WO2025056624A2 - Article for an aerosol provision device - Google Patents
Article for an aerosol provision device Download PDFInfo
- Publication number
- WO2025056624A2 WO2025056624A2 PCT/EP2024/075401 EP2024075401W WO2025056624A2 WO 2025056624 A2 WO2025056624 A2 WO 2025056624A2 EP 2024075401 W EP2024075401 W EP 2024075401W WO 2025056624 A2 WO2025056624 A2 WO 2025056624A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aerosol
- article
- resistive heating
- layer
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/42—Cartridges or containers for inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/20—Devices using solid inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/70—Manufacture
Definitions
- the present invention relates to an article for an aerosol provision device.
- the present invention also relates to an aerosol provision system, an aerosol generator, and an aerosol provision device.
- Smoking articles such as cigarettes, cigars and the like burn tobacco during use to create tobacco smoke. Attempts have been made to provide alternatives to these articles by creating products that release compounds without combusting. Examples of such products are so-called “heat not burn” products or tobacco heating devices or products, which release compounds by heating, but not burning, material.
- the material may be, for example, tobacco or other non-tobacco products, which may or may not contain nicotine.
- Aerosol provision systems which cover the aforementioned devices or products, are known.
- Common systems use heaters to create an aerosol from a suitable medium which is then inhaled by a user. Often the medium used needs to be replaced or changed to provide a different aerosol for inhalation. It is known to use resistive heating systems as heaters to create an aerosol from a suitable medium.
- an article for an aerosol provision device comprising a body, aerosol generating material in the body, an inner flow path on an inner side of the body along which aerosol is configured to flow, the aerosol generating material being exposed to the inner flow path, an outer side of the body, and a channel defined by an outer side of the body defining an outer flow path along which air can flow.
- the body may be elongate and define a longitudinal axis and the inner flow path extends in the longitudinal direction.
- the outer flow path may extend in the longitudinal direction.
- the inner and outer flow paths may extend parallel to each other.
- the body may comprise a first layer and a second layer, wherein an edge of a first layer is offset from an edge of a second layer to define at least a portion of the channel.
- the article may comprise a resistive heating layer comprising a resistive heating element configured to heat at least a portion of the aerosol generating material to generate an aerosol, a first type of electrical contact, and a second type of electrical contact, and wherein the resistive heating element is at least a portion of an electrically conductive path between the first type of electrical contact and the second type of electrical contact.
- at least one of the first type of electrical contact and the second type of electrical contact may protrude to define at least a portion of the channel.
- the resistive heating layer may be exposed in the channel. In an embodiment of any of the above, at least one of the first type of electrical contact and the second type of electrical contact may be accessible in the channel.
- the At least one of the first type of electrical contact and the second type of electrical contact may be exposed in the channel. In an embodiment of any of the above, each of the first type of electrical contact and the second type of electrical contact may be exposed in the channel.
- the channel may be a first channel defining a first outer flow path along which air can flow, and comprising a second channel defining a second outer flow path along which air can flow.
- at least one of the first type of electrical contact and the second type of electrical contact may be accessible in the first channel and another at least one of the first type of electrical contact and the second type of electrical contact may be accessible in the second channel.
- the first type of electrical contact may be accessible in the first channel and the second type of electrical contact may be accessible in the second channel.
- the article may comprise a support configured to support the resistive heating layer.
- the support may comprise a support layer.
- the first layer may comprise a support layer, wherein the resistive heating layer is on the support layer and the support layer defines a protrusion to define at least a portion of the channel.
- the second layer may comprise a body layer.
- the resistive heating layer may be between the body layer and the support layer.
- the resistive heating layer may protrude from the body layer.
- the support may be electrically insulative.
- the support may comprise at least one of paper and card.
- the support layer may comprise a card layer.
- the aerosol generating material may be on the resistive heating layer.
- the article may comprise an aerosol generating layer comprising the aerosol generating material.
- the aerosol generating layer may be on the resistive heating layer.
- the resistive heating layer and the support layer may define a substrate.
- the laminate may comprise the resistive heating layer and the support layer.
- the channel may extend between a proximal to a distal end of the article.
- the article may comprise an outlet airflow path between the article air inlet at a distal end of the article and an article air outlet at a proximal end of the article.
- the first type of electrical contact may be configured to electrically connect with a device electrical connector and the second type of electrical contact may be configured to electrically connect with the device electrical connector.
- the single second type of electrical contact may be shared between each of the resistive heating elements.
- the resistive heating element may be formed by at least one of cutting said resistive heating layer; chemically etching said resistive heating layer; forming or pressing the resistive heating layer in the substrate; and printing said resistive heating layer.
- the resistive heating layer may be in the form of a foil.
- the first row and the second row may extend parallel to each other.
- the first and second row may extend in a longitudinal direction.
- the aerosol generator comprises three or more rows of the plurality of resistive heating elements.
- an aerosol provision device configured to receive an article for an aerosol provision device of any of the above.
- an aerosol provision article comprising an aerosol generator of any of the above.
- an aerosol provision system comprising an aerosol generator of any of the above or an article for an aerosol provision device of any of the above, and an aerosol provision device configured to at least partially receive the aerosol generator of any of the above or the article of the above.
- an aerosol provision device comprising the article or the aerosol generator of any of the above.
- Figure 1 is a schematic perspective view of an aerosol provision system
- Figure 2 is a schematic perspective view of an article comprising aerosol generating material of the aerosol provision system of Figure 1;
- Figure 3 is a schematic perspective view of a first side of an aerosol generator of the article of Figure 2;
- Figure 6 is a schematic partially exploded perspective view of the article of Figure 2, with an aerosol generator shown inverted from an assembled orientation and in a spaced relationship with other components;
- Figure 7 is a schematic cross-sectional view of another aerosol generator such as the aerosol generator shown in Figure 3;
- Figure 8 is a schematic plan view of a heating element of the aerosol generator of Figure 3;
- Figure 9 is a schematic plan view of a resistive heating layer of the aerosol generator of Figure 3 with a plurality of heating elements;
- Figure 10 is a flow chart showing a method of forming an aerosol generator, such as the aerosol generator of Figure 3;
- Figure 11 is an exploded perspective view of an aerosol generator being formed
- Figure 12 is a schematic perspective view of a resistive heating layer of an aerosol generator being formed
- Figure 13 is a flow chart showing a method of forming an aerosol generator, such as the aerosol generator of Figure 3;
- Figure 14 is a flow chart showing a method of forming an aerosol generator, such as the aerosol generator of Figure 3
- Figure 15 is a flow chart showing a method of forming an aerosol generator, such as the aerosol generator of Figure 3;
- Figure 17 is a schematic plan view of a heating element of an aerosol generator
- Figure 18 is a schematic plan view of a heating element of an aerosol generator
- Figure 19 is a schematic perspective view of part of an aerosol generator of the article of Figure 2;
- Figure 20 is a schematic perspective view of a device connector of an aerosol provision device of the aerosol provision system of Figure 1;
- Figure 21 is a schematic side view of the aerosol generating system of Figure 1 ;
- Figure 22 is a flow chart showing a method of forming an aerosol generator, such as the aerosol generator of Figure 3;
- Figures 23 to 25 show an aerosol generator being formed
- Figure 26 is a schematic perspective view of an article comprising aerosol generating material of the aerosol provision system of Figure 1 ;
- Figure 27 is a schematic perspective cut-away view of the article of Figure 26;
- Figure 28 is a schematic perspective cut-away view of the aerosol provision system of Figure 1 with the article of Figure 26; and Figure 29 is a schematic perspective cut-away view of the aerosol provision system of Figure 1 with an article comprising aerosol generating material.
- delivery mechanism is intended to encompass systems that deliver a substance to a user, and includes: non-combustible aerosol provision systems that release compounds from an aerosolisable material without combusting the aerosolisable material, such as electronic cigarettes, tobacco heating products, and hybrid systems to generate aerosol using a combination of aerosolisable materials; and articles comprising aerosolisable material and configured to be used in one of these non-combustible aerosol provision systems.
- a “non-combustible” aerosol provision system is one where a constituent aerosol-generating material of the aerosol provision system (or component thereof) is not combusted or burned in order to facilitate delivery of at least one substance to a user.
- the delivery system is a non-combustible aerosol provision system, such as a powered non-combustible aerosol provision system.
- the non-combustible aerosol provision system is an electronic cigarette, also known as a vaping device or electronic nicotine delivery system (END), although it is noted that the presence of nicotine in the aerosol-generating material is not a requirement.
- END electronic nicotine delivery system
- the non-combustible aerosol provision system is an aerosol-generating material heating system, also known as a heat-not-burn system.
- a heat-not-burn system is a tobacco heating system.
- the non-combustible aerosol provision system is a hybrid system to generate aerosol using a combination of aerosol-generating materials, one or a plurality of which may be heated.
- Each of the aerosol-generating materials may be, for example, in the form of a solid, liquid or gel and may or may not contain nicotine.
- the hybrid system comprises a liquid or gel aerosol-generating material and a solid aerosol-generating material.
- the solid aerosol-generating material may comprise, for example, tobacco or a non-tobacco product.
- the non-combustible aerosol provision system may comprise a non- combustible aerosol provision device and a consumable for use with the non- combustible aerosol provision device.
- the disclosure relates to consumables comprising aerosolgenerating material and configured to be used with non-combustible aerosol provision devices. These consumables are sometimes referred to as articles throughout the disclosure.
- the non-combustible aerosol provision system such as a non-combustible aerosol provision device thereof, may comprise a power source and a controller.
- the power source may, for example, be an electric power source.
- the non-combustible aerosol provision system may comprise an area for receiving the consumable, an aerosol generator, an aerosol generation area, a housing, a mouthpiece, a filter and/or an aerosol-modifying agent.
- the consumable for use with the non-combustible aerosol provision device may comprise aerosol-generating material, an aerosol-generating material storage area, an aerosol-generating material transfer component, an aerosol generator, an aerosol generation area, a housing, a wrapper, a filter, a mouthpiece, and/or an aerosol-modifying agent.
- aerosol-generating material (which is sometimes referred to herein as an aerosolisable material) is a material that is capable of generating aerosol, for example when heated, irradiated or energized in any other way. Aerosol-generating material may, for example, be in the form of a solid, liquid or semi-solid (such as a gel) which may or may not contain an active substance and/or flavourants.
- the substance to be delivered comprises an active substance (sometimes referred to herein as an active compound).
- the aerosol-generating material may comprise one or more active substances and/or flavours, one or more aerosol-former materials, and optionally one or more other functional material.
- the aerosol-generating material may comprise a binder, such as a gelling agent, and an aerosol former.
- a substance to be delivered and/or filler may also be present.
- a solvent such as water, is also present and one or more other components of the aerosol-generating material may or may not be soluble in the solvent.
- the aerosol-generating material is substantially free from botanical material.
- the aerosol-generating material is substantially tobacco free.
- the aerosol-generating material may comprise or be in the form of an aerosolgenerating film.
- the aerosol-generating film may comprise a binder, such as a gelling agent, and an aerosol former.
- a substance to be delivered and/or filler may also be present.
- the aerosol-generating film may be substantially free from botanical material.
- the aerosol-generating material is substantially tobacco free.
- the aerosol-generating film may have a thickness of about 0.015 mm to about 1 mm.
- the thickness may be in the range of about 0.05 mm, 0.1 mm or 0.15 mm to about 0.5 mm or 0.3 mm.
- the aerosol-generating film may be continuous.
- the film may comprise or be a continuous sheet of material.
- the aerosol-generating film may be discontinuous.
- the aerosolgenerating film may comprise one or more discrete portions or regions of aerosolgenerating material, such as dots, stripes or lines, which may be supported on a support.
- the support may be planar or non-planar.
- the aerosol-generating material comprises a plurality of aerosolgenerating films.
- the aerosol-generating film comprises a plurality of aerosol-generating film regions.
- Such plurality of aerosol-generating films and/or plurality of aerosol-generating film regions may have different properties, for example at least one of different compositions, thicknesses, density, active substances and/or flavours, one or more aerosol-former materials, and optionally one or more other functional material.
- the aerosol-generating film may be formed by combining a binder, such as a gelling agent, with a solvent, such as water, an aerosol-former and one or more other components, such as one or more substances to be delivered, to form a slurry and then heating the slurry to volatilise at least some of the solvent to form the aerosol-generating film.
- a binder such as a gelling agent
- a solvent such as water
- an aerosol-former such as one or more other components, such as one or more substances to be delivered
- the slurry may be heated to remove at least about 60 wt%, 70 wt%, 80 wt%, 85 wt% or 90 wt% of the solvent.
- the aerosol-generating material may be an “amorphous solid”. In some embodiments, the amorphous solid is a “monolithic solid”. The aerosol-generating material may be non-fibrous or fibrous. In some embodiments, the aerosol-generating material may be a dried gel. The aerosol-generating material may be a solid material that may retain some fluid, such as liquid, within it. In some embodiments the retained fluid may be water (such as water absorbed from the surroundings of the aerosolgenerating material) or the retained fluid may be solvent (such as when the aerosolgenerating material is formed from a slurry). In some embodiments, the solvent may be water. The aerosol-former material may comprise one or more constituents capable of forming an aerosol.
- the aerosol-former material may comprise one or more of glycerine, glycerol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,3-butylene glycol, erythritol, meso-Erythritol, ethyl vanillate, ethyl laurate, a diethyl suberate, triethyl citrate, triacetin, a diacetin mixture, benzyl benzoate, benzyl phenyl acetate, tributyrin, lauryl acetate, lauric acid, myristic acid, and propylene carbonate.
- the one or more other functional materials may comprise one or more of pH regulators, colouring agents, preservatives, binders, fillers, stabilizers, and/or antioxidants.
- the material may be present on or in a support, to form a substrate.
- the support may, for example, be or comprise paper, card, paperboard, cardboard, reconstituted material, a plastics material, a ceramic material, a composite material, glass, a metal, or a metal alloy.
- An aerosol provision device can receive an article comprising aerosol generating material for heating.
- An “article” in this context is a component that includes or contains in use the aerosol generating material, which is heated to volatilise the aerosol generating material, and optionally other components in use. A user may insert the article into or onto the aerosol provision device before it is heated to produce an aerosol, which the user subsequently inhales.
- An aerosol generator is an apparatus configured to cause aerosol to be generated from the aerosol-generating material.
- the aerosol generator is a heater configured to subject the aerosol-generating material to heat energy, so as to release one or more volatiles from the aerosol-generating material to form an aerosol.
- a consumable is an article comprising or consisting of aerosol-generating material, part or all of which is intended to be consumed during use by a user.
- a consumable may comprise one or more other components, such as an aerosol- generating material storage area, an aerosol-generating material transfer component, an aerosol transfer component, an aerosol generation area, a housing, a wrapper, a mouthpiece, a filter and/or an aerosol-modifying agent.
- a consumable may also comprise an aerosol generator, such as a heater, that emits heat to cause the aerosolgenerating material to generate aerosol in use.
- the heater may comprise a conductor which can be heated by the passage of an electrical current through the conductor.
- Non-combustible aerosol provision systems may comprise a modular assembly including both a reusable aerosol provision device and a replaceable aerosol generating article.
- the non-combustible aerosol provision device may comprise a power source and a controller (or control circuitry).
- the power source may, for example, comprise an electric power source, such as a battery or rechargeable battery.
- the non-combustible aerosol provision device may also comprise an aerosol generating component.
- the aerosol generating article may comprise partially, or entirely, the aerosol generating component.
- Figure 1 shows a schematic view of an aerosol provision system 100.
- the aerosol provision system 100 comprises an aerosol provision device 200 and an article 300 comprising aerosol generating material 302 (refer to Figure 3).
- the article 300 is shown in Figure 2 removed from the aerosol provision device 200.
- An aerosol generator 304 of the article 300 is shown in Figure 3 with a perspective view of a first side 306, with a perspective view of part of a second side 307 shown in Figure 4.
- the article 300 comprises the aerosol generator 304.
- the aerosol generator 304 is configured to generate an aerosol from the aerosol generating material 302 upon operation of the aerosol provision system 100, as will be described in detail below.
- the aerosol provision system 100 may be elongate, extending along a longitudinal axis.
- the aerosol provision system 100 has a proximal end 102, which will be closest to the user (e.g. the user’s mouth) when in use by the user to inhale the aerosol generated by the aerosol provision system 100, and a distal end 104 which will be furthest from the user when in use.
- the proximal end may also be referred to as the “mouth end”.
- the aerosol provision system 100 accordingly defines a proximal direction, which is directed towards the user when in use. Further, the aerosol provision system 100 likewise defines a distal direction, which is directed away from the user when in use.
- proximal and distal as applied to features of the system 100 will be described by reference to the relative positioning of such features with respect to each other in a proximal-distal direction along a longitudinal axis.
- the article 300 is received by the aerosol provision device 200.
- the configuration of the article 300 and the aerosol provision device 200 may vary.
- the aerosol provision device 200 comprises a device body 202.
- the device has a housing 204 enclosing components of the device 200.
- An article receiving portion 206 sometimes referred to as a device chamber, as shown in Figure 5, is configured to receive a portion of the article 300.
- a proximal end 308 of the article protrudes from the device 200 when the article 300 is received in the device chamber 206.
- a receptacle 208 defines the chamber 206.
- the receptacle 208 comprises a receptacle base 210 and a receptacle peripheral wall 212.
- the configuration of the receptacle 208 may vary in dependence on the configuration of the article 300.
- One or more user-operable control elements 224 such as a button or switch, which can be used to operate the aerosol provision system 100 may be provided on the aerosol provision device 200.
- a user may activate the system 100 by pressing the control element 224.
- the one or more user-operable control elements may be omitted.
- the aerosol provision system 100 is operated by another user action, for example puff activated by a user drawing air through the system.
