WO2025070479A1 - Endoscope system, method for operating same, and program for operating endoscope system - Google Patents
Endoscope system, method for operating same, and program for operating endoscope system Download PDFInfo
- Publication number
- WO2025070479A1 WO2025070479A1 PCT/JP2024/034153 JP2024034153W WO2025070479A1 WO 2025070479 A1 WO2025070479 A1 WO 2025070479A1 JP 2024034153 W JP2024034153 W JP 2024034153W WO 2025070479 A1 WO2025070479 A1 WO 2025070479A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- interest
- region
- reliability
- image
- oxygen saturation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/045—Control thereof
Definitions
- This disclosure relates to an endoscope system with an oxygen saturation imaging function, an operating method thereof, and an operating program for the endoscope system.
- oxygen saturation imaging has become known in the medical field, where endoscopes are used. Oxygen saturation imaging is performed by illuminating the object to be observed with illumination light including a wavelength band whose absorption coefficient changes with changes in the oxygen saturation of hemoglobin in the blood, and capturing an image. Then, based on the image obtained by capturing the image, an oxygen saturation image is displayed on a display, with the color tone changing according to the oxygen saturation level.
- the object is photographed using multiple illumination lights with different wavelength bands. Then, a predetermined calculation value is calculated using pixel values of the obtained image, and oxygen saturation is calculated using an oxygen saturation calculation table that shows the correlation that associates the calculation value with oxygen saturation, and in some cases, a corrected oxygen saturation calculation table is used to calculate the oxygen saturation. It may be difficult to accurately correct the oxygen saturation calculation table due to disturbances such as halation in the image obtained by the endoscope (hereinafter referred to as the endoscopic image), specific dyes (yellow dyes, etc.), and bleeding, and an endoscopic system that issues a warning when correction of oxygen saturation, etc., fails is known (Patent Document 1). Also known is an endoscopic system that can perform appropriate correction operations even if disturbances such as bleeding are present in the object of observation (Patent Document 2), and an endoscopic system that can calculate specific dye concentrations from multiple image signals and perform appropriate correction operations (Patent Document 3).
- the accuracy of the correction may decrease. To solve this, it was necessary to change the field of view of the observation subject or to correct for specific pigments (yellow pigment, etc.) before calculating the oxygen saturation.
- the present disclosure aims to provide an endoscope system, an operating method and an operating program thereof that can perform highly accurate corrections when multiple areas are present in an image during data correction processing related to oxygen saturation calculations performed by a user.
- the endoscope system disclosed herein is an endoscope system that calculates the oxygen saturation of an object to be observed using data used to calculate the oxygen saturation, and is equipped with a processor, which acquires an image of the object to be observed, recognizes multiple parts of the object to be observed in the acquired image, sets a region of interest in the image for each recognized part, calculates a region of interest reliability for each region of interest based on the pixels contained in the region of interest, performs a comparison process that compares the region of interest reliability with a preset region of interest reliability threshold, displays a high reliability region of interest on a display for each region of interest based on the comparison result obtained by the comparison process, and corrects the data based on the high reliability region of interest selected by the user.
- the processor preferably calculates the region of interest reliability based on the pixel reliability calculated for each pixel contained in the region of interest and the number of pixels contained in the region of interest.
- the processor preferably calculates the pixel reliability modified according to the distance from the image center in the image.
- the processor preferably calculates the confidence level of the region of interest by weighting the region of interest according to its area or its distance from the image center in the image.
- the processor preferably changes the display mode of the high confidence region of interest in response to a user instruction.
- the processor be able to change the display format of the high confidence region of interest in response to a user instruction.
- the processor displays on the display a name representing the part of the body that appears in the high-confidence region of interest, superimposed on the high-confidence region of interest.
- the processor preferably accepts a user selection of multiple high confidence regions of interest and corrects the data based on the multiple high confidence regions of interest.
- the processor preferably performs a determination process in which, in the comparison result, if the region of interest reliability is equal to or greater than a region of interest reliability threshold, the region of interest is determined to be a high reliability region of interest, and, if the region of interest reliability is lower than the region of interest reliability threshold, the region of interest is determined to be a low reliability region of interest in which data correction is not possible.
- the processor If the user selects a low-confidence region of interest, it is preferable for the processor to perform control to notify the user of operational guidance for changing the low-confidence region of interest to a high-confidence region of interest.
- the processor preferably controls the display to superimpose areas where the pixel reliability is equal to or greater than a pixel reliability threshold on the high reliability region of interest.
- the processor preferably calculates the oxygen saturation of the image based on the corrected data.
- the operation method of the endoscope system disclosed herein is an operation method of an endoscope system that calculates the oxygen saturation of an observation target using data used for calculating the oxygen saturation, and includes a processor, which recognizes multiple parts shown in an acquired image, sets a region of interest in the image for each recognized part, calculates a region of interest reliability for each region of interest based on the pixels contained in the region of interest, performs a comparison process that compares the region of interest reliability with a preset region of interest reliability threshold, and performs a determination process for each region of interest based on the comparison result obtained by the comparison process to determine whether or not it is a high-reliability region of interest for which data can be corrected, displays the high-reliability region of interest on a display, and performs data correction based on the high-reliability region of interest selected by the user.
- the operating program of the endoscope system disclosed herein is an operating program of an endoscope system that calculates the oxygen saturation of an observation target using data used for calculating the oxygen saturation, and provides a computer with the following functions: acquiring an image of the observation target; recognizing multiple parts from the acquired image; setting a region of interest for each recognized part in the image; calculating a region of interest reliability for each region of interest based on the pixels contained in the region of interest; performing a comparison process that compares the region of interest reliability with a preset region of interest reliability threshold; performing a determination process that determines, based on the comparison result obtained by the comparison process, whether each region of interest is a high-reliability region of interest for which data can be corrected; displaying the high-reliability region of interest on a display; and correcting data based on the high-reliability region of interest selected by the user.
- FIG. 1 is a schematic diagram of an endoscope system for laparoscopy.
- FIG. 4A is an explanatory diagram illustrating the display state of the display in normal mode
- FIG. 4B is an explanatory diagram illustrating the display state of the extended display in normal mode.
- 13A is an explanatory diagram illustrating the display mode of the display in the oxygen saturation mode
- FIG. 13B is an explanatory diagram illustrating the display mode of the extended display in the oxygen saturation mode
- 13 is an explanatory diagram illustrating the display mode of the extended display when the mode is switched to the oxygen saturation mode.
- FIG. FIG. 13A is an image diagram of an extended display showing an oxygen saturation image on the serosal side
- FIG. 13B is an image diagram of an extended display showing an oxygen saturation image inside the digestive tract.
- FIG. 2 is a block diagram showing the functions of the endoscope system.
- FIG. 1 is a graph showing an emission spectrum of white light.
- 13A is a graph showing the emission spectrum of the first illumination light
- FIG. 13B is a graph showing the emission spectrum of the second illumination light
- FIG. 13C is a graph showing the emission spectrum of the green light G.
- 4 is a graph showing the spectral sensitivity of an image sensor.
- 11 is a table showing illumination and acquired image signals in a normal mode.
- 11 is a table showing illumination and acquired image signals in an oxygen saturation mode or a correction mode.
- 11A and 11B are explanatory diagrams for explaining light emission control and display control in the oxygen saturation mode or the correction mode.
- 1 is a graph showing the reflectance spectrum of hemoglobin that varies depending on blood concentration.
- 1 is a graph showing the reflection spectrum of hemoglobin and the absorption spectrum of a yellow dye, which vary depending on the concentration of the yellow dye.
- 13 is a table showing the oxygen saturation dependency, blood concentration dependency, and brightness dependency of a B1 image signal, a G2 image signal, and an R2 image signal in a case where there is no influence of a yellow pigment.
- 1 is a graph showing contour lines representing oxygen saturation.
- 13 is a table showing the oxygen saturation dependency, blood concentration dependency, and brightness dependency of the X-axis value indicating the signal ratio ln(R2/G2) and the Y-axis value indicating the signal ratio ln(B1/G2).
- FIG. 13 is a table showing the oxygen saturation dependency, blood concentration dependency, yellow pigment dependency, and brightness dependency of a B1 image signal, a G2 image signal, and an R2 image signal when there is an influence of a yellow pigment.
- FIG. 13 is an explanatory diagram showing the oxygen saturation with and without a yellow dye when the observation subject has the same oxygen saturation.
- 13 is a table showing the oxygen saturation dependency, blood concentration dependency, yellow pigment dependency, and brightness dependency of a B1 image signal, a B3 image signal, a G2 image signal, a G3 image signal, an R2 image signal, and a B2 image signal when influenced by yellow pigment.
- 1 is a graph showing a surface representing oxygen saturation as a function of yellow dye.
- FIG. 2 is a block diagram showing the functions of the extended processor device;
- FIG. 2 is a block diagram showing functions of an image processing unit.
- FIG. 11 is an explanatory diagram for explaining a method of calculating oxygen saturation.
- FIG. 11 is an explanatory diagram showing a method for generating a contour line corresponding to a specific dye concentration.
- FIG. 4 is a block diagram showing the functions of a table correction unit.
- FIG. 1A is an explanatory diagram showing a plurality of parts in a correction image
- FIG. 1B is an explanatory diagram for explaining recognition of a plurality of parts in a correction image.
- FIG. 11 is an explanatory diagram for explaining setting of a region of interest in a correction image.
- 1 is a graph showing the relationship between pixel value and pixel reliability.
- 13 is a graph showing pixel reliability due to bleeding or the like.
- 13 is a graph showing pixel reliability due to fat or the like.
- FIG. 11 is an explanatory diagram for explaining a comparison between a region of interest reliability of a region of interest and a threshold for region of interest reliability;
- FIG. 13 is an explanatory diagram for explaining determination of a high-confidence region of interest and a low-confidence region of interest.
- FIG. 13 is a pictorial diagram of an augmented display showing a high confidence region of interest representation.
- 10 is a flowchart showing a flow of a series of processes in a correction mode.
- 11 is a graph showing correction data for correcting pixel reliability according to the distance from the image center.
- 11 is a graph showing data for weighting calculation of region reliability based on the area of a region of interest.
- FIG. 11 is a graph showing data for weighting calculation of region reliability according to the distance of a region of interest from the center of an image.
- FIG. 13 is an explanatory diagram illustrating an example of a display mode of a high-confidence region of interest.
- FIG. 13 is an explanatory diagram illustrating an example of a display mode of a high-confidence region of interest.
- FIG. 13 is an explanatory diagram illustrating display of multiple high confidence regions of interest.
- FIG. 13 is a block diagram showing the functions of a high confidence region of interest display unit.
- (A) is an explanatory diagram showing a high-reliability region of interest and a low-reliability region of interest in a correction image
- (B) is an explanatory diagram showing a display in which operation guidance is provided when a low-reliability region of interest is selected.
- 13A is an explanatory diagram showing a low-confidence region of interest in a correction image
- FIG. 13B is an explanatory diagram explaining a display in which operation guidance is notified when there is no high-confidence region of interest
- 1A is an explanatory diagram showing a plurality of high-confidence regions of interest and low-confidence regions of interest in a correction image
- FIG. 1B is an explanatory diagram showing pixels above a region-of-interest threshold superimposed thereon;
- the endoscope system 10 includes an endoscope 12, a light source device 13, a processor device 14, a display 15, a processor-side interface 16, an extended processor device 17, and an extended display 18.
- the endoscope 12 is optically or electrically connected to the light source device 13, and is electrically connected to the processor device 14.
- the extended processor device 17 is electrically connected to the light source device 13, the processor device 14, and the extended display 18.
- Each of these connections is not limited to being wired, and may be wireless. Also, they may be connected via a network.
- the endoscope system 10 is a rigid endoscope in which the endoscope 12 is inserted into a body cavity of a subject to perform surgical treatment, and images of the organs in the body cavity are captured from the serous membrane side.
- the endoscope system 10 is particularly suitable for use as a laparoscope.
- the endoscope 12 may also be a flexible endoscope that is inserted through the nose, mouth, or anus of the subject.
- the endoscope 12 When the endoscope 12 is a laparoscope, as shown in FIG. 1, the endoscope 12 includes an insertion section 12a that is inserted into the abdominal cavity of the subject, and an operation section 12b that is provided at the base end of the insertion section 12a.
- An optical system and an image sensor are built into the tip section 12e, which is the tip part of the insertion section 12a.
- the optical system includes an illumination optical system described below for irradiating the subject with illumination light, and an image pickup optical system described below for capturing an image of the subject (see FIG. 6).
- the image sensor generates an image signal by forming an image on an image plane of the reflected light from the observation object that has passed through the image pickup optical system.
- the generated image signal is output to the processor device 14.
- the operation section 12b includes a mode switching switch 12c and a zoom operation switch 12d for zoom operation, etc.
- the mode switching switch 12c is used to switch between observation modes described below.
- the light source device 13 generates illumination light.
- the processor device 14 performs system control of the endoscope system 10, and further performs control such as generating endoscopic images by performing image processing on image signals transmitted from the endoscope 12.
- the display 15 displays medical images transmitted from the processor device 14.
- the processor-side interface 16 has a keyboard, mouse, microphone, tablet, foot switch, touch pen, etc., and accepts input operations such as function settings.
- the endoscope system 10 has three observation modes: normal mode, oxygen saturation mode, and tissue color correction mode (hereafter referred to as correction mode), and these three modes can be switched automatically or by the user operating the mode switching switch 12c.
- normal mode a white light image NP1 with natural colors obtained by capturing an image of the observation target using white light as illumination light is displayed on the display 15, while nothing is displayed on the extended display 18.
- the oxygen saturation of the object of observation is calculated, and an oxygen saturation image OP that visualizes the calculated oxygen saturation is displayed on the extended display 18.
- an oxygen saturation image OP that visualizes the calculated oxygen saturation is displayed on the extended display 18.
- a white light equivalent image NP2 that has fewer short wavelength components than the white light image NP1 is displayed on the display 15.
- corrections are made to the oxygen saturation calculation based on pixels within a high-confidence region of interest, which will be described later.
- Correction of the oxygen saturation calculation is performed in a correction mode, which will be described later, and the oxygen saturation calculation table is corrected using an area determined to be capable of being corrected (details of the area will be described later).
- the mode may automatically switch to the correction mode once, and then switch to the oxygen saturation mode after completing the correction process in the correction mode.
- the mode switches to the oxygen saturation mode, and an oxygen saturation image OP is displayed on the extended display 18. For example, when switching to the oxygen saturation mode, as shown in FIG. 4, a message MS stating "Please perform correction process" is displayed on the extended display 18, and it is preferable that the oxygen saturation calculation is performed after the correction process.
- the endoscope system 10 displays a serosal side oxygen saturation image, which is an image of the oxygen saturation state on the serosal side, on the extended display 18 in the oxygen saturation mode, as shown in FIG. 5(A).
- a serosal side oxygen saturation image which is an image of the oxygen saturation state on the serosal side
- an internal digestive tract oxygen saturation image which is an image of the oxygen saturation state inside the digestive tract
- FIG. 5(B) It is preferable to use an image in which the saturation is adjusted for the white light equivalent image NP2 as the serosal side oxygen saturation image.
- It is preferable to adjust the saturation in the correction mode regardless of whether it is a mucosa, a serosal membrane, a flexible scope, or a rigid scope.
- a rigid scope type is used as the endoscope 12.
- the processor device 14 is electrically connected to the display 15 and the processor-side interface 16.
- the processor device 14 receives image signals from the endoscope 12 and performs various processes based on the image signals.
- the display 15 outputs and displays images or information of the observation target processed by the processor device 14.
- the processor-side interface 16 has a keyboard, mouse, touchpad, microphone, foot pedal, etc., and has the function of accepting input operations such as function settings.
- the light source device 13 includes a light source section 20 and a light source processor 21 that controls the light source section 20.
- the light source section 20 has, for example, a plurality of semiconductor light sources, which are turned on or off, and when turned on, the amount of light emitted by each semiconductor light source is controlled to emit illumination light that illuminates the object of observation.
- the light source section 20 has five colored LEDs: a V-LED (Violet Light Emitting Diode) 20a, a BS-LED (Blue Short-wavelength Light Emitting Diode) 20b, a BL-LED (Blue Long-wavelength Light Emitting Diode) 20c, a G-LED (Green Light Emitting Diode) 20d, and an R-LED (Red Light Emitting Diode) 20e.
- V-LED Volt Light Emitting Diode
- BS-LED Blue Short-wavelength Light Emitting Diode
- BL-LED Blue Long-wavelength Light Emitting Diode
- G-LED Green Light Emitting Diode
- R-LED Red Light Emitting Diode
- the V-LED 20a emits violet light V of 410 nm ⁇ 10 nm.
- the BS-LED 20b emits second blue light BS of 450 nm ⁇ 10 nm.
- the BL-LED 20c emits first blue light BL of 470 nm ⁇ 10 nm.
- the G-LED 20d emits green light G in the green band.
- the central wavelength of the green light G is preferably 540 nm.
- the R-LED 20e emits red light R in the red band.
- the central wavelength of the red light R is preferably 620 nm.
- the central wavelength and peak wavelength of each of the LEDs 20a to 20e may be the same or different.
- Both BL-LED 20c and BS-LED 20b are blue light sources that emit blue light.
- the central wavelength and wavelength band of the blue light emitted by BL-LED 20c (hereafter referred to as BL light) and the blue light emitted by BS-LED 20b (hereafter referred to as BS light) are different.
- the central wavelength and wavelength band of BL light are the central wavelength and wavelength band in the blue wavelength band where the difference in the absorption coefficient between oxygenated hemoglobin and reduced hemoglobin is approximately maximized.
- G-LED 20d is a green light source that emits broadband green light (hereafter referred to as G light) with a central wavelength of 540 nm.
- R-LED 20e is a red light source that emits broadband red light (hereafter referred to as R light).
- the light source processor 21 independently controls the on/off and light emission amount of each of the LEDs 20a-20e by inputting control signals to each of the LEDs 20a-20e.
- the control of the on/off and other aspects of the LEDs in the light source processor 21 differs depending on the mode, and will be described in detail later.
- the light emitted by each of the LEDs 20a to 20e is incident on the light guide 24 via the optical path coupling section 23, which is composed of a mirror, lens, etc.
- the light guide 24 is built into the endoscope 12 and the universal cord (a cord that connects the endoscope 12 with the light source device 13 and the processor device 14).
- the light guide 24 propagates the light from the optical path coupling section 23 to the tip of the endoscope 12.
- the endoscope 12 is provided with an illumination optical system 30 and an imaging optical system 31.
- the illumination optical system 30 has an illumination lens 32, and the illumination light propagated by the light guide 24 is irradiated onto the observation object via the illumination lens 32.
- the imaging optical system 31 has an objective lens 35 and an imaging sensor 36. Light from the observation object irradiated with the illumination light is incident on the imaging sensor 36 via the objective lens 35. As a result, an image of the observation object is formed on the imaging sensor 36.
- the imaging sensor 36 is a color imaging sensor that captures an image of an object being observed while being illuminated with illumination light.
- Each pixel of the imaging sensor 36 is provided with either a B pixel (blue pixel) having a B (blue) color filter, a G pixel (green pixel) having a G (green) color filter, or an R pixel (red pixel) having an R (red) color filter. Therefore, when an object being observed is photographed with the imaging sensor 36, three types of images are obtained: a B image, a G image, and an R image.
- the imaging sensor 36 be a color imaging sensor with a Bayer array in which the ratio of the number of B pixels, G pixels, and R pixels is 1:2:1.
- a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor can be used.
- a complementary color image sensor equipped with complementary color filters of C (cyan), M (magenta), Y (yellow) and G (green) may be used.
- image signals of four colors CMYG are output, and by converting the four color image signals of CMYG into three color image signals of RGB by complementary color-primary color conversion, image signals of each of the RGB colors similar to those of the image sensor 36 can be obtained.
- the imaging sensor 36 is driven and controlled by an imaging processor 37.
- the control of each mode in the imaging processor 37 will be described later.
- a CDS/AGC circuit 40 Correlated Double Sampling/Automatic Gain Control
- CDS correlated double sampling
- AGC automatic gain control
- the image signal that passes through the CDS/AGC circuit 40 is converted into a digital image signal by an A/D converter 41 (Analog/Digital).
- the digital image signal after A/D conversion is input to the processor device 14.
- the processor unit 14 comprises a DSP (Digital Signal Processor) 45, an image processing unit 50, an image communication unit 51, a display control unit 52, and a central control unit 53.
- the processor unit 14 has programs relating to various processes built into a program memory (not shown).
- the functions of the DSP 45, image processing unit 50, image communication unit 51, display control unit 52, and central control unit 53 are realized by the central control unit 53, which is made up of a processor, executing the programs in the program memory.
- the DSP 45 performs various signal processing such as defect correction, offset processing, gain correction, demosaic processing, linear matrix processing, white balance processing, gamma conversion processing, YC conversion processing, and noise reduction processing on the image signal received from the endoscope 12.
- defect correction processing the signal of a defective pixel of the imaging sensor 36 is corrected.
- offset processing dark current components are removed from the image signal that has been subjected to defect correction processing, and an accurate zero level is set.
- gain correction processing the signal level of each image signal is adjusted by multiplying the image signal of each color after offset processing by a specific gain. The image signal of each color after gain correction processing is subjected to demosaic processing and linear matrix processing to improve color reproducibility.
- the DSP 45 performs noise reduction processing using, for example, the moving average method or the median filter method.
- the image processing unit 50 performs various image processing on the image signal from the DSP 45.
- Image processing includes color conversion processing such as 3x3 matrix processing, tone conversion processing, and table processing for three-dimensional oxygen saturation calculation, color enhancement processing, and structural enhancement processing such as spatial frequency enhancement.
- the image processing unit 50 performs image processing according to the mode. In the normal mode, the image processing unit 50 performs image processing for the normal mode to generate a white light image NP1. In the oxygen saturation mode, the image processing unit 50 generates a white light equivalent image NP2 and transmits the image signal from the DSP 45 to the extension processor unit 17 via the image communication unit 51.
