は、空間的な温度分布データの例である。オフィス内をメッシュ化して記録する場合には、例のように“メッシュID”毎に、当該メッシュで測定、予測、又は推定された温度を“再現温度”として記録する。湿度分布データが、本開示の「座席を含む空間の空間的な温度分布」の一例である。 FIG. 8 is an example of spatial temperature distribution data. When recording data by dividing the inside of an office into meshes, the temperature measured, predicted, or estimated in that mesh is recorded as the "reproduced temperature" for each "mesh ID" as in the example. Humidity distribution data is an example of the "spatial temperature distribution in a space including seats" disclosed in this disclosure.
図9は、推薦候補データの例である。“執務者ID”と“メッシュID”毎に、当該メッシュにおける収容可能人数、当該メッシュの再現温度と当該執務者の嗜好温度との温度差、当該メッシュから執務者の現在いるメッシュまでの移動距離を記録する。移動距離は、ユークリッド距離やマンハッタン距離など尺度は問わない。 Figure 9 is an example of recommendation candidate data. For each "worker ID" and "mesh ID", the number of people that can be accommodated in that mesh, the temperature difference between the reproduced temperature of that mesh and the preferred temperature of that worker, and the travel distance from that mesh to the mesh where the worker is currently located are recorded. Any scale can be used for the travel distance, such as Euclidean distance or Manhattan distance.
図10は、関係者間の距離計算結果データの例であり、関係者間の距離計算部228の出力である。“執務者ID”と当該“執務者ID”に紐づく図4の“執務者の関係者”、及び前者の推薦候補である“メッシュID”、後者の推薦候補である“メッシュID”の全ての組み合わせを記録する。また、組み合わせ毎に前者と後者のメッシュ間の距離を“関係者間の距離”として記録する。 Figure 10 shows an example of distance calculation result data between related parties, which is output from the related parties distance calculation unit 228. All combinations of "office worker ID", "related parties of the office worker" in Figure 4 linked to the "office worker ID", "mesh ID" that is a recommendation candidate for the former, and "mesh ID" that is a recommendation candidate for the latter are recorded. In addition, for each combination, the distance between the former and latter meshes is recorded as the "distance between related parties".
図11は、計算された推薦データの例である。推薦データには、“執務者ID”毎に推薦する“メッシュID”を記録する。 Figure 11 is an example of calculated recommendation data. The recommendation data records the "mesh ID" recommended for each "worker ID."
次に、座席推薦装置100の作用について説明する。図12は、座席推薦装置100による座席推薦処理の流れを示すフローチャートである。CPU11がROM12又はストレージ14から座席推薦プログラムを読み出して、RAM13に展開して実行することにより、座席推薦処理が行なわれる。 Next, the operation of the seat recommendation device 100 will be described. FIG. 12 is a flowchart showing the flow of the seat recommendation process by the seat recommendation device 100. The seat recommendation process is performed by the CPU 11 reading out a seat recommendation program from the ROM 12 or storage 14, expanding it into the RAM 13, and executing it.
ステップS100において、CPU11は、起動部110として、推薦座席計算部112の処理を起動する。 In step S100, the CPU 11, functioning as the startup unit 110, starts the processing of the recommended seat calculation unit 112.
ステップS102において、CPU11は、推薦座席計算部112としての処理を実行し、処理結果として得られた推薦データを推薦データ記憶部114に出力する。 In step S102, the CPU 11 executes processing as the recommended seat calculation unit 112, and outputs the recommendation data obtained as a result of the processing to the recommendation data storage unit 114.
ステップS104において、CPU11は、推薦データ記憶部114の推薦データを表示部116に入力し、所定の表示態様によって表示させる。 In step S104, the CPU 11 inputs the recommendation data from the recommendation data storage unit 114 to the display unit 116 and displays it in a predetermined display format.
ステップS102の推薦座席計算処理について説明する。図13は、推薦座席計算部112の推薦座席計算処理の詳細を示すフローチャートである。 The recommended seat calculation process in step S102 will now be described. Figure 13 is a flowchart showing the details of the recommended seat calculation process in the recommended seat calculation unit 112.
ステップS200において、CPU11は、データ取得部210として、執務者関連データ記憶部102及び座席関連データ記憶部104から各種データを取得する。 In step S200, the CPU 11, as the data acquisition unit 210, acquires various data from the worker-related data storage unit 102 and the seat-related data storage unit 104.