- the aerosol provision device 200 comprises an opening 214 at the proximal end, leading into the device chamber 206.
- the opening 214 is provided in one end, through which the article 300 can be inserted.
- the article 300 may be fully or partially inserted into the device 200.
- the configuration of the device 200 may vary, for example the opening may be in a longitudinal side wall of the device 200, and/or may be closed by another feature of the device 200 during use.
- the article 300 defines a mouthpiece 310 at the proximal end 308.
- the device 200 defines the mouthpiece. The user places their mouth over the mouthpiece during use.
- the device 200 defines the longitudinal axis along which an article 300 may extend when inserted into the device 200.
- the opening 214 is aligned on the longitudinal axis.
- the longitudinal axis may be an axis along which the article 300 is inserted into the device 200.
- the longitudinal axis may be considered to be a receiving axis of the device 200.
- the article 300 may similarly have a longitudinal axis along which it is inserted into the device and this axis may be considered to be an insertion axis.
- the aerosol provision device 200 comprises a power source 220.
- the power source 220 may be a battery, for example a rechargeable battery.
- the device 200 also comprises a control circuit 222, acting as a controller, comprising a processor and a memory.
- a heating system 110 is configured to heat the aerosol generating material 302 of an article 300.
- the article 300 in embodiments is a consumable, and is interchangeable with other articles 300.
- the heating system 110 comprises the aerosol generator 304.
- the heating system 110 comprises other components of the aerosol provision system 100 including components of the article 300 and the aerosol provision device 200, for example the power source 220 and the control circuit 222.
- the aerosol generator 304 forms part of the article 300.
- the aerosol generator 304 comprises a heating arrangement 312 configured to heat aerosol generating material 302, for example at least one of a film and a gel to generate an aerosol.
- the aerosol generating material may be referred to as aerosolisable material.
- the heating arrangement 312 is a resistive heating arrangement.
- the or each heating element in embodiments is a resistive heating element, as described in detail below.
- the heating system 110 comprises a resistive heating generator including components to heat the heating arrangement 312 via a resistive heating process.
- an electrical current is directly applied to a resistive heating element, and the resulting flow of current in the heating element, acting as a heating component, causes the heating element to be heated by Joule heating.
- the resistive heating element comprises resistive material configured to generate heat when a suitable electrical current passes through it, and the heating arrangement 312 comprises electrical contacts for supplying electrical current to the resistive material.
- the provision of a resistive heating arrangement 312 allows for a compact arrangement. Resistive heating provides an efficient configuration.
- air is drawn into an air inlet 314 of the article 300, as indicated by arrow 316.
- the air inlet 314 is in a distal end of the article 300.
- the air inlet 314 may have a different configuration, for example in the side.
- the air flow to the air inlet 314 of the article 300 may be defined, for example by at least one of an air path through the device 200.
- the air flow path of the system 100 is described in more detail below, with reference to Figures 26 to 28.
- at least a portion of the air path is defined between the device 200 and the article 300.
- At least a portion of the air path is defined in the device chamber 206 as shown in Figure 5.
- an aerosol generated by the aerosol generator 304 exits the device at an aerosol outlet 318, as indicated by arrow 319.
- the aerosol outlet 318 is in the mouthpiece of the article 300, such that the aerosol is drawn directly from the article 300 into the mouth of a user of the system 100.
- the aerosol provision system comprises two main components, namely a control section forming a reusable part and a consumable section forming a replaceable or disposable part which may be referred to as a replaceable or disposable article or cartridge.
- the aerosol provision device 200 forms a control section and the article 300 forms the consumable section.
- control section and the consumable part may be releasably connected at an interface.
- the consumable part may be removable and replaceable, for example when the consumable part is used, with the control section being re-used with a different consumable part.
- the aerosol provision system 100 as shown is provided by way of example only and is highly schematic. Different aerosol generating devices and other devices may be used in example implementations of the principles described here. For example, in some example embodiments, air is drawn into an air inlet in the control section, passes through the interface, and exits the consumable part. As shown schematically in Figure 5, and described in detail below, the article 300 has an article electrical contact configuration 320.
- the electrical contact configuration 320 in embodiments is formed by the aerosol generator 304.
- the electrical contact configuration 320 comprises heater electrical contacts 322.
- the heater electrical contacts 322 may also be known as heater or article contacts.
- the aerosol provision device 200 comprises an electrical connector 230.
- the electrical connector 230 comprises connector electrical contacts 232.
- the connector electrical contacts 232 may also be known as connector or device contacts.
- the article electrical contact configuration 320 is configured to electrically communicate with the device electrical connector 230.
- the configuration of the article 300 may vary. As described herein, the article is a flat article or consumable.
- the exterior of the article 300 has a length, a width perpendicular to the length, and a depth perpendicular to each of the length and the width, wherein the length is greater than or equal to the width, and wherein the width is greater than the depth.
- the article is tubular. That is, the article 300 has a tubular configuration. In such an arrangement the aerosol generator may have a tubular arrangement.
- the article 300 comprises a body 324.
- the body 324 is hollow.
- the body 324 defines an inner flow path 326 (refer to Figure 6) through the article 300.
- the inner flow path 326 extends between the air inlet 314 and the aerosol outlet 318.
- the inner flow path 326 is defined by an internal space in the article along which air and/or aerosol can flow.
- the inner flow path 326 is defined in the body 324.
- the or each aerosol generator 304 bounds the inner flow path 326.
- the aerosol generating material 302 is exposed to the inner flow path 326.
- the aerosol generating material 302 is exposed in the internal space.
- the internal space in embodiments comprises two or more chambers.
- the air inlet 314 comprises an opening 315.
- the opening 315 is formed in the body 324.
- the opening is formed in another component of the article 300, for example the aerosol generator 304 or another wall feature.
- the aerosol outlet 318 comprises an outlet opening 317.
- the outlet opening 317 is formed in the body 324.
- the outlet opening 317 is formed in another component of the article 300, for example the aerosol generator 304 or another wall feature.
- the article 300 comprises two aerosol generators 304 forming an aerosol generator arrangement.
- the number of aerosol generators 304 may differ.
- Each aerosol generator 304 comprises aerosol generating material 302.
- the aerosol generating material 302 is exposed to the flow path 326.
- the article 300 comprises a single aerosol generator 304.
- One of the aerosol generators 304 will be described in detail, with such detail being applicable to one or more further aerosol generators 304 in embodiments.
- the or each aerosol generator 304 and the body 324 are formed in a stacked configuration.
- other arrangements such as a tubular arrangement of the article are envisaged.
- the aerosol generator 304 defines a tubular configuration.
- Tubular may include circular cross-sectional, an elliptical cross section and other polygonal shapes.
- the article 300 has a flat configuration. That is, wherein an exterior of the article has a length, a width perpendicular to the length, and a depth perpendicular to each of the length and the width, wherein the length is greater than or equal to the width, and wherein the width is greater than the depth.
- Other configurations are envisaged.
- Figure 6 is a partially exploded perspective view of the article 300, with an aerosol generator 304 shown inverted from an assembled orientation and in a spaced relationship with other components.
- the article 300 comprises a first one of the aerosol generator 302, the body 324 and a second one of the aerosol generator.
- the body 324 spaces the first and second aerosol generators 304.
- the first and second aerosol generators 304 close the internal space defined by the body 324 along which air and/or aerosol can flow.
- the aerosol generating material 302 of the first and second aerosol generators 304 face each other and is exposed to the internal space. When assembled, the first and second aerosol generators 304 sandwich the body 324.
- the first and second aerosol generators 304 and the body have equal plan areas. In embodiments, one or more of the first and second aerosol generators 304 and the body 324 has a greater length and/or width. In embodiments, one of the first and second aerosol generators 304 is replaced by a blank panel.
- the body 324 comprises a body layer.
- the body may comprise a plurality of body layers. The body layers may be formed in a stack and arranged to define features of the article 300, such as the air inlet 314 and aerosol outlet 318.
- a wrap encircles the article 300 and forms part of the article 300.
- the wrap may comprise a sheet. The wrap acts as a fixed sleeve.
- each aerosol generator 304 protrudes from the wrap at a distal end. Exposed electrical contact regions 323 of the heater contacts 322 are exposed at the distal end, for example refer to Figure 2. Other configurations are envisaged, for example at least one exposed electrical contact region 323 may additionally or alternatively be defined along a minor longitudinal face or edge of the article 300, and on a major face of the article defined by the aerosol generator 304.
- the aerosol generator 304 is schematically shown in cross section in Figure 7.
- the aerosol generator 304 is an implementation of the aerosol generator 304 of the aerosol provision system 100 described above.
- the aerosol generator 304 comprises an aerosol generating layer 330.
- the aerosol generating layer is also known as an aerosolisable layer.
- the aerosol generating layer 330 comprises the aerosol generating material 302.
- the aerosol generator 304 comprises a resistive heating layer 340.
- the resistive heating layer 340 in embodiments, is formed as an electrically conductive layer.
- the aerosol generating layer 330 is on the resistive heating layer 340.
- the aerosol generating layer 330 is in direct contact with the resistive heating layer 340.
- the aerosol generating layer 330 is in indirect contact with the resistive heating layer 340.
- the resistive heating layer 340 may in embodiments comprise a coating.
- the resistive heating layer 340 comprises a plurality of resistive heating elements 342, for example as shown in Figures 8 and 9.
- the or each resistive heating element 342 forms at least a portion of an electrically conductive path between a pair of the electrical contacts 322.
- the or each resistive heating element 342 provides the electrically conductive path for resistive heating of at least of portion of the aerosol generating material 302 to generate an aerosol.
- the aerosol generating material 302 is, in embodiments, in the form of a film or a gel.
- the resistive heating layer 340 is formed as an electrically conductive layer. This layer in embodiments takes the form of at least one of a metal layer, such as an aluminium layer, or a non-metallic material, such as graphene.
- the resistive heating layer 340 is in the form of a foil, for example an aluminium foil.
- the aerosol generator 304 comprises a support 350.
- the support 350 in embodiments comprise a paper or card material.
- the support 350 provides structural support for the aerosol generator 304.
- the resistive heating layer 340 is on the support 350.
- the support 350 is configured as a support layer. As shown in Figure 7, in the aerosol generator 304, the resistive heating layer 340 is sandwiched between the support 350 and the aerosol generating layer 330.
- the support 350 is electrically insulative.
- the resistive heating layer 340 and the support layer 350 define a substrate 352.
- the substrate 352 supports the aerosol generating layer 330.
- the article 300 may comprise a laminate 354 comprising the resistive heating layer 340 and the support layer 350.
- the laminate 354 comprises the aerosol generating layer 330.
- the aerosol generating layer 330 may be formed as a contiguous configuration, or may be formed from discrete portions. The discrete portions may comprise one or more of dots, strips, spirals, or other shapes.
- the aerosol generating layer 330 comprises an aerosolgenerating film. In embodiments, the aerosol generating layer 330 comprises a plurality of aerosol-generating films. In embodiments, the aerosol-generating film comprises a plurality of aerosol-generating film regions. Such plurality of aerosol-generating films and/or plurality of aerosol-generating film regions may have different properties, for example at least one of different compositions, thicknesses, density, active substances and/or flavours, one or more aerosol-former materials, and optionally one or more other functional material.
- One or more of the aerosol generating layer 330, resistive heating layer 340 and the support layer 350 may comprise a further layer.
- the support layer 350 may comprise a backing layer or an intermediate layer. The support layer 350 in embodiments is omitted.
- Figure 8 shows one of the resistive heating elements 342.
- the resistive heating layer 340 comprises a plurality of resistive heating elements 342.
- the resistive heating layer 340 comprises a single resistive heating element 342.
- the plurality of heating elements 342 may be formed in an array 344 as shown in Figure 9.
- the plurality of heating elements 342 in Figure 9 are arranged in an array defining a single row.
- the plurality of heating elements 342 in embodiments comprise an array comprising multiple rows of the plurality of heating elements 342.
- the plurality of resistive heating elements are shown arranged in an array of two rows of the plurality of resistive heating elements. Such rows are aligned in columns in line with the flow path in the article 300. It will be understood that the configurations described with reference to Figures 1 to 25 for example, may be used in combination with the configurations shown in Figures 27 to 29.
- the resistive heating element 342 comprises a resistive heating path.
- the resistive heating path is formed by an electrically conducting path.
- the resistive heating path is non-straight.
- the resistive heating path is convoluted.
- the configuration of the resistive heating path may vary.
- the electrical resistance of the heating element 342 may be dependent on the nature of the resistive heating path in the conductive layer, for example the length, width, thickness and arrangement of the path.
- the resistive heating element 342 extends between a first type of electrical contact 360 and a second type of electrical contact 365.
- the first type of electrical contact 360 is configured to provide a positive contact and the second type of electrical contact 365 is configured to provide a negative contact. Electrical current flows between the first type of electrical contact 360 and the second type of electrical contact 365 through the path. The contact arrangement may be reversed.
- the first and second types of electrical contacts 360, 365 are heater electrical contacts 322.
- the first and second types of electrical contacts 360, 365 form at least part of the article electrical contact configuration 320.
- the meandering or serpentine nature of the path of the resistive heating element 342 is such that the electrical resistance of the path is increased when compared with a straight path between the first and second type of electrical contacts.
- the resistive heating layer 340 may comprise a first type of electrical track 361 extending from the resistive heating element 342.
- the first type of electrical track 361 comprises the first type of electrical contact 360.
- the electrical contact 360 of the first type is configured to electrically connect with the device electrical connector 230.
- the first type of electrical contact 360 comprises a first type of exposed contact region 362.
- the first type of exposed contact region 362 is exposed on the article for direct connection with the device electrical connector 230.
- the resistive heating layer 340 may comprise a second type of electrical track 366 extending from the resistive heating element 342.
- the second type of electrical track 366 comprises the second type of electrical contact 365.
- the electrical contact 365 of the second type is configured to electrically connect with the device electrical connector 230.
- the second type of electrical contact 365 comprises a second type of exposed contact region 367.
- the second type of exposed contact region 367 is exposed on the article 300 for direct connection with the device electrical connector 230.
- the 342 in embodiments is created by defining at least one electrically insulative barrier 346 in the resistive heating layer 340.
- the electrically insulative barrier 346 is formed by cutting electrically insulative barrier restrictions (i.e. electrically insulating portions), such as gaps, channels or slots into a sheet formed of electrically conductive material to form the resistive heating layer 340.
- the resistive heating layer 340 is preformed to define the or each resistive heating element 342 and then applied to the support 350.
- the resistive heating layer 340 is applied to the support 350, and the or each resistive heating element 342 then defined in the resistive heating layer 340.
- the or each restive heating element 342 defining the resistive heating layer 340 may be a printed heater.
- the insulative barrier may be an air gap.
- the insulative barrier is a filled gap, for example filled with an insulative material.
- the barrier defines a barrier to electrical conduction across the barrier.
- the or each resistive heating element 342 defining the resistive heating layer 340 may be formed by a cutting action. Cutting may include die cutting.
- the resistive heating element may be formed by an action applied to the resistive heating layer only.
- the resistive heating element may be formed by an action applied to the resistive heating layer and the support layer, for example an action of cutting the resistive heating layer and the support layer.
- the at least one electrically insulative barrier 346 defines the first and second types of electrical track 361 , 366.
- the tracks of the or each resistive heating element 342 have a width in the region of 0.5mm to 1mm (two example prototypes have widths of 0.93mm and 0.72mm respectively) and gaps between the tracks of less than about 0.25mm (the same two example prototypes have gaps of 0.2mm and 0.05mm respectively).
- the or each resistive heating element 342 may have overall dimensions of the order of 10mm x 10mm. Other dimensions are possible in other example embodiments. By forming the or each resistive heating element 342 of these dimensions from an aluminium foil of having a thickness of 0.006mm and an electrical resistivity of between 2 and 6 pOhmcm, the resistance of the path has been calculated to be of the order of 1 Ohm.
- the resistance was measured at between 0.83 and 1.31 Ohms.
- the resistive heating layer 340 may be formed into a plurality of resistive heating elements, indicated generally by the reference numerals 342a, 342b, 242c, 342d and 342e.
- Each of the resistive heating elements 342a-342e extends from a respective one of the first type of electrical contact, indicated generally by the reference numerals 360a, 360b, 360c, 360d and 360e to a single second type of electrical contact 365.
- the number of electrical contacts may vary.
- each resistive heating element 342a-342e extends between a discrete first type of electrical contact and a common second type of electrical contact.
- Each of the resistive heating element 342a-342e provides an electrically conductive path for resistive heating of a portion of the aerosol generating material 302 to generate an aerosol at the respective portion of the aerosol generator 304.
- the separate first type 360a-360e of electrical contacts enable an electric current to be individually provided to each of the plurality of resistive heating elements 342a- 342e.
- the heating of different zones of the aerosol generating layer 330 can be controlled.
- an aerosol generator may be provided with five aerosol generating zones.
- the resistive heating layer 340 allows each of those zones to be activated separately. Accordingly, for example, five puffs of aerosol may be generated from a single consumable incorporating a single aerosol generator 304, and ten puffs of aerosol may be generated from a single consumable incorporating two aerosol generators 304.
- each resistive heating element 342a-342e comprises a corresponding one of the first type of electrical contact 360 and a corresponding one of the second type of electrical contact 365.
- the first type of electrical contacts 360a-360e are arranged on a first edge 363 of the resistive heating layer 340 and the second type of electrical contact 365 is arranged on a second edge 368 of the resistive heating layer 340.
- This may allow for convenient connection of electrical power, but, of course, many other configurations are possible, some of which are discussed further below.
- Figure 10 is a flow chart showing part of a method of forming an aerosol generator 304 or an algorithm, indicated generally by the reference numeral 400, in accordance with an example embodiment.