- the extension processor unit 17 generates an oxygen saturation image OP based on the image signal of the transmitted endoscopic image.
- the display control unit 52 performs display control to display the white light image NP1 or image information such as the oxygen saturation image OP from the image processing unit 50, and other information, on the display 15 or the extended display 18. In accordance with the display control, the white light image NP1 or the white light equivalent image NP2 is displayed on the display 15.
- the extended processor device 17 receives image signals from the processor device 14 and performs various image processing.
- the extended processor device 17 functions as an image processing device. Image processing in the extended processor device 17 is performed in a correction mode and an oxygen saturation mode, and is processing for generating an oxygen saturation image.
- the generated oxygen saturation image OP is displayed on the extended display 18.
- the extended processor device 17 calculates the region of interest reliability for each part in accordance with user operation, and performs correction processing related to the calculation of oxygen saturation for each part based on the calculated region of interest reliability.
- the extended processor device 17 calculates the oxygen saturation and generates an oxygen saturation image OP that visualizes the calculated oxygen saturation.
- the generated oxygen saturation image OP is displayed on the extended display 18.
- the extended processor device 17 also performs a correction process related to the calculation of the oxygen saturation. More specifically, in the correction process, a specific dye concentration is calculated in accordance with user operations, and the oxygen saturation calculation table is corrected based on the calculated specific dye concentration.
- a specific dye concentration is calculated in accordance with user operations, and the oxygen saturation calculation table is corrected based on the calculated specific dye concentration.
- An example of the specific dye is a yellow dye. Therefore, the specific dye concentration is the concentration of the yellow dye in the image information contained in the endoscopic image. Details of the oxygen saturation mode and the correction mode performed by the extended processor device 17 will be described later.
- the V-LED 20a, BS-LED 20b, G-LED 20d, and R-LED 20e are simultaneously turned on to emit white light 55, as shown in FIG. 7, that includes purple light V with a central wavelength of 410 nm, second blue light BS with a central wavelength of 450 nm, broadband green light G in the green band, and red light R with a central wavelength of 620 nm.
- the graph in the figure shows a schematic representation of the light intensity of each wavelength band.
- the oxygen saturation mode and the correction mode three frames of light emission with different light emission patterns are repeated.
- the BL-LED 20c, the G-LED 20d, and the R-LED 20e are simultaneously turned on to emit a first broadband illumination light 56 including a first blue light BL with a central wavelength of 470 nm, a broadband green light G in the green band, and a red light R with a central wavelength of 620 nm.
- the second frame as shown in FIG.
- the BS-LED 20b, the G-LED 20d, and the R-LED 20e are simultaneously turned on to emit a second blue light BS with a central wavelength of 450 nm, a broadband green light G in the green band, and a red light R with a central wavelength of 620 nm.
- the G-LED 20d is turned on to emit a broadband green light G in the green band as a third illumination light 58.
- the first and second frames are the frames required to obtain the image signal necessary to calculate the oxygen saturation, so light may be emitted only in the first and second frames.
- the imaging processor 37 controls the imaging sensor 36 to capture an image of an object being observed that is illuminated with white light 55 consisting of purple light V, second blue light BS, green light G, and red light R, for each frame. This causes the B pixels of the imaging sensor 36 to output Bc image signals, the G pixels to output Gc image signals, and the R pixels to output Rc image signals.
- the imaging processor 37 In the oxygen saturation mode, when the first illumination light 56 including the first blue light BL, green light G, and red light R is illuminated on the observation object in the first frame, the imaging processor 37 outputs a B1 image signal from the B pixel of the imaging sensor 36, a G1 image signal from the G pixel, and an R1 image signal from the R pixel as the first illumination light image.
- the imaging processor 37 When the second illumination light 57 including the second blue light BS, green light G, and red light R is illuminated on the observation object in the second frame, the imaging processor 37 outputs a B2 image signal from the B pixel of the imaging sensor 36, a G2 image signal from the G pixel, and an R2 image signal from the R pixel as the second illumination light image.
- the imaging processor 37 In the third frame, when the third illumination light 58, which is green light G, is illuminated on the object to be observed, the imaging processor 37 outputs a B3 image signal from the B pixel of the imaging sensor 36, a G3 image signal from the G pixel, and an R3 image signal from the R pixel as the third illumination light image.
- the third illumination light 58 which is green light G
- the imaging processor 37 outputs a B3 image signal from the B pixel of the imaging sensor 36, a G3 image signal from the G pixel, and an R3 image signal from the R pixel as the third illumination light image.
- the first illumination light 56 is emitted in the first frame (1stF)
- the second illumination light 57 is emitted in the second frame (2ndF)
- the third illumination light 58 is emitted in the third frame (3rdF)
- a white light equivalent image NP2 obtained based on the emission of the second illumination light 57 in the second frame is displayed on the display 15.
- an oxygen saturation image OP obtained based on the emission of the first to third illumination lights in the first to third frames is displayed on the extended display 18.
- the B1 image signal included in the first illumination light image, and the G2 and R2 image signals included in the second illumination light image are used.
- the B3 and G3 image signals included in the third illumination light image are used to measure the concentration of a specific pigment (such as a yellow pigment) that affects the accuracy of oxygen saturation calculation.
- the B1 image signal includes image information on at least the first blue light BL from the light that has passed through the B color filter BF in the first illumination light 56.
- the B1 image signal (image signal for oxygen saturation) includes image information on the wavelength band B1, whose reflection spectrum changes with changes in the oxygen saturation of blood hemoglobin, as image information on the first blue light BL.
- the wavelength band B1 for example, as shown in FIG. 13, it is preferable to set the wavelength band B1 to a wavelength band of 460 nm to 480 nm, including 470 nm, at which the difference between the reflection spectrum of oxygenated hemoglobin shown by curves 55b and 56b and the reflection spectrum of reduced hemoglobin shown by curves 55a and 56a is maximized.
- curve 55a represents the reflectance spectrum of reduced hemoglobin when blood concentration is high
- curve 55b represents the reflectance spectrum of oxygenated hemoglobin when blood concentration is high
- curve 56a represents the reflectance spectrum of reduced hemoglobin when blood concentration is low
- curve 56b represents the reflectance spectrum of oxygenated hemoglobin when blood concentration is low.
- the G2 image signal contains image information of at least the wavelength band G2 relating to green light G from the light in the first illumination light 56 that has passed through the G color filter GF.
- the wavelength band G2 is preferably a wavelength band of 500 nm to 580 nm, for example, as shown in FIG. 13.
- the R2 image signal contains image information of at least the wavelength band R2 relating to red light R from the light in the first illumination light 56 that has passed through the R color filter RF.
- the wavelength band R2 is preferably a wavelength band of 610 nm to 630 nm, for example, as shown in FIG. 13.
- the image information of wavelength band B1 contains image information on the first blue light BL
- the image information of wavelength band B3 contains image information on the green light G.
- the image information on the first blue light BL and the green light G is image information in which the absorption spectrum of a specific pigment changes due to a change in the concentration of the specific pigment such as a yellow pigment.
- the change in the absorption spectrum of the specific pigment also causes a change in the reflection spectrum of hemoglobin.
- Curve 55a represents the reflection spectrum of reduced hemoglobin when there is no influence of the yellow pigment
- curve 55c represents the reflection spectrum of reduced hemoglobin when there is an influence of the yellow pigment.
- the reflection spectrum of reduced hemoglobin changes depending on the presence or absence of the yellow pigment (the same applies to the reflection spectrum of oxygenated hemoglobin). Therefore, the reflection spectrum of wavelength band B1 and wavelength band B3 changes due to a change in the oxygen saturation of blood hemoglobin under the influence of a specific pigment such as a yellow pigment.
- the B1 image signal (denoted as “B1"), G2 image signal (denoted as “G2”), and R2 image signal (denoted as “R2”) are each affected by oxygen saturation dependency, blood concentration dependency, or brightness dependency.
- the B1 image signal includes the wavelength band B1 in which the difference between the reflectance spectrum of oxygenated hemoglobin and the reflectance spectrum of reduced hemoglobin is maximized, and therefore has a "large" degree of oxygen saturation dependency that changes with oxygen saturation.
- the B1 image signal has a "medium” degree of blood concentration dependency that changes with blood concentration. Furthermore, the B1 image signal has a "brightness dependency” that changes with the brightness of the object of observation.
- the degrees of dependency are indicated as “large,” “medium,” and “small,” with “large” indicating a high degree of dependency compared to other image signals, “medium” indicating a medium degree of dependency compared to other image signals, and “small” indicating a low degree of dependency compared to other image signals.
- the G2 image signal has a low dependency on oxygen saturation because the magnitude relationship between the reflectance spectrum of oxygenated hemoglobin and the reflectance spectrum of reduced hemoglobin is reversed over a wide wavelength band. Also, the G2 image signal has a high degree of dependency on blood concentration, as shown by curves 55a, 55b and curves 56a, 56b. Also, the G2 image signal has a dependency on brightness, similar to the B1 image signal.
- the R2 image signal does not change as much with oxygen saturation as the B1 image signal, but it is moderately dependent on oxygen saturation. Also, the R2 image signal is slightly dependent on blood concentration, as shown by curves 55a, 55b and curves 56a, 56b. Also, the G2 image signal, like the B1 image signal, is dependent on brightness.
- the G2 image signal is used as the normalized signal to create an oxygen saturation calculation table 73a (see FIG. 16) that is an oxygen saturation calculation table of data for calculating oxygen saturation using a signal ratio ln(B1/G2) obtained by normalizing the B1 image signal with the G2 image signal and a signal ratio ln(R2/G2) obtained by normalizing the R2 image signal with the G2 image signal.
- ln in the signal ratio ln(B1/G2) is the natural logarithm (the same applies to the signal ratio ln(R2/G2)).
- the oxygen saturation is represented by the contour line EL along the Y-axis direction.
- the contour line ELH represents an oxygen saturation level of "100%”
- the contour line ELL represents an oxygen saturation level of "0%”.
- the contour lines are distributed so that the oxygen saturation level gradually decreases from the contour line ELH to the contour line ELL (in FIG. 16, the contour lines of "80%, " “60%, “ “40%, “ and “20%” are distributed).
- the X-axis value (signal ratio ln(R2/G2)) and Y-axis value (signal ratio ln(B1/G2)) are affected by oxygen saturation dependency and blood concentration dependency, respectively.
- the X-axis value and the Y-axis value are normalized by the G2 image signal, and therefore are considered to be "none,” meaning they are not affected.
- the oxygen saturation dependency is considered to be about “medium,” and the blood concentration dependency is considered to be about “large.”
- the oxygen saturation dependency is considered to be about "large,” and the blood concentration dependency is considered to be about "medium.”
- the B1 image signal (denoted as "B1"), G2 image signal (denoted as “G2”), and R2 image signal (denoted as “R2”) are each affected by oxygen saturation dependency, blood concentration dependency, yellow dye dependency, or brightness dependency.
- the B1 image signal contains image information in which the absorption spectrum of a specific dye such as a yellow dye changes depending on the concentration of the specific dye, and therefore has a "large" degree of yellow dye dependency, which changes depending on the yellow dye.
- the G2 image signal is less affected by the yellow dye compared to the B1 image signal, and therefore has a "small to medium” degree of yellow dye dependency.
- the R1 image signal is less affected by the yellow dye, and therefore has a "small” degree of yellow dye dependency.
- the signal ratio ln(R2/G2) is represented on the X-axis and the signal ratio ln(B1/G2) is represented on the Y-axis in two-dimensional coordinates
- the oxygen saturation StO2A when there is no yellow dye and the oxygen saturation StO2B when there is yellow dye are represented differently, as shown in Figure 19.
- the oxygen saturation StO2B appears to be shifted higher than the oxygen saturation StO2A due to the presence of the yellow dye in the image signal.
- the B3 image signal and G3 image signal included in the third illumination light image are used when correcting the oxygen saturation calculation table.
- the B3 image signal includes image information related to the light transmitted through the B color filter BF in the third illumination light 58.
- the B3 image signal (specific pigment image signal) includes image information of the wavelength band B3 that has sensitivity to specific pigments other than hemoglobin, such as yellow pigment (see FIG. 14). Although the B3 image signal is not as sensitive to the specific pigment as the B1 image signal, it has a certain degree of sensitivity to the specific pigment. Therefore, as shown in FIG.
- the B1 image signal has a "large” dependency on yellow pigment
- the B3 image signal has a “medium” dependency on yellow pigment.
- the B3 image signal has a "small” dependency on oxygen saturation, a “large” dependency on blood concentration, and a “present” dependency on brightness.
- the G3 image signal also does not have as much sensitivity to the specific dye as the B3 image signal, but does include image signals in the wavelength band G3 that have some degree of sensitivity to the specific dye (see Figure 14). Therefore, the yellow dye dependency of the G3 image signal is "small to medium”.
- the G3 image signal has "small” oxygen saturation dependency, "large” blood concentration dependency, and "some” brightness dependency.
- the B2 image signal also has "large” yellow dye dependency, so the B2 image signal may be used instead of the B3 image signal when correcting the oxygen saturation calculation table.
- the B2 image signal has "small” oxygen saturation dependency, "large” blood concentration dependency, and "some” brightness dependency.
- the curved surfaces CV0 to CV4 representing oxygen saturation are distributed in the Z-axis direction according to the pigment concentration of the yellow pigment.
- the curved surface CV0 represents the oxygen saturation when the yellow pigment has a concentration of "0" (no effect of the yellow pigment).
- the curved surfaces CV1 to CV4 represent the oxygen saturation when the yellow pigment has concentrations of "1" to "4", respectively.
- the higher the concentration number the higher the concentration of the yellow pigment. Note that, as shown in the curved surfaces CV0 to CV4, the higher the concentration of the yellow pigment, the lower the Z-axis value changes.
- the areas AR0 to AR4 representing the oxygen saturation state are distributed at different positions according to the concentration of the yellow dye, respectively.
- Areas AR0 to AR4 represent the distribution of oxygen saturation when the concentration of the yellow dye is "0" to "4", respectively.
- a contour line EL representing oxygen saturation for each of these areas AR0 to AR4 it is possible to obtain the oxygen saturation corresponding to the concentration of the yellow dye (see Figure 16). Note that, as shown in areas AR0 to AR4, the higher the concentration of the yellow dye, the higher the value on the X axis and the lower the value on the Y axis.
- the X-axis value (signal ratio ln(R2/G2)), Y-axis value (signal ratio ln(B1/G2)), and Z-axis value (signal ratio ln(B3/G3)) are subject to yellow pigment dependency.
- the X-axis value (denoted as "X") has a yellow pigment dependency of "small to medium”
- the Y-axis value (denoted as "Y") has a yellow pigment dependency of "large”
- the Z-axis value (denoted as "Z”) has a yellow pigment dependency of "medium”.
- the Z-axis value has an oxygen saturation dependency of "small to medium” and a blood concentration dependency of "small to medium”.
- the Z-axis value has no brightness dependency because it is normalized by the G3 image signal.
- correcting the data used to calculate oxygen saturation in the correction mode specifically means selecting one of the curved surfaces CV0 to CV4 (see FIG. 21) that represent oxygen saturation.
- the extended processor device 17 includes an image acquisition unit 60a and an image processing unit 60b.
- the image acquisition unit 60a receives an image signal transmitted from the processor device 14 via the image communication unit 51.
- the image processing unit 60b performs various image processing operations to generate an oxygen saturation image, etc.
- the image processing unit 60b includes an oxygen saturation image generating unit 61, a specific dye concentration calculating unit 62, a table correction unit 63, and a display control unit 64.
- programs related to various processes are incorporated in a program memory (not shown).
- the functions of the oxygen saturation image generating unit 61, the specific dye concentration calculating unit 62, the table correction unit 63, and the display control unit 64 are realized by a central control unit (not shown) formed by a processor executing the programs in the program memory.
- the oxygen saturation image generating unit 61 includes a base image generating unit 70, an operation value calculating unit 71, an oxygen saturation calculating unit 72, an oxygen saturation calculation table 73, and a color adjusting unit 74.
- the base image generating unit 70 generates a base image based on an image signal from the processor device 14.
- the base image is used as the base of the oxygen saturation image OP. It is preferable that the base image is an image that can grasp morphological information such as the shape of the observed object.
- the base image is composed of a B2 image signal, a G2 image signal, and an R2 image signal.
- the base image may be a narrowband light image in which blood vessels or structures (ductal structures) are highlighted by narrowband light or the like.
- the oxygen saturation calculation unit 72 refers to the oxygen saturation calculation table 73 and calculates the oxygen saturation based on the calculated value.
- the oxygen saturation calculation table 73 stores the correlation between the signal ratios B1/G2 and R2/G2, which are one of the calculated values, and the oxygen saturation.
- the correlation is expressed in two-dimensional coordinates with the signal ratio ln(B1/G2) on the vertical axis and the signal ratio ln(R2/G2) on the horizontal axis
- the state of oxygen saturation is expressed by the contour line EL extending in the horizontal axis direction, and when the oxygen saturation differs, the contour line EL is distributed at different positions in the vertical axis direction (oxygen saturation calculation table 73a (see FIG. 16)).
- the oxygen saturation calculation table 73 includes the oxygen saturation calculation table 73a expressed in two-dimensional coordinates.
- the oxygen saturation calculation unit 72 refers to the oxygen saturation calculation table 73 and calculates the oxygen saturation corresponding to the signal ratios B1/G2 and R2/G2 for each pixel.
- the oxygen saturation calculation table 73a refers to the oxygen saturation calculation table 73a, and when the signal ratios of a specific pixel are ln(B1 * /G2 * ) and ln(R2 * /G2 * ), the oxygen saturation corresponding to the signal ratios ln(B1 * /G2 * ) and ln(R2 * /G2 * ) is "40%". Therefore, the oxygen saturation calculation unit 72 calculates the oxygen saturation of the specific pixel to be "40%".
- the color tone adjustment unit 74 generates an oxygen saturation image by performing composite color processing that changes the color tone of the base image using the oxygen saturation calculated by the oxygen saturation calculation unit 72.
- the color tone adjustment unit 74 maintains the color tone of areas in the base image where the oxygen saturation exceeds a threshold, and changes the color tone of areas where the oxygen saturation is below the threshold to a color tone that changes depending on the oxygen saturation. This maintains the color tone of normal areas where the oxygen saturation exceeds the threshold, while only changing the color tone of abnormal areas where the oxygen saturation is below the threshold and becomes low, making it possible to grasp the oxygen status of abnormal areas under conditions where morphological information of normal areas can be observed.
- the color tone adjustment unit 74 may generate an oxygen saturation image by pseudo-color processing in which a color is assigned according to the oxygen saturation level, regardless of the level of oxygen saturation.
- pseudo-color processing the base image is not necessary.
- the specific dye concentration calculation unit 62 includes a specific dye concentration calculation table 75.
- the specific dye concentration calculation unit 62 calculates the specific dye concentration based on a specific dye image signal including image information of a wavelength band that has sensitivity to a specific dye other than hemoglobin in blood among the dyes included in the observation subject. Examples of specific dyes include yellow dyes such as bilirubin. It is preferable that the specific dye image signal includes at least a B3 image signal.
- the specific dye concentration calculation unit 62 calculates the signal ratios ln(B1/G2), ln(G2/R2), and ln(B3/G3).
- the specific dye concentration calculation unit 62 then refers to the specific dye concentration calculation table 75 to calculate the specific dye concentrations corresponding to the signal ratios ln(B1/G2), ln(G2/R2), and ln(B3/G3).
- the specific dye concentration calculation table 75 stores the correlation between the signal ratios ln(B1/G2), ln(G2/R2), and ln(B3/G3) and the specific dye concentrations. For example, if the ranges of the signal ratios ln(B1/G2), ln(G2/R2), and ln(B3/G3) are divided into five stages, the specific dye concentrations "0" to "4" are associated with the signal ratios ln(B1/G2), ln(G2/R2), and ln(B3/G3) in the five stages, and are stored in the specific dye concentration calculation table 75. Note that it is preferable to logarithmize (ln) the signal ratio B3/G3.
- the table correction unit 63 performs table correction processing to correct the oxygen saturation calculation table 73 based on the specific dye concentration as a correction processing performed in the correction mode.
- the table correction processing the correlation between the signal ratios B1/G2 and R2/G2 stored in the oxygen saturation calculation table 73 and the oxygen saturation is corrected.
- the table correction unit 63 when the specific dye concentration is "2", the table correction unit 63 generates a contour line EL representing the state of oxygen saturation in the area AR2 corresponding to the specific dye concentration of "2" among the areas AR0 to AR4 determined according to the specific dye concentration, as shown in FIG. 27.
- the table correction unit 63 generates a corrected oxygen saturation calculation table 73b by correcting the oxygen saturation calculation table 73 so that it becomes the generated contour line EL.
- the table correction unit 63 includes a recognition unit 81, a region setting unit 82, a reliability calculation unit 83, a comparison processing unit 84, a correction feasibility determination unit 85, a high reliability region of interest display unit 86, a region selection unit 87, and a correction unit 88.
- the recognition unit 81 recognizes multiple parts that appear in the acquired first illumination light image or second illumination light image. Note that multiple parts refer to multiple types of parts, and multiple types of parts may be areas that appear to be different parts of the endoscopic image due to different colors, textures, etc., and do not necessarily have to be anatomically different parts. The recognition unit 81 recognizes multiple types of parts as different parts.
- the recognition method may use known technology, and for example, the method described in WO 2021/149552 may be adopted. That is, it is preferable to recognize the part or tissue from the endoscopic image using a trained model such as a neural network (a model trained using an image set consisting of images of a living body). For example, it is preferable to use a CNN (Convolutional Neural Network) as the neural network to perform multi-class classification (each class corresponds to a different part or tissue) and recognize the part or tissue. Note that the CNN may include a pooling layer in the intermediate layer.
- a trained model such as a neural network (a model trained using an image set consisting of images of a living body).
- a CNN Convolutional Neural Network
- the CNN may include a pooling layer in the intermediate layer.