ステップS202において、CPU11は、統合部212として、執務者の現在座席データ、執務者の希望温度データ、空間的な温度分布データ、及び座席マスタデータを結合する。 In step S202, the CPU 11, as the integration unit 212, combines the worker's current seat data, the worker's desired temperature data, the spatial temperature distribution data, and the seat master data.
ステップS204において、CPU11は、温度差計算部222として、執務者及びメッシュの組み合わせについて、メッシュの再現温度と当該執務者の嗜好温度との温度差を計算する。 In step S204, the CPU 11, as the temperature difference calculation unit 222, calculates the temperature difference between the reproduced temperature of the mesh and the preferred temperature of the worker for the combination of the worker and the mesh.
ステップS206において、CPU11は、移動距離計算部224として、当該組み合わせのメッシュから執務者の現在いるメッシュまでの移動距離を計算する。 In step S206, the CPU 11, as the movement distance calculation unit 224, calculates the movement distance from the mesh of the combination to the mesh in which the worker is currently located.
ステップS208において、CPU11は、推薦候補生成部226として、組み合わせについて、計算した温度差や移動距離が予め設定した閾値を下回るレコードを抽出し、推薦候補データを生成する。 In step S208, the CPU 11, as the recommendation candidate generation unit 226, extracts records for combinations in which the calculated temperature difference or travel distance falls below a preset threshold, and generates recommendation candidate data.
ステップS210において、CPU11は、関係者間の距離計算部228として、推薦候補データと執務者間の関係性データを結合し、関係者間の距離計算結果データを生成する。 In step S210, the CPU 11, as the related party distance calculation unit 228, combines the recommended candidate data with the relationship data between the workers and generates related party distance calculation result data.
ステップS212において、CPU11は、最適化計算部230として、推薦候補データと関係者間の距離計算結果データとに基づいて、組み合わせについて最適化計算を行い、推薦座席を示す推薦データを得る。本ステップの最適化計算では目的関数により最適化を行うが、詳細な態様については後述する。 In step S212, the CPU 11, as the optimization calculation unit 230, performs optimization calculations for combinations based on the recommendation candidate data and the distance calculation result data between related parties, and obtains recommendation data that indicates recommended seats. In the optimization calculations in this step, optimization is performed using an objective function, and the details of the mode will be described later.
ステップS214において、CPU11は、出力部232として、計算して得られた推薦データを推薦データ記憶部114に出力し、記憶させる。 In step S214, the CPU 11, acting as the output unit 232, outputs the calculated recommendation data to the recommendation data storage unit 114 for storage.
ステップS212の最適化計算で用いる目的関数及び制約の各式について説明する。目的関数及び制約により、推薦データについてユーザ間の近接性及び温度の快適性を両立する。最適化計算では、ユーザの座席配置の良さを表す目的関数、及びメッシュのような着席状況を把握する単位毎に定められる収容可能人数の制約を用いて、推薦座席の組合せ最適化計算を行う。座席配置の良さを表す目的関数としては、例えばユーザ間の近接性を指標として用いる。ユーザ間の近接性に関わる目的関数及びメッシュ毎の収容可能人数に関わる制約において、ユーザが何れの座席に着席しているかを示す確率を用いることで、同僚間の近接性や着席人数などを期待値として扱い、推薦通りに着席しないユーザを考慮した座席配置を求めることができる。 The objective function and constraint equations used in the optimization calculation in step S212 are explained below. The objective function and constraints are used to balance the proximity between users and thermal comfort for the recommended data. In the optimization calculation, a combinatorial optimization calculation for recommended seats is performed using an objective function that represents the good seating arrangement for users, and a constraint on the capacity that is set for each unit that grasps the seating situation, such as a mesh. As an objective function that represents the goodness of the seating arrangement, for example, the proximity between users is used as an index. By using the probability that indicates which seat a user is sitting in in the objective function related to the proximity between users and the constraint related to the capacity of each mesh, it is possible to treat the proximity between colleagues and the number of people seated as expected values and obtain a seating arrangement that takes into account users who do not sit as recommended.
