[go: up one dir, main page]

WO2025068817A1 - Apparatus and system for recovering material from oral wrapped products and related method - Google Patents

Apparatus and system for recovering material from oral wrapped products and related method Download PDF

Info

Publication number
WO2025068817A1
WO2025068817A1 PCT/IB2024/058941 IB2024058941W WO2025068817A1 WO 2025068817 A1 WO2025068817 A1 WO 2025068817A1 IB 2024058941 W IB2024058941 W IB 2024058941W WO 2025068817 A1 WO2025068817 A1 WO 2025068817A1
Authority
WO
WIPO (PCT)
Prior art keywords
products
roller
blades
acid
rim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/IB2024/058941
Other languages
French (fr)
Inventor
Matthew Dean GRIFFITTS
Zachary Kevin Francis
Jerry Wayne Pipes
Balager Ademe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RJ Reynolds Tobacco Co
Original Assignee
RJ Reynolds Tobacco Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RJ Reynolds Tobacco Co filed Critical RJ Reynolds Tobacco Co
Publication of WO2025068817A1 publication Critical patent/WO2025068817A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B69/00Unpacking of articles or materials, not otherwise provided for
    • B65B69/0008Opening and emptying bags
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/36Removing papers or other parts from defective cigarettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/14Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives within horizontal containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/16Details
    • B02C18/22Feed or discharge means
    • B02C18/2225Feed means
    • B02C18/2241Feed means of conveyor belt type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/16Details
    • B02C18/22Feed or discharge means
    • B02C18/2225Feed means
    • B02C18/2291Feed chute arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C4/00Crushing or disintegrating by roller mills
    • B02C4/02Crushing or disintegrating by roller mills with two or more rollers
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B13/00Tobacco for pipes, for cigars, e.g. cigar inserts, or for cigarettes; Chewing tobacco; Snuff

