[go: up one dir, main page]

WO2025052607A1 - Ventilation system, learning device, and inference device - Google Patents

Ventilation system, learning device, and inference device Download PDF

Info

Publication number
WO2025052607A1
WO2025052607A1 PCT/JP2023/032581 JP2023032581W WO2025052607A1 WO 2025052607 A1 WO2025052607 A1 WO 2025052607A1 JP 2023032581 W JP2023032581 W JP 2023032581W WO 2025052607 A1 WO2025052607 A1 WO 2025052607A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventilation
weather forecast
amount
data
rainwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2023/032581
Other languages
French (fr)
Japanese (ja)
Inventor
章太 小森
卓也 齊藤
哲也 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to PCT/JP2023/032581 priority Critical patent/WO2025052607A1/en
Publication of WO2025052607A1 publication Critical patent/WO2025052607A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow

Definitions

  • This disclosure relates to a ventilation system that includes a ventilation device installed in a building and a ventilation control device that controls the ventilation device, as well as a learning device and an inference device used therein.
  • a ventilation system that includes a ventilation device installed in a building and a ventilation control device that controls the ventilation device, it is necessary to prevent rainwater and other substances from entering the room.
  • Patent Document 1 discloses a ventilation device that stops ventilation when the measured outdoor humidity is higher than the indoor humidity.
  • the ventilation device disclosed in Patent Document 1 stops ventilation when rainfall causes the outdoor humidity to become higher than the indoor humidity, thereby preventing rainwater from entering during rainfall.
  • the ventilation device disclosed in Patent Document 1 has a problem in that when rain starts to fall suddenly due to a sudden downpour, the humidity sensor does not keep up with the sudden increase in outdoor humidity, resulting in a delay in stopping the air supply fan and allowing rainwater to seep in.
  • the present disclosure has been made in consideration of the above, and aims to provide a ventilation system that prevents rainwater from entering the ventilation device even if it suddenly starts raining.
  • the ventilation system includes a ventilation device installed in a building, and a ventilation control device that controls the ventilation device based on weather forecast data.
  • the ventilation control device has a rainwater intrusion possibility determination unit that determines whether or not there is a possibility of rainwater intrusion into the ventilation device based on weather forecast data, and an air supply volume management unit that manages the volume of air supply by the ventilation device by stopping air supply by the ventilation device or reducing the volume of air supply by the ventilation device when there is a possibility of rainwater intrusion into the ventilation device.
  • the ventilation system disclosed herein has the effect of preventing rainwater from entering the ventilation device even if it suddenly starts raining.
  • FIG. 1 is a diagram showing a configuration of a ventilation system according to a first embodiment.
  • FIG. 1 is a diagram showing a configuration of a ventilation device of a ventilation system according to a first embodiment.
  • FIG. 1 is a diagram showing a configuration of a ventilation control device of a ventilation system according to a first embodiment.
  • a flowchart showing the flow of operations of the ventilation system according to the first embodiment.
  • FIG. 13 is a diagram showing an example of a rainwater intrusion determination table held by the ventilation control device according to the second embodiment;
  • FIG. 13 is a diagram showing an example of installation of a ventilation device of a ventilation system according to a third embodiment.
  • FIG. 1 is a diagram showing a configuration of a ventilation system according to a first embodiment.
  • FIG. 1 is a diagram showing a configuration of a ventilation device of a ventilation system according to a first embodiment.
  • FIG. 1 is a
  • FIG. 13 is a diagram showing a configuration of a ventilation system according to a fifth embodiment.
  • FIG. 13 is a diagram showing a configuration of a ventilation system according to a sixth embodiment.
  • FIG. 13 is a diagram showing the configuration of a ventilation system according to a 9th embodiment.
  • FIG. 13 is a diagram showing the configuration of a learning device for a ventilation system according to a 9th embodiment.
  • FIG. 13 is a diagram showing a configuration of an inference device for a ventilation system according to a ninth embodiment.
  • FIG. 13 is a diagram showing a configuration of a ventilation system according to a tenth embodiment.
  • FIG. 13 is a diagram showing a hardware configuration of a learning device according to a ninth embodiment and a tenth embodiment.
  • FIG. 1 is a diagram showing the configuration of a ventilation system according to embodiment 1.
  • the ventilation system 100 includes a ventilation device 1 installed in a building, and a ventilation control device 2 that controls the ventilation device 1 based on weather forecast data.
  • FIG. 2 is a diagram showing the configuration of the ventilation device of the ventilation system according to the first embodiment.
  • the ventilation device 1 includes a ventilation blower 11, a speed regulator 12 that adjusts the air volume of the ventilation blower 11, and a damper 13 that opens and closes the ventilation port.
  • the ventilation device 1 may also include a ventilation hood and a filter that is attached inside the ventilation duct.
  • the speed regulator 12 stops the operation of the ventilation blower 11 and adjusts its speed upon receiving an instruction from the ventilation control device 2.
  • the damper 13 adjusts the opening degree of the ventilation port upon receiving an instruction from the ventilation control device 2.
  • the ventilation device 1 is, for example, a propeller fan type pressure ventilation fan installed on the wall of a building. There is a possibility that rainwater may enter the pressure ventilation fan through the wind tunnel of the propeller fan that connects the inside and outside of the building.
  • FIG. 3 is a diagram showing the configuration of the ventilation control device of the ventilation system according to the first embodiment.
  • the ventilation control device 2 includes a rainwater intrusion possibility determination unit 21 and an air supply volume management unit 22.
  • the rainwater intrusion possibility determination unit 21 determines whether or not there is a possibility of rainwater intrusion into the ventilation device 1 based on weather forecast data and ventilation control conditions set in advance.
  • the air supply volume management unit 22 outputs a control instruction to the ventilation device 1 to stop the ventilation device 1 or to reduce the air supply volume.
  • the air supply volume management unit 22 When there is no longer a possibility of rainwater intrusion into the ventilation device 1, the air supply volume management unit 22 outputs a control instruction to the ventilation device 1 to resume operation of the ventilation device 1 or to return the air supply volume to the original air supply volume. In this way, the air supply volume management unit 22 manages the air supply volume by instructing the ventilation device 1 to operate, stop, and increase or decrease the air supply volume.
  • the weather forecast data may be forecast result data based on current and past weather measurement data obtained by various weather sensors such as a temperature sensor, a humidity sensor, and anemometer installed at the installation site of the ventilation device 1, or it may be weather forecast data obtained from outside based on regional information for the installation site of the ventilation device 1 released by a meteorological agency or a weather information provider.
  • various weather sensors such as a temperature sensor, a humidity sensor, and anemometer installed at the installation site of the ventilation device 1
  • weather forecast data obtained from outside based on regional information for the installation site of the ventilation device 1 released by a meteorological agency or a weather information provider.
  • the weather forecast data includes at least the amount of precipitation.
  • the weather forecast data may also include one or more of the following: temperature, humidity, air pressure, solar radiation, wind direction, wind speed, etc.
  • the forecast value of the weather forecast data is associated with the forecast time.
  • the ventilation control device 2 may be configured as an integral part of the ventilation device 1, or may be installed in a location separate from the ventilation device 1.
  • FIG. 4 is a flowchart showing the flow of the operation of the ventilation system according to the first embodiment.
  • the rainwater intrusion possibility determination unit 21 acquires weather forecast data.
  • the rainwater intrusion possibility determination unit 21 determines whether the expected precipitation amount after X minutes is greater than a preset value.
  • the value of X can be set arbitrarily in advance, but if the value of X is too large, rain may start falling before the ventilation device 1 is controlled. For this reason, it is preferable to set X to about 5 minutes. If the expected precipitation amount after X minutes is equal to or less than the preset value, step S2 becomes No, and the process returns to step S1. If the expected precipitation amount after X minutes is greater than the preset value, step S2 becomes Yes, and in step S3, the supply air volume management unit 22 controls the ventilation device 1 so that the supply air volume after X minutes is equal to or less than the preset air volume.
  • step S4 the rainwater intrusion possibility determination unit 21 acquires weather forecast data.
  • step S5 the rainwater intrusion possibility determination unit 21 determines whether the expected precipitation Y minutes later is smaller than a preset value.
  • the value of Y can be set in advance as desired, but if the value of Y is too large, the time for which the ventilation device 1 is stopped will be long even though the possibility of rainwater intrusion is low. For this reason, it is preferable to set Y to about 5 minutes. If the expected precipitation Y minutes later is equal to or greater than the preset value, step S5 becomes No and the process returns to step S4.
  • step S5 becomes Yes and in step S6, the supply air volume management unit 22 controls the ventilation device 1 so that the supply air volume Y minutes later returns to the original air volume.
  • the "original air volume” is the air volume before the change in step S3.
  • the rainwater infiltration possibility determination unit 21 may acquire precipitation prediction data in step S1, and determine whether the predicted precipitation amount after X minutes is greater than a preset value in step S2 based on the precipitation prediction data.
  • the rainwater infiltration possibility determination unit 21 may also acquire one or more weather forecast data of temperature, humidity, air pressure, solar radiation, wind direction, wind speed, etc. in step S1, and determine whether the predicted precipitation amount after X minutes is greater than a preset value in step S2 based on the acquired weather forecast data.
  • the rainwater infiltration possibility determination unit 21 may also acquire precipitation forecast data in step S4, and determine whether the expected precipitation after Y minutes is smaller than a preset value in step S5 based on the precipitation forecast data.