最適化計算では、以下(1-1)式の目的関数を用いる。当該目的関数は、ユーザ毎に計算する関係者1人あたりの期待移動距離の総和を最小化する。なお、期待移動距離に限らず、関係者間の近接性を表現した目的関数であればよく、表現方法によっては最大化を行う目的関数を設定してもよい。
・・・(1-1)
In the optimization calculation, the objective function of the following formula (1-1) is used. The objective function minimizes the sum of the expected travel distance per related person calculated for each user. Note that the objective function is not limited to the expected travel distance, and any objective function that expresses the proximity between related people may be used, and an objective function that maximizes the expected travel distance may be set depending on the expression method.
... (1-1)
式の各符号を説明する。i:ユーザ番号、j:メッシュ番号、k:同僚のユーザ番号、l:同僚のメッシュ番号である。i及びkのユーザ番号は“執務者ID”を番号化したものである。メッシュ番号は“メッシュID”を番号化したものである。また、Xi,j:推薦実施有無の変数(Xi,j={0,1})、Ci:ユーザiが一緒に働きたい同僚のユーザ番号の集合(Ci≠φ)、Pij:ユーザiがメッシュjにいる確率、di,j:メッシュj,l間の移動距離、である。また、Pijは以下の(1-2)の補助式で表され、推薦実施有無により場合分けした確率を表す。Pijが、本開示の「ユーザが何れの座席に着席しているかを表す確率」の一例である。
・・・(1-2)
Each symbol in the formula will be explained. i: user number, j: mesh number, k: colleague user number, l: colleague mesh number. The user numbers of i and k are numbers of "worker ID". The mesh number is a number of "mesh ID". In addition, X i,j : a variable of recommendation implementation or not (X i,j = {0, 1}), C i : a set of user numbers of colleagues that user i wants to work with (C i ≠ φ), P ij : the probability that user i is in mesh j, and d i,j : the travel distance between mesh j and l. In addition, P ij is expressed by the auxiliary formula (1-2) below, and represents the probability divided into cases depending on the presence or absence of recommendation implementation. P ij is an example of "the probability indicating which seat the user is sitting in" in the present disclosure.
... (1-2)
制約について、以下(2-1)~(2-4)の式に示す第1制約~第4制約について説明する。以下(2-1)式に示す制約は、各メッシュにいる期待人数が当該メッシュの収容人数以内であることを表す(第1制約)。なお、Nj:メッシュjの収容可能人数である。
・・・(2-1)
Constraints are explained below in the first to fourth constraints shown in the formulas (2-1) to (2-4). The constraint shown in the formula (2-1) below indicates that the expected number of people in each mesh must be within the capacity of that mesh (first constraint). Note that N j is the capacity of mesh j.
... (2-1)
以下(2-2)式に示す制約は、推薦先における希望温度と再現温度の平均絶対誤差が所定の範囲内であることを表す(第2制約)。なお、|ei,j|はユーザiの希望温度とメッシュjの再現温度の乖離の絶対値である。αは温度の平均絶対誤差の閾値であり、上述のステップS208に記載の温度差に関する閾値と異なる値をとってもかまわない。
・・・(2-2)
The constraint shown in the following formula (2-2) indicates that the mean absolute error between the desired temperature and the reproduced temperature at the recommended destination is within a predetermined range (second constraint). Note that |e i,j | is the absolute value of the deviation between the desired temperature of user i and the reproduced temperature of mesh j. α is the threshold of the mean absolute error of temperature, and may be a value different from the threshold related to the temperature difference described in step S208 above.
... (2-2)
以下(2-3)式に示す制約は、ユーザの現在位置から推薦先までの平均移動距離が一定範囲内であることを表す(第3制約)。θは移動距離の閾値である。j′は現在いるメッシュ番号である。
・・・(2-3)
以下(2-4)式に示す制約はユーザあたりの推薦先を1つとする制約である。推薦実施有無の変数(Xi,j)において、各ユーザiについて推薦される一意のメッシュjが割り当てられる制約である。
・・・(2-4)
The constraint shown in the following formula (2-3) indicates that the average movement distance from the user's current position to the recommended destination is within a certain range (third constraint). θ is the movement distance threshold. j' is the current mesh number.
... (2-3)
The constraint shown in the following formula (2-4) is a constraint that the number of recommended destinations per user is one. In the variable (X i,j ) indicating whether or not a recommendation is implemented, a unique mesh j is assigned to each user i.