Definitions

  • the present disclosure relates to machinery for use with oral products intended for human use.
  • the machines and apparatuses defined in this disclosure are useful in retrieving and recycling compositions adapted for oral use.
  • Such compositions may include tobacco or a product derived from tobacco, or may be tobacco-free alternatives.
  • Such products typically contain flavorants and/or active ingredients such as nicotine, caffeine, botanicals, or cannabidiol.
  • the format of such products can vary, and include pouched products containing a powdered or granular composition, lozenges, pastilles, liquids, gels, emulsions, meltable compositions, and the like. See, for example, the types of products described in US Patent App. Pub. Nos.
  • the pouch may be damaged or not fully formed, material inside the pouch may be damaged, the pouch may have a high density / low density from being overfilled or underfilled, and/or a visible defect.
  • it may be impractical to “re-work” the defective pouched oral product, thus resulting in environmental waste that could be deemed as hazardous due to its contents, as both the pouch and the material inside the pouch must be discarded.
  • pouched oral products with detected defects are often rejected as scrap or waste.
  • disposing of such defective pouched oral products may represent a significant monetary loss in terms of the valuable material within the pouched oral product and create an environmental impact from a waste management perspective.
  • the recovered material must desirably be free of contaminants (i.e., the pouch material), and the recovered material must be of the same blend, so as to be “re-usable” for manufacturing other non-defective pouched oral products.
  • a cigarette may be missing the filter section; the tipping paper may be tom or improperly /incompletely applied; the air dilution perforations may be incompletely or improperly formed; the wrapping paper for the tobacco rod section may be tom or improperly formed; the tobacco rod section may have a low weight/density, a high weight/density, a soft spot, a hard spot, loose tobacco about the lighting end of the tobacco rod section, an improper density profile along the tobacco rod section; and/or wherein the cigarette may include a visible defect.
  • the defective cigarettes may be directed for re-work or otherwise be discarded.
  • the present disclosure is directed to an apparatus, system, and related method for recovering material from a product, each product including an outer wrapper containing the material.
  • the present disclosure includes, without limitation, the following example implementations.
  • Example Implementation 1 An apparatus for recovering material from a product, each product including an outer wrapper containing the material, the apparatus comprising: an object-orienting device comprising a wall defining a cylindrical container arranged to receive a plurality of the products and defining a central axis therein, and a rim arranged adjacent to and extending at least partially about an upper end of the wall, the cylindrical container being rotatable about the central axis to orient the plurality of products along the wall and to be deposited on the rim; a first conveyor device disposed adjacent to and configured to interact with the rim so as to receive and convey in a conveyor direction the products from the rim; at least one roller operably engaged with the first conveyor device to receive the products therefrom, the at least one roller being configured to rotate about a central axis in a first direction and convey the products from the first conveyor device in the first direction; and a plurality of blades configured to rotate about a central axis in a second direction opposite the first direction, the plurality of blades being configured
  • Example Implementation 2 The apparatus of Example Implementation 1, or any combination of preceding example implementations, wherein the at least one roller defines a plurality of grooves extending about a circumferential surface of the at least one roller, each one of the plurality of grooves being configured to receive a respective one of the plurality of blades.
  • Example Implementation 3 The apparatus of Example Implementation 2 or any combination of preceding example implementations, further comprising a plate defining a plurality of slits and vertically extending between the at least one roller and the plurality of blades, each of the plurality of blades extending through a respective one of the plurality of slits and into the respective groove of the at least one roller.
  • Example Implementation 4 The apparatus of any of Example Implementations 1-3, or any combination of preceding example implementations, further comprising at least one cleaning member arranged proximate to the at least one roller.
  • Example Implementation 5 The apparatus of any of Example Implementations 1-4, or any combination of preceding example implementations, wherein the object-orienting device comprises a drive unit mounted to a bottom surface of the cylindrical container to vibrate the cylindrical container and orient the plurality of products along the wall.
  • the object-orienting device comprises a drive unit mounted to a bottom surface of the cylindrical container to vibrate the cylindrical container and orient the plurality of products along the wall.
  • Example Implementation 6 The apparatus of any of Example Implementations 1-5, or any combination of preceding example implementations, further comprising a hopper storing the products.
  • Example Implementation 7 The apparatus of Example Implementation 6, or any combination of preceding example implementations, further comprising a second conveyor device configured to receive the products from the hopper and to convey the products to the cylindrical container of the object-orienting device.
  • Example Implementation 8 The apparatus of any of Example Implementations 1-7, or any combination of preceding example implementations, further comprising a recovery device arranged downstream of the at least one roller and the plurality of blades, the recovery device being configured to receive the slit products, and separate the outer wrapper from the material for recovery of the material.
  • Example Implementation 9 The apparatus of Example Implementation 8, or any combination of preceding example implementations, wherein the recovery device comprises a vibrating screen configured to loosen the material from the outer wrapper, to sift the material, and to recover the material on an opposing side of the vibrating screen.
  • the recovery device comprises a vibrating screen configured to loosen the material from the outer wrapper, to sift the material, and to recover the material on an opposing side of the vibrating screen.
  • Example Implementation 10 A system for recovering material from a product, each product including an outer wrapper containing the material, the apparatus comprising: an object-orienting device comprising: a wall defining a cylindrical container arranged to receive a plurality of the products and defining a central axis therein, and a rim arranged adjacent to and extending at least partially about an upper end of the wall, the cylindrical container being rotatable about the central axis to orient the plurality of products along the wall and to be deposited on the rim; a first conveyor device disposed adjacent to and configured to interact with the rim so as to receive and convey in a conveyor direction the products from the rim; at least one roller operably engaged with the first conveyor device to receive the products therefrom, the at least one roller being configured to rotate about a central axis in a first direction and convey the products from the first conveyor device in the first direction; a plurality of blades configured to rotate about a central axis in a second direction opposite the first direction, the plurality of blades being configured
  • Example Implementation 11 The system of Example Implementation 10, or any combination of preceding example implementations, wherein the at least one roller defines a plurality of grooves extending about a circumferential surface of the at least one roller, each one of the plurality of grooves being configured to receive a respective one of the plurality of blades.
  • Example Implementation 12 The system of Example Implementation 11, or any combination of preceding example implementations, further comprising a plate defining a plurality of slits and vertically extending between the at least one roller and the plurality of blades, each of the plurality of blades extending through a respective one of the plurality of slits and into the respective groove of the at least one roller.
  • Example Implementation 13 The system of any of Example Implementations 10-12, or any combination of preceding example implementations, further comprising at least one cleaning member arranged proximate to the at least one roller.
  • Example Implementation 14 The system of any of Example Implementations 10-13, or any combination of preceding example implementations, wherein the object-orienting device comprises a drive unit mounted to a bottom surface of the cylindrical container to vibrate the cylindrical container and orient the plurality of products along the wall.
  • Example Implementation 15 The system of any of Example Implementations 10-14, or any combination of preceding example implementations, further comprising a hopper storing the products.
  • Example Implementation 16 The system of any of Example Implementations 10-15, or any combination of preceding example implementations, further comprising a second conveyor device configured to receive the products from the hopper and to convey the products to the cylindrical container of the objectorienting device.
  • Example Implementation 17 A method for recovering material from a product, each product including an outer wrapper containing the material, the method comprising: receiving a plurality of the products in an object-orienting device comprising a wall defining a cylindrical container defining a central axis therein, and a rim arranged adjacent to and extending at least partially about an upper end of the wall; rotating the object-orienting device about the central axis to orient the plurality of products along the wall and deposit the plurality of products on the rim; receiving and conveying the plurality of products from the rim to at least one roller, the at least one roller being configured to rotate about a central axis in a first direction; slitting, by a plurality of blades configured to rotate about a central axis in a second direction opposite the first direction, the outer wrapper containing the material of each of the products conveyed by the at least one roller; and separating, by a vibrating screen arranged downstream of the at least one roller and the plurality of blades, the s
  • Example Implementation 18 The method of Example Implementation 17, or any combination of preceding example implementations, wherein the at least one roller defines a plurality of grooves extending about a circumferential surface of the at least one roller, each one of the plurality of grooves being configured to receive a respective one of the plurality of blades, and further comprising a plate defining a plurality of slits and vertically extending between the at least one roller and the plurality of blades, each of the plurality of blades extending through a respective one of the plurality of slits and into the respective groove of the at least one roller.
  • Example Implementation 19 The method of either of Example Implementations 17 or 18, or any combination of preceding example implementations, wherein the object-orienting device comprises a drive unit mounted to a bottom surface of the cylindrical container, and the method further comprises vibrating, by the drive unit, the cylindrical container to orient the plurality of products along the wall.
  • the object-orienting device comprises a drive unit mounted to a bottom surface of the cylindrical container, and the method further comprises vibrating, by the drive unit, the cylindrical container to orient the plurality of products along the wall.
  • Example Implementation 20 The method of any of Example Implementations 17-19, or any combination of preceding example implementations, further comprising a hopper storing the products and a first conveyor device disposed adjacent to and configured to interact with the rim, wherein receiving the plurality of products comprising receiving the plurality of products from the hopper in the object-orienting device, and wherein receiving and conveying the plurality of products from the rim comprises receiving and conveying, by the first conveyor device in a conveyor direction, the products from the rim to the at least one roller.
  • FIG. 1 is a perspective view of a pouched product embodiment according to an example embodiment of the present disclosure, including a pouch or fleece at least partially filled with a material configured for oral use;
  • FIG. 2 is a perspective view of a smoking article embodiment according to an example embodiment of the present disclosure, including a tobacco rod;
  • FIG. 3 illustrates a front perspective view of an apparatus for recovering material from oral wrapped products, according to one aspect of the present disclosure
  • FIG. 4A schematically illustrates a cross-sectional side view of one example embodiment of an objectorienting device from the apparatus of FIG. 3;
  • FIG. 4B schematically illustrates a top view of the object-orienting device of FIG. 4 A
  • FIGS. 5A-5C illustrate various views of one example embodiment of a slitting arrangement of the apparatus of FIG. 3;
  • FIGS. 6A-6B illustrate various views of one example embodiment of a recovery device of the apparatus of FIG. 3;
  • FIG. 7 schematically illustrates a method of recovering material from oral wrapped products, according to one aspect of the present disclosure.
  • dry weight percent or “dry weight basis” refers to weight on the basis of dry ingredients (i.e., all ingredients except water).
  • wet weight refers to the weight of the mixture including water. Unless otherwise indicated, reference to “weight percent” of a mixture reflects the total wet weight of the mixture (i.e., including water).
  • aspects and embodiments of the present disclosure may broadly relate, for example, to product production apparatuses, systems, and methods, in particular, for oral wrapped products.
  • the product is an oral tobacco or nicotine product, it may be configured for oral use.
  • the term "configured for oral use” as used herein means that the oral product is provided in a form such that during use, saliva in the mouth of the user causes one or more of the components of the oral product (e.g., flavoring agents and/or active ingredients) to pass into the mouth of the user.
  • the oral product is adapted to deliver components to a user through mucous membranes in the user's mouth, the user's digestive system, or both, and, in some instances, said component is an active ingredient (including, but not limited to, for example, nicotine, a stimulant, vitamin, amino acid, botanical, or a combination thereof) that can be absorbed through the mucous membranes in the mouth or absorbed through the digestive tract when the product is used.
  • an active ingredient including, but not limited to, for example, nicotine, a stimulant, vitamin, amino acid, botanical, or a combination thereof
  • the oral products of the present disclosure may be crackable and/or dissolvable.
  • the terms “dissolve,” “dissolving,” and “dissolvable” refer to products having aqueous-soluble components that interact with moisture in the oral cavity and enter into solution, thereby causing gradual consumption of the product.
  • the dissolvable composition is capable of lasting in the user’s mouth for a given period of time until it completely dissolves. Dissolution rates can vary over a wide range, from about 1 minute or less to about 60 minutes.
  • fast release products typically dissolve and/or release the desired component(s) (e.g., active ingredient, flavor, and the like) in about 2 minutes or less, often about 1 minute or less (e.g., about 50 seconds or less, about 40 seconds or less, about 30 seconds or less, or about 20 seconds or less).
  • Dissolution can occur by any means, such as melting, mechanical disruption (e.g., chewing), enzymatic or other chemical degradation, or by disruption of the interaction between the components of the product.
  • the products do not dissolve during the product’s residence in the user’s mouth.
  • the oral tobacco and nicotine products may be a pouched oral product configured for oral use or may be a pouched product with a non-consumable material not configured for oral use (e.g., silica pouches for absorbing moisture).
  • a non-consumable material not configured for oral use e.g., silica pouches for absorbing moisture.
  • “pouched product” and “pouched oral product” are used throughout interchangeably unless otherwise explicitly indicated.
  • aspects and embodiments of the present disclosure may broadly relate to rod-shaped products, such as cigarettes, which may also be used in the described apparatuses and methods for reclaiming tobacco material therefrom.
  • Such pouched products and similar tobacco material reclamation apparatuses and methods are described in U.S. Patent No. 11,033,049 to Ademe and US Pat. Appl. Pub. No. 2016/0120213 to Ademe, incorporated herein by reference in their entirety.
  • the pouched product described herein may include a pouch, which contains a material comprising a composition as described herein.
  • aspects and embodiments of the present disclosure may broadly relate to apparatuses and methods for inspecting pouched products and identifying any defective pouched products therein, at various points during the manufacture of a certain type of pouched product. Further aspects and embodiments of the present disclosure may be directed to consolidating defective pouched products in a particular manner such that the defective pouched products may then be subject to a recovery process.
  • aspects of the present disclosure are directed to apparatuses, systems, and related methods for recovering material from pouched products, after the pouched product has been inspected and identified as defective in any way and directed to the recovery process described in detail herein.
  • a pouched product may be identified as “defective” in instances, for example and without limitation, where the pouched product may be damaged or not fully formed, material inside the pouch may be damaged, the pouch may have a high density / low density from being overfilled or underfilled, and/or a visible defect is present.
  • aspects of the present disclosure may further allow the recovery process to be automated, and to be capable of recovering the tobacco material from the certain type of pouched product, without contaminating the recovered material.
  • FIG. 1 illustrates a representative pouched product 100, such as a pouched oral product, possessing certain representative components of a pouched product.
  • the pouched product 100 includes a moisture- permeable pouch 102, such as a pouch treated with the liquid treatment solution disclosed herein, which contains a material 104 comprising a composition as described herein.
  • the material may include a variety of components in or applied to the material, including humectants, flavorants, actives, colorants, surfactants, and the like.
  • the material 104 may include at least one humectant, which can be added to either the inner composition within the pouch 102 or directly to the pouch material 104.
  • the oral products of the present disclosure will typically include a composition contained within the water-permeable pouch (sometimes referred to as the “fill”), which will typically include at least one water- soluble component capable of release from the composition when placed in the oral cavity.
  • a composition contained within the water-permeable pouch sometimes referred to as the “fill”
  • the fill will typically include at least one water- soluble component capable of release from the composition when placed in the oral cavity.
  • the composition of the oral product can include various ingredients, such as fillers, flavorants, active ingredients, binders, humectants, sweeteners, salts, taste modifiers, and the like.
  • Example components of the composition are disclosed hereinbelow.
  • the liquid treatment solution can also include one or more of the same ingredients as contained within the composition. Accordingly, many of the types of ingredients noted hereinbelow can apply to both the composition and the liquid treatment solution.
  • both the composition and the liquid treatment solution can contain the same flavorant and/or active ingredient such that the sensory or functional characteristics of the composition are augmented by the liquid treatment solution.
  • compositions provided herein typically comprise one or more filler components.
  • Such filler components may fulfill multiple functions, such as enhancing certain organoleptic properties such as texture and mouthfeel, enhancing cohesiveness or compressibility of the product, and the like.
  • filler components are porous, particulate materials and are cellulose-based.
  • suitable particulate filler components are any non-tobacco plant material or derivative thereof, including cellulose materials derived from such sources.
  • cellulosic non-tobacco plant material include cereal grains (e.g., maize, oat, barley, rye, buckwheat, and the like), sugar beet (e.g., FIBREX® brand fdler available from International Fiber Corporation), bran fiber, citrus fiber (e.g., CITRI-FI® brand fiber available from Fiberstar), and mixtures thereof.
  • Non-limiting examples of derivatives of non-tobacco plant material include starches (e.g., from potato, wheat, rice, com), natural cellulose, and modified cellulosic materials. Additional examples of potential particulate filler components include maltodextrin, dextrose, calcium carbonate, calcium phosphate, lactose, mannitol, xylitol, and sorbitol. Combinations of fillers can also be used.
  • Starch as used herein may refer to pure starch from any source, modified starch, or starch derivatives. Starch is present, typically in granular form, in almost all green plants and in various types of plant tissues and organs (e.g., seeds, leaves, rhizomes, roots, tubers, shoots, fruits, grains, and stems). Starch can vary in composition, as well as in granular shape and size. Often, starch from different sources has different chemical and physical characteristics. A specific starch can be selected for inclusion in the mixture based on the ability of the starch material to impart a specific organoleptic property to composition. Starches derived from various sources can be used.
  • starch major sources include cereal grains (e.g., rice, wheat, and maize) and root vegetables (e.g., potatoes and cassava).
  • sources of starch include acorns, arrowroot, arracacha, bananas, barley, beans (e.g., favas, lentils, mung beans, peas, chickpeas), breadfruit, buckwheat, canna, chestnuts, colacasia, katakuri, kudzu, malanga, millet, oats, oca, Polynesian arrowroot, sago, sorghum, sweet potato, quinoa, rye, tapioca, taro, tobacco, water chestnuts, and yams.
  • modified starches are modified starches.
  • a modified starch has undergone one or more structural modifications, often designed to alter its high heat properties.
  • Some starches have been developed by genetic modifications, and are considered to be “genetically modified” starches.
  • Other starches are obtained and subsequently physically (e.g., heat, cool water swelling, etc.), chemically, or enzymatically modified.
  • modified starches can be starches that have been subjected to chemical reactions, such as esterification, etherification, oxidation, depolymerization (thinning) by acid catalysis or oxidation in the presence of base, bleaching, transglycosylation and depolymerization (e.g., dextrinization in the presence of a catalyst), cross-linking, acetylation, hydroxypropylation, and/or partial hydrolysis.
  • Enzymatic treatment includes subjecting native starches to enzyme isolates or concentrates, microbial enzymes, and/or enzymes native to plant materials, e.g., amylase present in com kernels to modify com starch.
  • modified starches are modified by heat treatments, such as pregelatinization, dextrinization, and/or cold water swelling processes.
  • Certain modified starches include monostarch phosphate, distarch glycerol, distarch phosphate esterified with sodium trimetaphosphate, phosphate distarch phosphate, acetylated distarch phosphate, starch acetate esterified with acetic anhydride, starch acetate esterified with vinyl acetate, acetylated distarch adipate, acetylated distarch glycerol, hydroxypropyl starch, hydroxypropyl distarch glycerol, starch sodium octenyl succinate.
  • the particulate filler component is a cellulose material or cellulose derivative and can, in some embodiments, comprise microcrystalline cellulose (“MCC”).
  • MCC microcrystalline cellulose
  • the MCC may be synthetic or semi-synthetic, or it may be obtained entirely from natural celluloses.
  • the MCC may be selected from the group consisting of AVICEL® grades PH-100, PH-102, PH-103, PH-105, PH-112, PH-113, PH-200, PH-300, PH-302, VIVACEL® grades 101, 102, 12, 20 and EMOCEL® grades 50M and 90M, and the like, and mixtures thereof.
  • a particulate filler can be characterized as substantially spherical, such as cellulose spheres.
  • substantially spherical is meant at least a portion of the particulate filler component is in the shape of a sphere and/or is “sphere-like’ in shape.
  • substantially spherical encompasses slightly elongated (e.g., oval) shapes, slightly flattened shapes, and the like.
  • Substantially spherical particulate filler components are intended to be distinguished from conventional particulate filler components (e.g., commercially available “fillers” or “particulate fillers” that are not explicitly designed as “spherical”).
  • the substantially spherical filler component comprises MCC. In some embodiments, the substantially spherical filler component comprises solid (although porous) MCC spheres. In some embodiments, the substantially spherical filler component comprises hollow MCC spheres. In some embodiments, the center/core of such hollow MCC spheres may be unfilled; in other embodiments, the center/core of such hollow MCC spheres may be filled with one or more additional components (e.g., flavorants, fillers, active ingredients, etc.).
  • additional components e.g., flavorants, fillers, active ingredients, etc.
  • suitable MCC spheres include, but are not limited to, Vivapur® MCC spheres from JRS Pharma, available, e.g., with particle sizes of 100-200 pm (Vivapur® 100), 200-355 pm (Vivapur® 200), 355-500 pm (Vivapur® 350), 500-710 pm (Vivapur® 500), 710-1000 pm (Vivapur®700), and 1000-1400 pm (Vivapur® 1000).
  • suitable MCC spheres include, but are not limited to, CelphereTM MCC spheres from Asahi Kasei Corporation, available, e.g., with particle sizes of 75-212 pm (CelphereTM SCP-100), 106-212 pm (CelphereTM CP-102), 150-300 pm (CelphereTM CP-203), 300-500 pm (CelphereTM CP-305), and 500-710 pm (CelphereTM CP-507).
  • CelphereTM MCC spheres from Asahi Kasei Corporation, available, e.g., with particle sizes of 75-212 pm (CelphereTM SCP-100), 106-212 pm (CelphereTM CP-102), 150-300 pm (CelphereTM CP-203), 300-500 pm (CelphereTM CP-305), and 500-710 pm (CelphereTM CP-507).
  • the average diameter of the substantially spherical particulate filler particles provided herein can vary, and is not particularly limited.
  • the spherical filler particles have an average diameter of about 100 nm to about 1000 nm, such as about 250 nm to about 750 nm.
  • the average diameter is about 100 nm to about 500 nm, e.g., about 100 nm to about 400 nm, about 100 nm to about 300 nm, about 100 nm to about 200 nm, about 200 nm to about 500 nm, about 200 nm to about 400 nm, about 200 nm to about 300 nm, about 300 nm to about 500 nm, about 300 nm to about 400 nm, or about 400 nm to about 500 nm.
  • the average diameter is about 500 nm to about 1000 nm, e.g., about 500 nm to about 900 nm, about 500 nm to about 800 nm, about 500 nm to about 700 nm, about 500 nm to about 600 nm, about 600 nm to about 1000 nm, about 600 nm to about 900 nm, about 600 nm to about 800 nm, about 600 nm to about 700 nm, about 700 nm to about 1000 nm, about 700 nm to about 900 rnn, about 700 urn to about 800 urn, about 800 urn to about 1000 urn, about 800 urn to about 900 nm, or about 900 nm to about 1000 nm.
  • the distribution of diameters around this average diameter can also vary; in some embodiments, the distribution of diameters is close to the listed value (e.g., +/- about 25% of the stated value, +/- about 20% of the stated value, +/- about 15% of the stated value, +/- about 10% of the stated value, +/- about 5% of the stated value, or +/- about 1% of the stated value.
  • the disclosure is not, however, limited to materials with such narrow distributions; in other embodiments, the diameter of the MCC spheres within a given material can vary within a wider range.
  • the amount of filler can vary, but is typically up to about 75 percent of the composition, based on the total weight of the composition.
  • a typical range of filler (e.g., MCC) within the composition can be from about 5 to about 70% by total weight of the composition, for example, from about 5, about 10, about 15, or about 20 to about 30, about 35, about 45, or about 60 weight percent (e.g., about 5 to about 60 weight percent or about 10 to about 45 weight percent).
  • the filler further comprises a cellulose derivative or a combination of such derivatives.
  • the mixture comprises from about 1% to about 10% of the cellulose derivative by weight, based on the total weight of the composition, with certain embodiments comprising about 1 to about 5% by weight of cellulose derivative.
  • the cellulose derivative is a cellulose ether (including carboxyalkyl ethers), meaning a cellulose polymer with the hydrogen of one or more hydroxyl groups in the cellulose structure replaced with an alkyl, hydroxyalkyl, or aryl group.
  • Non-limiting examples of such cellulose derivatives include methylcellulose, hydroxypropylcellulose ("HPC”), hydroxypropylmethylcellulose (“HPMC”), hydroxyethyl cellulose, and carboxymethylcellulose (“CMC”).
  • the cellulose derivative is one or more of methylcellulose, HPC, HPMC, hydroxyethyl cellulose, and CMC.
  • the cellulose derivative is HPC.
  • the composition comprises from about 0% to about 5% HPC by weight, e.g., about 1% to about 3% HPC by weight, based on the total weight of the composition by weight.
  • a binder (or combination of binders) is employed in the composition in an amount sufficient to provide the desired physical attributes and physical integrity.
  • the binder materials can serve to add cohesiveness to a composition, and can also serve as gelling agents.
  • the amount of binder present is up to about 50% by weight, and certain embodiments are characterized by a binder content of at least about 5% by weight, based on the total weight of the composition.
  • the binder is present in an amount by weight in a range from about 5 to about 50% based on the total weight of the composition, such as from about 5%, about 10%, about 15%, about 20%, about 25%, or about 30%, to about 35%, about 40%, or about 45% by weight, based on the total weight of the composition.
  • Typical binders can be organic or inorganic, or a combination thereof.
  • Representative binders include povidone, sodium alginate, pectin, gums, carrageenan, pullulan, zein, cellulose derivatives, and the like, and combinations thereof.
  • combinations or blends of two or more binder materials may be employed.
  • binder materials are described, for example, in U.S. Pat. No. 5,101,839 to Jakob et al.; and U.S. Pat. No. 4,924,887 to Raker et al., each of which is incorporated herein by reference in its entirety.
  • the binder is selected from the group consisting of agar, alginates, carrageenan and other seaweed hydrocolloids, exudate gum hydrocolloids, cellulose ethers, starches, gums, dextrans, povidone, pullulan, zein, or combinations thereof.
  • the binder is a cellulose ether (including carboxy alkyl ethers), meaning a cellulose polymer with the hydrogen of one or more hydroxyl groups in the cellulose structure replaced with an alkyl, hydroxyalkyl, or aryl group.
  • cellulose derivatives include methylcellulose, hydroxypropylcellulose ("HPC”), hydroxypropylmethylcellulose (“HPMC”), hydroxyethyl cellulose, and carboxymethylcellulose (“CMC”).
  • Suitable cellulose ethers include hydroxypropylcellulose, such as Klucel H from Aquaion Co.; hydroxypropylmethylcellulose, such as Methocel K4MS from DuPont; hydroxy ethylcellulose, such as Natrosol 250 MRCS from Aquaion Co.; methylcellulose, such as Methocel A4M, K4M, and E15 from DuPont.; and sodium carboxy methylcellulose, such as CMC 7HF, CMC 7LF, and CMC 7H4F from Aquaion Co.
  • the binder is one or more cellulose ethers (e.g., a single cellulose ether or a combination of several cellulose ethers, such as two or three, for example).
  • the binder is a cellulose ether selected from the group consisting of methylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethyl cellulose, carboxymethylcellulose, and combinations thereof.
  • the oral composition comprises one or more flavoring agents.
  • a "flavoring agent” or “flavorant” is any flavorful or aromatic substance capable of altering the sensory characteristics associated with the oral product. Examples of sensory characteristics that can be modified by the flavoring agent include taste, mouthfeel, moistness, coolness/heat, and/or fragrance/aroma. Flavoring agents may be natural or synthetic, and the character of the flavors imparted thereby may be described, without limitation, as fresh, sweet, herbal, confectionary, floral, fruity, or spicy.
  • flavors include, but are not limited to, vanilla, coffee, chocolate/cocoa, cream, mint, spearmint, menthol, peppermint, Wintergreen, eucalyptus, lavender, cardamon, nutmeg, cinnamon, clove, cascarilla, sandalwood, honey, jasmine, ginger, anise, sage, licorice, lemon, orange, apple, peach, lime, cherry, strawberry, trigeminal sensates, melatonin, terpenes, and any combinations thereof. See also, Leffingwell et al., Tobacco Flavoring for Smoking Products, R. J. Reynolds Tobacco Company (1972), which is incorporated herein by reference.
  • Flavorings also may include components that are considered moistening, cooling or smoothening agents, such as eucalyptus or menthol. These flavors may be provided neat (i.e., alone) or in a composite, and may be employed as concentrates or flavor packages (e.g., spearmint and menthol, orange and cinnamon; lime, pineapple, and the like). Representative types of components also are set forth in US Pat. No. 5,387,416 to White et al.; US Pat. App. Pub. No. 2005/0244521 to Strickland et al.; and PCT Application Pub. No. WO 05/041699 to Quinter et al., each of which is incorporated herein by reference. In some instances, the flavoring agent may be provided in a spray -dried form or a liquid form.
  • the flavoring agent generally comprises at least one volatile flavor component.
  • volatile refers to a chemical substance that forms a vapor readily at ambient temperatures (i.e., a chemical substance that has a high vapor pressure at a given temperature relative to a nonvolatile substance).
  • a volatile flavor component has a molecular weight below about 400 Da, and often include at least one carboncarbon double bond, carbon-oxy gen double bond, or both.
  • the at least one volatile flavor component comprises one or more alcohols, aldehydes, aromatic hydrocarbons, ketones, esters, terpenes, terpenoids, or a combination thereof.
  • Non-limiting examples of aldehydes include vanillin, ethyl vanillin, p- anisaldehyde, hexanal, furfural, isovaleraldehyde, cuminaldehyde, benzaldehyde, and citronellal.
  • Nonlimiting examples of ketones include 1 -hydroxy-2 -propanone and 2-hydroxy-3-methyl-2-cyclopentenone-l- one.
  • Non-limiting examples of esters include allyl hexanoate, ethyl heptanoate, ethyl hexanoate, isoamyl acetate, and 3 -methylbutyl acetate.
  • Non-limiting examples of terpenes include sabinene, limonene, gammaterpinene, beta-famesene, nerolidol, thujone, myrcene, geraniol, nerol, citronellol, linalool, and eucalyptol.
  • the at least one volatile flavor component comprises one or more of ethyl vanillin, cinnamaldehyde, sabinene, limonene, gamma-terpinene, beta-famesene, or citral.
  • the at least one volatile flavor component comprises ethyl vanillin.
  • the at least one volatile flavor component comprises menthol.
  • the flavoring agent may be provided in a spray-dried form or a liquid form.
  • a liquid flavorant is disposed (i.e., adsorbed or absorbed in or on) a porous carrier, for example microcrystalline cellulose, which is then combined with the other composition ingredients.
  • a porous carrier for example microcrystalline cellulose
  • Embodiments with flavorant present in dry form may be advantageous in providing a more homogenous product.
  • the amount of flavoring agent can vary, but is typically up to about 10 weight percent, and certain embodiments are characterized by a flavoring agent content of at least about 0.1 weight percent, such as about 0.1 to about 1 weight percent, 0.5 to about 10 weight percent, about 1 to about 6 weight percent, or about 2 to about 5 weight percent, based on the total weight of the oral composition.
  • the amount of flavoring agent present within the composition may vary over a period of time (e.g., during a period of storage after preparation of the composition). For example, certain volatile components present in the mixture may evaporate or undergo chemical transformations, leading to a reduction in the concentration of one or more volatile flavor components.
  • the composition may include one or more taste modifying agents ("taste modifiers") which may serve to mask, alter, block, or improve the flavor of a composition as described herein.
  • taste modifiers include analgesic or anesthetic herbs, spices, and flavors which produce a perceived cooling (e.g., menthol, eucalyptus, mint), warming (e.g., cinnamon), or painful (e.g., capsaicin) sensation.
  • Certain taste modifiers fall into more than one overlapping category.
  • the taste modifier modifies one or more of bitter, sweet, salty, or sour tastes.
  • the taste modifier targets pain receptors.
  • the composition comprises an active ingredient having a bitter taste, and a taste modifier which masks or blocks the perception of the bitter taste.
  • the taste modifier is a substance which targets pain receptors (e.g., vanilloid receptors) in the user's mouth to mask e.g., a bitter taste of another component (e.g., an active ingredient).
  • the taste modifier is capsaicin or Jambu extract.
  • the taste modifier is a cooling agent, such as WS-3 (N-ethyl-5-methyl-2-(l- methylethyl)-cyclohexane carboxamide), WS-23 (N,2,3-trimethyl-2-propan-2-ylbutanamide), WS-5 (N- [(ethoxycarbonyl)methyl)-p-menthane-3-carboxamide), EVERCOOLTM 180 ((lR,2S,5R)-N-(4-
  • products that comprise one or more sensory agents derived from Sichuan pepper (referred to herein as “Sichuan,” “Sichuan pepper,” or “Sichuan pepercom”).
  • the taste modifier is the amino acid gamma-amino butyric acid (GABA), referenced herein above with respect to amino acids.
  • the composition comprises caffeine and GABA.
  • the taste modifier is adenosine monophosphate (AMP).
  • the taste modifier is lactisole.
  • a representative amount of taste modifier is about 0.01% by weight or more, about 0.1% by weight or more, or about 1.0% by weight or more, but will typically make up less than about 10% by weight of the total weight of the composition, (e.g., from about 0.01%, about 0.05%, about 0.1%, or about 0.5%, to about 1%, about 5%, or about 10% by weight of the total weight of the composition).
  • the oral composition may further comprise a salt (e.g., alkali metal salts), typically employed in an amount sufficient to provide desired sensory attributes to the mixture.
  • a salt e.g., alkali metal salts
  • suitable salts include sodium chloride, potassium chloride, ammonium chloride, calcium chloride, flour salt, and the like.
  • a representative amount of salt is about 0.25 percent by weight or more, about 1.0 percent by weight or more, or at about 1.5 percent by weight or more, but will typically make up about 10 percent or less of the total weight of the composition, or about 7.5 percent or less or about 5 percent or less (e.g., about 0.5 to about 5 percent by weight), based on the total weight of the composition.
  • the composition may comprise one or more sweeteners.
  • the sweeteners can be any sweetener or combination of sweeteners, in natural or artificial form, or as a combination of natural and artificial sweeteners.
  • natural sweeteners include isomaltulose, fructose, sucrose, glucose, maltose, mannose, galactose, lactose, stevia, honey, and the like.
  • artificial sweeteners include sucralose, maltodextrin, saccharin, aspartame, acesulfame K, neotame and the like.
  • the sweetener comprises one or more sugar alcohols.
  • Sugar alcohols are polyols derived from monosaccharides or disaccharides that have a partially or fully hydrogenated form.
  • Sugar alcohols have, for example, about 4 to about 20 carbon atoms and include erythritol, arabitol, ribitol, isomalt, maltitol, dulcitol, iditol, mannitol, xylitol, lactitol, sorbitol, and combinations thereof (e.g., hydrogenated starch hydrolysates).
  • the mixture provided herein can include a sugar alcohol (e.g., xylitol or erythritol) in combination with a lesser amount of artificial or non-nutritive sweetener (e.g., sucralose, aspartame, acesulfame K, or any combination thereof).
  • a representative amount of sweetener may make up from about 0.1 to about 20 percent or more of the of the composition by weight, for example, from about 0.1 to about 1%, from about 1 to about 5%, from about 5 to about 10%, or from about 10 to about 20% of the composition on a weight basis, based on the total weight of the composition.
  • one or more humectants may be employed in the composition.
  • humectants include, but are not limited to, polyols such as glycerin, propylene glycol, and the like. Where included, the humectant is typically provided in an amount sufficient to provide desired moisture attributes to the composition. The total amount of humectant in the oral product is set forth above.
  • a stimulant or combination of stimulants is typically at a concentration of from about 0.1% w/w to about 15% by weight, such as, e.g., from about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% by weight, based on the total weight of the composition.
  • the composition comprises caffeine in an amount of from about 1.5 to about 6% by weight, based on the total weight of the composition.
  • Non-limiting examples of non- proteinogenic amino acids include gamma-aminobutyric acid (GABA), taurine (2 -aminoethanesulfonic acid), theanine (L-y-glutamylethylamide), hydroxyproline, and beta-alanine.
  • the active ingredient comprises theanine.
  • the active ingredient comprises GABA.
  • the active ingredient comprises a combination of theanine and GABA.
  • the active ingredient is a combination of theanine, GABA, and lemon balm.
  • the active ingredient is a combination of caffeine, theanine, and ginseng.
  • the active ingredient comprises taurine.
  • the active ingredient is a combination of caffeine and taurine.
  • the active ingredient comprises a mineral.
  • mineral refers to an inorganic molecule (or related set of molecules) that is an essential micronutrient needed for the proper functioning of various systems in a mammal.
  • minerals include iron, zinc, copper, selenium, chromium, cobalt, manganese, calcium, phosphorus, sulfur, magnesium, and the like.
  • the active ingredient comprises iron. Suitable sources of iron include, but are not limited to, ferrous salts such as ferrous sulfate and ferrous gluconate. In some embodiments, the iron is encapsulated.
  • a vitamin or mineral is typically at a concentration of from about 0.01% w/w to about 6% by weight, such as, e.g., from about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, or about 0.1% w/w, to about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1%, about 2%, about 3%, about 4%, about 5% , or about 6% by weight, based on the total weight of the composition.
  • the active ingredient comprises one or more antioxidants.
  • antioxidant refers to a substance which prevents or suppresses oxidation by terminating free radical reactions, and may delay or prevent some types of cellular damage. Antioxidants may be naturally occurring or synthetic. Naturally occurring antioxidants include those found in foods and botanical materials. Nonlimiting examples of antioxidants include certain botanical materials, vitamins, polyphenols, and phenol derivatives.
  • Examples of botanical materials which are associated with antioxidant characteristics include without limitation acai berry, alfalfa, allspice, annatto seed, apricot oil, basil, bee balm, wild bergamot, black pepper, blueberries, borage seed oil, bugleweed, cacao, calamus root, catnip, catuaba, cayenne pepper, chaga mushroom, chervil, cinnamon, dark chocolate, potato peel, grape seed, ginseng, gingko biloba, Saint John's Wort, saw palmetto, green tea, black tea, black cohosh, cayenne, chamomile, cloves, cocoa powder, cranberry, dandelion, grapefruit, honeybush, echinacea, garlic, evening primrose, feverfew, ginger, goldenseal, hawthorn, hibiscus flower, jiaogulan, kava, lavender, licorice, maijoram, milk thistle, mints (menthe), oo
  • Such botanical materials may be provided in fresh or dry form, essential oils, or may be in the form of an extracts.
  • the botanical materials (as well as their extracts) often include compounds from various classes known to provide antioxidant effects, such as minerals, vitamins, isoflavones, phytoesterols, allyl sulfides, dithiolthiones, isothiocyanates, indoles, lignans, flavonoids, polyphenols, and carotenoids.
  • Examples of compounds found in botanical extracts or oils include ascorbic acid, peanut endocarb, resveratrol, sulforaphane, beta-carotene, lycopene, lutein, co-enzyme Q, carnitine, quercetin, kaempferol, and the like. See, e.g., Santhosh et al., Phytomedicine, 12(2005) 216-220, which is incorporated herein by reference.
  • Non-limiting examples of other suitable antioxidants include citric acid, Vitamin E or a derivative thereof, a tocopherol, epicatechol, epigallocatechol, epigallocatechol gallate, erythorbic acid, sodium erythorbate, 4-hexylresorcinol, theaflavin, theaflavin monogallate A or B, theaflavin digallate, phenolic acids, glycosides, quercitrin, isoquercitrin, hyperoside, polyphenols, catechols, resveratrols, oleuropein, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tertiary butylhydroquinone (TBHQ), and combinations thereof.
  • a tocopherol epicatechol, epigallocatechol, epigallocatechol gallate
  • erythorbic acid sodium erythorbate
  • 4-hexylresorcinol theaf
  • an antioxidant is typically at a concentration of from about 0.001% w/w to about 10% by weight, such as, e.g., from about 0.001%, about 0.005%, about 0.01% w/w, about 0.05%, about 0.1%, or about 0.5%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10%, based on the total weight of the mixture/composition.
  • the nicotine can have the enantiomeric form S(-)- nicotine, R(+)-nicotine, or a mixture of S(-)-nicotine and R(+) -nicotine.
  • the nicotine is in the form of S(-)-nicotine (e.g., in a form that is virtually all S(-)-nicotine) or a racemic mixture composed primarily or predominantly of S(-)-nicotine (e.g., a mixture composed of about 95 weight parts S(-)-nicotine and about 5 weight parts R(+)-nicotine).
  • the nicotine can be employed in virtually pure form or in an essentially pure form.
  • the nicotine that is employed can have a purity of greater than about 95 percent, greater than about 98 percent, or greater than about 99 percent, on a weight basis.
  • a nicotine component may be included in the composition in free base form, salt form, as a complex, or as a solvate.
  • nicotine component is meant any suitable form of nicotine (e.g., free base or salt) for providing oral absorption of at least a portion of the nicotine present.
  • the nicotine component is selected from the group consisting of nicotine free base and a nicotine salt.
  • nicotine is in its free base form, which easily can be adsorbed in for example, a microcrystalline cellulose material to form a microcrystalline cellulose-nicotine carrier complex. See, for example, the discussion of nicotine in free base form in US Pat. Pub. No. 2004/0191322 to Hansson, which is incorporated herein by reference.
  • the basic amine present in the composition can exist in multiple forms, including ion paired, in solution (i.e., fully solvated), as the free base, as a cation, as a salt, or any combination thereof.
  • the relative amounts of the various components within the oral product composition may vary, and typically are selected so as to provide the desired sensory and performance characteristics to the oral product.
  • the association between the basic amine and at least a portion of the organic acid or the alkali metal salt thereof is in the form of an ion pair between the basic amine and a conjugate base of the organic acid.
  • Ion pairing describes the partial association of oppositely charged ions in relatively concentrated solutions to form distinct chemical species called ion pairs.
  • the strength of the association depends on the electrostatic force of attraction between the positive and negative ions (i.e., a protonated basic amine such as nicotine, and the conjugate base of the organic acid).
  • conjugate base is meant the base resulting from deprotonation of the corresponding acid (e.g., benzoate is the conjugate base of benzoic acid).
  • benzoate is the conjugate base of benzoic acid
  • the basic amine for example nicotine
  • the conjugate base of the organic acid exist at least partially in the form of an ion pair.
  • ion pairing may minimize chemical degradation of the basic amine and/or enhance the oral availability of the basic amine (e.g., nicotine).
  • alkaline pH values e.g., such as from about 7.5 to about 9
  • certain basic amines, for example nicotine are largely present in the free base form, which has relatively low water solubility, and low stability with respect to evaporation and oxidative decomposition, but high mucosal availability.
  • nicotine-organic acid ion pairs of moderate lipophilicity result in favorable stability and absorption properties.
  • Lipophilicity is conveniently measured in terms of logP, the partition coefficient of a molecule between a lipophilic phase and an aqueous phase, usually octanol and water, respectively.
  • An octanol-water partitioning favoring distribution of a basic amine-organic acid ion pair into octanol is predictive of good absorption of the basic amine present in the composition through the oral mucosa.
  • alkaline pH values e.g., such as from about 7.5 to about 9
  • nicotine is largely present in the free base form (and accordingly, a high partitioning into octanol)
  • acidic pH values such as from about 6.5 to about 4
  • nicotine is largely present in a protonated form (and accordingly, a low partitioning into octanol).
  • An ion pair between certain organic acids e.g., having a logP value of from about 1.4 to about 8.0. such as from about 1.4 to about 4.5, allows nicotine partitioning into octanol consistent with that predicted for nicotine partitioning into octanol at a pH of 8.4.
  • the extent of ion pairing in the disclosed composition may vary based on, for example, pH, the nature of the organic acid, the concentration of nicotine, the concentration of the organic acid or conjugate base of the organic acid present in the composition, the water content of the composition, the ionic strength of the composition, and the like.
  • ion pairing is an equilibrium process influenced by the foregoing variables. Accordingly, quantification of the extent of ion pairing is difficult or impossible by calculation or direct observation.
  • the presence of ion pairing may be demonstrated through surrogate measures such as partitioning of the nicotine between octanol and water or membrane permeation of aqueous solutions of the basic amine plus organic acids and/or their conjugate bases.
  • the nicotine component when present, is in a concentration of at least about 0.001% by weight of the composition, such as in a range from about 0.001% to about 10%.
  • the nicotine component is present in a concentration from about 0.1% w/w to about 10% by weight, such as, e.g., from about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10% by weight, calculated as the free base and based on the total weight of the composition.
  • the nicotine component is present in a concentration from about 0.1% w/w to about 3% by weight, such as, e.g., from about 0.1% w/w to about 2.5%, from about 0.1% to about 2.0%, from about 0.1% to about 1.5%, or from about 0.1% to about 1% by weight, calculated as the free base and based on the total weight of the composition.
  • concentration from about 0.1% w/w to about 3% by weight, such as, e.g., from about 0.1% w/w to about 2.5%, from about 0.1% to about 2.0%, from about 0.1% to about 1.5%, or from about 0.1% to about 1% by weight, calculated as the free base and based on the total weight of the composition.
  • the products or compositions of the disclosure can be characterized as free of any nicotine component (e.g., any embodiment as disclosed herein may be completely or substantially free of any nicotine component).
  • substantially free is meant that no nicotine has been intentionally added, beyond trace amounts that may be naturally present in e.g., a botanical material.
  • certain embodiments can be characterized as having less than 0.001% by weight of nicotine, or less than 0.0001%, or even 0% by weight of nicotine, calculated as the free base.
  • organic acid refers to an organic (i.e., carbon-based) compound that is characterized by acidic properties.
  • organic acids are relatively weak acids (i.e., they do not dissociate completely in the presence of water), such as carboxylic acids (-CO2H) or sulfonic acids (-SO2OH).
  • reference to organic acid means an organic acid that is intentionally added.
  • an organic acid may be intentionally added as a specific composition ingredient as opposed to merely being inherently present as a component of another composition ingredient (e.g., the small amount of organic acid which may inherently be present in a composition ingredient, such as a tobacco material).
  • Suitable organic acids will typically have a range of lipophilicities (i.e., a polarity giving an appropriate balance of water and organic solubility). Typically, lipophilicities of suitable organic acids, as indicated by logP, will vary between about 1.4 and about 4.5 (more soluble in octanol than in water). In some embodiments, the organic acid has a logP value of from about 1.5 to about 4.0, e.g., from about 1.5, about 2.0, about 2.5, or about 3.0, to about 3.5, about 4.0, about 4.5, or about 5.0. Particularly suitable organic acids have a logP value of from about 1.7 to about 4, such as from about 2.0, about 2.5, or about 3.0, to about 3.5, or about 4.0.
  • the organic acid has a logP value of about 2.5 to about 3.5.
  • organic acids outside this range may also be utilized for various purposes and in various amounts, as described further hereinbelow.
  • the organic acid may have a logP value of greater than about 4.5, such as from about 4.5 to about 8.0.
  • certain solvents or solubilizing agents e.g., inclusion in the composition of glycerin or propylene glycol
  • moderately lipophilic organic acids e.g., logP of from about 1.4 to about 4.5
  • partitioning into octanol is predictive of favorable oral availability.
  • the organic acid has a log P value of from about 1.4 to about 4.5, such as about 1.5, about 2, about 2.5, about 3, about 3.5, about 4 or about 4.5.
  • the organic acid has a log P value of from about 2.5 to about 3.5.
  • the organic acid is a carboxylic acid or a sulfonic acid.
  • the carboxylic acid or sulfonic acid functional group may be attached to any alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl group having, for example, from one to twenty carbon atoms (C1-C20).
  • the organic acid is an alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl carboxylic or sulfonic acid.
  • alkyl refers to any straight chain or branched chain hydrocarbon.
  • the alkyl group may be saturated (i.e., having all sp 3 carbon atoms), or may be unsaturated (i.e., having at least one site of unsaturation).
  • unsaturated refers to the presence of a carbon-carbon, sp 2 double bond in one or more positions within the alkyl group.
  • Unsaturated alkyl groups may be mono- or polyunsaturated.
  • Representative straight chain alkyl groups include, but are not limited to, methyl, ethyl, n- propyl, n-butyl, n-pentyl, and n-hexyl.
  • Branched chain alkyl groups include, but are not limited to, isopropyl, sec -butyl, isobutyl, tert-butyl, isopentyl, and 2-methylbutyl.
  • Representative unsaturated alkyl groups include, but are not limited to, ethylene or vinyl, allyl, 1-butenyl, 2-butenyl, isobutylenyl, 1 -pentenyl, 2-pentenyl, 3- methyl-l-butenyl, 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, and the like.
  • An alkyl group can be unsubstituted or substituted.
  • Cycloalkyl refers to a carbocyclic group, which may be mono- or bicyclic. Cycloalkyl groups include rings having 3 to 7 carbon atoms as a monocycle or 7 to 12 carbon atoms as abicycle. Examples of monocyclic cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. A cycloalkyl group can be unsubstituted or substituted, and may include one or more sites of unsaturation (e.g., cyclopentenyl or cyclohexenyl).
  • aryl refers to a carbocyclic aromatic group. Examples of aryl groups include, but are not limited to, phenyl and naphthyl. An aryl group can be unsubstituted or substituted.
  • Heteroaryl and “heterocycloalkyl” as used herein refer to an aromatic or non-aromatic ring system, respectively, in which one or more ring atoms is a heteroatom, e.g. nitrogen, oxygen, and sulfur.
  • the heteroaryl or heterocycloalkyl group comprises up to 20 carbon atoms and from 1 to 3 heteroatoms selected from N, O, and S.
  • a heteroaryl or heterocycloalkyl may be a monocycle having 3 to 7 ring members (for example, 2 to 6 carbon atoms and 1 to 3 heteroatoms selected from N, O, and S) or a bicycle having 7 to 10 ring members (for example, 4 to 9 carbon atoms and 1 to 3 heteroatoms selected from N, O, and S), for example: a bicyclo [4,5], [5,5], [5,6], or [6,6] system.
  • heteroaryl groups include by way of example and not limitation, pyridyl, thiazolyl, tetrahydrothiophenyl, pyrimidinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, thianaphthalenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, isoxazolyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, IH-indazolyl, purinyl, 4H-quinolizinyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, 4aH-car
  • heterocycloalkyls include by way of example and not limitation, dihydroypyridyl, tetrahydropyridyl (piperidyl), tetrahydrothiophenyl, piperidinyl, 4- piperidonyl, pyrrolidinyl, 2-pyrrolidonyl, tetrahydrofuranyl, tetrahydropyranyl, bis-tetrahydropyranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, octahydroisoquinolinyl, piperazinyl, quinuclidinyl, and morpholinyl. Heteroaryl and heterocycloalkyl groups can be unsubstituted or substituted.
  • Substituted as used herein and as applied to any of the above alkyl, aryl, cycloalkyl, heteroaryl, heterocyclyl, means that one or more hydrogen atoms are each independently replaced with a substituent.
  • a group is described as “optionally substituted,” that group can be substituted with one or more of the above substituents, independently selected for each occasion.
  • the substituent may be one or more methyl groups or one or more hydroxyl groups.
  • the organic acid is an alkyl carboxylic acid.
  • alkyl carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, and the like.
  • the aforementioned additives can be employed together (e.g., as additive formulations) or separately (e.g., individual additive components can be added at different stages involved in the preparation of the final composition). Furthermore, the aforementioned types of additives may be encapsulated as provided in the final product. Example encapsulated additives are described, for example, in WO2010/132444 to Atchley, which has been previously incorporated by reference herein.
  • any one or more of the filler, tobacco material, other composition components, and the overall composition described herein can be described as a particulate material.
  • the term "particulate” refers to a material in the form of a plurality of individual particles, some of which can be in the form of an agglomerate of multiple particles, wherein the particles have an average length to width ratio less than 2: 1, such as less than 1.5:1, such as about 1:1.
  • the particles of a particulate material can be described as substantially spherical or granular. The particle size of a particulate material may be measured by sieve analysis.
  • sieve analysis is a method used to measure the particle size distribution of a particulate material.
  • sieve analysis involves a nested column of sieves which comprise screens, typically in the form of wire mesh cloths.
  • a pre-weighed sample may be introduced into the top or uppermost sieve in the column, which has the largest screen openings or mesh size (i.e., the largest pore diameter of the sieve).
  • Each lower sieve in the column has progressively smaller screen openings or mesh sizes than the sieve above.
  • a receiver portion to collect any particles having a particle size smaller than the screen opening size or mesh size of the bottom or lowermost sieve in the column (which has the smallest screen opening or mesh size).
  • the column of sieves may be placed on or in a mechanical agitator.
  • the agitator causes the vibration of each of the sieves in the column.
  • the mechanical agitator may be activated for a predetermined period of time in order to ensure that all particles are collected in the correct sieve.
  • the column of sieves is agitated for a period of time from 0.5 minutes to 10 minutes, such as from 1 minute to 10 minutes, such as from 1 minute to 5 minutes, such as for approximately 3 minutes.
  • the screen opening sizes or mesh sizes for each sieve in the column used for sieve analysis may be selected based on the granularity or known maximum/minimum particle sizes of the sample to be analysed.
  • a column of sieves may be used for sieve analysis, wherein the column comprises from 2 to 20 sieves, such as from 5 to 15 sieves.
  • a column of sieves may be used for sieve analysis, wherein the column comprises 10 sieves.
  • the largest screen opening or mesh sizes of the sieves used for sieve analysis may be 1000 pm, such as 500 pm, such as 400 pm, such as 300 pm.
  • any particulate material referenced herein can be characterized as having at least 50% by weight of particles with a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • at least 60% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 70% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 80% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 90% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 95% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, approximately 100% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 50% by weight, such as at least 60% by weight, such as at least 70% by weight, such as at least 80% by weight, such as at least 90% by weight, such as at least 95% by weight, such as at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of from about 0.01 pm to about 1000 pm, such as from about 0.05 pm to about 750 pm, such as from about 0.1 pm to about 500 pm, such as from about 0.25 pm to about 500 pm.
  • At least 50% by weight, such as at least 60% by weight, such as at least 70% by weight, such as at least 80% by weight, such as at least 90% by weight, such as at least 95% by weight, such as at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of from about 10 pm to about 400 pm, such as from about 50 pm to about 350 pm, such as from about 100 pm to about 350 pm, such as from about 200 pm to about 300 pm.
  • the various components of the composition may vary. As such, the overall mixture of various components with e.g., powdered mixture components may be relatively uniform in nature.
  • the components noted above which may be in liquid or dry solid form, can be admixed in a pretreatment step prior to mixture with any remaining components of the mixture, or simply mixed together with all other liquid or dry ingredients.
  • the various components of the mixture may be contacted, combined, or mixed together using any mixing technique or equipment known in the art. Any mixing method that brings the mixture ingredients into intimate contact can be used, such as a mixing apparatus featuring an impeller or other structure capable of agitation.
  • mixing equipment examples include casing drums, conditioning cylinders or drums, liquid spray apparatus, conical-type blenders, ribbon blenders, mixers available as FKM130, FKM600, FKM1200, FKM2000 and FKM3000 from Littleford Day, Inc., Plough Share types of mixer cylinders, Hobart mixers, and the like. See also, for example, the types of methodologies set forth in US Pat. Nos. 4,148,325 to Solomon et al.; 6,510,855 to Korte et al.; and 6,834,654 to Williams, each of which is incorporated herein by reference. Manners and methods for formulating mixtures will be apparent to those skilled in the art. See, for example, the types of methodologies set forth in US Pat. No.
  • the fill composition of the present disclosure is typically disposed within a moisture-permeable pouch, such as pouch 102.
  • a moisture-permeable pouch such as pouch 102.
  • Such compositions in the water-permeable pouch format are typically used by placing one pouch containing the composition in the mouth of a human subject/user.
  • the pouch is placed somewhere in the oral cavity of the user, for example under the lips, in the same way as moist snuff products are generally used.
  • the pouch typically is not chewed or swallowed unless the pouch composition or materials are ingestible (e.g., dissolvable or dispersable) as described herein.
  • the components of the composition therein e.g., flavoring agents and/or nicotine
  • the pouch may be removed from the mouth of the human subject for disposal.
  • pouch materials may be manufactured using water dispersible film forming materials (e.g., binding agents such as alginates, carboxymethylcellulose, xanthan gum, pullulan, and the like), as well as those materials in combination with materials such as ground cellulosics (e.g., fine particle size wood pulp).
  • Example pouch materials though water dispersible or dissolvable, may be designed and manufactured such that under conditions of normal use, a significant amount of the mixture contents permeate through the pouch material prior to the time that the pouch undergoes loss of its physical integrity. If desired, flavoring ingredients, disintegration aids, and other desired components, may be incorporated within, or applied to, the pouch material.
  • the amount of material 104 contained within each product unit may vary.
  • the weight of the composition within each pouch is at least about 50 mg, for example, from about 50 mg to about 1 gram, from about 100 to 800 about mg, or from about 200 to about 700 mg.
  • the weight of the composition within each pouch may be from about 100 to about 300 mg.
  • the weight of the composition within each pouch may be from about 300 mg to about 700 mg.
  • other components can be contained within each pouch.
  • at least one flavored strip, piece or sheet of flavored water dispersible or water soluble material may be disposed within each pouch along with or without at least one capsule.
  • Such strips or sheets may be folded or crumpled in order to be readily incorporated within the pouch. See, for example, the types of materials and technologies set forth in US Pat. Nos. 6,887,307 to Scott et al. and 6,923,981 to Leung et al.; and The EFSA Journal (2004) 85, 1-32; which are incorporated herein by reference.
  • a pouched product 100 as described herein can be packaged within any suitable inner packaging material and/or outer container. See also, for example, the various types of containers for oral products that are set forth in US Pat. Nos. 7,014,039 to Henson et al.; 7,537,110 to Kutsch et al.; 7,584,843 to Kutsch et al.; 8,397,945 to Gelardi et al., D592,956 to Thiellier; D594,154 to Patel et al.; and D625,178 to Bailey et al.; US Pat. Pub. Nos.
  • the apparatuses, systems, and methods described herein may be used to reclaim material from non-pouched products, such as, for example, elongate smoking articles, also known as heatable consumables, with tipping paper.
  • FIG. 2 illustrates a smoking article, such as a cigarette, which may be utilized using the apparatuses and methods described herein for reclamation of tobacco material.
  • the cigarette generally referred to as 200, include a generally cylindrical rod 202 of a charge or roll of smokable filler material 204, such as tobacco, contained in a circumscribing wrapping paper 206.
  • the rod is conventionally referred to as a “tobacco rod section.”
  • the ends of the tobacco rod section are open to expose the smokable filler material.
  • the cigarette is shown as having one optional band 208 (e.g., a printed coating including a film-forming agent, such as starch, ethylcellulose, or sodium alginate) applied to the wrapping paper, and that band circumscribes the cigarette rod in a direction transverse to the longitudinal axis of the cigarette. That is, the band provides a cross-directional region relative to the longitudinal axis of the cigarette.
  • the band can be printed on the inner surface of the wrapping paper (i.e., facing the smokable filler material) as shown, or less preferably, on the outer surface of the wrapping paper.
  • the cigarette can possess a wrapping paper having one optional band, the cigarette also can possess wrapping paper having further optional spaced bands numbering two, three, or more.
  • the wrapping paper 206 of the tobacco rod section 202 can have a wide range of compositions and properties. The selection of a particular wrapping paper will be readily apparent to those skilled in the art of cigarette design and manufacture. Tobacco rod sections can have one layer of wrapping paper; or tobacco rod sections can have more than one layer of circumscribing wrapping paper, such as is the case for the so-called “double wrap” tobacco rod sections.
  • Example types of wrapping papers, wrapping paper components and treated wrapping papers are described in US Pat. Nos. 5,220,930 to Gentry; 7,275,548 to Hancock et al.; and 7,281,540 to Barnes et al.; and PCT Application Pub. Nos. WO 2004/057986 to Hancock et al.; and WO 2004/047572 to Ashcraft et al.; which are incorporated herein by reference in their entireties.
  • each fdter element may contain a plurality of objects disposed within the fdter material 214 of the filter element, in some instances, particularly towards the central radial region of the filter element.
  • the nature of the filter material is such that the objects are secured or lodged in place (e.g., by friction) within the filter element.
  • the tipping material 220 connecting the filter element 212 to the tobacco rod section 202 can have indicia (not shown) printed thereon.
  • indicia For example, a band on the filter end of a cigarette (not shown) can visually indicate to a smoker the general locations or positions of the objects 218 within the filter element. These indicia may help the smoker to locate some objects so that they can, for example, be more easily ruptured by squeezing the filter element directly outside the position of any such rupturable object.
  • the indicia on the tipping material may also indicate the nature of the payload carried by each object. For example, the indicia may indicate that the particular pay load is a spearmint flavoring by having a particular color, shape, or design.
  • the inner surface (i.e., the surface facing the plug wrap) of the tipping material can be coated with a material that can act to retard the propensity of rupturable object contents from migration, wicking or bleeding from the filter material into the tipping material, and hence causing what might be perceived as unsightly visible staining of the tipping material.
  • a suitable film-forming agent e.g., ethylcellulose, or a so-called lip release coating composition of the type commonly employed for cigarette manufacture.
  • a ventilated or air diluted pouched product can be provided with an optional air dilution provisions, such as a series of perforations 222, each of which extend through the tipping material and plug wrap.
  • the optional perforations can be made by various techniques known to those of ordinary skill in the art, such as laser perforation techniques. As these techniques are carried out after insertion of any objects 218 into the filter element 212, care is taken to avoid damaging the objects during the formation of the perforations.
  • One way to avoid damage from air dilution techniques, such as those employing laser perforation technologies, involves locating the perforations at a position adjacent to the positions of the objects.
  • the perforated region can be positioned upstream of any object (as shown), or the perforated region can be positioned downstream of any object (i.e., towards the extreme mouth-end of the filter element).
  • the plug wrap 216 can vary. See, for example, US Pat. No. 4,174,719 to Martin. Typically, the plug wrap is a porous or non-porous paper material. Plug wrap materials are commercially available. Example plug wrap papers are available from Schweitzer-Maudit International as Porowrap Plug Wrap 17-M1, 33-M1, 45- Ml, 65-M9, 95-M9, 150-M4, 260-M4 and 260-M4T. Preferred plug wrap materials are non-porous in nature. Non-porous plug wraps exhibit porosities of less than about 10 CORESTA units, and preferably less than about 5 CORESTA units. Example non-porous plug wrap papers are available as Ref. No.
  • Plug wrap paper can be coated, particularly on the surface that faces the filter material, with a layer of a film-forming material.
  • a suitable polymeric film-forming agent e.g., ethylcellulose, ethylcellulose mixed with calcium carbonate, or a so-called lip release coating composition of the type commonly employed for cigarette manufacture.
  • a plastic film e.g., a polypropylene film
  • non-porous polypropylene materials that are available as ZNA-20 and ZNA-25 from Treofan Germany GmbH & Co. KG can be employed as plug wrap materials.
  • non-porous plug wrap materials are desirable in order to avoid the contents of rupturable objects within filter elements from causing what might be perceived as unsightly visible staining of the tipping material 220.
  • highly non-porous plug wrap materials can act to retard orblock the propensity of liquid contents of the rupturable objects from migration, wicking or bleeding from the filter material 214 into the tipping material.
  • Each product includes an outer wrapper (e.g., the pouch of a pouched product, or a tipping / wrapping material of a cigarette) containing a material.
  • an outer wrapper e.g., the pouch of a pouched product, or a tipping / wrapping material of a cigarette
  • containing a material means it is either wholly contained within an enclosed outer wrapper (e.g., a pouch), or is at least partially contained by the outer wrapper (e.g., cylindrically circumscribed by a tipping material such that material is exposed at ends of the formed cylinder).
  • the material may form, for example, a filter portion of a smoking article, which may then be wrapped by a filter wrap.
  • the formed fdter may then be aligned with one or more other components (e.g., heat generation and/or aerosol generation segments) and overwrapped with an outer wrapping paper.
  • Further layers of outer wrappers may be used, such that “outer wrapper” may refer to one or more layers of wrapping material, such as one, two, three, four, five, six, seven, etc., layers. Otherwise, a single outer wrapper may be used.
  • a continuously operable system and/or apparatus 300 for recovering material from pouched products 100 or smoking articles 200 is illustrated.
  • other products or articles other than those described herein may be utilized by the apparatus 300.
  • Such an apparatus 300 may, in some instances, comprise at least one container or receptacle for storing the products therein.
  • the container is a hopper 302, which may be sized and shaped to store identified-as defective pouched products 100 or smoking articles 200 therein and then deliver the defective products downstream to another component of the apparatus 300.
  • the hopper 302 may be funnel-shaped (e.g., pyramidal or conical) with a rectangular or circular cross-section and either vertical or sloped sides and a central opening through which the products flow.
  • FIGS. 4A and 4B illustrate one example embodiment of an object-orienting device 306.
  • the device 306 may comprise a cylindrical container 308 configured to receive / collect a plurality of the product and/or orient the product, and then feed the products individually downstream.
  • the device 306 may use mechanical vibrations or centrifugal force to orient and feed the products downstream.
  • Such an object-orienting device may be, for example, a commercially available machine such as a vibratory feeder device from Homer City Automation.
  • the cylindrical container 308 of the object-orienting device 306 may comprise a wall 310 defining the cylindrical container 308, wherein the cylindrical container is arranged to receive a plurality of the products and defines the central axis A therein.
  • the cylindrical container 308 may comprise a bowl shape, where the bowl is substantially circular in cross-section. As illustrated in at least FIG. 4B, for example, the cylindrical container has a substantially circular cross-section.
  • a rim 312 may be arranged adjacent to and extending at least partially about an upper end of the wall. The rim may be sized to accommodate continuous metering of the products received from the cylindrical container 308.
  • the method 400 for recovery of the material from a product may be accomplished in a continuous process, with the associated apparatus / system, being appropriately configured and arranged for performing such a continuous process, as shown, for example, in FIG. 3.
  • a continuous process may involve an online production system comprised of a plurality of cooperating and interacting machines or devices.
  • the continuous process may be incorporated into a single online production machine or device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Cosmetics (AREA)

Abstract

A system (300) for recovering material from a product, each product including an outer wrapper containing the material, is disclosed. The system (300) includes an object-orienting device (306) rotatable about a central axis to orient a plurality of products along a wall (310) and to be deposited on a rim (312) thereof, a first conveyor device (320) configured to interact with the rim (312) to convey in a conveyor direction the products from the rim (312), towards a slitting arrangement (326) comprising at least one roller (328) configured to rotate about a central axis in a first direction, a plurality of blades (330) configured to rotate about a central axis in a second direction opposite the first direction, the plurality of blades being configured to slit the outer wrapper containing the material of each of the products conveyed by the at least one roller, and a vibrating screen (354) as part of the recovery device (352) of the system, configured to separate the outer wrapper from the material for recovery of the material.