  • the rainwater infiltration possibility determination unit 21 may also acquire one or more weather forecast data of temperature, humidity, air pressure, solar radiation, wind direction, wind speed, etc. in step S4, and determine whether the expected precipitation after Y minutes is smaller than a preset value in step S5 based on the acquired weather forecast data.
  • the control of the ventilation device 1 in steps S3 and S6 above is performed by adjusting the speed of the ventilation blower 11 and adjusting the opening of the damper 13. If multiple pieces of weather forecast data of the same type are acquired in step S1, the determination in step S3 of whether the expected precipitation amount in X minutes is greater than a preset value is made based on the most recent weather forecast data. If multiple pieces of weather forecast data of the same type are acquired in step S4, the determination in step S5 of whether the expected precipitation amount in Y minutes is less than a preset value is made based on the most recent weather forecast data.
  • the ventilation system 100 controls the ventilation device 1 so that the air supply volume after X minutes is equal to or less than the preset volume when the expected precipitation volume after X minutes is predicted based on weather forecast data to be greater than a preset value. This reduces the amount of rainwater entering the ventilation device or air supply duct, compared to a ventilation system that reduces the air supply volume after actually detecting an increase in precipitation.
  • the ventilation system 100 controls the ventilation device 1 so that the amount of air supplied Y minutes from now is equal to or greater than the preset air volume. This allows the amount of air supplied to be restored to its original level more quickly compared to a ventilation system that increases the amount of air supplied only after actually detecting a decrease in precipitation.
  • Embodiment 2 The configuration of the ventilation system 100 according to the second embodiment is similar to that of the ventilation system 100 according to the first embodiment.
  • the rainwater infiltration possibility determination unit 21 is different from the rainwater infiltration possibility determination unit 21 of the ventilation system 100 according to the first embodiment in that the rainwater infiltration possibility determination unit 21 determines the possibility of rainwater infiltration based not only on the amount of precipitation but also on a combination of the amount of precipitation and wind speed.
  • FIG. 5 is a flowchart showing the flow of operation of the ventilation system according to the second embodiment.
  • the rainwater intrusion possibility determination unit 21 acquires weather forecast data.
  • the rainwater intrusion possibility determination unit 21 determines whether the predicted precipitation and predicted wind speed after X minutes fall within an area where there is a possibility of intrusion in the rainwater intrusion determination table. If the predicted precipitation and wind speed after X minutes do not fall within an area where there is a possibility of intrusion in the rainwater intrusion determination table, step S12 becomes No and the process returns to step S11.
  • step S12 becomes Yes, and in step S13, the supply air volume management unit 22 controls the ventilation device 1 so that the supply air volume after X minutes is equal to or less than a preset air volume.
  • step S14 the rainwater intrusion possibility determination unit 21 acquires weather forecast data.
  • step S15 the rainwater intrusion possibility determination unit 21 determines whether the predicted precipitation and predicted wind speed after Y minutes will be outside the area where intrusion is possible in the rainwater intrusion determination table. If the precipitation and wind speed after Y minutes will not be outside the area where intrusion is possible in the rainwater intrusion determination table, step S15 becomes No and the process returns to step S14. If the precipitation and wind speed after Y minutes will be outside the area where intrusion is possible in the rainwater intrusion determination table, step S15 becomes Yes, and in step S16, the air supply volume management unit 22 controls the ventilation device so that the air supply volume after Y minutes returns to the original air volume.
  • the "original air volume" is the air volume before the change in step S13.
  • FIG. 6 is a diagram showing an example of a rainwater intrusion determination table held by a ventilation control device according to embodiment 2.
  • a first judgment reference precipitation and a second judgment reference precipitation are set for the amount of precipitation.
  • the first judgment reference precipitation is greater than the second judgment reference precipitation.
  • the rainwater intrusion determination table can be divided into six regions, from the first region to the sixth region.
  • the first region is a region where the amount of precipitation is equal to or less than the second judgment reference precipitation and the wind speed is equal to or less than the judgment reference wind speed.
  • the second region is a region where the amount of precipitation is equal to or less than the second judgment reference precipitation and the wind speed exceeds the judgment reference wind speed.
  • the third region is a region where the amount of precipitation exceeds the second judgment reference precipitation and is equal to or less than the first judgment reference precipitation and the wind speed is equal to or less than the judgment reference wind speed.
  • the fourth region is a region where the amount of precipitation exceeds the second judgment reference precipitation and is equal to or less than the first judgment reference precipitation and the wind speed exceeds the judgment reference wind speed.
  • the fifth region is a region where the precipitation exceeds the first criteria precipitation and the wind speed is equal to or less than the criteria wind speed.
  • the sixth region is a region where the precipitation exceeds the first criteria precipitation and the wind speed exceeds the criteria wind speed.
  • the combination of the predicted precipitation and the predicted wind speed falls in the first, second, or third region, it is determined that there is no possibility of rainwater infiltration.
  • the combination of the predicted precipitation and the predicted wind speed falls in the fourth, fifth, or sixth region, it is determined that there is a possibility of rainwater infiltration.
  • the predicted precipitation exceeds the first judgment standard precipitation, it is determined that there is a possibility of rainwater infiltration regardless of the predicted wind speed.
  • the predicted precipitation is equal to or less than the first judgment standard precipitation but exceeds the second judgment standard precipitation, it is determined that there is a possibility of rainwater infiltration if the predicted wind speed at the same time exceeds the judgment standard wind speed.
  • the predicted precipitation exceeds the second judgment standard precipitation, it is determined that there is a possibility of rainwater infiltration if the predicted wind speed is strong enough to be greater than a certain level.
  • the ventilation control device 2 may acquire weather forecast data on one or more of temperature, humidity, air pressure, solar radiation, and wind direction, as well as wind speed, and may determine in step S12 based on the acquired weather forecast data whether the predicted precipitation and predicted wind speed after X minutes fall within an area where there is a possibility of infiltration in the rainwater infiltration determination table.
  • the ventilation control device 2 may acquire weather forecast data for one or more of temperature, humidity, air pressure, solar radiation, and wind direction, as well as wind speed, and may determine in step S15 based on the acquired weather forecast data whether the amount of precipitation and wind speed Y minutes from now will be outside the area where infiltration is possible according to the rainwater infiltration determination table.
  • the ventilation system 100 according to the second embodiment reduces the amount of air supplied when the expected wind speed is high, even if the expected precipitation is not extremely high, and therefore is able to better prevent rainwater from entering compared to the ventilation system 100 according to the first embodiment.
  • the ventilation system 100 according to the third embodiment has a ventilation device 1 and a ventilation control device 2, similar to the ventilation system 100 according to the first embodiment.
  • Fig. 7 is a diagram showing an example of installation of the ventilation devices in the ventilation system according to the third embodiment.
  • the ventilation system 100 according to the third embodiment includes a plurality of ventilation devices 1.
  • the ventilation devices 1 include a west-side ventilation device 3 installed on a west wall 31 of the building 30, and a north-side ventilation device 4 installed on a north wall 32 of the building 30.
  • the ventilation control device 2 controls the ventilation device 1 based on the predicted wind direction when precipitation that may cause rainwater to infiltrate is predicted. For example, if a westerly wind is predicted during the time period when precipitation that may cause rainwater to infiltrate is predicted, the west-side ventilation device 3 installed on the west wall 31 may have rain blown in by the westerly wind because the wind tunnel of the propeller fan faces west. On the other hand, the north-side ventilation device 4 installed on the north wall 32 has a small possibility of having rain blown in by the westerly wind because the wind tunnel of the propeller fan does not face west.
  • the ventilation control device 2 stops the operation of the west-side ventilation device 3 or reduces the amount of air supplied by the west-side ventilation device 3, and maintains the amount of air supplied by the north-side ventilation device 4 unchanged.
  • the ventilation system 100 according to embodiment 3 can increase the ventilation volume during precipitation by continuing to operate the ventilation devices 1 that are unlikely to blow rain into the building due to wind, compared to stopping the operation of all ventilation devices 1 or reducing the air supply volume regardless of wind direction.
  • Embodiment 4 The configuration of the ventilation system 100 according to embodiment 4 is similar to that of the ventilation system 100 according to embodiment 3.
  • the ventilation control device 2 separately acquires weather forecast data for the vicinity of the west wall 31 of the building 30 and weather forecast data for the vicinity of the north wall 32 of the building 30, and separately determines whether or not there is a possibility of rainwater infiltrating into the west-side ventilation device 3 and whether or not there is a possibility of rainwater infiltrating into the north-side ventilation device 4. Then, the ventilation control device 2 stops operation or reduces the amount of air supply only for those ventilation devices 1 into which rainwater is likely to infiltrate.
  • predicting the wind speed that changes locally due to the unique structure of the building 30 and its surroundings separately from the wind speed based on weather forecasts for the area around the building 30 in which the ventilation device 1 is installed it is possible to determine the possibility of rainwater infiltration for each installation position of the ventilation device 1 and control the ventilation device 1.
  • FIG. 8 is a diagram showing the configuration of a ventilation system according to embodiment 5.