... (2-4)
以上が最適化計算に用いる各式の説明である。例えば、(第2制約)は、温度の快適性に関する制約であり、(第3制約)はユーザの現在位置からの移動距離に関する制約であり、(第4制約)はユーザ毎の推薦先を一意とする制約である。これらの制約のもと、同僚間の近接性に関する目的関数が最小化されるような推薦座席の組合せを計算することで、執務者の温度の快適性を一定水準に保ちつつ、同僚間の近接性が高まるような座席配置の組み合わせを求めることが可能となる。計算方法は、分枝カット法、シミュレーテッドアニーリング、タブーサーチ、遺伝的アルゴリズム、粒子群最適化、貪欲法、及び量子アニーリングなどがあるが、これらに限られるものではない。なお、ユーザ間の近接性を目的関数、温度の快適性を制約で扱う場合を例に説明したが、これに限定されるものではない。例えば、ユーザ間の近接性を制約、温度の快適性を目的関数で扱うようにしてよいし、ユーザ間の近接性及び温度の快適性ともに目的関数で扱うようにしてもよい。 The above is an explanation of each formula used in the optimization calculation. For example, (the second constraint) is a constraint on thermal comfort, (the third constraint) is a constraint on the travel distance from the user's current location, and (the fourth constraint) is a constraint that the recommended destination for each user is unique. By calculating a combination of recommended seats that minimizes the objective function related to the proximity between colleagues under these constraints, it is possible to obtain a combination of seating arrangements that increases the proximity between colleagues while maintaining the thermal comfort of the workers at a certain level. Calculation methods include, but are not limited to, the branch-and-cut method, simulated annealing, tabu search, genetic algorithm, particle swarm optimization, greedy search, and quantum annealing. Note that, although an example has been described in which the proximity between users is treated as an objective function and the thermal comfort is treated as a constraint, the present invention is not limited to this. For example, the proximity between users may be treated as a constraint and the thermal comfort as an objective function, or both the proximity between users and the thermal comfort may be treated as objective functions.
図14は、推薦データの表示結果の例である。例に示す推薦データは、スマートフォンやタブレット端末に表示する場合を想定している。表示情報としては、例えば、(d1)おすすめの推薦座席の位置を、オフィス内のレイアウト画像の上に表示する。追加情報として、(d2)オフィス内におけるユーザの現在位置や、(d3)関係者の位置(関連ユーザの座席位置)を表示しても良い。また、参考情報として、(d4)ユーザの嗜好温度、(d5)関連ユーザの検索/設定、等を表示しても良い。また、(d4)の例では、ユーザのいる空間の温度変更の依頼をできるインタフェースとしている。また、参考情報として、レイアウト画像上に、各座席の温度状況をヒートマップで表現する等してもよい。関係者の位置が「関連ユーザの座席位置」の一例である。参考情報の一例である。 FIG. 14 is an example of the display result of recommendation data. The recommendation data shown in the example is assumed to be displayed on a smartphone or tablet terminal. As the display information, for example, (d1) the position of the recommended seat is displayed on the layout image of the office. As additional information, (d2) the current position of the user in the office and (d3) the position of related parties (seat positions of related users) may be displayed. As reference information, (d4) the user's preferred temperature, (d5) search/setting of related users, etc. may be displayed. In the example of (d4), an interface is provided that allows a request to change the temperature of the space the user is in. As reference information, the temperature situation of each seat may be expressed in a heat map on the layout image. The positions of related parties are an example of "seat positions of related users". This is an example of reference information.
以上説明したように本実施形態の座席推薦装置100によれば、ユーザ間の近接性と温度の快適性を両立する座席の推薦を可能とする。 As described above, the seat recommendation device 100 of this embodiment makes it possible to recommend seats that balance proximity between users and thermal comfort.
なお、上記実施形態でCPUがソフトウェア(プログラム)を読み込んで実行した座席推薦処理を、CPU以外の各種のプロセッサが実行してもよい。この場合のプロセッサとしては、FPGA(Field-Programmable Gate Array)等の製造後に回路構成を変更可能なPLD(Programmable Logic Device)、GPU(Graphics Processing Unit)、及びASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が例示される。また、座席推薦処理を、これらの各種のプロセッサのうちの1つで実行してもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGA、及びCPUとFPGAとの組み合わせ等)で実行してもよい。また、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。 In the above embodiment, the seat recommendation process executed by the CPU by reading the software (program) may be executed by various processors other than the CPU. Examples of processors in this case include a PLD (Programmable Logic Device) whose circuit configuration can be changed after manufacture, such as an FPGA (Field-Programmable Gate Array), a GPU (Graphics Processing Unit), and a dedicated electric circuit, such as an ASIC (Application Specific Integrated Circuit), which is a processor having a circuit configuration designed specifically to execute a specific process. The seat recommendation process may be executed by one of these various processors, or by a combination of two or more processors of the same or different types (for example, multiple FPGAs, and a combination of a CPU and an FPGA, etc.). More specifically, the hardware structure of these various processors is an electrical circuit that combines circuit elements such as semiconductor devices.
