WO2025069198A1 - Setting assistance device, setting assistance method, and setting assistance program - Google Patents
Setting assistance device, setting assistance method, and setting assistance program Download PDFInfo
- Publication number
- WO2025069198A1 WO2025069198A1 PCT/JP2023/034976 JP2023034976W WO2025069198A1 WO 2025069198 A1 WO2025069198 A1 WO 2025069198A1 JP 2023034976 W JP2023034976 W JP 2023034976W WO 2025069198 A1 WO2025069198 A1 WO 2025069198A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inference
- layer
- threshold
- result
- setting assistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
Definitions
- the present invention relates to a setting assistance device, a setting assistance method, and a setting assistance program.
- edge devices have significant resource constraints, it is difficult to keep a highly accurate DNN model resident and running. Therefore, in order to achieve both accuracy and real-time performance, a framework has been proposed in which low-accuracy but low-load inference (hereinafter sometimes referred to as “light inference”) is performed on the edge device, and high-accuracy inference (hereinafter sometimes referred to as “heavy inference”) is performed on the cloud side when it is determined to be necessary.
- light inference low-accuracy but low-load inference
- high-accuracy inference hereinafter sometimes referred to as “heavy inference
- Non-Patent Document 1 when performing DNN inference, a technology is known in which the necessity of the next inference is determined based on the output results such as the confidence level from the light inference and a threshold value, and heavy inference processing is performed when it is determined to be necessary, thereby reducing the frequency of heavy inference and improving the performance of the entire system (for example, see Non-Patent Document 1).
- the above-mentioned conventional technology has an issue in that it is not easy to tune the threshold value used for inference.
- the threshold value used to determine whether or not to perform heavy inference is a delicate value that affects accuracy and performance, so tuning is required to achieve the required accuracy and performance depending on the inference use case.
- the process of verifying each threshold that balances accuracy and performance and determining the optimal threshold is a heavy load.
- the setting assistance device of the present invention is characterized by having a matching unit that varies the threshold value used in a second-layer inference in which a second inference with a heavier processing load than a first inference is performed when the inference result of a first inference with a lighter processing load satisfies a threshold condition, and performs the second-layer inference for each varied threshold value, and compares the results of the second-layer inference for each varied threshold value obtained by performing the second-layer inference for each varied threshold value with correct answer data, and a creation unit that creates a correlation graph between the varied threshold value and the accuracy and performance of the second-layer inference for each varied threshold value calculated as the comparison result by the matching unit.
- the present invention has the effect of making it easier to tune the thresholds used in inference.
- FIG. 1 is a diagram for explaining an overall picture of the processing of the setting assistance device according to the present embodiment.
- FIG. 2 is a diagram showing an example of a process performed by the setting assistant device according to the present embodiment.
- FIG. 3 is a diagram showing an example of the configuration of the setting assistance device according to the present embodiment.
- FIG. 4 is a table showing an example of a matching result according to the present embodiment.
- FIG. 5 is a table diagram showing an example of an inference condition according to this embodiment.
- FIG. 6 is a diagram showing an example of auxiliary setting information to be output according to the present embodiment.
- FIG. 7 is a diagram showing an example of generation of auxiliary setting information according to the present embodiment.
- FIG. 8 is a diagram showing an example of generation of auxiliary setting information according to the present embodiment.
- FIG. 1 is a diagram for explaining an overall picture of the processing of the setting assistance device according to the present embodiment.
- FIG. 2 is a diagram showing an example of a process performed by the setting assistant device according to
- FIG. 9 is a diagram showing an example of generation of auxiliary setting information according to the present embodiment.
- FIG. 10 is a diagram showing an example of generation of auxiliary setting information according to the present embodiment.
- FIG. 11 is a diagram showing an example of generation of auxiliary setting information according to the present embodiment.
- FIG. 12 is a diagram showing an example of generation of auxiliary setting information according to the present embodiment.
- FIG. 13 is a diagram showing an example of generation of auxiliary setting information according to the present embodiment.
- FIG. 14 is a flowchart showing an example of a procedure for generating auxiliary setting information according to the present embodiment.
- FIG. 15 is a diagram illustrating an example of a computer that executes a setting assistance program according to this embodiment.
- Fig. 1 is a diagram for explaining an overall picture of the processing of the setting assistance device 100 according to this embodiment.
- the setting assistance device 100 shown in Fig. 1 is an example of a computer that provides a technology for repeatedly performing two-layer inference while changing a threshold value (hereinafter, may be simply referred to as "threshold value”) used to determine whether or not to perform heavy inference in two-layer inference, and for comparing the inference result of the two-layer inference with correct answer data to create a correlation graph between the threshold value, accuracy, and performance.
- threshold value hereinafter, may be simply referred to as "threshold value”
- a reference technology that performs inference in two stages (two-layer inference) to reduce the frequency of heavy inference, which has a high processing load, and improve the performance of the entire two-layer inference system.
- a two-layer inference system 10 outputs predetermined numerical values such as difference and confidence levels by performing light inference on the edge side using a lightweight model with a low processing load, such as a small amount of calculation, and compares the results with a preset threshold value. Then, the two-layer inference system 10 performs heavy inference processing on the cloud side only if it is determined as a result of the comparison that heavy inference (high-precision DNN inference) should be performed.
- the thresholds used in the two-layer inference system 10 described above are delicate values that affect accuracy and performance, and therefore require tuning to suit the purpose of the inference, but there is a problem in that such tuning is not easy.
- the performance required for two-layer inference is defined by the application of the user who uses the two-layer inference.
- the thresholds are then determined to satisfy the required performance described above, but there is a trade-off between accuracy and performance that varies depending on the threshold settings, such as when emphasis is placed on performance, the accuracy decreases. For this reason, users who use two-layer inference need to tune the thresholds according to the accuracy and performance required for each use case of the two-layer inference.
- it is not easy to verify the optimal threshold by comparing the balance between accuracy and performance for each threshold, which is a lot of work.
- the setting assistance device 100 varies the threshold used in the second-layer inference, which performs an inference (second inference) that has a heavier processing load than the light inference, when the inference result of the inference (first inference) with a light processing load satisfies the threshold condition, and performs the second-layer inference for each varied threshold, and compares the results of the second-layer inference for each varied threshold with the correct answer data.
- the setting assistance device 100 then creates a correlation graph between the varied threshold, the accuracy for each varied threshold calculated as the comparison result, and the performance of the second-layer inference.
- the setting assistance device 100 performs two-layer inference using moving images, still images, etc. as input data. At this time, the setting assistance device 100 repeatedly performs two-layer inference while varying the threshold value used for judgment based on predetermined conditions, and outputs the result of the two-layer inference for each varied threshold value.
- the configuration assistance device 100 compares the output inference results of the two-layer inference with correct answer data such as data generated by heavy inference using a highly accurate second-layer model or data generated in advance manually (e.g., ground truth, etc.).
- the configuration assistance device 100 creates a correlation graph or the like that associates predetermined indices that indicate the accuracy calculated by matching the inference results of the two-layer inference with the correct answer data and the performance calculated from the results of the two-layer inference with each of the varied thresholds.
- the setting assistance device 100 automatically creates a correlation graph showing the relationship between accuracy, performance, and thresholds based on the results of matching the results of two-layer inference with ground truth data, making it easy to tune thresholds to suit the purpose and needs of the inference.
- FIG. 2 is a diagram showing an example of processing by the setting assistance device 100 according to this embodiment.
- FIG. 2 shows an example in which the setting assistance device 100 outputs setting assistance information (hereinafter, sometimes simply referred to as "setting assistance information") such as a correlation graph that associates the changed threshold with the accuracy and performance of the two-layer inference based on the comparison result between the result of the two-layer inference for each threshold and the correct answer data, a recommended threshold, and a comparison result of the change in the inference result, and sets the thresholds and the like of the two-layer inference system 10 using the output setting assistance information.
- setting assistance information such as a correlation graph that associates the changed threshold with the accuracy and performance of the two-layer inference based on the comparison result between the result of the two-layer inference for each threshold and the correct answer data, a recommended threshold, and a comparison result of the change in the inference result
- the configuration assistance device 100 accepts specifications of input data to be input to the model used for two-layer inference, models to be used for light and heavy inference in two-layer inference, correct answer data to be used in matching processing, inference conditions for two-layer inference, etc.
- the setting assistance device 100 inputs specified input data for the model used in the two-layer inference, and performs light inference while varying the thresholds used for judgment based on the specified inference conditions.
- the setting assistance device 100 then performs heavy inference and outputs the results obtained from the heavy inference as the result of the two-layer inference when the degree of difference, certainty, etc. obtained as a result of the light inference satisfy the judgment conditions for each of the varied thresholds.
- the setting assistance device 100 repeatedly performs the above-mentioned process according to the specified inference conditions.
- the configuration assistance device 100 performs heavy inference generation of correct answer data to be used in the matching process and accepts data generated in advance (ground truth), etc., in order to prepare correct answer data.
- the setting assistance device 100 compares the inference results of the two-layer inference with the correct answer data. Then, as shown in (5) of FIG. 2, the setting assistance device 100 creates setting assistance information such as a correlation graph that associates accuracy and performance for each threshold value, and a comparison result of recommended threshold values and changes in inference results, based on the comparison results.
- the setting assistance device 100 outputs setting assistance information to the user, such as a correlation graph that associates the created accuracy with the performance of the two-layer inference, recommended thresholds, and comparison results of changes in inference results. Then, as shown in FIG. 2 (7), the user uses the output setting assistance information to set thresholds, etc., for the two-layer inference system 10, etc.
- FIG. 3 is a diagram showing an example of the configuration of the setting assistance device 100 according to this embodiment.
- the setting assistance device 100 has a communication unit 110, a storage unit 120, and a control unit 130.
- the setting assistance device 100 can have an input unit such as a keyboard or a mouse for receiving input such as operations by a user or the like.
- the setting assistance device 100 can have a display unit such as a display for displaying setting assistance information to a user or the like.
- the communication unit 110 performs data communication related to the reception of input data and correct answer data, the output of information related to the calculated threshold value, etc.
- the communication unit 110 is realized by a NIC (Network Interface Card) or the like, and controls communication via an electric communication line such as a LAN (Local Area Network) or the Internet.
- the communication unit 110 is connected to a network by wire or wirelessly as necessary, and can transmit and receive information in both directions.
- the storage unit 120 stores data and programs used in various processes by the control unit 130, and various data acquired by the operation of the control unit 130.
- the storage unit 120 is realized by a semiconductor memory element such as a random access memory (RAM) or a flash memory, or a storage device such as a hard disk or an optical disk. As shown in FIG. 3, the storage unit 120 has an input data DB 121, a correct answer data DB 122, a matching result DB 123, and an inference condition DB 124.
- the input data DB 121 is a database that stores input data to be input to a model used in two-layer inference.
- the input data DB 121 stores still images, moving images (video), and the like as input data to be input to the model.
- the supervised data DB 122 is a database that stores supervised data used in a matching process performed by a matching unit 134 described later.
- the supervised data DB 122 stores, as supervised data, results of object detection (e.g., Bounding Box, etc.) generated by a generating unit 132 described later, results of posture estimation, etc. (e.g., data such as key points and bones), generated data (ground truth) generated in advance by hand or by another information processing device, etc.
- the matching result DB 123 is a database that stores the results of a matching process performed by the matching unit 134 described later. Specifically, the matching result DB 123 stores predetermined indices of accuracy and performance associated with each of the varied thresholds for each combination of models to be used that is included in the specified inference conditions.
- FIG. 4 is a table diagram showing an example of the matching result according to this embodiment.
- the matching result DB 123 stores the accuracy, performance, recommended threshold value, etc. in association with each varied threshold value.
- the thresholds mentioned above include one or more thresholds that are varied based on the inference conditions specified by the user, etc.
- Precision is an evaluation index related to the result of matching the inference result of the two-layer inference with the correct answer data, and includes the accuracy rate, recall rate, F-measure, etc.
- Performance is an index that represents the performance of the two-layer inference, such as the proportion of heavy inferences performed using the second-layer model in the two-layer inference, and latency, which is an index of real-time performance.
- the recommended threshold is a threshold that meets the criteria specified by the parameters included in the inference conditions described later, and is information that identifies whether or not the threshold is recommended to the user, etc.
- the matching result DB123 stores matching results such as accuracy "80%”, performance "65%”, and recommended threshold “ ⁇ (recommended)" that correspond to the threshold "0.3” among the varied thresholds. Note that the recommended threshold " ⁇ " indicates that it is not a recommended threshold.
- the inference condition DB 124 is a database that stores inference conditions for creating auxiliary setting information.
- the inference condition DB 124 stores the inference conditions specified by a user, etc., in association with the model used, input data, correct answer data, evaluation index, and parameters.
- FIG. 5 is a table diagram showing an example of an inference condition according to this embodiment.
- the inference condition DB 124 stores models to be used, such as a first-layer model used for two-layer inference and a second-layer model used for heavy inference, which are associated with a unique number such as a No. that identifies the inference condition, input data, correct answer data, evaluation indices such as accuracy and performance, and parameters such as target values for the evaluation indices, threshold ranges, and the number of inference iterations.
- models to be used such as a first-layer model used for two-layer inference and a second-layer model used for heavy inference, which are associated with a unique number such as a No. that identifies the inference condition, input data, correct answer data, evaluation indices such as accuracy and performance, and parameters such as target values for the evaluation indices, threshold ranges, and the number of inference iterations.
- the above-mentioned model to be used is information indicating which model is to be used among a model used for motion detection, a model used for object detection, a model used for posture estimation, and the like.
- the input data is information indicating still images, moving images, and the like to be input to a model for performing two-layer inference.
- the correct answer data is information indicating the correct answer data to be used in the matching process by the matching unit 134 described later.
- the target value among the parameters is a parameter for determining a standard used when the recommended threshold is generated by the creation unit 135 described later.
- the threshold range among the parameters is the threshold variation range when the threshold is varied by the inference unit 133 described later to perform light inference.
- the number of inference repetitions among the parameters is a parameter indicating how many times light inference is performed within the threshold variation range.
- the accuracy and performance among the evaluation indexes are the same as those described in FIG. 4, and therefore will not be described here.
- the inference condition DB124 stores inference conditions such as the first layer model "motion detection model”, the second layer model “object detection model”, the input data “verification video A”, the correct answer data “correct answer data A”, the accuracy “correct answer rate”, the performance "proportion of frames processed by the first layer model”, the target values "accuracy: 70%, performance: 20%”, the threshold range "0 to 1", and the number of inference repetitions "10 times", all of which are associated with No. "1".
- the control unit 130 has an internal memory for temporarily storing programs and processing data that define various processing procedures of the setting assistance device 100, and is realized by electronic circuits such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit), and integrated circuits such as an ASIC (Application Specific Integrated Circuit) and an FPGA (Field Programmable Gate Array). As shown in FIG. 3, the control unit 130 has a receiving unit 131, a generating unit 132, an inferring unit 133, a collating unit 134, a creating unit 135, and an output unit 136.
- a receiving unit 131 a generating unit 132, an inferring unit 133, a collating unit 134, a creating unit 135, and an output unit 136.
- the receiving unit 131 receives the designation of inference conditions for creating auxiliary setting information. Specifically, the receiving unit 131 receives the model to be used, the input data, the correct answer data, the evaluation index, and the parameters via the input unit and the communication unit 110 described above, and stores them in the inference condition DB 124.