  • the ventilation system 100 according to embodiment 5 includes a ventilation control history storage device 5 that stores the ventilation control history by the ventilation control device 2, and a display device 6 that displays the ventilation control history, weather forecast data, and actual weather measurement data together with time data.
  • the ventilation control history storage device 5 stores the ventilation control history that associates the on/off command for the ventilation blower 11, the speed adjustment, or the opening/closing amount instruction for the damper 13 sent from the ventilation control device 2 to the ventilation device 1 with time data, and outputs the ventilation control history to the display 6 in response to the instruction from the ventilation control device 2.
  • the weather forecast data and actual weather measurement data are input to the display 6 in association with one or more of the weather data such as precipitation, temperature, humidity, air pressure, solar radiation, wind direction, and wind speed, and time data.
  • the weather forecast data and actual weather measurement data may be obtained by various weather sensors installed on-site, such as temperature sensors, humidity sensors, and anemometers, or may be obtained from external sources, such as meteorological agencies or businesses that provide weather information.
  • the display 6 shows the weather forecast data, actual weather data, and ventilation control history so that it is clear what the conditions were at the same time on the same date.
  • the display 6 shows a graph with time on the horizontal axis and actual precipitation, predicted precipitation, and ventilation fan speed adjustment on the vertical axis. In this way, the user of the ventilation system 100 can determine whether the weather forecast data was correct compared to the actual weather data, and whether the control results of the ventilation device 1 based on the weather forecast data were appropriate.
  • the ventilation control device 2, ventilation control history storage device 5, and display device 6 may be integrated together, or may be stored in separate housings.
  • the ventilation control device 2 and ventilation control history storage device 5 may be provided in the same computer system, and a monitor serving as the display device 6 may be connected to a separate computer system.
  • Embodiment 6. 9 is a diagram showing the configuration of a ventilation system according to embodiment 6.
  • the ventilation system 100 according to embodiment 6 differs from the ventilation system 100 according to embodiment 5 in that it includes a ventilation control condition input device 7 for inputting and changing control conditions to the ventilation control device 2.
  • the ventilation control condition input device 7 inputs and changes the weather data thresholds set in advance in the ventilation control device 2 and the control content for the ventilation device 1 when the thresholds are exceeded. For example, if a control condition is set in advance to change the speed adjustment amount of the ventilation blower so as to reduce the amount of air supplied at the predicted time when a certain amount of precipitation or wind speed is predicted, the ventilation control condition input device 7 can change the threshold value of the amount of precipitation or wind speed and the speed adjustment amount of the ventilation blower 11.
  • the ventilation control condition input device 7 in conjunction with the ventilation control history storage device 5, it is possible to adjust the control conditions to more appropriate conditions while checking weather forecast data, actual weather data, and ventilation control history. Since the sensitivity of the sensor used and its ability to track weather changes, the ease with which rainwater can penetrate the ventilation device 1, and regional weather conditions vary depending on the individual property and time of year, by making it possible to adjust the precipitation or wind speed threshold and the speed adjustment amount of the ventilation blower 11, it is possible to set ventilation control conditions that appropriately suppress the infiltration of rainwater regardless of the location and time of year.
  • Embodiment 7 The configuration of the ventilation system 100 according to the seventh embodiment is the same as that of the ventilation system 100 according to any one of the first to sixth embodiments.
  • the supply air amount management unit 22 controls, stores, and displays the supply air amount based on the predicted data of the dispersion of pollen and fine particulate matter. For example, when it is predicted that the dispersion amount of pollen or fine particulate matter will increase, the supply of air by the ventilation device 1 is stopped or the supply amount is reduced to suppress the intrusion of pollen or fine particulate matter into the building 30.
  • a particle measuring device for measuring the dispersion of pollen and fine particulate matter may be used, or external pollen dispersion forecast data and fine particulate matter distribution forecast data may be referred to.
  • the ventilation system 100 can prevent the air in the building 30 from becoming contaminated with pollen or fine particulate matter by stopping the air supply by the ventilation device 1 or reducing the amount of air supply when it is predicted that the amount of pollen or fine particulate matter dispersed in the air is increased.
  • Embodiment 8 The configuration of the ventilation system 100 according to the eighth embodiment is the same as that of the ventilation system 100 according to any one of the first to sixth embodiments.
  • the supply air amount management unit 22 controls, stores, and displays the supply air amount based on the predicted data of the outdoor carbon monoxide concentration or carbon dioxide concentration. For example, when it is predicted that the outdoor carbon monoxide concentration or carbon dioxide concentration will be high, the supply air by the ventilation device 1 is stopped or the supply air amount is reduced, thereby suppressing the increase in the carbon monoxide concentration or carbon dioxide concentration in the air inside the building 30.
  • road traffic information such as an external congestion prediction may be used to obtain weather forecast data, and traffic volume may be obtained by a camera.
  • traffic volume may be obtained by a camera.
  • the transition of the automobile exhaust gas concentration can be predicted by the carbon monoxide concentration or carbon dioxide concentration, and can also be predicted based on whether the traffic volume on nearby roads is high or low from road traffic information.
  • the ventilation system 100 can prevent the carbon monoxide or carbon dioxide concentration in the air inside the building 30 from increasing by stopping the supply of air by the ventilation device 1 or reducing the amount of air supplied when it is predicted that the carbon monoxide or carbon dioxide concentration outdoors will become high.
  • Embodiment 9. 10 is a diagram showing the configuration of a ventilation system according to a ninth embodiment.
  • the ventilation system 100 according to the ninth embodiment includes a ventilation device 1, a ventilation control device 2, a rainwater infiltration amount measuring device 8, a learning device 23, a learned model storage unit 24, and an inference device 25.
  • the learning device 23 learns the relationship between the ventilation control conditions, the weather forecast data, and the amount of rainwater infiltration.
  • the learned model storage unit 24 stores a learned model 241.
  • the inference device 25 infers the ventilation control conditions using the learned model 241.
  • FIG. 11 is a diagram showing the configuration of a learning device for a ventilation system according to embodiment 9.
  • the learning device 23 includes a learning data acquisition unit 231 and a model generation unit 232.
  • the learning data acquisition unit 231 acquires the ventilation control conditions, weather forecast data, and rainwater infiltration amount as learning data.
  • the ventilation control conditions are composed of one or more of the speed of the ventilation blower and the opening/closing angle of the damper 13.
  • the weather forecast data is composed of one or more of the amount of precipitation, temperature, humidity, air pressure, solar radiation, wind direction, wind speed, etc.
  • the amount of rainwater infiltration is measured by rainwater infiltration amount measuring device 8.
  • Rainwater infiltration amount measuring device 8 is constructed by installing a commercially available rain sensor or rain gauge on the indoor side of ventilation device 1. If a rain sensor that cannot detect the amount of rain is used, multiple rain sensors are installed and the amount of rainwater infiltration can be determined according to the number of rain sensors that react. As another method, when rainwater infiltration is visually confirmed, an operator or manager can directly input the amount of rainwater infiltration into rainwater infiltration amount measuring device 8. In this case, a rain sensor is not necessary.
  • the model generation unit 232 learns the ventilation control conditions based on learning data including the ventilation control conditions, weather forecast data, and the amount of rainwater infiltration. In other words, it generates a learned model 241 that infers the ventilation control conditions from the weather forecast data and the amount of rainwater infiltration of the ventilation system 100.
  • the learning algorithm used by the model generation unit 232 may be a known algorithm such as supervised learning, unsupervised learning, or reinforcement learning.
  • reinforcement learning an agent, which is the subject of action in a certain environment, observes the parameters of the environment, which is the current state, and determines the action to be taken. The environment changes dynamically due to the agent's actions, and the agent is given a reward according to the change in the environment. The agent repeats this process, and learns the course of action that will obtain the most reward through a series of actions.
  • Q-learning and TD-learning are known as representative methods of reinforcement learning.
  • the general update formula for the action value function Q(s, a) is expressed as the following formula (1).
  • s t represents the state of the environment at time t
  • a t represents the action at time t.
  • r t+1 represents the reward obtained due to the change in state
  • represents the discount rate
  • represents the learning coefficient. Note that ⁇ is in the range of 0 ⁇ 1, and ⁇ is in the range of 0 ⁇ 1.
  • the ventilation control condition becomes the action a t
  • the amount of rainwater infiltration becomes the state s t
  • the best action a t in the state s t at time t is learned.
  • the best action a t in state s t at time t is associated with the weather forecast data at the same time. In other words, the best action a t in the weather forecast data at time t is learned.
  • the update formula expressed by equation (1) increases the action value Q if the action value Q of the action a with the highest Q value at time t+1 is greater than the action value Q of the action a executed at time t, and decreases the action value Q in the opposite case.
  • it updates the action value function Q(s, a) so that the action value Q of action a at time t approaches the best action value at time t+1. This allows the best action value in a certain environment to be propagated sequentially to the action value in the previous environment.
  • the model generation unit 232 that generates the trained model 241 by reinforcement learning includes a reward calculation unit 232a and a function update unit 232b.