Description

APPARATUS AND SYSTEM FOR RECOVERING MATERIAL FROM ORAL WRAPPED PRODUCTS AND RELATED METHOD
BACKGROUND OF THE DISCLOSURE
Field of the Disclosure
The present disclosure relates to machinery for use with oral products intended for human use. The machines and apparatuses defined in this disclosure are useful in retrieving and recycling compositions adapted for oral use. Such compositions may include tobacco or a product derived from tobacco, or may be tobacco-free alternatives.
Disclosure of Related Art
There are many categories of products intended for oral use and enjoyment. For example, oral tobacco products containing a material such as nicotine, which is known to have both stimulant and anxiolytic properties, have been available for many years. Conventional formats for so-called “smokeless” tobacco products include moist snuff, snus, and chewing tobacco, which are typically formed almost entirely of a material such as a particulate, granular, or shredded tobacco, and which are either portioned by the user or presented to the user in individual portions, such as in single-use pouches or sachets. See for example, the types of smokeless tobacco formulations, ingredients, and processing methodologies set forth in US Pat. Nos. 6,668,839 to Williams; 6,834,654 to Williams; 6,953,040 to Atchley et al.; 7,032,601 to Atchley et al.; and 7,694,686 to Atchley et al.; 7,810,507 to Dube et al.; 7,819,124 to Strickland et al.; 7,861,728 to Holton, Jr. et al.; 7,901,512 to Quinter et al.; 8,627,828 to Strickland et al.; 11,246,334 to Atchley, each of which is incorporated herein by reference.
New development of unique types of oral products that deliver advantageous sensorial or biological activity is ever evolving. Such products typically contain flavorants and/or active ingredients such as nicotine, caffeine, botanicals, or cannabidiol. The format of such products can vary, and include pouched products containing a powdered or granular composition, lozenges, pastilles, liquids, gels, emulsions, meltable compositions, and the like. See, for example, the types of products described in US Patent App. Pub. Nos. 2022/0160675 to Gerardi et al.; 2022/0071984 to Poole et al.; 2021/0378948 to Gerardi et al.; 2021/0330590 to Hutchens et al.; 2021/0186081 to Gerardi et al.; 2021/0177754 to Keller et al; 2021/0177043 to Gerardi et al.; 2021/0177038 to Gerardi et al.; 2021/0169867 to Holton, Jr. et al.; 2021/0169792 to Holton, Jr. et al.; 2021/0169132 to Holton, Jr. et al.; 2021/0169121 to St. Charles, and 2021/0169122 to St. Charles, each of which is incorporated herein by reference.
During manufacture of pouched oral products, certain defects may be encountered. For example, the pouch may be damaged or not fully formed, material inside the pouch may be damaged, the pouch may have a high density / low density from being overfilled or underfilled, and/or a visible defect. In instances of such defects, it may be impractical to “re-work” the defective pouched oral product, thus resulting in environmental waste that could be deemed as hazardous due to its contents, as both the pouch and the material inside the pouch must be discarded. As such, pouched oral products with detected defects are often rejected as scrap or waste. However, disposing of such defective pouched oral products may represent a significant monetary loss in terms of the valuable material within the pouched oral product and create an environmental impact from a waste management perspective. In some instances, it may be difficult or impractical to recover the material from such defective pouched oral products, as the recovered material must desirably be free of contaminants (i.e., the pouch material), and the recovered material must be of the same blend, so as to be “re-usable” for manufacturing other non-defective pouched oral products.
Similar issues may be present in the mass-production of cigarettes or heat stick consumables. For example, a cigarette may be missing the filter section; the tipping paper may be tom or improperly /incompletely applied; the air dilution perforations may be incompletely or improperly formed; the wrapping paper for the tobacco rod section may be tom or improperly formed; the tobacco rod section may have a low weight/density, a high weight/density, a soft spot, a hard spot, loose tobacco about the lighting end of the tobacco rod section, an improper density profile along the tobacco rod section; and/or wherein the cigarette may include a visible defect. In such instances, the defective cigarettes may be directed for re-work or otherwise be discarded. In some cases, attempts may be made to recover the valuable tobacco from the defective/discarded cigarettes. Various tobacco reclamation schemes are disclosed, for example, in U.S. Pat. Nos. 4,278,100 to Thatcher; 4,191,199 to Sullivan; 4,221,035 to Thatcher; 4,763,673 to Barnes et al.; 4,867,179 to Leonard; 5,000,196 to Stewart et al.; 5,001,951 to Eisenlohr et al.; 5,117,843 to Holmes et al. and 6,510,855 to Korte et al. However, such tobacco reclamation schemes may have some drawbacks such as, for example, lack of automation, inefficiency, and the inability to recover tobacco from cigarettes having different defects.
While other reclaiming machines, products and methods may be commercially available for recovering material from identified defective products and/or oral wrapped products at various points during the manufacture of such products, it is unclear whether the industry has designed an automated full system for the recovery process which is capable of recovering the material from the pouched (oral) product without contaminating the recovered material.
BRIEF SUMMARY OF THE DISCLOSURE
The present disclosure is directed to an apparatus, system, and related method for recovering material from a product, each product including an outer wrapper containing the material. The present disclosure includes, without limitation, the following example implementations.
Example Implementation 1: An apparatus for recovering material from a product, each product including an outer wrapper containing the material, the apparatus comprising: an object-orienting device comprising a wall defining a cylindrical container arranged to receive a plurality of the products and defining a central axis therein, and a rim arranged adjacent to and extending at least partially about an upper end of the wall, the cylindrical container being rotatable about the central axis to orient the plurality of products along the wall and to be deposited on the rim; a first conveyor device disposed adjacent to and configured to interact with the rim so as to receive and convey in a conveyor direction the products from the rim; at least one roller operably engaged with the first conveyor device to receive the products therefrom, the at least one roller being configured to rotate about a central axis in a first direction and convey the products from the first conveyor device in the first direction; and a plurality of blades configured to rotate about a central axis in a second direction opposite the first direction, the plurality of blades being configured to slit the outer wrapper containing the material of each of the products conveyed by the at least one roller.
Example Implementation 2: The apparatus of Example Implementation 1, or any combination of preceding example implementations, wherein the at least one roller defines a plurality of grooves extending about a circumferential surface of the at least one roller, each one of the plurality of grooves being configured to receive a respective one of the plurality of blades.
Example Implementation 3: The apparatus of Example Implementation 2 or any combination of preceding example implementations, further comprising a plate defining a plurality of slits and vertically extending between the at least one roller and the plurality of blades, each of the plurality of blades extending through a respective one of the plurality of slits and into the respective groove of the at least one roller.
Example Implementation 4: The apparatus of any of Example Implementations 1-3, or any combination of preceding example implementations, further comprising at least one cleaning member arranged proximate to the at least one roller.
Example Implementation 5: The apparatus of any of Example Implementations 1-4, or any combination of preceding example implementations, wherein the object-orienting device comprises a drive unit mounted to a bottom surface of the cylindrical container to vibrate the cylindrical container and orient the plurality of products along the wall.
Example Implementation 6: The apparatus of any of Example Implementations 1-5, or any combination of preceding example implementations, further comprising a hopper storing the products.
Example Implementation 7: The apparatus of Example Implementation 6, or any combination of preceding example implementations, further comprising a second conveyor device configured to receive the products from the hopper and to convey the products to the cylindrical container of the object-orienting device. Example Implementation 8: The apparatus of any of Example Implementations 1-7, or any combination of preceding example implementations, further comprising a recovery device arranged downstream of the at least one roller and the plurality of blades, the recovery device being configured to receive the slit products, and separate the outer wrapper from the material for recovery of the material.
Example Implementation 9: The apparatus of Example Implementation 8, or any combination of preceding example implementations, wherein the recovery device comprises a vibrating screen configured to loosen the material from the outer wrapper, to sift the material, and to recover the material on an opposing side of the vibrating screen.
Example Implementation 10: A system for recovering material from a product, each product including an outer wrapper containing the material, the apparatus comprising: an object-orienting device comprising: a wall defining a cylindrical container arranged to receive a plurality of the products and defining a central axis therein, and a rim arranged adjacent to and extending at least partially about an upper end of the wall, the cylindrical container being rotatable about the central axis to orient the plurality of products along the wall and to be deposited on the rim; a first conveyor device disposed adjacent to and configured to interact with the rim so as to receive and convey in a conveyor direction the products from the rim; at least one roller operably engaged with the first conveyor device to receive the products therefrom, the at least one roller being configured to rotate about a central axis in a first direction and convey the products from the first conveyor device in the first direction; a plurality of blades configured to rotate about a central axis in a second direction opposite the first direction, the plurality of blades being configured to slit the outer wrapper containing the material of each of the products conveyed by the at least one roller; and a vibrating screen arranged downstream of the at least one roller and the plurality of blades, the vibrating screen being configured to receive the slit products, and separate the outer wrapper from the material for recovery of the material.
Example Implementation 11: The system of Example Implementation 10, or any combination of preceding example implementations, wherein the at least one roller defines a plurality of grooves extending about a circumferential surface of the at least one roller, each one of the plurality of grooves being configured to receive a respective one of the plurality of blades.
Example Implementation 12: The system of Example Implementation 11, or any combination of preceding example implementations, further comprising a plate defining a plurality of slits and vertically extending between the at least one roller and the plurality of blades, each of the plurality of blades extending through a respective one of the plurality of slits and into the respective groove of the at least one roller.
Example Implementation 13: The system of any of Example Implementations 10-12, or any combination of preceding example implementations, further comprising at least one cleaning member arranged proximate to the at least one roller.
Example Implementation 14: The system of any of Example Implementations 10-13, or any combination of preceding example implementations, wherein the object-orienting device comprises a drive unit mounted to a bottom surface of the cylindrical container to vibrate the cylindrical container and orient the plurality of products along the wall. Example Implementation 15: The system of any of Example Implementations 10-14, or any combination of preceding example implementations, further comprising a hopper storing the products.
Example Implementation 16: The system of any of Example Implementations 10-15, or any combination of preceding example implementations, further comprising a second conveyor device configured to receive the products from the hopper and to convey the products to the cylindrical container of the objectorienting device.
Example Implementation 17: A method for recovering material from a product, each product including an outer wrapper containing the material, the method comprising: receiving a plurality of the products in an object-orienting device comprising a wall defining a cylindrical container defining a central axis therein, and a rim arranged adjacent to and extending at least partially about an upper end of the wall; rotating the object-orienting device about the central axis to orient the plurality of products along the wall and deposit the plurality of products on the rim; receiving and conveying the plurality of products from the rim to at least one roller, the at least one roller being configured to rotate about a central axis in a first direction; slitting, by a plurality of blades configured to rotate about a central axis in a second direction opposite the first direction, the outer wrapper containing the material of each of the products conveyed by the at least one roller; and separating, by a vibrating screen arranged downstream of the at least one roller and the plurality of blades, the slit outer wrapper from the material for recovery of the material.
Example Implementation 18: The method of Example Implementation 17, or any combination of preceding example implementations, wherein the at least one roller defines a plurality of grooves extending about a circumferential surface of the at least one roller, each one of the plurality of grooves being configured to receive a respective one of the plurality of blades, and further comprising a plate defining a plurality of slits and vertically extending between the at least one roller and the plurality of blades, each of the plurality of blades extending through a respective one of the plurality of slits and into the respective groove of the at least one roller.
Example Implementation 19: The method of either of Example Implementations 17 or 18, or any combination of preceding example implementations, wherein the object-orienting device comprises a drive unit mounted to a bottom surface of the cylindrical container, and the method further comprises vibrating, by the drive unit, the cylindrical container to orient the plurality of products along the wall.
Example Implementation 20: The method of any of Example Implementations 17-19, or any combination of preceding example implementations, further comprising a hopper storing the products and a first conveyor device disposed adjacent to and configured to interact with the rim, wherein receiving the plurality of products comprising receiving the plurality of products from the hopper in the object-orienting device, and wherein receiving and conveying the plurality of products from the rim comprises receiving and conveying, by the first conveyor device in a conveyor direction, the products from the rim to the at least one roller.
These and other features, aspects, and advantages of the disclosure will be apparent from a reading of the following detailed description together with the accompanying drawings, which are briefly described below. The invention includes any combination of two, three, four, or more of the above-noted embodiments as well as combinations of any two, three, four, or more features or elements set forth in this disclosure, regardless of whether such features or elements are expressly combined in a specific embodiment description herein. This disclosure is intended to be read holistically such that any separable features or elements of the disclosed invention, in any of its various aspects and embodiments, should be viewed as intended to be combinable unless the context clearly dictates otherwise.
BRIEF DESCRIPTION OF THE DRAWINGS
Having thus described the disclosure in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
FIG. 1 is a perspective view of a pouched product embodiment according to an example embodiment of the present disclosure, including a pouch or fleece at least partially filled with a material configured for oral use;
FIG. 2 is a perspective view of a smoking article embodiment according to an example embodiment of the present disclosure, including a tobacco rod;
FIG. 3 illustrates a front perspective view of an apparatus for recovering material from oral wrapped products, according to one aspect of the present disclosure;
FIG. 4A schematically illustrates a cross-sectional side view of one example embodiment of an objectorienting device from the apparatus of FIG. 3;
FIG. 4B schematically illustrates a top view of the object-orienting device of FIG. 4 A;
FIGS. 5A-5C illustrate various views of one example embodiment of a slitting arrangement of the apparatus of FIG. 3;
FIGS. 6A-6B illustrate various views of one example embodiment of a recovery device of the apparatus of FIG. 3; and
FIG. 7 schematically illustrates a method of recovering material from oral wrapped products, according to one aspect of the present disclosure.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present disclosure now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all aspects of the disclosure are shown. Indeed, the disclosure may be embodied in many different forms and should not be construed as limited to the aspects set forth herein; rather, these aspects are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
As used in this specification and the claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise.
Reference to "dry weight percent" or "dry weight basis" refers to weight on the basis of dry ingredients (i.e., all ingredients except water). Reference to "wet weight" refers to the weight of the mixture including water. Unless otherwise indicated, reference to "weight percent" of a mixture reflects the total wet weight of the mixture (i.e., including water).
Aspects and embodiments of the present disclosure may broadly relate, for example, to product production apparatuses, systems, and methods, in particular, for oral wrapped products. Where the product is an oral tobacco or nicotine product, it may be configured for oral use. The term "configured for oral use" as used herein means that the oral product is provided in a form such that during use, saliva in the mouth of the user causes one or more of the components of the oral product (e.g., flavoring agents and/or active ingredients) to pass into the mouth of the user. In certain embodiments, the oral product is adapted to deliver components to a user through mucous membranes in the user's mouth, the user's digestive system, or both, and, in some instances, said component is an active ingredient (including, but not limited to, for example, nicotine, a stimulant, vitamin, amino acid, botanical, or a combination thereof) that can be absorbed through the mucous membranes in the mouth or absorbed through the digestive tract when the product is used.
All or a portion of the oral products of the present disclosure may be crackable and/or dissolvable. As used herein, the terms "dissolve," "dissolving," and "dissolvable" refer to products having aqueous-soluble components that interact with moisture in the oral cavity and enter into solution, thereby causing gradual consumption of the product. According to one aspect, the dissolvable composition is capable of lasting in the user’s mouth for a given period of time until it completely dissolves. Dissolution rates can vary over a wide range, from about 1 minute or less to about 60 minutes. For example, fast release products typically dissolve and/or release the desired component(s) (e.g., active ingredient, flavor, and the like) in about 2 minutes or less, often about 1 minute or less (e.g., about 50 seconds or less, about 40 seconds or less, about 30 seconds or less, or about 20 seconds or less). Dissolution can occur by any means, such as melting, mechanical disruption (e.g., chewing), enzymatic or other chemical degradation, or by disruption of the interaction between the components of the product. In other embodiments, the products do not dissolve during the product’s residence in the user’s mouth.
Notably, as described herein, the oral tobacco and nicotine products may be a pouched oral product configured for oral use or may be a pouched product with a non-consumable material not configured for oral use (e.g., silica pouches for absorbing moisture). Regardless, “pouched product” and “pouched oral product” are used throughout interchangeably unless otherwise explicitly indicated. Additionally, aspects and embodiments of the present disclosure may broadly relate to rod-shaped products, such as cigarettes, which may also be used in the described apparatuses and methods for reclaiming tobacco material therefrom. Such pouched products and similar tobacco material reclamation apparatuses and methods are described in U.S. Patent No. 11,033,049 to Ademe and US Pat. Appl. Pub. No. 2016/0120213 to Ademe, incorporated herein by reference in their entirety.
The pouched product described herein may include a pouch, which contains a material comprising a composition as described herein. In addition, aspects and embodiments of the present disclosure may broadly relate to apparatuses and methods for inspecting pouched products and identifying any defective pouched products therein, at various points during the manufacture of a certain type of pouched product. Further aspects and embodiments of the present disclosure may be directed to consolidating defective pouched products in a particular manner such that the defective pouched products may then be subject to a recovery process.
Accordingly, some aspects of the present disclosure are directed to apparatuses, systems, and related methods for recovering material from pouched products, after the pouched product has been inspected and identified as defective in any way and directed to the recovery process described in detail herein. A pouched product may be identified as “defective” in instances, for example and without limitation, where the pouched product may be damaged or not fully formed, material inside the pouch may be damaged, the pouch may have a high density / low density from being overfilled or underfilled, and/or a visible defect is present. As such, aspects of the present disclosure may further allow the recovery process to be automated, and to be capable of recovering the tobacco material from the certain type of pouched product, without contaminating the recovered material.
FIG. 1 illustrates a representative pouched product 100, such as a pouched oral product, possessing certain representative components of a pouched product. The pouched product 100 includes a moisture- permeable pouch 102, such as a pouch treated with the liquid treatment solution disclosed herein, which contains a material 104 comprising a composition as described herein.
Regarding the material 104, the material may include a variety of components in or applied to the material, including humectants, flavorants, actives, colorants, surfactants, and the like. For example, the material 104 may include at least one humectant, which can be added to either the inner composition within the pouch 102 or directly to the pouch material 104.
The oral products of the present disclosure will typically include a composition contained within the water-permeable pouch (sometimes referred to as the “fill”), which will typically include at least one water- soluble component capable of release from the composition when placed in the oral cavity.
The composition of the oral product can include various ingredients, such as fillers, flavorants, active ingredients, binders, humectants, sweeteners, salts, taste modifiers, and the like. Example components of the composition are disclosed hereinbelow. As noted above, the liquid treatment solution can also include one or more of the same ingredients as contained within the composition. Accordingly, many of the types of ingredients noted hereinbelow can apply to both the composition and the liquid treatment solution. For example, both the composition and the liquid treatment solution can contain the same flavorant and/or active ingredient such that the sensory or functional characteristics of the composition are augmented by the liquid treatment solution.
According to the present disclosure, compositions provided herein typically comprise one or more filler components. Such filler components may fulfill multiple functions, such as enhancing certain organoleptic properties such as texture and mouthfeel, enhancing cohesiveness or compressibility of the product, and the like.
Generally, filler components are porous, particulate materials and are cellulose-based. For example, suitable particulate filler components are any non-tobacco plant material or derivative thereof, including cellulose materials derived from such sources. Examples of cellulosic non-tobacco plant material include cereal grains (e.g., maize, oat, barley, rye, buckwheat, and the like), sugar beet (e.g., FIBREX® brand fdler available from International Fiber Corporation), bran fiber, citrus fiber (e.g., CITRI-FI® brand fiber available from Fiberstar), and mixtures thereof. Non-limiting examples of derivatives of non-tobacco plant material include starches (e.g., from potato, wheat, rice, com), natural cellulose, and modified cellulosic materials. Additional examples of potential particulate filler components include maltodextrin, dextrose, calcium carbonate, calcium phosphate, lactose, mannitol, xylitol, and sorbitol. Combinations of fillers can also be used.
"Starch" as used herein may refer to pure starch from any source, modified starch, or starch derivatives. Starch is present, typically in granular form, in almost all green plants and in various types of plant tissues and organs (e.g., seeds, leaves, rhizomes, roots, tubers, shoots, fruits, grains, and stems). Starch can vary in composition, as well as in granular shape and size. Often, starch from different sources has different chemical and physical characteristics. A specific starch can be selected for inclusion in the mixture based on the ability of the starch material to impart a specific organoleptic property to composition. Starches derived from various sources can be used. For example, major sources of starch include cereal grains (e.g., rice, wheat, and maize) and root vegetables (e.g., potatoes and cassava). Other examples of sources of starch include acorns, arrowroot, arracacha, bananas, barley, beans (e.g., favas, lentils, mung beans, peas, chickpeas), breadfruit, buckwheat, canna, chestnuts, colacasia, katakuri, kudzu, malanga, millet, oats, oca, Polynesian arrowroot, sago, sorghum, sweet potato, quinoa, rye, tapioca, taro, tobacco, water chestnuts, and yams. Certain starches are modified starches. A modified starch has undergone one or more structural modifications, often designed to alter its high heat properties. Some starches have been developed by genetic modifications, and are considered to be "genetically modified" starches. Other starches are obtained and subsequently physically (e.g., heat, cool water swelling, etc.), chemically, or enzymatically modified. For example, modified starches can be starches that have been subjected to chemical reactions, such as esterification, etherification, oxidation, depolymerization (thinning) by acid catalysis or oxidation in the presence of base, bleaching, transglycosylation and depolymerization (e.g., dextrinization in the presence of a catalyst), cross-linking, acetylation, hydroxypropylation, and/or partial hydrolysis. Enzymatic treatment includes subjecting native starches to enzyme isolates or concentrates, microbial enzymes, and/or enzymes native to plant materials, e.g., amylase present in com kernels to modify com starch. Other starches are modified by heat treatments, such as pregelatinization, dextrinization, and/or cold water swelling processes. Certain modified starches include monostarch phosphate, distarch glycerol, distarch phosphate esterified with sodium trimetaphosphate, phosphate distarch phosphate, acetylated distarch phosphate, starch acetate esterified with acetic anhydride, starch acetate esterified with vinyl acetate, acetylated distarch adipate, acetylated distarch glycerol, hydroxypropyl starch, hydroxypropyl distarch glycerol, starch sodium octenyl succinate.
In some embodiments, the particulate filler component is a cellulose material or cellulose derivative and can, in some embodiments, comprise microcrystalline cellulose (“MCC”). The MCC may be synthetic or semi-synthetic, or it may be obtained entirely from natural celluloses. The MCC may be selected from the group consisting of AVICEL® grades PH-100, PH-102, PH-103, PH-105, PH-112, PH-113, PH-200, PH-300, PH-302, VIVACEL® grades 101, 102, 12, 20 and EMOCEL® grades 50M and 90M, and the like, and mixtures thereof.
In certain embodiments, a particulate filler can be characterized as substantially spherical, such as cellulose spheres. By “substantially spherical” is meant at least a portion of the particulate filler component is in the shape of a sphere and/or is “sphere-like’ in shape. As such, “substantially spherical” encompasses slightly elongated (e.g., oval) shapes, slightly flattened shapes, and the like. Substantially spherical particulate filler components are intended to be distinguished from conventional particulate filler components (e.g., commercially available “fillers” or “particulate fillers” that are not explicitly designed as “spherical”). Such conventional particulate filler components typically substantially comprise particles with rather irregular shapes. In some cases, at least some (e.g., including a majority) of such conventional particulate filler components comprise one or more edges (e.g., jagged edges) that are typically not observable on substantially spherical particulate filler components as employed in the context of the present disclosure. Further, the uniformity of the particle shapes and sizes of a substantially spherical filler component is generally much greater than that of a conventional particulate filler component.
In some embodiments, the substantially spherical filler component comprises MCC. In some embodiments, the substantially spherical filler component comprises solid (although porous) MCC spheres. In some embodiments, the substantially spherical filler component comprises hollow MCC spheres. In some embodiments, the center/core of such hollow MCC spheres may be unfilled; in other embodiments, the center/core of such hollow MCC spheres may be filled with one or more additional components (e.g., flavorants, fillers, active ingredients, etc.). Examples of suitable MCC spheres include, but are not limited to, Vivapur® MCC spheres from JRS Pharma, available, e.g., with particle sizes of 100-200 pm (Vivapur® 100), 200-355 pm (Vivapur® 200), 355-500 pm (Vivapur® 350), 500-710 pm (Vivapur® 500), 710-1000 pm (Vivapur®700), and 1000-1400 pm (Vivapur® 1000). Further examples of suitable MCC spheres include, but are not limited to, Celphere™ MCC spheres from Asahi Kasei Corporation, available, e.g., with particle sizes of 75-212 pm (Celphere™ SCP-100), 106-212 pm (Celphere™ CP-102), 150-300 pm (Celphere™ CP-203), 300-500 pm (Celphere™ CP-305), and 500-710 pm (Celphere™ CP-507).
The average diameter of the substantially spherical particulate filler particles provided herein can vary, and is not particularly limited. For example, in some embodiments, the spherical filler particles have an average diameter of about 100 nm to about 1000 nm, such as about 250 nm to about 750 nm. For example, in some embodiments, the average diameter is about 100 nm to about 500 nm, e.g., about 100 nm to about 400 nm, about 100 nm to about 300 nm, about 100 nm to about 200 nm, about 200 nm to about 500 nm, about 200 nm to about 400 nm, about 200 nm to about 300 nm, about 300 nm to about 500 nm, about 300 nm to about 400 nm, or about 400 nm to about 500 nm. In some embodiments, the average diameter is about 500 nm to about 1000 nm, e.g., about 500 nm to about 900 nm, about 500 nm to about 800 nm, about 500 nm to about 700 nm, about 500 nm to about 600 nm, about 600 nm to about 1000 nm, about 600 nm to about 900 nm, about 600 nm to about 800 nm, about 600 nm to about 700 nm, about 700 nm to about 1000 nm, about 700 nm to about 900 rnn, about 700 urn to about 800 urn, about 800 urn to about 1000 urn, about 800 urn to about 900 nm, or about 900 nm to about 1000 nm.
The distribution of diameters around this average diameter (i.e., the particle size distribution) can also vary; in some embodiments, the distribution of diameters is close to the listed value (e.g., +/- about 25% of the stated value, +/- about 20% of the stated value, +/- about 15% of the stated value, +/- about 10% of the stated value, +/- about 5% of the stated value, or +/- about 1% of the stated value. The disclosure is not, however, limited to materials with such narrow distributions; in other embodiments, the diameter of the MCC spheres within a given material can vary within a wider range.
The amount of filler can vary, but is typically up to about 75 percent of the composition, based on the total weight of the composition. A typical range of filler (e.g., MCC) within the composition can be from about 5 to about 70% by total weight of the composition, for example, from about 5, about 10, about 15, or about 20 to about 30, about 35, about 45, or about 60 weight percent (e.g., about 5 to about 60 weight percent or about 10 to about 45 weight percent).
In one embodiment, the filler further comprises a cellulose derivative or a combination of such derivatives. In some embodiments, the mixture comprises from about 1% to about 10% of the cellulose derivative by weight, based on the total weight of the composition, with certain embodiments comprising about 1 to about 5% by weight of cellulose derivative. In certain embodiments, the cellulose derivative is a cellulose ether (including carboxyalkyl ethers), meaning a cellulose polymer with the hydrogen of one or more hydroxyl groups in the cellulose structure replaced with an alkyl, hydroxyalkyl, or aryl group. Non-limiting examples of such cellulose derivatives include methylcellulose, hydroxypropylcellulose ("HPC"), hydroxypropylmethylcellulose ("HPMC"), hydroxyethyl cellulose, and carboxymethylcellulose ("CMC"). In one embodiment, the cellulose derivative is one or more of methylcellulose, HPC, HPMC, hydroxyethyl cellulose, and CMC. In one embodiment, the cellulose derivative is HPC. In some embodiments, the composition comprises from about 0% to about 5% HPC by weight, e.g., about 1% to about 3% HPC by weight, based on the total weight of the composition by weight.
A binder (or combination of binders) is employed in the composition in an amount sufficient to provide the desired physical attributes and physical integrity. The binder materials can serve to add cohesiveness to a composition, and can also serve as gelling agents. Typically, the amount of binder present is up to about 50% by weight, and certain embodiments are characterized by a binder content of at least about 5% by weight, based on the total weight of the composition. In some embodiments, the binder is present in an amount by weight in a range from about 5 to about 50% based on the total weight of the composition, such as from about 5%, about 10%, about 15%, about 20%, about 25%, or about 30%, to about 35%, about 40%, or about 45% by weight, based on the total weight of the composition.
Typical binders can be organic or inorganic, or a combination thereof. Representative binders include povidone, sodium alginate, pectin, gums, carrageenan, pullulan, zein, cellulose derivatives, and the like, and combinations thereof. In some implementations, combinations or blends of two or more binder materials may be employed. Other examples of binder materials are described, for example, in U.S. Pat. No. 5,101,839 to Jakob et al.; and U.S. Pat. No. 4,924,887 to Raker et al., each of which is incorporated herein by reference in its entirety.
In some embodiments, the binder is selected from the group consisting of agar, alginates, carrageenan and other seaweed hydrocolloids, exudate gum hydrocolloids, cellulose ethers, starches, gums, dextrans, povidone, pullulan, zein, or combinations thereof.
In some embodiments, the binder is a cellulose ether (including carboxy alkyl ethers), meaning a cellulose polymer with the hydrogen of one or more hydroxyl groups in the cellulose structure replaced with an alkyl, hydroxyalkyl, or aryl group. Non-limiting examples of such cellulose derivatives include methylcellulose, hydroxypropylcellulose ("HPC"), hydroxypropylmethylcellulose ("HPMC"), hydroxyethyl cellulose, and carboxymethylcellulose ("CMC"). Suitable cellulose ethers include hydroxypropylcellulose, such as Klucel H from Aquaion Co.; hydroxypropylmethylcellulose, such as Methocel K4MS from DuPont; hydroxy ethylcellulose, such as Natrosol 250 MRCS from Aquaion Co.; methylcellulose, such as Methocel A4M, K4M, and E15 from DuPont.; and sodium carboxy methylcellulose, such as CMC 7HF, CMC 7LF, and CMC 7H4F from Aquaion Co. In some embodiments, the binder is one or more cellulose ethers (e.g., a single cellulose ether or a combination of several cellulose ethers, such as two or three, for example). In some embodiments, the binder is a cellulose ether selected from the group consisting of methylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethyl cellulose, carboxymethylcellulose, and combinations thereof.
In some embodiments, the oral composition comprises one or more flavoring agents. As used herein, a "flavoring agent" or "flavorant" is any flavorful or aromatic substance capable of altering the sensory characteristics associated with the oral product. Examples of sensory characteristics that can be modified by the flavoring agent include taste, mouthfeel, moistness, coolness/heat, and/or fragrance/aroma. Flavoring agents may be natural or synthetic, and the character of the flavors imparted thereby may be described, without limitation, as fresh, sweet, herbal, confectionary, floral, fruity, or spicy.
Specific types of flavors include, but are not limited to, vanilla, coffee, chocolate/cocoa, cream, mint, spearmint, menthol, peppermint, Wintergreen, eucalyptus, lavender, cardamon, nutmeg, cinnamon, clove, cascarilla, sandalwood, honey, jasmine, ginger, anise, sage, licorice, lemon, orange, apple, peach, lime, cherry, strawberry, trigeminal sensates, melatonin, terpenes, and any combinations thereof. See also, Leffingwell et al., Tobacco Flavoring for Smoking Products, R. J. Reynolds Tobacco Company (1972), which is incorporated herein by reference. Flavorings also may include components that are considered moistening, cooling or smoothening agents, such as eucalyptus or menthol. These flavors may be provided neat (i.e., alone) or in a composite, and may be employed as concentrates or flavor packages (e.g., spearmint and menthol, orange and cinnamon; lime, pineapple, and the like). Representative types of components also are set forth in US Pat. No. 5,387,416 to White et al.; US Pat. App. Pub. No. 2005/0244521 to Strickland et al.; and PCT Application Pub. No. WO 05/041699 to Quinter et al., each of which is incorporated herein by reference. In some instances, the flavoring agent may be provided in a spray -dried form or a liquid form.
The flavoring agent generally comprises at least one volatile flavor component. As used herein, "volatile" refers to a chemical substance that forms a vapor readily at ambient temperatures (i.e., a chemical substance that has a high vapor pressure at a given temperature relative to a nonvolatile substance). Typically, a volatile flavor component has a molecular weight below about 400 Da, and often include at least one carboncarbon double bond, carbon-oxy gen double bond, or both. In one embodiment, the at least one volatile flavor component comprises one or more alcohols, aldehydes, aromatic hydrocarbons, ketones, esters, terpenes, terpenoids, or a combination thereof. Non-limiting examples of aldehydes include vanillin, ethyl vanillin, p- anisaldehyde, hexanal, furfural, isovaleraldehyde, cuminaldehyde, benzaldehyde, and citronellal. Nonlimiting examples of ketones include 1 -hydroxy-2 -propanone and 2-hydroxy-3-methyl-2-cyclopentenone-l- one. Non-limiting examples of esters include allyl hexanoate, ethyl heptanoate, ethyl hexanoate, isoamyl acetate, and 3 -methylbutyl acetate. Non-limiting examples of terpenes include sabinene, limonene, gammaterpinene, beta-famesene, nerolidol, thujone, myrcene, geraniol, nerol, citronellol, linalool, and eucalyptol. In one embodiment, the at least one volatile flavor component comprises one or more of ethyl vanillin, cinnamaldehyde, sabinene, limonene, gamma-terpinene, beta-famesene, or citral. In one embodiment, the at least one volatile flavor component comprises ethyl vanillin. In another embodiment, the at least one volatile flavor component comprises menthol.
In some instances, the flavoring agent may be provided in a spray-dried form or a liquid form. In some embodiments, a liquid flavorant is disposed (i.e., adsorbed or absorbed in or on) a porous carrier, for example microcrystalline cellulose, which is then combined with the other composition ingredients. Embodiments with flavorant present in dry form (e.g., in or on microcrystalline cellulose) may be advantageous in providing a more homogenous product.
The amount of flavoring agent can vary, but is typically up to about 10 weight percent, and certain embodiments are characterized by a flavoring agent content of at least about 0.1 weight percent, such as about 0.1 to about 1 weight percent, 0.5 to about 10 weight percent, about 1 to about 6 weight percent, or about 2 to about 5 weight percent, based on the total weight of the oral composition. The amount of flavoring agent present within the composition may vary over a period of time (e.g., during a period of storage after preparation of the composition). For example, certain volatile components present in the mixture may evaporate or undergo chemical transformations, leading to a reduction in the concentration of one or more volatile flavor components.
In order to improve the organoleptic properties of a composition as disclosed herein, the composition may include one or more taste modifying agents ("taste modifiers") which may serve to mask, alter, block, or improve the flavor of a composition as described herein. Non-limiting examples of such taste modifiers include analgesic or anesthetic herbs, spices, and flavors which produce a perceived cooling (e.g., menthol, eucalyptus, mint), warming (e.g., cinnamon), or painful (e.g., capsaicin) sensation. Certain taste modifiers fall into more than one overlapping category.
In some embodiments, the taste modifier modifies one or more of bitter, sweet, salty, or sour tastes. In some embodiments, the taste modifier targets pain receptors. In some embodiments, the composition comprises an active ingredient having a bitter taste, and a taste modifier which masks or blocks the perception of the bitter taste. In some embodiments, the taste modifier is a substance which targets pain receptors (e.g., vanilloid receptors) in the user's mouth to mask e.g., a bitter taste of another component (e.g., an active ingredient). In some embodiments, the taste modifier is capsaicin or Jambu extract.
In certain embodiments, the taste modifier is a cooling agent, such as WS-3 (N-ethyl-5-methyl-2-(l- methylethyl)-cyclohexane carboxamide), WS-23 (N,2,3-trimethyl-2-propan-2-ylbutanamide), WS-5 (N- [(ethoxycarbonyl)methyl)-p-menthane-3-carboxamide), EVERCOOL™ 180 ((lR,2S,5R)-N-(4-
(cyanomethyl)phenyl)menthylcarboxamide ), EVERCOOL™ 190 ((lR,2S,5R)-N-(2-(pyridin-2- yl)ethyl)menthylcarboxamide), or combinations thereof.
In particular, products are provided that comprise one or more sensory agents derived from Sichuan pepper (referred to herein as “Sichuan,” “Sichuan pepper,” or “Sichuan pepercom”). In some embodiments, the taste modifier is the amino acid gamma-amino butyric acid (GABA), referenced herein above with respect to amino acids. In some embodiments, the composition comprises caffeine and GABA. In some embodiments, the taste modifier is adenosine monophosphate (AMP). In some embodiments, the taste modifier is lactisole. When present, a representative amount of taste modifier is about 0.01% by weight or more, about 0.1% by weight or more, or about 1.0% by weight or more, but will typically make up less than about 10% by weight of the total weight of the composition, (e.g., from about 0.01%, about 0.05%, about 0.1%, or about 0.5%, to about 1%, about 5%, or about 10% by weight of the total weight of the composition).
In some embodiments, the oral composition may further comprise a salt (e.g., alkali metal salts), typically employed in an amount sufficient to provide desired sensory attributes to the mixture. Non-limiting examples of suitable salts include sodium chloride, potassium chloride, ammonium chloride, calcium chloride, flour salt, and the like. When present, a representative amount of salt is about 0.25 percent by weight or more, about 1.0 percent by weight or more, or at about 1.5 percent by weight or more, but will typically make up about 10 percent or less of the total weight of the composition, or about 7.5 percent or less or about 5 percent or less (e.g., about 0.5 to about 5 percent by weight), based on the total weight of the composition.
The composition may comprise one or more sweeteners. The sweeteners can be any sweetener or combination of sweeteners, in natural or artificial form, or as a combination of natural and artificial sweeteners. Examples of natural sweeteners include isomaltulose, fructose, sucrose, glucose, maltose, mannose, galactose, lactose, stevia, honey, and the like. Examples of artificial sweeteners include sucralose, maltodextrin, saccharin, aspartame, acesulfame K, neotame and the like. In some embodiments, the sweetener comprises one or more sugar alcohols. Sugar alcohols are polyols derived from monosaccharides or disaccharides that have a partially or fully hydrogenated form. Sugar alcohols have, for example, about 4 to about 20 carbon atoms and include erythritol, arabitol, ribitol, isomalt, maltitol, dulcitol, iditol, mannitol, xylitol, lactitol, sorbitol, and combinations thereof (e.g., hydrogenated starch hydrolysates). In certain embodiments, the mixture provided herein can include a sugar alcohol (e.g., xylitol or erythritol) in combination with a lesser amount of artificial or non-nutritive sweetener (e.g., sucralose, aspartame, acesulfame K, or any combination thereof). When present, a representative amount of sweetener may make up from about 0.1 to about 20 percent or more of the of the composition by weight, for example, from about 0.1 to about 1%, from about 1 to about 5%, from about 5 to about 10%, or from about 10 to about 20% of the composition on a weight basis, based on the total weight of the composition.
In certain embodiments, one or more humectants may be employed in the composition. Examples of humectants include, but are not limited to, polyols such as glycerin, propylene glycol, and the like. Where included, the humectant is typically provided in an amount sufficient to provide desired moisture attributes to the composition. The total amount of humectant in the oral product is set forth above.
If necessary for downstream processing of the composition, such as pouching, a flow aid can also be added to the composition in order to enhance flowability of the composition. Exemplary flow aids include microcrystalline cellulose, silica, polyethylene glycol, stearic acid, calcium stearate, magnesium stearate, zinc stearate, sodium stearyl fumarate, canauba wax, and combinations thereof. In some embodiments, the flow aid is sodium stearyl fumarate. When present, a representative amount of flow aid may make up at least about 0.5 percent or at least about 1 percent, of the total dry weight of the composition. The amount of flow aid within the composition typically will not exceed about 5 percent, and frequently will not exceed about 3 percent, of the total weight of the composition.
In certain embodiments, the composition of the present disclosure can comprise pH adjusters or buffering agents. Examples of pH adjusters and buffering agents that can be used include, but are not limited to, metal hydroxides (e.g., alkali metal hydroxides such as sodium hydroxide and potassium hydroxide), and other alkali metal buffers such as metal carbonates (e.g., potassium carbonate or sodium carbonate), or metal bicarbonates such as sodium bicarbonate, and the like. Non-limiting examples of suitable buffers include alkali metal acetates, glycinates, phosphates, glycerophosphates, citrates, carbonates, hydrogen carbonates, borates, or mixtures thereof. Where present, the buffering agent or pH adjuster is typically present in an amount less than about 5 percent based on the weight of the composition, for example, from about 0.1% to about 1%, about 0.1% to about 0.5%, or 0.5% to about 5%, such as, e.g., from about 0.75% to about 4%, from about 0.75% to about 3%, or from about 1% to about 2% by weight, based on the total weight of the composition.
In certain embodiments, at least one pH adjuster is added to the composition to further enhance stability of a volatile flavorant or active ingredient contained therein. For example, sufficient pH adjuster could be added to the composition to maintain a pH level below 7, such as about 4 to about 7.
In certain embodiments, the composition can include an oral care ingredient, which can provide various oral health benefits, such as inhibiting tooth decay or loss, inhibiting gum disease, relieving mouth pain, whitening teeth, inhibiting tooth staining, eliciting salivary stimulation, inhibiting breath malodor, freshening breath, and the like. Examples of oral health components include xylitol, thyme oil, eucalyptus oil, and zinc or zinc-containing compounds like zinc citrate. In one embodiment, commercially available products sold under the brand names ZYTEX® from Discus Dental, MALTISORB® by Roquette, and DENTIZYME® by NatraRx can be incorporated into the composition. Other examples of ingredients that can be incorporated in desired effective amounts within the present composition can include those that are incorporated within the types of oral care compositions set forth in Takahashi et al., Oral Microbiology and Immunology, 19(1), 61- 64 (2004); U.S. Pat. No. 6,083,527 to Thistle; and US Pat. Appl. Pub. Nos. 2006/0210488 to Jakubowski and 2006/02228308 to Cummins et al.
A representative amount of oral health ingredient (or combination of oral health ingredients) is at least about 1%, often at least about 3%, and frequently at least about 5% of the total dry weight of the composition. The amount of oral health component within the composition will not typically exceed about 30%, often will not exceed about 25%, and frequently will not exceed about 20%, of the total weight of the composition.
A colorant may optionally be employed in amounts sufficient to provide the desired physical attributes to the composition. Examples of colorants include various dyes and pigments, such as caramel coloring and titanium dioxide. The amount of colorant utilized in the composition can vary, but when present is typically up to about 3 weight percent, such as from about 0.1%, about 0.5%, or about 1%, to about 3% by weight, based on the total weight of the composition.
Generally, the composition comprises one or more active ingredients. As used herein, an "active ingredient" refers to one or more substances belonging to any of the following categories: API (active pharmaceutical ingredient), food additives, natural medicaments, and naturally occurring substances that can have an effect on humans. Example active ingredients include any ingredient known to impact one or more biological functions within the body, such as ingredients that furnish pharmacological activity or other direct effect in the diagnosis, cure, mitigation, treatment, or prevention of disease, or which affect the structure or any function of the body of humans (e.g., provide a stimulating action on the central nervous system, have an energizing effect, an antipyretic or analgesic action, or an otherwise useful effect on the body). In some embodiments, the active ingredient may be of the type generally referred to as dietary supplements, nutraceuticals, "phytochemicals" or "functional foods." These types of additives are sometimes defined in the art as encompassing substances typically available from naturally -occurring sources (e.g., botanical materials) that provide one or more advantageous biological effects (e.g., health promotion, disease prevention, or other medicinal properties), but are not classified or regulated as drugs.
Non-limiting examples of active ingredients include those falling in the categories of botanical ingredients, stimulants, amino acids, nicotine components, and/or pharmaceutical, nutraceutical, and medicinal ingredients (e.g., vitamins, such as A, B3, B6, B12, and C, and/or cannabinoids, such as tetrahydrocannabinol (THC) and cannabidiol (CBD)). Each of these categories is further described herein below. The particular choice of active ingredients will vary depending upon the desired flavor, texture, and desired characteristics of the particular product.
In certain embodiments, the active ingredient is selected from the group consisting of caffeine, taurine, GABA, theanine, vitamin C, lemon balm extract, ginseng, citicoline, sunflower lecithin, and combinations thereof. For example, the active ingredient can include a combination of caffeine, theanine, and optionally ginseng. In another embodiment, the active ingredient includes a combination of theanine, gamma-amino butyric acid (GABA), and lemon balm extract. In a further embodiment, the active ingredient includes theanine, theanine and tryptophan, or theanine and one or more B vitamins (e.g., vitamin B6 or B12). In a still further embodiment, the active ingredient includes a combination of caffeine, taurine, and vitamin C. The particular percentages of active ingredients present will vary depending upon the desired characteristics of the particular product. Typically, an active ingredient or combination thereof is present in a total concentration of at least about 0.001% by weight of the composition, such as in a range from about 0.001% to about 20%. In some embodiments, the active ingredient or combination of active ingredients is present in a concentration from about 0.1% w/w to about 10% by weight, such as, e.g., from about 0.5% w/w to about 10%, from about 1% to about 10%, from about 1% to about 5% by weight, based on the total weight of the composition. In some embodiments, the active ingredient or combination of active ingredients is present in a concentration of from about 0.001%, about 0.01%, about 0.1% , or about 1%, up to about 20% by weight, such as, e.g., from about 0.001%, about 0.002%, about 0.003%, about 0.004%, about 0.005%, about 0.006%, about 0.007%, about 0.008%, about 0.009%, about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, or about 20% by weight, based on the total weight of the composition. Further suitable ranges for specific active ingredients are provided herein below.
In some embodiments, the active ingredient comprises a botanical ingredient. As used herein, the term "botanical ingredient" or "botanical" refers to any plant material or fungal-derived material, including plant material in its natural form and plant material derived from natural plant materials, such as extracts or isolates from plant materials or treated plant materials (e.g., plant materials subjected to heat treatment, fermentation, bleaching, or other treatment processes capable of altering the physical and/or chemical nature of the material) . For the purposes of the present disclosure, a "botanical" includes, but is not limited to, "herbal materials," which refer to seed-producing plants that do not develop persistent woody tissue and are often valued for their medicinal or sensory characteristics (e.g., teas or tisanes). Reference to botanical material as "non-tobacco" is intended to exclude tobacco materials (i.e., does not include any Nicotiana species). In some embodiments, the compositions as disclosed herein can be characterized as free of any tobacco material (e.g., any embodiment as disclosed herein may be completely or substantially free of any tobacco material). By "substantially free" is meant that no tobacco material has been intentionally added (exclusive of any nicotine present). For example, certain embodiments can be characterized as having less than 0.001% by weight of tobacco, or less than 0.0001%, or even 0% by weight of tobacco.
When present, a botanical is typically at a concentration of from about 0.01% w/w to about 10% by weight, such as, e.g., from about 0.01% w/w, about 0.05%, about 0.1%, or about 0.5%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% by weight, based on the total weight of the composition.