- the method or algorithm 400 starts at operation 402, where a resistive heating layer is formed into one or more heating elements (e.g. a plurality of heating elements), wherein each resistive heating element extends from an electrical contact of a first type to an electrical contact of a second type.
- the or each heating element may be used to provide an electrically conductive path for resistive heating of a portion of an aerosol generating material to generate an aerosol.
- the formation of the or each resistive heating element may occur prior to or post application of the resistive heating layer on a support, where a support is present.
- the resistive heating layer may be adhered to the support, or mounted or formed on the support in a different configuration.
- the formed resistive heating layer is placed in contact with the aerosol generating layer, wherein said aerosol generating layer incorporates aerosol generating material.
- Algorithm 400 may be used to produce the aerosol generator 304 described above.
- Figure 11 shows the aerosol generator 304 being formed in accordance with an embodiment.
- the aerosol generating material 302 is formed on the resistive heating layer 340 by depositing aerosol generating material, for example by spraying, painting, dispensing or in some other way.
- the aerosol generating layer 330 is disposed on resistive heating layer 340 as indicated by the arrow 406, in an example implementation of the operation 404.
- Figure 12 shows the resistive heating layer 340 being formed in accordance with an example embodiment.
- the resistive heating layer 340 is in the process of being cut using a laser cutter 408.
- the cutting of the resistive heating layer 340 can be used to form the paths of the heating elements described herein.
- the use of the laser cutter 408 (or some other cutting process) is not the only method by which the resistive heating layer 340 described herein may be generated. Some example methods are described below.
- Figure 13 is a flow chart showing part of a method of forming an aerosol generator 304 or an algorithm, indicated generally by the reference numeral 410.
- the method or algorithm 410 starts at operation 412, where the resistive heating layer is provided.
- operation 414 one or more of the resistive heating elements are formed in the resistive heating layer by chemically etching the resistive heating layer.
- the operations 412 and 414 are an example implementation of the operation 402 of the method 400 described above.
- the aerosol generating material is then disposed on the resistive heating layer, thereby implementing the operation 404 described above.
- Figure 14 is a flow chart showing part of a method of forming an aerosol generator 304 or an algorithm, indicated generally by the reference numeral 418.
- the method or algorithm 418 starts at operation 420, where one or more heating elements are formed, at least in part, by printing a resistive heating layer.
- the operation 420 is therefore an example implementation of the operation 402 of the algorithm 400 described above.
- the aerosol generating material is then disposed on the resistive heating layer, thereby implementing the operation 404 described above.
- the cutting, etching and printing methods described above are provided by way of example; other additional or alternative methods are also possible. For example, a so- called “hot foiling” approach could be used in which a heating element is made out of a resistive heating layer, and then assembled/bonded onto a support.
- Figure 15 is a flow chart showing method of operation or an algorithm, indicated generally by the reference numeral 424, in accordance with an example embodiment.
- the method or algorithm 424 may, for example, be implemented using any of the aerosol generators described herein.
- the method or algorithm 424 is initiated when an instruction to activate heating is received in an instance of operation 426.
- a determination is made (in operation 428) regarding whether a heating element is available.
- a plurality of heating elements may be provided.
- the operation 428 may involve determination which of the heating elements have been used and/or the corresponding available aerosol generating material used up.
- the algorithm moves to operation 430, where an available heating element is used.
- heating elements may be individually controllable, for example by providing electrical power to individual heating elements.
- the algorithm terminates at operation 432. If, at operation 428, a determination is made that no heating elements are available, for example because all heating elements have been used, then the algorithm terminates at operation 432. This may mean that a consumable part being used to implement the algorithm 424 needs to be replaced.
- Figure 16 shows the resistive heating layer 340 being formed in accordance with an embodiment.
- the resistive heating layer 340 is being cut using the laser cutter 408, although other methods could be used, such as chemical etching or printing, as discussed above.
- the cutting of the electrically conductive layer 340 forms the heating elements as described herein.
- the paths cut are linear paths, extending along the length of the electrically conductive layer 120.
- Figure 17 shows another embodiment of the resistive heating layer 340.
- the resistive heating layer 340 may be formed using the laser cutter 408 described above, or some similar device or another method.
- the resistive heating layer 340 comprises a plurality of resistive heating elements 342, each resistive heating element 342 being a linear heating element comprising a conducting path extending along a length of the resistive heating layer 340.
- Each resistive heating element 342 extends from one of the first type of electrical contact 360, for example a positive electrical connection to one of the second type of electrical contact 365, for example a negative electrical contact.
- both types of electrical contact are provided at the same end of the resistive heating layer 340 and are provided next to each other.
- each heating element has separate first and second types of electrical contacts.
- FIG 18 shows another embodiment of the resistive heating layer 340.
- the resistive heating layer 340 may be formed using the laser cutter 408 described above, or some similar device or another method.
- the resistive heating layer 340 comprises a plurality of heating elements 342, each heater element 342 being a linear heating element comprising a conducting path extending along a length of the resistive heating layer 340.
- Each resistive heating element 342 extends from one of the first type of electrical contact 360, for example a positive electrical connection to the second type of electrical contact 365, for example a negative electrical contact.
- the different types of electrical connection are provided at the opposite ends of the resistive heating layer 340 and a common second type of electrical contact is provided.
- a linear path is provided, an increase in the electrical resistance may be provided by means of providing a crenelated path, acting as a convoluted path. Note that the paths of any other embodiments described herein could also be crenelated.
- Figure 19 shows the distal end of the article 300.
- the body 324 comprises a plurality of body layers 325.
- the body layers 325 are arranged in a stack of body layers 325.
- the body layers 325 form a laminate.
- the body layers 325 in embodiments are card layers. Other suitable materials may be used.
- the body layers 325 are configured to define features of the article 300.
- At least one body layer in embodiments comprises a gap defining the air inlet 315. The gap defines the opening 314.
- the aerosol generator 304 comprises the resistive heating layer 340.
- the resistive heating layer 340 comprises the resistive heating elements 342, the first type of electrical contacts 360, for example providing positive electrical connections to each of a plurality of heating elements 342 and a single second type of electrical contact 365, for example providing a common negative electrical connection to the plurality of heating elements 342.
- the first and second types of electrical contacts 360, 365 namely the heater contacts 322, together form at least part of the article electrical contact configuration 320 of the aerosol generator 304.
- the resistive heating elements 342 are on an inner side of the resistive heating layer 340.
- the inner side defines the first side 306 of the aerosol generator 304 as shown in Figure 3.
- the heater contacts 322 are on the second side 307 of the resistive heating layer 340.
- the second side 307 defines an outer side of the aerosol generator 304.
- the heater contacts 322 are exposed so that they are able to be brought into contact with the device electrical connector 230.
- the heater contacts 322 are on an opposing side of the resistive heating layer 340 to the resistive heating elements 342. Other configurations are envisaged.
- the support layer 350 is between an inner portion of the resistive heating layer
- a fold 370 is formed in the resistive heating layer 340.
- the fold 370 defines the heater contacts 322.
- the fold 370 as shown in Figures 2 to 4 and 19 extends perpendicular to the longitudinal axis of the aerosol generator 304.
- the fold 370 defines a flap 372.
- the heater contacts 322 are on the flap 372.
- the flap defines a contact panel. The remaining part of the blank defines a main panel.
- the support layer 350 in embodiments is folded.
- the substrate 352 is folded at the fold 370.
- the support layer 350 ends at the fold.
- the fold 370 extends parallel to the longitudinal axis of the aerosol generator 304.
- the aerosol generator comprises a fold.
- the fold defines a first support layer panel and a second support layer panel.
- the resistive heating layer may be provided on the first support layer panel and at least one or each of the first type of electrical contact and the second type of electrical contact is provided on the second support layer panel.
- the first support layer panel and the second support layer panel Upon folding of the substrate 352, the first support layer panel and the second support layer panel extend parallel to each other.
- the first support layer panel and the second support layer panel in embodiments are affixed to each other to retain the folded condition.
- the folded portion of resistive heating layer 340 is affixed in the folded position.
- This folded portion in embodiments is adhered, for example by bonding. Other fixing means are anticipated.
- the fold 370 defines the first type of exposed contact region 362.
- the fold 370 defines the second type of exposed contact region 367.
- the electrical tracks 361, 366 electrically communicate across the fold 370.
- the heater contacts 322 of the first type of electrical track 361 and the second type of electrical track 366 are defined on the second side of the resistive heating layer 340. Portions of the first type of electrical track 361 and the second type of electrical track 366 extend on the first side of the resistive heating layer 340. In embodiments the resistive heating elements extend from the fold 370. Other configurations are anticipated.
- the device 200 comprises a plurality of connector electrical contacts 232 of the electrical connector 230.
- the configuration of the device connector 230 is dependent on the configuration of the heater contacts 322 of the aerosol generator 304.
- the aerosol generator 300 comprises a plurality of heater contacts 322 including a plurality of the first type of heater contact 360 and one of the second type of heater contact 365.
- the article 300 comprises another set of heater contacts 322 on the opposing side of the article 300 corresponding to the second aerosol generator 304.
- Figure 20 shows a device connector 230 of the aerosol provision device 200 used in some embodiments.
- the connector 230 has separate connector electrical contacts 232 for connection with the heater contacts 322.
- FIG. 21 schematically shows the aerosol provision system 100.
- the system 100 comprises the article 300 and aerosol provision device 200, both shown in block diagram.
- the device 200 comprises first and second connectors 230a and 230b.
- the connectors 230a and 230b enable the aerosol provision device 200 to provide regulated or controlled electrical voltages and/or currents to the various first and second type of heater contacts 360, 365 of the aerosol generator 304 when the article 300 is inserted into the aerosol provision device 200.
- the aerosol provision device 200 may comprise a connector arrangement configured to provide electrical power to the connectors 230a, 230b.
- the aerosol provision device 200 may, for example, operate the method as described above.
- Figure 22 is a flow chart showing a method of forming an aerosol generator 304 or an algorithm, indicated generally by the reference numeral 440, in accordance with an example embodiment.
- the method or algorithm 440 starts at operation 442, where a resistive heating layer is formed into at least one resistive heating element, the or each heating element providing an electrically conductive path for resistive heating of at least a portion of an aerosolisable material to generate an aerosol.
- Example heating elements that may be formed in the operation 442 are described elsewhere in this document.
- At least one first type of electrical contact is provided on the resistive heating layer.
- the method of formation may be any of the methods described above.
- at least one second type of electrical contact is provided on the resistive heating layer.
- the method of formation may be any of the methods described above.
- the first and second types of electrical contact are formed along or proximal a single edge of the resistive heating layer. In embodiments, the first and second types of electrical contact are formed along or proximal to different edges of the resistive heating layer. In embodiments, the first types of electrical contact (e.g. positive connection(s)) are provided along a first edge of the resistive heating layer. In embodiments, the second types of electrical contact (e.g. negative electrical connection(s)) are provided along a second edge of the resistive heating layer.
- the operations 446 and 448 could be performed in a different order, or at the same time. Moreover, the operations 446 and 448 could be performed together with the operation 442.
- the resistive heating layer is folded.
- the support layer is folded together with the resistive heating layer.
- the resistive heating layer is folded such that electrical contacts of the first and second type are provided adjacent to one another, as discussed in detail below.
- Figures 23 to 25 show an embodiment of the aerosol generator 304 being formed in accordance with the algorithm 440.
- Figure 23 shows another embodiment of the aerosol generator 304 being formed.
- the resistive heating layer 340 is being cut using a laser cutter 408.
- the prefolded configuration defines a blank for forming the aerosol generator 304.
- the blank in embodiments defines fold lines along which folds are made during formation of the aerosol generator.
- the aerosol generator 304 blank comprises the resistive heating layer 340 and the support layer 350.
- the resistive heating layer 340 and the support layer 350 define panels defined by the fold lines.
- the system 100 corresponds to the schematic view of the system 100 shown in Figure 5. It will be understood that the configuration of the system and features of the system 100 described below is generally the same as the system described above, and so a detailed description of features of the system 100 will not be repeated below. It will be understood that features of the embodiments described above are applicable to features of the embodiments described below. For example, features of the outer air flow arrangement described below are not shown in detail in Figures 1 to 25, however such an arrangement is applicable to embodiments described above with reference to these Figures.
- the embodiments of Figures 26 to 29 are depicted with a plurality of resistive heating elements 342 comprising a first row of heating elements and a second row of heating elements. The first and second heating element rows are arranged in adjacent columns on the resistive heating layer 340. It will be understood that the flow configuration 311 can also be used in the systems of Figures 1 to 25 such as where a single, column arrangement of resistive heating elements is provided.
- the flow configuration 311 is defined at least in part by the article 300.
- the system comprises the inner flow path 326 on an inner side 333 of the article 300.
- the body 324 defines the inner flow path 326 through the article 300.
- the inner flow path 326 extends between the air inlet 314 and the aerosol outlet 318.
- the inner flow path 326 is defined by the internal space in the article along which air and/or aerosol can flow.
- the inner flow path 326 is defined in the body 324.
- the or each aerosol generator 304 bounds the inner flow path 326.
- the aerosol generating material 302 is exposed to the inner flow path 326.
- the aerosol generating material 302 is exposed in the internal space.
- the internal space in embodiments comprises two or more chambers.
- the outer air flow path 331 is defined on an outer side 334 of the article 300.
- the outer flow path 331 forms part of a passage between the article exterior and the device receptacle 208.
- the outer flow path 331 is defined between a device air inlet and the article air inlet 314.
- the article body 324 is elongate and defines the longitudinal axis.
- the electrical contacts of a first type 360a-360j are disposed on the exposed portion of the first layer 325a.
- the electrical contacts of a first type 360a-360j are disposed on the exposed portion in the first and second channels 327, 328.
- the electrical contact of a second type 365 is disposed on the inner side 333 of the article 300.
- the electrical contact of a second type comprises a plurality of electrical contacts.
- the resistive heating elements 342a-342j are disposed on the inner side 333 of the article 300.
- the electrical contacts of a first type 360a-360j are connected to the resistive heating elements 342a-342j which are connected to the electrical contact of a second type 365.
- the electrical contacts of a first type are disposed in a first channel and the electrical contacts of a second type are disposed in the second channel.
- the electrical contacts of a first type 360 may protrude from the first layer 325a to define a portion of the first and second channels 327, 328.
- the electrical contacts of a first type 360 may be arranged in a linear or non-linear arrangement to define a linear or non- linear airflow path.
- the electrical contacts may be arranged to affect the outer air flow path 331 in the first and second channels 327, 328.
- the first layer 325a comprises a support on which the resistive heating layer 340 is disposed.
- the second layer 325b comprises a body layer.
- the resistive heating layer 340 is disposed between the body layer and the support.
- the support comprises a support layer.
- the support layer may have a width greater than the resistive heating layer 340 and therefore define a portion of the first and second channels.
- the support layer may define a protrusion which defines a portion of the first and second channels.
- the support may be electrically insulative.
- the support may comprise at least one of paper and card.
- the outer flow path 331 comprises a first outer flow path portion 332a and a second outer flow path portion 332b.
- the device air inlet comprises a first opening 210 and a second opening 211.
- the device comprises a distal chamber 209 at a distal end of the receptacle 208.
- the distal chamber 209 is in fluid connection with the article air inlet 324.
- the first channel 327 defines a first outer flow path portion 332a.
- the first outer flow path portion 332a is defined between the first opening 210 and the distal chamber 209.
- the first channel 327 extends partially through the thickness of the article 300.
- the second channel defines a second outer flow path portion 332b.
- the second outer flow path portion 332b is defined between the second opening 211 and the distal chamber 209.
- the second channel 328 extends partially through the thickness of the article 300.
- the distal chamber 209 is in fluid communication with the outer flow path 331 and the inner flow path 326.
- the first outer flow path portion 332a and the second outer flow path portion 332b intersect at the distal chamber 209.
- the outer flow path comprises a single flow path between a device air inlet and the article air inlet 314.
- the single outer flow path may be defined be a single channel.
- the channel may comprise a plurality of electrical contacts of a first type each connected to a respective resistive heating element.
- the resistive heating layer may comprise a single row array of heating elements, such as those depicted in Figures 1 to 25. An array of two rows of heating elements, as shown in Figures 26 to 29 provides simple connection of the heating elements to the electrical contacts in the channel.
- the article air inlet 314 is at a distal end 104 of the article 300 and the system 100.
- the first and second openings 210, 211 are at a proximal end 102 of the device 200 and system 100.
- the first and second outer flow paths 331 are substantially parallel to the longitudinal axis of the device 200.
- the inner flow path 326 extends in the longitudinal direction.
- the outer flow path 331 extends in the longitudinal direction.
- the inner flow path 326 and the outer flow path 331 are parallel to each other and the longitudinal axis.
- the outer flow path 331 extends from a proximal end 102 to a distal 104 end.
- the inner flow path 326 extends from a distal end 104 to a proximal end 102.
- the device of Figure 28 comprises a distal chamber 209.
- the distal chamber 209 is defined by the receptacle 208.
- a receptacle flow path is defined by the base of the receptacle 208.
- the distal chamber 209 forms part of the receptacle flow path.
- the distal chamber 209 may be omitted.
- the receptacle flow path may be defined by a step or another feature.
- the receptacle flow path fluidly connects the outer flow path 331 and the article inlet 314.
- the distal chamber 209 is fluidly connected to the outer flow path portions 332a, 332b and the inner flow path 326.
- the device comprises a pressure sensor.
- the pressure sensor is positioned in the distal chamber 209. In embodiments, the pressure sensor may be in the receptacle 208.
- the pressure sensor measures the air pressure in the distal chamber 206. Pressure measurements from the sensor are relayed to the control circuit 222 in the device 200.