  • the reward calculation unit 232a calculates the reward based on the ventilation control conditions and the amount of rainwater infiltration.
  • the reward calculation unit 232a calculates the reward r based on the increase or decrease in the amount of rainwater infiltration. For example, if the amount of rainwater infiltration decreases, the reward r is increased, and if the amount of rainwater infiltration increases, the reward r is decreased. For example, if the amount of rainwater infiltration decreases, a reward of "1" is given, and if the amount of rainwater infiltration increases, a reward of "-1" is given.
  • the function update unit 232b updates the function for determining the ventilation control condition in accordance with the reward calculated by the reward calculation unit 232a, and outputs the function to the learned model storage unit 24.
  • the action value function Q(s t , a t ) expressed by the formula (1) is used as a function for calculating the ventilation control condition.
  • the learned model storage unit 24 stores the action value function Q(s t , a t ) updated by the function update unit, that is, the learned model 241.
  • Figure 12 is a flowchart showing the learning process performed by the learning device of the ventilation system according to embodiment 9.
  • step S21 the learning data acquisition unit 231 acquires the ventilation control conditions, weather forecast data, and the amount of rainwater infiltration as learning data.
  • step S22 the model generation unit 232 calculates the reward based on the ventilation control conditions and the amount of rainwater infiltration. Specifically, the reward calculation unit 232a acquires the ventilation control conditions and the amount of rainwater infiltration, and determines whether to increase or decrease the reward based on a predetermined increase or decrease in the amount of rainwater infiltration.
  • step S22 determines that the reward should be increased, and so increases the reward in step S23.
  • the result in step S22 is "rainwater infiltration amount increased.” In this case, the reward calculation unit 232a determines that the reward should be decreased, and so decreases the reward in step S24.
  • step S25 the function update unit 232b updates the action value function Q(s t , a t ) represented by equation (1) stored in the learned model storage unit 24, based on the reward calculated by the reward calculation unit 232a.
  • the learning device 23 repeatedly executes the above steps S21 to S25, and stores the generated action value function Q(s t , a t ) as the learned model 241.
  • the best action a t in state s t at time t is associated with the weather forecast data at the same time. That is, the best action a t for the weather forecast data at time t is trained.
  • the learning device 23 stores the learned model 241 in a learned model storage unit 24 provided outside the learning device 23, but the learned model storage unit 24 may be provided inside the learning device 23.
  • FIG. 13 is a diagram showing the configuration of an inference device for a ventilation system according to embodiment 9.
  • the inference device 25 includes an inference data acquisition unit 251 and an inference unit 252.
  • the inference data acquisition unit 251 acquires weather forecast data.
  • the weather forecast data consists of one or more of precipitation, temperature, humidity, air pressure, solar radiation, wind direction, wind speed, etc.
  • the inference unit 252 infers ventilation control conditions using the trained model 241. That is, by inputting the weather forecast data acquired by the data-for-inference acquisition unit 251 to the trained model 241, it is possible to infer ventilation control conditions suitable for the weather forecast data.
  • the weather forecast data was associated with the amount of rainwater infiltration when the trained model 241 was generated.
  • the ventilation control conditions are output using the trained model 241 trained by the model generation unit 232.
  • the trained model 241 may be acquired from another ventilation system 100, and the ventilation control conditions may be output based on this trained model 241.
  • the trained model 241 may be generated by a device other than the ventilation system 100. In other words, the trained model 241 may be generated by a learning device 23 provided separately from the ventilation system 100.
  • Figure 14 is a flowchart showing the inference process of the inference device of the ventilation system according to embodiment 9.
  • step S31 the inference data acquisition unit 251 acquires weather forecast data, which is inference data.
  • step S32 the inference unit 252 inputs the weather forecast data into the trained model 241 stored in the trained model storage unit 24 to obtain ventilation control conditions.
  • step S33 the inference unit 252 outputs the data on the ventilation control conditions obtained by the learned model 241 to the air supply volume management unit 22.
  • step S34 the air supply volume management unit 22 controls the ventilation device 1 using the output ventilation control conditions. This makes it possible to reduce the amount of rainwater entering through the ventilation device 1.
  • the ventilation device 1 is controlled by the speed of the ventilation blower and the opening/closing angle of the damper 13.
  • reinforcement learning is applied to the learning algorithm used by the model generation unit 232, but this is not limited to this.
  • the learning algorithm it is also possible to apply supervised learning, unsupervised learning, semi-supervised learning, etc. in addition to reinforcement learning.
  • the learning algorithm used in the model generation unit 232 can be deep learning, which learns to extract the features themselves, or machine learning can be performed according to other known methods, such as neural networks, genetic programming, functional logic programming, and support vector machines.
  • the learning device 23 and the inference device 25 may be separate devices from the ventilation system 100 and connected to the ventilation system 100 via a network. Furthermore, the learning device 23 and the inference device 25 may exist on a cloud server.
  • the model generation unit 232 may learn the ventilation control conditions using learning data acquired from multiple ventilation systems 100.
  • the model generation unit 232 may acquire learning data from multiple ventilation systems 100 used in the same area, or may learn the ventilation control conditions using learning data collected from multiple ventilation systems 100 operating independently in different areas. It is also possible to add or remove a ventilation system 100 from which learning data is collected during the process. Furthermore, the learning device 23 that has learned the ventilation control conditions for a certain ventilation system 100 may be applied to another ventilation system 100, and the ventilation control conditions for the other ventilation system 100 may be re-learned and updated.
  • the ventilation system 100 learns the ventilation control conditions based on learning data including the ventilation control conditions, weather forecast data, and the amount of rainwater infiltration to generate a trained model 241, and infers the ventilation control conditions using the trained model 241. Therefore, even in weather conditions where it is difficult for a human to determine whether or not rainwater is likely to infiltrate, the possibility of rainwater infiltration can be reduced.
  • Embodiment 10. 15 is a diagram showing the configuration of a ventilation system according to a tenth embodiment.
  • the ventilation system 100 according to the tenth embodiment is a system in which a trained model 241 is shared among a plurality of buildings.
  • a plurality of buildings 30 are the targets of ventilation, and each ventilation control device 2 communicates with a server 50 through a network 40.
  • Data to be communicated includes ventilation control conditions, weather forecast data, and the amount of rainwater infiltration, as well as information on the size of each building 30 and the installation position of the ventilation device 1, etc.
  • the learning device 23, the learned model storage unit 24, and the inference device 25 are provided in the server 50.
  • the learning device 23 In the ventilation system 100 according to the tenth embodiment, the learning device 23 generates a learned model 241 for each building 30.
  • the learned model 241 varies depending on the location of the building 30, the size of the building 30, and the installation position of the ventilation blower 11, and therefore the learned model 241 created by the ventilation control device 2 of one building 30 cannot be applied as is to the ventilation control device 2 of another building 30. Therefore, the learning device 23 learns the learned models 241 of multiple buildings 30 using learning data to which building information has been added.
  • the inference device 25 infers ventilation control conditions based on the weather forecast data and the building information.
  • the building information includes the location of the building 30, the size of the building 30, the location of the ventilation devices 1, the location of the rainwater infiltration measurement devices 8, and the ventilation control conditions of each ventilation device 1.
  • the learning device 23 learns using learning data that includes building information, making it possible to use the learned model 241 to perform ventilation control for different buildings.
  • the ventilation device 1 can be controlled using inference data including the trained model 241 and building information, even if rainwater infiltration amount measuring devices 8 are not installed in the other buildings 30.
  • the loaned rainwater infiltration amount measuring device 8 is installed for a certain period of time after the introduction to generate a trained model 241, and after a certain period of time has passed, the rainwater infiltration amount measuring device 8 is used sequentially in other buildings 30 to generate trained models 241, thereby minimizing the burden on equipment and generating trained models 241 for each building 30.
  • FIG. 16 is a diagram showing the hardware configuration of the learning device according to the ninth and tenth embodiments.
  • the learning device 23 is realized by a computer system including a processor 91 that executes various processes, a memory 92 that is a main memory, and a storage device 93 that stores information.
  • the processor 91 may be a calculation means such as an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
  • the memory 92 may be a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), or an EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory).
  • the storage device 93 stores a program for performing a process of learning ventilation control conditions.
  • the above computer system realizes the functions of the model generation unit 232 by the processor 91 reading into the memory 92 the programs stored in the storage device 93 and corresponding to the processing of each component, and executing them.
  • the memory 92 is also used as a temporary memory for each process executed by the processor 91.
  • the programs executed by the processor 91 may be provided in a state stored in a storage medium, or may be provided via a network.
  • the inference device 25 is realized by a computer system including a processor 91 that executes various processes, a memory 92 that is a main memory, and a storage device 93 that stores information.
  • the storage device 93 stores a program for performing a process of inferring ventilation control conditions using a learned model.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ventilation (AREA)