- JP 2011-218090 A As another recognition method, for example, the method described in JP 2011-218090 A can be adopted. That is, in order to more accurately recognize multiple parts of the object of observation that appear in the first illumination light image obtained by the image acquisition unit 60a, it is preferable to use a second image in which the illumination light is different from that of the first image, and to use high-confidence areas and low-confidence areas in the first image and second image that are set for determining the type of subject.
- the region setting unit 82 sets a region of interest for each recognized part. As shown in FIG. 30, a region of interest is set for the transverse colon 91 and peritoneum 92 recognized by the recognition unit 81, a first region of interest 91a is set for the recognized transverse colon 91, and a second region of interest 92a is set for the recognized peritoneum 92. Each region of interest is set so that the recognized transverse colon 91 and peritoneum 92 do not overlap. Therefore, the region of interest is set so that one transverse colon 91 or peritoneum 92 is not included in multiple regions of interest. Note that the first region of interest 91a and the second region of interest 92a are actually set in the same manner as the regions shown by different shading in FIG.
- the figure may not show all of the first region of interest 91a or the second region of interest 92a.
- parts for which a region of interest is set include the large intestine, small intestine, liver, stomach, etc.
- the large intestine may also be further divided into the rectum, sigmoid colon, descending colon, transverse colon, ascending colon, cecum, etc.
- the set region of interest is not displayed on the extended display 18 at this stage.
- the reliability calculation unit 83 calculates a region of interest reliability Rc for each of the first region of interest 91a and the second region of interest 92a based on the pixels contained in the first region of interest 91a or the second region of interest 92a.
- the region of interest reliability Rc is the reliability in the region of interest. Note that reliability is an index related to the ability to correct the oxygen saturation calculation table with higher accuracy. The higher the reliability, the more accurately the oxygen saturation calculation table can be corrected, while the lower the reliability, the more likely it is that a problem will occur in the accuracy of the correction of the oxygen saturation calculation table.
- the reliability calculation unit 83 calculates a region of interest reliability Rc for the region of interest and a pixel reliability Pc for the pixels, as described below.
- the reliability calculation unit 83 first calculates pixel reliability Pc in order to calculate the region of interest reliability Rc.
- the pixel reliability Pc is a reliability calculated based on the pixels included in the region of interest.
- the pixel reliability Pc is calculated for each of the first region of interest 91a and the second region of interest 92a using the pixels included in each region of interest and factors that affect the correction of the oxygen saturation calculation table. The factors that affect the correction of the oxygen saturation calculation table will be described later.
- the region of interest reliability Rc is calculated based on the pixel reliability Pc and the number of pixels included in each of the first region of interest 91a and the second region of interest 92a.
- the pixel reliability Pc may also be used for the image to be displayed on the extended display 18 based on conditions set by the user.
- the reliability calculation unit 83 calculates at least one pixel reliability Pc that affects the correction of the oxygen saturation calculation table based on the B1 image signal, G1 image signal, and R1 image signal included in the first illumination light image, or the B2 image signal, G2 image signal, and R2 image signal included in the second illumination light image.
- Factors that affect the correction of the oxygen saturation calculation table include, for example, disturbances and pixel values including bleeding, fat, residue, mucus, or residual liquid. Therefore, it is preferable to calculate the pixel reliability Pc using these factors.
- the pixel reliability Pc is expressed, for example, as a decimal between 0 and 1.
- the reliability calculation unit 83 calculates multiple types of pixel reliability Pc, it is preferable to adopt the minimum pixel reliability Pc among the multiple types of pixel reliability Pc as the pixel reliability Pc of each pixel.
- the pixel value of the G2 image signal can be used for the pixel value that affects the correction accuracy of the oxygen saturation calculation table.
- the pixel reliability Pc of the pixel value of the G2 image signal outside the certain range Rx on the definition line 93 is lower than the pixel reliability Pc of the pixel value of the G2 image signal within the certain range Rx.
- the definition line 93 shows the relationship between the pixel value of the G2 image signal and the pixel reliability Pc related to the correction accuracy of the oxygen saturation calculation table, and is preset from past data. Outside the certain range Rx includes high pixel values such as halation, as well as extremely small pixel values such as dark areas. Outside the certain range Rx, the correction accuracy of the oxygen saturation calculation table is low, and the pixel reliability Pc is accordingly low.
- the G1 image signal may be used instead of the G2 image signal to calculate the pixel reliability Pc.
- the reliability according to the degree of bleeding is set to a fixed value that is a high reliability.
- ln represents the natural logarithm.
- B2/G2 represents the signal ratio between the B2 image signal and the G2 image signal
- R2/G2 represents the signal ratio between the R2 image signal and the G2 image signal.
- pixel reliability Pc is determined according to the distance from the defined line DFY on a two-dimensional plane consisting of the vertical axis ln (B1/G1) and the horizontal axis ln (R1/G1).
- the pixel reliability Pc decreases as the coordinate plotted on the two-dimensional plane based on the B1, G1, and R1 image signals is located further to the lower left.
- the reliability based on the degree of fat is set to a fixed value that is high reliability.
- B1/G1 represents the signal ratio between the B1 and G1 image signals
- R1/G1 represents the signal ratio between the R1 and G1 image signals.
- the reliability calculation unit 83 calculates the region of interest reliability Rc.
- the region of interest reliability Rc may be calculated based on the pixel reliability Pc calculated for each pixel included in each of the first region of interest 91a and the second region of interest 92a set by the region setting unit 82, and the number of pixels N included in the region of interest. That is, in each region of interest, as shown in the following formula (1), the pixel reliability Pc calculated for each of all pixels included in the region of interest is summed up, and the average pixel reliability Pc is calculated using the number of pixels N included in the region of interest, and this is set as the region of interest reliability Rc in this region of interest.
- the region of interest reliability Rc may be calculated by a calculation method other than a simple average using the pixel reliability Pc of each pixel included in the region of interest. For example, it may be calculated by an average such as a weighted average or a trimmed average, or by other statistics such as a median or a mode.
- Region of interest reliability Rc ⁇ (pixel reliability Pc of pixels in region of interest) / number of pixels in region of interest N (1)
- the comparison processing unit 84 compares the region of interest reliability Rc calculated by the reliability calculation unit 83 with a preset region of interest threshold Rth for each of the first region of interest 91a and the second region of interest 92a set by the region setting unit 82.
- the region of interest threshold Rth is a value for evaluating the region of interest reliability Rc, and can be set to a specific value in advance.
- the region of interest threshold Rth is set in advance depending on the observation target, the type of reliability, etc.
- the region of interest reliability Rc of the first region of interest 91a is calculated to be 0.8
- the region of interest reliability Rc of the second region of interest 92a is calculated to be 0.2
- the region of interest threshold Rth is set to be 0.5
- a comparison result 93a is obtained in which the region of interest reliability Rc is equal to or greater than the region of interest threshold Rth
- a comparison result 94b is obtained in which the region of interest reliability Rc is smaller than the region of interest threshold Rth.
- the correction feasibility determination unit 85 determines whether each of the first region of interest 91a and the second region of interest 92a is a high reliability region of interest HRc for which correction of the oxygen saturation calculation table 73 used to calculate oxygen saturation is possible, based on the comparison result obtained by the comparison processing unit 84.
- the first region of interest 91a whose region of interest reliability Rc is equal to or greater than the region of interest threshold value Rth is set as a high reliability region of interest HRc. It is also preferable to set the second region of interest 92a whose region of interest reliability Rc is smaller than the region of interest threshold value Rth as a low reliability region of interest LRc.
- the high-reliability region of interest display unit 86 displays the high-reliability region of interest HRc on the extended display 18 so that the user can visually recognize the high-reliability region of interest HRc.
- it is sufficient to display it on the extended display 18 in a manner that allows the user to recognize the high-reliability region of interest HRc in the correction image 90.
- the high-reliability region of interest HRc may be displayed in a color that allows it to be distinguished from other regions, or displayed with a boundary line that shows the outline of the high-reliability region of interest HRc.
- a boundary line 95 is displayed on the extended display 18 so that the user can visually recognize the high-reliability region of interest HRc set by the correction feasibility determination unit 85.
- the boundary line indicating the second region of interest 92a is not displayed on the extended display 18.
- the region selection unit 87 accepts the user's selection of a high-reliability region of interest HRc. After checking the high-reliability region of interest HRc displayed by the boundary line 95a on the extended display 18, the user can select a high-reliability region of interest HRc for performing correction processing. This allows the user to select a high-reliability region of interest HRc to be used for correction processing according to the site or tissue for which the user wishes to know the oxygen saturation with greater accuracy. Note that, if there are multiple high-reliability regions of interest HRc, the region selection unit 87 may accept the user's selection of multiple high-reliability regions of interest HRc.
- the user can select the high reliability region of interest HRc, for example, by using the processor-side interface 16, the zoom switch 12d, etc.
- the correction unit 88 corrects the oxygen saturation calculation table 73 used to calculate oxygen saturation based on the high reliability region of interest HRc.
- the mode is automatically switched to the oxygen saturation mode.
- the correction unit 88 performs a correction process, which is a correction of the oxygen saturation calculation table 73, in response to a user instruction.
- the correction of the oxygen saturation calculation table 73 is performed using a high reliability region of interest HRc selected by the user in the correction image 90.
- image information of the high reliability region of interest HRc can be used, and image information for each pixel included in the high reliability region of interest HRc can be used.
- the correction of the oxygen saturation calculation table 73 is performed by selecting one of the curved surfaces CV0 to CV4 (see FIG. 21) that represent the oxygen saturation. Therefore, the correction unit 88 uses the concentration of the yellow pigment in the high-reliability region of interest HRc selected by the user as the image information of this high-reliability region of interest HRc, and performs correction of the oxygen saturation calculation table 73 by selecting one of the curved surfaces CV0 to CV4 (see FIG. 21) that represent the oxygen saturation, as described above.
- the oxygen saturation calculation unit 72 calculates the oxygen saturation of the observation subject by using the oxygen saturation calculation table 73 that is not corrected. This makes it possible to calculate a more accurate oxygen saturation without undesirable corrections being made to the oxygen saturation calculation table 73.
- a series of processing steps in the correction mode by the endoscope system 10 will be described with reference to the flowchart of FIG. 37.
- the user operates the mode switching switch 12c to switch to the correction mode (step ST100).
- the correction image 90 is displayed on the extended display 18 (step ST110).
- multiple parts are recognized (step ST120), and a region of interest 82a is set based on the multiple recognized parts (step ST130).
- a region of interest reliability Rc is calculated for each set region of interest (step ST140), and is compared with a region of interest threshold Rth for each region of interest (step ST150).
- the region of interest reliability Rc is equal to or greater than the region of interest threshold Rth.
- the high reliability region of interest HRc is used to perform a correction process for the oxygen saturation calculation table 73 related to the oxygen saturation calculation (step ST180).
- the mode is switched to oxygen saturation mode (step ST190). In the oxygen saturation mode, the oxygen saturation for the endoscopic image is calculated using the corrected oxygen saturation calculation table 73.
- the endoscope system 10 can use the high reliability region of interest HRc in the correction process related to oxygen saturation calculation, so that highly accurate correction can be performed when multiple parts are present in the endoscope image. Furthermore, the endoscope system 10 can perform highly accurate correction related to oxygen saturation calculation through the correction process, so that more accurate oxygen saturation can be obtained regardless of the endoscope image.
- the reliability calculation unit 83 may modify the pixel reliability Pc according to the distance from the center of the correction image 90 of the pixel to be calculated.
- the modified pixel reliability Pc is set as the modified pixel reliability.
- the reliability calculation unit 83 modifies the pixel reliability Pc, it calculates the region of interest reliability Pc using the modified pixel reliability.
- the distance can be calculated as the square root of the sum of the squares of the differences between the x-axis value and the y-axis value between the coordinates of the center of the correction image 90 and the coordinates of each pixel to be calculated, where x is the horizontal axis and y is the vertical axis of the correction image 90.
- the pixels for which pixel reliability Pc is calculated can be divided into two categories, for example "near distance” and "far distance”, depending on the distance from the center of the correction image 90, and the pixel reliability Pc can be corrected by using different correction data for each category.
- the correction data is set in advance by examining the relationship between the pixel reliability Pc of multiple pixels at different positions in the correction image 90 and the oxygen saturation. At this time, the classification criteria for "near distance" pixels and "far distance” pixels are also set at the same time as creating the correction data.
- the correction data indicates the relationship between the original pixel reliability, which is the pixel reliability Pc before correction, and the corrected pixel reliability.
- definition line 96a which is close-distance correction data
- definition line 96b which is long-distance correction data
- the reliability calculation unit 83 may perform weighting according to the area of the region of interest and/or the distance of the region of interest from the center of the correction image 90. Such weighting can be performed using data that associates the area of the region of interest or the distance of the region of interest from the center of the correction image 90 with a weight.
- the area weight Aw for the area of the region of interest may be calculated according to a definition line 97, which is data that associates the area of the region of interest with the area weight Aw.
- the definition line 97 is set in advance by examining the relationship between the area of the region of interest and the oxygen saturation level.
- the distance weight Dw for the distance of the region of interest from the center of the correction image 90 may be calculated according to a definition line 98.
- the definition line 98 is set in advance by examining the relationship between the region of interest distance and oxygen saturation. Note that, when the horizontal axis of the correction image 90 is x and the vertical axis is y, the region of interest distance can be calculated as the square root of the sum of the squares of the differences between the x-axis value and the y-axis value between the coordinates of the center of the correction image 90 and the coordinates of the center or center of gravity of the region of interest.
- the weighting according to the area of the region of interest and/or the distance of the region of interest from the center of the correction image 90 may be done only according to the area of the region of interest, or only according to the distance of the region of interest from the center of the correction image 90, or both.
- the weighted region of interest reliability Rc is calculated according to the following formula (2).
- the region of interest reliability Rc By weighting the region of interest reliability Rc, the area of the region of interest or the distance of the region of interest from the center of the correction image 90, which are factors that affect the calculation of the region of interest reliability Rc, are reflected. This makes it possible to calculate the region of interest reliability Rc more preferably, thereby improving the accuracy of the ultimately obtained oxygen saturation.
- the high-reliability region of interest display unit 86 may change the display mode of the high-reliability region of interest HRc displayed on the extended display 18 in response to a user instruction. As shown in FIG. 41, the boundary line 95 that is displayed on the extended display 18 and indicates the high-reliability region of interest HRc may be erased, and instead, a region of interest display color 99 representing the high-reliability region of interest HRc may be displayed on the extended display 18, thereby allowing the user to recognize the high-reliability region of interest HRc.
- the high reliability region of interest display unit 86 may display a name representing a region shown in the high reliability region of interest HRc on the extended display 18, superimposed on the high reliability region of interest HRc, in response to a user instruction.
- a region name 100 may be displayed on the extended display 18, superimposed on the high reliability region of interest HRc.
- "transverse colon” is displayed as the region name 100.
- the region name may be set to, for example, large intestine, small intestine, liver, stomach, etc.
- the large intestine may be further divided into the rectum, sigmoid colon, descending colon, transverse colon, ascending colon, cecum, etc.
- the effect of further improving the visibility of each of the multiple parts is achieved by superimposing multiple names representing the multiple parts on the high-reliability regions of interest HRc.
- the target part is known in advance, for example, by displaying only the high-reliability region of interest HRc of the previously set target part on the extended display 18, it becomes easy to determine whether the target part is set as a high-reliability region of interest HRc.
- the region selection unit 87 may accept a selection of multiple high-reliability regions of interest HRc by the user and correct data based on the selected multiple high-reliability regions of interest HRc.
- the correction unit 88 performs correction based on the selected first high-reliability region of interest HRc1 and the second high-reliability region of interest HRc2.
- the correction unit 88 can perform correction processing on the region of interest that includes the selected first high-reliability region of interest HRc1 and the second high-reliability region of interest HRc2.
- correction processing can be performed selectively using only the multiple desired regions without changing the field of view.
- the high-reliability region of interest display unit 86 may include a determination notification unit 101, as shown in FIG. 44.
- the determination notification unit 101 performs control to display operation guidance or the like on the display 18 to notify the user so that the region of interest is determined to be a high-reliability region of interest HRc.
- the notification may be by voice or the like.
- the user when the user selects the low-reliability region of interest LRc determined by the correction feasibility determination unit 85 using the processor-side interface 16 or the zoom operation switch 12d, the user may be notified by displaying operation guidance GD1 on the extended display 18 to change the low-reliability region of interest HRc selected by the user to a high-reliability region of interest HRc, as shown in FIG. 45(B).
- the operation guidance GD1 of "Avoid dark areas" is displayed on the extended display 18, the user is notified of the operation guidance GD1 and operates the endoscope 12 to make the observation target appear brighter. This changes the low-reliability region of interest LRc to a high-reliability region of interest HRc, and correction processing, etc. can be carried out.
- the determination notification unit 101 may perform control to notify the user of this fact.
- the notification may be operation guidance to reacquire the correction image 90 so that the target area becomes the high-reliability region of interest HRc.
- the operation guidance GD2 of "Avoid bleeding, residue, fat, etc.” is displayed on the extended display 18, the user can understand the content of the operation guidance GD2 by being notified of this operation guidance GD2 and operate the endoscope 12 to re-acquire the correction image 90 with fewer factors that affect the correction.
- the user is notified of this fact, and when operating the endoscope 12 to reacquire the correction image 90, the user can reduce the burden of reacquiring the correction image 90 by following the instructions in the operation guidance without trial and error.
- the high-reliability region of interest display unit 86 may superimpose and display on the extended display 18 a region including pixels in the high-reliability region of interest HRc whose pixel reliability Pc is equal to or greater than a preset pixel reliability threshold Pth.
- the hardware structure of the processing units that perform various processes are various processors as shown below.
- the various processors include a CPU (Central Processing Unit), which is a general-purpose processor that executes software (programs) and functions as various processing units, a GPU (Graphical Processing Unit), a Programmable Logic Device (PLD), which is a processor whose circuit configuration can be changed after manufacture such as an FPGA (Field Programmable Gate Array), and a dedicated electrical circuit, which is a processor with a circuit configuration designed specifically to perform various processes.
- a CPU Central Processing Unit
- GPU Graphic Processing Unit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- dedicated electrical circuit which is a processor with a circuit configuration designed specifically to perform various processes.
- a single processing unit may be configured with one of these various processors, or may be configured with a combination of two or more processors of the same or different types (for example, multiple FPGAs, a combination of a CPU and an FPGA, or a combination of a CPU and a GPU, etc.). Multiple processing units may also be configured with one processor.
- multiple processing units may also be configured with one processor.
- first there is a form in which one processor is configured with a combination of one or more CPUs and software, as represented by computers such as clients and servers, and this processor functions as multiple processing units.
- a processor is used that realizes the functions of the entire system including multiple processing units with a single IC (Integrated Circuit) chip, as represented by System On Chip (SoC).
- SoC System On Chip
- the hardware structure of these various processors is an electric circuit (circuitry) that combines circuit elements such as semiconductor elements.
- the hardware structure of the memory unit is a storage device such as a hard disc drive (HDD) or solid state drive (SSD).
- An endoscope system that calculates an oxygen saturation level of an observation object using data used for calculating an oxygen saturation level, A processor is provided.
- the processor Acquire an image of the object to be observed, Recognizing a plurality of parts appearing in the acquired image, A region of interest is set for each of the recognized parts in the image; calculating a region of interest confidence for each of the regions of interest based on pixels contained in the region of interest; performing a comparison process of comparing the region of interest reliability with a preset region of interest reliability threshold; performing a determination process for determining whether each of the regions of interest is a high-reliability region of interest for which the data can be corrected based on a comparison result obtained by the comparison process; displaying the high confidence region of interest on a display; An endoscope system that corrects the data based on the high confidence region of interest selected by a user.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Endoscopes (AREA)
Abstract
Description
本開示は、酸素飽和度イメージング機能を有する内視鏡システム、その作動方法、及び内視鏡システムの作動プログラムに関する。 This disclosure relates to an endoscope system with an oxygen saturation imaging function, an operating method thereof, and an operating program for the endoscope system.
近年では、内視鏡を使用する医療分野においては、酸素飽和度イメージングが知られている。酸素飽和度イメージングは、血中ヘモグロビンの酸素飽和度の変化により吸光係数が変化する波長帯域を含む照明光を観察対象に照明し、撮像することによって行われる。そして、撮像により得られた画像に基づいて、酸素飽和度に応じて色調を変化させた酸素飽和度画像をディスプレイに表示する。 In recent years, oxygen saturation imaging has become known in the medical field, where endoscopes are used. Oxygen saturation imaging is performed by illuminating the object to be observed with illumination light including a wavelength band whose absorption coefficient changes with changes in the oxygen saturation of hemoglobin in the blood, and capturing an image. Then, based on the image obtained by capturing the image, an oxygen saturation image is displayed on a display, with the color tone changing according to the oxygen saturation level.
酸素飽和度を算出するためには、波長帯域が異なる複数の照明光によってそれぞれ観察対象を撮影する。そして、得られた画像の画素値を用いて所定の演算値を算出し、演算値を酸素飽和度に対応付ける相関関係を表す酸素飽和度算出用テーブルを用いて、場合により、補正した酸素飽和度算出用テーブルを用いて、酸素飽和度を算出する。酸素飽和度算出用テーブルの補正については、内視鏡により得られた画像(以下、内視鏡画像という)におけるハレーションや、特定色素(黄色色素等)、及び出血等の外乱により、正確に算出することが難しい場合があり、酸素飽和度等の補正が失敗した場合に警告する内視鏡システムが知られている(特許文献1)。また、出血等の外乱が観察対象に存在しても適切に補正操作を行うことができる内視鏡システム(特許文献2)、及び、複数の画像信号から特定色素濃度を算出し適切に補正操作を行うことができる内視鏡システム(特許文献3)が知られている。 In order to calculate oxygen saturation, the object is photographed using multiple illumination lights with different wavelength bands. Then, a predetermined calculation value is calculated using pixel values of the obtained image, and oxygen saturation is calculated using an oxygen saturation calculation table that shows the correlation that associates the calculation value with oxygen saturation, and in some cases, a corrected oxygen saturation calculation table is used to calculate the oxygen saturation. It may be difficult to accurately correct the oxygen saturation calculation table due to disturbances such as halation in the image obtained by the endoscope (hereinafter referred to as the endoscopic image), specific dyes (yellow dyes, etc.), and bleeding, and an endoscopic system that issues a warning when correction of oxygen saturation, etc., fails is known (Patent Document 1). Also known is an endoscopic system that can perform appropriate correction operations even if disturbances such as bleeding are present in the object of observation (Patent Document 2), and an endoscopic system that can calculate specific dye concentrations from multiple image signals and perform appropriate correction operations (Patent Document 3).