- Figure 29 shows the device 200 with an alternative article 500 received in the receptacle 208.
- the device 200 comprises a plurality of electrical contacts of a first type 560 that protrude into the receptacle 208.
- the electrical contacts of a first type 560 protrude from the receptacle peripheral wall 212 into the receptacle to contact the article.
- Figure 29 does not depict the peripheral wall from which the electrical contacts 560 extend.
- the electrical contacts of a first type 560 may be disposed on the article, and protrude into the receptacle 208 to contact the receptacle peripheral wall 212 in use.
- the electrical contacts of a first type 560 are in electrical contact with the plurality of electrical connectors of the device 200.
- the outer air flow path 531 is defined between the outer side of the article body and the receptacle 208.
- the outer flow path 530 is affected by the protruding electrical contacts of a first type 560 such that the outer flow path is defined around and/or between the electrical contacts of a first type 560.
- a gap is defined between the outer side of the article body and the receptacle which defines the outer flow path 531.
- the protruding electrical contacts of a first type 560 form the gap between the article body and the receptacle peripheral wall 212 on one side, and the other side of the article body is held close to the receptacle peripheral wall 212.
- the outer airflow path 531 is in fluid communication with the article inlet 314.
- the article 500 has a constant external width throughout its depth.
- the electrical contacts of a first type 560 are arranged in columns, distributed linearly along the axis.
- the outer airflow path 531 around or between the contacts is non-linear.
- the electrical contacts of a first type may be arranged to provide a nonlinear array of contacts.
- the electrical contacts of a first type may be evenly spaced, or may be unevenly spaced.
- the electrical contacts may provide for a substantially linear outer airflow path.
- the provision of the outer airflow path 531 aids cooling of at least one of the device 200 and article 500. Such an arrangement helps to minimise the outside temperature of the device 200 to prevent harm to the user due to overheating.
- the aerosol generating material is formed in a configuration other than as an aerosol generating layer.
- the aerosol generating material in embodiments is in the form of an aerosol generating segment.
- the aerosol generating segment generally comprises a solid material. Such a solid material may be shredded tobacco.
- the aerosol generating material, arranged as an aerosol generating segment for example, may comprise a plurality of individual pieces of aerosol generating material.
- the aerosol generating material may be individual pieces of tobacco material.
- the aerosol generating material comprises a plurality of strips, beads or pellets.
- the aerosol generating segment is a plug of material.
- the aerosol generating segment in embodiments comprises a body of material.
- the aerosol generating material is a non-liquid.
- the body of material comprises a rod of aerosol generating material, for example a tobacco rod.
- the body of material may comprise shredded tobacco material.
- the body of material may be formed into a rod.
- the body of material comprises cut rag tobacco that is formed into a rod.
- the aerosol generating material may comprise tobacco material.
- the aerosol generating material may comprise extruded tobacco.
- the aerosol generating material may comprise reconstituted tobacco.
- the aerosol generating material, formed as a solid material, may comprise nicotine.
- the aerosol generating material may comprise, consist of, or essentially consist of, tobacco. In embodiments, the aerosol generating material is free from tobacco.
- the heating of the article provides a relatively constant release of volatile compounds into an inhalable medium.
- the aerosol generating segment is a plug of material.
- the article may comprise a mouth end section.
- a tubular element may be located between the aerosol generating material and the mouth end section.
- the article may comprise a ventilation area in the mouth end section.
- the mouth end section may define a mouthpiece configured to be placed between a user’s lips.
- the or each resistive heating element is configured to heat substantially the entire aerosol generating material.
- the aerosol generating segment in embodiments is at least substantially cylindrical. In embodiments, the aerosol generating segment is at least partially wrapped by the resistive heating layer. In embodiments, the resistive heating element extends in the aerosol generating segment. The resistive heating element may extend around the aerosol generating segment. In embodiments, the resistive heating element encircles the aerosol generating segment. In some arrangements at least a portion of the flow path through the article is through the aerosol generating segment. The aerosol generating segment may define part of the air path. In embodiments, the first type of electrical contact and the second type of electrical contact are exposed from the aerosol generating segment.
- the aerosol generating material may comprise tobacco material as described herein, which includes a tobacco component.
- the tobacco component may contain paper reconstituted tobacco.
- the tobacco component may also contain leaf tobacco, extruded tobacco, and/or bandcast tobacco.
- the tobacco material may be provided in the form of cut rag tobacco.
- the cut rag tobacco can be formed from a mixture of forms of tobacco material, for instance a mixture of one or more of paper reconstituted tobacco, leaf tobacco, extruded tobacco and bandcast tobacco.
- the tobacco material comprises paper reconstituted tobacco or a mixture of paper reconstituted tobacco and leaf tobacco.
- the tobacco material may contain a filler component.
- the filler component is generally a non-tobacco component, that is, a component that does not include ingredients originating from tobacco.
- the filler component may be a non-tobacco fibre such as wood fibre or pulp or wheat fibre.
- the filler component may also be an inorganic material such as chalk, perlite, vermiculite, diatomaceous earth, colloidal silica, magnesium oxide, magnesium sulphate, magnesium carbonate.
- the filler component may also be a non-tobacco cast material or a non- tobacco extruded material.
- the filler component may be present in an amount of 0 to 20% by weight of the tobacco material, or in an amount of from 1 to 10% by weight of the composition. In some embodiments, the filler component is absent.
- the tobacco material contains an aerosol-former material.
- an "aerosol-former material” is an agent that promotes the generation of an aerosol.
- An aerosol-former material may promote the generation of an aerosol by promoting an initial vaporisation and/ or the condensation of a gas to an inhalable solid and/ or liquid aerosol.
- an aerosol-former material may improve the delivery of flavour from the aerosol generating material.
- any suitable aerosol-former material or agents may be included in the aerosol generating material of the invention, including those described herein.
- Paper reconstituted tobacco refers to tobacco material formed by a process in which tobacco feedstock is extracted with a solvent to afford an extract of solubles and a residue comprising fibrous material, and then the extract (usually after concentration, and optionally after further processing) is recombined with fibrous material from the residue (usually after refining of the fibrous material, and optionally with the addition of a portion of non-tobacco fibres) by deposition of the extract onto the fibrous material.
- the process of recombination resembles the process for making paper.
Landscapes
- Nozzles (AREA)
- Resistance Heating (AREA)
Abstract
168159/04 44 ARTICLE FOR AN AEROSOL PROVISION DEVICE Abstract An article for an aerosol provision device is described. The article comprises a body, 5 aerosol generating material in the body, an inner flow path on an inner side of the body along which aerosol is configured to flow, the aerosol generating material being exposed to the inner flow path, an outer side of the body, and a channel defined by an outer side of the body defining an outer flow path along which air can flow. 10 [Figure 28]
Description
ARTICLE FOR AN AEROSOL PROVISION DEVICE
Technical Field
The present invention relates to an article for an aerosol provision device. The present invention also relates to an aerosol provision system, an aerosol generator, and an aerosol provision device.
Background
Smoking articles such as cigarettes, cigars and the like burn tobacco during use to create tobacco smoke. Attempts have been made to provide alternatives to these articles by creating products that release compounds without combusting. Examples of such products are so-called “heat not burn” products or tobacco heating devices or products, which release compounds by heating, but not burning, material. The material may be, for example, tobacco or other non-tobacco products, which may or may not contain nicotine.
Aerosol provision systems, which cover the aforementioned devices or products, are known. Common systems use heaters to create an aerosol from a suitable medium which is then inhaled by a user. Often the medium used needs to be replaced or changed to provide a different aerosol for inhalation. It is known to use resistive heating systems as heaters to create an aerosol from a suitable medium.
Summary
According to an aspect, there is provided an article for an aerosol provision device comprising a body, aerosol generating material in the body, an inner flow path on an inner side of the body along which aerosol is configured to flow, the aerosol generating material being exposed to the inner flow path, an outer side of the body, and a channel defined by an outer side of the body defining an outer flow path along which air can flow.
In an embodiment of any of the above, the body may be elongate and define a longitudinal axis and the inner flow path extends in the longitudinal direction.
In an embodiment of any of the above, the outer flow path may extend in the longitudinal direction.
In an embodiment of any of the above, the inner and outer flow paths may extend parallel to each other.
In an embodiment of any of the above, the body may comprise a first layer and a second layer, wherein an edge of a first layer is offset from an edge of a second layer to define at least a portion of the channel.
In an embodiment of any of the above, the article may comprise a resistive heating layer comprising a resistive heating element configured to heat at least a portion of the aerosol generating material to generate an aerosol, a first type of electrical contact, and a second type of electrical contact, and wherein the resistive heating element is at least a portion of an electrically conductive path between the first type of electrical contact and the second type of electrical contact. In an embodiment of any of the above, at least one of the first type of electrical contact and the second type of electrical contact may protrude to define at least a portion of the channel.
In an embodiment of any of the above, the resistive heating layer may be exposed in the channel. In an embodiment of any of the above, at least one of the first type of electrical contact and the second type of electrical contact may be accessible in the channel.
In an embodiment of any of the above, the At least one of the first type of electrical contact and the second type of electrical contact may be exposed in the channel. In an embodiment of any of the above, each of the first type of electrical contact and the second type of electrical contact may be exposed in the channel.
In an embodiment of any of the above, the channel may be a first channel defining a first outer flow path along which air can flow, and comprising a second channel defining a second outer flow path along which air can flow. In an embodiment of any of the above, at least one of the first type of electrical contact and the second type of electrical contact may be accessible in the first channel and another at least one of the first type of electrical contact and the second type of electrical contact may be accessible in the second channel.
In an embodiment of any of the above, the first type of electrical contact may be accessible in the first channel and the second type of electrical contact may be accessible in the second channel.
In an embodiment of any of the above, the article may comprise a support configured to support the resistive heating layer.
In an embodiment of any of the above, the support may comprise a support layer.
In an embodiment of any of the above, the first layer may comprise a support layer, wherein the resistive heating layer is on the support layer and the support layer defines a protrusion to define at least a portion of the channel.
In an embodiment of any of the above, the second layer may comprise a body layer.
In an embodiment of any of the above, the resistive heating layer may be between the body layer and the support layer.
In an embodiment of any of the above, the resistive heating layer may protrude from the body layer. In an embodiment of any of the above, the support may be electrically insulative.
In an embodiment of any of the above, the support may comprise at least one of paper and card.
In an embodiment of any of the above, the support layer may comprise a card layer. In an embodiment of any of the above, the aerosol generating material may be on the resistive heating layer.
In an embodiment of any of the above, the article may comprise an aerosol generating layer comprising the aerosol generating material.
In an embodiment of any of the above, the aerosol generating layer may be on the resistive heating layer.
In an embodiment of any of the above, the aerosol generating material may be in direct contact with the resistive heating layer. In an embodiment of any of the above, the aerosol generating layer may be in direct contact with the resistive heating layer.
In an embodiment of any of the above, the aerosol generating material may be in indirect contact with the resistive heating layer. In an embodiment of any of the above, the aerosol generating layer may be in indirect contact with the resistive heating layer.
In an embodiment of any of the above, the article may comprise a distal end, wherein a distal end of the channel defining the outer flow path is spaced from the inner flow path. In an embodiment of any of the above, the article may comprise a mouth end, wherein a mouth end of the channel defining the outer flow path is spaced from the inner flow path.
In an embodiment of any of the above, the inner flow path and the outer flow path may be free from interconnection in the article. In an embodiment of any of the above, the channel may comprise a cut-out, lip, channel, groove, furrow, conduit.
In an embodiment of any of the above, the channel may comprise a reduction or removal of material from the article.
In an embodiment of any of the above, the body may comprise a laminate comprising a plurality of layers, and the channel may be defined by an area of a reduced number of layers.
In an embodiment of any of the above, the channel may comprise an area of reduced number of layers.
In an embodiment of any of the above, the resistive heating layer and the support layer may define a substrate. In an embodiment of any of the above, the laminate may comprise the resistive heating layer and the support layer.
In an embodiment of any of the above, the laminate may comprise the aerosol generating material. In an embodiment of any of the above, the laminate may comprise the aerosol generating layer. In an embodiment of any of the above, the channel may extend partially through the thickness of the article.
In an embodiment of any of the above, the channel may extend between a proximal to a distal end of the article.
In an embodiment of any of the above, the article may comprise stepped edges which define the channel.
In an embodiment of any of the above, the article may comprise an outlet airflow path between the article air inlet at a distal end of the article and an article air outlet at a proximal end of the article.
In an embodiment of any of the above, the first type of electrical contact may be configured to electrically connect with a device electrical connector and the second type of electrical contact may be configured to electrically connect with the device electrical connector.
In an embodiment of any of the above, the support may define an exposed contact area of the first type of electrical contact. In an embodiment of any of the above, the exposed contact area may be a first exposed contact area, and the support may define a second exposed contact area of the second type of electrical contact.
In an embodiment of any of the above, the aerosol generating material may be a continuous aerosol generating material. In an embodiment of any of the above, the aerosol generating layer may be a continuous aerosol generating layer.
In an embodiment of any of the above, the aerosol generating material may be a discontinuous aerosol generating material. In an embodiment of any of the above, the aerosol generating layer may be a discontinuous aerosol generating layer.
In an embodiment of any of the above, the aerosol generating material may comprise a plurality of discrete aerosol generating portions. In an embodiment of any of the above, the aerosol generating layer may comprise a plurality of discrete aerosol generating portions.
In an embodiment of any of the above, the resistive heating element may be one of a plurality of resistive heating elements. In an embodiment of any of the above, one of the discrete aerosol generating may be associated with a corresponding one of the plurality of resistive heating elements.
In an embodiment of any of the above, the aerosol generating layer may comprise at least one of dots, strips and patches. In an embodiment of any of the above, the resistive heating element may be a first heating element and the resistive heating layer forms a second resistive heating element, each resistive heating element providing an electrically conductive path for resistive heating of a portion of the aerosol generating material to generate an aerosol at the respective portion of the aerosol generating material. In an embodiment of any of the above, the resistive heating element may be a first heating element and the resistive heating layer forms a second resistive heating element, each resistive heating element providing an electrically conductive path for resistive heating of a portion of the aerosol generating material to generate an aerosol at the respective portion of the aerosol generating layer. In an embodiment of any of the above, the resistive heating layer may form an array of resistive heating elements comprising at least the first resistive heating element and the second resistive heating element.
In an embodiment of any of the above, each of the first type of electrical contact and the second type of electrical contact may be configured to enable an electric current to be individually provided to each of the resistive heating elements.
In an embodiment of any of the above, the aerosol generating layer may comprise a film or gel layer comprising the aerosol generating material.
In an embodiment of any of the above, the article may comprise a plurality of the first type of electrical contact, wherein each of the heating elements comprises a separate electrical contact of the first type.
In an embodiment of any of the above, the article may comprise a plurality of the second type of electrical contacts, wherein each of the resistive heating elements comprises a separate second type of electrical contact.
In an embodiment of any of the above, the article may comprise a single second type of electrical contact.
In an embodiment of any of the above, the single second type of electrical contact may be shared between each of the resistive heating elements.
In an embodiment of any of the above, the resistive heating element may be formed by at least one of cutting said resistive heating layer; chemically etching said resistive heating layer; forming or pressing the resistive heating layer in the substrate; and printing said resistive heating layer.
In an embodiment of any of the above, the resistive heating layer may be in the form of a foil.
In an embodiment of any of the above, an exterior of the article has a length, a width perpendicular to the length, and a depth perpendicular to each of the length and the width, wherein the length is greater than or equal to the width, and wherein the width is greater than the depth.
According to an aspect there is provided an aerosol generating system comprising the article of above, and an aerosol provision device comprising a receptacle configured to receive at least a portion of the article, an inlet airflow path between a device air inlet at a proximal end of the device and an article air inlet at a distal end of the device, wherein the inlet airflow path is defined by the channel.
In an embodiment of any of the above, the device may comprise an electrical connector in the inlet flow path. In an embodiment of any of the above, the electrical connector may extend in the channel.
In an embodiment of any of the above, the electrical connector may a plurality of device electrical contacts, wherein at least one of the device electrical contacts protrudes in the channel, in use. In an embodiment of any of the above, the inlet flow path may be defined around the at least one of the device electrical contacts.
In an embodiment of any of the above, the device may define a flow connection between the outer flow path and the inner flow path defined by the article.
In an embodiment of any of the above, the device may comprise a flow passage configured to define an outlet from the outer flow path and an inlet to the inner flow path.
In an embodiment of any of the above, the flow passage may comprise a chamber distinct from an article receiving space defined by the receptacle.
In an embodiment of any of the above, the device may comprise a pressure sensor. In an embodiment of any of the above, the pressure sensor may be in the chamber.
According to an aspect there is provided an aerosol provision system comprising an article comprising aerosol generating material, a resistive heating layer comprising a resistive heating element configured to heat at least a portion of the aerosol generating material to generate an aerosol, a first type of electrical contact, and a second type of electrical contact, and wherein the resistive heating element is at least a portion of an electrically conductive path between the first type of electrical contact and the second type of electrical contact, an aerosol provision device comprising a receptacle in which at least a portion of the article is received in use, a device connector comprising a plurality of device electrical contacts protruding into the receptacle and configured to contact the resistive heating layer, an inlet airflow path between a device air inlet towards a proximal end of the device and an article air inlet towards a distal end of the device, wherein the airflow path is defined between the article and the receptacle, and across the electrical contacts. In an embodiment of any of the above, the article comprises an aerosol generating layer comprising aerosol generating material. The aerosol generating layer may be on the resistive heating layer.
In an embodiment of any of the above, the device electrical contacts may be in electrical communication, in use, with the resistive heating layer. In an embodiment of any of the above, the device electrical contacts may be in electrical communication, in use, with the resistive heating layer.