Abstract

This ventilation system is provided with: a ventilation device installed in a building; and a ventilation control device (2) for controlling the ventilation device on the basis of weather prediction data. The ventilation control device (2) has: a rainwater entry possibility determination unit (21) for determining whether or not there is a possibility that rainwater may enter the ventilation device on the basis of the weather prediction data; and an air supply amount management unit (22) for managing an air supply amount of the ventilation device by stopping an air supply with the ventilation device or reducing the air supply amount with the ventilation device when there is a possibility that rainwater may enter the ventilation device.

Description

換気システム、学習装置及び推論装置Ventilation system, learning device and inference device

 本開示は、建屋に設置される換気装置と、換気装置を制御する換気制御装置とを備えた換気システム並びにこれに用いる学習装置及び推論装置に関する。 This disclosure relates to a ventilation system that includes a ventilation device installed in a building and a ventilation control device that controls the ventilation device, as well as a learning device and an inference device used therein.

 建屋に設置される換気装置と、換気装置を制御する換気制御装置とを備えた換気システムにおいては、雨水などが室内へ浸入することを抑制することが求められる。 In a ventilation system that includes a ventilation device installed in a building and a ventilation control device that controls the ventilation device, it is necessary to prevent rainwater and other substances from entering the room.

 特許文献1には、外気湿度の測定値が室内湿度よりも高い場合に換気を停止する換気装置が開示されている。特許文献1に開示される換気装置は、降雨によって外気湿度が室内湿度よりも高くなると換気を停止するため、降雨時に雨水の浸入が抑制される。 Patent Document 1 discloses a ventilation device that stops ventilation when the measured outdoor humidity is higher than the indoor humidity. The ventilation device disclosed in Patent Document 1 stops ventilation when rainfall causes the outdoor humidity to become higher than the indoor humidity, thereby preventing rainwater from entering during rainfall.

特開平5-280774号公報Japanese Patent Application Publication No. 5-280774

 特許文献1に開示される換気装置は、ゲリラ豪雨などで急激に雨が降りはじめた場合には、外気湿度の急な高まりに対して湿度センサが追従せず、その結果、給気送風機の停止が遅れて雨水が浸入するといった問題があった。 The ventilation device disclosed in Patent Document 1 has a problem in that when rain starts to fall suddenly due to a sudden downpour, the humidity sensor does not keep up with the sudden increase in outdoor humidity, resulting in a delay in stopping the air supply fan and allowing rainwater to seep in.

 本開示は、上記に鑑みてなされたものであって、急に雨が降り始めた場合でも換気装置に雨水が浸入しにくい換気システムを得ることを目的とする。 The present disclosure has been made in consideration of the above, and aims to provide a ventilation system that prevents rainwater from entering the ventilation device even if it suddenly starts raining.

 上述した課題を解決し、目的を達成するために、本開示に係る換気システムは、建屋に設置される換気装置と、気象予測データに基づいて換気装置を制御する換気制御装置とを備える。換気制御装置は、気象予測データに基づいて換気装置に雨水が浸入する可能性があるか否かを判定する雨水浸入可能性判定部と、換気装置に雨水が浸入する可能性がある場合には、換気装置による給気を停止するか又は換気装置による給気量を低減させることにより換気装置による給気量を管理する給気量管理部とを有する。 In order to solve the above-mentioned problems and achieve the objectives, the ventilation system according to the present disclosure includes a ventilation device installed in a building, and a ventilation control device that controls the ventilation device based on weather forecast data. The ventilation control device has a rainwater intrusion possibility determination unit that determines whether or not there is a possibility of rainwater intrusion into the ventilation device based on weather forecast data, and an air supply volume management unit that manages the volume of air supply by the ventilation device by stopping air supply by the ventilation device or reducing the volume of air supply by the ventilation device when there is a possibility of rainwater intrusion into the ventilation device.

 本開示に係る換気システムは、急に雨が降り始めた場合でも換気装置に雨水が浸入しにくいという効果を奏する。 The ventilation system disclosed herein has the effect of preventing rainwater from entering the ventilation device even if it suddenly starts raining.

実施の形態1に係る換気システムの構成を示す図FIG. 1 is a diagram showing a configuration of a ventilation system according to a first embodiment. 実施の形態1に係る換気システムの換気装置の構成を示す図FIG. 1 is a diagram showing a configuration of a ventilation device of a ventilation system according to a first embodiment. 実施の形態1に係る換気システムの換気制御装置の構成を示す図FIG. 1 is a diagram showing a configuration of a ventilation control device of a ventilation system according to a first embodiment. 実施の形態1に係る換気システムの動作の流れを示すフローチャートA flowchart showing the flow of operations of the ventilation system according to the first embodiment. 実施の形態2に係る換気システムの動作の流れを示すフローチャートA flowchart showing the flow of operations of a ventilation system according to a second embodiment. 実施の形態2に係る換気制御装置が保持する雨水浸入判定テーブルの一例を示す図FIG. 13 is a diagram showing an example of a rainwater intrusion determination table held by the ventilation control device according to the second embodiment; 実施の形態3に係る換気システムの換気装置の設置例を示す図FIG. 13 is a diagram showing an example of installation of a ventilation device of a ventilation system according to a third embodiment. 実施の形態5に係る換気システムの構成を示す図FIG. 13 is a diagram showing a configuration of a ventilation system according to a fifth embodiment. 実施の形態6に係る換気システムの構成を示す図FIG. 13 is a diagram showing a configuration of a ventilation system according to a sixth embodiment. 実施の形態9に係る換気システムの構成を示す図FIG. 13 is a diagram showing the configuration of a ventilation system according to a 9th embodiment. 実施の形態9に係る換気システムの学習装置の構成を示す図FIG. 13 is a diagram showing the configuration of a learning device for a ventilation system according to a 9th embodiment. 実施の形態9に係る換気システムの学習装置の学習処理に関するフローチャートA flowchart of a learning process of a learning device for a ventilation system according to a ninth embodiment 実施の形態9に係る換気システムに関する推論装置の構成を示す図FIG. 13 is a diagram showing a configuration of an inference device for a ventilation system according to a ninth embodiment. 実施の形態9に係る換気システムの推論装置の推論処理に関するフローチャートA flowchart of an inference process of an inference device of a ventilation system according to a ninth embodiment 実施の形態10に係る換気システムの構成を示す図FIG. 13 is a diagram showing a configuration of a ventilation system according to a tenth embodiment. 実施の形態9及び実施の形態10に係る学習装置のハードウェア構成を示す図FIG. 13 is a diagram showing a hardware configuration of a learning device according to a ninth embodiment and a tenth embodiment.