観察対象に色素量が異なる複数の部位が存在する場合、補正精度が落ちる場合がある。これを解決するために、観察対象の視野の変更や、特定色素(黄色色素等)に関して補正して酸素飽和度を算出する必要があった。 If the observation subject has multiple regions with different amounts of pigment, the accuracy of the correction may decrease. To solve this, it was necessary to change the field of view of the observation subject or to correct for specific pigments (yellow pigment, etc.) before calculating the oxygen saturation.
本開示は、ユーザによる酸素飽和度算出に関するデータの補正処理において、画像中に複数の部位が存在する場合に、精度高く補正することができる内視鏡システム及びその作動方法並びに作動プログラムを提供することを目的とする。 The present disclosure aims to provide an endoscope system, an operating method and an operating program thereof that can perform highly accurate corrections when multiple areas are present in an image during data correction processing related to oxygen saturation calculations performed by a user.
本開示の内視鏡システムは、酸素飽和度の算出に使用するデータを用いて観察対象の酸素飽和度を算出する内視鏡システムであって、プロセッサを備え、プロセッサは、観察対象を撮影した画像を取得し、取得した画像に写る複数の部位を認識し、画像において、認識した部位ごとに関心領域を設定し、関心領域ごとに、関心領域が含む画素に基づいて関心領域信頼度を算出し、関心領域信頼度と予め設定された関心領域信頼度用閾値とを比較する比較処理を行い、比較処理により得られる比較結果に基づき、関心領域のそれぞれについて、高信頼度関心領域をディスプレイに表示し、ユーザが選択した高信頼度関心領域に基づき前記データの補正を実施する。 The endoscope system disclosed herein is an endoscope system that calculates the oxygen saturation of an object to be observed using data used to calculate the oxygen saturation, and is equipped with a processor, which acquires an image of the object to be observed, recognizes multiple parts of the object to be observed in the acquired image, sets a region of interest in the image for each recognized part, calculates a region of interest reliability for each region of interest based on the pixels contained in the region of interest, performs a comparison process that compares the region of interest reliability with a preset region of interest reliability threshold, displays a high reliability region of interest on a display for each region of interest based on the comparison result obtained by the comparison process, and corrects the data based on the high reliability region of interest selected by the user.
プロセッサは、関心領域が含む画素ごとに算出した画素信頼度と関心領域が含む画素数とに基づいて関心領域信頼度を算出することが好ましい。 The processor preferably calculates the region of interest reliability based on the pixel reliability calculated for each pixel contained in the region of interest and the number of pixels contained in the region of interest.
プロセッサは、画像における画像中心からの距離に応じて修正した前記画素信頼度を算出することが好ましい。 The processor preferably calculates the pixel reliability modified according to the distance from the image center in the image.
プロセッサは、関心領域の面積または画像における画像中心からの距離に応じた重み付けを行うことにより、関心領域信頼度を算出することが好ましい。 The processor preferably calculates the confidence level of the region of interest by weighting the region of interest according to its area or its distance from the image center in the image.
プロセッサは、ユーザの指示により高信頼度関心領域の表示様態を変更することが好ましい。 The processor preferably changes the display mode of the high confidence region of interest in response to a user instruction.
プロセッサは、ユーザの指示により高信頼度関心領域の表示様態を変更可能であることが好ましい。 It is preferable that the processor be able to change the display format of the high confidence region of interest in response to a user instruction.
プロセッサは、高信頼度関心領域に写る部位を表す名称を、前記高信頼度関心領域に重畳して前記ディスプレイに表示することが好ましい。 It is preferable that the processor displays on the display a name representing the part of the body that appears in the high-confidence region of interest, superimposed on the high-confidence region of interest.
プロセッサは、ユーザによる複数の高信頼度関心領域の選択を受け付け、複数の高信頼度関心領域に基づいて前記データを補正することが好ましい。 The processor preferably accepts a user selection of multiple high confidence regions of interest and corrects the data based on the multiple high confidence regions of interest.
プロセッサは、比較結果において、関心領域信頼度が関心領域信頼度用閾値以上の場合は高信頼度関心領域と判定し、関心領域信頼度が関心領域信頼度用閾値よりも低い場合は、関心領域をデータの補正が不可能である低信頼度関心領域と判定する判定処理を行うことが好ましい。 The processor preferably performs a determination process in which, in the comparison result, if the region of interest reliability is equal to or greater than a region of interest reliability threshold, the region of interest is determined to be a high reliability region of interest, and, if the region of interest reliability is lower than the region of interest reliability threshold, the region of interest is determined to be a low reliability region of interest in which data correction is not possible.
プロセッサは、ユーザが低信頼度関心領域を選択した場合は、低信頼度関心領域を高信頼度関心領域とするための操作ガイダンスをユーザに報知する制御を行うことが好ましい。 If the user selects a low-confidence region of interest, it is preferable for the processor to perform control to notify the user of operational guidance for changing the low-confidence region of interest to a high-confidence region of interest.
プロセッサは、画像に高信頼度関心領域が含まれないと判定した場合は、ユーザに報知する制御を行うことが好ましい。 If the processor determines that the image does not contain a high-confidence region of interest, it is preferable to control the processor to notify the user.
プロセッサは、画素信頼度が画素信頼度用閾値以上の領域を高信頼度関心領域に重畳してディスプレイに表示する制御を行うことが好ましい。 The processor preferably controls the display to superimpose areas where the pixel reliability is equal to or greater than a pixel reliability threshold on the high reliability region of interest.
プロセッサは、データの補正が実施された場合、補正されたデータに基づき、画像の酸素飽和度を算出することが好ましい。 If data correction has been performed, the processor preferably calculates the oxygen saturation of the image based on the corrected data.
本開示の内視鏡システムの作動方法は、酸素飽和度の算出に使用するデータを用いて観察対象の酸素飽和度を算出する内視鏡システムの作動方法であって、プロセッサを備え、プロセッサは、取得した画像に写る複数の部位を認識し、画像において、認識した部位ごとに関心領域を設定し、関心領域ごとに、関心領域が含む画素に基づいて関心領域信頼度を算出し、関心領域信頼度と予め設定された関心領域信頼度用閾値とを比較する比較処理を行い、比較処理により得られる比較結果に基づき、関心領域のそれぞれについて、データの補正が可能である高信頼度関心領域であるか否かを判定する判定処理を行い、高信頼度関心領域をディスプレイに表示し、ユーザが選択した高信頼度関心領域に基づきデータの補正を実施する。 The operation method of the endoscope system disclosed herein is an operation method of an endoscope system that calculates the oxygen saturation of an observation target using data used for calculating the oxygen saturation, and includes a processor, which recognizes multiple parts shown in an acquired image, sets a region of interest in the image for each recognized part, calculates a region of interest reliability for each region of interest based on the pixels contained in the region of interest, performs a comparison process that compares the region of interest reliability with a preset region of interest reliability threshold, and performs a determination process for each region of interest based on the comparison result obtained by the comparison process to determine whether or not it is a high-reliability region of interest for which data can be corrected, displays the high-reliability region of interest on a display, and performs data correction based on the high-reliability region of interest selected by the user.
本開示の内視鏡システムの作動プログラムは、酸素飽和度の算出に使用するデータを用いて観察対象の酸素飽和度を算出する内視鏡システムの作動プログラムであって、コンピュータに、観察対象を撮影した画像を取得する機能と、取得した画像から複数の部位を認識する機能と、画像において、認識した部位ごとに関心領域を設定する機能と、関心領域ごとに、関心領域が含む画素に基づいて関心領域信頼度を算出する機能と、関心領域信頼度と予め設定された関心領域信頼度用閾値とを比較する比較処理を行う機能と、比較処理により得られる比較結果に基づき、関心領域のそれぞれについて、データの補正が可能である高信頼度関心領域であるか否かを判定する判定処理を行う機能と、高信頼度関心領域をディスプレイに表示する機能と、ユーザが選択した高信頼度関心領域に基づき、データの補正を実施する機能とを実現させる。 The operating program of the endoscope system disclosed herein is an operating program of an endoscope system that calculates the oxygen saturation of an observation target using data used for calculating the oxygen saturation, and provides a computer with the following functions: acquiring an image of the observation target; recognizing multiple parts from the acquired image; setting a region of interest for each recognized part in the image; calculating a region of interest reliability for each region of interest based on the pixels contained in the region of interest; performing a comparison process that compares the region of interest reliability with a preset region of interest reliability threshold; performing a determination process that determines, based on the comparison result obtained by the comparison process, whether each region of interest is a high-reliability region of interest for which data can be corrected; displaying the high-reliability region of interest on a display; and correcting data based on the high-reliability region of interest selected by the user.
本開示によれば、ユーザによる酸素飽和度算出に関するデータの補正処理において、画像中に複数の部位が存在する場合に、精度高く補正できる。 According to the present disclosure, when a user corrects data related to oxygen saturation calculations, highly accurate corrections can be made when multiple areas are present in an image.
図1に示すように、内視鏡システム10は、内視鏡12と、光源装置13と、プロセッサ装置14と、ディスプレイ15と、プロセッサ側インターフェース16と、拡張プロセッサ装置17と、拡張ディスプレイ18とを備える。内視鏡12は、光源装置13と光学的または電気的に接続され、かつ、プロセッサ装置14と電気的に接続される。拡張プロセッサ装置17は、光源装置13、プロセッサ装置14及び拡張ディスプレイ18と電気的に接続される。これらのそれぞれの接続は、有線に限られず、無線であってもよい。また、ネットワークを介したものでもよい。
As shown in FIG. 1, the
内視鏡システム10は、内視鏡12を、外科的治療を行うために被験者の体腔内に挿入し、漿膜側から体腔内の臓器を撮像する硬性内視鏡である。内視鏡システム10は、特に腹腔鏡とする用途に好適である。なお内視鏡12は、被験者の鼻、口または肛門から挿入される軟性内視鏡であってもよい。
The
内視鏡12を腹腔鏡とする場合、内視鏡12は、図1に示すように、被検者の腹腔内に挿入する挿入部12aと、挿入部12aの基端部分に設けられる操作部12bとを備える。挿入部12aの先端部分である先端部12eには、光学系及び撮像センサが内蔵される。光学系には、被写体に照明光を照射するための後述する照明光学系、及び、被写体の像を撮像するための後述する撮像光学系が含まれる(図6参照)。撮像センサは、撮像光学系を透過して入射した観察対象からの反射光を、結像面に結像することにより、画像信号を生成する。生成された画像信号は、プロセッサ装置14に出力される。操作部12bには、モード切り替え用スイッチ12c及びズーム操作等のためのズーム操作用スイッチ12dが設けられている。モード切り替え用スイッチ12cは、後述する観察モードの切り替え操作に用いられる。
When the
光源装置13は、照明光を発生する。プロセッサ装置14は、内視鏡システム10のシステム制御を行い、さらに、内視鏡12から送信された画像信号に対して画像処理等を行うことにより内視鏡画像の生成等の制御を行う。ディスプレイ15は、プロセッサ装置14から送信される医療画像を表示する。プロセッサ側インターフェース16は、キーボード、マウス、マイク、タブレット、フットスイッチ、及びタッチペン等を有し、機能設定等の入力操作を受け付ける。
The
内視鏡システム10は、観察モードとして、通常モード、酸素飽和度モード、組織色補正モード(これ以降、補正モードと呼ぶ。)の3つのモードを有しており、これら3つのモードは、ユーザがモード切り替え用スイッチ12cを操作すること、又は自動で切り替えられる。図2に示すように、通常モードでは、照明光に白色光を用いて観察対象を撮像して得た自然な色合いの白色光画像NP1をディスプレイ15に表示する一方、拡張ディスプレイ18には何も表示されない。
The
図3に示すように、酸素飽和度モードでは、観察対象の酸素飽和度を算出し、算出した酸素飽和度を画像化した酸素飽和度画像OPを拡張ディスプレイ18に表示する。また、酸素飽和度モードにおいては、白色光画像NP1よりも短波長成分が少ない白色光相当画像NP2がディスプレイ15に表示される。補正モードでは、後述する高信頼度関心領域内における画素に基づいて、酸素飽和度の算出に関する補正を行う。
As shown in FIG. 3, in the oxygen saturation mode, the oxygen saturation of the object of observation is calculated, and an oxygen saturation image OP that visualizes the calculated oxygen saturation is displayed on the
酸素飽和度の算出に関する補正は後述する補正モードにおいて行われ、酸素飽和度算出用テーブルの補正が可能であると判定された領域(領域の詳細は後述する)を用いることにより、酸素飽和度算出用テーブルの補正処理を行う。なお、通常モードから酸素飽和度モードに切り替えた場合、自動的に一旦補正モードに切り替わり、補正モードにおいて補正処理を完了した後に酸素飽和度モードに切り替わるようにしてもよい。補正処理が完了すると、酸素飽和度モードに切り替わり、拡張ディスプレイ18に酸素飽和度画像OPが表示される。例えば、酸素飽和度モードに切り替えると、図4に示すように、拡張ディスプレイ18に「補正処理を実施して下さい」とのメッセージMSが表示され、酸素飽和度の算出は補正処理後に実施されることが好ましい。
Correction of the oxygen saturation calculation is performed in a correction mode, which will be described later, and the oxygen saturation calculation table is corrected using an area determined to be capable of being corrected (details of the area will be described later). When switching from normal mode to oxygen saturation mode, the mode may automatically switch to the correction mode once, and then switch to the oxygen saturation mode after completing the correction process in the correction mode. Once the correction process is completed, the mode switches to the oxygen saturation mode, and an oxygen saturation image OP is displayed on the
なお、内視鏡システム10は、漿膜などの腹腔用の硬性鏡タイプの場合には、酸素飽和度モードにおいて、図5(A)に示すように、漿膜側の酸素飽和度の状態を画像化した漿膜側酸素飽和度画像を拡張ディスプレイ18に表示する。また、胃、大腸などの消化管用の軟性鏡タイプを使用する場合、酸素飽和度モードにおいては、図5(B)に示すように、消化管内部の酸素飽和度の状態を画像化した消化管内部酸素飽和度画像を拡張ディスプレイ18に表示する。漿膜側酸素飽和度画像は、白色光相当画像NP2に対して彩度を調整した画像を用いることが好ましい。なお、彩度の調整に関しては、粘膜、漿膜、軟性鏡、硬性鏡の区別なく、補正モード時に行うことが好ましい。本実施形態では、内視鏡12として、硬性鏡タイプのものを用いる。
In the case of a rigid endoscope type for abdominal cavities such as the serosa, the
なお、酸素飽和度モードにおいては、以下の場合には、酸素飽和度を正確に算出することが可能である。
・予め定められた対象部位(例えば、食道、胃、大腸)を観察する場合
・周囲に照明がある体外環境以外の場合
・粘膜及び漿膜上に残渣や残液、粘液、血液、脂肪が残っていない場合
・粘膜上に色素を散布しない場合
・観察部位に対して、内視鏡が7mmを超えて離れている場合
・観察部位に対して、内視鏡が大きく離れることなく適切な距離で観察する場合
・照明光が十分に当たっている領域
・観察部位からの正反射光が少ない場合
・酸素飽和度画像の2/3内部の領域
・内視鏡の動きが小さい場合、または、拍動や呼吸など患者の動きが少ない場合
・消化管粘膜深部の血管が観察されない場合
In the oxygen saturation mode, it is possible to accurately calculate the oxygen saturation in the following cases.
- When observing a predetermined target area (e.g. esophagus, stomach, large intestine) - When not in an external environment with surrounding lighting - When there is no residue, residual fluid, mucus, blood, or fat remaining on the mucosa or serosa - When dye is not sprayed onto the mucosa - When the endoscope is more than 7 mm away from the observation area - When the endoscope is observed at an appropriate distance from the observation area without being too far away - Areas that are sufficiently illuminated by illumination light - When there is little specular reflection from the observation area - Areas within 2/3 of the oxygen saturation image - When the movement of the endoscope is small, or when there is little patient movement such as pulsation or breathing - When blood vessels deep in the gastrointestinal mucosa cannot be observed
プロセッサ装置14は、ディスプレイ15及びプロセッサ側インターフェース16と電気的に接続される。プロセッサ装置14は、内視鏡12からの画像信号を受信し、画像信号に基づいて各種処理を行う。ディスプレイ15は、プロセッサ装置14で処理された観察対象の画像または情報等を出力表示する。プロセッサ側インターフェース16は、キーボード、マウス、タッチパッド、マイク、フットペダル等を有し、機能設定等の入力操作を受け付ける機能を有する。
The
図6に示すように、光源装置13は、光源部20と、光源部20を制御する光源用プロセッサ21とを備えている。光源部20は、例えば、複数の半導体光源を有し、これらをそれぞれ点灯または消灯し、点灯する場合には各半導体光源の発光量を制御することにより、観察対象を照明する照明光を発する。本実施形態では、光源部20は、V-LED(Violet Light Emitting Diode)20a、BS-LED(Blue Short -wavelength Light Emitting Diode)20b、BL-LED(Blue Long-wavelength Light Emitting Diode)20c、G-LED(Green Light Emitting Diode)20d、及びR-LED(Red Light Emitting Diode)20eの5色のLEDを有する。
As shown in FIG. 6, the
V-LED20aは、410nm±10nmの紫色光Vを発する。BS-LED20bは、450nm±10nmの第2青色光BSを発する。BL-LED20cは、470nm±10nmの第1青色光BLを発する。G-LED20dは、緑色帯域の緑色光Gを発する。緑色光Gの中心波長は540nmであることが好ましい。R-LED20eは、赤色帯域の赤色光Rを発する。赤色光Rの中心波長は620nmであることが好ましい。なお、各LED20a~20eにおける中心波長とピーク波長は、同じであってもよく、異なっても良い。
The V-LED 20a emits violet light V of 410 nm ± 10 nm. The BS-
BL-LED20c及びBS-LED20bは両方とも青色光を発光する青色光源である。但し、BL-LED20cが発光する青色光(以下、BL光という)と、BS-LED20bが発光する青色光(以下、BS光という)とでは、上記したように中心波長及び波長帯域が異なる。BL光の中心波長及び波長帯域は、青色波長帯域の中で酸化ヘモグロビンと還元ヘモグロビンの吸光係数の差が概ね極大になる中心波長及び波長帯域である。
Both BL-
G-LED20dは、中心波長が540nmの広帯域な緑色光(以下、G光という)を発光する緑色光源である。R-LED20eは、広帯域な赤色光(以下、R光という)を発する赤色光源である。 G-LED 20d is a green light source that emits broadband green light (hereafter referred to as G light) with a central wavelength of 540 nm. R-LED 20e is a red light source that emits broadband red light (hereafter referred to as R light).