- the reception unit 131 also receives input data used for two-layer inference by the inference unit 133 described below via the communication unit 110 and stores it in the input data DB 121.
- the generation unit 132 described below does not generate correct answer data for use in matching processing by the matching unit 134 described below
- the reception unit 131 receives separately generated correct answer data via the input unit or communication unit 110 and stores it in the correct answer data DB 122.
- the reception unit 131 receives data generated in another information processing device or data generated manually as correct answer data (ground truth) and stores it in the correct answer data DB 122.
- the generating unit 132 generates correct answer data using the second layer model used for heavy inference based on inference conditions specified by a user, etc. For example, in the case of the correct answer data "correct answer data A" shown in Fig. 5, the generating unit 132 generates correct answer data including the same number of positive and negative examples, with frames that detect at least one object being a positive example (Positive) and frames that do not detect an object being a negative example (Negative) among the results of object detection based on the second layer model. Also, in the case of the correct answer data "correct answer data B" shown in Fig. 5, the generating unit 132 generates a Bounding Box as a result of object detection based on the second layer model.
- the inference unit 133 compares a predetermined value obtained by performing light inference with each of the varied thresholds, and performs heavy inference when a judgment condition for whether to perform heavy inference is satisfied, and outputs an inference result of the two-layer inference. For example, the inference unit 133 performs heavy inference when a difference degree, a confidence degree, or the like obtained as a result of performing inference using the first layer model used for light inference satisfies a judgment condition for each of the varied thresholds, and outputs the obtained result of the two-layer inference.
- the inference unit 133 performs heavy inference when the judgment condition "if the degree of difference calculated by light inference exceeds a threshold (lower threshold)", performs heavy inference, and outputs the obtained result of the two-layer inference to the matching unit 134. Also, the inference unit 133 performs heavy inference when the judgment condition "if the confidence calculated by light inference falls below a threshold (upper threshold)", performs heavy inference, and outputs the obtained result of the two-layer inference to the matching unit 134.
- a threshold lower threshold
- the inference unit 133 performs heavy inference when the judgment condition "if the confidence calculated by light inference falls below a threshold (upper threshold)", performs heavy inference, and outputs the obtained result of the two-layer inference to the matching unit 134.
- the inference unit 133 may output information such as "Judgment condition not satisfied, no output of second-layer inference" as the result of the second-layer inference.
- the collation unit 134 varies the threshold used in the second-layer inference, and performs the second-layer inference for each varied threshold, and collates the result of the second-layer inference for each varied threshold with the correct answer data. Specifically, the collation unit 134 compares the result of the second-layer inference with the correct answer data created in advance, and calculates a predetermined index such as the accuracy of the second-layer inference as a collation result. In addition, the collation unit 134 uses the result of the second-layer inference to calculate a predetermined index such as the rate at which heavy inference is performed using the second-layer model and performance such as latency, which is an index of real-time performance, as a collation result. Then, the collation unit 134 stores the collation result in the collation result DB 123.
- the matching unit 134 calculates the accuracy rate as an index of accuracy and the ratio of frames processed in the first-layer model as an index of performance based on the condition No. "1" of the inference conditions shown in FIG. 5.
- the matching unit 134 then stores the calculated results as matching results in the matching result DB 123.
- the accuracy rate is the rate of agreement between the inference result by the second-layer inference and the correct data, in other words, it is an index that indicates how accurately the second-layer inference (motion detection, object detection, etc.) is performed on the input data.
- the ratio of frames processed in the first-layer model is the number of data (frames) processed by only light inference relative to the number of input data (frames).
- TP the number of frames in which the inference result of light inference in positive examples is “moving object present.”
- FN is the number of frames in which the inference result of light inference in positive examples is “no moving object.”
- FP the number of frames in which the inference result of light inference in negative examples is “moving object present.”
- TN is the number of frames in which the inference result of light inference in positive examples is “no moving object.”
- Positive examples here are “frames in which at least one object is detected.” Negative examples are “frames in which no object is detected.”
- the matching unit 134 compares the result of the two-layer inference of "moving object present (heavy inference performed)" with the correct answer data, and calculates the number of frames that fall into “TP (object present)” and “FP (no object)” among the “frames determined to have a moving object”.
- the matching unit 134 also compares the result of the two-layer inference of "no moving object (no heavy inference performed)” with the correct answer data, and calculates the number of frames that fall into "FP (moving object present)” and "FN (no moving object)” among the “frames determined to have no moving object”.
- the matching unit 134 then applies the number of frames that fall into "TP, TN, FP, FN" to the formula for calculating the accuracy rate described above to calculate the accuracy rate.
- the matching unit 134 can calculate the recall rate of positive examples and the recall rate of negative examples.
- the recall rate of positive examples here is an index showing the degree of missed detections; for example, a higher recall rate of positive examples indicates fewer missed detections.
- the recall rate of negative examples is an index showing the accuracy rate of frames in which it is determined that an object is not detected; a higher value indicates a more accurate determination (i.e., fewer missed detections).
- the matching unit 134 calculates the recall as an index of accuracy and the ratio of frames for which processing has ended in the first layer model as an index of performance based on the condition No. "2" of the inference conditions shown in FIG. 5. Then, the matching unit 134 stores the calculated result as the matching result in the matching result DB 123.
- the above-mentioned recall rate is calculated based on IoU (Intersection over Union).
- IoU Intersection over Union
- the matching unit 134 calculates the IoU of the bounding box (hereinafter sometimes referred to as "BB") obtained using light inference and the BB obtained using heavy inference.
- the matching unit 134 can also calculate the precision rate and the like.
- the creation unit 135 creates a correlation graph between the varied thresholds and the accuracy and performance for each varied threshold calculated as the matching result by the matching unit 134.
- the creation unit 135 can also create a correlation graph in which at least one of the accuracy and performance calculated as a predetermined index is associated with each varied threshold.
- the creation unit 135 can also create a correlation graph using the matching results stored in the matching result DB 123.
- the creation unit 135 calculates a threshold value corresponding to a specified index as a recommended threshold value when the specified index falls within a range of preset criteria. For example, the creation unit 135 identifies accuracy and performance that meet criteria determined by target values of accuracy and performance specified by a user, etc. Then, the creation unit 135 calculates a threshold value corresponding to the identified accuracy and performance as a recommended threshold value.
- the creation unit 135 calculates a threshold value corresponding to the specified index as a recommended threshold value. For example, the creation unit 135 performs weighting such as multiplying the accuracy and performance by a preset coefficient, and calculates a harmonic mean for each of the weighted accuracy and performance. Then, when the calculated harmonic mean satisfies a condition such as exceeding a preset standard, the creation unit 135 calculates a threshold value corresponding to the accuracy and performance related to the harmonic mean as a recommended threshold value.
- the creation unit 135 identifies the results of the second-layer inference in which a predetermined change has occurred due to varying the threshold. Specifically, when a change has occurred in the inference result of the second-layer inference (light inference or heavy inference) due to varying the threshold, the creation unit 135 calculates the rate of change between the inference results before and after the change, and identifies the inference result that exceeds a predetermined standard as an inference result in which a change has occurred. The creation unit 135 then creates the result of comparing the inference result before the change with the inference result after the change as setting auxiliary information. Note that an example of the setting auxiliary information created by the creation unit 135 will be described in the section on the output unit 136 below.
- FIG. 6 is a diagram showing an example of auxiliary setting information output according to this embodiment.
- FIG. 6 shows a correlation graph (FIG. 6(1)), a recommended threshold (FIG. 6(1-1)), and a comparison result of the inference result change (FIG. 6(2)).
- the correlation graph as shown in FIG. 6(1) is a graph in which accuracy and performance associated with each threshold value that has been changed are plotted. Then, the correlation graph is displayed with the accuracy value and performance value associated with each threshold value that has been changed being connected by a line segment.
- the X-axis of the correlation graph represents the varied threshold value, and is set based on the "threshold range” and "number of times the inference is repeated” of the inference conditions specified by the user, etc. For example, when the threshold range is "0 to 1" and the number of times the inference is repeated is “10 times,” the interval for varying the threshold value is set as "0.1.”
- the Y-axis on the left side of the correlation graph represents accuracy values such as the accuracy rate and recall rate calculated based on the matching results of the matching unit 134.
- the Y-axis on the right side of the correlation graph represents performance values such as the ratio of frames for which processing is completed with the first-layer model, the ratio at which second-layer inference is performed, and latency, all calculated based on the matching results of the matching unit 134.
- the output unit 136 can display a recommended threshold on the correlation graph and output the correlation graph. For example, when the creation unit 135 calculates a recommended threshold based on the inference conditions, the output unit 136 can output a correlation graph with a display indicating that the recommended threshold is "0.3", as shown in (1-1) of FIG. 6.
- the comparison result of the inference result change as shown in FIG. 6 (2) is information that is presented to the user, etc., that a change has occurred in the inference result of the two-layer inference due to the change in the threshold.
- the output unit 136 can output the comparison result between the upper diagram and the lower diagram, in which the detection results of objects (people) differ due to the change in the threshold.
- Fig. 7 to Fig. 13 are diagrams showing an example of setting assistance information generation according to this embodiment.
- Fig. 7 shows a two-layer inference system 10 that uses a motion detection model as a first-layer model for light inference and an object detection model as a second-layer model for heavy inference, and a setting assistance device 100 that creates setting assistance information for setting thresholds used in the two-layer inference system 10.
- the two-layer inference system 10 performs heavy inference on the cloud side when the degree of difference obtained by light inference on the edge side exceeds a threshold value ("High degree of difference" at the top of FIG. 7).
- the two-layer inference system 10 shown in FIG. 7 performs heavy inference only when a certain level of difference occurs for each input data, and detects objects that have been set in advance as detection targets, such as people, animals, and automobiles, from among the input data.
- the two-layer inference system 10 reduces the processing load by reducing the frequency of heavy inference that places a high processing load.
- the setting assistance device 100 performs two-layer inference using the accepted inference conditions and input data, and creates setting assistance information by comparing the inference results of the two-layer inference with the correct answer data.
- the setting assistance device 100 outputs a correlation graph, a recommended threshold value (recommended threshold value), and the like as setting assistance information.
- FIG. 8 shows an example of a correlation graph output by the setting assistance device 100.
- the X-axis represents the varied threshold value
- the Y-axis (left) represents the accuracy rate as an index of precision
- the Y-axis (right) represents the ratio of frames at which processing is completed in the first layer model as an index of performance.
- the two-layer inference system 10 performs heavy inference when the degree of difference obtained by light inference exceeds a threshold (lower threshold). That is, in the first example, as the value of the threshold increases, the frequency with which the degree of difference obtained by light inference exceeds the threshold decreases, and the frequency with which heavy inference is performed decreases. In this way, since the frequency with which heavy inference is performed by the second-layer model decreases as the threshold increases, the correlation graph shown in Figure 8 shows a tendency for the accuracy rate to decrease and the proportion of frames for which processing is completed by the first-layer model to increase.
- the setting assistance device 100 can also display an operation screen 20 that accepts "selection of evaluation index” when outputting the correlation graph.
- This operation screen 20 includes check boxes for selecting evaluation indexes to be displayed in the correlation graph, such as "accuracy rate,” “recall rate,” and "proportion of frames that have been processed in the first layer model.” In the example of FIG. 8, "accuracy rate” and “proportion of frames that have been processed in the first layer model" have been selected.
- the setting assistance device 100 also outputs a correlation graph displaying recommended thresholds to be presented to the user, etc., as shown in FIG. 9. Specifically, the setting assistance device 100 can calculate, as the recommended threshold, a threshold that satisfies the criteria determined by the target value of the accuracy and the target value of the performance set by the user, etc.
- the setting assistance device 100 identifies the threshold value "0 to 0.5" corresponding to the section indicated by the solid line where the accuracy rate corresponding to the Y axis (left) is 70% or more as a recommended threshold candidate.
- the target value of the ratio of processing end frames in the first layer model is set to "20% (or more)”
- the setting assistance device 100 identifies the threshold value "0.3 to 1" corresponding to the section indicated by the solid line where the ratio of processing end frames in the first layer model corresponding to the Y axis (right) is 20% or more as a recommended threshold candidate.
- the setting assistance device 100 calculates the threshold value "0.3 to 0.5" that satisfies both the target value of the accuracy rate and the target value of the ratio of processing end frames in the first layer model as a recommended threshold, as shown in FIG. 9.
- the setting assistance device 100 can calculate the recommended threshold value to be "0.3", which provides higher accuracy when “preferential accuracy” is selected, and "0.5", which provides higher performance when “preferential performance” is selected.
- the setting assistance device 100 can also output a correlation graph that displays the breakdown values for each index. Specifically, the setting assistance device 100 can display the "reproduction rate of positive examples” and the "reproduction rate of negative examples” as breakdown values at each point of any accuracy rate. For example, as shown in FIG. 9, the setting assistance device 100 can output a correlation graph that displays breakdown values such as a positive example reproduction rate of "80%” and a negative example reproduction rate of "40%" as indicators of an accuracy rate of "80%" at a threshold value of 0.3.
- Figure 10 shows a two-layer inference system 10 that uses an object detection model as a first-layer model for light inference and an object detection model as a second-layer model for heavy inference, and a setting assistant device 100 that creates setting assistant information for setting thresholds used in the two-layer inference system 10.
- the two-layer inference system 10 does not perform heavy inference on the cloud side when the confidence obtained by the light inference on the edge side exceeds a threshold, and performs heavy inference on the cloud side when the confidence is below the threshold.
- the two-layer inference system 10 shown in FIG. 10 uses the inference result of the light inference as it is as the final output result of the two-layer inference when the confidence of the inference result of the light inference exceeds a threshold ("high confidence" at the top of FIG. 10).
- the confidence is below the threshold ("low confidence" at the top of FIG.
- the two-layer inference system 10 determines that the inference result of the light inference is insufficient, performs heavy inference, and outputs the result of the heavy inference as the result of the two-layer inference. In other words, when the tasks processed by the first layer model and the second layer model are the same, the two-layer inference system 10 reduces the frequency of performing heavy inference, which has a high processing load, thereby reducing the processing load.
- the setting assistance device 100 performs two-layer inference using the accepted inference conditions and input data, and compares the results of the two-layer inference with the correct answer data to create setting assistance information.
- the setting assistance device 100 outputs, as setting assistance information, a correlation graph that associates the accuracy and performance of the two-layer inference for each threshold, a recommended threshold (recommended threshold), comparative information on changes in inference results, and the like.
- FIG. 11 shows an example of a correlation graph output by the setting assistance device 100.
- the X-axis represents the varied threshold value
- the Y-axis (left) represents the recall rate as an index of precision
- the Y-axis (right) represents the ratio of frames processed in the first layer model as an index of performance.
- the two-layer inference system 10 performs heavy inference when the confidence obtained by light inference falls below a threshold (upper threshold). That is, in the second example, as the threshold value increases, the frequency with which the confidence obtained by light inference falls below the threshold increases, and the frequency with which heavy inference is performed increases. In this way, as the threshold value increases, the frequency with which heavy inference is performed by the second-layer model increases, and the correlation graph shown in FIG. 11 shows a tendency for the recall rate to gradually increase and the proportion of frames for which processing is completed by the first-layer model to gradually decrease.