 以下に、実施の形態に係る換気システム、学習装置及び推論装置を図面に基づいて詳細に説明する。 The ventilation system, learning device, and inference device according to the embodiment are described in detail below with reference to the drawings.

実施の形態1.
 図1は、実施の形態1に係る換気システムの構成を示す図である。換気システム100は、建屋に設置される換気装置1と、気象予測データに基づいて換気装置1を制御する換気制御装置2とを備える。
Embodiment 1.
Fig. 1 is a diagram showing the configuration of a ventilation system according to embodiment 1. The ventilation system 100 includes a ventilation device 1 installed in a building, and a ventilation control device 2 that controls the ventilation device 1 based on weather forecast data.

 図2は、実施の形態1に係る換気システムの換気装置の構成を示す図である。換気装置1は、換気送風機11と、換気送風機11の風量を調整する速度調整器12と、換気口の開閉を行うダンパ13とを備える。換気装置1は、換気フードと、通風路内に取り付けられるフィルターとを備えていてもよい。速度調整器12は、換気制御装置2からの指示を受けて、換気送風機11の稼働停止と速度調整とを行う。ダンパ13は、換気制御装置2からの指示を受けて、換気口の開度を調整する。換気装置1は、例えば、建屋の壁面に設置されるプロペラファン式の有圧換気扇である。有圧換気扇は、建屋の内外を繋ぐプロペラファンの風洞部から雨水が浸入する可能性がある。 FIG. 2 is a diagram showing the configuration of the ventilation device of the ventilation system according to the first embodiment. The ventilation device 1 includes a ventilation blower 11, a speed regulator 12 that adjusts the air volume of the ventilation blower 11, and a damper 13 that opens and closes the ventilation port. The ventilation device 1 may also include a ventilation hood and a filter that is attached inside the ventilation duct. The speed regulator 12 stops the operation of the ventilation blower 11 and adjusts its speed upon receiving an instruction from the ventilation control device 2. The damper 13 adjusts the opening degree of the ventilation port upon receiving an instruction from the ventilation control device 2. The ventilation device 1 is, for example, a propeller fan type pressure ventilation fan installed on the wall of a building. There is a possibility that rainwater may enter the pressure ventilation fan through the wind tunnel of the propeller fan that connects the inside and outside of the building.

 図3は、実施の形態1に係る換気システムの換気制御装置の構成を示す図である。換気制御装置2は、雨水浸入可能性判定部21と、給気量管理部22とを備える。雨水浸入可能性判定部21は、気象予測データと、事前に設定された換気制御条件とに基づいて、換気装置1に雨水が浸入する可能性があるか否かを判定する。給気量管理部22は、換気装置1に雨水が浸入する可能性がある場合に、換気装置1を停止又は給気量を低下させる制御指示を換気装置1に出力する。また、給気量管理部22は、換気装置1に雨水が浸入する可能性がなくなった場合に、換気装置1の運転を再開又は給気量を元の給気量に戻す制御指示を換気装置1に出力する。このように、給気量管理部22は、換気装置1に運転、停止及び給気量の増減を指示することで給気量を管理する。 FIG. 3 is a diagram showing the configuration of the ventilation control device of the ventilation system according to the first embodiment. The ventilation control device 2 includes a rainwater intrusion possibility determination unit 21 and an air supply volume management unit 22. The rainwater intrusion possibility determination unit 21 determines whether or not there is a possibility of rainwater intrusion into the ventilation device 1 based on weather forecast data and ventilation control conditions set in advance. When there is a possibility of rainwater intrusion into the ventilation device 1, the air supply volume management unit 22 outputs a control instruction to the ventilation device 1 to stop the ventilation device 1 or to reduce the air supply volume. When there is no longer a possibility of rainwater intrusion into the ventilation device 1, the air supply volume management unit 22 outputs a control instruction to the ventilation device 1 to resume operation of the ventilation device 1 or to return the air supply volume to the original air supply volume. In this way, the air supply volume management unit 22 manages the air supply volume by instructing the ventilation device 1 to operate, stop, and increase or decrease the air supply volume.

 気象予測データは、換気装置1の施工箇所に設置されている温度センサ、湿度センサ、風速計などの各種気象センサによって得られた、現在及び過去の気象計測データに基づいた予測結果のデータであってもよいし、気象機関又は気象情報を提供する事業者が発表する換気装置1の施工場所の地域情報に基づく気象予測データなどを外部から取得してもよい。 The weather forecast data may be forecast result data based on current and past weather measurement data obtained by various weather sensors such as a temperature sensor, a humidity sensor, and anemometer installed at the installation site of the ventilation device 1, or it may be weather forecast data obtained from outside based on regional information for the installation site of the ventilation device 1 released by a meteorological agency or a weather information provider.

 気象予測データは、少なくとも降水量を含む。気象予測データは、降水量に加え、温度、湿度、気圧、日射量、風向、風速などのうち一つ以上を含んでいても良い。気象予測データの予測値は、予測時刻と関連付けられる。 The weather forecast data includes at least the amount of precipitation. In addition to the amount of precipitation, the weather forecast data may also include one or more of the following: temperature, humidity, air pressure, solar radiation, wind direction, wind speed, etc. The forecast value of the weather forecast data is associated with the forecast time.

 換気制御装置2は、換気装置1と一体に構成されてもよいし、換気装置1とは別の場所に設置されていてもよい。 The ventilation control device 2 may be configured as an integral part of the ventilation device 1, or may be installed in a location separate from the ventilation device 1.

 次に、換気システム100の動作について説明する。図4は、実施の形態1に係る換気システムの動作の流れを示すフローチャートである。ステップS1において、雨水浸入可能性判定部21は、気象予測データを取得する。ステップS2において、雨水浸入可能性判定部21は、X分後の予想降水量が予め設定された値よりも大きいか否かを判断する。ここで、Xの値は予め任意に設定することができるが、Xの値が大きすぎると、換気装置1の制御を行う前に雨が降り出してしまうことがある。このため、Xは5分程度の時間にすることが好ましい。X分後の予想降水量が予め設定された値以下であれば、ステップS2でNoとなり、処理はステップS1に戻る。X分後の予想降水量が予め設定された値よりも大きければ、ステップS2でYesとなり、ステップS3において、給気量管理部22は、X分後の給気量が予め設定された風量以下になるように換気装置1を制御する。 Next, the operation of the ventilation system 100 will be described. FIG. 4 is a flowchart showing the flow of the operation of the ventilation system according to the first embodiment. In step S1, the rainwater intrusion possibility determination unit 21 acquires weather forecast data. In step S2, the rainwater intrusion possibility determination unit 21 determines whether the expected precipitation amount after X minutes is greater than a preset value. Here, the value of X can be set arbitrarily in advance, but if the value of X is too large, rain may start falling before the ventilation device 1 is controlled. For this reason, it is preferable to set X to about 5 minutes. If the expected precipitation amount after X minutes is equal to or less than the preset value, step S2 becomes No, and the process returns to step S1. If the expected precipitation amount after X minutes is greater than the preset value, step S2 becomes Yes, and in step S3, the supply air volume management unit 22 controls the ventilation device 1 so that the supply air volume after X minutes is equal to or less than the preset air volume.