The botanical materials useful in the present disclosure may comprise, without limitation, any of the compounds and sources set forth herein, including mixtures thereof. Certain botanical materials of this type are sometimes referred to as dietary supplements, nutraceuticals, "phytochemicals" or "functional foods." Certain botanicals, as the plant material or an extract thereof, have found use in traditional herbal medicine, and are described further herein. Non-limiting examples of botanicals or botanical-derived materials include acai berry (Euterpe oleracea martius), acerola (Malpighia glabra), alfalfa, allspice, Angelica root, anise (e.g., star anise), annatto seed, apple (Malus domestica), apricot oil, ashwagandha, Bacopa monniera, baobab, basil (Ocimum basilicum), bay, bee balm, beet root, bergamot, blackberry (Morus nigra), black cohosh, black pepper, black tea, blueberries, boldo (Peumus boldus), borage, bugleweed, cacao, calamus root, camu (Myrcaria dubia), cannabis/hemp, caraway seed, cardamom, cassis, catnip, catuaba, cayenne pepper, Centella asiatica, chaga mushroom, Chai-hu, chamomile, cherry, chervil, chive, chlorophyll, chocolate, cilantro, cinnamon (Cinnamomum cassia), citron grass (Cymbopogon citratus), citrus, clary sage, cloves, coconut (Cocos nucifera), coffee, comfrey leaf and root, cordyceps, coriander seed, cranberry, cumin, curcumin, damiana, dandelion, Dorstenia arifolia, Dorstenia odorata, Echinacea, elderberry, elderflower, endro (Anethum graveolens), evening primrose, eucalyptus, fennel, feverfew, flax, Galphimia glauca, garlic, ginger (Zingiber officinale), gingko biloba, ginseng, goji berries, goldenseal, grape seed, grapefruit, grapefmit rose (Citrus paradisi), graviola (Annona muricata), green tea, guarana, gutu kola, hawthorn, hazel, hemp, hibiscus flower (Hibiscus sabdariffa), honeybush, hops, jiaogulan, jambu (Spilanthes oleraceae), jasmine (Jasminum officinale), juniper berry (Juniperus communis), Kaempferia parviflora (Thai ginseng), kava, laurel, lavender, lemon (Citrus limon), lemon balm, lemongrass, licorice, lilac, Lion’s mane, lutein, maca (Lepidium meyenii), mace, maijoram, matcha, milk thistle, mints (menthe), mulberry, Nardostachys chinensis, nutmeg, olive, oolong tea, orange (Citrus sinensis), oregano, papaya, paprika, pennyroyal, peppermint (Mentha piperita), pimento, potato peel, primrose, quercetin, quince, red clover, resveratrol, Rhizoma gastrodiae, Rhodiola, rooibos (red or green), rosehip (Rosa canina), rosemary, saffron, sage, Saint John's Wort, sandalwood, salvia (Salvia officinalis), savory, saw palmetto, Sceletium tortuosum, Schisandra, silybum marianum, Skullcap, spearmint, Spikenard, spirulina, slippery elm bark, sorghum bran hi-tannin, sorghum grain hi-tannin, spearmint (Mentha spicata), spirulina, star anise, sumac bran, tarragon, thyme, tisanes, turmeric, Turnera aphrodisiaca, uva ursi, valerian, vanilla, Viola odorata, white mulberry, wild yam root, Wintergreen, withania somnifera, yacon root, yellow dock, yerba mate, and yerba santa
In some embodiments, the active ingredient comprises lemon balm. Lemon balm (Melissa officinalis) is a mildly lemon-scented herb from the same family as mint (Lamiaceae). The herb is native to Europe, North Africa, and West Asia. The tea of lemon balm, as well as the essential oil and the extract, are used in traditional and alternative medicine. In some embodiments, the active ingredient comprises lemon balm extract. In some embodiments, the lemon balm extract is present in an amount of from about 1 to about 4% by weight, based on the total weight of the composition.
In some embodiments, the active ingredient comprises ginseng. Ginseng is the root of plants of the genus Panax, which are characterized by the presence of unique steroid saponin phytochemicals (ginsenosides) and gintonin. Ginseng finds use as a dietary supplement in energy drinks or herbal teas, and in traditional medicine. Cultivated species include Korean ginseng (P. ginseng), South China ginseng (P. notoginseng), and American ginseng (P. quinquefolius). American ginseng and Korean ginseng vary in the type and quantity of various ginsenosides present. In some embodiments, the ginseng is American ginseng or Korean ginseng. In specific embodiments, the active ingredient comprises Korean ginseng. In some embodiments, ginseng is present in an amount of from about 0.4 to about 0.6% by weight, based on the total weight of the composition.
In some embodiments, the active ingredient comprises one or more stimulants. As used herein, the term "stimulant" refers to a material that increases activity of the central nervous system and/or the body, for example, enhancing focus, cognition, vigor, mood, alertness, and the like. Non-limiting examples of stimulants include caffeine, theacrine, theobromine, and theophylline. Theacrine (1,3,7,9-tetrameth Iuric acid) is a purine alkaloid which is structurally related to caffeine, and possesses stimulant, analgesic, and anti-inflammatory effects. Present stimulants may be natural, naturally derived, or wholly synthetic. For example, certain botanical materials (guarana, tea, coffee, cocoa, and the like) may possess a stimulant effect by virtue of the presence of e.g., caffeine or related alkaloids, and accordingly are "natural" stimulants. By "naturally derived" is meant the stimulant (e.g., caffeine, theacrine) is in a purified form, outside its natural (e.g., botanical) matrix. For example, caffeine can be obtained by extraction and purification from botanical sources (e.g., tea). By "wholly synthetic", it is meant that the stimulant has been obtained by chemical synthesis. In some embodiments, the active ingredient comprises caffeine. In some embodiments, the caffeine is present in an encapsulated form. On example of an encapsulated caffeine is Vitashure®, available from Balchem Corp., 52 Sunrise Park Road, New Hampton, NY, 10958.
When present, a stimulant or combination of stimulants (e.g., caffeine, theacrine, and combinations thereof) is typically at a concentration of from about 0.1% w/w to about 15% by weight, such as, e.g., from about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% by weight, based on the total weight of the composition. In some embodiments, the composition comprises caffeine in an amount of from about 1.5 to about 6% by weight, based on the total weight of the composition.
In some embodiments, the active ingredient comprises an amino acid. As used herein, the term "amino acid" refers to an organic compound that contains amine (-NH2) and carboxyl (-COOH) or sulfonic acid (SO3H) functional groups, along with a side chain (R group), which is specific to each amino acid. Amino acids may be proteinogenic or non-proteinogenic. By "proteinogenic" is meant that the amino acid is one of the twenty naturally occurring amino acids found in proteins. The proteinogenic amino acids include alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. By "non- proteinogenic" is meant that either the amino acid is not found naturally in protein, or is not directly produced by cellular machinery (e.g., is the product of post-translational modification). Non-limiting examples of non- proteinogenic amino acids include gamma-aminobutyric acid (GABA), taurine (2 -aminoethanesulfonic acid), theanine (L-y-glutamylethylamide), hydroxyproline, and beta-alanine. In some embodiments, the active ingredient comprises theanine. In some embodiments, the active ingredient comprises GABA. In some embodiments, the active ingredient comprises a combination of theanine and GABA. In some embodiments, the active ingredient is a combination of theanine, GABA, and lemon balm. In some embodiments, the active ingredient is a combination of caffeine, theanine, and ginseng. In some embodiments, the active ingredient comprises taurine. In some embodiments, the active ingredient is a combination of caffeine and taurine.
When present, an amino acid or combination of amino acids (e.g., theanine, GABA, and combinations thereof) is typically at a concentration of from about 0.1% w/w to about 15% by weight, such as, e.g., from about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% by weight, based on the total weight of the composition.
In some embodiments, the active ingredient comprises a vitamin or combination of vitamins. As used herein, the term "vitamin" refers to an organic molecule (or related set of molecules) that is an essential micronutrient needed for the proper functioning of metabolism in a mammal. There are thirteen vitamins required by human metabolism, which are: vitamin A (as all-trans-retinol, all-trans-retinyl-esters, as well as all-trans-beta-carotene and other provitamin A carotenoids), vitamin Bl (thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), vitamin B7 (biotin), vitamin B9 (folic acid or folate), vitamin B 12 (cobalamins), vitamin C (ascorbic acid), vitamin D (calciferols), vitamin E (tocopherols and tocotrienols), and vitamin K (quinones). In some embodiments, the active ingredient comprises vitamin C. In some embodiments, the active ingredient is a combination of vitamin C, caffeine, and taurine. In some embodiments, the active ingredient comprises one or more of vitamin B6 and B 12. In some embodiments, the active ingredient comprises theanine and one or more of vitamin B6 and B 12.
In some embodiments, the active ingredient comprises vitamin A. In some embodiments, the vitamin A is encapsulated. In some embodiments, the vitamin is vitamin B6, vitamin B 12, vitamin E, vitamin C, or a combination thereof.
In some embodiments, the active ingredient comprises a mineral. As used herein, the term "mineral" refers to an inorganic molecule (or related set of molecules) that is an essential micronutrient needed for the proper functioning of various systems in a mammal. Non-limiting examples of minerals include iron, zinc, copper, selenium, chromium, cobalt, manganese, calcium, phosphorus, sulfur, magnesium, and the like. In some embodiments, the active ingredient comprises iron. Suitable sources of iron include, but are not limited to, ferrous salts such as ferrous sulfate and ferrous gluconate. In some embodiments, the iron is encapsulated.
When present, a vitamin or mineral (or combinations thereof such as vitamin B6, vitamin B 12, vitamin E, vitamin C, or a combination thereof) is typically at a concentration of from about 0.01% w/w to about 6% by weight, such as, e.g., from about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, or about 0.1% w/w, to about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, about 0.9%, about 1%, about 2%, about 3%, about 4%, about 5% , or about 6% by weight, based on the total weight of the composition.
In some embodiments, the active ingredient comprises one or more antioxidants. As used herein, the term "antioxidant" refers to a substance which prevents or suppresses oxidation by terminating free radical reactions, and may delay or prevent some types of cellular damage. Antioxidants may be naturally occurring or synthetic. Naturally occurring antioxidants include those found in foods and botanical materials. Nonlimiting examples of antioxidants include certain botanical materials, vitamins, polyphenols, and phenol derivatives.
Examples of botanical materials which are associated with antioxidant characteristics include without limitation acai berry, alfalfa, allspice, annatto seed, apricot oil, basil, bee balm, wild bergamot, black pepper, blueberries, borage seed oil, bugleweed, cacao, calamus root, catnip, catuaba, cayenne pepper, chaga mushroom, chervil, cinnamon, dark chocolate, potato peel, grape seed, ginseng, gingko biloba, Saint John's Wort, saw palmetto, green tea, black tea, black cohosh, cayenne, chamomile, cloves, cocoa powder, cranberry, dandelion, grapefruit, honeybush, echinacea, garlic, evening primrose, feverfew, ginger, goldenseal, hawthorn, hibiscus flower, jiaogulan, kava, lavender, licorice, maijoram, milk thistle, mints (menthe), oolong tea, beet root, orange, oregano, papaya, pennyroyal, peppermint, red clover, rooibos (red or green), rosehip, rosemary, sage, clary sage, savory, spearmint, spirulina, slippery elm bark, sorghum bran hi-tannin, sorghum grain hi-tannin, sumac bran, comfrey leaf and root, goji berries, gutu kola, thyme, turmeric, uva ursi, valerian, wild yam root, Wintergreen, yacon root, yellow dock, yerba mate, yerba santa, bacopa monniera, withania somnifera, Lion’s mane, and silybum marianum. Such botanical materials may be provided in fresh or dry form, essential oils, or may be in the form of an extracts. The botanical materials (as well as their extracts) often include compounds from various classes known to provide antioxidant effects, such as minerals, vitamins, isoflavones, phytoesterols, allyl sulfides, dithiolthiones, isothiocyanates, indoles, lignans, flavonoids, polyphenols, and carotenoids. Examples of compounds found in botanical extracts or oils include ascorbic acid, peanut endocarb, resveratrol, sulforaphane, beta-carotene, lycopene, lutein, co-enzyme Q, carnitine, quercetin, kaempferol, and the like. See, e.g., Santhosh et al., Phytomedicine, 12(2005) 216-220, which is incorporated herein by reference.
Non-limiting examples of other suitable antioxidants include citric acid, Vitamin E or a derivative thereof, a tocopherol, epicatechol, epigallocatechol, epigallocatechol gallate, erythorbic acid, sodium erythorbate, 4-hexylresorcinol, theaflavin, theaflavin monogallate A or B, theaflavin digallate, phenolic acids, glycosides, quercitrin, isoquercitrin, hyperoside, polyphenols, catechols, resveratrols, oleuropein, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tertiary butylhydroquinone (TBHQ), and combinations thereof.
When present, an antioxidant is typically at a concentration of from about 0.001% w/w to about 10% by weight, such as, e.g., from about 0.001%, about 0.005%, about 0.01% w/w, about 0.05%, about 0.1%, or about 0.5%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10%, based on the total weight of the mixture/composition.
In certain embodiments, the pouched products of the present disclosure can include a nicotinic compound. Various nicotinic compounds, and methods for their administration, are set forth in US Pat. Pub. No. 2011/0274628 to Borschke, which is incorporated herein by reference. As used herein, “nicotinic compound” or “source of nicotine” often refers to naturally-occurring or synthetic nicotinic compound unbound from a plant material, meaning the compound is at least partially purified and not contained within a plant structure, such as a tobacco leaf. In certain embodiments, nicotine is naturally -occurring and obtained as an extract from a Nicotiana species (e.g., tobacco). The nicotine can have the enantiomeric form S(-)- nicotine, R(+)-nicotine, or a mixture of S(-)-nicotine and R(+) -nicotine. In some embodiments, the nicotine is in the form of S(-)-nicotine (e.g., in a form that is virtually all S(-)-nicotine) or a racemic mixture composed primarily or predominantly of S(-)-nicotine (e.g., a mixture composed of about 95 weight parts S(-)-nicotine and about 5 weight parts R(+)-nicotine). The nicotine can be employed in virtually pure form or in an essentially pure form. The nicotine that is employed can have a purity of greater than about 95 percent, greater than about 98 percent, or greater than about 99 percent, on a weight basis.
In certain embodiments, a nicotine component may be included in the composition in free base form, salt form, as a complex, or as a solvate. By "nicotine component" is meant any suitable form of nicotine (e.g., free base or salt) for providing oral absorption of at least a portion of the nicotine present. Typically, the nicotine component is selected from the group consisting of nicotine free base and a nicotine salt. In some embodiments, nicotine is in its free base form, which easily can be adsorbed in for example, a microcrystalline cellulose material to form a microcrystalline cellulose-nicotine carrier complex. See, for example, the discussion of nicotine in free base form in US Pat. Pub. No. 2004/0191322 to Hansson, which is incorporated herein by reference.
In some embodiments, at least a portion of the nicotine can be employed in the form of a salt. Salts of nicotine can be provided using the types of ingredients and techniques set forth in US Pat. No. 2,033,909 to Cox et al. and Perfetti, Beitrage Tabakforschung Int., 12: 43-54 (1983), which are incorporated herein by reference. Additionally, salts of nicotine are available from sources such as Pfaltz and Bauer, Inc. and K&K Laboratories, Division of ICN Biochemicals, Inc. Typically, the nicotine component is selected from the group consisting of nicotine free base, a nicotine salt such as hydrochloride, dihydrochloride, monotartrate, bitartrate, sulfate, salicylate, and nicotine zinc chloride. In some embodiments, the nicotine component or a portion thereof is a nicotine salt with one or more organic acids, as explained more fully below.
In some embodiments, at least a portion of the nicotine can be in the form of a resin complex of nicotine, where nicotine is bound in an ion-exchange resin, such as nicotine polacrilex, which is nicotine bound to, for example, a polymethacrilic acid, such as Amberlite IRP64, Purolite Cl 15HMR, or Doshion P551. See, for example, US Pat. No. 3,901,248 to Lichtneckert et al., which is incorporated herein by reference. Another example is a nicotine-poly aery lie carbomer complex, such as with Carbopol 974P. In some embodiments, nicotine may be present in the form of a nicotine polyacrylic complex.
In certain embodiments, it may be desirable to provide a basic amine-containing oral product configured for oral use which retains the initial basic amine content (e.g., nicotine content) during storage, and which delivers substantially the full amount of basic amine (e.g., nicotine) initially present in the oral product. In some such embodiments, nicotine or other basic amine is employed in association with at least a portion of an organic acid or an alkali metal salt thereof (referred to herein as “ion pairing”). As disclosed herein, at least a portion of the basic amine (e.g., nicotine) is associated with at least a portion of the organic acid or the alkali metal salt thereof. Depending on multiple variables (concentration, pH, nature of the organic acid, and the like), the basic amine present in the composition can exist in multiple forms, including ion paired, in solution (i.e., fully solvated), as the free base, as a cation, as a salt, or any combination thereof. The relative amounts of the various components within the oral product composition may vary, and typically are selected so as to provide the desired sensory and performance characteristics to the oral product. In some embodiments, the association between the basic amine and at least a portion of the organic acid or the alkali metal salt thereof is in the form of an ion pair between the basic amine and a conjugate base of the organic acid.
Ion pairing describes the partial association of oppositely charged ions in relatively concentrated solutions to form distinct chemical species called ion pairs. The strength of the association (i.e., the ion pairing) depends on the electrostatic force of attraction between the positive and negative ions (i.e., a protonated basic amine such as nicotine, and the conjugate base of the organic acid). By "conjugate base" is meant the base resulting from deprotonation of the corresponding acid (e.g., benzoate is the conjugate base of benzoic acid). On average, a certain population of these ion pairs exists at any given time, although the formation and dissociation of ion pairs is continuous. In the oral products as disclosed herein, and/or upon oral use of said oral products (e.g., upon contact with saliva), the basic amine, for example nicotine, and the conjugate base of the organic acid exist at least partially in the form of an ion pair. Without wishing to be bound by theory, it is believed that such ion pairing may minimize chemical degradation of the basic amine and/or enhance the oral availability of the basic amine (e.g., nicotine). At alkaline pH values (e.g., such as from about 7.5 to about 9), certain basic amines, for example nicotine, are largely present in the free base form, which has relatively low water solubility, and low stability with respect to evaporation and oxidative decomposition, but high mucosal availability. Conversely, at acidic pH values (such as from about 6.5 to about 4), certain basic amines, for example nicotine, are largely present in a protonated form, which has relatively high water solubility, and higher stability with respect to evaporation and oxidative decomposition, but low mucosal availability.
It has been found that the properties of stability, solubility, and availability of the nicotine in a composition configured for oral use can be mutually enhanced through ion pairing or salt formation of nicotine with appropriate organic acids and/or their conjugate bases. Specifically, nicotine-organic acid ion pairs of moderate lipophilicity result in favorable stability and absorption properties. Lipophilicity is conveniently measured in terms of logP, the partition coefficient of a molecule between a lipophilic phase and an aqueous phase, usually octanol and water, respectively. An octanol-water partitioning favoring distribution of a basic amine-organic acid ion pair into octanol is predictive of good absorption of the basic amine present in the composition through the oral mucosa.
As noted above, at alkaline pH values (e.g., such as from about 7.5 to about 9), nicotine is largely present in the free base form (and accordingly, a high partitioning into octanol), while at acidic pH values (such as from about 6.5 to about 4), nicotine is largely present in a protonated form (and accordingly, a low partitioning into octanol). An ion pair between certain organic acids (e.g., having a logP value of from about 1.4 to about 8.0. such as from about 1.4 to about 4.5, allows nicotine partitioning into octanol consistent with that predicted for nicotine partitioning into octanol at a pH of 8.4.
One of skill in the art will recognize that the extent of ion pairing in the disclosed composition, both before and during use by the consumer, may vary based on, for example, pH, the nature of the organic acid, the concentration of nicotine, the concentration of the organic acid or conjugate base of the organic acid present in the composition, the water content of the composition, the ionic strength of the composition, and the like. One of skill in the art will also recognize that ion pairing is an equilibrium process influenced by the foregoing variables. Accordingly, quantification of the extent of ion pairing is difficult or impossible by calculation or direct observation. However, as disclosed herein, the presence of ion pairing may be demonstrated through surrogate measures such as partitioning of the nicotine between octanol and water or membrane permeation of aqueous solutions of the basic amine plus organic acids and/or their conjugate bases.
Typically, the nicotine component (calculated as the free base) when present, is in a concentration of at least about 0.001% by weight of the composition, such as in a range from about 0.001% to about 10%. In some embodiments, the nicotine component is present in a concentration from about 0.1% w/w to about 10% by weight, such as, e.g., from about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10% by weight, calculated as the free base and based on the total weight of the composition. In some embodiments, the nicotine component is present in a concentration from about 0.1% w/w to about 3% by weight, such as, e.g., from about 0.1% w/w to about 2.5%, from about 0.1% to about 2.0%, from about 0.1% to about 1.5%, or from about 0.1% to about 1% by weight, calculated as the free base and based on the total weight of the composition. These ranges can also apply to other active ingredients noted herein.
In some embodiments, the products or compositions of the disclosure can be characterized as free of any nicotine component (e.g., any embodiment as disclosed herein may be completely or substantially free of any nicotine component). By "substantially free" is meant that no nicotine has been intentionally added, beyond trace amounts that may be naturally present in e.g., a botanical material. For example, certain embodiments can be characterized as having less than 0.001% by weight of nicotine, or less than 0.0001%, or even 0% by weight of nicotine, calculated as the free base.
As used herein, the term "organic acid" refers to an organic (i.e., carbon-based) compound that is characterized by acidic properties. Typically, organic acids are relatively weak acids (i.e., they do not dissociate completely in the presence of water), such as carboxylic acids (-CO2H) or sulfonic acids (-SO2OH). As used herein, reference to organic acid means an organic acid that is intentionally added. In this regard, an organic acid may be intentionally added as a specific composition ingredient as opposed to merely being inherently present as a component of another composition ingredient (e.g., the small amount of organic acid which may inherently be present in a composition ingredient, such as a tobacco material).
Suitable organic acids will typically have a range of lipophilicities (i.e., a polarity giving an appropriate balance of water and organic solubility). Typically, lipophilicities of suitable organic acids, as indicated by logP, will vary between about 1.4 and about 4.5 (more soluble in octanol than in water). In some embodiments, the organic acid has a logP value of from about 1.5 to about 4.0, e.g., from about 1.5, about 2.0, about 2.5, or about 3.0, to about 3.5, about 4.0, about 4.5, or about 5.0. Particularly suitable organic acids have a logP value of from about 1.7 to about 4, such as from about 2.0, about 2.5, or about 3.0, to about 3.5, or about 4.0. In specific embodiments, the organic acid has a logP value of about 2.5 to about 3.5. In some embodiments, organic acids outside this range may also be utilized for various purposes and in various amounts, as described further hereinbelow. For example, in some embodiments, the organic acid may have a logP value of greater than about 4.5, such as from about 4.5 to about 8.0. Particularly, the presence of certain solvents or solubilizing agents (e.g., inclusion in the composition of glycerin or propylene glycol) may extend the range of lipophilicity (i.e., values of logP higher than 4.5, such as from about 4.5 to about 8.0).
Without wishing to be bound by theory, it is believed that moderately lipophilic organic acids (e.g., logP of from about 1.4 to about 4.5) produce ion pairs with nicotine which are of a polarity providing good octanol-water partitioning of the ion pair, and hence partitioning of nicotine, into octanol versus water. As discussed above, such partitioning into octanol is predictive of favorable oral availability. In some embodiments, the organic acid has a log P value of from about 1.4 to about 4.5, such as about 1.5, about 2, about 2.5, about 3, about 3.5, about 4 or about 4.5. In some embodiments, the organic acid has a log P value of from about 2.5 to about 3.5.
In some embodiments, the organic acid is a carboxylic acid or a sulfonic acid. The carboxylic acid or sulfonic acid functional group may be attached to any alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl group having, for example, from one to twenty carbon atoms (C1-C20). In some embodiments, the organic acid is an alkyl, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl carboxylic or sulfonic acid.
As used herein, "alkyl" refers to any straight chain or branched chain hydrocarbon. The alkyl group may be saturated (i.e., having all sp3 carbon atoms), or may be unsaturated (i.e., having at least one site of unsaturation). As used herein, the term "unsaturated" refers to the presence of a carbon-carbon, sp2 double bond in one or more positions within the alkyl group. Unsaturated alkyl groups may be mono- or polyunsaturated. Representative straight chain alkyl groups include, but are not limited to, methyl, ethyl, n- propyl, n-butyl, n-pentyl, and n-hexyl. Branched chain alkyl groups include, but are not limited to, isopropyl, sec -butyl, isobutyl, tert-butyl, isopentyl, and 2-methylbutyl. Representative unsaturated alkyl groups include, but are not limited to, ethylene or vinyl, allyl, 1-butenyl, 2-butenyl, isobutylenyl, 1 -pentenyl, 2-pentenyl, 3- methyl-l-butenyl, 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, and the like. An alkyl group can be unsubstituted or substituted.
"Cycloalkyl" as used herein refers to a carbocyclic group, which may be mono- or bicyclic. Cycloalkyl groups include rings having 3 to 7 carbon atoms as a monocycle or 7 to 12 carbon atoms as abicycle. Examples of monocyclic cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. A cycloalkyl group can be unsubstituted or substituted, and may include one or more sites of unsaturation (e.g., cyclopentenyl or cyclohexenyl). The term "aryl" as used herein refers to a carbocyclic aromatic group. Examples of aryl groups include, but are not limited to, phenyl and naphthyl. An aryl group can be unsubstituted or substituted.
"Heteroaryl" and "heterocycloalkyl" as used herein refer to an aromatic or non-aromatic ring system, respectively, in which one or more ring atoms is a heteroatom, e.g. nitrogen, oxygen, and sulfur. The heteroaryl or heterocycloalkyl group comprises up to 20 carbon atoms and from 1 to 3 heteroatoms selected from N, O, and S. A heteroaryl or heterocycloalkyl may be a monocycle having 3 to 7 ring members (for example, 2 to 6 carbon atoms and 1 to 3 heteroatoms selected from N, O, and S) or a bicycle having 7 to 10 ring members (for example, 4 to 9 carbon atoms and 1 to 3 heteroatoms selected from N, O, and S), for example: a bicyclo [4,5], [5,5], [5,6], or [6,6] system. Examples of heteroaryl groups include by way of example and not limitation, pyridyl, thiazolyl, tetrahydrothiophenyl, pyrimidinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, thianaphthalenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, isoxazolyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, IH-indazolyl, purinyl, 4H-quinolizinyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, 4aH-carbazolyl, carbazolyl, phenanthridinyl, acridinyl, pyrimidinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, furazanyl, phenoxazinyl, isochromanyl, chromanyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, benzotriazolyl, benzisoxazolyl, and isatinoyl. Examples of heterocycloalkyls include by way of example and not limitation, dihydroypyridyl, tetrahydropyridyl (piperidyl), tetrahydrothiophenyl, piperidinyl, 4- piperidonyl, pyrrolidinyl, 2-pyrrolidonyl, tetrahydrofuranyl, tetrahydropyranyl, bis-tetrahydropyranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, octahydroisoquinolinyl, piperazinyl, quinuclidinyl, and morpholinyl. Heteroaryl and heterocycloalkyl groups can be unsubstituted or substituted.
"Substituted" as used herein and as applied to any of the above alkyl, aryl, cycloalkyl, heteroaryl, heterocyclyl, means that one or more hydrogen atoms are each independently replaced with a substituent. Typical substituents include, but are not limited to, -Cl, Br, F, alkyl, -OH, -OCH3, NH2, -NHCH3, -N(CH3)2, - CN, -NC(=O)CH3, -C(=O)-, -C(=O)NH2, and -C(=O)N(CH3)2. Wherever a group is described as "optionally substituted," that group can be substituted with one or more of the above substituents, independently selected for each occasion. In some embodiments, the substituent may be one or more methyl groups or one or more hydroxyl groups.
In some embodiments, the organic acid is an alkyl carboxylic acid. Non-limiting examples of alkyl carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, and the like.
In some embodiments, the organic acid is an alkyl sulfonic acid. Non-limiting examples of alkyl sulfonic acids include propanesulfonic acid, heptanesulfonic acid, and octanesulfonic acid.
In some embodiments, the alkyl carboxylic or sulfonic acid is substituted with one or more hydroxyl groups. Non-limiting examples include glycolic acid, 4-hydroxybutyric acid, and lactic acid.
In some embodiments, an organic acid may include more than one carboxylic acid group or more than one sulfonic acid group (e.g., two, three, or more carboxylic acid groups). Non-limiting examples include oxalic acid, fumaric acid, maleic acid, and glutaric acid. In organic acids containing multiple carboxylic acids (e.g., from two to four carboxylic acid groups), one or more of the carboxylic acid groups may be esterified. Non-limiting examples include succinic acid monoethyl ester, monomethyl fumarate, monomethyl or dimethyl citrate, and the like.
In some embodiments, the organic acid may include more than one carboxylic acid group and one or more hydroxyl groups. Non-limiting examples of such acids include tartaric acid, citric acid, and the like.
In some embodiments, the organic acid is an aryl carboxylic acid or an aryl sulfonic acid. Non-limiting examples of aryl carboxylic and sulfonic acids include benzoic acid, toluic acids, salicylic acid, benzenesulfonic acid, and -tohicncsulfonic acid.
Further non-limiting examples of organic acids which may be useful in certain embodiments include 2,2-dichloroacetic acid, 2-hydroxyethanesulfonic acid, 2-oxoglutaric acid, 4-acetamidobenzoic acid, 4- aminosalicylic acid, adipic acid, ascorbic acid (L), aspartic acid (L), alpha-methylbutyric acid, camphoric acid (+), camphor-10-sulfonic acid (+), cinnamic acid, cyclamic acid, dodecylsulfuric acid, ethane- 1,2-disulfonic acid, ethanesulfonic acid, furoic acid, galactaric acid, gentisic acid, glucoheptonic acid, gluconic acid, glucuronic acid, glutamic acid, glycerophosphoric acid, glycolic acid, hippuric acid, isobutyric acid, isovaleric acid, lactobionic acid, lauric acid, levulinic acid, malic acid, malonic acid, mandelic acid, methanesulfonic acid, naphthalene-l,5-disulfonic acid, naphthalene-2-sulfonic acid, oleic acid, palmitic acid, pamoic acid, phenylacetic acid, pyroglutamic acid, pyruvic acid, sebacic acid, stearic acid, and undecylenic acid.
Examples of suitable acids include, but are not limited to, the list of organic acids in Table 1.
Figure imgf000029_0001
Figure imgf000030_0001
*Values obtained from PubChem or calculated
The selection of organic acid may further depend on additional properties in addition to consideration of the logP value. For example, an organic acid should be one recognized as safe for human consumption, and which has acceptable flavor, odor, volatility, stability, and the like. Determination of appropriate organic acids is within the purview of one of skill in the art.
In some embodiments, the organic acid is a mono ester of a dicarboxylic acid or a poly -carboxylic acid. In some embodiments, the dicarboxylic acid is malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid, or a combination thereof. In some embodiments, the dicarboxylic acid is succinic acid, glutaric acid, fumaric acid, maleic acid, or a combination thereof. In some embodiments, the dicarboxylic acid is succinic acid, glutaric acid, or a combination thereof.
In some embodiments, the alcohol forming the mono ester of the dicarboxylic acid is a lipophilic alcohol. Examples of suitable lipophilic alcohols include, but are not limited to, octanol, menthol, and tocopherol. In some embodiments, the organic acid is an octyl mono ester of a dicarboxylic acid, such as monooctyl succinate, monooctyl fumarate, or the like. In some embodiments, the organic acid is a monomenthyl ester of a dicarboxylic acid. Certain menthyl esters may be desirable in oral compositions as described herein by virtue of the cooling sensation they may provide upon use of the product comprising the composition. In some embodiments, the organic acid is monomenthyl succinate, monomenthyl fumarate, monomenthyl glutarate, or a combination thereof. In some embodiments, the organic acid is a monotocopheryl ester of a dicarboxylic acid. Certain tocopheryl esters may be desirable in oral compositions as described herein by virtue of the antioxidant effects they may provide. In some embodiments, the organic acid is tocopheryl succinate, tocopheryl fumarate, tocopheryl glutarate, or a combination thereof.
In some embodiments, the organic acid is a carotenoid derivative having one or more carboxylic acids. Carotenoids are tetraterpenes, meaning that they are produced from 8 isoprene molecules and contain 40 carbon atoms. Accordingly, they are usually lipophilic due to the presence of long unsaturated aliphatic chains, and are generally yellow, orange, or red in color. Certain carotenoid derivatives can be advantageous in oral compositions by virtue of providing both ion pairing and serving as a colorant in the composition. In some embodiments, the organic acid is 2E,4E,6E,8E,10E,12E,14E,16Z,18E)-20-methoxy-4,8,13,17-tetramethyl- 20-oxoicosa-2,4,6,8,10,12,14,16,18-nonaenoic acid (bixin) or an isomer thereof. Bixin is an apocarotenoid found in annatto seeds from the achiote tree (Bixa orellana), and is the naturally occurring pigment providing the reddish orange color to annatto. Bixin is soluble in fats and alcohols but insoluble in water, and is chemically unstable when isolated, converting via isomerization into the double bond isomer, trans-bixin (P-bixin), having the structure:
Figure imgf000031_0001
In some embodiments, the organic acid is (2E,4E,6E,8E,10E,12E,14E,16E,18E)-4,8,13,17- tetramethylicosa-2,4,6,8,10,12,14,16,18-nonaenedioic acid (norbixin), a water soluble hydrolysis product of bixin having the structure:
Figure imgf000031_0002
In some embodiments, more than one organic acid may be present. For example, the composition may comprise two, or three, or four, or more organic acids. Accordingly, reference herein to "an organic acid" contemplates mixtures of two or more organic acids. The relative amounts of the multiple organic acids may vary. For example, a composition may comprise equal amounts of two, or three, or more organic acids, or may comprise different relative amounts. In this manner, it is possible to include certain organic acids (e.g., citric acid or myristic acid) which have a logP value outside the desired range, when combined with other organic acids to provide the desired average logP range for the combination. In some embodiments, it may be desirable to include organic acids in the composition which have logP values outside the desired range for purposes such as, but not limited to, providing desirable organoleptic properties, stability, as flavor components, and the like. Further, certain lipophilic organic acids have undesirable flavor and or aroma characteristics which would preclude their presence as the sole organic acid (e.g., in equimolar or greater quantities relative to nicotine). Without wishing to be bound by theory, it is believed that a combination of different organic acids may provide the desired ion pairing while the concentration of any single organic acid in the composition remains below the threshold which would be found objectionable from a sensory perspective.
In some embodiments, the composition comprises an organic acid which is a monoester of a dicarboxylic acid or is a carotenoid derivative having one or more carboxylic acids as described herein above, and further comprises an additional organic acid or salt thereof. In some embodiments, the additional organic acid is benzoic acid, an alkali metal salt thereof, or a combination thereof.
In some embodiments, the composition comprises an alkali metal salt of an organic acid. For example, at least a portion of the organic acid may be present in the composition in the form of an alkali metal salt. Suitable alkali metal salts include lithium, sodium, and potassium. In some embodiments, the alkali metal is sodium or potassium. In some embodiments, the alkali metal is sodium. In some embodiments, the composition comprises an organic acid and a sodium salt of the organic acid. In some embodiments, the weight ratio of the organic acid to the sodium salt (or other alkali metal) of the organic acid is from about 0.1 to about 10, such as from about 0.1, about 0.25, about 0.3, about 0.5, about 0.75, or about 1, to about 2, about 5, or about 10. For example, in some embodiments, both an organic acid and the sodium salt thereof are added to the other components of the composition, wherein the organic acid is added in excess of the sodium salt, in equimolar quantities with the sodium salt, or as a fraction of the sodium salt. One of skill in the art will recognize that the relative amounts will be determined by the desired pH of the composition, as well as the desired ionic strength. For example, the organic acid may be added in a quantity to provide a desired pH level of the composition, while the alkali metal (e.g., sodium) salt is added in a quantity to provide the desired extent of ion pairing. As one of skill in the art will understand, the quantity of organic acid (i.e., the protonated form) present in the composition, relative to the alkali metal salt or conjugate base form present in the composition, will vary according to the pH of the composition and the pKa of the organic acid, as well as according to the actual relative quantities initially added to the composition.
The amount of organic acid or alkali metal salt thereof present in the composition, relative to the basic amine (e.g., nicotine), may vary. Generally, as the concentration of the organic acid (or the conjugate base thereof) increases, the percent of basic amine (e.g., nicotine) that is ion paired with the organic acid increases. This typically increases the partitioning of the basic amine (e.g., nicotine), in the form of an ion pair, into octanol versus water as measured by the logP (the logw of the partitioning coefficient). In some embodiments, the composition comprises from about 0.05, about 0.1, about 1, about 1.5, about 2, or about 5, to about 10, about 15, or about 20 molar equivalents of the organic acid, the alkali metal salt thereof, or the combination thereof, relative to the basic amine (e.g., nicotine), calculated as the free base of the basic amine.
In some embodiments, the composition comprises from about 2 to about 10, or from about 2 to about 5 molar equivalents of the organic acid, the alkali metal salt thereof, or the combination thereof, relative to the basic amine (e.g., nicotine), on a free-base basis. In some embodiments, the organic acid, the alkali metal salt thereof, or the combination thereof, is present in a molar ratio with basic amine (e.g., nicotine) from about 2, about 3, about 4, or about 5, to about 6, about 7, about 8, about 9, or about 10. In embodiments wherein more than one organic acid, alkali metal salt thereof, or both, are present, it is to be understood that such molar ratios reflect the totality of the organic acids present.
In certain embodiments the organic acid inclusion is sufficient to provide a composition pH of from about 4.0 to about 9.0, such as from about 4.5 to about 7.0, or from about 5.5 to about 7.0, from about 4.0 to about 5.5, or from about 7.0 to about 9.0. In some embodiments, the organic acid inclusion is sufficient to provide a composition pH of from about 4.5 to about 6.5, for example, from about 4.5, about 5.0, or about 5.5, to about 6.0, or about 6.5. In some embodiments, the organic acid is provided in a quantity sufficient to provide a pH of the composition of from about 5.5 to about 6.5, for example, from about 5.5, about 5.6, about 5.7, about 5.8, about 5.9, or about 6.0, to about 6.1, about 6.2, about 6.3, about 6.4, or about 6.5. In other embodiments, a mineral acid (e.g., hydrochloric acid, sulfuric acid, phosphoric acid, or the like) is added to adjust the pH of the composition to the desired value. In some embodiments, the organic acid is added as the free acid, either neat (i.e., native solid or liquid form) or as a solution in, e.g., water, to the other composition components. In some embodiments, the alkali metal salt of the organic acid is added, either neat or as a solution in, e.g., water, to the other composition components. In some embodiments, the organic acid and the basic amine (e.g., nicotine) are combined to form a salt, either before addition to the composition, or the salt is formed within and is present in the composition as such. In other embodiments, the organic acid and basic amine (e.g., nicotine) are present as individual components in the composition, and form an ion pair upon contact with moisture (e.g., saliva in the mouth of the consumer).
In some embodiments, the organic acid is added as the free acid, either neat (i.e., native solid or liquid form) or as a solution in, e.g., water, to the other composition components. In some embodiments, the alkali metal salt of the organic acid is added, either neat or as a solution in, e.g., water, to the other composition components. In some embodiments, the organic acid and the basic amine (e.g., nicotine) are combined to form a salt, either before addition to the composition, or the salt is formed within and is present in the composition as such. In other embodiments, the organic acid and basic amine (e.g., nicotine) are present as individual components in the composition, and form an ion pair upon contact with moisture (e.g., saliva in the mouth of the consumer).
In some embodiments, the oral composition comprises nicotine benzoate and sodium benzoate, wherein at least a portion of the nicotine and benzoate ions present are in an ion paired form. In some embodiments, the composition comprises nicotine benzoate, sodium benzoate, and an organic acid, an alkali metal salt of an organic acid, or a combination thereof, the organic acid having a logP value from about 1 to about 12, wherein the organic acid is a monoester of a dicarboxylic acid or is a carotenoid derivative having one or more carboxylic acids.
In some embodiments, the oral composition further comprises a solubility enhancer to increase the solubility of one or more of the organic acid or salt thereof. Suitable solubility enhancers include, but are not limited to, humectants as described herein, such as glycerol or propylene glycol.
In some embodiments, the active ingredient comprises one or more cannabinoids. As used herein, the term "cannabinoid" refers to a class of diverse chemical compounds that acts on cannabinoid receptors, also known as the endocannabinoid system, in cells that alter neurotransmitter release in the brain. Ligands for these receptor proteins include the endocannabinoids produced naturally in the body by animals; phytocannabinoids, found in cannabis; and synthetic cannabinoids, manufactured artificially. Cannabinoids found in cannabis include, without limitation: cannabigerol (CBG), cannabichromene (CBC), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN), cannabinodiol (CBDL), cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), cannabigerol monomethyl ether (CBGM), cannabinerolic acid, cannabidiolic acid (CBD A), cannabinol propyl variant (CBNV), cannabitriol (CBO), tetrahydrocannabinolic acid (THCA), and tetrahydrocannabivarinic acid (THCV A). In certain embodiments, the cannabinoid is selected from tetrahydrocannabinol (THC), the primary psychoactive compound in cannabis, and/or cannabidiol (CBD) another major constituent of the plant, but which is devoid of psychoactivity. All of the above compounds can be used in the form of an isolate from plant material or synthetically derived.
In some embodiments, the cannabinoid (e.g., CBD) is added to the composition in the form of an isolate. An isolate is an extract from a plant, such as cannabis, where the active material of interest (in this case the cannabinoid, such as CBD) is present in a high degree of purity, for example greater than 95%, greater than 96%, greater than 97%, greater than 98%, or around 99% purity.
In some embodiments, the cannabinoid is an isolate of CBD in a high degree of purity, and the amount of any other cannabinoid in the composition is no greater than about 1% by weight of the composition, such as no greater than about 0.5% by weight of the composition, such as no greater than about 0.1% by weight of the composition, such as no greater than about 0.01% by weight of the composition.
Alternatively, the active ingredient can be a cannabimimetic, which is a class of compounds derived from plants other than cannabis that have biological effects on the endocannabinoid system similar to cannabinoids. Examples include yangonin, alpha-amyrin or beta-amyrin (also classified as terpenes), cyanidin, curcumin (tumeric), catechin, quercetin, salvinorin A, N-acylethanolamines, and N-alkylamide lipids.
When present, a cannabinoid (e.g., CBD) or cannabimimetic is typically in a concentration of at least about 0.1% by weight of the composition, such as in a range from about 0.1% to about 30%, such as, e.g., from about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 15%, about 20%, or about 30% by weight, based on the total weight of the composition. The choice of cannabinoid and the particular percentages thereof which may be present within the disclosed composition will vary depending upon the desired flavor, texture, and other characteristics of the composition.
Active ingredients suitable for use in the present disclosure can also be classified as terpenes, many of which are associated with biological effects, such as calming effects. Terpenes are understood to have the general formula of (CTHs),, and include monoterpenes, sesquiterpenes, and diterpenes. Terpenes can be acyclic, monocyclic or bicyclic in structure. Some terpenes provide an entourage effect when used in combination with cannabinoids or cannabimimetics. Examples include beta-caryophyllene, linalool, limonene, beta-citronellol, linalyl acetate, pinene (alpha or beta), geraniol, carvone, eucalyptol, menthone, isomenthone, piperitone, myrcene, beta-bourbonene, and germacrene, which may be used singly or in combination.
In some embodiments, the terpene is a terpene derivable from a phytocannabinoid producing plant, such as a plant from the strain of the cannabis sativa species, such as hemp. Suitable terpenes in this regard include so-called “CIO” terpenes, which are those terpenes comprising 10 carbon atoms, and so-called “C15” terpenes, which are those terpenes comprising 15 carbon atoms. In some embodiments, the active ingredient comprises more than one terpene. For example, the active ingredient may comprise one, two, three, four, five, six, seven, eight, nine, ten or more terpenes as defined herein. In some embodiments, the terpene is selected from pinene (alpha and beta), geraniol, linalool, limonene, carvone, eucalyptol, menthone, iso-menthone, piperitone, myrcene, beta-bourbonene, germacrene and mixtures thereof.
In some embodiments, the composition may include a tobacco material. The tobacco material can vary in species, type, and form. Generally, the tobacco material is obtained from for a harvested plant of the Nicotiana species. Example Nicotiana species include N. tabacum, N. rustica, N. alata, N. arentsii, N. excelsior, N. forgetiana, N. glauca, N. glutinosa, N. gossei, N. kawakamii, N. knightiana, N. langsdorffi, N. otophora, N. setchelli, N. sylvestris, N. tomentosa, N. tomentosiformis, N. undulata, N. x sanderae, N. africana, N. amplexicaulis, N. benavidesii, N. bonariensis, N. debneyi, N. longiflora, N. maritina, N. megalosiphon, N. occidentalis, N. paniculata, N. plumbaginifolia, N. raimondii, N. rosulata, N. simulans, N. stocktonii, N. suaveolens, N. umbratica, N. velutina, N. wigandioides, N. acaulis, N. acuminata, N. attenuata, N. benthamiana, N. cavicola, N. clevelandii, N. cordifolia, N. corymbosa, N. fragrans, N. goodspeedii, N. linearis, N. miersii, N. nudicaulis, N. obtusifolia, N. occidentalis subsp. Hersperis, N. pauciflora, N. petunioides, N. quadrivalvis, N. repanda, N. rotundifolia, N. solanifolia, andN. spegazzinii. Various representative other types of plants from the Nicotiana species are set forth in Goodspeed, The Genus Nicotiana, (Chonica Botanica) (1954); US Pat. Nos. 4,660,577 to Sensabaugh, Jr. et al.; 5,387,416 to White et al., 7,025,066 to Lawson et al.; 7,798,153 to Lawrence, Jr. and 8,186,360 to Marshall et al.; each of which is incorporated herein by reference. Descriptions of various types of tobaccos, growing practices and harvesting practices are set forth in Tobacco Production, Chemistry and Technology, Davis et al. (Eds.) (1999), which is incorporated herein by reference.
Nicotiana species from which suitable tobacco materials can be obtained can be derived using genetic- modification or crossbreeding techniques (e.g., tobacco plants can be genetically engineered or crossbred to increase or decrease production of components, characteristics or attributes). See, for example, the types of genetic modifications of plants set forth in US Pat. Nos. 5,539,093 to Fitzmaurice et al.; 5,668,295 to Wahab et al.; 5,705,624 to Fitzmaurice et al.; 5,844,119 to Weigl; 6,730,832 to Dominguez et al.; 7,173,170 to Liu et al.; 7,208,659 to Colliver et al. and 7,230,160 to Benning et al.; US Patent Appl. Pub. No. 2006/0236434 to Conkling et al.; and PCT W02008/103935 to Nielsen et al. See, also, the types of tobaccos that are set forth in US Pat. Nos. 4,660,577 to Sensabaugh, Jr. et al.; 5,387,416 to White et al.; and 6,730,832 to Dominguez et al., each of which is incorporated herein by reference.
The Nicotiana species can, in some embodiments, be selected for the content of various compounds that are present therein. For example, plants can be selected on the basis that those plants produce relatively high quantities of one or more of the compounds desired to be isolated therefrom. In certain embodiments, plants of the Nicotiana species (e.g., Galpao commun tobacco) are specifically grown for their abundance of leaf surface compounds. Tobacco plants can be grown in greenhouses, growth chambers, or outdoors in fields, or grown hydroponically.
Various parts or portions of the plant of the Nicotiana species can be included within a mixture as disclosed herein. For example, virtually all of the plant (e.g. , the whole plant) can be harvested, and employed as such. Alternatively, various parts or pieces of the plant can be harvested or separated for further use after harvest. For example, the flower, leaves, stem, stalk, roots, seeds, and various combinations thereof, can be isolated for further use or treatment. In some embodiments, the tobacco material comprises tobacco leaf (lamina). The mixture disclosed herein can include processed tobacco parts or pieces, cured and aged tobacco in essentially natural lamina and/or stem form, a tobacco extract, extracted tobacco pulp (e.g., using water as a solvent), or a mixture of the foregoing (e.g., a mixture that combines extracted tobacco pulp with granulated cured and aged natural tobacco lamina).
In certain embodiments, the tobacco material comprises solid tobacco material selected from the group consisting of lamina and stems. The tobacco that is used for the mixture typically includes tobacco lamina, or a tobacco lamina and stem mixture (of which at least a portion is smoke-treated). Portions of the tobaccos within the mixture may have processed forms, such as processed tobacco stems (e.g., cut-rolled stems, cut- rolled-expanded stems or cut-puffed stems), or volume expanded tobacco (e.g., puffed tobacco, such as dry ice expanded tobacco (DIET)). See, for example, the tobacco expansion processes set forth in US Pat. Nos. 4,340,073 to de la Burde et al.; 5,259,403 to Guy et al.; and 5,908,032 to Poindexter, et al.; and 7,556,047 to Poindexter, et al., all of which are incorporated by reference. In addition, the d mixture optionally may incorporate tobacco that has been fermented. See, also, the types of tobacco processing techniques set forth in PCT W02005/063060 to Atchley et al., which is incorporated herein by reference.
The tobacco material is typically used in a form that can be described as particulate (i.e., shredded, ground, granulated, or powder form) . The manner by which the tobacco material is provided in a finely divided or powder type of form may vary. Plant parts or pieces are typically comminuted, ground or pulverized into a particulate form using equipment and techniques for grinding, milling, or the like. The plant material is typically relatively dry in form during grinding or milling, using equipment such as hammer mills, cutter heads, air control mills, or the like. For example, tobacco parts or pieces may be ground or milled when the moisture content thereof is less than about 15 weight percent or less than about 5 weight percent. The tobacco material is sometimes employed in the form of parts or pieces that have an average particle size between 1.4 millimeters and 250 microns. In some instances, the tobacco particles may be sized to pass through a screen mesh to obtain the particle size range required. If desired, air classification equipment may be used to ensure that small sized tobacco particles of the desired sizes, or range of sizes, may be collected. If desired, differently sized pieces of granulated tobacco may be mixed together.
For the preparation of oral products, it is typical for a harvested plant of the Nicotiana species to be subjected to a curing process. The tobacco materials incorporated within the mixture for inclusion within products as disclosed herein are those that have been appropriately cured and/or aged. Descriptions of various types of curing processes for various types of tobaccos are set forth in Tobacco Production, Chemistry and Technology, Davis et al. (Eds.) (1999). Examples of techniques and conditions for curing flue-cured tobacco are set forth in Nestor et al., Beitrage Tabakforsch. Int., 20, 467-475 (2003) and US Pat. No. 6,895,974 to Peele, which are incorporated herein by reference. Representative techniques and conditions for air curing tobacco are set forth in US Pat. No. 7,650,892 to Groves et al.; Roton et al., Beitrage Tabakforsch. Int., 21, 305-320 (2005) and Staaf et al., Beitrage Tabakforsch. Int., 21, 321-330 (2005), which are incorporated herein by reference. Certain types of tobaccos can be subjected to alternative types of curing processes, such as fire curing or sun curing.
In certain embodiments, tobacco materials that can be employed include flue-cured or Virginia (e.g., K326), burley, sun-cured (e.g., Indian Kumool and Oriental tobaccos, including Katerini, Prelip, Komotini, Xanthi and Yambol tobaccos), Maryland, dark, dark-fired, dark air cured (e.g., Madole, Passanda, Cubano, Jatin and Bezuki tobaccos), light air cured (e.g., North Wisconsin and Galpao tobaccos), Indian air cured, Red Russian and Rustica tobaccos, as well as various other rare or specialty tobaccos and various blends of any of the foregoing tobaccos.
The tobacco material may also have a so-called "blended" form. For example, the tobacco material may include a mixture of parts or pieces of flue-cured, burley (e.g., Malawi burley tobacco) and Oriental tobaccos (e.g., as tobacco composed of, or derived from, tobacco lamina, or a mixture of tobacco lamina and tobacco stem). For example, a representative blend may incorporate about 30 to about 70 parts burley tobacco (e.g., lamina, or lamina and stem), and about 30 to about 70 parts flue cured tobacco (e.g., stem, lamina, or lamina and stem) on a dry weight basis. Other example tobacco blends incorporate about 75 parts flue-cured tobacco, about 15 parts burley tobacco, and about 10 parts Oriental tobacco; or about 65 parts flue-cured tobacco, about 25 parts burley tobacco, and about 10 parts Oriental tobacco; or about 65 parts flue-cured tobacco, about 10 parts burley tobacco, and about 25 parts Oriental tobacco; on a dry weight basis. Other example tobacco blends incorporate about 20 to about 30 parts Oriental tobacco and about 70 to about 80 parts flue-cured tobacco on a dry weight basis.