- the setting assistance device 100 can also display an operation screen 22 that accepts "selection of evaluation index" when outputting the correlation graph.
- This operation screen 22 includes check boxes for selecting evaluation indexes to be displayed in the correlation graph, such as "correct rate,” “recall rate,” and “proportion of frames that have been processed in the first layer model.” In the example of FIG. 11, “recall rate” and “proportion of frames that have been processed in the first layer model” have been selected.
- the setting assistance device 100 also outputs a correlation graph showing recommended thresholds to be presented to the user, etc., as shown in FIG. 12. For example, when the target value of the reproducibility is set to "75% (or more)" as shown in the operation screen 23 of FIG. 12, the setting assistance device 100 specifies the threshold "0.7 to 1" corresponding to the section indicated by the solid line where the reproducibility corresponding to the left of the Y axis is 75% or more, as a recommended threshold candidate. On the other hand, when the target value of the ratio of the processing end frame in the first layer model is set to "30% (or more)" as shown in FIG.
- the setting assistance device 100 specifies the threshold "0 to 0.7" corresponding to the section indicated by the solid line where the ratio of the processing end frame in the first layer model corresponding to the right of the Y axis is 30% or more, as a recommended threshold candidate. Then, the setting assistance device 100 calculates the threshold "0.7" that satisfies both the target value of the accuracy and the target value of the ratio of the processing end frame in the first layer model as a recommended accuracy-oriented threshold, as shown in FIG. 12.
- Fig. 13 shows a two-layer inference system 10 that uses an object detection model as a first-layer model for light inference and a posture estimation model as a second-layer model for heavy inference, and a setting assistance device 100 that creates setting assistance information used to set thresholds used in the two-layer inference system 10.
- the two-layer inference system 10 performs heavy inference on the cloud side when the confidence level obtained by light inference on the edge side exceeds a threshold value ("High confidence level" at the top of FIG. 13).
- the two-layer inference system 10 shown in FIG. 13 performs heavy inference when the confidence level for an object extracted from input data exceeds a threshold value, and estimates the bones, etc., of the object detected by light inference.
- the two-layer inference system 10 reduces the processing load by reducing the frequency of heavy inference, which places a high processing load.
- the setting assistance device 100 performs two-layer inference using the received inference conditions and input data, and creates setting assistance information by comparing the two-layer inference result with the correct answer data.
- the setting assistance device 100 outputs a correlation graph and a recommended threshold (recommended threshold) as setting assistance information. Note that in the third example, since the result of light inference is used to perform heavy inference, the inference result of heavy inference cannot be used as correct answer data, so generated data generated separately is used as correct answer data.
- configuration auxiliary information generated in the third example is similar to that in the first or second example, so a detailed description will be omitted.
- Fig. 14 is a diagram showing an example of a flowchart of the setting assistance process according to this embodiment.
- the reception unit 131 receives the specification of inference conditions (S101).
- the receiving unit 131 receives pre-created correct answer data (S103).
- the generating unit 132 generates correct answer data using the output result of the heavy inference (S104).
- the inference unit 133 performs two-layer inference while varying the threshold based on the inference conditions (S105).
- the comparison unit 134 compares the inference result of the two-layer inference with the correct answer data (S106).
- the creation unit 135 creates a correlation graph (S107).
- the creation unit 135 creates a recommended threshold (S109). On the other hand, if a recommended threshold is not to be created (No in S108), the creation unit 135 skips the step of S109.
- the creation unit 135 when generating a comparison result regarding the variation in the inference result of the two-layer inference due to the variation in the threshold value (Yes in S110), the creation unit 135 creates the comparison result (S111). On the other hand, when not generating a comparison result (No in S110), the creation unit 135 skips the step of S111.
- the output unit 136 outputs the results generated by the creation unit 135 (S112). Then, the setting assistance device 100 ends the process.
- the collation unit 134 varies the threshold value used in the two-layer inference, and performs two-layer inference for each varied threshold value, and collates the results of the two-layer inference for each varied threshold value with the correct answer data. Then, the creation unit 135 creates a correlation graph between the varied threshold value and the accuracy and performance of the two-layer inference for each varied threshold value calculated as the collation result. Therefore, the setting assistance device 100 according to this embodiment has the effect of facilitating tuning of the threshold value used in the two-layer inference.
- the inference unit 133 compares a predetermined value obtained by performing light inference with each of the varied thresholds, and performs heavy inference when the judgment condition for performing heavy inference is met, and outputs the obtained result of the second-layer inference.
- the collation unit 134 compares the result of the second-layer inference with the correct answer data created in advance, and calculates a predetermined index including the accuracy of the second-layer inference and the performance of the second-layer inference as the collation result.
- the creation unit 135 creates a correlation graph in which the accuracy and performance calculated as the predetermined index are associated with each of the varied thresholds.
- the setting assistance device 100 automatically varies the thresholds based on the inference conditions specified by the user, etc., and compares the result of the second-layer inference at each of the varied thresholds with the correct answer data to calculate indexes such as accuracy and performance, and creates a correlation graph. Therefore, the setting assistance device 100 has the effect of making it easier to tune the thresholds used in the second-layer inference without the need for the user, etc. to individually check the balance between accuracy and performance when tuning the thresholds.
- the creation unit 135 also calculates a threshold value corresponding to a specific index as a recommended threshold value when the specific index falls within a range of preset criteria.
- the creation unit 135 also calculates a threshold value corresponding to a specific index as a recommended threshold value when an average of a specific weighted specific index falls within a range of preset criteria. In this way, the setting assistance device 100 calculates a candidate threshold value desired by the user as a recommended threshold value. Therefore, the setting assistance device 100 has the effect of reducing the labor required for tuning threshold values performed by a user or the like, and facilitating tuning of threshold values used in two-layer inference.
- the creation unit 135 also identifies the results of two-layer inference where a specific change has occurred due to varying the threshold. In this way, the setting assistance device 100 identifies the changed inference result when a change has occurred in the inference result as a result of varying the threshold, thereby enabling the user to visually grasp what change has occurred in the inference result due to the variation in the threshold. As a result, the setting assistance device 100 has the effect of making it easy for the user to select an appropriate threshold.
- the setting assistance device 100 allows users to easily tune the thresholds to suit the inference use case.
- the setting assistance device 100 improves the availability and usability of the two-tier inference system, and enables easy use of the two-tier inference system, regardless of the user's knowledge or level of familiarity with inference.
- the setting assistance device 100 automatically creates a correlation graph that associates thresholds, accuracy, and performance, eliminating the need for individual verification for tuning thresholds and reducing the labor and computer processing required for the tuning.
- the input data DB 121 can also store any data that can be used for model-based inference, such as audio data and text data.
- correct answer data DB 122 has been described as storing correct answer data including positive examples and negative examples, this is not limited to this, and any data that can be used for matching processing by the matching unit 134 can be stored without limitation.
- the matching result DB123 stores a correspondence between thresholds, accuracy, performance, recommended thresholds, etc., it may also store matching results that do not include recommended thresholds, for example.
- the inference condition DB124 has been described as storing the motion detection model, object detection model, and specified estimation model as the models used, it is not limited to these and can store other inference models. Furthermore, the contents of the correct answer data, accuracy, performance, target value, threshold range, number of inference repetitions, etc. stored by the inference condition DB124 may be changed as appropriate according to the actual usage situation. Furthermore, the "target value" among the inference conditions stored by the inference condition DB124 may include any condition such as "greater than or equal to the target value,” “less than or equal to the target value,” “exceeding the target value,” “less than the target value,” etc.
- the inference unit 133 has been described as outputting a light inference result when a judgment condition is satisfied, such as "if the degree of difference exceeds a threshold (lower threshold), heavy inference is performed, which is inference using the second layer model” or "if the confidence level is below a threshold (upper threshold), light inference is performed, which is inference using the second layer model.”
- a judgment condition such as "if the degree of difference exceeds a threshold (lower threshold), heavy inference is performed, which is inference using the second layer model” or "if the confidence level is below a threshold (upper threshold), light inference is performed, which is inference using the second layer model.”
- the above-mentioned judgment conditions are not limited to these, and it is possible to determine whether or not to output a light inference result based on any condition.
- each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure.
- the specific form of distribution and integration of each device is not limited to that shown in the figure.
- all or part of them can be functionally or physically distributed and integrated in any unit depending on various loads, usage conditions, etc.
- each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure.
- the specific form of distribution and integration of each device is not limited to that shown in the figure, and all or a part of it can be functionally or physically distributed and integrated in any unit depending on various loads, usage conditions, etc.
- each processing function performed by each device can be realized in whole or in any part by a CPU and a program analyzed and executed by the CPU, or can be realized as hardware using wired logic.
- the various devices constituting the setting assistance device 100 can be implemented by installing a setting assistance program as package software or online software on a desired computer.
- the setting assistance program can be executed by an information processing device to function as the various devices constituting the setting assistance device 100.
- the information processing device referred to here includes desktop or notebook personal computers.
- the information processing device also includes mobile communication terminals such as smartphones and mobile phones, and slate terminals such as PDAs (Personal Digital Assistants).
- FIG. 15 is a diagram showing an example of a computer that executes the setting assistance program according to this embodiment.
- the computer 1000 has, for example, a memory 1010 and a CPU 1020.
- the computer 1000 also has a hard disk drive interface 1030, a disk drive interface 1040, a serial port interface 1050, a video adapter 1060, and a network interface 1070. These components are connected by a bus 1080.
- the memory 1010 includes a ROM (Read Only Memory) 1011 and a RAM 1012.
- the ROM 1011 stores a boot program such as a BIOS (Basic Input Output System).
- BIOS Basic Input Output System
- the hard disk drive interface 1030 is connected to a hard disk drive 1090.
- the disk drive interface 1040 is connected to a disk drive 1100.
- a removable storage medium such as a magnetic disk or optical disk is inserted into the disk drive 1100.
- the serial port interface 1050 is connected to a mouse 1110 and a keyboard 1120, for example.
- the video adapter 1060 is connected to a display 1130, for example.
- the hard disk drive 1090 stores, for example, an OS 1091, an application program 1092, a program module 1093, and program data 1094. That is, the programs that define the processes of the various devices that make up the setting assistance device 100 are implemented as program modules 1093 in which computer-executable code is written.
- the program modules 1093 are stored, for example, in the hard disk drive 1090.
- the program modules 1093 for executing processes similar to the functional configurations of the various devices that make up the setting assistance device 100 are stored in the hard disk drive 1090.
- the hard disk drive 1090 may be replaced by an SSD (Solid State Drive).
- the setting data used in the processing of the above-mentioned embodiment is stored as program data 1094, for example, in memory 1010 or hard disk drive 1090.
- the CPU 1020 reads out the program module 1093 or program data 1094 stored in memory 1010 or hard disk drive 1090 into RAM 1012 as necessary, and executes the processing of the above-mentioned embodiment.
- the program module 1093 and program data 1094 are not limited to being stored in the hard disk drive 1090, but may be stored in a removable storage medium, for example, and read by the CPU 1020 via the disk drive 1100 or the like. Alternatively, the program module 1093 and program data 1094 may be stored in another computer connected via a network (such as a LAN or a WAN (Wide Area Network)). The program module 1093 and program data 1094 may then be read by the CPU 1020 from the other computer via the network interface 1070.
- a network such as a LAN or a WAN (Wide Area Network)
- Setting assistant device 110 Communication unit 120 Storage unit 121 Input data DB 122 Answer Data DB 123 Matching result DB 124 Inference condition DB 130 Control unit 131 Reception unit 132 Generation unit 133 Inference unit 134 Collation unit 135 Creation unit 136 Output unit
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Image Analysis (AREA)
Abstract
Description
本発明は、設定補助装置、設定補助方法、および設定補助プログラムに関する。 The present invention relates to a setting assistance device, a setting assistance method, and a setting assistance program.
近年、深層学習の発展やIoT(Internet of Things)機器の普及により、監視カメラ映像の自動分析、自動運転等に用いられるアプリケーションが開発されている。これらのアプリケーションは、映像や画像等を解析した結果に基づいて所定の処理を行うため、リアルタイム性が重要である。そのため、リアルタイム性を担保するためにDNN(Deep Neural Network)推論等は、IoT機器等のエッジ機器上で行われることが望ましい。 In recent years, advances in deep learning and the spread of IoT (Internet of Things) devices have led to the development of applications for automatic analysis of surveillance camera footage, autonomous driving, and the like. These applications perform prescribed processing based on the results of analyzing video and images, so real-time performance is important. Therefore, to ensure real-time performance, it is desirable for DNN (Deep Neural Network) inference, etc. to be performed on edge devices such as IoT devices.
しかし、エッジ機器は、リソース等の制約が大きいため高精度なDNNモデルを常駐させて稼働させることは困難である。そこで、精度とリアルタイム性とを両立するために、エッジ機器側で精度は高くないが低負荷な推論(以降、「軽い推論」と表記する場合がある)を行い、必要と判定された場合にクラウド側で高精度な推論(以降、「重い推論」と表記する場合がある)を行うフレームワークが提案されている。例えば、DNN推論を行う際に、軽い推論による確信度等の出力結果と閾値とに基づき次の推論の必要性を判定し、必要と判定された場合に重い推論処理を行うことで、重い推論の頻度を削減してシステム全体での性能を向上させる技術が知られている(例えば、非特許文献1を参照)。 However, because edge devices have significant resource constraints, it is difficult to keep a highly accurate DNN model resident and running. Therefore, in order to achieve both accuracy and real-time performance, a framework has been proposed in which low-accuracy but low-load inference (hereinafter sometimes referred to as "light inference") is performed on the edge device, and high-accuracy inference (hereinafter sometimes referred to as "heavy inference") is performed on the cloud side when it is determined to be necessary. For example, when performing DNN inference, a technology is known in which the necessity of the next inference is determined based on the output results such as the confidence level from the light inference and a threshold value, and heavy inference processing is performed when it is determined to be necessary, thereby reducing the frequency of heavy inference and improving the performance of the entire system (for example, see Non-Patent Document 1).
しかしながら、上述の従来技術では、推論に用いる閾値のチューニングを行うことが容易ではないという課題がある。例えば、重い推論を行うか否かの判定に用いる閾値は、精度や性能に影響する繊細な値であるため推論のユースケースに応じて必要な精度と性能とを達成するためのチューニングが必要となる。しかし、精度と性能とのバランスが取れた閾値を1つ1つ検証して、最適な閾値を決定する処理は負荷が大きい。 However, the above-mentioned conventional technology has an issue in that it is not easy to tune the threshold value used for inference. For example, the threshold value used to determine whether or not to perform heavy inference is a delicate value that affects accuracy and performance, so tuning is required to achieve the required accuracy and performance depending on the inference use case. However, the process of verifying each threshold that balances accuracy and performance and determining the optimal threshold is a heavy load.