 ステップS4において、雨水浸入可能性判定部21は、気象予測データを取得する。ステップS5において、雨水浸入可能性判定部21は、Y分後の予想降水量が予め設定された値よりも小さいか否かを判断する。ここで、Yの値は予め任意に設定することができるが、Yの値が大きすぎると、雨水が浸入する可能性が低いにもかかわらず換気装置1を停止させている時間が長くなってしまう。このため、Yは5分程度の時間にすることが好ましい。Y分後の予想降水量が予め設定された値以上であれば、ステップS5でNoとなり、処理はステップS4に戻る。Y分後の予想降水量が予め設定された値よりも小さければ、ステップS5でYesとなり、ステップS6において、給気量管理部22は、Y分後の給気量が元の風量に戻るように換気装置1を制御する。なお、「元の風量」とは、ステップS3での変更前の風量である。 In step S4, the rainwater intrusion possibility determination unit 21 acquires weather forecast data. In step S5, the rainwater intrusion possibility determination unit 21 determines whether the expected precipitation Y minutes later is smaller than a preset value. Here, the value of Y can be set in advance as desired, but if the value of Y is too large, the time for which the ventilation device 1 is stopped will be long even though the possibility of rainwater intrusion is low. For this reason, it is preferable to set Y to about 5 minutes. If the expected precipitation Y minutes later is equal to or greater than the preset value, step S5 becomes No and the process returns to step S4. If the expected precipitation Y minutes later is smaller than the preset value, step S5 becomes Yes and in step S6, the supply air volume management unit 22 controls the ventilation device 1 so that the supply air volume Y minutes later returns to the original air volume. Note that the "original air volume" is the air volume before the change in step S3.

 雨水浸入可能性判定部21は、ステップS1で降水量の予測データを取得し、降水量の予測データに基づいてステップS2でX分後の予想降水量が予め設定された値よりも大きいか否かを判断してもよい。また、雨水浸入可能性判定部21は、ステップS1で温度、湿度、気圧、日射量、風向及び風速などのうち一つ以上の気象予測データを取得し、取得した気象予測データに基づいてステップS2でX分後の予想降水量が予め設定された値よりも大きいか否かを判断してもよい。 The rainwater infiltration possibility determination unit 21 may acquire precipitation prediction data in step S1, and determine whether the predicted precipitation amount after X minutes is greater than a preset value in step S2 based on the precipitation prediction data. The rainwater infiltration possibility determination unit 21 may also acquire one or more weather forecast data of temperature, humidity, air pressure, solar radiation, wind direction, wind speed, etc. in step S1, and determine whether the predicted precipitation amount after X minutes is greater than a preset value in step S2 based on the acquired weather forecast data.

 また、雨水浸入可能性判定部21は、ステップS4で降水量の予測データを取得し、降水量の予測データに基づいてステップS5でY分後の予想降水量が予め設定された値よりも小さいか否かを判断してもよい。また、雨水浸入可能性判定部21は、ステップS4で温度、湿度、気圧、日射量、風向及び風速などのうち一つ以上の気象予測データを取得し、取得した気象予測データに基づいてステップS5でY分後の予想降水量が予め設定された値よりも小さいか否かを判断してもよい。 The rainwater infiltration possibility determination unit 21 may also acquire precipitation forecast data in step S4, and determine whether the expected precipitation after Y minutes is smaller than a preset value in step S5 based on the precipitation forecast data. The rainwater infiltration possibility determination unit 21 may also acquire one or more weather forecast data of temperature, humidity, air pressure, solar radiation, wind direction, wind speed, etc. in step S4, and determine whether the expected precipitation after Y minutes is smaller than a preset value in step S5 based on the acquired weather forecast data.

 上記のステップS3及びステップS6における換気装置1の制御は、換気送風機11の速度調節を行ったり、ダンパ13の開度を調整したりすることによって行われる。なお、ステップS1において、同じ種類の気象予報データを複数取得した場合には、ステップS3でのX分後の予想降水量が予め設定された値よりも大きいか否かの判定は、直近の気象予測データに基づいて行われる。また、ステップS4において、同じ種類の気象予報データを複数取得した場合には、ステップS5でのY分後の予想降水量が予め設定された値よりも小さいか否かの判定は、直近の気象予測データに基づいて行われる。 The control of the ventilation device 1 in steps S3 and S6 above is performed by adjusting the speed of the ventilation blower 11 and adjusting the opening of the damper 13. If multiple pieces of weather forecast data of the same type are acquired in step S1, the determination in step S3 of whether the expected precipitation amount in X minutes is greater than a preset value is made based on the most recent weather forecast data. If multiple pieces of weather forecast data of the same type are acquired in step S4, the determination in step S5 of whether the expected precipitation amount in Y minutes is less than a preset value is made based on the most recent weather forecast data.

 実施の形態1に係る換気システム100は、X分後の予想降水量が予め設定された値よりも大きいと気象予報データに基づいて予測される場合には、X分後の給気量が予め設定された風量以下となるように換気装置1を制御するため、降水量が増大したことを実際に検知してから給気量を低下させる方式の換気システムと比較すると、換気装置又は給気ダクトへの雨水の浸入量を低減することができる。 The ventilation system 100 according to the first embodiment controls the ventilation device 1 so that the air supply volume after X minutes is equal to or less than the preset volume when the expected precipitation volume after X minutes is predicted based on weather forecast data to be greater than a preset value. This reduces the amount of rainwater entering the ventilation device or air supply duct, compared to a ventilation system that reduces the air supply volume after actually detecting an increase in precipitation.

 また、実施の形態1に係る換気システム100は、Y分後の予想降水量が予め設定された値よりも小さいと気象予測データに基づいて判断される場合には、Y分後の給気量が予め設定された風量以上となるように換気装置1を制御するため、降水量が減少したことを実際に検出してから給気量を増加させる方式の換気システムと比較すると、より早く元通りの給気量に戻すことができる。 In addition, when it is determined based on weather forecast data that the expected amount of precipitation Y minutes from now is less than a preset value, the ventilation system 100 according to embodiment 1 controls the ventilation device 1 so that the amount of air supplied Y minutes from now is equal to or greater than the preset air volume. This allows the amount of air supplied to be restored to its original level more quickly compared to a ventilation system that increases the amount of air supplied only after actually detecting a decrease in precipitation.

実施の形態2.
 実施の形態2に係る換気システム100の構成は、実施の形態1に係る換気システム100と同様である。実施の形態2に係る換気システム100において、雨水浸入可能性判定部21は、降水量だけでなく、降水量及び風速の組み合わせに基づいて雨水の浸入の可能性を判定する点で実施の形態1に係る換気システム100の雨水浸入可能性判定部21と相違する。
Embodiment 2.
The configuration of the ventilation system 100 according to the second embodiment is similar to that of the ventilation system 100 according to the first embodiment. In the ventilation system 100 according to the second embodiment, the rainwater infiltration possibility determination unit 21 is different from the rainwater infiltration possibility determination unit 21 of the ventilation system 100 according to the first embodiment in that the rainwater infiltration possibility determination unit 21 determines the possibility of rainwater infiltration based not only on the amount of precipitation but also on a combination of the amount of precipitation and wind speed.

 図5は、実施の形態2に係る換気システムの動作の流れを示すフローチャートである。ステップS11において、雨水浸入可能性判定部21は、気象予測データを取得する。ステップS12において、雨水浸入可能性判定部21は、X分後の予想降水量及び予想風速が、雨水浸入判定テーブルにおいて浸入可能性有りのエリアに入るか否かを判断する。X分後の降水量及び風速が、雨水浸入判定テーブルにおいて浸入可能性有りのエリアに入らない場合は、ステップS12でNoとなり、処理はステップS11に戻る。X分後の予想降水量及び予想風速が、雨水浸入判定テーブルにおいて浸入可能性有りのエリアに入る場合は、ステップS12でYesとなり、ステップS13において、給気量管理部22は、X分後の給気量が予め設定された風量以下になるように換気装置1を制御する。 FIG. 5 is a flowchart showing the flow of operation of the ventilation system according to the second embodiment. In step S11, the rainwater intrusion possibility determination unit 21 acquires weather forecast data. In step S12, the rainwater intrusion possibility determination unit 21 determines whether the predicted precipitation and predicted wind speed after X minutes fall within an area where there is a possibility of intrusion in the rainwater intrusion determination table. If the predicted precipitation and wind speed after X minutes do not fall within an area where there is a possibility of intrusion in the rainwater intrusion determination table, step S12 becomes No and the process returns to step S11. If the predicted precipitation and predicted wind speed after X minutes fall within an area where there is a possibility of intrusion in the rainwater intrusion determination table, step S12 becomes Yes, and in step S13, the supply air volume management unit 22 controls the ventilation device 1 so that the supply air volume after X minutes is equal to or less than a preset air volume.