In an embodiment of any of the above, the device electrical contacts may be arranged to provide a linear inlet airflow path.
In an embodiment of any of the above, the device electrical contacts may be arranged to provide a non-linear inlet airflow path.
According to an aspect, there is provided an aerosol provision device configured to receive an article for an aerosol provision device of any of the above.
According to an aspect, there is provided an aerosol provision system comprising an article for an aerosol provision device of any of the above, and an aerosol provision device of any of the above.
According to an aspect, there is provided an article for an aerosol provision device comprising a body, aerosol generating material in the body, an inner flow path on an inner side of the body along which aerosol is configured to flow, the aerosol generating material being exposed to the inner flow path, an outer side of the body. According to an aspect, there is provided an aerosol generator of an article for an aerosol provision device comprising: aerosol generating material; a resistive heating layer comprising a plurality of resistive heating elements configured to heat at least a portion of the aerosol generating material to generate an aerosol; a first type of electrical contact; and a second type of electrical contact; wherein the resistive heating element is at least a portion of an electrically conductive path between the first type of electrical contact and the second type of electrical contact; and wherein the plurality of resistive heating elements comprises a first row of the plurality of resistive heating elements and a second row of resistive heating elements.
In an embodiment of any of the above, the article comprises an aerosol generating layer comprising aerosol generating material. The aerosol generating layer may be on the resistive heating layer.
In an embodiment of any of the above, the first row and the second row may extend parallel to each other.
In an embodiment of any of the above, the first and second row may extend in a longitudinal direction.
In an embodiment of any of the above, the aerosol generator comprises three or more rows of the plurality of resistive heating elements.
According to an aspect, there is provided an aerosol provision device configured to receive an article for an aerosol provision device of any of the above. According to an aspect, there is provided an aerosol provision article comprising an aerosol generator of any of the above.
According to an aspect, there is provided an aerosol provision system comprising an aerosol generator of any of the above or an article for an aerosol provision device of any of the above, and an aerosol provision device configured to at least partially receive the aerosol generator of any of the above or the article of the above.
According to an aspect, there is provided an aerosol provision device comprising the article or the aerosol generator of any of the above.
Brief Description of the Drawings
Various embodiments will now be described, by way of example only, with reference to the accompanying schematic drawings, in which:
Figure 1 is a schematic perspective view of an aerosol provision system;
Figure 2 is a schematic perspective view of an article comprising aerosol generating material of the aerosol provision system of Figure 1;
Figure 3 is a schematic perspective view of a first side of an aerosol generator of the article of Figure 2;
Figure 4 is a schematic perspective view of part of a second side of the aerosol generator of Figure 3; Figure 5 is a schematic block diagram of an aerosol provision system such as the system shown in Figure 1;
Figure 6 is a schematic partially exploded perspective view of the article of Figure 2, with an aerosol generator shown inverted from an assembled orientation and in a spaced relationship with other components; Figure 7 is a schematic cross-sectional view of another aerosol generator such as the aerosol generator shown in Figure 3;
Figure 8 is a schematic plan view of a heating element of the aerosol generator of Figure 3;
Figure 9 is a schematic plan view of a resistive heating layer of the aerosol generator of Figure 3 with a plurality of heating elements;
Figure 10 is a flow chart showing a method of forming an aerosol generator, such as the aerosol generator of Figure 3;
Figure 11 is an exploded perspective view of an aerosol generator being formed;
Figure 12 is a schematic perspective view of a resistive heating layer of an aerosol generator being formed;
Figure 13 is a flow chart showing a method of forming an aerosol generator, such as the aerosol generator of Figure 3;
Figure 14 is a flow chart showing a method of forming an aerosol generator, such as the aerosol generator of Figure 3; Figure 15 is a flow chart showing a method of forming an aerosol generator, such as the aerosol generator of Figure 3;
Figure 16 is a schematic perspective view of a resistive heating layer of an aerosol generator being formed;
Figure 17 is a schematic plan view of a heating element of an aerosol generator; Figure 18 is a schematic plan view of a heating element of an aerosol generator;
Figure 19 is a schematic perspective view of part of an aerosol generator of the article of Figure 2;
Figure 20 is a schematic perspective view of a device connector of an aerosol provision device of the aerosol provision system of Figure 1; Figure 21 is a schematic side view of the aerosol generating system of Figure 1 ;
Figure 22 is a flow chart showing a method of forming an aerosol generator, such as the aerosol generator of Figure 3;
Figures 23 to 25 show an aerosol generator being formed;
Figure 26 is a schematic perspective view of an article comprising aerosol generating material of the aerosol provision system of Figure 1 ;
Figure 27 is a schematic perspective cut-away view of the article of Figure 26;
Figure 28 is a schematic perspective cut-away view of the aerosol provision system of Figure 1 with the article of Figure 26; and Figure 29 is a schematic perspective cut-away view of the aerosol provision system of Figure 1 with an article comprising aerosol generating material.
Detailed Description
As used herein, the term “delivery mechanism” is intended to encompass systems that deliver a substance to a user, and includes: non-combustible aerosol provision systems that release compounds from an aerosolisable material without combusting the aerosolisable material, such as electronic cigarettes, tobacco heating products, and hybrid systems to generate aerosol using a combination of aerosolisable materials; and articles comprising aerosolisable material and configured to be used in one of these non-combustible aerosol provision systems.
According to the present disclosure, a “non-combustible” aerosol provision system is one where a constituent aerosol-generating material of the aerosol provision system (or component thereof) is not combusted or burned in order to facilitate delivery of at least one substance to a user. In some embodiments, the delivery system is a non-combustible aerosol provision system, such as a powered non-combustible aerosol provision system.
In some embodiments, the non-combustible aerosol provision system is an electronic cigarette, also known as a vaping device or electronic nicotine delivery system
(END), although it is noted that the presence of nicotine in the aerosol-generating material is not a requirement.
In some embodiments, the non-combustible aerosol provision system is an aerosol-generating material heating system, also known as a heat-not-burn system. An example of such a system is a tobacco heating system.
In some embodiments, the non-combustible aerosol provision system is a hybrid system to generate aerosol using a combination of aerosol-generating materials, one or a plurality of which may be heated. Each of the aerosol-generating materials may be, for example, in the form of a solid, liquid or gel and may or may not contain nicotine. In some embodiments, the hybrid system comprises a liquid or gel aerosol-generating material and a solid aerosol-generating material. The solid aerosol-generating material may comprise, for example, tobacco or a non-tobacco product.
Typically, the non-combustible aerosol provision system may comprise a non- combustible aerosol provision device and a consumable for use with the non- combustible aerosol provision device.
In some embodiments, the disclosure relates to consumables comprising aerosolgenerating material and configured to be used with non-combustible aerosol provision devices. These consumables are sometimes referred to as articles throughout the disclosure. In some embodiments, the non-combustible aerosol provision system, such as a non-combustible aerosol provision device thereof, may comprise a power source and a controller. The power source may, for example, be an electric power source.
In some embodiments, the non-combustible aerosol provision system may comprise an area for receiving the consumable, an aerosol generator, an aerosol generation area, a housing, a mouthpiece, a filter and/or an aerosol-modifying agent.
In some embodiments, the consumable for use with the non-combustible aerosol provision device may comprise aerosol-generating material, an aerosol-generating material storage area, an aerosol-generating material transfer component, an aerosol generator, an aerosol generation area, a housing, a wrapper, a filter, a mouthpiece, and/or an aerosol-modifying agent.
As used herein, the term “aerosol-generating material” (which is sometimes referred to herein as an aerosolisable material) is a material that is capable of generating aerosol, for example when heated, irradiated or energized in any other
way. Aerosol-generating material may, for example, be in the form of a solid, liquid or semi-solid (such as a gel) which may or may not contain an active substance and/or flavourants.
In some embodiments, the substance to be delivered comprises an active substance (sometimes referred to herein as an active compound).
The aerosol-generating material may comprise one or more active substances and/or flavours, one or more aerosol-former materials, and optionally one or more other functional material.
The aerosol-generating material may comprise a binder, such as a gelling agent, and an aerosol former. Optionally, a substance to be delivered and/or filler may also be present. Optionally, a solvent, such as water, is also present and one or more other components of the aerosol-generating material may or may not be soluble in the solvent. In some embodiments, the aerosol-generating material is substantially free from botanical material. In particular, in some embodiments, the aerosol-generating material is substantially tobacco free.
The aerosol-generating material may comprise or be in the form of an aerosolgenerating film. The aerosol-generating film may comprise a binder, such as a gelling agent, and an aerosol former. Optionally, a substance to be delivered and/or filler may also be present. The aerosol-generating film may be substantially free from botanical material. In particular, in some embodiments, the aerosol-generating material is substantially tobacco free.
The aerosol-generating film may have a thickness of about 0.015 mm to about 1 mm. For example, the thickness may be in the range of about 0.05 mm, 0.1 mm or 0.15 mm to about 0.5 mm or 0.3 mm. The aerosol-generating film may be continuous. For example, the film may comprise or be a continuous sheet of material.
The aerosol-generating film may be discontinuous. For example, the aerosolgenerating film may comprise one or more discrete portions or regions of aerosolgenerating material, such as dots, stripes or lines, which may be supported on a support. In such embodiments, the support may be planar or non-planar.
In embodiments, the aerosol-generating material comprises a plurality of aerosolgenerating films. In embodiments, the aerosol-generating film comprises a plurality of aerosol-generating film regions. Such plurality of aerosol-generating films and/or plurality
of aerosol-generating film regions may have different properties, for example at least one of different compositions, thicknesses, density, active substances and/or flavours, one or more aerosol-former materials, and optionally one or more other functional material.
The aerosol-generating film may be formed by combining a binder, such as a gelling agent, with a solvent, such as water, an aerosol-former and one or more other components, such as one or more substances to be delivered, to form a slurry and then heating the slurry to volatilise at least some of the solvent to form the aerosol-generating film.
The slurry may be heated to remove at least about 60 wt%, 70 wt%, 80 wt%, 85 wt% or 90 wt% of the solvent.
The aerosol-generating material may be an “amorphous solid”. In some embodiments, the amorphous solid is a “monolithic solid”. The aerosol-generating material may be non-fibrous or fibrous. In some embodiments, the aerosol-generating material may be a dried gel. The aerosol-generating material may be a solid material that may retain some fluid, such as liquid, within it. In some embodiments the retained fluid may be water (such as water absorbed from the surroundings of the aerosolgenerating material) or the retained fluid may be solvent (such as when the aerosolgenerating material is formed from a slurry). In some embodiments, the solvent may be water. The aerosol-former material may comprise one or more constituents capable of forming an aerosol. In some embodiments, the aerosol-former material may comprise one or more of glycerine, glycerol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,3-butylene glycol, erythritol, meso-Erythritol, ethyl vanillate, ethyl laurate, a diethyl suberate, triethyl citrate, triacetin, a diacetin mixture, benzyl benzoate, benzyl phenyl acetate, tributyrin, lauryl acetate, lauric acid, myristic acid, and propylene carbonate.
The one or more other functional materials may comprise one or more of pH regulators, colouring agents, preservatives, binders, fillers, stabilizers, and/or antioxidants. The material may be present on or in a support, to form a substrate. The support may, for example, be or comprise paper, card, paperboard, cardboard, reconstituted material, a plastics material, a ceramic material, a composite material, glass, a metal, or a metal alloy.
An aerosol provision device can receive an article comprising aerosol generating material for heating. An “article” in this context is a component that includes or contains in use the aerosol generating material, which is heated to volatilise the aerosol generating material, and optionally other components in use. A user may insert the article into or onto the aerosol provision device before it is heated to produce an aerosol, which the user subsequently inhales.
An aerosol generator is an apparatus configured to cause aerosol to be generated from the aerosol-generating material. In some embodiments, the aerosol generator is a heater configured to subject the aerosol-generating material to heat energy, so as to release one or more volatiles from the aerosol-generating material to form an aerosol.
A consumable is an article comprising or consisting of aerosol-generating material, part or all of which is intended to be consumed during use by a user. A consumable may comprise one or more other components, such as an aerosol- generating material storage area, an aerosol-generating material transfer component, an aerosol transfer component, an aerosol generation area, a housing, a wrapper, a mouthpiece, a filter and/or an aerosol-modifying agent. A consumable may also comprise an aerosol generator, such as a heater, that emits heat to cause the aerosolgenerating material to generate aerosol in use. The heater may comprise a conductor which can be heated by the passage of an electrical current through the conductor.
Non-combustible aerosol provision systems may comprise a modular assembly including both a reusable aerosol provision device and a replaceable aerosol generating article. In some implementations, the non-combustible aerosol provision device may comprise a power source and a controller (or control circuitry). The power source may, for example, comprise an electric power source, such as a battery or rechargeable battery. In some implementations, the non-combustible aerosol provision device may also comprise an aerosol generating component. However, in other implementations the aerosol generating article may comprise partially, or entirely, the aerosol generating component. Figure 1 shows a schematic view of an aerosol provision system 100. The aerosol provision system 100 comprises an aerosol provision device 200 and an article 300 comprising aerosol generating material 302 (refer to Figure 3). The article 300 is shown in Figure 2 removed from the aerosol provision device 200. An aerosol generator
304 of the article 300 is shown in Figure 3 with a perspective view of a first side 306, with a perspective view of part of a second side 307 shown in Figure 4.
The article 300 comprises the aerosol generator 304. The aerosol generator 304 is configured to generate an aerosol from the aerosol generating material 302 upon operation of the aerosol provision system 100, as will be described in detail below.
The aerosol provision system 100 may be elongate, extending along a longitudinal axis. The aerosol provision system 100 has a proximal end 102, which will be closest to the user (e.g. the user’s mouth) when in use by the user to inhale the aerosol generated by the aerosol provision system 100, and a distal end 104 which will be furthest from the user when in use.
The proximal end may also be referred to as the “mouth end”. The aerosol provision system 100 accordingly defines a proximal direction, which is directed towards the user when in use. Further, the aerosol provision system 100 likewise defines a distal direction, which is directed away from the user when in use. The terms ‘proximal’ and ‘distal’ as applied to features of the system 100 will be described by reference to the relative positioning of such features with respect to each other in a proximal-distal direction along a longitudinal axis.
The article 300 is received by the aerosol provision device 200. The configuration of the article 300 and the aerosol provision device 200 may vary. In the present embodiment, the aerosol provision device 200 comprises a device body 202. The device has a housing 204 enclosing components of the device 200. An article receiving portion 206, sometimes referred to as a device chamber, as shown in Figure 5, is configured to receive a portion of the article 300. A proximal end 308 of the article protrudes from the device 200 when the article 300 is received in the device chamber 206. A receptacle 208 defines the chamber 206. The receptacle 208 comprises a receptacle base 210 and a receptacle peripheral wall 212. The configuration of the receptacle 208 may vary in dependence on the configuration of the article 300.
One or more user-operable control elements 224, such as a button or switch, which can be used to operate the aerosol provision system 100 may be provided on the aerosol provision device 200. For example, a user may activate the system 100 by pressing the control element 224. The one or more user-operable control elements may be omitted. In embodiments, the aerosol provision system 100 is operated by another user action, for example puff activated by a user drawing air through the system.
The aerosol provision device 200 comprises an opening 214 at the proximal end, leading into the device chamber 206. The opening 214 is provided in one end, through which the article 300 can be inserted. In embodiments, the article 300 may be fully or partially inserted into the device 200. The configuration of the device 200 may vary, for example the opening may be in a longitudinal side wall of the device 200, and/or may be closed by another feature of the device 200 during use. In the present configuration, the article 300 defines a mouthpiece 310 at the proximal end 308. In other embodiments, the device 200 defines the mouthpiece. The user places their mouth over the mouthpiece during use. The device 200 defines the longitudinal axis along which an article 300 may extend when inserted into the device 200. The opening 214 is aligned on the longitudinal axis. The longitudinal axis may be an axis along which the article 300 is inserted into the device 200. The longitudinal axis may be considered to be a receiving axis of the device 200. The article 300 may similarly have a longitudinal axis along which it is inserted into the device and this axis may be considered to be an insertion axis.
The aerosol provision device 200 comprises a power source 220. The power source 220 may be a battery, for example a rechargeable battery. The device 200 also comprises a control circuit 222, acting as a controller, comprising a processor and a memory. As discussed in detail below, a heating system 110 is configured to heat the aerosol generating material 302 of an article 300. The article 300 in embodiments is a consumable, and is interchangeable with other articles 300. The heating system 110 comprises the aerosol generator 304. The heating system 110 comprises other components of the aerosol provision system 100 including components of the article 300 and the aerosol provision device 200, for example the power source 220 and the control circuit 222.
The aerosol generator 304 forms part of the article 300. The aerosol generator 304 comprises a heating arrangement 312 configured to heat aerosol generating material 302, for example at least one of a film and a gel to generate an aerosol. The aerosol generating material may be referred to as aerosolisable material.
The heating arrangement 312 is a resistive heating arrangement. The or each heating element in embodiments is a resistive heating element, as described in detail below. In such arrangements the heating system 110 comprises a resistive heating generator including components to heat the heating arrangement 312 via a resistive
heating process. In this case, an electrical current is directly applied to a resistive heating element, and the resulting flow of current in the heating element, acting as a heating component, causes the heating element to be heated by Joule heating. The resistive heating element comprises resistive material configured to generate heat when a suitable electrical current passes through it, and the heating arrangement 312 comprises electrical contacts for supplying electrical current to the resistive material. The provision of a resistive heating arrangement 312 allows for a compact arrangement. Resistive heating provides an efficient configuration.