そこで、上述した課題を解決し、目的を達成するために、本発明の設定補助装置は、処理負荷が軽い第1推論の推論結果が閾値の条件を満たす場合に、前記第1推論よりも処理負荷が重い第2推論を行う2層推論に用いられる前記閾値を変動させて、変動させた前記閾値ごとに前記2層推論を実施することで得られる変動させた前記閾値ごとの前記2層推論の結果と、正解データとを照合する照合部と、変動させた前記閾値と、前記照合部による照合結果として算出される変動させた前記閾値ごとの前記2層推論の精度と性能との相関グラフを作成する作成部と、を有することを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the setting assistance device of the present invention is characterized by having a matching unit that varies the threshold value used in a second-layer inference in which a second inference with a heavier processing load than a first inference is performed when the inference result of a first inference with a lighter processing load satisfies a threshold condition, and performs the second-layer inference for each varied threshold value, and compares the results of the second-layer inference for each varied threshold value obtained by performing the second-layer inference for each varied threshold value with correct answer data, and a creation unit that creates a correlation graph between the varied threshold value and the accuracy and performance of the second-layer inference for each varied threshold value calculated as the comparison result by the matching unit.
本発明によれば、推論に用いる閾値のチューニングを容易とする、という効果を奏する。 The present invention has the effect of making it easier to tune the thresholds used in inference.
以下、図面を参照しながら、本発明を実施するための形態(以降、「実施形態」)について説明する。なお、各実施形態は、以下に記載する内容に限定されない。 Below, the form for carrying out the present invention (hereinafter, "embodiments") will be described with reference to the drawings. Note that each embodiment is not limited to the contents described below.
<設定補助装置による処理の全体像説明>
図1は、本実施形態に係る設定補助装置100の処理の全体像を説明する図である。図1に示す設定補助装置100は、2層推論における重い推論を行うか否かの判定に用いる閾値(以降、単に「閾値」と表記する場合がある)を変更しながら2層推論を繰り返し行い、2層推論の推論結果と正解データとを比較して、閾値と精度と性能との相関グラフを作成する技術を提供するコンピュータの一例である。
<Overview of processing by the setting assistant device>
Fig. 1 is a diagram for explaining an overall picture of the processing of the
上述したように、DNN推論等は、リアルタイム性を担保するためにIoT機器等のエッジ側において実施されることが望ましい。しかし、エッジ側の機器は、リソース等の制約の関係上、高精度なDNNモデルを常駐させて稼働させることは困難である。 As mentioned above, it is desirable to perform DNN inference etc. on the edge of IoT devices to ensure real-time performance. However, due to resource constraints etc., it is difficult to keep a highly accurate DNN model running on edge devices.
そこで、推論を2段階に分けて実施(2層推論)することにより、処理負荷が大きい重い推論の実施頻度を削減して、2層推論システム全体での性能を向上させる参考技術が知られている。例えば、図1に示すように、2層推論システム10は、エッジ側において、計算量が少ない等の処理負荷の低い軽量モデルを用いた軽い推論により差分度や確信度等の所定の数値を出力して予め設定された閾値と比較する。そして、2層推論システム10は、比較の結果、重い推論(高精度なDNN推論)を実施すると判定された場合のみ、クラウド側において重い推論処理を行う。
Therefore, a reference technology is known that performs inference in two stages (two-layer inference) to reduce the frequency of heavy inference, which has a high processing load, and improve the performance of the entire two-layer inference system. For example, as shown in FIG. 1, a two-
上述した、2層推論システム10に用いられる閾値は、精度や性能等に影響する繊細な値であることから、推論の目的に合わせたチューニングが必要となるが、当該チューニングが容易でないという課題がある。例えば、2層推論における性能は、2層推論を利用するユーザの用途により要求される性能が定義される。そして、上述した要求される性能を満たすように閾値が決定されるが、性能を重視すると精度が低下するといったように精度と性能とは、閾値の設定により変動するトレードオフの関係にある。そのため、2層推論を利用するユーザは、2層推論のユースケースごとに求められる精度と性能とに応じた閾値のチューニングを行う必要がある。しかし、チューニングを行う場合、1つ1つの閾値ごとに精度と性能とのバランスを比較して、最適な閾値を検証することは作業量が多く容易ではない。
The thresholds used in the two-
そこで、本実施形態に係る設定補助装置100は、処理負荷が軽い推論(第1推論)の推論結果が閾値の条件を満たす場合に、軽い推論よりも処理負荷が重い推論(第2推論)を行う2層推論に用いられる閾値を変動させて、変動させた閾値ごとに2層推論を実施することで得られる変動させた閾値ごとの2層推論の結果と、正解データとを照合する。そして、設定補助装置100は、変動させた閾値と、照合結果として算出される変動させた閾値ごとの精度と2層推論の性能との相関グラフを作成する。
The
具体的には、図1の(1)に示すように、設定補助装置100は、動画像や静止画像等を入力データとして、2層推論を実施する。この時、設定補助装置100は、判定に用いる閾値を所定の条件に基づいて変動させながら2層推論を繰り返し行い、変動させた閾値ごとに2層推論の結果を出力する。
Specifically, as shown in FIG. 1 (1), the
設定補助装置100は、図1の(2)に示すように、出力された2層推論の推論結果と、高精度な2層目モデルを用いた重い推論により生成されたデータや予め人手等により生成された生成データ(例えば、ground truth等)等の正解データとを照合する。
As shown in (2) of FIG. 1, the
設定補助装置100は、図1の(3)に示すように、2層推論の推論結果と正解データとの照合により算出される精度や2層推論の結果から算出される性能等を示す所定の指標を、変動させた閾値ごとに対応付けた相関グラフ等を作成する。
As shown in FIG. 1 (3), the
このように、設定補助装置100は、2層推論の結果と正解データとの照合結果に基づいて、精度と性能と閾値との関係を表す相関グラフを自動的に作成することにより、推論の目的やニーズに合わせた閾値のチューニングを容易に可能とする。
In this way, the
<設定補助装置の説明>
ここから、設定補助装置100について説明する。まず、本実施形態に係る設定補助装置100による処理について説明する。図2は、本実施形態に係る設定補助装置100による処理の一例を示す図である。図2は、設定補助装置100が、変動させた閾値と、閾値ごとの2層推論の結果と正解データとの比較結果に基づく精度および2層推論の性能とを対応付けた相関グラフ、推奨閾値、推論結果変化の比較結果等の設定補助情報(以下、単に「設定補助情報」と記載する場合がある)を出力し、出力された設定補助情報を用いた2層推論システム10の閾値等の設定が行われる一例を示す。
<Explanation of setting assistance device>
From here, the
まず、設定補助装置100は、図2の(1)に示すように、2層推論に用いるモデルへ入力する入力データ、2層推論の軽い推論および重い推論に使用するモデル、照合処理に用いる正解データ、2層推論の推論条件等の指定を受け付ける。
First, as shown in FIG. 2 (1), the
設定補助装置100は、図2の(2)に示すように、2層推論に用いるモデルに対して指定された入力データを入力して、判定に用いる閾値を指定された推論条件に基づいて変動させながら軽い推論を行う。そして、設定補助装置100は、軽い推論の結果得られた差分度や確信度等が変動させたそれぞれの閾値についての判定条件を満たす場合に重い推論を実施して得られる結果を、2層推論の結果として出力する。上述した処理を、設定補助装置100は、指定された推論条件に従って繰り返し実施する。
As shown in FIG. 2 (2), the
他方、設定補助装置100は、図2の(3)に示すように、正解データの準備のために、照合処理に用いる正解データを重い推論による生成や予め生成されたデータ(ground truth)の受け付け等を実施する。
On the other hand, as shown in (3) of FIG. 2, the
設定補助装置100は、図2の(4)に示すように、2層推論の推論結果と正解データとを照合する。そして、設定補助装置100は、図2の(5)に示すように、照合結果に基づいて、閾値ごとに精度と性能とを対応付けた相関グラフや推奨閾値や推論結果変化の比較結果等の設定補助情報を作成する。
As shown in (4) of FIG. 2, the
設定補助装置100は、図2の(6)に示すように、作成された精度と2層推論の性能とを対応付けた相関グラフや推奨閾値や推論結果変化の比較結果等の設定補助情報をユーザ等に対して出力する。そして、図2の(7)に示すように、ユーザ等は、出力された設定補助情報を用いて2層推論システム10等に対して閾値等の設定を行う。
As shown in FIG. 2 (6), the
(設定補助装置100)
次に、設定補助装置100の構成と各機能部の有する機能とについて説明する。図3は、本実施形態に係る設定補助装置100の構成の一例を示す図である。図3に示す通り、設定補助装置100は、通信部110と、記憶部120と、制御部130とを有する。なお、図3には示していないが、設定補助装置100は、ユーザ等の操作等の入力を受け付けるためのキーボードやマウス等の入力部を備えることができる。また、設定補助装置100は、設定補助情報をユーザ等に表示するためのディスプレイ等の表示部を備えることができる。
(Setting assistant device 100)
Next, the configuration of the
(通信部110)
通信部110は、入力データや正解データの受け付け、算出した閾値に関する情報の出力等に係るデータ通信を行う。通信部110は、NIC(Network Interface Card)等で実現され、LAN(Local Area Network)やインターネット等の電気通信回線を介して通信を制御する。そして、通信部110は、必要に応じてネットワークと有線または無線で接続され、双方向に情報の送受信を行うことができる。
(Communication unit 110)
The communication unit 110 performs data communication related to the reception of input data and correct answer data, the output of information related to the calculated threshold value, etc. The communication unit 110 is realized by a NIC (Network Interface Card) or the like, and controls communication via an electric communication line such as a LAN (Local Area Network) or the Internet. The communication unit 110 is connected to a network by wire or wirelessly as necessary, and can transmit and receive information in both directions.
(記憶部120)
記憶部120は、制御部130による各種処理に用いるデータおよびプログラムや、制御部130が動作することにより取得された各種データを記憶する。そして、記憶部120は、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置等で実現する。また、図3に示すように、記憶部120は、入力データDB121と、正解データDB122と、照合結果DB123と、推論条件DB124とを有する。
(Memory unit 120)
The
(入力データDB121)
入力データDB121は、2層推論に用いるモデルに入力する入力データを記憶するデータベースである。例えば、入力データDB121は、静止画像、動画像(映像)等をモデルに入力する入力データとして記憶する。
(Input data DB121)
The
(正解データDB122)
正解データDB122は、後述の照合部134により実施される照合処理に用いる正解データを記憶するデータベースである。例えば、正解データDB122は、後述の生成部132により生成される物体検知の結果(例えば、Bounding Box等)や、姿勢推定等の結果(例えば、キーポイントやボーン等のデータ)や、予め人手または他の情報処理装置等により生成された生成データ(ground truth)等を正解データとして記憶する。
(Correct answer data DB122)
The supervised data DB 122 is a database that stores supervised data used in a matching process performed by a matching unit 134 described later. For example, the supervised data DB 122 stores, as supervised data, results of object detection (e.g., Bounding Box, etc.) generated by a generating unit 132 described later, results of posture estimation, etc. (e.g., data such as key points and bones), generated data (ground truth) generated in advance by hand or by another information processing device, etc.
(照合結果DB123)
照合結果DB123は、後述の照合部134による照合処理の結果を記憶するデータベースである。具体的には、照合結果DB123は、変動させた閾値ごとに対応付けられた精度および性能についての所定の指標を、指定された推論条件に含まれる使用するモデルの組み合わせごとに記憶する。
(Matching result DB123)
The
ここで、照合結果DB123により記憶される照合結果の一例を説明する。図4は、本実施形態に係る照合結果の一例を示すテーブル図である。図4に示すように、照合結果DB123は、変動させた閾値ごとに、精度、性能、推奨閾値等を対応付けて記憶する。
Here, an example of the matching result stored by the matching
上述した、閾値は、ユーザ等により指定された推論条件に基づいて変動させた1つ以上の閾値を含む。精度は、2層推論の推論結果と正解データとの照合結果に係る評価指標であり、正解率、再現率、F値等を含む。性能は、2層推論における2層目モデルを用いた重い推論が行われる割合やリアルタイム性の指標であるレイテンシ等の2層推論の性能を表す指標である。推奨閾値は、後述する推論条件に含まれるパラメータにより指定される基準を満たす閾値であり、ユーザ等に対して推奨される閾値であるか否かを識別する情報である。 The thresholds mentioned above include one or more thresholds that are varied based on the inference conditions specified by the user, etc. Precision is an evaluation index related to the result of matching the inference result of the two-layer inference with the correct answer data, and includes the accuracy rate, recall rate, F-measure, etc. Performance is an index that represents the performance of the two-layer inference, such as the proportion of heavy inferences performed using the second-layer model in the two-layer inference, and latency, which is an index of real-time performance. The recommended threshold is a threshold that meets the criteria specified by the parameters included in the inference conditions described later, and is information that identifies whether or not the threshold is recommended to the user, etc.
例えば、図4に示す通り、照合結果DB123は、変動させた閾値のうち閾値「0.3」に対応付く、精度「80%」、性能「65%」、推奨閾値「〇(推奨)」等の照合結果を記憶する。なお、推奨閾値「×」は、推奨される閾値ではないことを表す。 For example, as shown in FIG. 4, the matching result DB123 stores matching results such as accuracy "80%", performance "65%", and recommended threshold "◯ (recommended)" that correspond to the threshold "0.3" among the varied thresholds. Note that the recommended threshold "×" indicates that it is not a recommended threshold.
(推論条件DB124)
推論条件DB124は、設定補助情報の作成のための推論条件を記憶するデータベースである。推論条件DB124は、ユーザ等に指定される推論条件について、使用モデルと、入力データと、正解データと、評価指標と、パラメータとを関連付けて記憶する。
(Inference condition DB124)
The inference condition DB 124 is a database that stores inference conditions for creating auxiliary setting information. The inference condition DB 124 stores the inference conditions specified by a user, etc., in association with the model used, input data, correct answer data, evaluation index, and parameters.
ここで、推論条件DB124により記憶される推論条件の一例を説明する。図5は、本実施形態に係る推論条件の一例を示すテーブル図である。例えば、推論条件DB124は、推論条件を識別する固有の番号等のNoに対応付けられる、2層推論に用いる1層目モデルおよび重い推論に用いる2層目モデル等の使用モデルと、入力データと、正解データと、精度および性能等の評価指標と、評価指標についての目標値、閾値の範囲および推論の繰り返し回数等のパラメータとを記憶する。 Here, an example of an inference condition stored by the inference condition DB 124 will be described. FIG. 5 is a table diagram showing an example of an inference condition according to this embodiment. For example, the inference condition DB 124 stores models to be used, such as a first-layer model used for two-layer inference and a second-layer model used for heavy inference, which are associated with a unique number such as a No. that identifies the inference condition, input data, correct answer data, evaluation indices such as accuracy and performance, and parameters such as target values for the evaluation indices, threshold ranges, and the number of inference iterations.