Tobacco materials used in the present disclosure can be subjected to, for example, fermentation, bleaching, and the like. If desired, the tobacco materials can be, for example, irradiated, pasteurized, or otherwise subjected to controlled heat treatment. Such treatment processes are detailed, for example, in US Pat. No. 8,061,362 to Mua et al., which is incorporated herein by reference. In certain embodiments, tobacco materials can be treated with water and an additive capable of inhibiting reaction of asparagine to form acrylamide upon heating of the tobacco material (e.g., an additive selected from the group consisting of lysine, glycine, histidine, alanine, methionine, cysteine, glutamic acid, aspartic acid, proline, phenylalanine, valine, arginine, compositions incorporating di- and trivalent cations, asparaginase, certain non-reducing saccharides, certain reducing agents, phenolic compounds, certain compounds having at least one free thiol group or functionality, oxidizing agents, oxidation catalysts, natural plant extracts (e.g., rosemary extract), and combinations thereof. See, for example, the types of treatment processes described in US Pat. Pub. Nos. 8,434,496, 8,944,072, and 8,991,403 to Chen et al., which are all incorporated herein by reference. Further methods are disclosed, e.g., in Int. Pat. Appl. Pub. Nos. WO2013/122948; WO/2020/128971; WO/2021/048769; WO/2021/048768; WO/2021/048770; and Int. Pat. Appl. No. PCT/IB2021/058063, which are all incorporated herein by reference in their entireties. In certain embodiments, this type of treatment is useful where the original tobacco material is subjected to heat in the processes previously described.
In some embodiments, the type of tobacco material is selected such that it is initially visually lighter in color than other tobacco materials to some degree (e.g., whitened or bleached). Tobacco pulp can be whitened in certain embodiments according to any means known in the art. For example, bleached tobacco material produced by various whitening methods using various bleaching or oxidizing agents and oxidation catalysts can be used. Example oxidizing agents include peroxides (e.g., hydrogen peroxide), chlorite salts, chlorate salts, perchlorate salts, hypochlorite salts, ozone, ammonia, potassium permanganate, and combinations thereof. Example oxidation catalysts are titanium dioxide, manganese dioxide, and combinations thereof. Processes for treating tobacco with bleaching agents are discussed, for example, in US Patent Nos. 787,611 to Daniels, Jr.; 1,086,306 to Oelenheinz; 1,437,095 to Delling; 1,757,477 to Rosenhoch; 2,122,421 to Hawkinson; 2,148,147 to Baier; 2,170,107 to Baier; 2,274,649 to Baier; 2,770,239 to Prats et al.; 3,612,065 to Rosen; 3,851,653 to Rosen; 3,889,689 to Rosen; 3,943,940 to Minami; 3,943,945 to Rosen; 4,143,666 to Rainer; 4,194,514 to Campbell; 4,366,823, 4,366,824, and 4,388,933 to Rainer et al.; 4,641,667 to Schmekel et al.; 5,713,376 to Berger; 9,339,058 to Byrd Jr. et al.; 9,420,825 to Beeson et al.; and 9,950,858 to Byrd Jr. et al.; as well as in US Pat. App. Pub. Nos. 2012/0067361 to Bjorkholm et al.; 2016/0073686 to Crooks; 2017/0020183 to Bjorkholm; and 2017/0112183 to Bjorkholm, and in PCT Publ. Appl. Nos. WO1996/031255 to Giolvas and W02018/083114 to Bjorkholm, all of which are incorporated herein by reference.
In some embodiments, the whitened tobacco material can have an ISO brightness of at least about 50%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, or at least about 80%. In some embodiments, the whitened tobacco material can have an ISO brightness in the range of about 50% to about 90%, about 55% to about 75%, or about 60% to about 70%. ISO brightness can be measured according to ISO 3688:1999 or ISO 2470-1:2016.
In some embodiments, the whitened tobacco material can be characterized as lightened in color (e.g., "whitened") in comparison to an untreated tobacco material. White colors are often defined with reference to the International Commission on Illumination's (CIE's) chromaticity diagram. The whitened tobacco material can, in certain embodiments, be characterized as closer on the chromaticity diagram to pure white than an untreated tobacco material.
In various embodiments, the tobacco material can be treated to extract a soluble component of the tobacco material therefrom. "Tobacco extract" as used herein refers to the isolated components of a tobacco material that are extracted from solid tobacco pulp by a solvent that is brought into contact with the tobacco material in an extraction process. Various extraction techniques of tobacco materials can be used to provide a tobacco extract and tobacco solid material. See, for example, the extraction processes described in US Pat. Appl. Pub. No. 2011/0247640 to Beeson et al., which is incorporated herein by reference. Other example techniques for extracting components of tobacco are described in US Pat. Nos. 4,144,895 to Fiore; 4,150,677 to Osborne, Jr. et al.; 4,267,847 to Reid; 4,289,147 to Wildman et al.; 4,351,346 to Brummer et al.; 4,359,059 to Brummer et al.; 4,506,682 to Muller; 4,589,428 to Keritsis; 4,605,016 to Soga et al.; 4,716,911 to Poulose et al.; 4,727,889 to Niven, Jr. et al.; 4,887,618 to Bemasek et al.; 4,941,484 to Clapp et al.; 4,967,771 to Fagg et al.; 4,986,286 to Roberts et al.; 5,005,593 to Fagg et al.; 5,018,540 to Grubbs et al.; 5,060,669 to White et al.; 5,065,775 to Fagg; 5,074,319 to White et al.; 5,099,862 to White et al.; 5, 121,757 to White et al.; 5,131,414 to Fagg; 5,131,415 to Munoz et al.; 5,148,819 to Fagg; 5,197,494 to Kramer; 5,230,354 to Smith et al.; 5,234,008 to Fagg; 5,243,999 to Smith; 5,301,694 to Raymond et al.; 5,318,050 to Gonzalez-Parra et al.; 5,343,879 to Teague; 5,360,022 to Newton; 5,435,325 to Clapp et al.; 5,445,169 to Brinkley et al.; 6,131,584 to Lauterbach; 6,298,859 to Kierulff et al.; 6,772,767 to Mua et al.; and 7,337,782 to Thompson, all of which are incorporated by reference herein.
Typical inclusion ranges for tobacco materials can vary depending on the nature and type of the tobacco material, and the intended effect on the final composition, with an example range of up to about 30% by weight (or up to about 20% by weight or up to about 10% by weight or up to about 5% by weight), based on total weight of the mixture (e.g., about 0.1 to about 15% by weight). In some embodiments, a tobacco material (e.g., a whitened tobacco material) is included in a relatively small amount (e.g., about 0.01% to about 0.1% by weight).
Other additives can be included in the disclosed composition. For example, the composition can be processed, blended, formulated, combined and/or mixed with other materials or ingredients. The additives can be artificial, or can be obtained or derived from herbal or biological sources. Examples of further types of additives include additional thickening or gelling agents (e.g., fish gelatin), emulsifiers, preservatives (e.g., potassium sorbate and the like), zinc or magnesium salts selected to be relatively water soluble for compositions with greater water solubility (e.g., magnesium or zinc gluconate) or selected to be relatively water insoluble for compositions with reduced water solubility (e.g., magnesium or zinc oxide), disintegration aids, or combinations thereof. See, for example, those representative components, combination of components, relative amounts of those components, and manners and methods for employing those components, set forth in US Pat. No. 9,237,769 to Mua et al., US Pat. No. 7,861,728 to Holton, Jr. et al., US Pat. App. Pub. No. 2010/0291245 to Gao et al., and US Pat. App. Pub. No. 2007/0062549 to Holton, Jr. et al., each of which is incorporated herein by reference. Typical inclusion ranges for such additional additives can vary depending on the nature and function of the additive and the intended effect on the final composition, with an example range of up to about 10% by weight, based on total weight of the composition (e.g., about 0.1 to about 5% by weight).
The aforementioned additives can be employed together (e.g., as additive formulations) or separately (e.g., individual additive components can be added at different stages involved in the preparation of the final composition). Furthermore, the aforementioned types of additives may be encapsulated as provided in the final product. Example encapsulated additives are described, for example, in WO2010/132444 to Atchley, which has been previously incorporated by reference herein.
In some embodiments, any one or more of the filler, tobacco material, other composition components, and the overall composition described herein can be described as a particulate material. As used herein, the term "particulate" refers to a material in the form of a plurality of individual particles, some of which can be in the form of an agglomerate of multiple particles, wherein the particles have an average length to width ratio less than 2: 1, such as less than 1.5:1, such as about 1:1. In various embodiments, the particles of a particulate material can be described as substantially spherical or granular. The particle size of a particulate material may be measured by sieve analysis. As the skilled person will readily appreciate, sieve analysis (otherwise known as a gradation test) is a method used to measure the particle size distribution of a particulate material. Typically, sieve analysis involves a nested column of sieves which comprise screens, typically in the form of wire mesh cloths. A pre-weighed sample may be introduced into the top or uppermost sieve in the column, which has the largest screen openings or mesh size (i.e., the largest pore diameter of the sieve). Each lower sieve in the column has progressively smaller screen openings or mesh sizes than the sieve above. Typically, at the base of the column of sieves is a receiver portion to collect any particles having a particle size smaller than the screen opening size or mesh size of the bottom or lowermost sieve in the column (which has the smallest screen opening or mesh size).
In some embodiments, the column of sieves may be placed on or in a mechanical agitator. The agitator causes the vibration of each of the sieves in the column. The mechanical agitator may be activated for a predetermined period of time in order to ensure that all particles are collected in the correct sieve. In some embodiments, the column of sieves is agitated for a period of time from 0.5 minutes to 10 minutes, such as from 1 minute to 10 minutes, such as from 1 minute to 5 minutes, such as for approximately 3 minutes. Once the agitation of the sieves in the column is complete, the material collected on each sieve is weighed. The weight of each sample on each sieve may then be divided by the total weight in order to obtain a percentage of the mass retained on each sieve. As the skilled person will readily appreciate, the screen opening sizes or mesh sizes for each sieve in the column used for sieve analysis may be selected based on the granularity or known maximum/minimum particle sizes of the sample to be analysed. In some embodiments, a column of sieves may be used for sieve analysis, wherein the column comprises from 2 to 20 sieves, such as from 5 to 15 sieves. In some embodiments, a column of sieves may be used for sieve analysis, wherein the column comprises 10 sieves. In some embodiments, the largest screen opening or mesh sizes of the sieves used for sieve analysis may be 1000 pm, such as 500 pm, such as 400 pm, such as 300 pm.
In some embodiments, any particulate material referenced herein (e.g., filler, tobacco material, and the overall composition) can be characterized as having at least 50% by weight of particles with a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 60% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 70% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 80% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 90% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 95% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, approximately 100% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
In some embodiments, at least 50% by weight, such as at least 60% by weight, such as at least 70% by weight, such as at least 80% by weight, such as at least 90% by weight, such as at least 95% by weight, such as at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of from about 0.01 pm to about 1000 pm, such as from about 0.05 pm to about 750 pm, such as from about 0.1 pm to about 500 pm, such as from about 0.25 pm to about 500 pm. In some embodiments, at least 50% by weight, such as at least 60% by weight, such as at least 70% by weight, such as at least 80% by weight, such as at least 90% by weight, such as at least 95% by weight, such as at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of from about 10 pm to about 400 pm, such as from about 50 pm to about 350 pm, such as from about 100 pm to about 350 pm, such as from about 200 pm to about 300 pm.
The manner by which the various components of the composition are combined may vary. As such, the overall mixture of various components with e.g., powdered mixture components may be relatively uniform in nature. The components noted above, which may be in liquid or dry solid form, can be admixed in a pretreatment step prior to mixture with any remaining components of the mixture, or simply mixed together with all other liquid or dry ingredients. The various components of the mixture may be contacted, combined, or mixed together using any mixing technique or equipment known in the art. Any mixing method that brings the mixture ingredients into intimate contact can be used, such as a mixing apparatus featuring an impeller or other structure capable of agitation. Examples of mixing equipment include casing drums, conditioning cylinders or drums, liquid spray apparatus, conical-type blenders, ribbon blenders, mixers available as FKM130, FKM600, FKM1200, FKM2000 and FKM3000 from Littleford Day, Inc., Plough Share types of mixer cylinders, Hobart mixers, and the like. See also, for example, the types of methodologies set forth in US Pat. Nos. 4,148,325 to Solomon et al.; 6,510,855 to Korte et al.; and 6,834,654 to Williams, each of which is incorporated herein by reference. Manners and methods for formulating mixtures will be apparent to those skilled in the art. See, for example, the types of methodologies set forth in US Pat. No. 4, 148,325 to Solomon et al.; US Pat. No. 6,510,855 to Korte et al.; and US Pat. No. 6,834,654 to Williams, US Pat. Nos. 4,725,440 to Ridgway et al., and 6,077,524 to Bolder et al., each of which is incorporated herein by reference.
The fill composition of the present disclosure is typically disposed within a moisture-permeable pouch, such as pouch 102. Such compositions in the water-permeable pouch format are typically used by placing one pouch containing the composition in the mouth of a human subject/user. Generally, the pouch is placed somewhere in the oral cavity of the user, for example under the lips, in the same way as moist snuff products are generally used. The pouch typically is not chewed or swallowed unless the pouch composition or materials are ingestible (e.g., dissolvable or dispersable) as described herein. Exposure to saliva then causes some of the components of the composition therein (e.g., flavoring agents and/or nicotine) to pass through e.g., the water-permeable pouch and provide the user with flavor and satisfaction, and the user is not required to spit out any portion of the mixture. After about 10 minutes to about 60 minutes, typically about 15 minutes to about 45 minutes, of use/enjoyment, substantial amounts of the mixture have been ingested by the human subject, and the pouch may be removed from the mouth of the human subject for disposal.
The pouches can be formed from a fleece material, e.g., fibrous nonwoven webs, a reconstituted tobacco material, a pulped material (e.g., paper), and the like. A “fleece material” as used herein may be formed from various types of fibers (e.g., cellulosic fibers, such as viscose fibers, regenerated cellulose fibers, cellulose fibers, and wood pulps; cotton fibers; other natural fibers; or polymer/synthetic-type fibers; or combinations thereof) capable of being formed into a traditional fleece fabrics or other traditional pouch materials. For example, fleece materials may be provided in the form of a woven or nonwoven fabric. Suitable types of fleece materials, for example, are described inU.S. Patent No. 8,931,493 to Sebastian et al.; US Patent App. Pub. No. 2016/0000140 to Sebastian et al.; and US Patent App. Pub. No. 2016/0073689 to Sebastian et al.; which are all incorporated herein by reference.
The term “nonwoven” is used herein in reference to fibrous materials, webs, mats, batts, or sheets in which fibers are aligned in an undefined or random orientation. The nonwoven fibers are initially presented as unbound fibers or filaments. An important step in the manufacturing of nonwovens involves binding the various fibers or filaments together. The manner in which the fibers or filaments are bound can vary, and include thermal, mechanical and chemical techniques that are selected in part based on the desired characteristics of the final product, as discussed in more detail below.
In some embodiments, the fibers within the fleece material may include, but are not limited to, a polymer selected from the group consisting of polyglycolic acid, polylactic acid, polyhydroxyalkanoates, polycaprolactone, polybutylene succinate, polybutylene succinate adipate, and copolymers thereof. In some embodiments, the fibers within the fleece material may be selected from the groups consisting of wool, cotton, fibers made of cellulosic material, such as regenerated cellulose, cellulose acetate, cellulose triacetate, cellulose nitrate, ethyl cellulose, cellulose acetate propionate, cellulose acetate butyrate, hydroxypropyl cellulose, methyl hydroxypropyl cellulose, protein fibers, and the like. See also, the fiber types set forth in US Pat. Appl. Pub. No. 2014/0083438 to Sebastian et al., which is incorporated by reference herein. In various embodiments, the pouch material can include a polymer selected from the group consisting of polyvinylpyrrolidone, polyvinyl alcohol, and combinations thereof. Blends of polymers can also be used, such as a blend of two or more of the polymers noted above. In one embodiment, the fleece comprises a blend of a cellulose polymer (e.g., regenerated cellulose) and a second synthetic polymer, such as polyethylene terephthalate.
Regenerated cellulose fibers (e.g., viscose or lyocell fibers) can be particularly advantageous, and are typically prepared by extracting non-cellulosic compounds from wood, contacting the extracted wood with caustic soda, followed by carbon disulfide and then by sodium hydroxide, giving a viscous solution. The solution is subsequently forced through spinneret heads to create viscous threads of regenerated fibers. Example methods for the preparation of regenerated cellulose are provided in U. S. Pat. No. 4,237,274 to Leoni et al; U.S. Pat. No. 4,268,666 to Baldini et al; U.S. Pat. No. 4,252,766 to Baldini et al.; U.S. Pat. No. 4,388,256 to Ishida et al.; U.S. Pat. No. 4,535,028 to Yokogi et al.; U.S. Pat. No. 5,441,689 to Laity; U.S. Pat. No. 5,997,790 to Vos et al.; and U.S. Pat. No. 8,177,938 to Sumnicht, which are incorporated herein by reference. The manner in which the regenerated cellulose is made is not limiting, and can include, for example, both the rayon and the TENCEL processes. Various suppliers of regenerated cellulose are known, including Lenzing (Austria), Cordenka (Germany), Adilya Birla (India), and Daicel (Japan).
An example pouch may be manufactured from materials, and in such a manner, such that during use by the user, the pouch undergoes a controlled dispersion or dissolution. Such pouch materials may have the form of a mesh, screen, perforated paper, permeable fabric, or the like. For example, pouch material manufactured from a mesh-like form of rice paper, or perforated rice paper, may dissolve in the mouth of the user. As a result, the pouch and mixture each may undergo complete dispersion within the mouth of the user during normal conditions of use, and hence the pouch and mixture both may be ingested by the user. Other examples of pouch materials may be manufactured using water dispersible film forming materials (e.g., binding agents such as alginates, carboxymethylcellulose, xanthan gum, pullulan, and the like), as well as those materials in combination with materials such as ground cellulosics (e.g., fine particle size wood pulp). Example pouch materials, though water dispersible or dissolvable, may be designed and manufactured such that under conditions of normal use, a significant amount of the mixture contents permeate through the pouch material prior to the time that the pouch undergoes loss of its physical integrity. If desired, flavoring ingredients, disintegration aids, and other desired components, may be incorporated within, or applied to, the pouch material.
The amount of material 104 contained within each product unit, for example, a pouch, may vary. In some embodiments, the weight of the composition within each pouch is at least about 50 mg, for example, from about 50 mg to about 1 gram, from about 100 to 800 about mg, or from about 200 to about 700 mg. In some smaller embodiments, the weight of the composition within each pouch may be from about 100 to about 300 mg. For a larger embodiment, the weight of the composition within each pouch may be from about 300 mg to about 700 mg. If desired, other components can be contained within each pouch. For example, at least one flavored strip, piece or sheet of flavored water dispersible or water soluble material (e.g., a breathfreshening edible film type of material) may be disposed within each pouch along with or without at least one capsule. Such strips or sheets may be folded or crumpled in order to be readily incorporated within the pouch. See, for example, the types of materials and technologies set forth in US Pat. Nos. 6,887,307 to Scott et al. and 6,923,981 to Leung et al.; and The EFSA Journal (2004) 85, 1-32; which are incorporated herein by reference.
A pouched product 100 as described herein can be packaged within any suitable inner packaging material and/or outer container. See also, for example, the various types of containers for oral products that are set forth in US Pat. Nos. 7,014,039 to Henson et al.; 7,537,110 to Kutsch et al.; 7,584,843 to Kutsch et al.; 8,397,945 to Gelardi et al., D592,956 to Thiellier; D594,154 to Patel et al.; and D625,178 to Bailey et al.; US Pat. Pub. Nos. 2008/0173317 to Robinson et al.; 2009/0014343 to Clark et al.; 2009/0014450 to Bjorkholm; 2009/0250360 to Bellamah et al.; 2009/0266837 to Gelardi et al.; 2009/0223989 to Gelardi; 2009/0230003 to Thiellier; 2010/0084424 to Gelardi; and 2010/0133140 to Bailey et al; 2010/0264157 to Bailey et al.; 2011/0168712 to Bailey et al., 2017/0100308 to Lampe et al., 2020/0277110 to Patel et al., 2023/0013978 to Patel et al., and PCT Publication WO2022/106845 to Lidstrand et al., which are incorporated herein by reference As noted above, the pouched products 100 can be placed in a container of the type described in the above-noted patent documents prior to treatment with the liquid treatment solution comprising humectant. Thereafter, the product containers can be closed and sealed for storage, transportation, and sale.
In some example embodiments, the apparatuses, systems, and methods described herein may be used to reclaim material from non-pouched products, such as, for example, elongate smoking articles, also known as heatable consumables, with tipping paper. FIG. 2 illustrates a smoking article, such as a cigarette, which may be utilized using the apparatuses and methods described herein for reclamation of tobacco material. The cigarette, generally referred to as 200, include a generally cylindrical rod 202 of a charge or roll of smokable filler material 204, such as tobacco, contained in a circumscribing wrapping paper 206. The rod is conventionally referred to as a “tobacco rod section.” The ends of the tobacco rod section are open to expose the smokable filler material. The cigarette is shown as having one optional band 208 (e.g., a printed coating including a film-forming agent, such as starch, ethylcellulose, or sodium alginate) applied to the wrapping paper, and that band circumscribes the cigarette rod in a direction transverse to the longitudinal axis of the cigarette. That is, the band provides a cross-directional region relative to the longitudinal axis of the cigarette. The band can be printed on the inner surface of the wrapping paper (i.e., facing the smokable filler material) as shown, or less preferably, on the outer surface of the wrapping paper. Although the cigarette can possess a wrapping paper having one optional band, the cigarette also can possess wrapping paper having further optional spaced bands numbering two, three, or more.
The wrapping paper 206 of the tobacco rod section 202 can have a wide range of compositions and properties. The selection of a particular wrapping paper will be readily apparent to those skilled in the art of cigarette design and manufacture. Tobacco rod sections can have one layer of wrapping paper; or tobacco rod sections can have more than one layer of circumscribing wrapping paper, such as is the case for the so-called “double wrap” tobacco rod sections. Example types of wrapping papers, wrapping paper components and treated wrapping papers are described in US Pat. Nos. 5,220,930 to Gentry; 7,275,548 to Hancock et al.; and 7,281,540 to Barnes et al.; and PCT Application Pub. Nos. WO 2004/057986 to Hancock et al.; and WO 2004/047572 to Ashcraft et al.; which are incorporated herein by reference in their entireties.
At one end of the tobacco rod section 202 is the lighting end 210, and at the other end is positioned a filter element 212. The filter element may be positioned adjacent one end of the tobacco rod section such that the filter element and tobacco rod section are axially aligned in a serial or end-to-end relationship, preferably abutting one another. The filter element may have a generally cylindrical shape, and the diameter thereof may be essentially equal to the diameter of the tobacco rod section. The ends of the filter element permit the passage of air and smoke therethrough. The filter element may include filter material 214 (e.g., cellulose acetate tow impregnated with triacetin plasticizer) that is over-wrapped along the longitudinally extending surface thereof with circumscribing plug wrap material 216. That is, the filter element is circumscribed along its outer circumference or longitudinal periphery by a layer of plug wrap, and each end is open to expose the filter material.
Within the filter element 212 may be positioned at least one object 218 (including, for example, capsules, pellets, strands), or various combinations of different objects. The number of objects within each filter element is often a pre-determined number, and that number can be 1, 2, 3, or more (i.e., at least one). In some aspects, each fdter element may contain a plurality of objects disposed within the fdter material 214 of the filter element, in some instances, particularly towards the central radial region of the filter element. In particular aspects, the nature of the filter material is such that the objects are secured or lodged in place (e.g., by friction) within the filter element.
The fdter element 212 is attached to the tobacco rod section 202 using tipping material 220 (e.g., essentially air impermeable tipping paper), that circumscribes both the entire length of the filter element and an adjacent region of the tobacco rod section. The inner surface of the tipping material is fixedly secured to the outer surface of the plug wrap 216 and the outer surface of the wrapping paper 206 of the tobacco rod section, using a suitable adhesive; and hence, the filter element and the tobacco rod section are connected to one another.
The tipping material 220 connecting the filter element 212 to the tobacco rod section 202 can have indicia (not shown) printed thereon. For example, a band on the filter end of a cigarette (not shown) can visually indicate to a smoker the general locations or positions of the objects 218 within the filter element. These indicia may help the smoker to locate some objects so that they can, for example, be more easily ruptured by squeezing the filter element directly outside the position of any such rupturable object. The indicia on the tipping material may also indicate the nature of the payload carried by each object. For example, the indicia may indicate that the particular pay load is a spearmint flavoring by having a particular color, shape, or design. If desired, the inner surface (i.e., the surface facing the plug wrap) of the tipping material can be coated with a material that can act to retard the propensity of rupturable object contents from migration, wicking or bleeding from the filter material into the tipping material, and hence causing what might be perceived as unsightly visible staining of the tipping material. Such a coating can be provided using a suitable film-forming agent (e.g., ethylcellulose, or a so-called lip release coating composition of the type commonly employed for cigarette manufacture).
A ventilated or air diluted pouched product can be provided with an optional air dilution provisions, such as a series of perforations 222, each of which extend through the tipping material and plug wrap. The optional perforations can be made by various techniques known to those of ordinary skill in the art, such as laser perforation techniques. As these techniques are carried out after insertion of any objects 218 into the filter element 212, care is taken to avoid damaging the objects during the formation of the perforations. One way to avoid damage from air dilution techniques, such as those employing laser perforation technologies, involves locating the perforations at a position adjacent to the positions of the objects. In such a manner, radiation, heat or physical forces acting upon the filter element during perforation processes do not have such a great propensity to damage the objects. Alternatively, so-called off-line air dilution techniques can be used (e.g., through the use of porous paper plug wrap and pre-perforated tipping paper). The perforated region can be positioned upstream of any object (as shown), or the perforated region can be positioned downstream of any object (i.e., towards the extreme mouth-end of the filter element).
The plug wrap 216 can vary. See, for example, US Pat. No. 4,174,719 to Martin. Typically, the plug wrap is a porous or non-porous paper material. Plug wrap materials are commercially available. Example plug wrap papers are available from Schweitzer-Maudit International as Porowrap Plug Wrap 17-M1, 33-M1, 45- Ml, 65-M9, 95-M9, 150-M4, 260-M4 and 260-M4T. Preferred plug wrap materials are non-porous in nature. Non-porous plug wraps exhibit porosities of less than about 10 CORESTA units, and preferably less than about 5 CORESTA units. Example non-porous plug wrap papers are available as Ref. No. 646 Grade from Olsany Facility (OP Paprina) of the Czech Republic (Trierendberg Holding). Plug wrap paper can be coated, particularly on the surface that faces the filter material, with a layer of a film-forming material. Such a coating can be provided using a suitable polymeric film-forming agent (e.g., ethylcellulose, ethylcellulose mixed with calcium carbonate, or a so-called lip release coating composition of the type commonly employed for cigarette manufacture). Alternatively, a plastic film (e.g., a polypropylene film) can be used as a plug wrap material. For example, non-porous polypropylene materials that are available as ZNA-20 and ZNA-25 from Treofan Germany GmbH & Co. KG can be employed as plug wrap materials.
The use of non-porous plug wrap materials is desirable in order to avoid the contents of rupturable objects within filter elements from causing what might be perceived as unsightly visible staining of the tipping material 220. For example, highly non-porous plug wrap materials can act to retard orblock the propensity of liquid contents of the rupturable objects from migration, wicking or bleeding from the filter material 214 into the tipping material.
Aspects of the present disclosure provide an automated and continuously operable reclamation scheme, whether for pouched products or smoking articles, generally referred to as oral tobacco and nicotine products or “products”. Each product includes an outer wrapper (e.g., the pouch of a pouched product, or a tipping / wrapping material of a cigarette) containing a material. As used herein, “containing” a material means it is either wholly contained within an enclosed outer wrapper (e.g., a pouch), or is at least partially contained by the outer wrapper (e.g., cylindrically circumscribed by a tipping material such that material is exposed at ends of the formed cylinder). Where the material is partially contained by an outer wrapper, the material may form, for example, a filter portion of a smoking article, which may then be wrapped by a filter wrap. The formed fdter may then be aligned with one or more other components (e.g., heat generation and/or aerosol generation segments) and overwrapped with an outer wrapping paper. Further layers of outer wrappers may be used, such that “outer wrapper” may refer to one or more layers of wrapping material, such as one, two, three, four, five, six, seven, etc., layers. Otherwise, a single outer wrapper may be used.
In one such aspect and as schematically illustrated in FIG. 3, a continuously operable system and/or apparatus 300 for recovering material from pouched products 100 or smoking articles 200 is illustrated. Notably, other products or articles other than those described herein may be utilized by the apparatus 300.
Such an apparatus 300 may, in some instances, comprise at least one container or receptacle for storing the products therein. As illustrated in FIG. 3, for example, the container is a hopper 302, which may be sized and shaped to store identified-as defective pouched products 100 or smoking articles 200 therein and then deliver the defective products downstream to another component of the apparatus 300. In this manner, the hopper 302 may be funnel-shaped (e.g., pyramidal or conical) with a rectangular or circular cross-section and either vertical or sloped sides and a central opening through which the products flow. The hopper 302 may be configured to continuously deliver the product through its opening (i.e., the opening is unimpeded so that a steady stream of the product is delivered through the opening) or the hopper may be configured to selectively deliver the product through its opening (i.e., a metering device may be opened once the hopper 302 reaches a certain capacity). Alternatively, or in addition to the hopper 302, a rotating drum or other metering device may be used to store and convey the defective product. Otherwise any other type of container or receptacle is contemplated that is capable of storing the defective product and continuously and/or selectively delivering the product downstream.
In some example embodiments, at least one inspection device may be arranged in relation to the products in the hopper 302. The inspection device may comprise an optical inspection device (e.g., a camera), an x-ray inspection device, or the like. In one such embodiment, the inspection device may be further configured to inspect each of the products before it is received in the hopper 302, such that the hopper 302 contains only identified-as defective products. In another embodiment, the inspection device and the hopper 302 are combined such that the hopper 302 acts as the inspection device. For example, in one aspect, the hopper 302 is equipped to visually scan each of the products and determine which ones are defective. In this example, further equipment such as a conveying device may convey any identified as acceptable products away from the hopper 302 for further manufacturing.
A conveyor device 304 (i.e., a second conveyor device, as compared to a first conveyor device 320 that is described in further detail below) may be positioned adjacent to the hopper 302. As the product is conveyed through the opening in the hopper 302 it may be dropped onto the second conveyor device 304. In this manner, the second conveyor device 304 is configured to receive the products from the hopper 302 and to convey the products further downstream to a cylindrical container of an object-orienting device 306. The second conveyor device may comprise a carrying medium such as a conveyor belt, for example, a flat belt conveyor device from MiSUMi, a gravity-fed chute arrangement angled downward, or the like. The second conveyor device 304 may extend over the cylindrical container of the object-orienting device 306 and be configured to continuously deposit the products therein. In some aspects, the second conveyor device 304 is positioned such that the products are deposited away or off-center from a central axis A of the cylindrical container of the object-orienting device 306.
FIGS. 4A and 4B illustrate one example embodiment of an object-orienting device 306. The device 306 may comprise a cylindrical container 308 configured to receive / collect a plurality of the product and/or orient the product, and then feed the products individually downstream. The device 306 may use mechanical vibrations or centrifugal force to orient and feed the products downstream. Such an object-orienting device may be, for example, a commercially available machine such as a vibratory feeder device from Homer City Automation. The cylindrical container 308 of the object-orienting device 306 may comprise a wall 310 defining the cylindrical container 308, wherein the cylindrical container is arranged to receive a plurality of the products and defines the central axis A therein. In some aspects, the cylindrical container 308 may comprise a bowl shape, where the bowl is substantially circular in cross-section. As illustrated in at least FIG. 4B, for example, the cylindrical container has a substantially circular cross-section. In some aspects, a rim 312 may be arranged adjacent to and extending at least partially about an upper end of the wall. The rim may be sized to accommodate continuous metering of the products received from the cylindrical container 308.
The object orienting device 306 may further comprise a drive unit 314 arranged proximate the cylindrical container. The drive unit 314 may comprise electromagnetic coils to produce vibration to vibrate the cylindrical container and orient the plurality of products along the wall. The drive unit 314 may operate at about 115 Volts, 60 Hz, and 4.1 Amps, though other operational ranges are also contemplated. The drive unit 314 may be mounted to a bottom surface 316 of the cylindrical container. For example, the drive unit 314 may be clamped onto a mounting ring (not shown) on the bottom surface of the cylindrical container in a manner that allows the cylindrical bowl to rotate freely. Alternatively, the drive unit 314 may be mounted to the rim or through the wall of the cylindrical container in a manner that imparts vibration to the cylindrical bowl. The object-orienting device 306 may further comprise at least one spring 318, which works in cooperation with the drive unit 314. The at least one spring 318 may be mounted to the bottom surface 316 of the cylindrical container. In some example embodiments, the at least one spring 318 is angled and may cause the cylindrical container to direct the plurality of products against the wall and/or rim as the cylindrical container vibrates.
The cylindrical container 308 may be rotatable about the central axis A, either clockwise or counterclockwise. In cooperation with the vibration imparted from the drive unit, the plurality of products are oriented along the wall and deposited on the rim 312. Specifically, the products within the cylindrical container, in response to the vibration of the cylindrical container and in conjunction with the rotation of the cylindrical container, are individually and serially deposited onto the rim of the cylindrical container. In some aspects, the impact of the vibrations on the products in the cylindrical container 308 may cause some of the material contained in the outer wrapper to become dislodged or loosened therefrom. Notably, any of this loose material is likewise serially deposited onto the rim of the cylindrical container along with the product, itself.
Referring back to FIG. 3, the apparatus 300 may further comprise a first conveyor device 320 located downstream of the object orienting device 306. The first conveyor device may be disposed adjacent to and may be configured to interact with the rim 312 so as to receive and convey in a conveyor direction the products from the rim. The first conveyor device may be substantially parallel to the rim such that the products may be continuously received thereon from the rim. Otherwise, the first conveyor device may be arranged underneath the rim so that gravity conveys the product to the first conveyor device, or the first conveyor device may be arranged above the rim and may use some conveyance mechanism (e.g., a linear feeder device such as a conveyor belt) to convey the product from the rim onward.
Turning now to FIGS. 5A-5C, in some example embodiments, the products may be fed along the first conveyor device 320 towards a slitting arrangement 326. The slitting arrangement 326 may comprise at least one roller 328 and a plurality of blades 330. The first conveyor device 320 may be arranged above the slitting arrangement 326 so that the products conveyed in the conveyor direction drop into the slitting arrangement 326 from above. The slitting arrangement 326 may be arranged such that at least one surface of the outer wrapper enclosing the material of the products is cut or slit by the plurality of blades 330. Notably, the slitting arrangement 326 is configured such that it is beneficially able to cut or slit the outer wrapper regardless of the orientation of the product when it enters the slitting arrangement 326.
More particularly, the at least one roller 328 may be operably engaged with the first conveyor device 320 to receive the products therefrom. The roller may be configured to rotate about a central axis in a first direction Cl (e.g., clockwise) and convey the products from the first conveyor device 320 in the first direction. A motor 332 may be operably engaged with the roller to rotate the roller 328 in the first direction. In particular, the motor 332 may include an output shaft 334 that is coupled to the roller 328 and on which a first gear 336 is mounted. Actuation of the motor 332 may in turn cause the shaft to rotate in the first direction Cl, which thus rotates the roller 328 and the first gear 336. A controller or control device (not shown) may interface with the motor to control operations of the motor 332 including power delivery, output speed, etc. The motor may be any known motor capable of rotating a roller, such as a DC motor, an AC motor, a special purpose motor, and the like.
In some example embodiments, and as shown in FIG. 5B, the at least one roller 328 comprises a plurality of grooves 328A that extend about a circumferential surface of the at least one roller 328. Each one of the plurality of grooves is configured to receive a respective one of the plurality of blades 330. Each of the grooves may be sized and shaped such that at least a portion of an outer surface of a respective blade extends into the groove, but does not contact a bottom or sides of the groove. The number of grooves 328A on the roller 328 may correspond to the number of blades in the plurality of blades 330. Likewise, a size and shape of each of the grooves may correspond to a size and shape of each of the blades. The grooves 328A may all be the same size and shape, or may be differently sized and/or shaped depending on the blade type associated with each groove. The plurality of blades 330 may be configured to rotate about a central axis in a second direction C2 (e.g., counterclockwise) opposite the first direction Cl. For example, and as illustrated in FIGS. 5A and 5B, a rotational shaft 338 may extend through the central axis of the plurality of blades 330. The rotational shaft 338 may comprise a second gear 340 mounted thereon, where teeth on the second gear 340 are intermeshed with teeth on the first gear 336. Because of the first gear 336 being intermeshed with the second gear 340, rotation ofthe first gear 336 in the first direction Cl results in rotation of the second gear 340, and thereby the rotational shaft 338 and the plurality of blades 330, in the second direction C2. Other arrangements resulting in rotation of the plurality of blades 330 and the roller 328 are also contemplated herein, where each of the roller 328 and the plurality of blades 330 rotate independently of one another. Different blade / gear patterns, different rotations, etc., are also contemplated herein.
In some example embodiments, the plurality of blades 330 may comprise individual blades 330A that are mounted directly on a surface of the rotational shaft 338. However, the individual blades 330A may also be mounted onto a component of the rotational shaft 338 having a different diameter than the shaft itself. For example, and as shown in FIG. 5B, the blades 330 are mounted on a component 342 that is operably engaged with the shaft 338 and that has a larger diameter than a diameter of the shaft 338. The component 342 may have a diameter that is substantially similar to a diameter of the roller 328. However, the diameters of the shaft 338, the component 342, and/or the roller 328 may all differ. To compensate for any differences in diameter, a diameter of the individual blades 330A may be increased or decreased accordingly.
Depending on the product type, material size, flow, etc., there may be fewer or greater individual blades in the plurality of blades 330. For example, as illustrated in FIG. 5B, there are twelve individual blades 330A mounted on the component 342. However, any number of blades is contemplated including one blade, two blades, three blades, four blades, five blades, etc. Large numbers of blades or blade(s) arranged on a plurality of different rotational shafts are also contemplated. For example, there may be a second, third, fourth, fifth, etc., number of rotational shafts with one or more blades arranged thereon at different locations within the slitting arrangement (e.g., some higher or lower in the slitting arrangement). The number of individual blades in the plurality of blades may correspond to a number of grooves 328 A in the roller 328. In the above example, since there are twelve individual blades 330A then there are twelve individual grooves 328A. Likewise, a material of the blades and roller may depend on the product type, material size, flow, etc. The material of the blades and/or roller may be metal (e.g., carbide), stone, plastic, ceramic, and the like. The blades may also be smooth or serrated. One or both of the blades and the roller may have a patterned surface (such as a micropattem) or other surface texture to facilitate slitting of the pouches 102. Individual blades within the plurality of blades 330 may have different sizes, shapes, materials, etc.
Accordingly, the rotation of the at least one roller 328 in the first direction Cl conveys each product in the first direction Cl toward the plurality of blades 330 rotating in the second direction C2. The plurality of blades 330 are thus configured to slit the pouch 102 containing the material 104 of each of the products conveyed by the roller 328. As noted, the layout of the slitting arrangement 326 is beneficial in that the products may be slit by the plurality of blades 330 regardless of the orientation of each product when it is conveyed to a slitting zone 344. The slitting zone is defined as a region between the overlap of the plurality of blades 330 and the grooves 328A of the roller 328. Once in the slitting zone 344, each product will be directed into contact with multiple ones of the individual blades 330A, which ensures that each outer wrapper of the product will be slit in one or more locations on the outer wrapper.
In some example embodiments, the slitting zone 344 is further defined by a plate 346, e.g., a stripping plate, vertically extending between the at least one roller 328 and the plurality of blades 330. The plate 346 may define a plurality of slits 348. Each of the slits 348 may be aligned with one of the grooves 328A in the at least one roller 328. As such, each of the plurality of blades 330 extends through a respective one of the plurality of slits 348 and into the respective groove 330A of the at least one roller 330. The plate 346 may beneficially prevent contamination of the material 104 by preventing debris from the slitting arrangement (i.e., grease from the rotational / drive shafts, dust, dirt, and other particulates) from intermixing with the slit products. Additionally, it will prevent debris resulting from the slitting of the outer wrapper (e.g., small pieces of the pouch material 102 and the material 104) from interfering with rotation of the rotational shaft 338 by also acting as a cleaning mechanism to slough off any material coating the edges of the individual blades 330A. More particularly, as the edges of the blades 330A rotate they may come proximate to the slits 348 (without touching). Any debris on the edges of the blades 330A may be caught by an edge of a slit 348 and directed off the blade itself.
Likewise, at least one cleaning member 350 may be arranged proximate to and/or in contact with the at least one roller 328 so as to remove any debris from the roller itself. The cleaning member 350 may be a rigid material, such as stainless steel, and may be biased into position against the roller 328. A biasing mechanism, such a spring, may keep the cleaning member 350 in contact with the at least one roller. The at least one cleaning member 350 may be formed with protrusions that are aligned with each of the grooves 328A so that as the roller 328 rotates in the first direction Cl any debris is removed by contact with the cleaning member 350. Alternatively, the cleaning member may be formed of an elastomeric material that may bend to accommodate the contours of the at least one roller 328, but is sturdy enough to remove any debris therefrom.
Referring back to FIG. 3, following slitting of the outer wrapper of each product, the apparatus 300 may also include, for example, a recovery device 352 configured and arranged to recover the material from the respective product. Specifically, and as illustrated in FIG. 3, the recovery device 352 may be operably engaged with the slitting arrangement 326. In this manner, the recovery device may be configured to receive the slit product, and separate the outer wrapper from the material for recovery of the material.
FIGS. 6A and 6B illustrate one example embodiment of the recovery device 352. As illustrated, the recovery device 352 may comprise a vibrating screen 354. The vibrating screen may comprise a grate/sieve configured, arranged, and sized so as to allow the material to pass therethrough, while preventing the outer wrapper from passing through. In order to facilitate the material/outer wrapper separation process, the grate/sieve may be vibrated, for example, by a vibrating device (not shown). In particular, the vibrating screen may comprise one or more openings/perforations sized accordingly to the particle size of the material and in order to allow it to pass through. In some example embodiments, interchangeable sieve plates may be used in the vibrating screen 354 to accommodate sifting differently sized particles therethrough. Sieve plates with perforations of a larger size may be used in applications where the material contained in the outer wrapper is larger, while plates with perforations of a smaller size may be used in applications with the material contained within the outer wrapper is smaller. The plates may be removed and replaced depending on the application.
In this manner, for example, the vibrating screen 354 may be configured to loosen the material from the outer wrapper, to sift the material, and to recover the material on an opposing side of the vibrating screen. The recovery device 352 may also comprise suction device (not shown) arranged about the opposing side of the vibrating screen. The suction device may be configured to apply negative pressure to the vibrating screen to facilitate sifting of the material loosened from the outer wrapper through the vibrating screen. In addition to, or instead of the suction device, a collection box (not shown) may be provided on the opposing side of the vibrating screen to recover the material sifted through the vibrating screen. As shown in FIG. 6B, for example, a gravity fed chute 356 may be angled downward under the vibrating screen to direct the recovered material to the collection box.
Once the outer wrapper is separated from the material, the wrapper waste may be collected from the vibrating screen 354 and discarded. The material collected by the collection box, suction device, or the like may be re-directed at least back to a outer wrapper forming portion of a manufacturing apparatus so as to be used in the further production of new products. Such re-direction may be accomplished, for example, through physical transportation of the collection box, or by way of negative pressure through a chute or channel leading from the suction device back to a outer wrapper forming portion of a production apparatus.
FIG. 7 schematically illustrates a method 400 of recovering material from a product according to one aspect of the present disclosure. In a first step, 402, the method comprises receiving a plurality of the products in an object-orienting device comprising a wall defining a cylindrical container defining a central axis therein, and a rim arranged adjacent to and extending at least partially about an upper end of the wall. In a second step, 404, the method comprises rotating the object-orienting device about the central axis to orient the plurality of products along the wall and deposit the plurality of products on the rim. In a third step, 406, the method comprises receiving and conveying the plurality of products from the rim to at least one roller, the at least one roller being configured to rotate about a central axis in a first direction. In a fourth step, 408, the method comprises slitting, by a plurality of blades configured to rotate about a central axis in a second direction opposite the first direction, the outer wrapper containing the material of each of the products conveyed by the at least one roller. In a fifth step, 410, the method comprises separating, by a vibrating screen arranged downstream of the at least one roller and the plurality of blades, the slit outer wrapper from the material for recovery of the material.
The method 400 may further comprise wherein the at least one roller defines a plurality of grooves extending about a circumferential surface of the at least one roller, each one of the plurality of grooves being configured to receive a respective one of the plurality of blades, and further comprising a plate defining a plurality of slits and vertically extending between the at least one roller and the plurality of blades, each of the plurality of blades extending through a respective one of the plurality of slits and into the respective groove of the at least one roller.
The method 400 may further comprise wherein the object-orienting device comprises a drive unit mounted to a bottom surface of the cylindrical container, and the method further comprises vibrating, by the drive unit, the cylindrical container to orient the plurality of products along the wall.
The method 400 may further comprise a hopper storing the products and a first conveyor device disposed adjacent to and configured to interact with the rim, wherein receiving the plurality of products comprising receiving the plurality of products from the hopper in the object-orienting device, and wherein receiving and conveying the plurality of products from the rim comprises receiving and conveying, by the first conveyor device in a conveyor direction, the products from the rim to the at least one roller.
Accordingly, the method 400 for recovery of the material from a product, as disclosed herein, may be accomplished in a continuous process, with the associated apparatus / system, being appropriately configured and arranged for performing such a continuous process, as shown, for example, in FIG. 3. For example, such a continuous process may involve an online production system comprised of a plurality of cooperating and interacting machines or devices. In other instances, the continuous process may be incorporated into a single online production machine or device. In such aspects, the product manufacturing process and inspection provisions, as well as the identification and segregation of “defective” products and deconstruction of the defective products for the recovery of the material, may be accomplished in an automated manner and at normal production rate of the device/system (i.e., at speeds normally associated with the operating device/system for producing such products).
In light of possible interrelationships between aspects of the present disclosure in providing the noted benefits and advantages associated therewith, the present disclosure thus particularly and explicitly includes, without limitation, embodiments representing various combinations of the disclosed aspects. Thus, the present disclosure includes any combination of two, three, four, or more features or elements set forth in this disclosure, regardless of whether such features or elements are expressly combined or otherwise recited in a specific embodiment description herein. This disclosure is intended to be read holistically such that any separable features or elements of the disclosure, in any of its aspects and embodiments, should be viewed as intended, namely to be combinable, unless the context of the disclosure clearly dictates otherwise.
Many modifications and other aspects of the disclosures set forth herein will thus come to mind to one skilled in the art to which these disclosures pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. For example, those of skill in the art will appreciate that embodiments not expressly illustrated herein may be practiced within the scope of the present disclosure, including that features described herein for different embodiments may be combined with each other and/or with currently-known or future-developed technologies while remaining within the scope of the claims presented here. Therefore, it is to be understood that the disclosures are not to be limited to the specific aspects disclosed and that equivalents, modifications, and other aspects are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims

THAT WHICH IS CLAIMED:
1. An apparatus for recovering material from a product, each product including an outer wrapper containing the material, the apparatus comprising: an object-orienting device comprising: a wall defining a cylindrical container arranged to receive a plurality of the products and defining a central axis therein, and a rim arranged adjacent to and extending at least partially about an upper end of the wall, the cylindrical container being rotatable about the central axis to orient the plurality of products along the wall and to be deposited on the rim; a first conveyor device disposed adjacent to and configured to interact with the rim so as to receive and convey in a conveyor direction the products from the rim; at least one roller operably engaged with the first conveyor device to receive the products therefrom, the at least one roller being configured to rotate about a central axis in a first direction and convey the products from the first conveyor device in the first direction; and a plurality of blades configured to rotate about a central axis in a second direction opposite the first direction, the plurality of blades being configured to slit the outer wrapper containing the material of each of the products conveyed by the at least one roller.
2. The apparatus according to Claim 1, wherein the at least one roller defines a plurality of grooves extending about a circumferential surface of the at least one roller, each one of the plurality of grooves being configured to receive a respective one of the plurality of blades.
3. The apparatus according to Claim 2, further comprising a plate defining a plurality of slits and vertically extending between the at least one roller and the plurality of blades, each of the plurality of blades extending through a respective one of the plurality of slits and into the respective groove of the at least one roller.
4. The apparatus according to any of Claims 1-3, further comprising at least one cleaning member arranged proximate to the at least one roller.
5. The apparatus according to any of Claims 1-4, wherein the object-orienting device comprises a drive unit mounted to a bottom surface of the cylindrical container to vibrate the cylindrical container and orient the plurality of products along the wall.
6. The apparatus according to any of Claims 1-5, further comprising a hopper storing the products.
7. The apparatus according to Claim 6, further comprising a second conveyor device configured to receive the products from the hopper and to convey the products to the cylindrical container of the objectorienting device.
8. The apparatus according to any of Claims 1-7, further comprising a recovery device arranged downstream of the at least one roller and the plurality of blades, the recovery device being configured to receive the slit products, and separate the outer wrapper from the material for recovery of the material.
9. The apparatus according to Claim 8, wherein the recovery device comprises a vibrating screen configured to loosen the material from the outer wrapper, to sift the material, and to recover the material on an opposing side of the vibrating screen.
10. A system for recovering material from a product, each product including an outer wrapper containing the material, the apparatus comprising: an object-orienting device comprising: a wall defining a cylindrical container arranged to receive a plurality of the products and defining a central axis therein, and a rim arranged adjacent to and extending at least partially about an upper end of the wall, the cylindrical container being rotatable about the central axis to orient the plurality of products along the wall and to be deposited on the rim; a first conveyor device disposed adjacent to and configured to interact with the rim so as to receive and convey in a conveyor direction the products from the rim; at least one roller operably engaged with the first conveyor device to receive the products therefrom, the at least one roller being configured to rotate about a central axis in a first direction and convey the products from the first conveyor device in the first direction; a plurality of blades configured to rotate about a central axis in a second direction opposite the first direction, the plurality of blades being configured to slit the outer wrapper containing the material of each of the products conveyed by the at least one roller; and a vibrating screen arranged downstream of the at least one roller and the plurality of blades, the vibrating screen being configured to receive the slit products, and separate the outer wrapper from the material for recovery of the material.
11. The system according to Claim 10, wherein the at least one roller defines a plurality of grooves extending about a circumferential surface of the at least one roller, each one of the plurality of grooves being configured to receive a respective one of the plurality of blades.
12. The system according to Claim 11, further comprising a plate defining a plurality of slits and vertically extending between the at least one roller and the plurality of blades, each of the plurality of blades extending through a respective one of the plurality of slits and into the respective groove of the at least one roller.
13. The system according to any of Claims 10-12, further comprising at least one cleaning member arranged proximate to the at least one roller.
14. The system according to any of Claims 10-13, wherein the object-orienting device comprises a drive unit mounted to a bottom surface of the cylindrical container to vibrate the cylindrical container and orient the plurality of products along the wall.
15. The system according to any of Claims 10-14, further comprising a hopper storing the products.
16. The system according to any of Claims 10-15, further comprising a second conveyor device configured to receive the products from the hopper and to convey the products to the cylindrical container of the object-orienting device.
17. A method for recovering material from a product, each product including an outer wrapper containing the material, the method comprising: receiving a plurality of the products in an object-orienting device comprising a wall defining a cylindrical container defining a central axis therein, and a rim arranged adjacent to and extending at least partially about an upper end of the wall; rotating the object-orienting device about the central axis to orient the plurality of products along the wall and deposit the plurality of products on the rim; receiving and conveying the plurality of products from the rim to at least one roller, the at least one roller being configured to rotate about a central axis in a first direction; slitting, by a plurality of blades configured to rotate about a central axis in a second direction opposite the first direction, the outer wrapper containing the material of each of the products conveyed by the at least one roller; and separating, by a vibrating screen arranged downstream of the at least one roller and the plurality of blades, the slit outer wrapper from the material for recovery of the material.
18. The method according to Claim 17, wherein the at least one roller defines a plurality of grooves extending about a circumferential surface of the at least one roller, each one of the plurality of grooves being configured to receive a respective one of the plurality of blades, and further comprising a plate defining a plurality of slits and vertically extending between the at least one roller and the plurality of blades, each of the plurality of blades extending through a respective one of the plurality of slits and into the respective groove of the at least one roller.
19. The method according to either of Claims 17 or 18, wherein the object-orienting device comprises a drive unit mounted to a bottom surface of the cylindrical container, and the method further comprises vibrating, by the drive unit, the cylindrical container to orient the plurality of products along the wall.
20. The method according to any of Claims 17-19, further comprising a hopper storing the products and a first conveyor device disposed adjacent to and configured to interact with the rim, wherein receiving the plurality of products comprising receiving the plurality of products from the hopper in the objectorienting device, and wherein receiving and conveying the plurality of products from the rim comprises receiving and conveying, by the first conveyor device in a conveyor direction, the products from the rim to the at least one roller.
PCT/IB2024/058941 2023-09-29 2024-09-13 Apparatus and system for recovering material from oral wrapped products and related method Pending WO2025068817A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202363586899P 2023-09-29 2023-09-29
US63/586,899 2023-09-29