In the use of the aerosol provision system 100, air is drawn into an air inlet 314 of the article 300, as indicated by arrow 316. The air inlet 314 is in a distal end of the article 300. In embodiments, the air inlet 314 may have a different configuration, for example in the side. The air flow to the air inlet 314 of the article 300 may be defined, for example by at least one of an air path through the device 200. The air flow path of the system 100 is described in more detail below, with reference to Figures 26 to 28. In embodiments, at least a portion of the air path is defined between the device 200 and the article 300. At least a portion of the air path is defined in the device chamber 206 as shown in Figure 5.
An aerosol generated by the aerosol generator 304 exits the device at an aerosol outlet 318, as indicated by arrow 319. In embodiments the aerosol outlet 318 is in the mouthpiece of the article 300, such that the aerosol is drawn directly from the article 300 into the mouth of a user of the system 100. In some example embodiments, the aerosol provision system comprises two main components, namely a control section forming a reusable part and a consumable section forming a replaceable or disposable part which may be referred to as a replaceable or disposable article or cartridge. As described herein, the aerosol provision device 200 forms a control section and the article 300 forms the consumable section. In the use of the aerosol generating system, the control section and the consumable part may be releasably connected at an interface. The consumable part may be removable and replaceable, for example when the consumable part is used, with the control section being re-used with a different consumable part.
The aerosol provision system 100 as shown is provided by way of example only and is highly schematic. Different aerosol generating devices and other devices may be used in example implementations of the principles described here. For example, in some example embodiments, air is drawn into an air inlet in the control section, passes through the interface, and exits the consumable part.
As shown schematically in Figure 5, and described in detail below, the article 300 has an article electrical contact configuration 320. The electrical contact configuration 320 in embodiments is formed by the aerosol generator 304. The electrical contact configuration 320 comprises heater electrical contacts 322. The heater electrical contacts 322 may also be known as heater or article contacts. The aerosol provision device 200 comprises an electrical connector 230. The electrical connector 230 comprises connector electrical contacts 232. The connector electrical contacts 232 may also be known as connector or device contacts. The article electrical contact configuration 320 is configured to electrically communicate with the device electrical connector 230. The configuration of the article 300 may vary. As described herein, the article is a flat article or consumable. The exterior of the article 300 has a length, a width perpendicular to the length, and a depth perpendicular to each of the length and the width, wherein the length is greater than or equal to the width, and wherein the width is greater than the depth. In embodiments, the article is tubular. That is, the article 300 has a tubular configuration. In such an arrangement the aerosol generator may have a tubular arrangement.
The article 300 comprises a body 324. The body 324 is hollow. The body 324 defines an inner flow path 326 (refer to Figure 6) through the article 300. The inner flow path 326 extends between the air inlet 314 and the aerosol outlet 318. The inner flow path 326 is defined by an internal space in the article along which air and/or aerosol can flow. The inner flow path 326 is defined in the body 324. The or each aerosol generator 304 bounds the inner flow path 326. The aerosol generating material 302 is exposed to the inner flow path 326. The aerosol generating material 302 is exposed in the internal space. The internal space in embodiments comprises two or more chambers. The air inlet 314 comprises an opening 315. The opening 315 is formed in the body 324. In embodiments, the opening is formed in another component of the article 300, for example the aerosol generator 304 or another wall feature. The aerosol outlet 318 comprises an outlet opening 317. The outlet opening 317 is formed in the body 324. In embodiments, the outlet opening 317 is formed in another component of the article 300, for example the aerosol generator 304 or another wall feature.
As shown in Figure 6, the article 300 comprises two aerosol generators 304 forming an aerosol generator arrangement. The number of aerosol generators 304 may differ. Each aerosol generator 304 comprises aerosol generating material 302. The aerosol generating material 302 is exposed to the flow path 326. In embodiments the
article 300 comprises a single aerosol generator 304. One of the aerosol generators 304 will be described in detail, with such detail being applicable to one or more further aerosol generators 304 in embodiments.
The or each aerosol generator 304 and the body 324 are formed in a stacked configuration. In embodiments, other arrangements such as a tubular arrangement of the article are envisaged. In such tubular arrangements the aerosol generator 304 defines a tubular configuration. Tubular may include circular cross-sectional, an elliptical cross section and other polygonal shapes.
In embodiments, as shown in the Figures, the article 300 has a flat configuration. That is, wherein an exterior of the article has a length, a width perpendicular to the length, and a depth perpendicular to each of the length and the width, wherein the length is greater than or equal to the width, and wherein the width is greater than the depth. Other configurations are envisaged.
Figure 6 is a partially exploded perspective view of the article 300, with an aerosol generator 304 shown inverted from an assembled orientation and in a spaced relationship with other components. The article 300 comprises a first one of the aerosol generator 302, the body 324 and a second one of the aerosol generator. The body 324 spaces the first and second aerosol generators 304. The first and second aerosol generators 304 close the internal space defined by the body 324 along which air and/or aerosol can flow. The aerosol generating material 302 of the first and second aerosol generators 304 face each other and is exposed to the internal space. When assembled, the first and second aerosol generators 304 sandwich the body 324. In the embodiment of Figure 6 at least, the first and second aerosol generators 304 and the body have equal plan areas. In embodiments, one or more of the first and second aerosol generators 304 and the body 324 has a greater length and/or width. In embodiments, one of the first and second aerosol generators 304 is replaced by a blank panel. The body 324 comprises a body layer. The body may comprise a plurality of body layers. The body layers may be formed in a stack and arranged to define features of the article 300, such as the air inlet 314 and aerosol outlet 318. A wrap encircles the article 300 and forms part of the article 300. The wrap may comprise a sheet. The wrap acts as a fixed sleeve. The or each aerosol generator 304 protrudes from the wrap at a distal end. Exposed electrical contact regions 323 of the heater contacts 322 are exposed at the distal end, for example refer to Figure 2. Other configurations are envisaged, for example at least one exposed electrical contact region
323 may additionally or alternatively be defined along a minor longitudinal face or edge of the article 300, and on a major face of the article defined by the aerosol generator 304.
The aerosol generator 304 is schematically shown in cross section in Figure 7. The aerosol generator 304 is an implementation of the aerosol generator 304 of the aerosol provision system 100 described above.
The aerosol generator 304 comprises an aerosol generating layer 330. The aerosol generating layer is also known as an aerosolisable layer. The aerosol generating layer 330 comprises the aerosol generating material 302. The aerosol generator 304 comprises a resistive heating layer 340. The resistive heating layer 340, in embodiments, is formed as an electrically conductive layer. The aerosol generating layer 330 is on the resistive heating layer 340. The aerosol generating layer 330 is in direct contact with the resistive heating layer 340. In embodiments, the aerosol generating layer 330 is in indirect contact with the resistive heating layer 340. The resistive heating layer 340 may in embodiments comprise a coating. As described in detail below, the resistive heating layer 340 comprises a plurality of resistive heating elements 342, for example as shown in Figures 8 and 9. The or each resistive heating element 342 forms at least a portion of an electrically conductive path between a pair of the electrical contacts 322. The or each resistive heating element 342 provides the electrically conductive path for resistive heating of at least of portion of the aerosol generating material 302 to generate an aerosol. The aerosol generating material 302 is, in embodiments, in the form of a film or a gel.
The resistive heating layer 340 is formed as an electrically conductive layer. This layer in embodiments takes the form of at least one of a metal layer, such as an aluminium layer, or a non-metallic material, such as graphene. The resistive heating layer 340 is in the form of a foil, for example an aluminium foil.
The aerosol generator 304 comprises a support 350. The support 350 in embodiments comprise a paper or card material. The support 350 provides structural support for the aerosol generator 304. The resistive heating layer 340 is on the support 350. The support 350 is configured as a support layer. As shown in Figure 7, in the aerosol generator 304, the resistive heating layer 340 is sandwiched between the support 350 and the aerosol generating layer 330.
The support 350 is electrically insulative. The resistive heating layer 340 and the support layer 350 define a substrate 352. The substrate 352 supports the aerosol generating layer 330.
The article 300 may comprise a laminate 354 comprising the resistive heating layer 340 and the support layer 350. In embodiments, the laminate 354 comprises the aerosol generating layer 330. The aerosol generating layer 330 may be formed as a contiguous configuration, or may be formed from discrete portions. The discrete portions may comprise one or more of dots, strips, spirals, or other shapes.
In embodiments, the aerosol generating layer 330 comprises an aerosolgenerating film. In embodiments, the aerosol generating layer 330 comprises a plurality of aerosol-generating films. In embodiments, the aerosol-generating film comprises a plurality of aerosol-generating film regions. Such plurality of aerosol-generating films and/or plurality of aerosol-generating film regions may have different properties, for example at least one of different compositions, thicknesses, density, active substances and/or flavours, one or more aerosol-former materials, and optionally one or more other functional material. One or more of the aerosol generating layer 330, resistive heating layer 340 and the support layer 350 may comprise a further layer. For example, the support layer 350 may comprise a backing layer or an intermediate layer. The support layer 350 in embodiments is omitted.
Figure 8 shows one of the resistive heating elements 342. The resistive heating layer 340 comprises a plurality of resistive heating elements 342. In embodiments, the resistive heating layer 340 comprises a single resistive heating element 342.
The plurality of heating elements 342 may be formed in an array 344 as shown in Figure 9. The plurality of heating elements 342 in Figure 9 are arranged in an array defining a single row. Other configurations are envisaged. As described below in detail with reference, for example to Figures 27 to 29, the plurality of heating elements 342 in embodiments comprise an array comprising multiple rows of the plurality of heating elements 342. In Figure 27, the plurality of resistive heating elements are shown arranged in an array of two rows of the plurality of resistive heating elements. Such rows are aligned in columns in line with the flow path in the article 300. It will be understood that the configurations described with reference to Figures 1 to 25 for example, may be used in combination with the configurations shown in Figures 27 to 29.
The resistive heating element 342 comprises a resistive heating path. The resistive heating path is formed by an electrically conducting path. The resistive heating path is non-straight. The resistive heating path is convoluted. The configuration of the
resistive heating path may vary. The electrical resistance of the heating element 342 may be dependent on the nature of the resistive heating path in the conductive layer, for example the length, width, thickness and arrangement of the path.
The resistive heating element 342 extends between a first type of electrical contact 360 and a second type of electrical contact 365. The first type of electrical contact 360 is configured to provide a positive contact and the second type of electrical contact 365 is configured to provide a negative contact. Electrical current flows between the first type of electrical contact 360 and the second type of electrical contact 365 through the path. The contact arrangement may be reversed. The first and second types of electrical contacts 360, 365 are heater electrical contacts 322. The first and second types of electrical contacts 360, 365 form at least part of the article electrical contact configuration 320.
The meandering or serpentine nature of the path of the resistive heating element 342 is such that the electrical resistance of the path is increased when compared with a straight path between the first and second type of electrical contacts.
The resistive heating layer 340 may comprise a first type of electrical track 361 extending from the resistive heating element 342. The first type of electrical track 361 comprises the first type of electrical contact 360. The electrical contact 360 of the first type is configured to electrically connect with the device electrical connector 230. The first type of electrical contact 360 comprises a first type of exposed contact region 362.
The first type of exposed contact region 362 is exposed on the article for direct connection with the device electrical connector 230.
The resistive heating layer 340 may comprise a second type of electrical track 366 extending from the resistive heating element 342. The second type of electrical track 366 comprises the second type of electrical contact 365. The electrical contact 365 of the second type is configured to electrically connect with the device electrical connector 230. The second type of electrical contact 365 comprises a second type of exposed contact region 367. The second type of exposed contact region 367 is exposed on the article 300 for direct connection with the device electrical connector 230. As discussed in detail below, the conducting path of the resistive heating element
342 in embodiments is created by defining at least one electrically insulative barrier 346 in the resistive heating layer 340. In embodiments, the electrically insulative barrier 346 is formed by cutting electrically insulative barrier restrictions (i.e. electrically insulating portions), such as gaps, channels or slots into a sheet formed of electrically conductive
material to form the resistive heating layer 340. In embodiments, the resistive heating layer 340 is preformed to define the or each resistive heating element 342 and then applied to the support 350. In embodiments, the resistive heating layer 340 is applied to the support 350, and the or each resistive heating element 342 then defined in the resistive heating layer 340. The or each restive heating element 342 defining the resistive heating layer 340 may be a printed heater. The insulative barrier may be an air gap. In embodiments, the insulative barrier is a filled gap, for example filled with an insulative material. The barrier defines a barrier to electrical conduction across the barrier. The or each resistive heating element 342 defining the resistive heating layer 340 may be formed by a cutting action. Cutting may include die cutting. The resistive heating element may be formed by an action applied to the resistive heating layer only. In embodiments, the resistive heating element may be formed by an action applied to the resistive heating layer and the support layer, for example an action of cutting the resistive heating layer and the support layer.
The at least one electrically insulative barrier 346 defines the first and second types of electrical track 361 , 366.
In some embodiments, the tracks of the or each resistive heating element 342 have a width in the region of 0.5mm to 1mm (two example prototypes have widths of 0.93mm and 0.72mm respectively) and gaps between the tracks of less than about 0.25mm (the same two example prototypes have gaps of 0.2mm and 0.05mm respectively). The or each resistive heating element 342 may have overall dimensions of the order of 10mm x 10mm. Other dimensions are possible in other example embodiments. By forming the or each resistive heating element 342 of these dimensions from an aluminium foil of having a thickness of 0.006mm and an electrical resistivity of between 2 and 6 pOhmcm, the resistance of the path has been calculated to be of the order of 1 Ohm. In one example embodiment, the resistance was measured at between 0.83 and 1.31 Ohms. As shown in Figure 9, the resistive heating layer 340 may be formed into a plurality of resistive heating elements, indicated generally by the reference numerals 342a, 342b, 242c, 342d and 342e. Each of the resistive heating elements 342a-342e extends from a respective one of the first type of electrical contact, indicated generally by the reference numerals 360a, 360b, 360c, 360d and 360e to a single second type of
electrical contact 365. The number of electrical contacts may vary. As such, each resistive heating element 342a-342e extends between a discrete first type of electrical contact and a common second type of electrical contact.
Each of the resistive heating element 342a-342e provides an electrically conductive path for resistive heating of a portion of the aerosol generating material 302 to generate an aerosol at the respective portion of the aerosol generator 304.
The separate first type 360a-360e of electrical contacts enable an electric current to be individually provided to each of the plurality of resistive heating elements 342a- 342e. The heating of different zones of the aerosol generating layer 330 can be controlled. For example, an aerosol generator may be provided with five aerosol generating zones. The resistive heating layer 340 allows each of those zones to be activated separately. Accordingly, for example, five puffs of aerosol may be generated from a single consumable incorporating a single aerosol generator 304, and ten puffs of aerosol may be generated from a single consumable incorporating two aerosol generators 304.
In the example resistive heating layer 340, the plurality of first type of electrical contacts 360a-360e, for example a positive electrical connection, are provided and a single second type of electrical contact 365, for example a negative electrical connection is provided. This is not essential to all implementations. For example, multiple contacts of the second type could be provided. In embodiments each resistive heating element 342a-342e comprises a corresponding one of the first type of electrical contact 360 and a corresponding one of the second type of electrical contact 365.
In the shown embodiment of Figure 9 of the resistive heating layer 340, the first type of electrical contacts 360a-360e are arranged on a first edge 363 of the resistive heating layer 340 and the second type of electrical contact 365 is arranged on a second edge 368 of the resistive heating layer 340. This may allow for convenient connection of electrical power, but, of course, many other configurations are possible, some of which are discussed further below.
Figure 10 is a flow chart showing part of a method of forming an aerosol generator 304 or an algorithm, indicated generally by the reference numeral 400, in accordance with an example embodiment.
The method or algorithm 400 starts at operation 402, where a resistive heating layer is formed into one or more heating elements (e.g. a plurality of heating elements), wherein each resistive heating element extends from an electrical contact of a first type
to an electrical contact of a second type. In use, the or each heating element may be used to provide an electrically conductive path for resistive heating of a portion of an aerosol generating material to generate an aerosol. The formation of the or each resistive heating element may occur prior to or post application of the resistive heating layer on a support, where a support is present. The resistive heating layer may be adhered to the support, or mounted or formed on the support in a different configuration.
At operation 404, the formed resistive heating layer is placed in contact with the aerosol generating layer, wherein said aerosol generating layer incorporates aerosol generating material. Algorithm 400 may be used to produce the aerosol generator 304 described above.
Figure 11 shows the aerosol generator 304 being formed in accordance with an embodiment. The aerosol generating material 302 is formed on the resistive heating layer 340 by depositing aerosol generating material, for example by spraying, painting, dispensing or in some other way. The aerosol generating layer 330 is disposed on resistive heating layer 340 as indicated by the arrow 406, in an example implementation of the operation 404.
Figure 12 shows the resistive heating layer 340 being formed in accordance with an example embodiment. The resistive heating layer 340 is in the process of being cut using a laser cutter 408. The cutting of the resistive heating layer 340 can be used to form the paths of the heating elements described herein. The use of the laser cutter 408 (or some other cutting process) is not the only method by which the resistive heating layer 340 described herein may be generated. Some example methods are described below.
Figure 13 is a flow chart showing part of a method of forming an aerosol generator 304 or an algorithm, indicated generally by the reference numeral 410. The method or algorithm 410 starts at operation 412, where the resistive heating layer is provided. At operation 414, one or more of the resistive heating elements are formed in the resistive heating layer by chemically etching the resistive heating layer. The operations 412 and 414 are an example implementation of the operation 402 of the method 400 described above. The aerosol generating material is then disposed on the resistive heating layer, thereby implementing the operation 404 described above.