上述した使用モデルは、動体検知に用いられるモデル、物体検知に用いられるモデル、姿勢推定に用いられるモデル等のうちどのモデルを用いるかを表す情報である。また、入力データは、2層推論を行うためのモデルに入力する静止画像や動画像等を表す情報である。また、正解データは、後述の照合部134による照合処理に用いられる正解データを表す情報である。また、パラメータのうち目標値は、後述の作成部135により推奨閾値が生成される際に用いられる基準を定めるためのパラメータである。また、パラメータのうち閾値の範囲は、後述の推論部133により閾値を変動させて軽い推論が行われる場合の、閾値の変動範囲である。また、パラメータのうち推論の繰り返し回数は、閾値の変動範囲内で軽い推論が何回行われるかを示すパラメータである。なお、評価指標のうち精度と性能とは、図4で説明した内容と同様であるため、ここでは説明を省略する。 The above-mentioned model to be used is information indicating which model is to be used among a model used for motion detection, a model used for object detection, a model used for posture estimation, and the like. The input data is information indicating still images, moving images, and the like to be input to a model for performing two-layer inference. The correct answer data is information indicating the correct answer data to be used in the matching process by the matching unit 134 described later. The target value among the parameters is a parameter for determining a standard used when the recommended threshold is generated by the creation unit 135 described later. The threshold range among the parameters is the threshold variation range when the threshold is varied by the inference unit 133 described later to perform light inference. The number of inference repetitions among the parameters is a parameter indicating how many times light inference is performed within the threshold variation range. The accuracy and performance among the evaluation indexes are the same as those described in FIG. 4, and therefore will not be described here.
例えば、推論条件DB124は、No「1」に対応付けられた、1層目モデル「動体検知モデル」と、2層目モデル「物体検知モデル」と、入力データ「検証用映像A」と、正解データ「正解データA」と、精度「正解率」と、性能「1層目モデルで処理終了フレームの比率」と、目標値「精度:70%、性能:20%」と、閾値の範囲「0~1」と、推論の繰り返し回数「10回」と、等の推論条件を記憶する。 For example, the inference condition DB124 stores inference conditions such as the first layer model "motion detection model", the second layer model "object detection model", the input data "verification video A", the correct answer data "correct answer data A", the accuracy "correct answer rate", the performance "proportion of frames processed by the first layer model", the target values "accuracy: 70%, performance: 20%", the threshold range "0 to 1", and the number of inference repetitions "10 times", all of which are associated with No. "1".
(制御部130)
制御部130は、設定補助装置100の各種処理手順等を規定したプログラムや処理データを一時的に格納するための内部メモリを有し、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等の電子回路、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路によって実現される。そして、制御部130は、図3に示すように、受付部131と、生成部132と、推論部133と、照合部134と、作成部135と、出力部136とを有する。
(Control unit 130)
The
(受付部131)
受付部131は、設定補助情報の作成のための推論条件の指定を受け付ける。具体的には、受付部131は、上述した入力部や通信部110を介して使用モデルと、入力データと、正解データと、評価指標と、パラメータとを受け付け、推論条件DB124に格納する。
(Reception Unit 131)
The receiving unit 131 receives the designation of inference conditions for creating auxiliary setting information. Specifically, the receiving unit 131 receives the model to be used, the input data, the correct answer data, the evaluation index, and the parameters via the input unit and the communication unit 110 described above, and stores them in the inference condition DB 124.
また、受付部131は、後述の推論部133による2層推論に用いる入力データについて通信部110等を介して受け付け、入力データDB121に格納する。また、受付部131は、後述の照合部134による照合処理に用いる正解データについて、後述の生成部132による正解データの生成が行われない場合には、別途生成された正解データを上述した入力部や通信部110を介して受け付けて、正解データDB122に格納する。例えば、受付部131は、図5に示した正解データ「正解データC」の場合には、他の情報処理装置等において生成されたデータや人手により生成されたデータを正解データ(ground truth)として受け付けて、正解データDB122に格納する。
The reception unit 131 also receives input data used for two-layer inference by the inference unit 133 described below via the communication unit 110 and stores it in the
(生成部132)
生成部132は、ユーザ等から指定された推論条件に基づいて、重い推論に用いる第2層モデルを用いて正解データを生成する。例えば、生成部132は、図5に示した正解データ「正解データA」の場合には、2層目モデルに基づく物体検知の結果のうち、1つでも物体を検知するフレームを正例(Positive)、物体が検知されないフレームを負例(Negative)として、それぞれ正例と負例とを同数含む正解データを生成する。また、図5に示した正解データ「正解データB」の場合には、生成部132は、2層目モデルに基づく物体検知の結果として、Bounding Boxを生成する。
(Generation unit 132)
The generating unit 132 generates correct answer data using the second layer model used for heavy inference based on inference conditions specified by a user, etc. For example, in the case of the correct answer data "correct answer data A" shown in Fig. 5, the generating unit 132 generates correct answer data including the same number of positive and negative examples, with frames that detect at least one object being a positive example (Positive) and frames that do not detect an object being a negative example (Negative) among the results of object detection based on the second layer model. Also, in the case of the correct answer data "correct answer data B" shown in Fig. 5, the generating unit 132 generates a Bounding Box as a result of object detection based on the second layer model.
(推論部133)
推論部133は、軽い推論を行い得られる所定の値と変動させたそれぞれの閾値とを比較して、重い推論を実施するか否かの判定条件を満たす場合に重い推論を実施して、2層推論の推論結果を出力する。例えば、推論部133は、軽い推論に用いる第1層モデルを用いて推論を行った結果得られた差分度や確信度等が、変動させたそれぞれの閾値についての判定条件を満たす場合に重い推論を実施して、得られる2層推論の結果を出力する。
(Inference Unit 133)
The inference unit 133 compares a predetermined value obtained by performing light inference with each of the varied thresholds, and performs heavy inference when a judgment condition for whether to perform heavy inference is satisfied, and outputs an inference result of the two-layer inference. For example, the inference unit 133 performs heavy inference when a difference degree, a confidence degree, or the like obtained as a result of performing inference using the first layer model used for light inference satisfies a judgment condition for each of the varied thresholds, and outputs the obtained result of the two-layer inference.
一例として、推論部133は、「軽い推論により算出された差分度が閾値を上回る場合(下限の閾値)に、重い推論を行う」という判定条件を満たす場合に重い推論を実施して、得られる2層推論の結果を照合部134に出力する。また、推論部133は、「軽い推論により算出された確信度が閾値を下回る場合(上限の閾値)に、重い推論を行う」という判定条件を満たす場合に重い推論を実施して、得られる2層推論の結果を照合部134に出力する。 As an example, the inference unit 133 performs heavy inference when the judgment condition "if the degree of difference calculated by light inference exceeds a threshold (lower threshold)", performs heavy inference, and outputs the obtained result of the two-layer inference to the matching unit 134. Also, the inference unit 133 performs heavy inference when the judgment condition "if the confidence calculated by light inference falls below a threshold (upper threshold)", performs heavy inference, and outputs the obtained result of the two-layer inference to the matching unit 134.
なお、推論部133は、得られた差分度や確信度等が閾値に係る判定条件を満たさない場合には、「判定条件を満たさない、2層推論の出力無し」等の情報を2層推論の結果として出力してもよい。 If the obtained difference degree, certainty degree, etc. do not satisfy the judgment condition related to the threshold, the inference unit 133 may output information such as "Judgment condition not satisfied, no output of second-layer inference" as the result of the second-layer inference.
(照合部134)
照合部134は、2層推論に用いられる閾値を変動させて、変動させた閾値ごとに2層推論を実施することで得られる変動させた閾値ごとの2層推論の結果と、正解データとを照合する。具体的には、照合部134は、2層推論の結果と予め作成された正解データとを比較して、2層推論の精度等の所定の指標を照合結果として算出する。また、照合部134は、2層推論の結果を用いて、2層目モデルを用いた重い推論が行われる割合やリアルタイム性の指標であるレイテンシ等の性能等の所定の指標を照合結果として算出する。そして、照合部134は、照合結果を照合結果DB123に格納する。
(Collation unit 134)
The collation unit 134 varies the threshold used in the second-layer inference, and performs the second-layer inference for each varied threshold, and collates the result of the second-layer inference for each varied threshold with the correct answer data. Specifically, the collation unit 134 compares the result of the second-layer inference with the correct answer data created in advance, and calculates a predetermined index such as the accuracy of the second-layer inference as a collation result. In addition, the collation unit 134 uses the result of the second-layer inference to calculate a predetermined index such as the rate at which heavy inference is performed using the second-layer model and performance such as latency, which is an index of real-time performance, as a collation result. Then, the collation unit 134 stores the collation result in the
例えば、照合部134は、2層推論における軽い推論が動体検知であり重い推論が物体検知の場合には、図5に示した推論条件のNo「1」の条件に基づいて、精度の指標として正解率と、性能の指標として1層目モデルでの処理終了フレームの比率とを算出する。そして、照合部134は、算出した結果を照合結果として、照合結果DB123に格納する。ここで、正解率とは、2層推論による推論結果と正解データとの一致率であり、言い換えると、入力データについて、どの程度正確に2層推論(動体検知や物体検知等)が行われるかを示す指標である。また、1層目モデルでの処理終了フレームの比率は、入力されたデータ数(フレーム)に対して、軽い推論のみで処理が終了したデータ数(フレーム)である。
For example, when the light inference in the second-layer inference is motion detection and the heavy inference is object detection, the matching unit 134 calculates the accuracy rate as an index of accuracy and the ratio of frames processed in the first-layer model as an index of performance based on the condition No. "1" of the inference conditions shown in FIG. 5. The matching unit 134 then stores the calculated results as matching results in the
上述した正解率は、例えば、「正解率=(TP+TN)÷(TP+TN+FP+FN)」という式で算出される。なお、TPは、正例において軽い推論の推論結果が「動体あり」のフレーム数である。また、FNは、正例において軽い推論の推論結果が「動体なし」のフレーム数である。また、FPは、負例において軽い推論の推論結果が「動体あり」のフレーム数である。また、TNは、正例において軽い推論の推論結果が「動体なし」のフレーム数である。また、ここでいう正例は、「1つでも物体を検知するフレーム」である。また、負例は、「物体が検知されないフレーム」である。 The accuracy rate mentioned above is calculated, for example, by the formula "Accuracy rate = (TP + TN) ÷ (TP + TN + FP + FN)." TP is the number of frames in which the inference result of light inference in positive examples is "moving object present." FN is the number of frames in which the inference result of light inference in positive examples is "no moving object." FP is the number of frames in which the inference result of light inference in negative examples is "moving object present." TN is the number of frames in which the inference result of light inference in positive examples is "no moving object." Positive examples here are "frames in which at least one object is detected." Negative examples are "frames in which no object is detected."
具体的には、照合部134は、「動体あり(重い推論まで実施)」という2層推論の結果と正解データとを比較して、「動体ありと判定されたフレーム」のうち「TP(物体あり)」と「FP(物体なし)」に該当するフレーム数を算出する。また、照合部134は、「動体なし(重い推論の実施なし)」という2層推論の結果と正解データとを比較して、「動体なしと判定されたフレーム」のうち「FP(動体あり)」と「FN(動体なし)」に該当するフレーム数を算出する。そして、照合部134は、上述した正解率を算出する式に「TP、TN、FP、FN」に該当するフレーム数を当てはめて、正解率を算出する。 Specifically, the matching unit 134 compares the result of the two-layer inference of "moving object present (heavy inference performed)" with the correct answer data, and calculates the number of frames that fall into "TP (object present)" and "FP (no object)" among the "frames determined to have a moving object". The matching unit 134 also compares the result of the two-layer inference of "no moving object (no heavy inference performed)" with the correct answer data, and calculates the number of frames that fall into "FP (moving object present)" and "FN (no moving object)" among the "frames determined to have no moving object". The matching unit 134 then applies the number of frames that fall into "TP, TN, FP, FN" to the formula for calculating the accuracy rate described above to calculate the accuracy rate.
さらに、照合部134は、正例の再現率と負例の再現率とを算出することができる。なお、ここでいう正例の再現率は、検知漏れの程度を示す指標であり、例えば、正例の再現率が高いほど検知漏れが少ないことを示す。また、負例の再現率は、物体が検知されないと判定されたフレームの正解率を示す指標であり、この値が高い方ほど判定が正確(すなわち、検知漏れが少ない)であることを示す。 Furthermore, the matching unit 134 can calculate the recall rate of positive examples and the recall rate of negative examples. Note that the recall rate of positive examples here is an index showing the degree of missed detections; for example, a higher recall rate of positive examples indicates fewer missed detections. The recall rate of negative examples is an index showing the accuracy rate of frames in which it is determined that an object is not detected; a higher value indicates a more accurate determination (i.e., fewer missed detections).
上述した正例の再現率は、例えば、「正例の再現率=TP÷(TP+FN)」という式で算出される。また、負例の再現率は、例えば、「負例の再現率=TN÷(TN+FP)」という式で算出される。 The recall rate of the positive examples described above is calculated, for example, by the formula "Recall rate of positive examples = TP ÷ (TP + FN)." The recall rate of the negative examples is calculated, for example, by the formula "Recall rate of negative examples = TN ÷ (TN + FP)."
他方、照合部134は、軽い推論が物体検知であり重い推論が物体検知の場合には、図5に示した推論条件のNo「2」の条件に基づいて、精度の指標として再現率と、性能の指標として1層目モデルでの処理終了フレームの比率とを算出する。そして、照合部134は、算出した結果を照合結果として、照合結果DB123に格納する。
On the other hand, when the light inference is object detection and the heavy inference is object detection, the matching unit 134 calculates the recall as an index of accuracy and the ratio of frames for which processing has ended in the first layer model as an index of performance based on the condition No. "2" of the inference conditions shown in FIG. 5. Then, the matching unit 134 stores the calculated result as the matching result in the
上述の再現率は、IoU(Intersection over Union)に基づいて算出される。具体的には、照合部134は、重い推論による物体検知の結果を正解データとした場合、軽い推論により得られるBounding Box(以降、「BB」と表記する場合がある)と重い推論により得られるBBのIoUを算出する。例えば、照合部134は、「IoU=(軽い推論で得られたBBと重い推論で得られたBBの交差面積)÷(軽い推論で得られたBBと重い推論で得られたBBを結合した総面積)」という式を用いて、IoUを算出する。 The above-mentioned recall rate is calculated based on IoU (Intersection over Union). Specifically, when the result of object detection using heavy inference is regarded as correct answer data, the matching unit 134 calculates the IoU of the bounding box (hereinafter sometimes referred to as "BB") obtained using light inference and the BB obtained using heavy inference. For example, the matching unit 134 calculates the IoU using the formula "IoU = (intersection area of the BB obtained using light inference and the BB obtained using heavy inference) ÷ (total area of the BB obtained using light inference and the BB obtained using heavy inference combined)."
照合部134は、IoUが照合処理用の閾値以上の場合を検出成功、照合処理用の閾値未満の場合を未検出と判定する。そして、照合部134は、上述の「検出成功」、「未検出」の判定結果を用いて、「再現率=(検出成功の個数)÷(検出成功の個数+未検出の個数)」という式に基づき再現率を算出する。なお、ここでいう、再現率は、軽い推論により検知(物体検知)されたフレーム数のうち、重い推論により検知(物体検知)されたフレーム数の割合を示す。また、IoUは、画像の重なりの割合を表す指標で、IoUが大きいほど画像が重なっていることを表す。 The matching unit 134 determines that detection is successful when the IoU is equal to or greater than the threshold for matching processing, and that detection is unsuccessful when the IoU is less than the threshold for matching processing. Using the above-mentioned determination results of "detection successful" and "unsuccessful detection", the matching unit 134 calculates the recall rate based on the formula "recall rate = (number of successful detections) ÷ (number of successful detections + number of undetected)". Note that the recall rate here indicates the proportion of frames detected (objects detected) by heavy inference out of the number of frames detected (objects detected) by light inference. Also, IoU is an index that indicates the proportion of image overlap, and the larger the IoU, the more images overlap.