また、上記実施形態では、座席推薦プログラムがストレージ14に予め記憶(インストール)されている態様を説明したが、これに限定されない。プログラムは、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の非一時的(non-transitory)記憶媒体に記憶された形態で提供されてもよい。また、プログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。 In the above embodiment, the seat recommendation program is pre-stored (installed) in the storage 14, but the present invention is not limited to this. The program may be provided in a form stored in a non-transitory storage medium such as a CD-ROM (Compact Disk Read Only Memory), a DVD-ROM (Digital Versatile Disk Read Only Memory), or a USB (Universal Serial Bus) memory. The program may also be downloaded from an external device via a network.
以上の実施形態に関し、更に以下の付記を開示する。 The following notes are further provided with respect to the above embodiment.
(付記項1)
メモリと、
前記メモリに接続された少なくとも1つのプロセッサと、
を含み、
前記プロセッサは、
ユーザ関連データと、座席関連データとを入力とし、
前記ユーザ関連データには、ユーザに関する所定の関連ユーザが少なくとも定められ、前記座席関連データには、ユーザ及び座席に関する温度情報が定められており、
ユーザ間の近接性及び温度の快適性を両立する推薦座席を示す推薦データを出力する、
ように構成されている座席推薦装置。
(Additional Note 1)
Memory,
at least one processor coupled to the memory;
Including,
The processor,
User-related data and seat-related data are input;
The user-related data defines at least a predetermined related user related to the user, and the seat-related data defines temperature information related to the user and the seat,
Output recommendation data indicating recommended seats that satisfy both proximity between users and thermal comfort.
The seat recommendation device is configured as follows.
(付記項2)
座席推薦処理を実行するようにコンピュータによって実行可能なプログラムを記憶した非一時的記憶媒体であって、
ユーザ関連データと、座席関連データとを入力とし、
前記ユーザ関連データには、ユーザに関する所定の関連ユーザが少なくとも定められ、前記座席関連データには、ユーザ及び座席に関する温度情報が定められており、
ユーザ間の近接性及び温度の快適性を両立する推薦座席を示す推薦データを出力する、
非一時的記憶媒体。
(Additional Note 2)
A non-transitory storage medium storing a program executable by a computer to execute a seat recommendation process,
User-related data and seat-related data are input;
The user-related data defines at least a predetermined related user related to the user, and the seat-related data defines temperature information related to the user and the seat,
Output recommendation data indicating recommended seats that satisfy both proximity between users and thermal comfort.
Non-transitory storage media.
Claims (7)
前記ユーザ関連データには、ユーザに関する所定の関連ユーザが少なくとも定められ、前記座席関連データには、ユーザ及び座席に関する温度情報が定められており、
ユーザ間の近接性及び温度の快適性を両立する推薦座席を示す推薦データを出力する推薦座席計算部、
を含む座席推薦装置。 User-related data and seat-related data are input;
The user-related data defines at least a predetermined related user related to the user, and the seat-related data defines temperature information related to the user and the seat,
a recommended seat calculation unit that outputs recommendation data indicating a recommended seat that satisfies both proximity between users and thermal comfort;
A seat recommendation device comprising:
前記表示部は、前記推薦座席と共に、前記関連ユーザの座席位置、及び各座席の温度状況を含む参考情報の少なくともひとつを表示する、請求項1に記載の座席推薦装置。 Further comprising a display unit capable of displaying information on a user interface of a predetermined terminal,
The seat recommendation device according to claim 1 , wherein the display unit displays at least one of reference information including a seat position of the related user and a temperature status of each seat together with the recommended seat.
前記ユーザ関連データには、ユーザに関する所定の関連ユーザが少なくとも定められ、前記座席関連データには、ユーザ及び座席に関する温度情報が定められており、
ユーザ間の近接性及び温度の快適性を両立する推薦座席を示す推薦データを出力する、
処理をコンピュータが実行する座席推薦方法。 User-related data and seat-related data are input;
The user-related data defines at least a predetermined related user related to the user, and the seat-related data defines temperature information related to the user and the seat,
Output recommendation data indicating recommended seats that satisfy both proximity between users and thermal comfort.