Figure 14 is a flow chart showing part of a method of forming an aerosol generator 304 or an algorithm, indicated generally by the reference numeral 418. The method or algorithm 418 starts at operation 420, where one or more heating elements
are formed, at least in part, by printing a resistive heating layer. The operation 420 is therefore an example implementation of the operation 402 of the algorithm 400 described above. The aerosol generating material is then disposed on the resistive heating layer, thereby implementing the operation 404 described above. The cutting, etching and printing methods described above are provided by way of example; other additional or alternative methods are also possible. For example, a so- called “hot foiling” approach could be used in which a heating element is made out of a resistive heating layer, and then assembled/bonded onto a support. Yet other techniques could be used, such as die cutting. Moreover, two or more technologies could be combined (e.g. electrical conductivity could be added to connection traces by adding more conductive material, such as additional foil, printed material, etc.). The skilled person will be aware of many further technologies, or combinations of technologies, that could be used in implementations of the principles described herein.
Figure 15 is a flow chart showing method of operation or an algorithm, indicated generally by the reference numeral 424, in accordance with an example embodiment. The method or algorithm 424 may, for example, be implemented using any of the aerosol generators described herein. The method or algorithm 424 is initiated when an instruction to activate heating is received in an instance of operation 426. In response to the instruction to activate heating, a determination is made (in operation 428) regarding whether a heating element is available. As discussed above, a plurality of heating elements may be provided. The operation 428 may involve determination which of the heating elements have been used and/or the corresponding available aerosol generating material used up.
If a heating element is available, the algorithm moves to operation 430, where an available heating element is used. As discussed above, heating elements may be individually controllable, for example by providing electrical power to individual heating elements. Once the operation 430 is complete, the algorithm terminates at operation 432. If, at operation 428, a determination is made that no heating elements are available, for example because all heating elements have been used, then the algorithm terminates at operation 432. This may mean that a consumable part being used to implement the algorithm 424 needs to be replaced.
Figure 16 shows the resistive heating layer 340 being formed in accordance with an embodiment. The resistive heating layer 340 is being cut using the laser cutter 408, although other methods could be used, such as chemical etching or printing, as
discussed above. The cutting of the electrically conductive layer 340 forms the heating elements as described herein.
In the embodiment of Figure 16, the paths cut are linear paths, extending along the length of the electrically conductive layer 120. Figure 17 shows another embodiment of the resistive heating layer 340. The resistive heating layer 340 may be formed using the laser cutter 408 described above, or some similar device or another method. The resistive heating layer 340 comprises a plurality of resistive heating elements 342, each resistive heating element 342 being a linear heating element comprising a conducting path extending along a length of the resistive heating layer 340. Each resistive heating element 342 extends from one of the first type of electrical contact 360, for example a positive electrical connection to one of the second type of electrical contact 365, for example a negative electrical contact. In such an embodiment, both types of electrical contact are provided at the same end of the resistive heating layer 340 and are provided next to each other. In such an arrangement that there is free from a common second type of electrical contact as is some other embodiments; instead, each heating element has separate first and second types of electrical contacts.
Figure 18 shows another embodiment of the resistive heating layer 340. The resistive heating layer 340 may be formed using the laser cutter 408 described above, or some similar device or another method. The resistive heating layer 340 comprises a plurality of heating elements 342, each heater element 342 being a linear heating element comprising a conducting path extending along a length of the resistive heating layer 340. Each resistive heating element 342 extends from one of the first type of electrical contact 360, for example a positive electrical connection to the second type of electrical contact 365, for example a negative electrical contact. In such an embodiment, the different types of electrical connection are provided at the opposite ends of the resistive heating layer 340 and a common second type of electrical contact is provided. Although a linear path is provided, an increase in the electrical resistance may be provided by means of providing a crenelated path, acting as a convoluted path. Note that the paths of any other embodiments described herein could also be crenelated.
Figure 19 shows the distal end of the article 300. As shown, the body 324 comprises a plurality of body layers 325. The body layers 325 are arranged in a stack of body layers 325. The body layers 325 form a laminate. The body layers 325 in embodiments are card layers. Other suitable materials may be used. The body layers
325 are configured to define features of the article 300. At least one body layer in embodiments comprises a gap defining the air inlet 315. The gap defines the opening 314.
The aerosol generator 304 comprises the resistive heating layer 340. The resistive heating layer 340 comprises the resistive heating elements 342, the first type of electrical contacts 360, for example providing positive electrical connections to each of a plurality of heating elements 342 and a single second type of electrical contact 365, for example providing a common negative electrical connection to the plurality of heating elements 342. The first and second types of electrical contacts 360, 365, namely the heater contacts 322, together form at least part of the article electrical contact configuration 320 of the aerosol generator 304.
The resistive heating elements 342 are on an inner side of the resistive heating layer 340. The inner side defines the first side 306 of the aerosol generator 304 as shown in Figure 3. The heater contacts 322 are on the second side 307 of the resistive heating layer 340. The second side 307 defines an outer side of the aerosol generator 304. The heater contacts 322 are exposed so that they are able to be brought into contact with the device electrical connector 230. The heater contacts 322 are on an opposing side of the resistive heating layer 340 to the resistive heating elements 342. Other configurations are envisaged. The support layer 350 is between an inner portion of the resistive heating layer
340 and an outer portion of the resistive heating layer 340.
A fold 370 is formed in the resistive heating layer 340. The fold 370 defines the heater contacts 322. The fold 370 as shown in Figures 2 to 4 and 19 extends perpendicular to the longitudinal axis of the aerosol generator 304. The fold 370 defines a flap 372. The heater contacts 322 are on the flap 372. The flap defines a contact panel. The remaining part of the blank defines a main panel.
In embodiments with the support layer 350, the support layer 350 in embodiments is folded. The substrate 352 is folded at the fold 370. In embodiments, the support layer 350 ends at the fold. In embodiments, the fold 370 extends parallel to the longitudinal axis of the aerosol generator 304. The aerosol generator comprises a fold. In embodiments, the fold defines a first support layer panel and a second support layer panel. In such embodiments, the resistive heating layer may be provided on the first support layer panel and at least one or each of the first type of electrical contact and the second type of electrical contact is provided on the second support layer panel.
Upon folding of the substrate 352, the first support layer panel and the second support layer panel extend parallel to each other. The first support layer panel and the second support layer panel in embodiments are affixed to each other to retain the folded condition. The folded portion of resistive heating layer 340 is affixed in the folded position.
This folded portion in embodiments is adhered, for example by bonding. Other fixing means are anticipated.
The fold 370 defines the first type of exposed contact region 362. The fold 370 defines the second type of exposed contact region 367. The electrical tracks 361, 366 electrically communicate across the fold 370. The heater contacts 322 of the first type of electrical track 361 and the second type of electrical track 366 are defined on the second side of the resistive heating layer 340. Portions of the first type of electrical track 361 and the second type of electrical track 366 extend on the first side of the resistive heating layer 340. In embodiments the resistive heating elements extend from the fold 370. Other configurations are anticipated.
The device 200 comprises a plurality of connector electrical contacts 232 of the electrical connector 230. The configuration of the device connector 230 is dependent on the configuration of the heater contacts 322 of the aerosol generator 304. In embodiments, such as the aerosol generator as shown in Figure 19, the aerosol generator 300 comprises a plurality of heater contacts 322 including a plurality of the first type of heater contact 360 and one of the second type of heater contact 365. The article 300 comprises another set of heater contacts 322 on the opposing side of the article 300 corresponding to the second aerosol generator 304.
Figure 20 shows a device connector 230 of the aerosol provision device 200 used in some embodiments. The connector 230 has separate connector electrical contacts 232 for connection with the heater contacts 322.
Figure 21 schematically shows the aerosol provision system 100. The system 100 comprises the article 300 and aerosol provision device 200, both shown in block diagram. The device 200 comprises first and second connectors 230a and 230b. The connectors 230a and 230b enable the aerosol provision device 200 to provide regulated or controlled electrical voltages and/or currents to the various first and second type of heater contacts 360, 365 of the aerosol generator 304 when the article 300 is inserted into the aerosol provision device 200. The aerosol provision device 200 may comprise a connector arrangement configured to provide electrical power to the
connectors 230a, 230b. The aerosol provision device 200 may, for example, operate the method as described above.
Figure 22 is a flow chart showing a method of forming an aerosol generator 304 or an algorithm, indicated generally by the reference numeral 440, in accordance with an example embodiment.
The method or algorithm 440 starts at operation 442, where a resistive heating layer is formed into at least one resistive heating element, the or each heating element providing an electrically conductive path for resistive heating of at least a portion of an aerosolisable material to generate an aerosol. Example heating elements that may be formed in the operation 442 are described elsewhere in this document.
At operation 442, an aerosol generating material is applied and/or formed on the resistive heating layer.
The operations 442 and 444 of the method or algorithm 440 are similar to (and may be identical to) the operations 402 and 404 of the method or algorithm 400 described above.
In operation 446 at least one first type of electrical contact is provided on the resistive heating layer. The method of formation may be any of the methods described above. In operation 448 at least one second type of electrical contact is provided on the resistive heating layer. The method of formation may be any of the methods described above.
In embodiments, the first and second types of electrical contact are formed along or proximal a single edge of the resistive heating layer. In embodiments, the first and second types of electrical contact are formed along or proximal to different edges of the resistive heating layer. In embodiments, the first types of electrical contact (e.g. positive connection(s)) are provided along a first edge of the resistive heating layer. In embodiments, the second types of electrical contact (e.g. negative electrical connection(s)) are provided along a second edge of the resistive heating layer. The operations 446 and 448 could be performed in a different order, or at the same time. Moreover, the operations 446 and 448 could be performed together with the operation 442.
At operation 450, the resistive heating layer is folded. In embodiments, the support layer is folded together with the resistive heating layer. In embodiments, the
resistive heating layer is folded such that electrical contacts of the first and second type are provided adjacent to one another, as discussed in detail below.
Figures 23 to 25 show an embodiment of the aerosol generator 304 being formed in accordance with the algorithm 440. Figure 23 shows another embodiment of the aerosol generator 304 being formed. The resistive heating layer 340 is being cut using a laser cutter 408. The prefolded configuration defines a blank for forming the aerosol generator 304. The blank in embodiments defines fold lines along which folds are made during formation of the aerosol generator. The aerosol generator 304 blank comprises the resistive heating layer 340 and the support layer 350. The resistive heating layer 340 and the support layer 350 define panels defined by the fold lines.
As shown in Figure 23, the resistive heating layer 340 is formed into a plurality of heating elements 192, although the number may differ and may be one. A plurality of the first type of the electrical contact 360 (e.g. positive electrical contact) are provided along the first edge of the electrically conductive layer (one contact for each heating element is shown). A single second type of electrical contact 365 is provided along the second edge of the resistive heating layer 340. In embodiments the contacts are spaced from the edges. As discussed above, each heating element of the plurality extends from an electrical contact of the first type to an electrical contact of the second type. The cutting of the resistive heating layer 340 by the laser cutter 408 forms the paths of the or each heating element 342. As discussed above, laser formation or some other cutting process is not the only method by which the resistive heating layer 340 described above may be generated. Some example alternative methods include chemical etching and printing. As indicated in Figure 24, the aerosol generating layer 200 is provided on the resistive heating layer 340. The blank is then folded, as indicated by the arrows in Figure 24. In this embodiment, the folds are formed parallel to a longitudinal direction of the aerosol generator 304. Two folds are formed. A first panel 375 is defined comprising the heating elements 342. A second panel 376 is formed comprising the plurality of the first type of the electrical contact 360. A third panel 377 is formed comprising the second type of electrical contact 365. The aerosol generating layer 330 is on the first panel 375.
Figure 25 shows the folded aerosol generator 304.
Figures 26 to 29 show embodiments of the aerosol provision system 100 having a flow configuration 311 defined at least in part between the article 300 and the device
200. Figures 26 and 27 show the article 300, Figure 28 shows the system with the device 200 and the article 300 of Figures 26 and 27, and Figure 29 shows a further embodiment of the article 300. The flow configuration 311 defines a flow path in the system along which air is configured to flow to the article 300 and aerosol is configured to flow in the article 300.
The system 100 corresponds to the schematic view of the system 100 shown in Figure 5. It will be understood that the configuration of the system and features of the system 100 described below is generally the same as the system described above, and so a detailed description of features of the system 100 will not be repeated below. It will be understood that features of the embodiments described above are applicable to features of the embodiments described below. For example, features of the outer air flow arrangement described below are not shown in detail in Figures 1 to 25, however such an arrangement is applicable to embodiments described above with reference to these Figures. The embodiments of Figures 26 to 29 are depicted with a plurality of resistive heating elements 342 comprising a first row of heating elements and a second row of heating elements. The first and second heating element rows are arranged in adjacent columns on the resistive heating layer 340. It will be understood that the flow configuration 311 can also be used in the systems of Figures 1 to 25 such as where a single, column arrangement of resistive heating elements is provided.
The flow configuration 311 is defined at least in part by the article 300. As shown in Figures 6 and 28, the system comprises the inner flow path 326 on an inner side 333 of the article 300. The body 324 defines the inner flow path 326 through the article 300. The inner flow path 326 extends between the air inlet 314 and the aerosol outlet 318. The inner flow path 326 is defined by the internal space in the article along which air and/or aerosol can flow. The inner flow path 326 is defined in the body 324. The or each aerosol generator 304 bounds the inner flow path 326. The aerosol generating material 302 is exposed to the inner flow path 326. The aerosol generating material 302 is exposed in the internal space. The internal space in embodiments comprises two or more chambers.
The body 324 defines the outer flow path 331. In embodiments, the outer flow path 331 comprises a single outer flow path portion.
The outer air flow path 331 is defined on an outer side 334 of the article 300. The outer flow path 331 forms part of a passage between the article exterior and the device
receptacle 208. The outer flow path 331 is defined between a device air inlet and the article air inlet 314. The article body 324 is elongate and defines the longitudinal axis.
The article body 324 comprises a first layer 325a and a second layer 325b. one or each of the first and second layer 325a and 325b may comprise a plurality of layers. The article 300 comprises a first edge 335 and a second edge 336 at either side of the article.
The first and second edges 335, 336 extend parallel to each other in the longitudinal direction.
The first and second layers 325a, 325b are offset from each other on at least one of the first and second edges 335, 336. In this embodiment, the first and second layers 325a, 325b are offset from one another on both of the first and second edges 335, 336. The offset first and second layers 325a, 325b provide a stepped region. A portion of the first layer 325a is exposed by the reduced-width second layer 325b. A portion of the second layer 325b is narrower in width than the first layer 325a. In embodiments, a single offset is formed on one side of the article 300. A channel 327 is defined by the outer side of the body defining the outer flow path along which air can flow. The channel 327 is a first channel and a second channel 328 is defined by the outer side of the body defining the outer flow path along which air can flow. In embodiments, a single channel is defined.
The offset first and second layers 325a, 325b define an indent which partially defines the channels 327, 328. In this embodiment, the first and second layers 325a, 325b are offset on the first and second 335, 336 edges of the article 300. A portion of the first channel 327 is defined on the first edge 335 and a portion of the second channel 328 is defined on the second edge 336. In embodiments, one stepped edge is provided by the offset first and second layers 325a, 325b. The channels 327, 328 are elongate. A shoulder 329 is formed at the mouth end of the article. The shoulder 329 is formed by the second layer 325b. The shoulder 329 defines the first channel inlet.
On insertion of the article 300 into the device 200 in Figure 27, first and second channels 327, 328 are defined on the first and second edges 335, 336 of the article 300. The article 300 is at least partially received in the device 200. The first channel 327 is defined between the offset first and second layers 325a, 325b on a first edge 335 of the article 300 and the receptacle 208. The second channel 328 is defined between the offset first and second layers 325a, 325b on a second edge 336 of the article 300 and the receptacle 208. The first and second channels 327, 328 are partially defined by an
area of reduced layers at the edges 335, 336 or the article 300. In embodiments, the channels 327, 328 may comprise cut-outs, lips, grooves, furrows or conduits.
The electrical contacts of a first type 360a-360j are disposed on the exposed portion of the first layer 325a. The electrical contacts of a first type 360a-360j are disposed on the exposed portion in the first and second channels 327, 328. The electrical contact of a second type 365 is disposed on the inner side 333 of the article 300. In embodiments, the electrical contact of a second type comprises a plurality of electrical contacts. The resistive heating elements 342a-342j are disposed on the inner side 333 of the article 300. The electrical contacts of a first type 360a-360j are connected to the resistive heating elements 342a-342j which are connected to the electrical contact of a second type 365.
The first layer 325a comprises the resistive heating layer 340, and a portion of the resistive heating layer 340 is exposed by the offset second layer 325b. The electrical contacts of a first type 360a-360j are exposed in the first and second channels 327, 328. The device 200 comprises a plurality of electrical connectors which extend into the first and second channels 327, 328 to connect with the electrical contacts of a first type 360a- 360j. Each of the plurality of electrical connectors is in contact with a corresponding electrical contact of a first type 360a-360j. An electrical connector is disposed in the inlet flow path to connect with the electrical contact of a second type 365. In embodiments, the electrical contacts of a first type are disposed in a first channel and the electrical contacts of a second type are disposed in the second channel. The electrical contacts of a first type 360 may protrude from the first layer 325a to define a portion of the first and second channels 327, 328. The electrical contacts of a first type 360 may be arranged in a linear or non-linear arrangement to define a linear or non- linear airflow path. The electrical contacts may be arranged to affect the outer air flow path 331 in the first and second channels 327, 328.
The first layer 325a comprises a support on which the resistive heating layer 340 is disposed. The second layer 325b comprises a body layer. The resistive heating layer 340 is disposed between the body layer and the support. In embodiments, the support comprises a support layer. The support layer may have a width greater than the resistive heating layer 340 and therefore define a portion of the first and second channels. The support layer may define a protrusion which defines a portion of the first and second channels. The support may be electrically insulative. The support may comprise at least one of paper and card.