Publications (1)

Publication Number Publication Date
WO2025068817A1 true WO2025068817A1 (en) 2025-04-03

Family

ID=93213537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2024/058941 Pending WO2025068817A1 (en) 2023-09-29 2024-09-13 Apparatus and system for recovering material from oral wrapped products and related method

Country Status (1)

Country Link
WO (1) WO2025068817A1 (en)

Citations (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US787611A (en) 1903-06-17 1905-04-18 American Cigar Company Treating tobacco.
US1086306A (en) 1912-11-11 1914-02-03 Theodor Oelenheinz Process of bleaching tobacco-leaves.
US1437095A (en) 1920-06-01 1922-11-28 August Wasmuth Process of bleaching tobacco
US1757477A (en) 1927-07-11 1930-05-06 Rosenhoch Samuel Process and device for ozonizing tobacco
US2033909A (en) 1934-12-19 1936-03-17 Niacet Chemicals Corp Manufacture of calcium levulinate
US2122421A (en) 1937-07-30 1938-07-05 Du Pont Tobacco treatment
US2148147A (en) 1933-12-30 1939-02-21 Degussa Process for bleaching tobacco
US2170107A (en) 1935-01-28 1939-08-22 Degussa Process for bleaching tobacco
US2274649A (en) 1935-01-28 1942-03-03 Degussa Process for bleaching tobacco
US2770239A (en) 1952-02-04 1956-11-13 Prats Jose Romero Process of treating tobacco
US3612065A (en) 1970-03-09 1971-10-12 Creative Enterprises Inc Method of puffing tobacco and reducing nicotine content thereof
US3851653A (en) 1972-10-11 1974-12-03 Rosen Enterprises Inc Method of puffing tobacco and reducing nicotine content thereof
US3889689A (en) 1971-12-20 1975-06-17 Rosen Enterprise Inc Method of treating tobacco with catalase and hydrogen peroxide
US3901248A (en) 1970-07-22 1975-08-26 Leo Ab Chewable smoking substitute composition
US3943945A (en) 1971-09-20 1976-03-16 Rosen Enterprises, Inc. Process for preparation of reconstituted tobacco sheet
US3943940A (en) 1974-09-13 1976-03-16 Isao Minami Method of removing nicotine in smoking and a smoking filter to be used therefor
US4143666A (en) 1975-08-15 1979-03-13 Philip Morris Incorporated Smoking material
US4144895A (en) 1974-03-08 1979-03-20 Amf Incorporated Solvent extraction process
US4148325A (en) 1975-08-18 1979-04-10 British-American Tobacco Company Limited Treatment of tobacco
US4150677A (en) 1977-01-24 1979-04-24 Philip Morris Incorporated Treatment of tobacco
US4174719A (en) 1977-06-29 1979-11-20 Olin Corporation Microperforated filter tip cigarette
US4191199A (en) 1978-04-03 1980-03-04 Brown & Williamson Tobacco Corporation Apparatus and process for reclaiming tobacco
US4194514A (en) 1976-09-27 1980-03-25 Stauffer Chemical Company Removal of radioactive lead and polonium from tobacco
US4221035A (en) 1978-10-18 1980-09-09 Philip Morris Incorporated Apparatus for removal of plastic overwrap from reclaim tobacco
US4237274A (en) 1978-02-24 1980-12-02 Snia Viscosa Societa' Nazionale Industria Applicazioni Viscosa S.P.A. Process for the preparation of solutions of cellulose derivatives which can be coagulated and spun to form regenerated cellulose _bodies
US4252766A (en) 1978-07-27 1981-02-24 Snia Viscosa Societa Nazionale Industria Applicazioni Viscosa S.P.A. Process for the preparation of formed bodies of regenerated cellulose from solutions of cellulose derivatives in dimethylsulphoxide
US4268666A (en) 1978-04-03 1981-05-19 Snia Viscosa Societa Nazionale Industria Applicazioni Viscosa S.P.A. Process for the dissolution of cellulose in organic solvents, solutions obtained by said process, and process for the production of formed bodies of regenerated cellulose from said solutions
US4267847A (en) 1978-05-12 1981-05-19 British-American Tobacco Company Limited Tobacco additives
US4278100A (en) 1978-10-23 1981-07-14 Philip Morris Incorporated Method and apparatus for separating tobacco from rejected cigarettes
US4289147A (en) 1979-11-15 1981-09-15 Leaf Proteins, Inc. Process for obtaining deproteinized tobacco freed of nicotine and green pigment, for use as a smoking product
US4340073A (en) 1974-02-12 1982-07-20 Philip Morris, Incorporated Expanding tobacco
US4351346A (en) 1980-03-08 1982-09-28 B.A.T. Cigaretten-Fabriken Gmbh Process for the preparation of aromatic substances
US4359059A (en) 1980-03-08 1982-11-16 B.A.T. Cigaretten-Fabriken Gmbh Process for the preparation of aromatic substances
US4366823A (en) 1981-06-25 1983-01-04 Philip Morris, Incorporated Process for expanding tobacco
US4388256A (en) 1978-11-24 1983-06-14 Masamichi Ishida Process for manufacturing regenerated cellulose hollow fiber
US4506682A (en) 1981-12-07 1985-03-26 Mueller Adam Clear tobacco aroma oil, a process for obtaining it from a tobacco extract, and its use
US4535028A (en) 1981-10-01 1985-08-13 Asahi Kasei Kogyo Kabushiki Kaisha Hollow fiber of cuprammonium regenerated cellulose and process for producing the same
US4589428A (en) 1980-02-21 1986-05-20 Philip Morris Incorporated Tobacco treatment
US4605016A (en) 1983-07-21 1986-08-12 Japan Tobacco, Inc. Process for preparing tobacco flavoring formulations
US4641667A (en) 1983-12-09 1987-02-10 B.A.T. Cigarettenfabriken Gmbh Process of preparing nicotine N'-oxide and smoking products containing it
US4660577A (en) 1982-08-20 1987-04-28 R.J. Reynolds Tobacco Company Dry pre-mix for moist snuff
US4716911A (en) 1986-04-08 1988-01-05 Genencor, Inc. Method for protein removal from tobacco
US4725440A (en) 1982-07-02 1988-02-16 E. R. Squibb & Sons, Inc. Antifungal pastille formulation and method
US4727889A (en) 1986-12-22 1988-03-01 R. J. Reynolds Tobacco Company Tobacco processing
US4763673A (en) 1985-02-04 1988-08-16 R. J. Reynolds Tobacco Company Method and apparatus for ejecting tobacco from filter cigarettes
US4867179A (en) 1987-10-14 1989-09-19 R. J. Reynolds Tobacco Company System and method for reclaiming and utilizing tobacco in the manufacture of cigarettes
US4887618A (en) 1988-05-19 1989-12-19 R. J. Reynolds Tobacco Company Tobacco processing
US4924887A (en) 1986-02-03 1990-05-15 R. J. Reynolds Tobacco Company Tobacco rods and filters
US4941484A (en) 1989-05-30 1990-07-17 R. J. Reynolds Tobacco Company Tobacco processing
US4967771A (en) 1988-12-07 1990-11-06 R. J. Reynolds Tobacco Company Process for extracting tobacco
US4986286A (en) 1989-05-02 1991-01-22 R. J. Reynolds Tobacco Company Tobacco treatment process
US5000196A (en) 1988-11-23 1991-03-19 Maschinenfabrik Fr. Niepmann Gmbh & Co. Method and apparatus for recovering tobacco from imperfect cigarettes
US5001951A (en) 1989-04-04 1991-03-26 Lorillard, Inc. Apparatus for cutting apart cigarette packs in preparation for recovery of the tobacco in the cigarettes
US5005593A (en) 1988-01-27 1991-04-09 R. J. Reynolds Tobacco Company Process for providing tobacco extracts
US5018540A (en) 1986-12-29 1991-05-28 Philip Morris Incorporated Process for removal of basic materials
US5060669A (en) 1989-12-18 1991-10-29 R. J. Reynolds Tobacco Company Tobacco treatment process
US5065775A (en) 1990-02-23 1991-11-19 R. J. Reynolds Tobacco Company Tobacco processing
US5074319A (en) 1990-04-19 1991-12-24 R. J. Reynolds Tobacco Company Tobacco extraction process
US5099862A (en) 1990-04-05 1992-03-31 R. J. Reynolds Tobacco Company Tobacco extraction process
US5101839A (en) 1990-08-15 1992-04-07 R. J. Reynolds Tobacco Company Cigarette and smokable filler material therefor
US5117843A (en) 1990-03-13 1992-06-02 R. J. Reynolds Tobacco Company Method of and apparatus for reclaiming tobacco from cigarette packages
US5121757A (en) 1989-12-18 1992-06-16 R. J. Reynolds Tobacco Company Tobacco treatment process
US5131414A (en) 1990-02-23 1992-07-21 R. J. Reynolds Tobacco Company Tobacco processing
US5131415A (en) 1991-04-04 1992-07-21 R. J. Reynolds Tobacco Company Tobacco extraction process
US5148819A (en) 1991-08-15 1992-09-22 R. J. Reynolds Tobacco Company Process for extracting tobacco
US5197494A (en) 1991-06-04 1993-03-30 R.J. Reynolds Tobacco Company Tobacco extraction process
US5220930A (en) 1992-02-26 1993-06-22 R. J. Reynolds Tobacco Company Cigarette with wrapper having additive package
US5230354A (en) 1991-09-03 1993-07-27 R. J. Reynolds Tobacco Company Tobacco processing
US5234008A (en) 1990-02-23 1993-08-10 R. J. Reynolds Tobacco Company Tobacco processing
US5243999A (en) 1991-09-03 1993-09-14 R. J. Reynolds Tobacco Company Tobacco processing
US5259403A (en) 1992-03-18 1993-11-09 R. J. Reynolds Tobacco Company Process and apparatus for expanding tobacco cut filler
US5301694A (en) 1991-11-12 1994-04-12 Philip Morris Incorporated Process for isolating plant extract fractions
US5318050A (en) 1991-06-04 1994-06-07 R. J. Reynolds Tobacco Company Tobacco treatment process
US5343879A (en) 1991-06-21 1994-09-06 R. J. Reynolds Tobacco Company Tobacco treatment process
US5360022A (en) 1991-07-22 1994-11-01 R. J. Reynolds Tobacco Company Tobacco processing
US5387416A (en) 1993-07-23 1995-02-07 R. J. Reynolds Tobacco Company Tobacco composition
US5435325A (en) 1988-04-21 1995-07-25 R. J. Reynolds Tobacco Company Process for providing tobacco extracts using a solvent in a supercritical state
US5441689A (en) 1991-12-02 1995-08-15 Courtaulds Plc Process of making regenerated cellulose articles
US5445169A (en) 1992-08-17 1995-08-29 R. J. Reynolds Tobacco Company Process for providing a tobacco extract
US5539093A (en) 1994-06-16 1996-07-23 Fitzmaurice; Wayne P. DNA sequences encoding enzymes useful in carotenoid biosynthesis
WO1996031255A1 (en) 1995-04-07 1996-10-10 George Giolvas Method and apparatus for the removal of harmful constituents from cigarettes and tobacco before smoking
US5668295A (en) 1990-11-14 1997-09-16 Philip Morris Incorporated Protein involved in nicotine synthesis, DNA encoding, and use of sense and antisense DNAs corresponding thereto to affect nicotine content in transgenic tobacco cells and plants
US5705624A (en) 1995-12-27 1998-01-06 Fitzmaurice; Wayne Paul DNA sequences encoding enzymes useful in phytoene biosynthesis
US5713376A (en) 1996-05-13 1998-02-03 Berger; Carl Non-addictive tobacco products
US5844119A (en) 1994-12-21 1998-12-01 The Salk Institute For Biological Studies Genetically modified plants having modulated flower development
US5908032A (en) 1996-08-09 1999-06-01 R.J. Reynolds Tobacco Company Method of and apparatus for expanding tobacco
US5997790A (en) 1995-11-20 1999-12-07 Michelin Recherche Et Technique S.A. Process for the preparation of regenerated cellulose filaments
US6077524A (en) 1994-05-06 2000-06-20 Bolder Arzneimittel Gmbh Gastric acid binding chewing pastilles
US6083527A (en) 1998-11-05 2000-07-04 Thistle; Robert Breath mint with tooth decay and halitosis prevention characteristics
US6131584A (en) 1999-04-15 2000-10-17 Brown & Williamson Tobacco Corporation Tobacco treatment process
US6298859B1 (en) 1998-07-08 2001-10-09 Novozymes A/S Use of a phenol oxidizing enzyme in the treatment of tobacco
US6510855B1 (en) 2000-03-03 2003-01-28 Brown & Williamson Tobacco Corporation Tobacco recovery system
US6668839B2 (en) 2001-05-01 2003-12-30 Jonnie R. Williams Smokeless tobacco product
US6730832B1 (en) 2001-09-10 2004-05-04 Luis Mayan Dominguez High threonine producing lines of Nicotiana tobacum and methods for producing
WO2004047572A1 (en) 2002-11-25 2004-06-10 R.J. Reynolds Tobacco Company Wrapping materials for smoking articles
WO2004057986A2 (en) 2002-12-20 2004-07-15 R.J. Reynolds Tobacco Company Materials, equipment, and methods for manufacturing cigarettes
US6772767B2 (en) 2002-09-09 2004-08-10 Brown & Williamson Tobacco Corporation Process for reducing nitrogen containing compounds and lignin in tobacco
US20040191322A1 (en) 2002-12-20 2004-09-30 Henri Hansson Physically and chemically stable nicotine-containing particulate material
US6834654B2 (en) 2001-05-01 2004-12-28 Regent Court Technologies, Llc Smokeless tobacco product
US6887307B1 (en) 1999-07-22 2005-05-03 Warner-Lambert Company, Llc Pullulan film compositions
WO2005041699A2 (en) 2003-11-03 2005-05-12 U.S. Smokeless Tobacco Company Flavored smokeless tabacco and methods of making
US6895974B2 (en) 1999-04-26 2005-05-24 R. J. Reynolds Tobacco Company Tobacco processing
WO2005063060A1 (en) 2003-12-22 2005-07-14 U.S. Smokeless Tobacco Company Conditioning process for tobacco and/or snuff compositions
US6923981B2 (en) 1998-09-25 2005-08-02 Warner-Lambert Company Fast dissolving orally consumable films
US6953040B2 (en) 2001-09-28 2005-10-11 U.S. Smokeless Tobacco Company Tobacco mint plant material product
US20050244521A1 (en) 2003-11-07 2005-11-03 Strickland James A Tobacco compositions
US7014039B2 (en) 2003-06-19 2006-03-21 R.J. Reynolds Tobacco Company Sliding shell package for smoking articles
US7025066B2 (en) 2002-10-31 2006-04-11 Jerry Wayne Lawson Method of reducing the sucrose ester concentration of a tobacco mixture
US7032601B2 (en) 2001-09-28 2006-04-25 U.S. Smokeless Tobacco Company Encapsulated materials
CA2239165C (en) * 1998-05-28 2006-08-01 Muma Manufacturing Inc. Refuse bag opener
US20060210488A1 (en) 2005-03-19 2006-09-21 Jakubowski Henryk P Teeth whitening candy with tartar removal and breath freshening properties
US20060228308A1 (en) 2004-02-26 2006-10-12 Cummins Barry W Oral health care drink and method for reducing malodors
US20060236434A1 (en) 2000-08-30 2006-10-19 North Carolina State University Methods and compositions for tobacco plants with reduced nicotine
US20070062549A1 (en) 2005-09-22 2007-03-22 Holton Darrell E Jr Smokeless tobacco composition
US7208659B2 (en) 2001-05-02 2007-04-24 Conopco Inc. Process for increasing the flavonoid content of a plant and plants obtainable thereby
US7230160B2 (en) 2001-03-08 2007-06-12 Michigan State University Lipid metabolism regulators in plants
US7275548B2 (en) 2001-06-27 2007-10-02 R.J. Reynolds Tobacco Company Equipment for manufacturing cigarettes
US7337782B2 (en) 2004-08-18 2008-03-04 R.J. Reynolds Tobacco Company Process to remove protein and other biomolecules from tobacco extract or slurry
US20080173317A1 (en) 2006-08-01 2008-07-24 John Howard Robinson Smokeless tobacco
WO2008103935A2 (en) 2007-02-23 2008-08-28 U.S. Smokeless Tobacco Company Novel tobacco compositions and methods of making
US20090014450A1 (en) 2003-08-18 2009-01-15 Gustavus Ab Snuff-box lid
US20090014343A1 (en) 2007-05-07 2009-01-15 Philip Morris Usa Inc. Pocket-size hybrid container for consumer items
USD592956S1 (en) 2008-02-08 2009-05-26 Philip Morris Usa Inc. Container
US7537110B2 (en) 2005-06-02 2009-05-26 Philip Morris Usa Inc. Container for consumer article
USD594154S1 (en) 2007-11-13 2009-06-09 R.J. Reynolds Tobacco Company Container with bottom compartment
US7556047B2 (en) 2003-03-20 2009-07-07 R.J. Reynolds Tobacco Company Method of expanding tobacco using steam
US7584843B2 (en) 2005-07-18 2009-09-08 Philip Morris Usa Inc. Pocket-size hand-held container for consumer items
US20090223989A1 (en) 2008-03-04 2009-09-10 R.J. Reynolds Tobacco Company Dispensing Container
US20090230003A1 (en) 2008-02-08 2009-09-17 Philip Morris Usa Inc. Pocket-sized container
US20090250360A1 (en) 2007-11-30 2009-10-08 Philip Morris Usa Inc. Pocket-size container for consumer items
US20090266837A1 (en) 2008-04-25 2009-10-29 R. J. Reynolds Tobacco Company Dispensing Container
US7650892B1 (en) 2004-09-03 2010-01-26 Rosswil Llc Ltd. Methods for hindering formation of tobacco-specific nitrosamines
US20100084424A1 (en) 2006-12-12 2010-04-08 John Gelardi Container with pivoting cover
US20100133140A1 (en) 2008-12-01 2010-06-03 Bailey Ryan A Dual cavity sliding dispenser
US7798153B2 (en) 2004-08-23 2010-09-21 Us Smokeless Tobacco Co. Nicotiana Kawakamii smokeless tobacco
USD625178S1 (en) 2009-04-16 2010-10-12 R.J. Reynolds Tobacco Company, Inc. Container with hinged insert
US7810507B2 (en) 2006-02-10 2010-10-12 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US20100264157A1 (en) 2009-04-16 2010-10-21 R.J. Reynolds Tobacco Company Dispensing container for metered dispensing of product
US7819124B2 (en) 2006-01-31 2010-10-26 U.S. Smokeless Tobacco Company Tobacco articles and methods
US20100291245A1 (en) 2008-12-08 2010-11-18 Philip Morris Usa Inc. Soft, chewable and orally dissolvable and/or disintegrable products
WO2010132444A2 (en) 2009-05-11 2010-11-18 U.S. Smokeless Tobacco Company Llc Method and device for flavoring smokeless tobacco
US7861728B2 (en) 2006-02-10 2011-01-04 R.J. Reynolds Tobacco Company Smokeless tobacco composition having an outer and inner pouch
US20110168712A1 (en) 2010-01-12 2011-07-14 R.J. Reynolds Tobacco Company Dispensing container
US20110247640A1 (en) 2010-04-08 2011-10-13 R. J. Reynolds Tobacco Company Smokeless Tobacco Composition Comprising Tobacco-Derived Material and Non-Tobacco Plant Material
US20110274628A1 (en) 2010-05-07 2011-11-10 Borschke August J Nicotine-containing pharmaceutical compositions
US8061362B2 (en) 2007-07-23 2011-11-22 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US20120067361A1 (en) 2009-04-03 2012-03-22 X-International Aps Plant fiber product and method for its manufacture
US8177938B2 (en) 2007-01-19 2012-05-15 Georgia-Pacific Consumer Products Lp Method of making regenerated cellulose microfibers and absorbent products incorporating same
US8186360B2 (en) 2007-04-04 2012-05-29 R.J. Reynolds Tobacco Company Cigarette comprising dark air-cured tobacco
US8397945B2 (en) 2010-02-23 2013-03-19 R.J. Reynolds Tobacco Company Dispensing container
US8434496B2 (en) 2009-06-02 2013-05-07 R. J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
WO2013122948A1 (en) 2012-02-13 2013-08-22 R. J. Reynolds Tobacco Company Whitened tobacco composition
US8627828B2 (en) 2003-11-07 2014-01-14 U.S. Smokeless Tobacco Company Llc Tobacco compositions
US20140083438A1 (en) 2012-09-21 2014-03-27 R.J. Reynolds Tobacco Company Fibrous composite tobacco-containing materials
CN203801718U (en) * 2014-04-29 2014-09-03 扬州市天宝自动化工程有限公司 Tobacco shred recycling device
US8931493B2 (en) 2010-11-01 2015-01-13 R.J. Reynolds Tobacco Co. Smokeless tobacco products
US8944072B2 (en) 2009-06-02 2015-02-03 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US8991403B2 (en) 2009-06-02 2015-03-31 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US20160000140A1 (en) 2014-07-02 2016-01-07 R.J. Reynolds Tobacco Company Oral pouch products
US20160073686A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Tobacco-derived filter element
US20160073689A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Nonwoven pouch comprising heat sealable binder fiber
US20160120213A1 (en) 2014-10-31 2016-05-05 R. J. Reynolds Tobacco Company Tobacco product component recovery system
US9339058B2 (en) 2012-04-19 2016-05-17 R. J. Reynolds Tobacco Company Method for producing microcrystalline cellulose from tobacco and related tobacco product
US20170020183A1 (en) 2014-04-04 2017-01-26 X-International Aps Tobacco Raw Material
US20170100308A1 (en) 2015-10-13 2017-04-13 R.J. Reynolds Tobacco Company Container with a spittoon
US9950858B2 (en) 2015-01-16 2018-04-24 R.J. Reynolds Tobacco Company Tobacco-derived cellulose material and products formed thereof
WO2018083114A1 (en) 2016-11-02 2018-05-11 Winnington Ab Defibrated tobacco material
WO2020026076A2 (en) * 2018-08-01 2020-02-06 R. J. Reynolds Tobacco Company Apparatus for recovering tobacco material and related method
WO2020128971A1 (en) 2018-12-20 2020-06-25 R. J. Reynolds Tobacco Company Method for whitening tobacco
US20200277110A1 (en) 2018-04-13 2020-09-03 R.J. Reynolds Tobacco Company Lid for a container for smokeless tobacco products
WO2021048770A1 (en) 2019-09-11 2021-03-18 Nicoventures Trading Limited Alternative methods for whitening tobacco
WO2021048769A1 (en) 2019-09-13 2021-03-18 Nicoventures Trading Limited Method for whitening tobacco
WO2021048768A1 (en) 2019-09-11 2021-03-18 Nicoventures Trading Limited Method for whitening tobacco
WO2021058063A2 (en) 2019-09-23 2021-04-01 Polysecure Gmbh Sorting method
US20210169132A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral composition including gels
US20210169792A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral compositions and methods of manufacture
US20210169121A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Liquid oral composition
US20210169122A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral foam composition
US20210169867A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Moist oral compositions
US20210177038A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral products with active ingredient combinations
US20210177043A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral product
US20210177754A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Nanoemulsion for oral use
US20210186081A1 (en) 2019-12-09 2021-06-24 Nicoventures Trading Limited Pouched oral product with cannabinoid
US20210330590A1 (en) 2019-12-09 2021-10-28 Nicoventures Trading Limited Agents for oral composition
US20210378948A1 (en) 2020-06-08 2021-12-09 Nicoventures Trading Limited Effervescent oral composition
US20220071984A1 (en) 2019-09-11 2022-03-10 Nicoventures Trading Limited Oral product with nicotine and ion pairing agent
US20220160675A1 (en) 2020-11-25 2022-05-26 Nicoventures Trading Limited Oral cannabinoid product with lipid component
WO2022106845A1 (en) 2020-11-20 2022-05-27 Nicoventures Trading Limited A container
US20230013978A1 (en) 2020-09-04 2023-01-19 Nicoventures Trading Limited Child-resistant container for tobacco-containing products