光源用プロセッサ21は、各LED20a~20eに対して独立に制御信号を入力することによって、各LED20a~20eの点灯又は消灯、点灯時の発光量等を独立に制御する。光源用プロセッサ21における点灯、消灯等の制御は、各モードによって異なっており、詳細は後述する。
The
各LED20a~20eが発する光は、ミラーやレンズなどで構成される光路結合部23を介して、ライトガイド24に入射される。ライトガイド24は、内視鏡12及びユニバーサルコード(内視鏡12と、光源装置13及びプロセッサ装置14を接続するコード)に内蔵されている。ライトガイド24は、光路結合部23からの光を、内視鏡12の先端部まで伝搬する。
The light emitted by each of the LEDs 20a to 20e is incident on the
内視鏡12には、照明光学系30と撮像光学系31が設けられている。照明光学系30は照明レンズ32を有しており、ライトガイド24によって伝搬した照明光は照明レンズ32を介して観察対象に照射される。撮像光学系31は、対物レンズ35及び撮像センサ36を有している。照明光が照射された観察対象からの光は、対物レンズ35を介して撮像センサ36に入射する。これにより、撮像センサ36に観察対象の像が結像される。
The
撮像センサ36は、照明光で照明中の観察対象を撮像するカラー撮像センサである。撮像センサ36の各画素には、B(青色)カラーフィルタを有するB画素(青色画素)、G(緑色)カラーフィルタを有するG画素(緑色画素)、R(赤色)カラーフィルタを有するR画素(赤色画素)のいずれかが設けられている。このため、撮像センサ36で観察対象を撮影すると、B画像、G画像、及びR画像の3種類の画像が得られる。撮像センサ36は、B画素とG画素とR画素の画素数の比率が、1:2:1であるベイヤー配列のカラー撮像センサであることが好ましい。
The
撮像センサ36としては、CCD(Charge Coupled Device)撮像センサやCMOS(Complementary Metal-Oxide Semiconductor)撮像センサを利用可能である。また、原色の撮像センサ36の代わりに、C(シアン)、M(マゼンタ)、Y(イエロー)及びG(グリーン)の補色フィルタを備えた補色撮像センサを用いても良い。補色撮像センサを用いる場合には、CMYGの4色の画像信号が出力されるので、補色-原色色変換によって、CMYGの4色の画像信号をRGBの3色の画像信号に変換することにより、撮像センサ36と同様のRGB各色の画像信号を得ることができる。
As the
撮像センサ36は、撮像用プロセッサ37によって駆動制御される。撮像用プロセッサ37における各モードの制御は後述する。CDS/AGC回路40(Correlated Double Sampling/Automatic Gain Control)は、撮像センサ36から得られるアナログの画像信号に相関二重サンプリング(CDS)や自動利得制御(AGC)を行う。CDS/AGC回路40を経た画像信号は、A/Dコンバータ41(Analog/Digital)により、デジタルの画像信号に変換される。A/D変換後のデジタル画像信号がプロセッサ装置14に入力される。
The
プロセッサ装置14は、DSP(Digital Signal Processor)45と、画像処理部50と、画像通信部51と、表示制御部52と、中央制御部53とを備えている。プロセッサ装置14には、各種処理に関するプログラムがプログラム用メモリ(図示しない)に組み込まれている。プロセッサによって構成される中央制御部53がプログラム用メモリ内のプログラムを実行することによって、DSP45と、画像処理部50と、画像通信部51と、表示制御部52と、中央制御部53との機能が実現する。
The
DSP45は、内視鏡12から受信した画像信号に対して、欠陥補正処理、オフセット処理、ゲイン補正処理、デモザイク処理、リニアマトリクス処理、ホワイトバランス処理、ガンマ変換処理、YC変換処理、及び、ノイズ低減処理等の各種信号処理を行う。欠陥補正処理では、撮像センサ36の欠陥画素の信号が補正される。オフセット処理では、欠陥補正処理を施した画像信号から暗電流成分を除かれ、正確な零レベルを設定される。ゲイン補正処理は、オフセット処理後の各色の画像信号に特定のゲインを乗じることにより各画像信号の信号レベルを整える。ゲイン補正処理後の各色の画像信号には、デモザイク処理、色再現性を高めるリニアマトリクス処理が施される。
The
リニアマトリクス処理後、ホワイトバランス処理が施され、その後、ガンマ変換処理によって、各画像信号の明るさや彩度が整えられる。その後、YC変換処理が施され、輝度信号Yと色差信号Cb及び色差信号CrをDSP45に出力する。DSP45は、例えば移動平均法やメディアンフィルタ法等によるノイズ低減処理を施す。
After linear matrix processing, white balance processing is performed, and then gamma conversion processing is performed to adjust the brightness and saturation of each image signal. Then, YC conversion processing is performed, and the luminance signal Y and the color difference signals Cb and Cr are output to the
画像処理部50は、DSP45からの画像信号に対して、各種の画像処理を施す。画像処理には、3×3のマトリックス処理、階調変換処理、3次元酸素飽和度算出用テーブル処理等の色変換処理、色彩強調処理、空間周波数強調等の構造強調処理などが含まれる。画像処理部50では、モードに応じた画像処理が行われる。通常モードの場合においては、画像処理部50は、通常モード用の画像処理が行われることによって、白色光画像NP1を生成する。酸素飽和度モードの場合においては、画像処理部50は、白色光相当画像NP2を生成し、また、画像通信部51を介して、DSP45からの画像信号を拡張プロセッサ装置17に送信する。拡張プロセッサ装置17では、送信された内視鏡画像の画像信号に基づき、酸素飽和度画像OPを生成する。
The
表示制御部52は、画像処理部50からの白色光画像NP1、または酸素飽和度画像OPなどの画像情報、その他の情報を、ディスプレイ15または拡張ディスプレイ18に表示するための表示制御を行う。表示制御に従って、ディスプレイ15には、白色光画像NP1または白色光相当画像NP2が表示される。
The
拡張プロセッサ装置17は、プロセッサ装置14から画像信号を受信し、各種の画像処理を行う。拡張プロセッサ装置17は、画像処理装置として機能する。拡張プロセッサ装置17における画像処理は、補正モード及び酸素飽和度モードにおいて行われ、酸素飽和度画像を生成するための処理である。生成した酸素飽和度画像OPは、拡張ディスプレイ18に表示される。また、拡張プロセッサ装置17は、補正モードの場合には、ユーザ操作に従って、部位ごとに関心領域信頼度を算出し、算出した関心領域信頼度に基づいて、部位ごとに酸素飽和度の算出に関する補正処理を行う。
The
拡張プロセッサ装置17は、酸素飽和度モードにおいて、酸素飽和度を算出し、算出した酸素飽和度を画像化した酸素飽和度画像OPを生成する。生成された酸素飽和度画像OPは、拡張ディスプレイ18に表示される。また、拡張プロセッサ装置17は、補正モードの場合には、酸素飽和度の算出に関する補正処理を行う。補正処理では、より具体的には、ユーザ操作に従って、特定色素濃度を算出し、算出した特定色素濃度に基づいて酸素飽和度算出用テーブルの補正を行う。特定色素としては、黄色色素等が挙げられる。したがって、特定色素濃度とは、内視鏡画像が含む画像情報における黄色色素の濃度である。拡張プロセッサ装置17で行う酸素飽和度モード及び補正モードの詳細については、後述する。
In the oxygen saturation mode, the
各モードにおける点灯又は消灯制御について説明を行う。通常モードでは、V-LED20a、BS-LED20b、G-LED20d、及び、R-LED20eを同時に点灯することによって、図7に示すように、中心波長410nmの紫色光V、中心波長450nmの第2青色光BS、緑色帯域で広帯域の緑色光G、中心波長620nmの赤色光Rを含む白色光55として発光する。図に示すグラフでは、各波長帯域の光強度を模式的に示す。
The on/off control in each mode will now be explained. In normal mode, the V-LED 20a, BS-
酸素飽和度モード及び補正モードでは、発光パターンがそれぞれ異なる3フレーム分の発光が繰り返し行われる。1フレーム目においては、図8(A)に示すように、BL-LED20c、G-LED20d、及び、R-LED20eを同時に点灯することによって、中心波長470nmの第1青色光BL、緑色帯域で広帯域の緑色光G、及び、中心波長620nmの赤色光Rを含む広帯域の第1照明光56を発光する。2フレーム目においては、図8(B)に示すように、BS-LED20b、G-LED20d、及び、R-LED20eを同時に点灯することによって、中心波長450nmの第2青色光BS、緑色帯域で広帯域の緑色光G、中心波長620nmの赤色光Rを含む第2照明光57を発光する。3フレーム目においては、図8(C)に示すように、G-LED20dを点灯することによって、緑色帯域で広帯域の緑色光Gを第3照明光58として発光する。なお、酸素飽和度モードにおいては、酸素飽和度の算出に必要な画像信号を得るために必要なフレームは1フレーム目と2フレーム目であるので、1フレーム目と2フレーム目のみ発光を行ってもよい。
In the oxygen saturation mode and the correction mode, three frames of light emission with different light emission patterns are repeated. In the first frame, as shown in FIG. 8(A), the BL-
図9に示すように、撮像センサ36のB画素に設けられるBカラーフィルタBFは、主として青色帯域の光、具体的には、波長帯域が380~560nm(青色透過帯域)の光を透過させる。透過率が最大となるピーク波長は460~470nm付近に存在する。撮像センサ36のG画素に設けられるGカラーフィルタGFは、主として緑色帯域の光、具体的には、波長帯域が450~630nm(緑色透過帯域)の光を透過させる。撮像センサ36のR画素に設けられるRカラーフィルタRFは、主として赤色帯域の光、具体的には580~760nm(赤色透過帯域)の光を透過させる。
As shown in FIG. 9, the B color filter BF provided in the B pixel of the
図10に示すように、通常モードでは、撮像用プロセッサ37は、紫色光V、第2青色光BS、緑色光G、赤色光Rの白色光55で照明中の観察対象を1フレーム毎に撮像するように、撮像センサ36を制御する。これにより、撮像センサ36のB画素からBc画像信号が出力され、G画素からGc画像信号が出力され、R画素からRc画像信号が出力される。
As shown in FIG. 10, in normal mode, the imaging processor 37 controls the
図11に示すように、酸素飽和度モードでは、1フレーム目で、第1青色光BL、緑色光G、及び赤色光Rを含む第1照明光56が観察対象に照明された場合には、撮像用プロセッサ37によって、第1照明光画像として、撮像センサ36のB画素からB1画像信号が出力され、G画素からG1画像信号が出力され、R画素からR1画像信号が出力される。2フレーム目で、第2青色光BS、緑色光G、及び赤色光Rを含む第2照明光57が観察対象に照明された場合には、撮像用プロセッサ37によって、第2照明光画像として、撮像センサ36のB画素からB2画像信号が出力され、G画素からG2画像信号が出力され、R画素からR2画像信号が出力される。
As shown in FIG. 11, in the oxygen saturation mode, when the
3フレーム目で、緑色光Gである第3照明光58が観察対象に照明された場合には、撮像用プロセッサ37によって、第3照明光画像として、撮像センサ36のB画素からB3画像信号が出力され、G画素からG3画像信号が出力され、R画素からR3画像信号が出力される。
In the third frame, when the
酸素飽和度モードでは、図12に示すように、1フレーム目(1stF)で第1照明光56を発光し、2フレーム目(2ndF)で第2照明光57を発光し、3フレーム目(3rdF)で第3照明光58を発光した後は、2フレーム目の第2照明光57を発光し、1フレーム目の第1照明光56を発光する。2フレーム目の第2照明光57の発光に基づいて得られる白色光相当画像NP2は、ディスプレイ15に表示される。また、1~3フレーム目の第1~第3照明光の発光に基づいて得られる酸素飽和度画像OPは、拡張ディスプレイ18に表示される。
In the oxygen saturation mode, as shown in FIG. 12, the
酸素飽和度モードでは、上記の3フレーム分の画像信号のうち、第1照明光画像に含まれるB1画像信号、及び、第2照明光画像に含まれるG2画像信号、R2画像信号が用いられる。また、補正モードでは、酸素飽和度の算出精度に影響を与える特定色素(黄色色素など)の濃度を測定するために、B1画像信号、G2画像信号、及び、R2画像信号に加えて、第3照明光画像に含まれるB3画像信号及びG3画像信号が用いられる。 In the oxygen saturation mode, of the image signals for the above three frames, the B1 image signal included in the first illumination light image, and the G2 and R2 image signals included in the second illumination light image are used. In the correction mode, in addition to the B1, G2, and R2 image signals, the B3 and G3 image signals included in the third illumination light image are used to measure the concentration of a specific pigment (such as a yellow pigment) that affects the accuracy of oxygen saturation calculation.
B1画像信号は、第1照明光56の中でBカラーフィルタBFを透過した光のうち、少なくとも第1青色光BLに関する画像情報が含まれている。B1画像信号(酸素飽和度用画像信号)には、第1青色光BLに関する画像情報として、血中ヘモグロビンの酸素飽和度の変化により反射スペクトルが変化する波長帯域B1の画像情報を含んでいる。波長帯域B1としては、例えば、図13に示すように、曲線55b、56bで示す酸化ヘモグロビンの反射スペクトルと曲線55a、56aで示す還元ヘモグロビンの反射スペクトルの差が極大化する470nmを含む460nm~480nmの波長帯域とすることが好ましい。
The B1 image signal includes image information on at least the first blue light BL from the light that has passed through the B color filter BF in the
なお、図13では、曲線55aは、血液濃度が高い場合の還元ヘモグロビンの反射スペクトルを表し、曲線55bは、血液濃度が高い場合の酸化ヘモグロビンの反射スペクトルを表している。一方、曲線56aは、血液濃度が低い場合の還元ヘモグロビンの反射スペクトルを表し、曲線56bは、血液濃度が低い場合の酸化ヘモグロビンの反射スペクトルを表している。
In FIG. 13,
G2画像信号は、第1照明光56の中でGカラーフィルタGFを透過した光のうち、少なくとも緑色光Gに関する波長帯域G2の画像情報が含まれている。波長帯域G2は、例えば、図13に示すように、500nm~580nmの波長帯域とすることが好ましい。R2画像信号は、第1照明光56の中でRカラーフィルタRFを透過した光のうち、少なくとも赤色光Rに関する波長帯域R2の画像情報が含まれている。波長帯域R2は、例えば、図13に示すように、610nm~630nmの波長帯域とすることが好ましい。
The G2 image signal contains image information of at least the wavelength band G2 relating to green light G from the light in the
また、図14に示すように、波長帯域B1の画像情報には、第1青色光BLに関する画像情報が入っており、波長帯域B3の画像情報には緑色光Gに関する画像情報が入っている。それら第1青色光BL及び緑色光Gに関する画像情報は、黄色色素などの特定色素の濃度の変化により特定色素の吸光スペクトルが変化する画像情報である。特定色素の吸光スペクトルの変化に伴って、ヘモグロビンの反射スペクトルについても変化が生ずる。曲線55aは、黄色色素の影響がない場合の還元ヘモグロビンの反射スペクトルを表しており、曲線55cは、黄色色素の影響が有る場合の還元ヘモグロビンの反射スペクトルを表している。これら曲線55a、55cに示すように、黄色色素の有無によって還元ヘモグロビンの反射スペクトルが変化する(酸化ヘモグロビンの反射スペクトルも同様)。したがって、波長帯域B1及び波長帯域B3は、黄色色素などの特定色素の影響を受けて、血中ヘモグロビンの酸素飽和度の変化により反射スペクトルが変化する。
Also, as shown in FIG. 14, the image information of wavelength band B1 contains image information on the first blue light BL, and the image information of wavelength band B3 contains image information on the green light G. The image information on the first blue light BL and the green light G is image information in which the absorption spectrum of a specific pigment changes due to a change in the concentration of the specific pigment such as a yellow pigment. The change in the absorption spectrum of the specific pigment also causes a change in the reflection spectrum of hemoglobin.
内視鏡12を用いた観察対象において、黄色色素などの特定色素による影響がない理想的な場合には、図15に示すように、B1画像信号(「B1」と表記)、G2画像信号(「G2」と表記)、R2画像信号(「R2」と表記)は、それぞれ酸素飽和度依存性、血液濃度依存性、又は、明るさ依存性の影響を受ける。B1画像信号は、上記したように、酸化ヘモグロビンの反射スペクトルと還元ヘモグロビンの反射スペクトルの差が極大化する波長帯域B1を含んでいるため、酸素飽和度によって変化する酸素飽和度依存性が「大」程度である。また、B1画像信号は、曲線55a、55bと曲線56a、56bに示すように、血液濃度によって変化する血液濃度依存性が「中」程度である。また、B1画像信号は、観察対象の明るさによって変化する明るさ依存性が「有」る。なお、依存性の程度として、「大」、「中」、「小」を用いるが、「大」は他の画像信号と比較して依存性が大きいことを表しており、「中」は他の画像信号と比較して依存性が中程度であることを表しており、「小」は他の画像信号と比較して依存性が低いことを表している。
In an ideal case where the object of observation using the
G2画像信号は、広帯域な波長帯域において酸化ヘモグロビンの反射スペクトルと還元ヘモグロビンの反射スペクトルの大小関係が入れ替わることから、酸素飽和度依存性が「小」である。また、G2画像信号は、曲線55a、55bと曲線56a、56bに示すように、血液濃度依存性が「大」程度である。また、G2画像信号は、B1画像信号と同様、明るさ依存性が「有」る。
The G2 image signal has a low dependency on oxygen saturation because the magnitude relationship between the reflectance spectrum of oxygenated hemoglobin and the reflectance spectrum of reduced hemoglobin is reversed over a wide wavelength band. Also, the G2 image signal has a high degree of dependency on blood concentration, as shown by
R2画像信号は、B1画像信号ほど酸素飽和度によって変化することがないものの、酸素飽和度依存性は「中」程度である。また、R2画像信号は、曲線55a、55bと曲線56a、56bに示すように、血液濃度依存性が「小」程度である。また、G2画像信号は、B1画像信号と同様、明るさ依存性が「有」る。
The R2 image signal does not change as much with oxygen saturation as the B1 image signal, but it is moderately dependent on oxygen saturation. Also, the R2 image signal is slightly dependent on blood concentration, as shown by
上記したように、B1画像信号、G2画像信号、R2画像信号のいずれも明るさ依存性を有するため、G2画像信号を規格化信号に用いることによって、B1画像信号をG2画像信号で規格化した信号比ln(B1/G2)と、R2画像信号をG2画像信号で規格化した信号比ln(R2/G2)を用いて、酸素飽和度を算出するためのデータの酸素飽和度算出用テーブルである酸素飽和度算出用テーブル73a(図16参照)が作成される。なお、信号比ln(B1/G2)の「ln」は自然対数である(信号比ln(R2/G2)も同様)。 As described above, since the B1, G2, and R2 image signals all have brightness dependency, the G2 image signal is used as the normalized signal to create an oxygen saturation calculation table 73a (see FIG. 16) that is an oxygen saturation calculation table of data for calculating oxygen saturation using a signal ratio ln(B1/G2) obtained by normalizing the B1 image signal with the G2 image signal and a signal ratio ln(R2/G2) obtained by normalizing the R2 image signal with the G2 image signal. Note that the "ln" in the signal ratio ln(B1/G2) is the natural logarithm (the same applies to the signal ratio ln(R2/G2)).
信号比ln(B1/G2)及び信号比ln(R2/G2)と酸素飽和度との関係を、信号比ln(R2/G2)をX軸、信号比ln(B1/G2)をY軸の2次元座標で表した場合、図16に示すように、酸素飽和度は、Y軸方向に沿った等高線ELで表される。等高線ELHは、酸素飽和度が「100%」であることを表していており、等高線ELLは、酸素飽和度が「0%」であることを表している。等高線ELHから等高線ELLに向けて、酸素飽和度が徐々に小さくなるように、等高線が分布している(図16では「80%」、「60%」、「40%」、「20%」の等高線が分布している)。 If the relationship between the signal ratio ln(B1/G2) and the signal ratio ln(R2/G2) and the oxygen saturation is expressed in two-dimensional coordinates with the signal ratio ln(R2/G2) on the X-axis and the signal ratio ln(B1/G2) on the Y-axis, as shown in FIG. 16, the oxygen saturation is represented by the contour line EL along the Y-axis direction. The contour line ELH represents an oxygen saturation level of "100%", and the contour line ELL represents an oxygen saturation level of "0%". The contour lines are distributed so that the oxygen saturation level gradually decreases from the contour line ELH to the contour line ELL (in FIG. 16, the contour lines of "80%, " "60%, " "40%, " and "20%" are distributed).
X軸の値(信号比ln(R2/G2))、Y軸の値(信号比ln(B1/G2))は、それぞれ酸素飽和度依存性、血液濃度依存性の影響を受ける。ただし、明るさ依存性に関しては、図17に示すように、X軸の値、Y軸の値はそれぞれG2画像信号で規格化されているため、影響を受けない「無」とされる。X軸の値(「X」と表記)については、酸素飽和度依存性は「中」程度であり、血液濃度依存性は「大」程度とされる。一方、Y軸の値(「Y」と表記)については、酸素飽和度依存性は「大」程度であり、血液濃度依存性は「中」程度とされる。 The X-axis value (signal ratio ln(R2/G2)) and Y-axis value (signal ratio ln(B1/G2)) are affected by oxygen saturation dependency and blood concentration dependency, respectively. However, as for brightness dependency, as shown in FIG. 17, the X-axis value and the Y-axis value are normalized by the G2 image signal, and therefore are considered to be "none," meaning they are not affected. For the X-axis value (denoted as "X"), the oxygen saturation dependency is considered to be about "medium," and the blood concentration dependency is considered to be about "large." On the other hand, for the Y-axis value (denoted as "Y"), the oxygen saturation dependency is considered to be about "large," and the blood concentration dependency is considered to be about "medium."
一方、内視鏡12を用いた観察対象において、黄色色素などの特定色素の影響を受ける現実的な場合には、図18に示すように、B1画像信号(「B1」と表記)、G2画像信号(「G2」と表記)、R2画像信号(「R2」と表記)は、それぞれ酸素飽和度依存性、血液濃度依存性、黄色色素依存性、又は、明るさ依存性の影響を受ける。B1画像信号は、黄色色素などの特定色素の濃度の変化により特定色素の吸光スペクトルが変化する画像情報を含んでいるため、黄色色素によって変化する黄色色素依存性が「大」程度である。これに対して、G2画像信号は、B1画像信号と比較すると、黄色色素による変化が少ないため、黄色色素依存性は「小~中」程度である。R1画像信号は、黄色色素による変化が少ないため、黄色色素依存性は「小」程度である。
On the other hand, in a realistic case where an object observed using the
また、信号比ln(R2/G2)をX軸、信号比ln(B1/G2)をY軸の2次元座標で表した場合、観察対象で同一の酸素飽和度を有する場合であっても、図19に示すように、黄色色素無しの場合の酸素飽和度StO2Aと、黄色色素有りの場合の酸素飽和度StO2Bとは異なって表される。酸素飽和度StO2Bは、画像信号に含まれる黄色色素の存在によって、見かけ上、酸素飽和度StO2Aよりも高くシフトしている。 In addition, when the signal ratio ln(R2/G2) is represented on the X-axis and the signal ratio ln(B1/G2) is represented on the Y-axis in two-dimensional coordinates, even if the observation subject has the same oxygen saturation, the oxygen saturation StO2A when there is no yellow dye and the oxygen saturation StO2B when there is yellow dye are represented differently, as shown in Figure 19. The oxygen saturation StO2B appears to be shifted higher than the oxygen saturation StO2A due to the presence of the yellow dye in the image signal.