In this embodiment, shown in Figure 28, the outer flow path 331 comprises a first outer flow path portion 332a and a second outer flow path portion 332b. The device air inlet comprises a first opening 210 and a second opening 211. The device comprises a distal chamber 209 at a distal end of the receptacle 208. The distal chamber 209 is in fluid connection with the article air inlet 324. The first channel 327 defines a first outer flow path portion 332a. The first outer flow path portion 332a is defined between the first opening 210 and the distal chamber 209. The first channel 327 extends partially through the thickness of the article 300. The second channel defines a second outer flow path portion 332b. The second outer flow path portion 332b is defined between the second opening 211 and the distal chamber 209. The second channel 328 extends partially through the thickness of the article 300. The distal chamber 209 is in fluid communication with the outer flow path 331 and the inner flow path 326. The first outer flow path portion 332a and the second outer flow path portion 332b intersect at the distal chamber 209.
In embodiments, the outer flow path comprises a single flow path between a device air inlet and the article air inlet 314. The single outer flow path may be defined be a single channel. The channel may comprise a plurality of electrical contacts of a first type each connected to a respective resistive heating element. In embodiments where there is a single channel, the resistive heating layer may comprise a single row array of heating elements, such as those depicted in Figures 1 to 25. An array of two rows of heating elements, as shown in Figures 26 to 29 provides simple connection of the heating elements to the electrical contacts in the channel.
In embodiments, the inner flow path 326 and the outer flow path 331 are free from interconnection in the article. As shown, the flow path between the inner flow path 326 and the outer flow path 331 is external to the article, and is defined by the receptacle. In embodiments, the inner flow path 326 and the outer flow path 331 intersect at the article air inlet 314. The inner flow path and outer flow path may be directly fluidly connected by a continuous flow path defined by the article 300. The inner flow path and outer flow path may be directly fluidly connected by a continuous flow path defined at least one of a channel, passage and bore. The inner air flow path 326 passes through the article 300 and is fluidly connected to the outer airflow paths 331 via the article air inlet 314. The article air inlet 314 is at a distal end 104 of the article 300 and the system 100. The first and second openings 210, 211 are at a proximal end 102 of the device 200 and system 100. The first and second outer flow paths 331 are substantially parallel to the longitudinal axis of the device 200. The inner flow path 326 extends in the longitudinal direction. The outer flow path 331
extends in the longitudinal direction. The inner flow path 326 and the outer flow path 331 are parallel to each other and the longitudinal axis. The outer flow path 331 extends from a proximal end 102 to a distal 104 end. The inner flow path 326 extends from a distal end 104 to a proximal end 102. The device of Figure 28 comprises a distal chamber 209. The distal chamber 209 is defined by the receptacle 208. A receptacle flow path is defined by the base of the receptacle 208. The distal chamber 209 forms part of the receptacle flow path. The distal chamber 209 may be omitted. The receptacle flow path may be defined by a step or another feature. The receptacle flow path fluidly connects the outer flow path 331 and the article inlet 314. The distal chamber 209 is fluidly connected to the outer flow path portions 332a, 332b and the inner flow path 326.
In embodiments, the device comprises a pressure sensor. The pressure sensor is positioned in the distal chamber 209. In embodiments, the pressure sensor may be in the receptacle 208. The pressure sensor measures the air pressure in the distal chamber 206. Pressure measurements from the sensor are relayed to the control circuit 222 in the device 200.
Figure 29 shows the device 200 with an alternative article 500 received in the receptacle 208. The device 200 comprises a plurality of electrical contacts of a first type 560 that protrude into the receptacle 208. In this embodiment, the electrical contacts of a first type 560 protrude from the receptacle peripheral wall 212 into the receptacle to contact the article. Figure 29 does not depict the peripheral wall from which the electrical contacts 560 extend. In embodiments, the electrical contacts of a first type 560 may be disposed on the article, and protrude into the receptacle 208 to contact the receptacle peripheral wall 212 in use. The electrical contacts of a first type 560 are in electrical contact with the plurality of electrical connectors of the device 200. The outer air flow path 531 is defined between the outer side of the article body and the receptacle 208. The outer flow path 530 is affected by the protruding electrical contacts of a first type 560 such that the outer flow path is defined around and/or between the electrical contacts of a first type 560. A gap is defined between the outer side of the article body and the receptacle which defines the outer flow path 531. On insertion of the article 500, the article 500 is held to one side of the receptacle 208. The protruding electrical contacts of a first type 560 form the gap between the article body and the receptacle peripheral wall 212 on one side, and the other side of the article body is held close to the receptacle peripheral wall 212. The
outer airflow path 531 is in fluid communication with the article inlet 314. The article 500 has a constant external width throughout its depth. In this embodiment, the electrical contacts of a first type 560 are arranged in columns, distributed linearly along the axis. The outer airflow path 531 around or between the contacts is non-linear. In embodiments, the electrical contacts of a first type may be arranged to provide a nonlinear array of contacts. The electrical contacts of a first type may be evenly spaced, or may be unevenly spaced. The electrical contacts may provide for a substantially linear outer airflow path.
The provision of the outer airflow path 531 aids cooling of at least one of the device 200 and article 500. Such an arrangement helps to minimise the outside temperature of the device 200 to prevent harm to the user due to overheating.
In some embodiments of the different arrangements of aerosol generators and articles described above the aerosol generating material is formed in a configuration other than as an aerosol generating layer. The aerosol generating material in embodiments is in the form of an aerosol generating segment. The aerosol generating segment generally comprises a solid material. Such a solid material may be shredded tobacco. The aerosol generating material, arranged as an aerosol generating segment for example, may comprise a plurality of individual pieces of aerosol generating material. The aerosol generating material may be individual pieces of tobacco material. In embodiments, the aerosol generating material comprises a plurality of strips, beads or pellets. In embodiments the aerosol generating segment is a plug of material.
The aerosol generating segment in embodiments comprises a body of material. The aerosol generating material is a non-liquid. In such an embodiment, the body of material comprises a rod of aerosol generating material, for example a tobacco rod. For example, the body of material may comprise shredded tobacco material. The body of material may be formed into a rod. In some embodiments, the body of material comprises cut rag tobacco that is formed into a rod. The aerosol generating material may comprise tobacco material. The aerosol generating material may comprise extruded tobacco. The aerosol generating material may comprise reconstituted tobacco. The aerosol generating material, formed as a solid material, may comprise nicotine. The aerosol generating material may comprise, consist of, or essentially consist of, tobacco. In embodiments, the aerosol generating material is free from tobacco.
In embodiments of any of the above, the heating of the article provides a relatively constant release of volatile compounds into an inhalable medium. In an
embodiment of the above, the aerosol generating segment is a plug of material. The article may comprise a mouth end section. A tubular element may be located between the aerosol generating material and the mouth end section. The article may comprise a ventilation area in the mouth end section. The mouth end section may define a mouthpiece configured to be placed between a user’s lips.
In embodiments of any of the above described articles, the or each resistive heating element is configured to heat substantially the entire aerosol generating material. The aerosol generating segment in embodiments is at least substantially cylindrical. In embodiments, the aerosol generating segment is at least partially wrapped by the resistive heating layer. In embodiments, the resistive heating element extends in the aerosol generating segment. The resistive heating element may extend around the aerosol generating segment. In embodiments, the resistive heating element encircles the aerosol generating segment. In some arrangements at least a portion of the flow path through the article is through the aerosol generating segment. The aerosol generating segment may define part of the air path. In embodiments, the first type of electrical contact and the second type of electrical contact are exposed from the aerosol generating segment.
The aerosol generating material may comprise tobacco material as described herein, which includes a tobacco component. In the tobacco material described herein, the tobacco component may contain paper reconstituted tobacco. The tobacco component may also contain leaf tobacco, extruded tobacco, and/or bandcast tobacco. The tobacco material may be provided in the form of cut rag tobacco. The cut rag tobacco can be formed from a mixture of forms of tobacco material, for instance a mixture of one or more of paper reconstituted tobacco, leaf tobacco, extruded tobacco and bandcast tobacco. In embodiments, the tobacco material comprises paper reconstituted tobacco or a mixture of paper reconstituted tobacco and leaf tobacco. In the tobacco material described herein, the tobacco material may contain a filler component. The filler component is generally a non-tobacco component, that is, a component that does not include ingredients originating from tobacco. The filler component may be a non-tobacco fibre such as wood fibre or pulp or wheat fibre. The filler component may also be an inorganic material such as chalk, perlite, vermiculite, diatomaceous earth, colloidal silica, magnesium oxide, magnesium sulphate, magnesium carbonate. The filler component may also be a non-tobacco cast material or a non- tobacco extruded material. The filler component may be present in an amount of 0 to 20% by weight of the tobacco material, or in an amount of from 1 to 10% by weight of the
composition. In some embodiments, the filler component is absent. In the tobacco material described herein, the tobacco material contains an aerosol-former material. In this context, an "aerosol-former material" is an agent that promotes the generation of an aerosol. An aerosol-former material may promote the generation of an aerosol by promoting an initial vaporisation and/ or the condensation of a gas to an inhalable solid and/ or liquid aerosol. In some embodiments, an aerosol-former material may improve the delivery of flavour from the aerosol generating material. In general, any suitable aerosol-former material or agents may be included in the aerosol generating material of the invention, including those described herein. Paper reconstituted tobacco refers to tobacco material formed by a process in which tobacco feedstock is extracted with a solvent to afford an extract of solubles and a residue comprising fibrous material, and then the extract (usually after concentration, and optionally after further processing) is recombined with fibrous material from the residue (usually after refining of the fibrous material, and optionally with the addition of a portion of non-tobacco fibres) by deposition of the extract onto the fibrous material. The process of recombination resembles the process for making paper.
The various embodiments described herein are presented only to assist in understanding and teaching the claimed features. These embodiments are provided as a representative sample of embodiments only, and are not exhaustive and/or exclusive. It is to be understood that advantages, embodiments, examples, functions, features, structures, and/or other aspects described herein are not to be considered limitations on the scope of the invention as defined by the claims or limitations on equivalents to the claims, and that other embodiments may be utilised and modifications may be made without departing from the scope of the claimed invention. Various embodiments of the invention may suitably comprise, consist of, or consist essentially of, appropriate combinations of the disclosed elements, components, features, parts, steps, means, etc., other than those specifically described herein. In addition, this disclosure may include other inventions not presently claimed, but which may be claimed in future.
Claims
1. An article for an aerosol provision device comprising: a body; aerosol generating material in the body; an inner flow path on an inner side of the body along which aerosol is configured to flow; the aerosol generating material being exposed to the inner flow path; an outer side of the body; and a channel defined by an outer side of the body defining an outer flow path along which air can flow.
2. The article of claim 1, wherein the body is elongate and defines a longitudinal axis and the inner flow path extends in the longitudinal direction.
3. The article of claim 2, wherein the outer flow path extends in the longitudinal direction.
4. The article of any of claims 1 to 3, wherein the body comprises a first layer and a second layer, wherein an edge of a first layer is offset from an edge of a second layer to define at least a portion of the channel.
5. The article of claim 4, comprising a resistive heating layer comprising a resistive heating element configured to heat at least a portion of the aerosol generating material to generate an aerosol; a first type of electrical contact; and a second type of electrical contact; and wherein the resistive heating element is at least a portion of an electrically conductive path between the first type of electrical contact and the second type of electrical contact.
6. The article of claim 5, wherein at least one of the first type of electrical contact and the second type of electrical contact protrudes to define at least a portion of the channel.
7. The article of claim 5 or 6, wherein the resistive heating layer is exposed in the channel.
8. The article of any of claims 5 to 7, wherein the channel is a first channel defining a first outer flow path along which air can flow, and comprising a second channel defining a second outer flow path along which air can flow.
9. The article of claim 8, wherein at least one of the first type of electrical contact and the second type of electrical contact is accessible in the first channel and another at least one of the first type of electrical contact and the second type of electrical contact is accessible in the second channel.
10. The article of claim 9, wherein the first type of electrical contact is accessible in the first channel and the second type of electrical contact is accessible in the second channel.
11. The article of any of claims 4 to 10, wherein the first layer comprises a support layer, wherein the resistive heating layer is on the support layer and the support layer defines a protrusion to define at least a portion of the channel.
12. The article of any of claims 1 to 11 , comprising an aerosol generating layer comprising the aerosol generating material.
13. The article of any of claims 1 to 12, wherein the article comprises a distal end, wherein a distal end of the channel defining the outer flow path is spaced from the inner flow path.
14. The article of any of claims 1 to 13, wherein the inner flow path and the outer flow path are free from interconnection in the article.
15. The article of any of claims 1 to 14, wherein the body comprises a laminate comprising a plurality of layers, and the channel is defined by an area of a reduced number of layers.
16. The article of any of claims 1 to 15, wherein the channel extends partially though the thickness of the article.
17. An aerosol generating system comprising: the article of any of claims 1 to 16; and
an aerosol provision device comprising a receptacle configured to receive at least a portion of the article, an inlet airflow path between a device air inlet at a proximal end of the device and an article air inlet at a distal end of the device, wherein the inlet airflow path is defined by the channel.
18. The aerosol generating system of claim 17, wherein the aerosol provision device comprises an electrical connector in the inlet flow path.
19. The aerosol generating system of claim 17 or 18, wherein the aerosol provision device defines a flow connection between the outer flow path and the inner flow path defined by the article.
20. An aerosol provision system comprising: an article comprising: aerosol generating material; a resistive heating layer comprising a resistive heating element configured to heat at least a portion of the aerosol generating material to generate an aerosol; a first type of electrical contact; and a second type of electrical contact; and wherein the resistive heating element is at least a portion of an electrically conductive path between the first type of electrical contact and the second type of electrical contact, an aerosol provision device comprising: a receptacle in which at least a portion of the article is received in use, a device connector comprising a plurality of device electrical contacts protruding into the receptacle and configured to contact the resistive heating layer; an inlet airflow path between a device air inlet towards a proximal end of the device and an article air inlet towards a distal end of the device, wherein the airflow path is defined between the article and the receptacle, and across the electrical contacts.
21. The aerosol provision system of claim 20, comprising an aerosol generating layer comprising the aerosol generating material, wherein the aerosol generating layer is on the resistive heating layer.
22. An aerosol generator of an article for an aerosol provision device comprising: aerosol generating material;
a resistive heating layer comprising a plurality of resistive heating elements configured to heat at least a portion of the aerosol generating material to generate an aerosol; a first type of electrical contact; and a second type of electrical contact; wherein the resistive heating element is at least a portion of an electrically conductive path between the first type of electrical contact and the second type of electrical contact; and wherein the plurality of resistive heating elements comprises a first row of the plurality of resistive heating elements and a second row of resistive heating elements.
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202363537982P | 2023-09-12 | 2023-09-12 | |
| US63/537,982 | 2023-09-12 | ||
| GB2317411.3 | 2023-11-14 | ||
| GBGB2317411.3A GB202317411D0 (en) | 2023-09-12 | 2023-11-14 | Article for an aerosol provision device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2025056624A2 true WO2025056624A2 (en) | 2025-03-20 |
| WO2025056624A3 WO2025056624A3 (en) | 2025-05-01 |
Family
ID=92800206
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2024/075401 Pending WO2025056624A2 (en) | 2023-09-12 | 2024-09-11 | Article for an aerosol provision device |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025056624A2 (en) |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12458070B2 (en) * | 2019-03-21 | 2025-11-04 | Imperial Tobacco Limited | Aerosol delivery system |
| CN215455416U (en) * | 2021-01-29 | 2022-01-11 | 深圳麦克韦尔科技有限公司 | Aerosol generating device |
| KR102589998B1 (en) * | 2021-01-29 | 2023-10-16 | 주식회사 케이티앤지 | Aerosol generating device |
| WO2022238337A1 (en) * | 2021-05-10 | 2022-11-17 | Jt International S.A. | Aerosol generating device comprising a cup-shaped heating chamber defining an open end and a sealed end |
| CN219229049U (en) * | 2022-12-07 | 2023-06-23 | 上海烟草集团有限责任公司 | Aerosol generating device |
-
2024
- 2024-09-11 WO PCT/EP2024/075401 patent/WO2025056624A2/en active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| WO2025056624A3 (en) | 2025-05-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR20190047103A (en) | An aerosol-generating article having an improved outermost wrapper | |
| WO2024200677A1 (en) | Aerosol generator | |
| EP4442136A1 (en) | Article for an aerosol provision device | |
| WO2025056624A2 (en) | Article for an aerosol provision device | |
| WO2025056550A1 (en) | Aerosol generator | |
| US20240324676A1 (en) | Aerosol generator | |
| WO2024206656A2 (en) | Aerosol provision system | |
| WO2025056613A2 (en) | Aerosol generator | |
| WO2025056627A1 (en) | Aerosol provision system | |
| WO2025056558A1 (en) | Aerosol provision system | |
| WO2024200692A1 (en) | Aerosol generator | |
| WO2024200718A1 (en) | Aerosol generator | |
| EP4646947A1 (en) | Aerosol generator | |
| WO2025056557A1 (en) | Aerosol provision system | |
| WO2024200667A2 (en) | Aerosol generator | |
| WO2024200658A1 (en) | Article | |
| WO2025056539A2 (en) | Aerosol generator | |
| WO2024200716A1 (en) | Article | |
| WO2025056560A1 (en) | Aerosol provision system | |
| WO2025056625A2 (en) | Aerosol generator | |
| EP4646948A1 (en) | Aerosol generator | |
| WO2025056555A1 (en) | Aerosol provision device | |
| WO2025056556A1 (en) | Aerosol provision device | |
| WO2024206677A1 (en) | Aerosol generator | |
| WO2025056375A1 (en) | An aerosol provision device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24772245 Country of ref document: EP Kind code of ref document: A2 |