A seat recommendation method in which processing is performed by a computer.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/036120 WO2025074519A1 (en) | 2023-10-03 | 2023-10-03 | Seat recommendation device, seat recommendation method, and seat recommendation program |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/036120 WO2025074519A1 (en) | 2023-10-03 | 2023-10-03 | Seat recommendation device, seat recommendation method, and seat recommendation program |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025074519A1 true WO2025074519A1 (en) | 2025-04-10 |
Family
ID=95284332
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2023/036120 Pending WO2025074519A1 (en) | 2023-10-03 | 2023-10-03 | Seat recommendation device, seat recommendation method, and seat recommendation program |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025074519A1 (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170293866A1 (en) * | 2016-04-12 | 2017-10-12 | International Business Machines Corporation | Intelligent Seat Management |
| US20200234201A1 (en) * | 2017-07-20 | 2020-07-23 | Carrier Corporation | Environmental preference based seat exchange platform |
| JP2021157408A (en) * | 2020-03-26 | 2021-10-07 | ダイキン工業株式会社 | Area recommendation device |
| JP2022079348A (en) * | 2020-11-16 | 2022-05-26 | 株式会社竹中工務店 | Information processing equipment and information processing programs |
-
2023
- 2023-10-03 WO PCT/JP2023/036120 patent/WO2025074519A1/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170293866A1 (en) * | 2016-04-12 | 2017-10-12 | International Business Machines Corporation | Intelligent Seat Management |
| US20200234201A1 (en) * | 2017-07-20 | 2020-07-23 | Carrier Corporation | Environmental preference based seat exchange platform |
| JP2021157408A (en) * | 2020-03-26 | 2021-10-07 | ダイキン工業株式会社 | Area recommendation device |
| JP2022079348A (en) * | 2020-11-16 | 2022-05-26 | 株式会社竹中工務店 | Information processing equipment and information processing programs |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112148932B (en) | Visualization method, system, computer device and storage medium | |
| JP6825016B2 (en) | Non-identification method and device of personal information | |
| CN104793668B (en) | Environmental parameter setting aiding device and method | |
| Fu et al. | User preference learning with multiple information fusion for restaurant recommendation | |
| Gao et al. | Geo-temporal distribution of 1,688 Chinese healthcare workers infected with COVID-19 in severe conditions—A secondary data analysis | |
| Schnoerr et al. | Cox process representation and inference for stochastic reaction–diffusion processes | |
| Zhou et al. | A deterministic robust optimisation method under interval uncertainty based on the reverse model | |
| Wan et al. | XMRF: an R package to fit Markov Networks to high-throughput genetics data | |
| Hillson et al. | Stratified sampling of neighborhood sections for population estimation: A case study of Bo City, Sierra Leone | |
| Li et al. | A random forest classification algorithm based personal thermal sensation model for personalized conditioning system in office buildings | |
| WO2021066151A1 (en) | Manufacturing order placement support device, method, and program | |
| JP2018147101A (en) | Estimation program, estimation method and estimation device | |
| CN116305780A (en) | Method, device and computer equipment for evaluating cab posture comfort | |
| CN101196949A (en) | Computer-aided design device and method for editing graphic data | |
| WO2025074519A1 (en) | Seat recommendation device, seat recommendation method, and seat recommendation program | |
| Dette et al. | A comparative study of monotone nonparametric kernel estimates | |
| Favennec et al. | The adjoint method coupled with the modal identification method for nonlinear model reduction | |
| JP2021056811A (en) | Design support device and computer program | |
| JP2018190091A (en) | Search program, search device, and search method | |
| Jiang et al. | Concave 1-norm group selection | |
| Mansfeld et al. | Review and assessment of excavator operations using RAMSIS ergonomic engineering software | |
| Cosentino Lagomarsino et al. | Universal features in the genome-level evolution of protein domains | |
| WO2021131425A1 (en) | Information processing device, information processing system, and information processing method | |
| Word et al. | Interior-point methods for estimating seasonal parameters in discrete-time infectious disease models | |
| JP6983275B2 (en) | Information processing equipment, information processing methods and programs related to abnormality detection and abnormality degree visualization |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23954731 Country of ref document: EP Kind code of ref document: A1 |