Patent Citations (198)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US787611A (en) 1903-06-17 1905-04-18 American Cigar Company Treating tobacco.
US1086306A (en) 1912-11-11 1914-02-03 Theodor Oelenheinz Process of bleaching tobacco-leaves.
US1437095A (en) 1920-06-01 1922-11-28 August Wasmuth Process of bleaching tobacco
US1757477A (en) 1927-07-11 1930-05-06 Rosenhoch Samuel Process and device for ozonizing tobacco
US2148147A (en) 1933-12-30 1939-02-21 Degussa Process for bleaching tobacco
US2033909A (en) 1934-12-19 1936-03-17 Niacet Chemicals Corp Manufacture of calcium levulinate
US2170107A (en) 1935-01-28 1939-08-22 Degussa Process for bleaching tobacco
US2274649A (en) 1935-01-28 1942-03-03 Degussa Process for bleaching tobacco
US2122421A (en) 1937-07-30 1938-07-05 Du Pont Tobacco treatment
US2770239A (en) 1952-02-04 1956-11-13 Prats Jose Romero Process of treating tobacco
US3612065A (en) 1970-03-09 1971-10-12 Creative Enterprises Inc Method of puffing tobacco and reducing nicotine content thereof
US3901248A (en) 1970-07-22 1975-08-26 Leo Ab Chewable smoking substitute composition
US3943945A (en) 1971-09-20 1976-03-16 Rosen Enterprises, Inc. Process for preparation of reconstituted tobacco sheet
US3889689A (en) 1971-12-20 1975-06-17 Rosen Enterprise Inc Method of treating tobacco with catalase and hydrogen peroxide
US3851653A (en) 1972-10-11 1974-12-03 Rosen Enterprises Inc Method of puffing tobacco and reducing nicotine content thereof
US4340073A (en) 1974-02-12 1982-07-20 Philip Morris, Incorporated Expanding tobacco
US4144895A (en) 1974-03-08 1979-03-20 Amf Incorporated Solvent extraction process
US3943940A (en) 1974-09-13 1976-03-16 Isao Minami Method of removing nicotine in smoking and a smoking filter to be used therefor
US4143666A (en) 1975-08-15 1979-03-13 Philip Morris Incorporated Smoking material
US4148325A (en) 1975-08-18 1979-04-10 British-American Tobacco Company Limited Treatment of tobacco
US4194514A (en) 1976-09-27 1980-03-25 Stauffer Chemical Company Removal of radioactive lead and polonium from tobacco
US4150677A (en) 1977-01-24 1979-04-24 Philip Morris Incorporated Treatment of tobacco
US4174719A (en) 1977-06-29 1979-11-20 Olin Corporation Microperforated filter tip cigarette
US4237274A (en) 1978-02-24 1980-12-02 Snia Viscosa Societa' Nazionale Industria Applicazioni Viscosa S.P.A. Process for the preparation of solutions of cellulose derivatives which can be coagulated and spun to form regenerated cellulose _bodies
US4268666A (en) 1978-04-03 1981-05-19 Snia Viscosa Societa Nazionale Industria Applicazioni Viscosa S.P.A. Process for the dissolution of cellulose in organic solvents, solutions obtained by said process, and process for the production of formed bodies of regenerated cellulose from said solutions
US4191199A (en) 1978-04-03 1980-03-04 Brown & Williamson Tobacco Corporation Apparatus and process for reclaiming tobacco
US4267847A (en) 1978-05-12 1981-05-19 British-American Tobacco Company Limited Tobacco additives
US4252766A (en) 1978-07-27 1981-02-24 Snia Viscosa Societa Nazionale Industria Applicazioni Viscosa S.P.A. Process for the preparation of formed bodies of regenerated cellulose from solutions of cellulose derivatives in dimethylsulphoxide
US4221035A (en) 1978-10-18 1980-09-09 Philip Morris Incorporated Apparatus for removal of plastic overwrap from reclaim tobacco
US4278100A (en) 1978-10-23 1981-07-14 Philip Morris Incorporated Method and apparatus for separating tobacco from rejected cigarettes
US4388256A (en) 1978-11-24 1983-06-14 Masamichi Ishida Process for manufacturing regenerated cellulose hollow fiber
US4289147A (en) 1979-11-15 1981-09-15 Leaf Proteins, Inc. Process for obtaining deproteinized tobacco freed of nicotine and green pigment, for use as a smoking product
US4589428A (en) 1980-02-21 1986-05-20 Philip Morris Incorporated Tobacco treatment
US4351346A (en) 1980-03-08 1982-09-28 B.A.T. Cigaretten-Fabriken Gmbh Process for the preparation of aromatic substances
US4359059A (en) 1980-03-08 1982-11-16 B.A.T. Cigaretten-Fabriken Gmbh Process for the preparation of aromatic substances
US4366823A (en) 1981-06-25 1983-01-04 Philip Morris, Incorporated Process for expanding tobacco
US4535028A (en) 1981-10-01 1985-08-13 Asahi Kasei Kogyo Kabushiki Kaisha Hollow fiber of cuprammonium regenerated cellulose and process for producing the same
US4506682A (en) 1981-12-07 1985-03-26 Mueller Adam Clear tobacco aroma oil, a process for obtaining it from a tobacco extract, and its use
US4725440A (en) 1982-07-02 1988-02-16 E. R. Squibb & Sons, Inc. Antifungal pastille formulation and method
US4660577A (en) 1982-08-20 1987-04-28 R.J. Reynolds Tobacco Company Dry pre-mix for moist snuff
US4605016A (en) 1983-07-21 1986-08-12 Japan Tobacco, Inc. Process for preparing tobacco flavoring formulations
US4641667A (en) 1983-12-09 1987-02-10 B.A.T. Cigarettenfabriken Gmbh Process of preparing nicotine N'-oxide and smoking products containing it
US4763673A (en) 1985-02-04 1988-08-16 R. J. Reynolds Tobacco Company Method and apparatus for ejecting tobacco from filter cigarettes
US4924887A (en) 1986-02-03 1990-05-15 R. J. Reynolds Tobacco Company Tobacco rods and filters
US4716911A (en) 1986-04-08 1988-01-05 Genencor, Inc. Method for protein removal from tobacco
US4727889A (en) 1986-12-22 1988-03-01 R. J. Reynolds Tobacco Company Tobacco processing
US5018540A (en) 1986-12-29 1991-05-28 Philip Morris Incorporated Process for removal of basic materials
US4867179A (en) 1987-10-14 1989-09-19 R. J. Reynolds Tobacco Company System and method for reclaiming and utilizing tobacco in the manufacture of cigarettes
US5005593A (en) 1988-01-27 1991-04-09 R. J. Reynolds Tobacco Company Process for providing tobacco extracts
US5435325A (en) 1988-04-21 1995-07-25 R. J. Reynolds Tobacco Company Process for providing tobacco extracts using a solvent in a supercritical state
US4887618A (en) 1988-05-19 1989-12-19 R. J. Reynolds Tobacco Company Tobacco processing
US5000196A (en) 1988-11-23 1991-03-19 Maschinenfabrik Fr. Niepmann Gmbh & Co. Method and apparatus for recovering tobacco from imperfect cigarettes
US4967771A (en) 1988-12-07 1990-11-06 R. J. Reynolds Tobacco Company Process for extracting tobacco
US5001951A (en) 1989-04-04 1991-03-26 Lorillard, Inc. Apparatus for cutting apart cigarette packs in preparation for recovery of the tobacco in the cigarettes
US4986286A (en) 1989-05-02 1991-01-22 R. J. Reynolds Tobacco Company Tobacco treatment process
US4941484A (en) 1989-05-30 1990-07-17 R. J. Reynolds Tobacco Company Tobacco processing
US5121757A (en) 1989-12-18 1992-06-16 R. J. Reynolds Tobacco Company Tobacco treatment process
US5060669A (en) 1989-12-18 1991-10-29 R. J. Reynolds Tobacco Company Tobacco treatment process
US5131414A (en) 1990-02-23 1992-07-21 R. J. Reynolds Tobacco Company Tobacco processing
US5234008A (en) 1990-02-23 1993-08-10 R. J. Reynolds Tobacco Company Tobacco processing
US5065775A (en) 1990-02-23 1991-11-19 R. J. Reynolds Tobacco Company Tobacco processing
US5117843A (en) 1990-03-13 1992-06-02 R. J. Reynolds Tobacco Company Method of and apparatus for reclaiming tobacco from cigarette packages
US5099862A (en) 1990-04-05 1992-03-31 R. J. Reynolds Tobacco Company Tobacco extraction process
US5074319A (en) 1990-04-19 1991-12-24 R. J. Reynolds Tobacco Company Tobacco extraction process
US5101839A (en) 1990-08-15 1992-04-07 R. J. Reynolds Tobacco Company Cigarette and smokable filler material therefor
US5668295A (en) 1990-11-14 1997-09-16 Philip Morris Incorporated Protein involved in nicotine synthesis, DNA encoding, and use of sense and antisense DNAs corresponding thereto to affect nicotine content in transgenic tobacco cells and plants
US5131415A (en) 1991-04-04 1992-07-21 R. J. Reynolds Tobacco Company Tobacco extraction process
US5197494A (en) 1991-06-04 1993-03-30 R.J. Reynolds Tobacco Company Tobacco extraction process
US5318050A (en) 1991-06-04 1994-06-07 R. J. Reynolds Tobacco Company Tobacco treatment process
US5343879A (en) 1991-06-21 1994-09-06 R. J. Reynolds Tobacco Company Tobacco treatment process
US5360022A (en) 1991-07-22 1994-11-01 R. J. Reynolds Tobacco Company Tobacco processing
US5148819A (en) 1991-08-15 1992-09-22 R. J. Reynolds Tobacco Company Process for extracting tobacco
US5230354A (en) 1991-09-03 1993-07-27 R. J. Reynolds Tobacco Company Tobacco processing
US5243999A (en) 1991-09-03 1993-09-14 R. J. Reynolds Tobacco Company Tobacco processing
US5301694A (en) 1991-11-12 1994-04-12 Philip Morris Incorporated Process for isolating plant extract fractions
US5441689A (en) 1991-12-02 1995-08-15 Courtaulds Plc Process of making regenerated cellulose articles
US5220930A (en) 1992-02-26 1993-06-22 R. J. Reynolds Tobacco Company Cigarette with wrapper having additive package
US5259403A (en) 1992-03-18 1993-11-09 R. J. Reynolds Tobacco Company Process and apparatus for expanding tobacco cut filler
US5445169A (en) 1992-08-17 1995-08-29 R. J. Reynolds Tobacco Company Process for providing a tobacco extract
US5387416A (en) 1993-07-23 1995-02-07 R. J. Reynolds Tobacco Company Tobacco composition
US6077524A (en) 1994-05-06 2000-06-20 Bolder Arzneimittel Gmbh Gastric acid binding chewing pastilles
US5539093A (en) 1994-06-16 1996-07-23 Fitzmaurice; Wayne P. DNA sequences encoding enzymes useful in carotenoid biosynthesis
US5844119A (en) 1994-12-21 1998-12-01 The Salk Institute For Biological Studies Genetically modified plants having modulated flower development
WO1996031255A1 (en) 1995-04-07 1996-10-10 George Giolvas Method and apparatus for the removal of harmful constituents from cigarettes and tobacco before smoking
US5997790A (en) 1995-11-20 1999-12-07 Michelin Recherche Et Technique S.A. Process for the preparation of regenerated cellulose filaments
US5705624A (en) 1995-12-27 1998-01-06 Fitzmaurice; Wayne Paul DNA sequences encoding enzymes useful in phytoene biosynthesis
US5713376A (en) 1996-05-13 1998-02-03 Berger; Carl Non-addictive tobacco products
US5908032A (en) 1996-08-09 1999-06-01 R.J. Reynolds Tobacco Company Method of and apparatus for expanding tobacco
CA2239165C (en) * 1998-05-28 2006-08-01 Muma Manufacturing Inc. Refuse bag opener
US6298859B1 (en) 1998-07-08 2001-10-09 Novozymes A/S Use of a phenol oxidizing enzyme in the treatment of tobacco
US6923981B2 (en) 1998-09-25 2005-08-02 Warner-Lambert Company Fast dissolving orally consumable films
US6083527A (en) 1998-11-05 2000-07-04 Thistle; Robert Breath mint with tooth decay and halitosis prevention characteristics
US6131584A (en) 1999-04-15 2000-10-17 Brown & Williamson Tobacco Corporation Tobacco treatment process
US6895974B2 (en) 1999-04-26 2005-05-24 R. J. Reynolds Tobacco Company Tobacco processing
US6887307B1 (en) 1999-07-22 2005-05-03 Warner-Lambert Company, Llc Pullulan film compositions
US6510855B1 (en) 2000-03-03 2003-01-28 Brown & Williamson Tobacco Corporation Tobacco recovery system
US20060236434A1 (en) 2000-08-30 2006-10-19 North Carolina State University Methods and compositions for tobacco plants with reduced nicotine
US7230160B2 (en) 2001-03-08 2007-06-12 Michigan State University Lipid metabolism regulators in plants
US6834654B2 (en) 2001-05-01 2004-12-28 Regent Court Technologies, Llc Smokeless tobacco product
US6668839B2 (en) 2001-05-01 2003-12-30 Jonnie R. Williams Smokeless tobacco product
US7208659B2 (en) 2001-05-02 2007-04-24 Conopco Inc. Process for increasing the flavonoid content of a plant and plants obtainable thereby
US7275548B2 (en) 2001-06-27 2007-10-02 R.J. Reynolds Tobacco Company Equipment for manufacturing cigarettes
US7173170B2 (en) 2001-09-10 2007-02-06 Reynolds Technologies, Inc. High threonine producing lines of Nicotiana tobacum and methods of producing
US6730832B1 (en) 2001-09-10 2004-05-04 Luis Mayan Dominguez High threonine producing lines of Nicotiana tobacum and methods for producing
US6953040B2 (en) 2001-09-28 2005-10-11 U.S. Smokeless Tobacco Company Tobacco mint plant material product
US7032601B2 (en) 2001-09-28 2006-04-25 U.S. Smokeless Tobacco Company Encapsulated materials
US6772767B2 (en) 2002-09-09 2004-08-10 Brown & Williamson Tobacco Corporation Process for reducing nitrogen containing compounds and lignin in tobacco
US7025066B2 (en) 2002-10-31 2006-04-11 Jerry Wayne Lawson Method of reducing the sucrose ester concentration of a tobacco mixture
WO2004047572A1 (en) 2002-11-25 2004-06-10 R.J. Reynolds Tobacco Company Wrapping materials for smoking articles
US20040191322A1 (en) 2002-12-20 2004-09-30 Henri Hansson Physically and chemically stable nicotine-containing particulate material
WO2004057986A2 (en) 2002-12-20 2004-07-15 R.J. Reynolds Tobacco Company Materials, equipment, and methods for manufacturing cigarettes
US7281540B2 (en) 2002-12-20 2007-10-16 R.J. Reynolds Tobacco Company Equipment and methods for manufacturing cigarettes
US7556047B2 (en) 2003-03-20 2009-07-07 R.J. Reynolds Tobacco Company Method of expanding tobacco using steam
US7014039B2 (en) 2003-06-19 2006-03-21 R.J. Reynolds Tobacco Company Sliding shell package for smoking articles
US20090014450A1 (en) 2003-08-18 2009-01-15 Gustavus Ab Snuff-box lid
WO2005041699A2 (en) 2003-11-03 2005-05-12 U.S. Smokeless Tobacco Company Flavored smokeless tabacco and methods of making
US7901512B2 (en) 2003-11-03 2011-03-08 U.S. Smokeless Tobacco Company Flavored smokeless tobacco and methods of making
US8627828B2 (en) 2003-11-07 2014-01-14 U.S. Smokeless Tobacco Company Llc Tobacco compositions
US20050244521A1 (en) 2003-11-07 2005-11-03 Strickland James A Tobacco compositions
WO2005063060A1 (en) 2003-12-22 2005-07-14 U.S. Smokeless Tobacco Company Conditioning process for tobacco and/or snuff compositions
US7694686B2 (en) 2003-12-22 2010-04-13 U.S. Smokeless Tobacco Company Conditioning process for tobacco and/or snuff compositions
US20060228308A1 (en) 2004-02-26 2006-10-12 Cummins Barry W Oral health care drink and method for reducing malodors
US7337782B2 (en) 2004-08-18 2008-03-04 R.J. Reynolds Tobacco Company Process to remove protein and other biomolecules from tobacco extract or slurry
US7798153B2 (en) 2004-08-23 2010-09-21 Us Smokeless Tobacco Co. Nicotiana Kawakamii smokeless tobacco
US7650892B1 (en) 2004-09-03 2010-01-26 Rosswil Llc Ltd. Methods for hindering formation of tobacco-specific nitrosamines
US20060210488A1 (en) 2005-03-19 2006-09-21 Jakubowski Henryk P Teeth whitening candy with tartar removal and breath freshening properties
US7537110B2 (en) 2005-06-02 2009-05-26 Philip Morris Usa Inc. Container for consumer article
US7584843B2 (en) 2005-07-18 2009-09-08 Philip Morris Usa Inc. Pocket-size hand-held container for consumer items
US20070062549A1 (en) 2005-09-22 2007-03-22 Holton Darrell E Jr Smokeless tobacco composition
US7819124B2 (en) 2006-01-31 2010-10-26 U.S. Smokeless Tobacco Company Tobacco articles and methods
US7861728B2 (en) 2006-02-10 2011-01-04 R.J. Reynolds Tobacco Company Smokeless tobacco composition having an outer and inner pouch
US7810507B2 (en) 2006-02-10 2010-10-12 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US20080173317A1 (en) 2006-08-01 2008-07-24 John Howard Robinson Smokeless tobacco
US20100084424A1 (en) 2006-12-12 2010-04-08 John Gelardi Container with pivoting cover
US8177938B2 (en) 2007-01-19 2012-05-15 Georgia-Pacific Consumer Products Lp Method of making regenerated cellulose microfibers and absorbent products incorporating same
WO2008103935A2 (en) 2007-02-23 2008-08-28 U.S. Smokeless Tobacco Company Novel tobacco compositions and methods of making
US8186360B2 (en) 2007-04-04 2012-05-29 R.J. Reynolds Tobacco Company Cigarette comprising dark air-cured tobacco
US20090014343A1 (en) 2007-05-07 2009-01-15 Philip Morris Usa Inc. Pocket-size hybrid container for consumer items
US8061362B2 (en) 2007-07-23 2011-11-22 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US9237769B2 (en) 2007-07-23 2016-01-19 R. J. Reynolds Tobacco Company Smokeless tobacco composition
USD594154S1 (en) 2007-11-13 2009-06-09 R.J. Reynolds Tobacco Company Container with bottom compartment
US20090250360A1 (en) 2007-11-30 2009-10-08 Philip Morris Usa Inc. Pocket-size container for consumer items
USD592956S1 (en) 2008-02-08 2009-05-26 Philip Morris Usa Inc. Container
US20090230003A1 (en) 2008-02-08 2009-09-17 Philip Morris Usa Inc. Pocket-sized container
US20090223989A1 (en) 2008-03-04 2009-09-10 R.J. Reynolds Tobacco Company Dispensing Container
US20090266837A1 (en) 2008-04-25 2009-10-29 R. J. Reynolds Tobacco Company Dispensing Container
US20100133140A1 (en) 2008-12-01 2010-06-03 Bailey Ryan A Dual cavity sliding dispenser
US20100291245A1 (en) 2008-12-08 2010-11-18 Philip Morris Usa Inc. Soft, chewable and orally dissolvable and/or disintegrable products
US20120067361A1 (en) 2009-04-03 2012-03-22 X-International Aps Plant fiber product and method for its manufacture
USD625178S1 (en) 2009-04-16 2010-10-12 R.J. Reynolds Tobacco Company, Inc. Container with hinged insert
US20100264157A1 (en) 2009-04-16 2010-10-21 R.J. Reynolds Tobacco Company Dispensing container for metered dispensing of product
US11246334B2 (en) 2009-05-11 2022-02-15 Altria Client Services Llc Method and device for flavoring smokeless tobacco
WO2010132444A2 (en) 2009-05-11 2010-11-18 U.S. Smokeless Tobacco Company Llc Method and device for flavoring smokeless tobacco
US8944072B2 (en) 2009-06-02 2015-02-03 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US8434496B2 (en) 2009-06-02 2013-05-07 R. J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US8991403B2 (en) 2009-06-02 2015-03-31 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US20110168712A1 (en) 2010-01-12 2011-07-14 R.J. Reynolds Tobacco Company Dispensing container
US8397945B2 (en) 2010-02-23 2013-03-19 R.J. Reynolds Tobacco Company Dispensing container
US20110247640A1 (en) 2010-04-08 2011-10-13 R. J. Reynolds Tobacco Company Smokeless Tobacco Composition Comprising Tobacco-Derived Material and Non-Tobacco Plant Material
US20110274628A1 (en) 2010-05-07 2011-11-10 Borschke August J Nicotine-containing pharmaceutical compositions
US8931493B2 (en) 2010-11-01 2015-01-13 R.J. Reynolds Tobacco Co. Smokeless tobacco products
WO2013122948A1 (en) 2012-02-13 2013-08-22 R. J. Reynolds Tobacco Company Whitened tobacco composition
US9420825B2 (en) 2012-02-13 2016-08-23 R.J. Reynolds Tobacco Company Whitened tobacco composition
US9339058B2 (en) 2012-04-19 2016-05-17 R. J. Reynolds Tobacco Company Method for producing microcrystalline cellulose from tobacco and related tobacco product
US20140083438A1 (en) 2012-09-21 2014-03-27 R.J. Reynolds Tobacco Company Fibrous composite tobacco-containing materials
US20170020183A1 (en) 2014-04-04 2017-01-26 X-International Aps Tobacco Raw Material
US20170112183A1 (en) 2014-04-04 2017-04-27 X-International Aps Tobacco Raw Material
CN203801718U (en) * 2014-04-29 2014-09-03 扬州市天宝自动化工程有限公司 Tobacco shred recycling device
US20160000140A1 (en) 2014-07-02 2016-01-07 R.J. Reynolds Tobacco Company Oral pouch products
US20160073686A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Tobacco-derived filter element
US20160073689A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Nonwoven pouch comprising heat sealable binder fiber
US20160120213A1 (en) 2014-10-31 2016-05-05 R. J. Reynolds Tobacco Company Tobacco product component recovery system
US9950858B2 (en) 2015-01-16 2018-04-24 R.J. Reynolds Tobacco Company Tobacco-derived cellulose material and products formed thereof
US20170100308A1 (en) 2015-10-13 2017-04-13 R.J. Reynolds Tobacco Company Container with a spittoon
WO2018083114A1 (en) 2016-11-02 2018-05-11 Winnington Ab Defibrated tobacco material
US20200277110A1 (en) 2018-04-13 2020-09-03 R.J. Reynolds Tobacco Company Lid for a container for smokeless tobacco products
US11033049B2 (en) 2018-08-01 2021-06-15 R.J. Reynolds Tobacco Company Apparatus for recovering tobacco material and related method
WO2020026076A2 (en) * 2018-08-01 2020-02-06 R. J. Reynolds Tobacco Company Apparatus for recovering tobacco material and related method
WO2020128971A1 (en) 2018-12-20 2020-06-25 R. J. Reynolds Tobacco Company Method for whitening tobacco
WO2021048768A1 (en) 2019-09-11 2021-03-18 Nicoventures Trading Limited Method for whitening tobacco
US20220071984A1 (en) 2019-09-11 2022-03-10 Nicoventures Trading Limited Oral product with nicotine and ion pairing agent
WO2021048770A1 (en) 2019-09-11 2021-03-18 Nicoventures Trading Limited Alternative methods for whitening tobacco
WO2021048769A1 (en) 2019-09-13 2021-03-18 Nicoventures Trading Limited Method for whitening tobacco
WO2021058063A2 (en) 2019-09-23 2021-04-01 Polysecure Gmbh Sorting method
US20210177038A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral products with active ingredient combinations
US20210330590A1 (en) 2019-12-09 2021-10-28 Nicoventures Trading Limited Agents for oral composition
US20210169122A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral foam composition
US20210169121A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Liquid oral composition
US20210177043A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral product
US20210177754A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Nanoemulsion for oral use
US20210186081A1 (en) 2019-12-09 2021-06-24 Nicoventures Trading Limited Pouched oral product with cannabinoid
US20210169867A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Moist oral compositions
US20210169132A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral composition including gels
US20210169792A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral compositions and methods of manufacture
US20210378948A1 (en) 2020-06-08 2021-12-09 Nicoventures Trading Limited Effervescent oral composition
US20230013978A1 (en) 2020-09-04 2023-01-19 Nicoventures Trading Limited Child-resistant container for tobacco-containing products
WO2022106845A1 (en) 2020-11-20 2022-05-27 Nicoventures Trading Limited A container
US20220160675A1 (en) 2020-11-25 2022-05-26 Nicoventures Trading Limited Oral cannabinoid product with lipid component

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Tobacco Production, Chemistry and Technology,", 1999
NESTOR ET AL., BEITRAGE TABAKFORSCH. INT.,, vol. 20, 2003, pages 467 - 475
PERFETTI, BEITRAGE TABAKFORSCHUNG INT., vol. 12, 1983, pages 43 - 54
ROTON ET AL., BEITRAGE TABAKFORSCH. INT., vol. 21, 2005, pages 305 - 320
SANTHOSH ET AL., PHYTOMEDICINE, vol. 12, 2005, pages 216 - 220
STAAF ET AL., BEITRAGE TABAKFORSCH. INT, vol. 21, 2005, pages 321 - 330
TAKAHASHI ET AL., ORAL MICROBIOLOGY AND IMMUNOLOGY, vol. 19, no. 1, 2004, pages 61
THE EFSA JOURNAL, vol. 85, 2004, pages 1 - 32

Similar Documents

Publication Publication Date Title
EP4072332B1 (en) Moist oral compositions
US20250032406A1 (en) Fleece for oral product with releasable component
CA3159949A1 (en) Agents for oral composition
EP4072330B1 (en) Oral products with reduced irritation
US20220400744A1 (en) Pouched product comprising dissolvable composition
US20250099373A1 (en) Fleece for pouched product with controlled basis weight
JP2023504918A (en) pouch products
US20220232881A1 (en) Method for sealing pouches
US20210169125A1 (en) Oral products with controlled release
WO2021116919A1 (en) Fleece for oral product with releasable component
AU2020400088A1 (en) Oral compositions with reduced water content
US20220304921A1 (en) Pouched products
US20220295860A1 (en) Oral compositions with reduced water activity
US20220354155A1 (en) Multi-compartment oral pouched product
WO2025068817A1 (en) Apparatus and system for recovering material from oral wrapped products and related method
WO2021116881A1 (en) Oral product in a pourous pouch comprising a fleece material
CA3159269A1 (en) Buffered oral compositions
EP4640072A1 (en) Fleece materials treated with an ion-pairing agent and oral products comprising fleece materials treated with an ion-pairing agent
EP4595781A1 (en) Pouched products containing shreddable filler
US20220304363A1 (en) Oral compositions with reduced water content
US20220295868A1 (en) Moist oral compositions
WO2024095164A1 (en) Products with spherical filler
WO2021116842A1 (en) Oral products with controlled release

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24794201

Country of ref document: EP

Kind code of ref document: A1