また、照合部134は、適合率等を算出することができる。例えば、照合部134は、「適合率=(検出成功の個数)÷(軽い推論により得られたBBの個数)」という式を用いて、適合率を算出できる。なお、ここでいう適合率は、軽い推論により得られたBBの数のうち、重い推論においても検出されたBBの数(検出成功の個数)であり、軽い推論の推論結果と重い推論の推論結果とがどの程度一致するかを示す指標である。 The matching unit 134 can also calculate the precision rate and the like. For example, the matching unit 134 can calculate the precision rate using the formula "Precision rate = (number of successful detections) / (number of BBs obtained by light inference)." Note that the precision rate here is the number of BBs that were also detected by heavy inference (number of successful detections) out of the number of BBs obtained by light inference, and is an index showing the degree to which the inference results of light inference and heavy inference match.
(作成部135)
作成部135は、変動させた閾値と、照合部134による照合結果として算出される変動させた閾値ごとの精度と性能との相関グラフを作成する。なお、作成部135は、所定の指標として算出された精度および性能のうち少なくともいずれか一方を、変動させた閾値ごとに対応付けた相関グラフを作成することもできる。また、作成部135は、照合結果DB123に格納された照合結果を用いて相関グラフを作成できる。
(Creation Unit 135)
The creation unit 135 creates a correlation graph between the varied thresholds and the accuracy and performance for each varied threshold calculated as the matching result by the matching unit 134. The creation unit 135 can also create a correlation graph in which at least one of the accuracy and performance calculated as a predetermined index is associated with each varied threshold. The creation unit 135 can also create a correlation graph using the matching results stored in the
作成部135は、所定の指標が予め設定される基準の範囲に含まれる場合に、所定の指標に対応付く閾値を推奨される閾値として算出する。例えば、作成部135は、ユーザ等に指定された精度および性能の目標値により定められる基準を満たす精度と性能とを特定する。そして、特定された精度および性能に対応付けられた閾値を、推奨される閾値として算出する。 The creation unit 135 calculates a threshold value corresponding to a specified index as a recommended threshold value when the specified index falls within a range of preset criteria. For example, the creation unit 135 identifies accuracy and performance that meet criteria determined by target values of accuracy and performance specified by a user, etc. Then, the creation unit 135 calculates a threshold value corresponding to the identified accuracy and performance as a recommended threshold value.
また、作成部135は、所定の重み付けをされた所定の指標についての平均が予め設定される基準の範囲に含まれる場合に、所定の指標に対応付く閾値を推奨される閾値として算出する。例えば、作成部135は、精度と性能とについて予め設定された係数をかけ合わせる等の重み付けを行い、当該重み付けされた精度と性能とのそれぞれについて調和平均を算出する。そして、作成部135は、算出された調和平均が所定の基準を超える等の条件を満たす場合に、当該調和平均に係る精度と性能とに対応付けられた閾値を、推奨される閾値として算出する。 In addition, when the average of the specified indexes to which a predetermined weighting is applied falls within a range of a preset standard, the creation unit 135 calculates a threshold value corresponding to the specified index as a recommended threshold value. For example, the creation unit 135 performs weighting such as multiplying the accuracy and performance by a preset coefficient, and calculates a harmonic mean for each of the weighted accuracy and performance. Then, when the calculated harmonic mean satisfies a condition such as exceeding a preset standard, the creation unit 135 calculates a threshold value corresponding to the accuracy and performance related to the harmonic mean as a recommended threshold value.
作成部135は、閾値を変動させたことにより所定の変化が生じた2層推論の結果を特定する。具体的には、作成部135は、閾値を変動させたことにより2層推論の推論結果(軽い推論または重い推論)に変化が生じた場合に、変化前と変化後との推論結果についての変化率を算出して、所定の基準を超える推論結果を変化が生じた推論結果として特定する。そして、作成部135は、変化前の推論結果と変化後の推論結果とを比較した結果を設定補助情報として作成する。なお、作成部135により作成される設定補助情報の一例については、後述の出力部136の項目にて説明する。
The creation unit 135 identifies the results of the second-layer inference in which a predetermined change has occurred due to varying the threshold. Specifically, when a change has occurred in the inference result of the second-layer inference (light inference or heavy inference) due to varying the threshold, the creation unit 135 calculates the rate of change between the inference results before and after the change, and identifies the inference result that exceeds a predetermined standard as an inference result in which a change has occurred. The creation unit 135 then creates the result of comparing the inference result before the change with the inference result after the change as setting auxiliary information. Note that an example of the setting auxiliary information created by the creation unit 135 will be described in the section on the
(出力部136)
出力部136は、作成部135により作成された相関グラフ、推奨閾値、推論結果変化の比較結果等の設定補助情報を、上述した入力部や通信部110を介してユーザ等に対して出力する。ここで、出力部136により出力される設定補助情報の一例を説明する。図6は、本実施形態に係る出力される設定補助情報の一例を示す図である。図6には、相関グラフ(図6の(1))および推奨される閾値(図6の(1-1))と、推論結果変化の比較結果(図6の(2))とが示されている。図6の(1)に示すような相関グラフは、変動させた閾値ごとに対応付けられた精度と性能とがプロットされたグラフである。そして、相関グラフは、変動させた閾値ごとに対応付けられた精度の値および性能の値が線分で結ばれて表示される。
(Output unit 136)
The
当該相関グラフのX軸は、変動させた閾値を表し、ユーザ等に指定された推論条件の「閾値の範囲」と「推論の繰り返し実行回数」に基づき設定される。例えば、当該相関グラフのX軸は、閾値の範囲が「0~1」、推論の繰り返し回数が「10回」の場合、閾値を変動させる間隔が「0.1」として設定される。 The X-axis of the correlation graph represents the varied threshold value, and is set based on the "threshold range" and "number of times the inference is repeated" of the inference conditions specified by the user, etc. For example, when the threshold range is "0 to 1" and the number of times the inference is repeated is "10 times," the interval for varying the threshold value is set as "0.1."
当該相関グラフの左側のY軸は、照合部134の照合結果に基づき算出された正解率や再現率等の精度の値を表す。他方、当該相関グラフの右側のY軸は、照合部134の照合結果に基づき算出された1層目モデルで処理終了フレームの比率、2層目の推論が行われる割合、レイテンシ等の性能の値を表す。 The Y-axis on the left side of the correlation graph represents accuracy values such as the accuracy rate and recall rate calculated based on the matching results of the matching unit 134. On the other hand, the Y-axis on the right side of the correlation graph represents performance values such as the ratio of frames for which processing is completed with the first-layer model, the ratio at which second-layer inference is performed, and latency, all calculated based on the matching results of the matching unit 134.
さらに、出力部136は、相関グラフに推奨の閾値を表示して当該相関グラフを出力できる。例えば、作成部135により推論条件に基づいて推奨の閾値が算出された場合には、出力部136は、図6の(1-1)に示すように、推奨の閾値が「0.3」であることを示す表示を付した相関グラフを出力できる。
Furthermore, the
図6の(2)に示すような推論結果変化の比較結果は、閾値を変動させたことにより2層推論の推論結果に変化が生じたことをユーザ等に提示する情報である。例えば、図6の(2)に示すような推論結果変化の比較結果のうち上図では、3つの物体(人物)が検知されている(図6の(2-1)から(2-3))。他方、図6の(2)に示すような推論結果変化の比較結果のうち下図では、2つの物体(人物)が検知されている(図6の(2-4)から(2-5))。このように、出力部136は、閾値の変動により物体(人物)の検知結果が異なる上図と下図との比較結果を出力できる。
The comparison result of the inference result change as shown in FIG. 6 (2) is information that is presented to the user, etc., that a change has occurred in the inference result of the two-layer inference due to the change in the threshold. For example, in the upper diagram of the comparison result of the inference result change as shown in FIG. 6 (2), three objects (people) are detected (from (2-1) to (2-3) in FIG. 6). On the other hand, in the lower diagram of the comparison result of the inference result change as shown in FIG. 6 (2), two objects (people) are detected (from (2-4) to (2-5) in FIG. 6). In this way, the
(第1の例:重い推論の実施要否を下限の閾値で判定する場合)
ここから、上述してきた設定補助装置100の機能により実現される設定補助処理についての一例を、図7から図13を用いて説明する。図7から図13は、本実施形態に係る設定補助情報生成の一例を示す図である。
(First example: When determining whether or not to perform heavy inference based on a lower threshold)
From here, an example of the setting assistance process realized by the above-mentioned functions of the
まずは、「2層推論における重い推論の実施要否を下限の閾値で判定する場合」の一例について、図7から図9を用いて説明する。図7には、動体検知モデルを軽い推論の1層目モデルとして用いて、物体検知モデルを重い推論の2層目モデルとして用いる2層推論システム10と、当該2層推論システム10にて用いられる閾値を設定するための設定補助情報を作成する設定補助装置100とが示されている。
First, an example of "determining whether or not to perform heavy inference in two-layer inference using a lower threshold" will be described with reference to Figs. 7 to 9. Fig. 7 shows a two-
図7に示す一例では、2層推論システム10は、エッジ側の軽い推論により得られる差分度が閾値を超える(図7上部の「差分度が高い」)場合に、クラウド側の重い推論を実施する。言い換えると、図7に示す2層推論システム10は、入力データごとに一定以上の差分が発生する場合にのみ重い推論を実施して、入力データの中から人物、動物、自動車等の予め検知対象として設定された物体を検知する。すなわち、2層推論システム10は、1層目モデルと2層目モデルとにより処理されるタスクが異なる場合において、処理負荷の大きい重い推論の実施頻度を低減させて処理負荷の軽減を行う。
In the example shown in FIG. 7, the two-
設定補助装置100は、図7に示すように、受け付けられた推論条件や入力データを用いて2層推論を行い、2層推論の推論結果と正解データとを照合して設定補助情報を作成する。そして、第1の例においては、設定補助装置100は、相関グラフや推奨される閾値(推奨閾値)等を設定補助情報として出力する。
As shown in FIG. 7, the setting
次に、第1の例における設定補助装置100により出力される設定補助情報の一例について説明する。図8には、設定補助装置100により出力される相関グラフの一例が示されている。図8に示す相関グラフは、X軸が変動させた閾値の値、Y軸(左)が精度の指標として正解率、Y軸(右)が性能の指標として1層目モデルで処理終了フレームの比率として表現されている。
Next, an example of the setting assistance information output by the setting
上述したように、第1の例では、2層推論システム10は、軽い推論により得られる差分度が閾値(下限の閾値)を超える場合に重い推論を実施する。すなわち、第1の例では、閾値の値が高くなるにつれて、軽い推論により得られる差分度が閾値を超える頻度が減少し、重い推論の実施頻度が減少する。このように、閾値が高くなるにつれて2層目モデルによる重い推論の実施頻度が低下するため、図8に示す相関グラフは、正解率が逓減し、1層目モデルで処理終了フレームの比率が逓増する傾向を示す。
As described above, in the first example, the two-
また、設定補助装置100は、相関グラフを出力する際に「評価指標の選択」を受け付ける操作画面20を併せて表示させることができる。この操作画面20は、例えば、「正解率」、「再現率」、「1層目モデルで処理終了フレームの比率」等の相関グラフに表示する評価指標を選択するためのチェックボックス等が含まれる。なお、図8の一例では、「正解率」と「1層目モデルで処理終了フレームの比率」とが選択されている。
The setting
また、設定補助装置100は、図9に示すようにユーザ等に提示する推奨される閾値を表示した相関グラフを出力する。具体的には、設定補助装置100は、ユーザ等により設定される当該精度の目標値と当該性能の目標値とにより定められる基準を満たす閾値を推奨される閾値として算出できる。
The setting
例えば、設定補助装置100は、図9の操作画面21に示すように正解率の目標値が「70%(以上)」と設定された場合には、Y軸(左)に対応する正解率が70%以上となる実線で示された区間に該当する閾値「0から0.5」を推奨される閾値の候補として特定する。また、設定補助装置100は、1層目モデルで処理終了フレームの比率の目標値が「20%(以上)」と設定された場合には、Y軸(右)に対応する1層目モデルで処理終了フレームの比率が20%以上となる実線で示された区間に該当する閾値「0.3から1」を推奨される閾値の候補として特定する。そして、設定補助装置100は、図9に示すように、正解率の目標値と1層目モデルで処理終了フレームの比率の目標値とを双方満たす閾値「0.3から0.5」を推奨される閾値として算出する。
For example, when the target value of the accuracy rate is set to "70% (or more)" as shown in the operation screen 21 of FIG. 9, the setting
なお、設定補助装置100は、「精度重視」の場合にはより精度が高くなる閾値「0.3」を、「性能重視」の場合にはより性能が高くなる閾値「0.5」を推奨される閾値として算出できる。
In addition, the setting
また、設定補助装置100は、各指標についての内訳値を表示した相関グラフを出力することができる。具体的には、設定補助装置100は、任意の正解率の各点において、「正例の再現率」と「負例の再現率」とを、内訳値として表示できる。例えば、設定補助装置100は、図9に示すように、閾値0.3における正解率「80%」の指標として、正例の再現率「80%」、負例の再現率「40%」等の内訳値を表示した相関グラフを出力できる。
The setting
(第2の例:2層推論における重い推論の実施要否を上限の閾値で判定する場合)
次に、「2層推論における重い推論の実施要否を上限の閾値で判定する場合」の一例について、図10および図11を用いて説明する。図10には、物体検知モデルを軽い推論の1層目モデルとして用いて、物体検知モデルを重い推論の2層目モデルとして用いる2層推論システム10と、当該2層推論システム10にて用いられる閾値を設定するための設定補助情報を作成する設定補助装置100とが示されている。
(Second example: When determining whether or not to perform heavy inference in two-layer inference using an upper threshold)
Next, an example of "determining whether or not to perform heavy inference in two-layer inference using an upper limit threshold" will be described with reference to Figures 10 and 11. Figure 10 shows a two-
図10に示す一例では、2層推論システム10は、エッジ側の軽い推論により得られる確信度が閾値を超える場合にはクラウド側の重い推論は実施せず、確信度が閾値を下回る場合にはクラウド側の重い推論を実施する。言い換えると、図10に示す2層推論システム10は、軽い推論の推論結果について確信度が閾値を超える場合(図10上部の「確信度が高い」)には軽い推論の推論結果をそのまま最終的な2層推論の出力結果として用いる。他方、確信度が閾値を下回る場合(図10上部の「確信度が低い」)には軽い推論の推論結果では不十分と判定して重い推論を実施して、重い推論の結果を2層推論の結果として出力する。すなわち、2層推論システム10は、1層目モデルと2層目モデルとにより処理されるタスクが同じ場合において、処理負荷の大きい重い推論の実施頻度を低減させて処理負荷の軽減を行う。
In the example shown in FIG. 10, the two-
設定補助装置100は、図10に示すように、受け付けられた推論条件や入力データを用いて2層推論を行い、2層推論の結果と正解データとを照合して設定補助情報を作成する。そして、第2の例においては、設定補助装置100は、閾値ごとに2層推論の精度と性能とを対応付けた相関グラフ、推奨される閾値(推奨閾値)、推論結果変化の比較情報等を設定補助情報として出力する。
As shown in FIG. 10, the setting
次に、第2の例における設定補助装置100により出力される設定補助情報の一例について説明する。図11には、設定補助装置100により出力される相関グラフの一例が示されている。図11に示す相関グラフは、X軸が変動させた閾値の値、Y軸(左)が精度の指標として再現率、Y軸(右)が性能の指標として1層目モデルで処理終了フレームの比率として表現されている。
Next, an example of the setting assistance information output by the setting
上述したように、第2の例では、2層推論システム10は、軽い推論により得られる確信度が閾値(上限の閾値)を下回る場合に重い推論を実施する。すなわち、第2の例では、閾値の値が高くなるにつれて、軽い推論により得られる確信度が閾値を下回る頻度が増加し、重い推論の実施頻度が増加する。このように、閾値が高くなるにつれて2層目モデルによる重い推論の実施頻度が増加するため、図11に示す相関グラフは、再現率が逓増し、1層目モデルで処理終了フレームの比率が逓減する傾向を示している。
As described above, in the second example, the two-
また、設定補助装置100は、相関グラフを出力する際に「評価指標の選択」を受け付ける操作画面22を併せて表示させることができる。この操作画面22は、例えば、「正解率」、「再現率」、「1層目モデルで処理終了フレームの比率」等の相関グラフに表示する評価指標を選択するためのチェックボックス等が含まれる。なお、図11の一例では、「再現率」と「1層目モデルで処理終了フレームの比率」とが選択されている。
The setting
また、設定補助装置100は、図12に示すようにユーザ等に提示する推奨される閾値を表示した相関グラフを出力する。例えば、設定補助装置100は、図12の操作画面23に示すように再現率の目標値が「75%(以上)」と設定された場合には、Y軸左に対応する再現率が75%以上である実線で示された区間に該当する閾値「0.7から1」を推奨される閾値の候補として特定する。他方、設定補助装置100は、図12に示すように、1層目モデルで処理終了フレームの比率の目標値が「30%(以上)」と設定された場合には、Y軸右側に対応する1層目モデルで処理終了フレームの比率が30%以上である実線で示された区間に該当する閾値「0から0.7」を推奨される閾値の候補として特定する。そして、設定補助装置100は、図12に示すように、正確度の目標値と1層目モデルで処理終了フレームの比率の目標値とを双方満たす閾値「0.7」を推奨される精度重視の閾値として算出する。
The setting
なお、上述した第2の例に係る「推論結果変化の比較情報」については、図6における説明と同様の内容であるため、本項目での説明を省略する。 Note that the "comparison information on changes in inference results" in the second example described above is the same as that described in FIG. 6, so a description of it will be omitted here.