そこで、上記のような黄色色素依存性の場合にも酸素飽和度を正確に算出することができるようにするために、酸素飽和度算出用テーブルの補正に際して、第3照明光画像に含まれるB3画像信号及びG3画像信号を用いる。B3画像信号は、第3照明光58の中でBカラーフィルタBFを透過した光に関する画像情報が含まれている。B3画像信号(特定色素画像信号)には、黄色色素などのヘモグロビン以外の特定色素に感度を持つ波長帯域B3の画像情報が含まれる(図14参照)。B3画像信号は、B1画像信号ほど、特定色素に対する感度が大きくないものの、特定色素に対して一定の感度を有している。したがって、図20に示すように、B1画像信号が黄色色素の依存性が「大」であるのに対して、B3画像信号の黄色色素依存性は「中」程度である。なお、B3画像信号は、酸素飽和度依存性が「小」であり、血液濃度依存性が「大」であり、明るさ依存性が「有」である。
In order to accurately calculate oxygen saturation even in the case of yellow pigment dependency as described above, the B3 image signal and G3 image signal included in the third illumination light image are used when correcting the oxygen saturation calculation table. The B3 image signal includes image information related to the light transmitted through the B color filter BF in the
G3画像信号についても、B3画像信号ほど特定色素に感度を有しないものの、ある程度の特定色素に感度を持つ波長帯域G3の画像信号が含まれる(図14参照)。したがって、G3画像信号の黄色色素依存性は「小~中」程度である。なお、G3画像信号は、酸素飽和度依存性が「小」であり、血液濃度依存性が「大」であり、明るさ依存性が「有」である。また、B2画像信号についても、黄色色素依存性が「大」であるため、酸素飽和度算出用テーブルの補正際して、B3画像信号の代わりに、B2画像信号を用いてもよい。B2画像信号は、酸素飽和度依存性が「小」であり、血液濃度依存性が「大」であり、明るさ依存性が「有」である。 The G3 image signal also does not have as much sensitivity to the specific dye as the B3 image signal, but does include image signals in the wavelength band G3 that have some degree of sensitivity to the specific dye (see Figure 14). Therefore, the yellow dye dependency of the G3 image signal is "small to medium". The G3 image signal has "small" oxygen saturation dependency, "large" blood concentration dependency, and "some" brightness dependency. The B2 image signal also has "large" yellow dye dependency, so the B2 image signal may be used instead of the B3 image signal when correcting the oxygen saturation calculation table. The B2 image signal has "small" oxygen saturation dependency, "large" blood concentration dependency, and "some" brightness dependency.
信号比ln(B1/G2)及び信号比ln(R2/G2)と黄色色素と酸素飽和度との関係を、信号比ln(R2/G2)をX軸、信号比ln(B1/G2)をY軸、信号比ln(B3/G3)をZ軸の3次元座標で表した場合、図21に示すように、酸素飽和度を表す曲面CV0~CV4が、黄色色素の色素濃度に応じて、Z軸方向に分布される。曲面CV0は、黄色色素が濃度「0」(黄色色素の影響無し)の場合の酸素飽和度を表している。曲面CV1~CV4は、それぞれ黄色色素が濃度「1」~「4」の場合の酸素飽和度を表している。濃度の数字は、大きくなるほど、黄色色素の濃度が大きいことを表している。なお、曲面CV0~CV4に示すように、黄色色素の濃度が大きくなるほど、Z軸の値が低くなる方向に変化する。 If the relationship between the signal ratio ln(B1/G2) and signal ratio ln(R2/G2), the yellow pigment, and oxygen saturation is expressed in three-dimensional coordinates with the signal ratio ln(R2/G2) on the X-axis, the signal ratio ln(B1/G2) on the Y-axis, and the signal ratio ln(B3/G3) on the Z-axis, as shown in Figure 21, the curved surfaces CV0 to CV4 representing oxygen saturation are distributed in the Z-axis direction according to the pigment concentration of the yellow pigment. The curved surface CV0 represents the oxygen saturation when the yellow pigment has a concentration of "0" (no effect of the yellow pigment). The curved surfaces CV1 to CV4 represent the oxygen saturation when the yellow pigment has concentrations of "1" to "4", respectively. The higher the concentration number, the higher the concentration of the yellow pigment. Note that, as shown in the curved surfaces CV0 to CV4, the higher the concentration of the yellow pigment, the lower the Z-axis value changes.
図22(A)に示すように、X、Y、Zの3次元座標で表現された酸素飽和度の状態を、X、Yの2次元座標で表現した場合には、図22(B)に示すように、酸素飽和度の状態を表す領域AR0~AR4は、それぞれ黄色色素の濃度に応じて異なる位置に分布する。領域AR0~AR4は、それぞれ黄色色素の濃度が「0」~「4」の場合の酸素飽和度の分布を表している。これら領域AR0~AR4ごとに酸素飽和度を表す等高線ELを定めることによって、黄色色素の濃度に対応した酸素飽和度を求めることができる(図16参照)。なお、領域AR0~AR4に示すように、黄色色素の濃度が大きくなるほど、X軸の値が高くなり、Y軸の値が低くなる。 When the oxygen saturation state expressed in three-dimensional coordinates X, Y, and Z as shown in Figure 22 (A) is expressed in two-dimensional coordinates X and Y, as shown in Figure 22 (B), the areas AR0 to AR4 representing the oxygen saturation state are distributed at different positions according to the concentration of the yellow dye, respectively. Areas AR0 to AR4 represent the distribution of oxygen saturation when the concentration of the yellow dye is "0" to "4", respectively. By defining a contour line EL representing oxygen saturation for each of these areas AR0 to AR4, it is possible to obtain the oxygen saturation corresponding to the concentration of the yellow dye (see Figure 16). Note that, as shown in areas AR0 to AR4, the higher the concentration of the yellow dye, the higher the value on the X axis and the lower the value on the Y axis.
なお、図23に示すように、X軸の値(信号比ln(R2/G2))、Y軸の値(信号比ln(B1/G2))、Z軸の値(信号比ln(B3/G3))は、黄色色素依存性を受ける。X軸の値(「X」と表記)の黄色色素依存性は「小~中」であり、Y軸の値(「Y」と表記)の黄色色素依依存性は「大」であり、Z軸の値(「Z」と表記)の黄色色素依存性は「中」である。また、Z軸の値については、酸素飽和度依存性が「小~中」であり、血液濃度依存性が「小~中」である。また、Z軸の値については、G3画像信号で規格化されていることから、明るさ依存性が「無」である。 As shown in FIG. 23, the X-axis value (signal ratio ln(R2/G2)), Y-axis value (signal ratio ln(B1/G2)), and Z-axis value (signal ratio ln(B3/G3)) are subject to yellow pigment dependency. The X-axis value (denoted as "X") has a yellow pigment dependency of "small to medium", the Y-axis value (denoted as "Y") has a yellow pigment dependency of "large", and the Z-axis value (denoted as "Z") has a yellow pigment dependency of "medium". The Z-axis value has an oxygen saturation dependency of "small to medium" and a blood concentration dependency of "small to medium". The Z-axis value has no brightness dependency because it is normalized by the G3 image signal.
本実施形態では、観察対象において、黄色色素などの特定色素の影響を受ける現実的な場合に対し、酸素飽和度の算出に使用するデータの補正として、黄色色素の濃度による酸素飽和度を表す複数のデータの選択を採用する。したがって、この場合、補正モードにおいて酸素飽和度の算出に使用するデータを補正するとは、具体的には酸素飽和度を表す曲面CV0~CV4(図21参照)からいずれかを選択することを意味する。 In this embodiment, in a realistic case where the object of observation is affected by a specific pigment such as a yellow pigment, a selection of multiple data representing oxygen saturation according to the concentration of the yellow pigment is adopted to correct the data used to calculate oxygen saturation. Therefore, in this case, correcting the data used to calculate oxygen saturation in the correction mode specifically means selecting one of the curved surfaces CV0 to CV4 (see FIG. 21) that represent oxygen saturation.
図24に示すように、拡張プロセッサ装置17は、画像取得部60aと画像処理部60bとを備える。画像取得部60aは、プロセッサ装置14から画像通信部51を介して送信される画像信号を受信する。画像処理部60bは、酸素飽和度画像の生成等のため各種の画像処理を行う。
As shown in FIG. 24, the
図25に示すように、画像処理部60bは、酸素飽和度画像生成部61、特定色素濃度算出部62、テーブル補正部63、表示制御部64を備えている。拡張プロセッサ装置17には、各種処理に関するプログラムがプログラム用メモリ(図示しない)に組み込まれている。プロセッサによって構成される中央制御部(図示しない)がプログラム用メモリ内のプログラムを実行することによって、酸素飽和度画像生成部61、特定色素濃度算出部62、テーブル補正部63、表示制御部64の機能が実現する。
As shown in FIG. 25, the
酸素飽和度画像生成部61は、ベース画像生成部70と、演算値算出部71と、酸素飽和度算出部72と、酸素飽和度算出用テーブル73と、色調調整部74とを備えている。ベース画像生成部70は、プロセッサ装置14からの画像信号に基づいて、ベース画像を生成する。酸素飽和度画像OPのベースとしてベース画像を用いる。ベース画像は、観察対象の形状など形態情報を把握することができる画像であることが好ましい。ベース画像は、B2画像信号、G2画像信号、及び、R2画像信号から構成される。なお、ベース画像は、狭帯域光などによって、血管又は構造(腺管構造)などを強調表示された狭帯域光画像であってもよい。
The oxygen saturation
演算値算出部71は、酸素飽和度用画像信号に含まれるB1画像信号、G2画像信号、R2画像信号に基づく演算処理によって演算値を算出する。具体的には、演算値算出部71は、酸素飽和度の算出に用いる演算値として、B1画像信号とG2画像信号の信号比B1/G2と、R2画像信号とG2画像信号の信号比R2/G2とを算出する。なお、信号比B1/G2と信号比R2/G2については、それぞれ対数化(ln)することが好ましい。また、演算値としては、B1画像信号、G2画像信号、及びR2画像信号から算出される色差信号Cr、Cb、又は、彩度S、色相Hなどを用いてもよい。
The calculation
酸素飽和度算出部72は、酸素飽和度算出用テーブル73を参照し、演算値に基づいて、酸素飽和度を算出する。酸素飽和度算出用テーブル73には、演算値の一つである信号比B1/G2、R2/G2と、酸素飽和度との相関関係が記憶されている。相関関係については、信号比ln(B1/G2)を縦軸、信号比ln(R2/G2)を横軸の2次元座標で表現した場合には、酸素飽和度の状態は横軸方向に延びた等高線ELで表現され、酸素飽和度が異なると等高線ELは縦軸方向に異なる位置に分布する(酸素飽和度算出用テーブル73a(図16参照))。酸素飽和度算出用テーブル73は、2次元座標で表現された酸素飽和度算出用テーブル73aを含む。
The oxygen
酸素飽和度算出部72は、酸素飽和度算出用テーブル73を参照し、信号比B1/G2,R2/G2に対応する酸素飽和度を画素毎に算出する。例えば、図26に示すように、酸素飽和度算出用テーブル73aを参照し、特定の画素の信号比がln(B1*/G2*)、ln(R2*/G2*)である場合には、信号比がln(B1*/G2*)、ln(R2*/G2*)に対応する酸素飽和度は「40%」である。したがって、酸素飽和度算出部72は、特定の画素の酸素飽和度を「40%」と算出する。
The oxygen
色調調整部74は、酸素飽和度算出部72で算出した酸素飽和度を用いて、ベース画像の色調を変化させる合成色処理を行うことによって、酸素飽和度画像を生成する。色調調整部74では、ベース画像において、酸素飽和度が閾値を超えている領域については、色調を維持し、酸素飽和度が閾値以下の領域については、酸素飽和度に応じて変化する色調に変更する。これにより、酸素飽和度が閾値を超える正常な部位の色調は維持する一方、酸素飽和度が低くなる閾値以下の異常な部位の色調のみを変化させているため、正常な部位の形態情報を観察可能な状況下で、異常な部位の酸素状態を把握することが可能となる。
The color
なお、色調調整部74においては、酸素飽和度の大小に関わらず、酸素飽和度に応じた色を割り当てた疑似カラー処理によって、酸素飽和度画像を生成してもよい。疑似カラー処理を行う場合には、ベース画像は不要となる。
In addition, the color
特定色素濃度算出部62は、特定色素濃度算出用テーブル75を備える。特定色素濃度算出部62は、補正モードにおいて、観察対象に含まれる色素のうち血中ヘモグロビン以外の特定色素に感度を持つ波長帯域の画像情報を含む特定色素画像信号に基づいて、特定色素濃度を算出する。特定色素としては、例えば、ビリルビンなどの黄色色素が含まれる。特定色素画像信号には、少なくともB3画像信号を含めることが好ましい。具体的には、特定色素濃度算出部62は、信号比ln(B1/G2)、ln(G2/R2)、ln(B3/G3)を算出する。そして、特定色素濃度算出部62は、特定色素濃度算出用テーブル75を参照して、信号比ln(B1/G2)、ln(G2/R2)、ln(B3/G3)に対応する特定色素濃度を算出する。
The specific dye
特定色素濃度算出用テーブル75には信号比ln(B1/G2)、ln(G2/R2)、ln(B3/G3)と特定色素濃度との相関関係が記憶されている。例えば、信号比ln(B1/G2)、ln(G2/R2)、ln(B3/G3)の範囲を5段階に分けた場合には、それら5段階の範囲の信号比ln(B1/G2)、ln(G2/R2)、ln(B3/G3)に対して、それぞれ特定色素濃度が「0」~「4」が対応付けて特定色素濃度算出用テーブル75に記憶されている。なお、信号比B3/G3については、対数化(ln)することが好ましい。 The specific dye concentration calculation table 75 stores the correlation between the signal ratios ln(B1/G2), ln(G2/R2), and ln(B3/G3) and the specific dye concentrations. For example, if the ranges of the signal ratios ln(B1/G2), ln(G2/R2), and ln(B3/G3) are divided into five stages, the specific dye concentrations "0" to "4" are associated with the signal ratios ln(B1/G2), ln(G2/R2), and ln(B3/G3) in the five stages, and are stored in the specific dye concentration calculation table 75. Note that it is preferable to logarithmize (ln) the signal ratio B3/G3.
テーブル補正部63は、補正モード時に行う補正処理として、特定色素濃度に基づいて、酸素飽和度算出用テーブル73を補正するテーブル補正処理を行う。テーブル補正処理では、酸素飽和度算出用テーブル73で記憶されている信号比B1/G2、R2/G2と酸素飽和度との相関関係を補正する。具体的には、テーブル補正部63は、特定色素濃度が「2」の場合において、図27に示すように、特定色素濃度に応じて定められる領域AR0~AR4のうち、特定色素濃度が「2」に対応する領域AR2において、酸素飽和度の状態を表す等高線ELを生成する。テーブル補正部63は、生成された等高線ELになるように、酸素飽和度算出用テーブル73を補正することにより、補正酸素飽和算出用テーブル73bを生成する。
The
図28に示すように、テーブル補正部63は、認識部81、領域設定部82、信頼度算出部83、比較処理部84、補正可否判定部85、高信頼度関心領域表示部86、領域選択部87、及び補正部88を備える。
As shown in FIG. 28, the
認識部81は、取得した第1照明光画像または第2照明光画像に写る複数の部位を認識する。なお、複数の部位とは、複数の種類の部位を意味し、複数の種類の部位とは、内視鏡画像において、互いに異なった色、テクスチャー等により、互いに異なった部分であると見える領域であってよく、必ずしも解剖学的に異なる部位でなくてよい。認識部81は、複数の種類の部位をそれぞれ異なる部位として認識する。
The
図29(A)に示すように、画像取得部60aで取得した第1照明光画像または第2照明光画像のいずれかである補正用画像90には横行結腸91及び腹膜92が写っている。なお、補正用画像90は、画像取得部60aで取得した内視鏡画像の一例であり、補正処理の対象となる画像である。図29(B)に示すように、認識部81は、補正用画像90において、横行結腸91及び腹膜92をそれぞれ異なる部位として認識する。図29(B)において、認識した複数の部位には、それぞれ異なる網掛けを付して示す。
As shown in FIG. 29(A), a
認識方法は公知の技術を用い、例えば、国際公開第2021/149552号公報に記載の方法を採用することができる。すなわち、内視鏡画像をニューラルネットワーク等の学習済みモデル(生体を撮影した画像から構成される画像セットを用いて学習したモデル)を用いて、部位または組織を認識することが好ましい。例えば、ニューラルネットワークとしてCNN(Convolutional Neural Network)を用いてマルチクラス分類(各クラスが異なる部位または組織に対応)を行い、部位または組織を認識することが好ましい。なお、CNNは、中間層にはプーリング層を含んでもよい。 The recognition method may use known technology, and for example, the method described in WO 2021/149552 may be adopted. That is, it is preferable to recognize the part or tissue from the endoscopic image using a trained model such as a neural network (a model trained using an image set consisting of images of a living body). For example, it is preferable to use a CNN (Convolutional Neural Network) as the neural network to perform multi-class classification (each class corresponds to a different part or tissue) and recognize the part or tissue. Note that the CNN may include a pooling layer in the intermediate layer.
また、他の認識方法として、例えば、特開2011-218090号公報に記載の方法を採用することができる。すなわち、画像取得部60aで得た第1照明光画像に写る観察対象の複数の部位をより精度良く認識するために、第1画像とは照明光が異なる第2画像を用い、かつ、第1画像および第2画像において、被写体の種類判別について設定する高信頼度エリアおよび低信頼度エリアとを用いることが好ましい。
As another recognition method, for example, the method described in JP 2011-218090 A can be adopted. That is, in order to more accurately recognize multiple parts of the object of observation that appear in the first illumination light image obtained by the
領域設定部82は、認識した部位ごとに関心領域を設定する。図30に示すように、認識部81で認識した横行結腸91と腹膜92とに関心領域を設定し、認識した横行結腸91に第1関心領域91aを設定し、認識した腹膜92に第2関心領域92aを設定する。各関心領域は、認識した横行結腸91と腹膜92とが重複しないように設定する。したがって、1つの横行結腸91又は腹膜92が複数の関心領域に含まれないように、関心領域を設定する。なお、第1関心領域91a及び第2関心領域92aは、実際には、図30に示す、異なる網掛けにより示す領域と同様に設定されるが、図が煩雑になることを避けるため、図では、第1関心領域91a又は第2関心領域92aの全ての領域を図示しない場合がある。関心領域を設定する部位としては、例えば大腸、小腸、肝臓、胃等が挙げられる。また大腸をさらに、直腸、S状結腸、下行結腸、横行結腸、上行結腸、盲腸等に区分してもよい。設定した関心領域は、この段階では拡張ディスプレイ18に表示しない。
The
信頼度算出部83は、第1関心領域91a及び第2関心領域92aのそれぞれに、第1関心領域91aまたは第2関心領域92aが含む画素に基づいて、関心領域信頼度Rcを算出する。関心領域信頼度Rcは、関心領域における信頼度である。なお、信頼度とは、より高い精度で酸素飽和度算出用テーブルが補正できることに関する指標である。信頼度が高い程、より精度高く酸素飽和度算出用テーブルが補正できる可能性があり、一方、信頼度が低い程、酸素飽和度算出用テーブルの補正精度に問題が生じる可能性がある。信頼度算出部83では、関心領域を対象とした関心領域信頼度Rcと、以下に説明するように、画素を対象とした画素信頼度Pcとを算出する。
The
信頼度算出部83は、関心領域信頼度Rcの算出のために、初めに画素信頼度Pcを算出する。画素信頼度Pcは、関心領域に含まれる画素を基に算出した信頼度である。画素信頼度Pcは、第1関心領域91a及び第2関心領域92aのそれぞれにおいて、各関心領域に含まれる画素と酸素飽和度算出用テーブルの補正に影響を与える要因とを用いて算出する。酸素飽和度の算出用テーブルの補正に影響を与える要因については後述する。関心領域信頼度Rcは、画素信頼度Pcと第1関心領域91a及び第2関心領域92aのそれぞれに含まれる画素数とを基に算出する。画素信頼度Pcは、関心領域信頼度Rcの算出に用いる他、ユーザが設定した条件を基に、拡張ディスプレイ18に表示する画像のために用いてもよい。
The
信頼度算出部83は、具体的には、第1照明光画像に含まれるB1画像信号、G1画像信号、R1画像信号、又は、第2照明光画像に含まれるB2画像信号、G2画像信号、R2画像信号に基づいて、酸素飽和度算出用テーブルの補正に影響を与える少なくとも1つの画素信頼度Pcを算出する。酸素飽和度算出用テーブルの補正に影響を与える要因には、例えば、出血、脂肪、残渣、粘液、または残液等を含む外乱や画素値等が挙げられる。したがって、これらの要因を用いて画素信頼度Pcを算出することが好ましい。画素信頼度Pcは、例えば、0から1の間の小数で表される。信頼度算出部83において複数種類の画素信頼度Pcを算出する場合には、各画素の画素信頼度Pcは、複数種類の画素信頼度Pcのうち最小値の画素信頼度Pcを採用することが好ましい。
Specifically, the
例えば、酸素飽和度の算出用テーブルの補正精度に影響を与える画素値については、G2画像信号の画素値を用いることができる。図31に示すように、定義線93においてG2画像信号の画素値が一定範囲Rx外の画素信頼度Pcは、G2画像信号の画素値が一定範囲Rx内の画素信頼度Pcよりも低くなっている。なお、定義線93は、G2画像信号の画素値と、酸素飽和度算出用テーブルの補正精度に関する画素信頼度Pcとの関係を示すものであり、過去のデータから予め設定されたものである。一定範囲Rx外の場合とは、ハレーションなどの高画素値である場合の他、暗部などの極小画素値の場合である。このように一定範囲Rx外の場合には、酸素飽和度算出用テーブルの補正精度が低くなっているため、それに応じて画素信頼度Pcも低くなっている。なお、画素信頼度Pcの算出には、G2画像信号の代わりにG1画像信号を用いてもよい。
For example, the pixel value of the G2 image signal can be used for the pixel value that affects the correction accuracy of the oxygen saturation calculation table. As shown in FIG. 31, the pixel reliability Pc of the pixel value of the G2 image signal outside the certain range Rx on the
また、酸素飽和度の算出用テーブルの補正精度に影響を与える外乱としては、出血、脂肪、残渣、粘液、または残液が少なくとも含まれ、これら外乱によっても画素信頼度Pcは変動する。上記外乱の一つである出血については、図32に示すように、縦軸ln(B2/G2)、横軸ln(R2/G2)からなる二次元平面において、定義線DFXからの距離に応じて画素信頼度Pcが定められている。ここでは、B2画像信号、G2画像信号、R2画像信号に基づいて二次元平面上でプロットした座標が、右下に位置するほど、画素信頼度Pcは低くなる。また、座標が、定義線DFXより左上の領域に位置する場合は、出血の程度による信頼度を、高信頼度である固定値とする。なお、図において、lnは自然対数を表している。B2/G2はB2画像信号とG2画像信号との信号比を、R2/G2はR2画像信号とG2画像信号との信号比を表している。 Also, disturbances that affect the accuracy of correction of the oxygen saturation calculation table include at least bleeding, fat, residue, mucus, or residual fluid, and these disturbances also cause pixel reliability Pc to fluctuate. For bleeding, which is one of the disturbances, as shown in FIG. 32, pixel reliability Pc is determined according to the distance from the defined line DFX on a two-dimensional plane consisting of the vertical axis ln (B2/G2) and the horizontal axis ln (R2/G2). Here, the pixel reliability Pc decreases as the coordinate plotted on the two-dimensional plane based on the B2 image signal, G2 image signal, and R2 image signal is located to the lower right. Also, when the coordinate is located in the upper left area of the defined line DFX, the reliability according to the degree of bleeding is set to a fixed value that is a high reliability. In the figure, ln represents the natural logarithm. B2/G2 represents the signal ratio between the B2 image signal and the G2 image signal, and R2/G2 represents the signal ratio between the R2 image signal and the G2 image signal.