(第3の例:2層推論における軽い推論結果を加工する重い推論の実施要否を下限の閾値で判定する場合)
次に、「2層推論における軽い推論結果を加工する重い推論の実施要否を下限の閾値で判定する場合」の一例について、図13を用いて説明する。図13には、物体検知モデルを軽い推論の1層目モデルとして用いて、姿勢推定モデルを重い推論の2層目モデルとして用いる2層推論システム10と、当該2層推論システム10にて用いられる閾値を設定するために用いる設定補助情報を作成する設定補助装置100とが示されている。
(Third example: When determining the necessity of performing heavy inference that processes light inference results in two-layer inference based on a lower threshold)
Next, an example of "a case in which the necessity of performing heavy inference for processing light inference results in two-layer inference is determined using a lower threshold" will be described with reference to Fig. 13. Fig. 13 shows a two-
図13に示す一例では、2層推論システム10は、エッジ側の軽い推論により得られる確信度が閾値を超える場合(図13上部の「確信度が高い」)に、クラウド側の重い推論を実施する。言い換えると、図13に示す2層推論システム10は、入力データから抽出した物体についての確信度が閾値を超える場合には重い推論を実施して、軽い推論により検出された物体のボーン等の推定を行う。すなわち、2層推論システム10は、1層目モデルと2層目モデルとにより処理されるタスクが異なる場合において、処理負荷の大きい重い推論の実施頻度を低減させて処理負荷の軽減を行う。
In the example shown in FIG. 13, the two-
また、図13に示すように、設定補助装置100は、受け付けられた推論条件や入力データを用いて2層推論を行い、2層推論結果と正解データとを照合して設定補助情報を作成する。そして、第3の例においては、設定補助装置100は、相関グラフと、推奨される閾値(推奨閾値)とを設定補助情報として出力する。なお、第3の例においては、重い推論を行うために軽い推論の結果を用いるため、重い推論の推論結果を正解データとして用いることができないことから、別途正解データとして生成した生成データを用いる。
Also, as shown in FIG. 13, the setting
なお、第3の例において生成される設定補助情報は、第1の例または第2の例と同様であることから、詳細な説明は省略する。 Note that the configuration auxiliary information generated in the third example is similar to that in the first or second example, so a detailed description will be omitted.
(設定補助処理の手順)
ここから、本実施形態に係る設定補助装置100により実現される設定補助処理の手順について説明する。図14は、本実施形態に係る設定補助処理のフローチャートの一例を示す図である。
(Procedure for setting assistance process)
From here, a description will be given of the procedure of the setting assistance process realized by the setting
受付部131は、推論条件の指定を受け付ける(S101)。 The reception unit 131 receives the specification of inference conditions (S101).
ここで、正解データを生成しない場合(S102のNo)、受付部131は、予め作成された正解データを受け付ける(S103)。他方、正解データを生成する場合(S102のYes)、生成部132は、重い推論の出力結果を用いて正解データを生成する(S104)。 Here, if correct answer data is not to be generated (No in S102), the receiving unit 131 receives pre-created correct answer data (S103). On the other hand, if correct answer data is to be generated (Yes in S102), the generating unit 132 generates correct answer data using the output result of the heavy inference (S104).
推論部133は、推論条件に基づいて閾値を変動させながら2層推論を実施する(S105)。次に、照合部134は、2層推論の推論結果と正解データとを照合する(S106)。そして、作成部135は、相関グラフを作成する(S107)。 The inference unit 133 performs two-layer inference while varying the threshold based on the inference conditions (S105). Next, the comparison unit 134 compares the inference result of the two-layer inference with the correct answer data (S106). Then, the creation unit 135 creates a correlation graph (S107).
ここで、推奨閾値を作成する場合には(S108のYes)、作成部135は、推奨閾値を作成する(S109)。他方、推奨閾値を作成しない場合には(S108のNo)、作成部135は、S109の工程をスキップする。 Here, if a recommended threshold is to be created (Yes in S108), the creation unit 135 creates a recommended threshold (S109). On the other hand, if a recommended threshold is not to be created (No in S108), the creation unit 135 skips the step of S109.
また、閾値を変動させたことによる2層推論の推論結果の変動についての比較結果を生成する場合(S110のYes)、作成部135は、当該比較結果を作成する(S111)。他方、比較結果を作成しない場合(S110のNo)、作成部135は、S111の工程をスキップする。 In addition, when generating a comparison result regarding the variation in the inference result of the two-layer inference due to the variation in the threshold value (Yes in S110), the creation unit 135 creates the comparison result (S111). On the other hand, when not generating a comparison result (No in S110), the creation unit 135 skips the step of S111.
出力部136は、作成部135により生成された結果を出力する(S112)。そして、設定補助装置100は、工程を終了する。
The
(効果)
ここから、本実施形態に係る設定補助装置100が奏する効果について説明する。本実施形態に係る照合部134は、2層推論に用いられる閾値を変動させて、変動させた閾値ごとに2層推論を実施することで得られる変動させた閾値ごとの2層推論の結果と、正解データとを照合する。そして、作成部135は、変動させた閾値と、照合結果として算出される変動させた閾値ごとの2層推論の精度と性能との相関グラフを作成する。したがって、本実施形態の設定補助装置100によれば、2層推論に用いる閾値のチューニングを容易とする、という効果を奏する。
(effect)
From here, the effect of the
具体的には、推論部133は、軽い推論を行い得られる所定の値と変動させたそれぞれの閾値とを比較して、重い推論を実施するか否かの判定条件を満たす場合に重い推論を実施して、得られる2層推論の結果を出力する。照合部134は、2層推論の結果と予め作成された正解データとを比較して、2層推論の精度と2層推論の性能とを含む所定の指標を照合結果として算出する。作成部135は、所定の指標として算出された精度と性能とを、変動させた閾値ごとに対応付けた相関グラフを作成する。このように、設定補助装置100は、ユーザ等に指定された推論条件に基づいて自動で閾値を変動させて、変動させたそれぞれの閾値における2層推論の結果と正解データとを比較して精度や性能等の指標を算出して相関グラフを作成する。そのため、設定補助装置100は、ユーザ等が閾値のチューニングを行う際の精度と性能とのバランスを個別に確認する処理を不要として、2層推論に用いる閾値のチューニングを容易とするという効果を奏する。
Specifically, the inference unit 133 compares a predetermined value obtained by performing light inference with each of the varied thresholds, and performs heavy inference when the judgment condition for performing heavy inference is met, and outputs the obtained result of the second-layer inference. The collation unit 134 compares the result of the second-layer inference with the correct answer data created in advance, and calculates a predetermined index including the accuracy of the second-layer inference and the performance of the second-layer inference as the collation result. The creation unit 135 creates a correlation graph in which the accuracy and performance calculated as the predetermined index are associated with each of the varied thresholds. In this way, the setting
また、作成部135は、所定の指標が予め設定される基準の範囲に含まれる場合に、所定の指標に対応付く閾値を推奨される閾値として算出する。また、作成部135は、所定の重み付けをされた所定の指標についての平均が予め設定される基準の範囲に含まれる場合に、所定の指標に対応付く閾値を推奨される閾値として算出する。このように、設定補助装置100は、ユーザが所望する閾値の候補を推奨される閾値として算出する。そのため、設定補助装置100は、ユーザ等により行われる閾値のチューニングの工数を削減し、2層推論に用いる閾値のチューニングを容易とするという効果を奏する。
The creation unit 135 also calculates a threshold value corresponding to a specific index as a recommended threshold value when the specific index falls within a range of preset criteria. The creation unit 135 also calculates a threshold value corresponding to a specific index as a recommended threshold value when an average of a specific weighted specific index falls within a range of preset criteria. In this way, the setting
また、作成部135は、閾値を変動させたことにより所定の変化が生じた2層推論の結果を特定する。このように、設定補助装置100は、閾値を変動させた結果、推論結果に変化が生じた場合に変化した推論結果を特定することで、閾値の変動により推論結果にどのような変化が生じたかをユーザが視覚的に把握することを可能とする。その結果、設定補助装置100は、ユーザが適切な閾値を選択することを容易とするという効果を奏する。
The creation unit 135 also identifies the results of two-layer inference where a specific change has occurred due to varying the threshold. In this way, the setting
上述してきたように、本実施形態に係る設定補助装置100は、ユーザ等が推論のユースケースに適した閾値を容易にチューニングできるようになることを実現する。その結果、設定補助装置100は、2層推論システムの利用性やユーザビリティの向上を実現し、ユーザの推論に対する知識や習熟度に依存せず、2層推論システムの容易な利用を実現する。
As described above, the setting
さらに、これまではユーザにより精度と性能とのバランスを逐一確認しながら閾値のチューニングが行われていたところ、設定補助装置100は、自動で閾値と精度と性能とが対応付けられた相関グラフを作成することにより、閾値のチューニングのための個別の検証を不要として、当該チューニングに要する工数やコンピュータによる処理を削減することができる。
Furthermore, whereas previously users tuned thresholds by checking the balance between accuracy and performance one by one, the setting
<変形例>
以下に、本実施形態に係る設定補助装置100により実現される変形例を記載する。
<Modification>
The following describes modified examples realized by the setting
(データ等)
上記実施形態の説明で用いた、入力データ、正解データ、照合結果、推論条件、軽い推論、重い推論、性能、精度、設定補助装置100の機能部の名称、ステップ、工程、ステップまたは工程の名称等は、あくまで一例であり、任意に変更することができる。
(Data, etc.)
The input data, correct data, matching results, inference conditions, light inference, heavy inference, performance, accuracy, names of functional parts of the
入力データDB121は、静止画像や動画像以外にも、音声データやテキストデータ等のモデルに基づく推論に用いることができるデータであれば記憶することができる。
In addition to still images and video images, the
正解データDB122は、正例または負例を含む正解データを記憶すると記載したがこれに限定されず、照合部134による照合処理に用いることができるデータであれば限定なく記憶できる。 Although the correct answer data DB 122 has been described as storing correct answer data including positive examples and negative examples, this is not limited to this, and any data that can be used for matching processing by the matching unit 134 can be stored without limitation.
照合結果DB123は、閾値、精度、性能、推奨閾値等を対応付けて記憶すると説明したが、例えば、推奨閾値が含まれない照合結果を記憶してもよい。 Although it has been described that the matching result DB123 stores a correspondence between thresholds, accuracy, performance, recommended thresholds, etc., it may also store matching results that do not include recommended thresholds, for example.
推論条件DB124は、使用モデルとして動体検知モデル、物体検知モデル、指定推定モデルを記憶すると説明したが、これに限定されずその他の推論モデルを記憶できる。また、推論条件DB124により記憶される、正解データ、精度、性能、目標値、閾値の範囲、推論の繰り返し回数等の内容は、実際の使用状況に応じて適宜変更されてよい。また、推論条件DB124により記憶される推論条件のうち「目標値」は、「目標値以上」、「目標値以下」、「目標値を超過」、「目標値未満」等、任意の条件を含んでよい。 Although the inference condition DB124 has been described as storing the motion detection model, object detection model, and specified estimation model as the models used, it is not limited to these and can store other inference models. Furthermore, the contents of the correct answer data, accuracy, performance, target value, threshold range, number of inference repetitions, etc. stored by the inference condition DB124 may be changed as appropriate according to the actual usage situation. Furthermore, the "target value" among the inference conditions stored by the inference condition DB124 may include any condition such as "greater than or equal to the target value," "less than or equal to the target value," "exceeding the target value," "less than the target value," etc.
推論部133は、一例として「差分度が閾値を上回る場合(下限の閾値)に、2層目モデルを用いた推論である重い推論を行う」や「確信度が閾値を下回る場合(上限の閾値)に、2層目モデルを用いた推論である軽い推論を行う」等の判定条件を満たす場合に軽い推論結果を出力すると説明したが、上述の判定条件はこれに限定されず、任意の条件に基づいて軽い推論結果を出力するか否かを判定できる。 As an example, the inference unit 133 has been described as outputting a light inference result when a judgment condition is satisfied, such as "if the degree of difference exceeds a threshold (lower threshold), heavy inference is performed, which is inference using the second layer model" or "if the confidence level is below a threshold (upper threshold), light inference is performed, which is inference using the second layer model." However, the above-mentioned judgment conditions are not limited to these, and it is possible to determine whether or not to output a light inference result based on any condition.
(フローチャート等)
フローチャート等における各ステップは、矛盾の無い範囲で入れ替えて実施されてもよいし、実施されないステップが存在してもよい。また、フローチャートの説明における、「次に」、「続けて」、「さらに」、「この時」、「この際」等の接続詞は、フローチャートにおける処理の実施の順番やタイミングを限定するものではない。
(Flowcharts, etc.)
The steps in the flowcharts and the like may be interchanged as long as there is no contradiction, and some steps may not be performed. In addition, conjunctions such as "next,""continue,""further,""at this time," and "on this occasion" in the explanation of the flowcharts do not limit the order or timing of the execution of the processes in the flowcharts.
(システム)
上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
(system)
The information including the processing procedures, control procedures, specific names, various data and parameters shown in the above documents and drawings can be changed arbitrarily unless otherwise specified.
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散や統合の具体的形態は図示のものに限られない。つまり、その全部または一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。 Furthermore, each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure. In other words, the specific form of distribution and integration of each device is not limited to that shown in the figure. In other words, all or part of them can be functionally or physically distributed and integrated in any unit depending on various loads, usage conditions, etc.
<ハードウェア構成>
図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示のように構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。さらに、各装置にて行われる各処理機能は、その全部または任意の一部が、CPUおよび当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。
<Hardware Configuration>
Each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure. In other words, the specific form of distribution and integration of each device is not limited to that shown in the figure, and all or a part of it can be functionally or physically distributed and integrated in any unit depending on various loads, usage conditions, etc. Furthermore, each processing function performed by each device can be realized in whole or in any part by a CPU and a program analyzed and executed by the CPU, or can be realized as hardware using wired logic.
また、本実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を公知の方法で手動的に行うこともできる。この他、図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。 Furthermore, among the various processes described in this embodiment, all or part of the processes described as being performed automatically can also be performed manually using known methods. In addition, the information including the processing procedures, control procedures, specific names, various data, and parameters shown in the drawings can be changed as desired unless otherwise specified.
<プログラム>
一実施形態として、設定補助装置100を構成する各種の装置は、パッケージソフトウェアやオンラインソフトウェアとして、設定補助プログラムを、所望のコンピュータにインストールさせることによって実装できる。例えば、上記の設定補助プログラムを情報処理装置に実行させることにより、設定補助装置100を構成する各種の装置として機能させることができる。ここで言う情報処理装置には、デスクトップ型またはノート型のパーソナルコンピュータが含まれる。また、その他にも、情報処理装置にはスマートフォン、携帯電話機等の移動体通信端末、さらには、PDA(Personal Digital Assistant)等のスレート端末等がその範疇に含まれる。
<Program>
In one embodiment, the various devices constituting the
図15は、本実施形態に係る設定補助プログラムを実行するコンピュータの一例を示す図である。コンピュータ1000は、例えば、メモリ1010、CPU1020を有する。また、コンピュータ1000は、ハードディスクドライブインタフェース1030、ディスクドライブインタフェース1040、シリアルポートインタフェース1050、ビデオアダプタ1060、ネットワークインタフェース1070を有する。これらの各部は、バス1080によって接続される。
FIG. 15 is a diagram showing an example of a computer that executes the setting assistance program according to this embodiment. The
メモリ1010は、ROM(Read Only Memory)1011およびRAM1012を含む。ROM1011は、例えば、BIOS(Basic Input Output System)等のブートプログラムを記憶する。ハードディスクドライブインタフェース1030は、ハードディスクドライブ1090に接続される。ディスクドライブインタフェース1040は、ディスクドライブ1100に接続される。例えば磁気ディスクや光ディスク等の着脱可能な記憶媒体が、ディスクドライブ1100に挿入される。シリアルポートインタフェース1050は、例えばマウス1110、キーボード1120に接続される。ビデオアダプタ1060は、例えばディスプレイ1130に接続される。
The
ハードディスクドライブ1090は、例えば、OS1091、アプリケーションプログラム1092、プログラムモジュール1093、プログラムデータ1094を記憶する。すなわち、設定補助装置100を構成する各種の装置の各処理を規定するプログラムは、コンピュータにより実行可能なコードが記述されたプログラムモジュール1093として実装される。プログラムモジュール1093は、例えばハードディスクドライブ1090に記憶される。例えば、設定補助装置100を構成する各種の装置における機能構成と同様の処理を実行するためのプログラムモジュール1093が、ハードディスクドライブ1090に記憶される。なお、ハードディスクドライブ1090は、SSD(Solid State Drive)により代替されてもよい。
The hard disk drive 1090 stores, for example, an
また、前述した実施形態の処理で用いられる設定データは、プログラムデータ1094として、例えばメモリ1010やハードディスクドライブ1090に記憶される。そして、CPU1020は、メモリ1010やハードディスクドライブ1090に記憶されたプログラムモジュール1093やプログラムデータ1094を必要に応じてRAM1012に読み出して、前述した実施形態の処理を実行する。
Furthermore, the setting data used in the processing of the above-mentioned embodiment is stored as
なお、プログラムモジュール1093やプログラムデータ1094は、ハードディスクドライブ1090に記憶される場合に限らず、例えば着脱可能な記憶媒体に記憶され、ディスクドライブ1100等を介してCPU1020によって読み出されてもよい。あるいは、プログラムモジュール1093およびプログラムデータ1094は、ネットワーク(LAN、WAN(Wide Area Network)等)を介して接続された他のコンピュータに記憶されてもよい。そして、プログラムモジュール1093およびプログラムデータ1094は、他のコンピュータから、ネットワークインタフェース1070を介してCPU1020によって読み出されてもよい。
The
<その他>
以上、本実施形態について説明したが、本実施形態は、開示の一部をなす記述および図面により限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施形態、実施例および運用技術等は全て本実施形態の範疇に含まれる。
<Other>
Although the present embodiment has been described above, the present embodiment is not limited by the description and drawings that form a part of the disclosure. In other words, other embodiments, examples, operation techniques, etc. made by those skilled in the art based on the present embodiment are all included in the scope of the present embodiment.
100 設定補助装置
110 通信部
120 記憶部
121 入力データDB
122 正解データDB
123 照合結果DB
124 推論条件DB
130 制御部
131 受付部
132 生成部
133 推論部
134 照合部
135 作成部
136 出力部
100 Setting assistant device 110
122 Answer Data DB
123 Matching result DB
124 Inference condition DB
130 Control unit 131 Reception unit 132 Generation unit 133 Inference unit 134 Collation unit 135
Claims (7)
変動させた前記閾値と、前記照合部による照合結果として算出される変動させた前記閾値ごとの前記2層推論の精度と性能との相関グラフを作成する作成部と、
を有することを特徴とする設定補助装置。 a collation unit that, when an inference result of a first inference with a lighter processing load satisfies a threshold condition, varies the threshold used in a second layer inference that performs a second inference with a heavier processing load than the first inference, and performs the second layer inference for each varied threshold to compare the result of the second layer inference for each varied threshold with correct answer data;
a generation unit that generates a correlation graph between the threshold value that has been varied and the accuracy and performance of the two-layer inference for each of the threshold values that has been varied and that is calculated as a matching result by the matching unit;
A setting assistance device comprising:
前記照合部は、
前記2層推論の結果と予め作成された前記正解データとを比較して、前記2層推論の精度と性能とを含む所定の指標を前記照合結果として算出する、
ことを特徴とする請求項1に記載の設定補助装置。 an inference unit that compares a predetermined value obtained by performing the first inference with each of the varied thresholds, and performs the second inference and outputs a result of the two-layer inference when a determination condition for whether or not to perform the second inference is satisfied;
The collation unit is
comparing the result of the two-layer inference with the correct answer data created in advance, and calculating a predetermined index including accuracy and performance of the two-layer inference as the matching result;
2. The setting assistance device according to claim 1.
前記所定の指標が予め設定される基準の範囲に含まれる場合に、前記所定の指標に対応付く前記閾値を推奨される前記閾値として算出する、
ことを特徴とする請求項2に記載の設定補助装置。 The creation unit is
When the predetermined index is within a range of a preset reference, the threshold value corresponding to the predetermined index is calculated as the recommended threshold value.
3. The setting assistance device according to claim 2.
所定の重み付けをされた前記所定の指標についての平均が予め設定される基準の範囲に含まれる場合に、前記所定の指標に対応付く前記閾値を推奨される前記閾値として算出する、
ことを特徴とする請求項2に記載の設定補助装置。 The creation unit is
When an average of the predetermined indexes weighted by a predetermined weighting falls within a range of a preset reference, the threshold value corresponding to the predetermined index is calculated as a recommended threshold value.
3. The setting assistance device according to claim 2.
前記閾値を変動させたことにより所定の変化が生じた前記2層推論の結果を特定する、
ことを特徴とする請求項1から4のいずれか1つに記載の設定補助装置。 The creation unit is
Identifying the results of the two-layer inference in which a predetermined change has occurred due to varying the threshold value;
5. The setting assistance device according to claim 1, wherein the setting assistance device is a setting assistance device for setting a setting value.
処理負荷が軽い第1推論の推論結果が閾値の条件を満たす場合に、前記第1推論よりも処理負荷が重い第2推論を行う2層推論に用いられる前記閾値を変動させて、変動させた前記閾値ごとに前記2層推論を実施することで得られる変動させた前記閾値ごとの前記2層推論の結果と、正解データとを照合する照合工程と、
変動させた前記閾値と、前記照合工程による照合結果として算出される変動させた前記閾値ごとの前記2層推論の精度と性能との相関グラフを作成する作成工程と、
を含むことを特徴とする設定補助方法。 A setting assistance method to be executed by a setting assistance device,
a comparison process for comparing the result of the second-layer inference for each of the varied thresholds obtained by varying the threshold used in the second-layer inference for performing a second inference for which the processing load is heavier than that of the first inference when the inference result of the first inference for which the processing load is light satisfies a threshold condition and performing the second-layer inference for each of the varied thresholds with the correct answer data;
a generation process for generating a correlation graph between the threshold value that has been varied and the accuracy and performance of the two-layer inference for each of the threshold values that has been varied and that is calculated as a matching result by the matching process;
A setting assistance method comprising:
変動させた前記閾値と、前記照合ステップによる照合結果として算出される変動させた前記閾値ごとの前記2層推論の精度と性能との相関グラフを作成する作成ステップと、
をコンピュータに実行させることを特徴とする設定補助プログラム。 a comparison step of comparing a result of the second-layer inference for each of the varied thresholds obtained by varying the threshold used in the second-layer inference for performing a second inference for which the processing load is heavier than that of the first inference when the inference result of the first inference for which the processing load is light satisfies a threshold condition and performing the second-layer inference for each of the varied thresholds with the correct answer data;
a creating step of creating a correlation graph between the threshold value that has been varied and the accuracy and performance of the two-layer inference for each of the threshold values that has been varied and that is calculated as a matching result by the matching step;
A setting assistance program for causing a computer to execute the above steps.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/034976 WO2025069198A1 (en) | 2023-09-26 | 2023-09-26 | Setting assistance device, setting assistance method, and setting assistance program |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/034976 WO2025069198A1 (en) | 2023-09-26 | 2023-09-26 | Setting assistance device, setting assistance method, and setting assistance program |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025069198A1 true WO2025069198A1 (en) | 2025-04-03 |
Family
ID=95202590
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2023/034976 Pending WO2025069198A1 (en) | 2023-09-26 | 2023-09-26 | Setting assistance device, setting assistance method, and setting assistance program |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025069198A1 (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH07271594A (en) * | 1994-03-31 | 1995-10-20 | Mitsubishi Electric Corp | Fuzzy development support device |
| WO2022113175A1 (en) * | 2020-11-24 | 2022-06-02 | 日本電信電話株式会社 | Processing method, processing system, and processing program |
| JP2022182155A (en) * | 2021-05-27 | 2022-12-08 | ソフトバンク株式会社 | Information processing device, information processing method and program |
| WO2023286847A1 (en) * | 2021-07-15 | 2023-01-19 | 京セラ株式会社 | Recognition model generation method and recognition model generation device |
| JP2023033186A (en) * | 2021-08-25 | 2023-03-09 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Method and apparatus (machine learning model compression) |
| JP2023088136A (en) * | 2021-12-14 | 2023-06-26 | 株式会社東芝 | LEARNING APPARATUS, LEARNING METHOD, LEARNING PROGRAM, AND LEARNING SYSTEM |
-
2023
- 2023-09-26 WO PCT/JP2023/034976 patent/WO2025069198A1/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH07271594A (en) * | 1994-03-31 | 1995-10-20 | Mitsubishi Electric Corp | Fuzzy development support device |
| WO2022113175A1 (en) * | 2020-11-24 | 2022-06-02 | 日本電信電話株式会社 | Processing method, processing system, and processing program |
| JP2022182155A (en) * | 2021-05-27 | 2022-12-08 | ソフトバンク株式会社 | Information processing device, information processing method and program |
| WO2023286847A1 (en) * | 2021-07-15 | 2023-01-19 | 京セラ株式会社 | Recognition model generation method and recognition model generation device |
| JP2023033186A (en) * | 2021-08-25 | 2023-03-09 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Method and apparatus (machine learning model compression) |
| JP2023088136A (en) * | 2021-12-14 | 2023-06-26 | 株式会社東芝 | LEARNING APPARATUS, LEARNING METHOD, LEARNING PROGRAM, AND LEARNING SYSTEM |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20210174214A1 (en) | Systems and methods for quantizing a neural network | |
| US10705810B2 (en) | Automatic code generation | |
| WO2020078059A1 (en) | Interpretation feature determination method and device for anomaly detection | |
| WO2016151618A1 (en) | Predictive model updating system, predictive model updating method, and predictive model updating program | |
| US20190114711A1 (en) | Financial analysis system and method for unstructured text data | |
| KR20220047228A (en) | Method and apparatus for generating image classification model, electronic device, storage medium, computer program, roadside device and cloud control platform | |
| US11036980B2 (en) | Information processing method and information processing system | |
| US20240233358A9 (en) | Image classification method, model training method, device, storage medium, and computer program | |
| WO2020168754A1 (en) | Prediction model-based performance prediction method and device, and storage medium | |
| CN114168318B (en) | Storage release model training method, storage release method and device | |
| CN112668455B (en) | Face age identification method and device, terminal equipment and storage medium | |
| WO2025069198A1 (en) | Setting assistance device, setting assistance method, and setting assistance program | |
| CN116091824B (en) | Fine-tuning method for vehicle classification model, vehicle classification method, device and equipment | |
| CN118470206A (en) | Quantitative sensitivity evaluation method, device, equipment and storage medium for diffusion model | |
| US20220292432A1 (en) | Method and system for generating training data for a machine-learning algorithm | |
| CN117371496A (en) | Parameter optimization method, device, equipment and storage medium | |
| CN114332529A (en) | Training method and device for image classification model, electronic equipment and storage medium | |
| CN106845534B (en) | A method and device for fast realization of support vector machine based on data compression representation | |
| US20240355438A1 (en) | Computer-implemented method for fast matching of entities from different datasets | |
| CN112052903A (en) | Method, equipment and medium for constructing training samples for multi-label processing tasks | |
| US20250238602A1 (en) | System, method, and computer program for user input fields auto-completion using machine learning model selection with dynamic threshold mechanism | |
| US20230289531A1 (en) | Deep Learning Systems and Methods to Disambiguate False Positives in Natural Language Processing Analytics | |
| JP2020113059A (en) | Training device, training method, and program | |
| CN119228228A (en) | A standard full life cycle management method and related equipment | |
| CN117271882A (en) | Multi-objective fusion processing method, device, electronic equipment and storage medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23954175 Country of ref document: EP Kind code of ref document: A1 |