また、上記外乱に含まれる脂肪、または、残渣、残液、粘液については、図33に示すように、縦軸ln(B1/G1)、横軸ln(R1/G1)からなる二次元平面において、定義線DFYからの距離に応じて画素信頼度Pcが定められている。ここでは、B1画像信号、G1画像信号、R1画像信号に基づいて二次元平面上でプロットした座標が左下に位置するほど、画素信頼度Pcは低くなる。また、座標が、定義線DFYより右上の領域に位置する場合は、脂肪の程度による信頼度を、高信頼度である固定値とする。B1/G1はB1画像信号とG1画像信号との信号比を、R1/G1はR1画像信号とG1画像信号との信号比を表している。 Furthermore, for fat, residue, residual liquid, and mucus contained in the disturbance, as shown in FIG. 33, pixel reliability Pc is determined according to the distance from the defined line DFY on a two-dimensional plane consisting of the vertical axis ln (B1/G1) and the horizontal axis ln (R1/G1). Here, the pixel reliability Pc decreases as the coordinate plotted on the two-dimensional plane based on the B1, G1, and R1 image signals is located further to the lower left. Furthermore, when the coordinate is located in the area to the upper right of the defined line DFY, the reliability based on the degree of fat is set to a fixed value that is high reliability. B1/G1 represents the signal ratio between the B1 and G1 image signals, and R1/G1 represents the signal ratio between the R1 and G1 image signals.
次に、信頼度算出部83は、関心領域信頼度Rcを計算する。関心領域信頼度Rcは、領域設定部82で設定した第1関心領域91a及び第2関心領域92aのそれぞれが含む画素それぞれに対し算出した画素信頼度Pcと、関心領域が含む画素数Nとに基づいて算出してもよい。すなわち、それぞれの関心領域において、下記式(1)に示すように、関心領域が含むすべての画素のそれぞれについて算出された画素信頼度Pcを合計し、この関心領域が含む画素数Nを用いて平均の画素信頼度Pcを算出し、これを、この関心領域における関心領域信頼度Rcとする。なお、関心領域信頼度Rcは、関心領域が含む各画素における画素信頼度Pcを用いた単純平均以外の算出方法により算出してもよい。例えば、重み付け平均、刈り込み平均等の平均、または、中央値、最頻値等、その他の統計量により算出してもよい。
Next, the
関心領域信頼度Rc=Σ(関心領域内画素の画素信頼度Pc)/関心領域内の画素数N (1) Region of interest reliability Rc = Σ (pixel reliability Pc of pixels in region of interest) / number of pixels in region of interest N (1)
比較処理部84は、領域設定部82で設定した第1関心領域91a及び第2関心領域92aごとに、信頼度算出部83が算出した関心領域信頼度Rcと予め設定された関心領域用閾値Rthとを比較する。関心領域用閾値Rthは、関心領域信頼度Rcに対する評価を行うための値であり、予め特定の値に設定することができる。関心領域用閾値Rthは、観察対象、信頼度の種類等に応じて予め設定する。
The
図34に示すように、第1関心領域91aの関心領域信頼度Rcが0.8、第2関心領域92aの関心領域信頼度Rcが0.2と算出され、関心領域用閾値Rthを0.5と設定した場合、関心領域信頼度Rcが関心領域用閾値Rth以上の比較結果93aと、関心領域信頼度Rcが関心領域用閾値Rthより小さい比較結果94bとを得る。
As shown in FIG. 34, when the region of interest reliability Rc of the first region of
補正可否判定部85は、比較処理部84により得られる比較結果に基づき、第1関心領域91a及び第2関心領域92aのそれぞれについて、酸素飽和度の算出に使用する酸素飽和度算出用テーブル73の補正が可能である高信頼度関心領域HRcであるか否かを判定する。図35に示すように、関心領域信頼度Rcが関心領域用閾値Rth以上の第1関心領域91aを高信頼度関心領域HRcに設定する。また、関心領域用閾値Rthより小さい第2関心領域92aを低信頼度関心領域LRcに設定することが好ましい。
The correction
高信頼度関心領域表示部86は、ユーザが高信頼度関心領域HRcを視認できるように、高信頼度関心領域HRcを拡張ディスプレイ18に表示する。高信頼度関心領域HRcを表示する場合は、ユーザが補正用画像90における高信頼度関心領域HRcを認識できる態様で拡張ディスプレイ18に表示すればよい。例えば、高信頼度関心領域HRcを、他の領域と区別できるような色により表示する、高信頼度関心領域HRcの輪郭を示す境界線により表示する等の方法が挙げられる。
The high-reliability region of
図36に示すように、補正可否判定部85により設定された高信頼度関心領域HRcをユーザが視認できるように、境界線95を拡張ディスプレイ18に表示する。また、上述の通り、低信頼度関心領域LRcに設定された第2関心領域92aは、これを用いて補正処理を行うことが、できないか、または、好ましくない。そのため、第2関心領域92aを示す境界線は、拡張ディスプレイ18には表示しない。
As shown in FIG. 36, a
領域選択部87は、ユーザによる高信頼度関心領域HRcの選択を受け入れる。ユーザは、拡張ディスプレイ18に境界線95aで表示された高信頼度関心領域HRcを確認した上で、補正処理を行うための高信頼度関心領域HRcを選択することができる。これにより、ユーザがより精度良く酸素飽和度を知りたいと考える部位または組織に合わせて、補正処理に用いる高信頼度関心領域HRcを選択することができる。なお、領域選択部87は、高信頼度関心領域HRcが複数ある場合は、ユーザによる複数の高信頼度関心領域HRcの選択を受け入れてもよい。
The
ユーザによる高信頼度関心領域HRcの選択は、例えば、ユーザがプロセッサ側インターフェース16、ズーム操作用スイッチ12d等を用いて行うことができる。拡張ディスプレイ18に表示される高信頼度関心領域HRcをプロセッサ側インターフェース16またはズーム操作用スイッチ12dを用いてユーザが選択すると、補正部88が、酸素飽和度の算出に使用する酸素飽和度算出用テーブル73の補正を、高信頼度関心領域HRcに基づき実施する。補正処理が完了すると、酸素飽和度モードに自動で切り替えられる。
The user can select the high reliability region of interest HRc, for example, by using the processor-
補正部88は、ユーザの指示により、補正処理である酸素飽和度算出用テーブル73の補正を実施する。酸素飽和度算出用テーブル73の補正は、補正用画像90内のユーザが選択した高信頼度関心領域HRcを用いて行われる。高信頼度関心領域HRcを用いて酸素飽和度算出用テーブル73の補正を行う場合、高信頼度関心領域HRcの画像情報を用いることができ、高信頼度関心領域HRcが含む画素毎の画像情報を用いることができる。
The
本実施形態では、酸素飽和度算出用テーブル73の補正は、酸素飽和度を表す曲面CV0~CV4(図21参照)からいずれかを選択することにより実施する。したがって、補正部88は、ユーザが選択した高信頼度関心領域HRcの画像情報として、この高信頼度関心領域HRcにおける黄色色素の濃度を用いて、上記したように、酸素飽和度を表す曲面CV0~CV4(図21参照)からいずれかを選択することにより酸素飽和度算出用テーブル73の補正を実施する。
In this embodiment, the correction of the oxygen saturation calculation table 73 is performed by selecting one of the curved surfaces CV0 to CV4 (see FIG. 21) that represent the oxygen saturation. Therefore, the
また、酸素飽和度算出部72は、ユーザが選択した高信頼度関心領域HRcが存在しない場合には、補正が行われない酸素飽和度算出用テーブル73を使用することにより観察対象の酸素飽和度を算出することが好ましい。これにより、酸素飽和度算出用テーブル73に対して望ましくない補正が行われることなく、より正確な酸素飽和度を算出することができる。
Furthermore, if there is no high-reliability region of interest HRc selected by the user, it is preferable that the oxygen
内視鏡システム10による補正モードにおける一連の処理の流れについて、図37のフローチャートに沿って説明を行う。ユーザがモード切り替え用スイッチ12cを操作することによって、補正モードに切り替えられる(ステップST100)。補正モードでは、拡張ディスプレイ18には、補正用画像90が表示される(ステップST110)。補正用画像90を基に、複数の部位を認識し(ステップST120)、認識した複数の部位に基づきそれぞれ関心領域82aを設定する(ステップST130)。設定した関心領域ごとに関心領域信頼度Rcを算出し(ステップST140)、さらに関心領域ごとに関心領域用閾値Rthと比較し(ステップST150)、関心領域信頼度Rcが関心領域用閾値Rth以上の場合は高信頼度関心領域HRcに設定する(ステップST160)。ユーザが高信頼度関心領域HRcを選択すると(ステップST170)、高信頼度関心領域HRcを用いて、酸素飽和度算出に関する酸素飽和度算出用テーブル73の補正処理を実行する(ステップST180)。補正処理を実行後、酸素飽和度モードに切り替える(ステップST190)。酸素飽和度モードでは、補正した酸素飽和度算出用テーブル73を用いて、内視鏡画像に対する酸素飽和度が算出される。
A series of processing steps in the correction mode by the
内視鏡システム10は、上記の構成により、酸素飽和度算出に関する補正処理において、高信頼度関心領域HRcを用いることができるため、内視鏡画像中に複数の部位が存在する場合に、精度高く補正することができる。そして、内視鏡システム10によれば、補正処理により酸素飽和度算出に関する補正を精度高く行うことができるため、内視鏡画像によらず、より精度の高い酸素飽和度を得ることができる。
The
なお、信頼度算出部83は、関心領域における画素信頼度Pcを算出する場合、算出の対象となる画素の補正用画像90の中心からの距離に応じて画素信頼度Pcを修正してもよい。修正した画素信頼度Pcを、修正画素信頼度とする。信頼度算出部83は、画素信頼度Pcを修正した場合、修正画素信頼度を用いて関心領域信頼度Pcを算出する。距離は、補正用画像90の横軸をx、縦軸をyとする場合、補正用画像90の中心の座標と算出の対象となる各画素の座標とのx軸の値とy軸の値のそれぞれの差の二乗の和の平方根により算出できる。
When calculating pixel reliability Pc in the region of interest, the
画素信頼度Pcの算出対象である画素につき、補正用画像90の中心からの距離により、例えば「近距離」と「遠距離」との2種類に分け、それぞれ互いに異なる修正用データを用いることにより画素信頼度Pcを修正することができる。修正用データは、予め補正用画像90における位置が異なる複数の画素の画素信頼度Pcと、酸素飽和度との関係を調べることにより、予め設定する。また、この際に、「近距離」の画素と「遠距離」の画素との分類基準も、修正用データの作成と合わせて設定する。
The pixels for which pixel reliability Pc is calculated can be divided into two categories, for example "near distance" and "far distance", depending on the distance from the center of the
図38に示すように、修正用データは、修正前の画素信頼度Pcである元画素信頼度と、修正画素信頼度との関係を示す。例えば、近距離修正用データである定義線96aは、元画素信頼度の大小に関わらず、元画素信頼度と修正画素信頼度とが比例する関係となるデータとする。一方、遠距離修正用データである定義線96bは、元画素信頼度が小さい場合よりも、元画素信頼度が大きい場合において、修正画素信頼度の増加が抑えられるような修正用データとする。
As shown in FIG. 38, the correction data indicates the relationship between the original pixel reliability, which is the pixel reliability Pc before correction, and the corrected pixel reliability. For example,
修正画素信頼度を用いることにより、より好ましく画素信頼度Pc、及び、画素信頼度Pcに基いて算出する領域信頼度Rcを算出することが可能となり、最終的に得られる酸素飽和度の精度を向上させることができる。 By using the modified pixel reliability, it is possible to more appropriately calculate the pixel reliability Pc and the region reliability Rc calculated based on the pixel reliability Pc, thereby improving the accuracy of the final oxygen saturation.
また、信頼度算出部83は、関心領域における関心領域信頼度Rcを算出する場合、関心領域の面積及び/または補正用画像90の中心からの関心領域の距離に応じた重み付けを行ってもよい。これらの重み付けは、関心領域の面積または補正用画像90の中心からの関心領域の距離と、重みとを関連付けたデータを用いて行うことができる。
In addition, when calculating the region of interest reliability Rc in the region of interest, the
図39に示すように、関心領域の面積に対する面積重みAwを、関心領域の面積と面積重みAwとを関連付けたデータである定義線97に従って算出してもよい。定義線97は、関心領域の面積と酸素飽和度との関係を調べることにより、予め設定したものである。
As shown in FIG. 39, the area weight Aw for the area of the region of interest may be calculated according to a
図40に示すように、補正用画像90の中心からの関心領域の距離(これ以降、関心領域距離と呼ぶ。)に対する距離重みDwを、定義線98に従って算出してもよい。定義線98は、関心領域距離と酸素飽和度との関係を調べることにより、予め設定したものである。なお、関心領域距離とは、補正用画像90の横軸をx、縦軸をyとする場合、補正用画像90の中心の座標と関心領域の中心または重心の座標とのx軸の値とy軸の値のそれぞれの差の二乗の和の平方根により算出できる。
As shown in FIG. 40, the distance weight Dw for the distance of the region of interest from the center of the correction image 90 (hereafter referred to as the region of interest distance) may be calculated according to a
関心領域の面積及び/または補正用画像90の中心からの関心領域の距離に応じた重み付けは、関心領域の面積に応じた重み付けのみ、または、補正用画像90の中心からの関心領域の距離に応じた重み付けのみを行っても良いし、両者を行っても良い。両者を行う場合は、下記式(2)に従って、重み付けされた関心領域信頼度Rcを算出する。
The weighting according to the area of the region of interest and/or the distance of the region of interest from the center of the
重み付けされた関心領域信頼度Rc=関心領域信頼度Rc×面積重みAw×距離重みDw (2) Weighted region of interest reliability Rc = region of interest reliability Rc × area weight Aw × distance weight Dw (2)
関心領域信頼度Rcに対する重み付けを行うことで、関心領域信頼度Rcの算出に影響を与える要因である、関心領域の面積または補正用画像90の中心からの関心領域の距離が反映される。したがって、より好ましく関心領域信頼度Rcを算出することが可能となり、最終的に得られる酸素飽和度の精度を向上させることができる。
By weighting the region of interest reliability Rc, the area of the region of interest or the distance of the region of interest from the center of the
なお、高信頼度関心領域表示部86は、ユーザの指示により、拡張ディスプレイ18に表示する高信頼度関心領域HRcの表示態様を変更してもよい。図41に示すように、拡張ディスプレイ18に表示され、高信頼度関心領域HRcを示す境界線95を消去し、代わりに、高信頼度関心領域HRcを表す関心領域表示色99を拡張ディスプレイ18に表示することにより、ユーザに高信頼度関心領域HRcを認識させてもよい。
The high-reliability region of
ユーザの指示により、拡張ディスプレイ18に表示する高信頼度関心領域HRcの表示態様を変更可能とすることにより、例えば、補正用画像90に写る高信頼度関心領域HRcの面積が小さい場合は関心領域表示色99を表示し、大きい場合は境界線95を表示する等、補正用画像90に写る画像の状態に合わせた表示態様に変更することが可能となり、ユーザの視認性を向上させる。
By making it possible to change the display mode of the high-reliability region of interest HRc displayed on the
また、高信頼度関心領域表示部86は、ユーザの指示により、高信頼度関心領域HRcに写る部位を表す名称を、高信頼度関心領域HRcに重畳して拡張ディスプレイ18に表示してもよい。図42に示すように、高信頼度関心領域HRcに重畳して、部位名100を拡張ディスプレイ18に重畳表示してもよい。図42の場合では、部位名100として「横行結腸」を表示する。部位名は上述の通り、例えば大腸、小腸、肝臓、胃等に設定してもよい。また大腸をさらに、直腸、S状結腸、下行結腸、横行結腸、上行結腸、盲腸等に区分してもよい。
Furthermore, the high reliability region of
ユーザの指示により、高信頼度関心領域HRcに写る部位を表す名称を、高信頼度関心領域HRcに重畳して拡張ディスプレイ18に表示することにより、例えば、類似形状の複数の部位が、それぞれ高信頼度関心領域HRcとして拡張ディスプレイ18に写る場合、複数の部位を表す複数の名称を高信頼度関心領域HRcに重畳して表示することにより、複数の部位それぞれの視認性をより向上させる効果が奏される。また、目的の部位が事前に分かる場合、例えば、予め設定した目的の部位の高信頼度関心領域HRcのみを拡張ディスプレイ18に表示することで、目的の部位が高信頼度関心領域HRcとして設定されているか否かの判別が容易になる。
By superimposing a name representing a part that appears in the high-reliability region of interest HRc on the
なお、領域選択部87は、ユーザによる複数の高信頼度関心領域HRcの選択を受け付け、選択された複数の高信頼度関心領域HRcに基づいてデータを補正してもよい。図43に示す例として、拡張ディスプレイ18に第1高信頼度関心領域HRc1及び第2高信頼度関心領域HRc2が、それぞれ境界線95a及び95bにより表示されている場合、ユーザがプロセッサ側インターフェース16またはズーム操作用スイッチ12dを用いて第1高信頼度関心領域HRc1及び第2高信頼度関心領域HRc2を選択すると、補正部88は、選択された第1高信頼度関心領域HRc1及び第2高信頼度関心領域HRc2に基づいた補正を実施する。この場合、補正部88は、選択された第1高信頼度関心領域HRc1及び第2高信頼度関心領域HRc2をあわせた関心領域を対象として、補正処理を行うことができる。
The
複数の高信頼度関心領域HRcに基づいて、酸素飽和度の算出に使用するデータの補正を実施可能とすることにより、例えば、補正目的の部位の種類が複数ある場合、視野を変えることなく、目的の複数の部位のみを選択的に用いた補正処理が行える。 By making it possible to correct the data used to calculate oxygen saturation based on multiple high-reliability regions of interest HRc, for example, when there are multiple types of regions to be corrected, correction processing can be performed selectively using only the multiple desired regions without changing the field of view.
高信頼度関心領域表示部86は、図44に示すように、判定報知部101を備えてもよい。判定報知部101は、目的の関心領域が補正可否判定部85により低信頼度関心領域LRcとして判定された場合、高信頼度関心領域HRcとして判定されるように、操作ガイダンス等をディスプレイ18に表示してユーザに報知する制御を行う。報知は音声等でもよい。
The high-reliability region of
図45(A)に示すように、補正可否判定部85が判定処理した低信頼度関心領域LRcをプロセッサ側インターフェース16またはズーム操作用スイッチ12dを用いてユーザが選択すると、図45(B)に示すように、ユーザが選択した低信頼度関心領域HRcが高信頼度関心領域HRcとするための操作ガイダンスGD1を拡張ディスプレイ18に表示することにより、ユーザに報知してもよい。「暗部を避けてください」との操作ガイダンスGD1が拡張ディスプレイ18に表示された場合、ユーザは、この操作ガイダンスGD1の報知により、操作ガイダンスGD1の内容を把握し、内視鏡12を操作することにより、より観察対象が明るく写るように操作する。これにより、低信頼度関心領域LRcを高信頼度関心領域HRcに変えて、補正処理等を進めることができる。
As shown in FIG. 45(A), when the user selects the low-reliability region of interest LRc determined by the correction
また、判定報知部101は、補正用画像90に高信頼度関心領域HRcが含まれないと補正可否判定部85が判定処理した場合は、ユーザにその旨を報知する制御を行ってもよい。報知は、目的の部位が高信頼度関心領域HRcとなるように、補正用画像90を再取得する操作ガイダンスとすることができる。
In addition, when the correction
図46(A)に示すように、補正用画像90に、補正処理において、第1低信頼度関心領域LRc1、及び第2低信頼度関心領域LRc2等の低信頼度関心領域LRcは含まれるが、高信頼度関心領域HRcが含まれないと補正可否判定部85が判定した場合は、図46(B)に示すように、ユーザが目的の部位である横行結腸91及び/又は腹膜92を高信頼度関心領域HRcとするための操作ガイダンスGD2を拡張ディスプレイ18に表示することにより、ユーザに報知してもよい。「出血、残渣、脂肪等を避けてください」との操作ガイダンスGD2が拡張ディスプレイ18に表示された場合、ユーザは、この操作ガイダンスGD2の報知により、操作ガイダンスGD2の内容を把握し、内視鏡12を操作することにより、より補正の影響を及ぼす要因の少ない補正用画像90を再取得することができる。
As shown in FIG. 46(A), if the correction
補正用画像90に高信頼度関心領域HRcが含まれない場合に、ユーザにその旨を報知することにより、ユーザは、補正用画像90を再取得するための内視鏡12を操作する場合、操作ガイダンスの指示に従うことにより、試行錯誤をすることなく、補正用画像90を再取得するための負担を軽減できる。
If the
なお、高信頼度関心領域表示部86は、高信頼度関心領域HRcが含む画素において、画素信頼度Pcが予め設定した画素信頼度用閾値Pth以上の画素を含む領域を、拡張ディスプレイ18に重畳して表示してもよい。
The high-reliability region of
図47(A)に示すように、補正用画像90における、境界線95a及び95b、高信頼度関心領域HRc1及び高信頼度関心領域HRc2、低信頼度関心領域LRcが拡張ディスプレイ18に表示される場合、図47(B)に示すように、高信頼度関心領域HRc1には、画素信頼度Pcが予め設定した画素信頼度用閾値Pth以上の画素を含む画素重畳領域102a及び102bが拡張ディスプレイ18に重畳表示され、高信頼度関心領域HRc2には、画素信頼度Pcが予め設定した画素信頼度用閾値Pth以上の画素を含む画素重畳領域102cが拡張ディスプレイ18に重畳表示されることが好ましい。
As shown in FIG. 47(A), when the
高信頼度関心領域HRcが含む画素において、画素信頼度Pcが予め設定した画素信頼度用閾値Pth以上の画素を含む領域を、拡張ディスプレイ18に重畳して表示することにより、ユーザは、手間をかけることなく、内視鏡画像のどの位置であればより正確な酸素飽和度が算出され得るのかを一目で把握することができる。なお、低信頼度関心領域LRcが含む画素においても、画素信頼度用閾値Pth以上の画素を含む領域を、拡張ディスプレイ18に重畳して表示してもよい。
By superimposing and displaying on the
上記実施形態において、DSP45、画像処理部50、画像通信部51、表示制御部52、及び中央制御部53、並びに、画像取得部60a、及び画像処理部60bといった各種の処理を実行する処理部(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウエア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、GPU(Graphical Processing Unit)、FPGA (Field Programmable Gate Array) などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、各種の処理を実行するために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。
In the above embodiment, the hardware structure of the processing units that perform various processes, such as the
1つの処理部は、これら各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合せ(例えば、複数のFPGA、CPUとFPGAの組み合わせ、またはCPUとGPUの組み合わせ等)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウエアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。 A single processing unit may be configured with one of these various processors, or may be configured with a combination of two or more processors of the same or different types (for example, multiple FPGAs, a combination of a CPU and an FPGA, or a combination of a CPU and a GPU, etc.). Multiple processing units may also be configured with one processor. As an example of configuring multiple processing units with one processor, first, there is a form in which one processor is configured with a combination of one or more CPUs and software, as represented by computers such as clients and servers, and this processor functions as multiple processing units. Second, there is a form in which a processor is used that realizes the functions of the entire system including multiple processing units with a single IC (Integrated Circuit) chip, as represented by System On Chip (SoC). In this way, the various processing units are configured using one or more of the above various processors as a hardware structure.
さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた形態の電気回路(circuitry)である。また、記憶部のハードウェア的な構造はHDD(hard disc drive)やSSD(solid state drive)等の記憶装置である。 More specifically, the hardware structure of these various processors is an electric circuit (circuitry) that combines circuit elements such as semiconductor elements. The hardware structure of the memory unit is a storage device such as a hard disc drive (HDD) or solid state drive (SSD).
上記の記載から、以下の付記項を把握することができる。
[付記項1]
酸素飽和度の算出に使用するデータを用いて観察対象の酸素飽和度を算出する内視鏡システムであって、
プロセッサを備え、
前記プロセッサは、
観察対象を撮影した画像を取得し、
取得した前記画像に写る複数の部位を認識し、
前記画像において、認識した前記部位ごとに関心領域を設定し、
前記関心領域ごとに、前記関心領域が含む画素に基づいて関心領域信頼度を算出し、
前記関心領域信頼度と予め設定された関心領域信頼度用閾値とを比較する比較処理を行い、
前記比較処理により得られる比較結果に基づき、前記関心領域のそれぞれについて、前記データの補正が可能である高信頼度関心領域であるか否かを判定する判定処理を行い、
前記高信頼度関心領域をディスプレイに表示し、
ユーザが選択した前記高信頼度関心領域に基づき、前記データの補正を実施する内視鏡システム。
[付記項2]
前記プロセッサは、前記関心領域が含む画素ごとに算出した画素信頼度と前記関心領域が含む画素数とに基づいて前記関心領域信頼度を算出する付記項1に記載の内視鏡システム。
[付記項3]
前記プロセッサは、前記画像における画像中心からの距離に応じて修正した前記画素信頼度を算出する付記項2に記載の内視鏡システム。
[付記項4]
前記プロセッサは、前記関心領域の面積または前記画像における画像中心からの距離に応じた重み付けを行うことにより、前記関心領域信頼度を算出する付記項1ないし3のいずれか1項に記載の内視鏡システム。
[付記項5]
前記プロセッサは、前記ユーザの指示により前記高信頼度関心領域の表示様態を変更する付記項1ないし4のいずれか1項に記載の内視鏡システム。
[付記項6]
前記プロセッサは、前記高信頼度関心領域に写る部位を表す名称を、前記高信頼度関心領域に重畳して前記ディスプレイに表示する付記項1ないし5のいずれか1項に記載の内視鏡システム。
[付記項7]
前記プロセッサは、前記ユーザによる複数の前記高信頼度関心領域の選択を受け付け、複数の前記高信頼度関心領域に基づいて前記データを補正する付記項1ないし6のいずれか1項に記載の内視鏡システム。
[付記項8]
前記プロセッサは、前記比較結果において、前記関心領域信頼度が前記関心領域信頼度用閾値以上の場合は前記高信頼度関心領域と判定し、前記関心領域信頼度が前記関心領域信頼度用閾値よりも低い場合は、前記関心領域を前記データの補正が不可能である低信頼度関心領域と判定する判定処理を行う付記項1ないし7のいずれか1項に記載の内視鏡システム。
[付記項9]
前記プロセッサは、前記ユーザが前記低信頼度関心領域を選択した場合は、前記低信頼度関心領域を前記高信頼度関心領域とするための操作ガイダンスを前記ユーザに報知する制御を行う付記項8に記載の内視鏡システム。
[付記項10]
前記プロセッサは、前記画像に前記高信頼度関心領域が含まれないと判定した場合は、前記ユーザに報知する制御を行う付記項1ないし9のいずれか1項に記載の内視鏡システム。
[付記項11]
前記プロセッサは、前記画素信頼度が画素信頼度用閾値以上の領域を前記高信頼度関心領域に重畳して前記ディスプレイに表示する制御を行う付記項2ないし10のいずれか1項に記載の内視鏡システム。
[付記項12]
前記プロセッサは、前記データの補正が実施された場合、補正された前記データに基づき、前記画像の酸素飽和度を算出する付記項1ないし11のいずれか1項に記載の内視鏡システム。
From the above description, the following additional points can be understood:
[Additional Note 1]
An endoscope system that calculates an oxygen saturation level of an observation object using data used for calculating an oxygen saturation level,
A processor is provided.
The processor,
Acquire an image of the object to be observed,
Recognizing a plurality of parts appearing in the acquired image,
A region of interest is set for each of the recognized parts in the image;
calculating a region of interest confidence for each of the regions of interest based on pixels contained in the region of interest;
performing a comparison process of comparing the region of interest reliability with a preset region of interest reliability threshold;
performing a determination process for determining whether each of the regions of interest is a high-reliability region of interest for which the data can be corrected based on a comparison result obtained by the comparison process;
displaying the high confidence region of interest on a display;
An endoscope system that corrects the data based on the high confidence region of interest selected by a user.
[Additional Note 2]
The endoscope system according to claim 1, wherein the processor calculates the region of interest reliability based on a pixel reliability calculated for each pixel included in the region of interest and the number of pixels included in the region of interest.
[Additional Note 3]
The endoscope system according to claim 2, wherein the processor calculates the pixel reliability modified according to a distance from a center of an image in the image.
[Additional Note 4]
An endoscopic system according to any one of claims 1 to 3, wherein the processor calculates the region of interest reliability by weighting the region of interest according to its area or its distance from the image center in the image.
[Additional Note 5]
The endoscope system according to any one of claims 1 to 4, wherein the processor changes a display mode of the high-reliability region of interest in response to an instruction from the user.
[Additional Note 6]
The endoscope system according to any one of claims 1 to 5, wherein the processor displays on the display a name indicating a region depicted in the high reliability region of interest superimposed on the high reliability region of interest.
[Additional Note 7]
The endoscopic system of any one of claims 1 to 6, wherein the processor accepts a selection of a plurality of the high reliability regions of interest by the user, and corrects the data based on the plurality of the high reliability regions of interest.
[Additional Note 8]
An endoscopic system as described in any one of appendix 1 to 7, wherein the processor performs a determination process in which, in the comparison result, if the region of interest reliability is equal to or greater than a threshold for the region of interest reliability, the region of interest is determined to be a high reliability region of interest, and if the region of interest reliability is lower than the threshold for the region of interest reliability, the region of interest is determined to be a low reliability region of interest in which correction of the data is not possible.
[Additional Note 9]
The endoscopic system described in Appendix 8, wherein the processor performs control to notify the user of operational guidance for changing the low-reliability region of interest to the high-reliability region of interest when the user selects the low-reliability region of interest.
[Additional Item 10]
The endoscope system according to any one of claims 1 to 9, wherein the processor performs control to notify the user when it is determined that the image does not include the high-reliability region of interest.
[Additional Note 11]
The endoscope system according to any one of claims 2 to 10, wherein the processor controls the display to superimpose an area in which the pixel reliability is equal to or greater than a pixel reliability threshold on the high reliability area of interest.
[Additional Item 12]
An endoscopic system according to any one of claims 1 to 11, wherein the processor, when correction of the data is performed, calculates the oxygen saturation of the image based on the corrected data.
10 内視鏡システム
12 内視鏡
12a 挿入部
12b 操作部
12c モード切り替え用スイッチ
12d ズーム操作用スイッチ
13 光源装置
14 プロセッサ装置
15 ディスプレイ
16 プロセッサ側インターフェース
17 拡張プロセッサ装置
18 拡張ディスプレイ
20 光源部
20a V-LED
20b BS-LED
20c BL-LED
20d G-LED
20e R-LED
21 光源用プロセッサ
23 光路結合部
24 ライトガイド
30 照明光学系
31 撮像光学系
32 照明レンズ
35 対物レンズ
36 撮像センサ
37 撮像用プロセッサ
40 CDS/AGC回路
41 A/Dコンバータ
45 DSP
50 画像処理部
51 画像通信部
52 表示制御部
53 中央制御部
55 白色光
55a、55b、55c、56a、56b、 曲線
56 第1照明光
57 第2照明光
58 第3照明光
60a 画像取得部
60b 画像処理部
61 酸素飽和度画像生成部
62 特定色素濃度算出部
63 テーブル補正部
64 表示制御部
70 ベース画像生成部
71 演算値算出部
72 酸素飽和度算出部
73、73a、73b 酸素飽和度算出用テーブル
74 色調調整部
75 特定色素濃度算出用テーブル
81 認識部
82 領域設定部
83 信頼度算出部
84比較処理部
85 補正可否判定部
86 高信頼度関心領域表示部
87 領域選択部
88 補正部
90 補正用画像
91 横行結腸
92 腹膜
91a 第1関心領域
92a 第2関心領域
93 定義線
93a、94b 比較結果
95、95a、95b 境界線
96a、96b、97、98 定義線
99 関心領域表示色
100 部位名
101 判定報知部
102a、102b 画素重畳領域
NP1 白色光画像
NP2 白色光相当画像
OP 酸素飽和度画像
MS メッセージ
BF Bカラーフィルタ
GF Gカラーフィルタ
RF Rカラーフィルタ
AR0~AR4 領域
EL、ELL、ELH 等高線
CV0~CV4 曲面
DFX、DFY 定義線
HRc 高信頼度関心領域
HRc1 第1高信頼度関心領域
HRc2 第2高信頼度関心領域
LRc 低信頼度関心領域
LRc1 第1低信頼度関心領域
LRc2 第2低信頼度関心領域
Aw 面積重み
Dw 距離重み
GD1、GD2 操作ガイダンス
ST100~ST190 ステップ
10
20b BS-LED
20c BL-LED
20d G-LED
20e R-LED
21
50 Image processing unit 51 Image communication unit 52 Display control unit 53 Central control unit 55 White light 55a, 55b, 55c, 56a, 56b Curve 56 First illumination light 57 Second illumination light 58 Third illumination light 60a Image acquisition unit 60b Image processing unit 61 Oxygen saturation image generation unit 62 Specific dye concentration calculation unit 63 Table correction unit 64 Display control unit 70 Base image generation unit 71 Calculation value calculation unit 72 Oxygen saturation calculation unit 73, 73a, 73b Oxygen saturation calculation table 74 Color tone adjustment unit 75 Specific dye concentration calculation table 81 Recognition unit 82 Region setting unit 83 Reliability calculation unit 84 Comparison processing unit 85 Correction possibility determination unit 86 High reliability region of interest display unit 87 Region selection unit 88 Correction unit 90 Correction image 91 Transverse colon 92 Peritoneum 91a First region of interest 92a Second region of interest 93 Definition lines 93a, 94b Comparison results 95, 95a, 95b Boundaries 96a, 96b, 97, 98 Definition line 99 Region of interest display color 100 Part name 101 Determination notification units 102a, 102b Pixel overlap region NP1 White light image NP2 White light equivalent image OP Oxygen saturation image MS Message BF B color filter GF G color filter RF R color filter AR0 to AR4 Regions EL, ELL, ELH Contour lines CV0 to CV4 Curved surfaces DFX, DFY Definition line HRc High-reliability region of interest HRc1 First high-reliability region of interest HRc2 Second high-reliability region of interest LRc Low-reliability region of interest LRc1 First low-reliability region of interest LRc2 Second low-reliability region of interest Aw Area weight Dw Distance weights GD1, GD2 Operation Guidance ST100 to ST190 Steps
Claims (14)
プロセッサを備え、
前記プロセッサは、
観察対象を撮影した画像を取得し、
取得した前記画像に写る複数の部位を認識し、
前記画像において、認識した前記部位ごとに関心領域を設定し、
前記関心領域ごとに、前記関心領域が含む画素に基づいて関心領域信頼度を算出し、
前記関心領域信頼度と予め設定された関心領域信頼度用閾値とを比較する比較処理を行い、
前記比較処理により得られる比較結果に基づき、前記関心領域のそれぞれについて、前記データの補正が可能である高信頼度関心領域であるか否かを判定する判定処理を行い、
前記高信頼度関心領域をディスプレイに表示し、
ユーザが選択した前記高信頼度関心領域に基づき、前記データの補正を実施する内視鏡システム。 An endoscope system that calculates an oxygen saturation level of an observation object using data used for calculating an oxygen saturation level,
A processor is provided.
The processor,
Acquire an image of the object to be observed,
Recognizing a plurality of parts appearing in the acquired image,
A region of interest is set for each of the recognized parts in the image;
calculating a region of interest confidence for each of the regions of interest based on pixels contained in the region of interest;
performing a comparison process of comparing the region of interest reliability with a preset region of interest reliability threshold;
performing a determination process for determining whether each of the regions of interest is a high-reliability region of interest for which the data can be corrected based on a comparison result obtained by the comparison process;
displaying the high confidence region of interest on a display;
An endoscope system that corrects the data based on the high confidence region of interest selected by a user.
プロセッサを備え、
前記プロセッサは、
観察対象を撮影した画像を取得し、
取得した前記画像に写る複数の部位を認識し、
前記画像において、認識した前記部位ごとに関心領域を設定し、
前記関心領域ごとに、前記関心領域が含む画素に基づいて関心領域信頼度を算出し、
前記関心領域信頼度と予め設定された関心領域信頼度用閾値とを比較する比較処理を行い、
前記比較処理により得られる比較結果に基づき、前記関心領域のそれぞれについて、前記データの補正が可能である高信頼度関心領域であるか否かを判定する判定処理を行い、
前記高信頼度関心領域をディスプレイに表示し、
ユーザが選択した前記高信頼度関心領域に基づき、前記データの補正を実施する内視鏡システムの作動方法。 1. A method for operating an endoscope system that calculates an oxygen saturation level of an observation object using data used for calculating an oxygen saturation level, comprising:
A processor is provided.
The processor,
Acquire an image of the object to be observed,
Recognizing a plurality of parts appearing in the acquired image,
A region of interest is set for each of the recognized parts in the image;
calculating a region of interest confidence for each of the regions of interest based on pixels contained in the region of interest;
performing a comparison process of comparing the region of interest reliability with a preset region of interest reliability threshold;
performing a determination process for determining whether each of the regions of interest is a high-reliability region of interest for which the data can be corrected based on a comparison result obtained by the comparison process;
displaying the high confidence region of interest on a display;
A method of operating an endoscopy system, comprising: correcting the data based on the high confidence region of interest selected by a user.
コンピュータに、
観察対象を撮影した画像を取得する機能と、
取得した前記画像に写る複数の部位を認識する機能と、
前記画像において、認識した前記部位ごとに関心領域を設定する機能と、
前記関心領域ごとに、前記関心領域が含む画素に基づいて関心領域信頼度を算出する機能と、
前記関心領域信頼度と予め設定された関心領域信頼度用閾値とを比較する比較処理を行う機能と、
前記比較処理により得られる比較結果に基づき、前記関心領域のそれぞれについて、前記データの補正が可能である高信頼度関心領域であるか否かを判定する判定処理を行う機能と、
前記高信頼度関心領域をディスプレイに表示する機能と、
ユーザが選択した前記高信頼度関心領域に基づき、前記データの補正を実施する機能とを実現させるための内視鏡システムの作動プログラム。
An operation program for an endoscope system for calculating an oxygen saturation level of an observation target using data used for calculating an oxygen saturation level, the operation program comprising:
A function for acquiring images of the object to be observed;
A function of recognizing a plurality of parts appearing in the acquired image;
A function of setting a region of interest for each of the recognized parts in the image;
A function of calculating a region of interest reliability for each of the regions of interest based on pixels contained in the region of interest;
A function of performing a comparison process to compare the region of interest reliability with a preset region of interest reliability threshold;
a function of performing a determination process for determining whether each of the regions of interest is a high-reliability region of interest for which the data can be corrected based on a comparison result obtained by the comparison process;
displaying said high confidence region of interest on a display;
and a function of correcting the data based on the high-reliability region of interest selected by a user.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2023168895 | 2023-09-28 | ||
| JP2023-168895 | 2023-09-28 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025070479A1 true WO2025070479A1 (en) | 2025-04-03 |
Family
ID=95203727
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2024/034153 Pending WO2025070479A1 (en) | 2023-09-28 | 2024-09-25 | Endoscope system, method for operating same, and program for operating endoscope system |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025070479A1 (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021210331A1 (en) * | 2020-04-17 | 2021-10-21 | 富士フイルム株式会社 | Image processing device and operating method therefor |
| JP2023026480A (en) * | 2019-02-19 | 2023-02-24 | 富士フイルム株式会社 | Medical imaging device, endoscopy system, and method of operating medical imaging device |
| WO2023132138A1 (en) * | 2022-01-07 | 2023-07-13 | 富士フイルム株式会社 | Processor device, operation method therefor, and endoscope system |
| WO2023132188A1 (en) * | 2022-01-05 | 2023-07-13 | 富士フイルム株式会社 | Endoscope system and operation method of same |
-
2024
- 2024-09-25 WO PCT/JP2024/034153 patent/WO2025070479A1/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2023026480A (en) * | 2019-02-19 | 2023-02-24 | 富士フイルム株式会社 | Medical imaging device, endoscopy system, and method of operating medical imaging device |
| WO2021210331A1 (en) * | 2020-04-17 | 2021-10-21 | 富士フイルム株式会社 | Image processing device and operating method therefor |
| WO2023132188A1 (en) * | 2022-01-05 | 2023-07-13 | 富士フイルム株式会社 | Endoscope system and operation method of same |
| WO2023132138A1 (en) * | 2022-01-07 | 2023-07-13 | 富士フイルム株式会社 | Processor device, operation method therefor, and endoscope system |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20240389829A1 (en) | Endoscope system | |
| US11179024B2 (en) | Endoscope system capable of correcting image, processor device, and method for operating endoscope system | |
| US12329351B2 (en) | Endoscope system and method of operating endoscope system | |
| JP7021183B2 (en) | Endoscope system, processor device, and how to operate the endoscope system | |
| US11185214B2 (en) | Endoscope system with image data correction, processor device, and method for operating endoscope system | |
| US10264955B2 (en) | Processor device and method for operating same, and endoscopic system and method for operating same | |
| US20180317754A1 (en) | Endoscopic system and endoscopic system operating method | |
| JP7692961B2 (en) | Endoscope system and method of operation thereof | |
| JP2017086303A (en) | Processor device, endoscope system, and image processing method | |
| US20240358245A1 (en) | Processor device, method for operating the same, and endoscope system | |
| US20240358244A1 (en) | Endoscope system and method of operating the same | |
| US11363943B2 (en) | Endoscope system and operating method thereof | |
| WO2025070479A1 (en) | Endoscope system, method for operating same, and program for operating endoscope system | |
| US20240335092A1 (en) | Endoscope system and method for operating the same | |
| JP2025058760A (en) | ENDOSCOPYRIGHT: 2014-01-13 ENDOSCOPYRIGHT: 2014-01-13 | |
| US20240341641A1 (en) | Endoscope system and method for operating the same | |
| US20250169706A1 (en) | Endoscope system, operation method for endoscope system, and non-transitory computer readable medium | |
| US20250176876A1 (en) | Endoscope system and method for operating the same | |
| WO2020121868A1 (en) | Endoscope system | |
| JP6999597B2 (en) | Processor device and its operation method and endoscopic system | |
| JP2025135460A (en) | Endoscope system, method and program for generating biological parameter images | |
| JP2024052487A (en) | Processor device, endoscope system, and method of operating same | |
| WO2025187496A1 (en) | Endoscope system and operation method therefor | |
| JP2020178738A (en) | Processor device and endoscopic system and calibration method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24872265 Country of ref document: EP Kind code of ref document: A1 |