 ステップS14において、雨水浸入可能性判定部21は、気象予測データを取得する。ステップS15において、雨水浸入可能性判定部21は、Y分後の予想降水量及び予想風速が、雨水浸入判定テーブルにおいて浸入可能性有りのエリア外になるか否かを判断する。Y分後の降水量及び風速が、雨水浸入判定テーブルにおいて浸入可能性有りのエリア外にならない場合は、ステップS15でNoとなり、処理はステップS14に戻る。Y分後の降水量及び風速が、雨水浸入判定テーブルにおいて浸入可能性有りのエリア外になる場合は、ステップS15でYesとなり、ステップS16において、給気量管理部22は、Y分後の給気量が元の風量に戻るように換気装置を制御する。なお、「元の風量」とは、ステップS13での変更前の風量である。 In step S14, the rainwater intrusion possibility determination unit 21 acquires weather forecast data. In step S15, the rainwater intrusion possibility determination unit 21 determines whether the predicted precipitation and predicted wind speed after Y minutes will be outside the area where intrusion is possible in the rainwater intrusion determination table. If the precipitation and wind speed after Y minutes will not be outside the area where intrusion is possible in the rainwater intrusion determination table, step S15 becomes No and the process returns to step S14. If the precipitation and wind speed after Y minutes will be outside the area where intrusion is possible in the rainwater intrusion determination table, step S15 becomes Yes, and in step S16, the air supply volume management unit 22 controls the ventilation device so that the air supply volume after Y minutes returns to the original air volume. The "original air volume" is the air volume before the change in step S13.

 図6は、実施の形態2に係る換気制御装置が保持する雨水浸入判定テーブルの一例を示す図である。雨水浸入判定テーブルにおいて、降水量には、第1の判断基準降水量と第2の判断基準降水量とが設定されている。第1の判断基準降水量は、第2の判断基準降水量よりも大きい。雨水浸入判定テーブルは、第1の領域から第6の領域の六つの領域に区分できる。第1の領域は、降水量が第2判断基準降水量以下かつ風速が判断基準風速以下の領域である。第2の領域は、降水量が第2判断基準降水量以下かつ風速が判断基準風速を超える領域である。第3の領域は、降水量が第2の判断基準降水量を超え第1判断基準降水量以下かつ風速が判断基準風速以下の領域である。第4の領域は、降水量が第2の判断基準降水量を超え第1判断基準降水量以下かつ風速が判断基準風速を超える領域である。第5の領域は、降水量が第1の判断基準降水量を超えかつ風速が判断基準風速以下の領域である。第6の領域は、降水量が第1の判断基準降水量を超えかつ風速が判断基準風速を超える領域である。 FIG. 6 is a diagram showing an example of a rainwater intrusion determination table held by a ventilation control device according to embodiment 2. In the rainwater intrusion determination table, a first judgment reference precipitation and a second judgment reference precipitation are set for the amount of precipitation. The first judgment reference precipitation is greater than the second judgment reference precipitation. The rainwater intrusion determination table can be divided into six regions, from the first region to the sixth region. The first region is a region where the amount of precipitation is equal to or less than the second judgment reference precipitation and the wind speed is equal to or less than the judgment reference wind speed. The second region is a region where the amount of precipitation is equal to or less than the second judgment reference precipitation and the wind speed exceeds the judgment reference wind speed. The third region is a region where the amount of precipitation exceeds the second judgment reference precipitation and is equal to or less than the first judgment reference precipitation and the wind speed is equal to or less than the judgment reference wind speed. The fourth region is a region where the amount of precipitation exceeds the second judgment reference precipitation and is equal to or less than the first judgment reference precipitation and the wind speed exceeds the judgment reference wind speed. The fifth region is a region where the precipitation exceeds the first criteria precipitation and the wind speed is equal to or less than the criteria wind speed. The sixth region is a region where the precipitation exceeds the first criteria precipitation and the wind speed exceeds the criteria wind speed.

 予測降水量及び予測風速の組み合わせが、第1の領域、第2の領域及び第3の領域のいずれかに入る場合、雨水の浸入の可能性が無いと判断される。一方、予測降水量及び予測風速の組み合わせが、第4の領域、第5の領域及び第6の領域のいずれかに入る場合、雨水の浸入の可能性があると判断される。すなわち、予測降水量が第1の判断基準降水量を超える場合は、予測風速にかかわらず雨水浸入の可能性ありと判断される。予測降水量が第1の判断基準降水量以下であるが第2の判断基準降水量を超える場合は、同じ時刻の予測風速が判断基準風速を超えると雨水浸入の可能性ありと判断する。すなわち、予測降水量が第2の判断基準降水量を超える場合には、予測風速が一定以上強ければ、雨水浸入の可能性ありと判断される。 If the combination of the predicted precipitation and the predicted wind speed falls in the first, second, or third region, it is determined that there is no possibility of rainwater infiltration. On the other hand, if the combination of the predicted precipitation and the predicted wind speed falls in the fourth, fifth, or sixth region, it is determined that there is a possibility of rainwater infiltration. In other words, if the predicted precipitation exceeds the first judgment standard precipitation, it is determined that there is a possibility of rainwater infiltration regardless of the predicted wind speed. If the predicted precipitation is equal to or less than the first judgment standard precipitation but exceeds the second judgment standard precipitation, it is determined that there is a possibility of rainwater infiltration if the predicted wind speed at the same time exceeds the judgment standard wind speed. In other words, if the predicted precipitation exceeds the second judgment standard precipitation, it is determined that there is a possibility of rainwater infiltration if the predicted wind speed is strong enough to be greater than a certain level.

 換気制御装置2は、ステップS11で温度、湿度、気圧、日射量及び風向のうち一つ以上と風速の気象予測データを取得し、取得した気象予測データに基づいてステップS12でX分後の予測降水量及び予測風速が、雨水浸入判定テーブルにおいて浸入可能性有りのエリアに入るか否かを判断してもよい。 In step S11, the ventilation control device 2 may acquire weather forecast data on one or more of temperature, humidity, air pressure, solar radiation, and wind direction, as well as wind speed, and may determine in step S12 based on the acquired weather forecast data whether the predicted precipitation and predicted wind speed after X minutes fall within an area where there is a possibility of infiltration in the rainwater infiltration determination table.

 換気制御装置2は、ステップS14で温度、湿度、気圧、日射量及び風向のうち一つ以上と風速の気象予測データを取得し、取得した気象予測データに基づいてステップS15でY分後の降水量及び風速が、雨水浸入判定テーブルにおいて浸入可能性有りのエリア外になるか否かを判断してもよい。 In step S14, the ventilation control device 2 may acquire weather forecast data for one or more of temperature, humidity, air pressure, solar radiation, and wind direction, as well as wind speed, and may determine in step S15 based on the acquired weather forecast data whether the amount of precipitation and wind speed Y minutes from now will be outside the area where infiltration is possible according to the rainwater infiltration determination table.

 実施の形態2に係る換気システム100は、予想降水量が極端に多く無い場合でも、予想風速が高い場合には給気量を低下させるため、実施の形態1に係る換気システム100と比較すると、雨水の浸入をより抑制できる。 The ventilation system 100 according to the second embodiment reduces the amount of air supplied when the expected wind speed is high, even if the expected precipitation is not extremely high, and therefore is able to better prevent rainwater from entering compared to the ventilation system 100 according to the first embodiment.

実施の形態3.
 実施の形態3に係る換気システム100は、実施の形態1に係る換気システム100と同様に、換気装置1と換気制御装置2とを有する。図7は、実施の形態3に係る換気システムの換気装置の設置例を示す図である。実施の形態3に係る換気システム100は、換気装置1を複数備えている。換気装置1は、建屋30の西壁31に設置された西側換気装置3と、建屋30の北壁32に設置された北側換気装置4とを含む。
Embodiment 3.
The ventilation system 100 according to the third embodiment has a ventilation device 1 and a ventilation control device 2, similar to the ventilation system 100 according to the first embodiment. Fig. 7 is a diagram showing an example of installation of the ventilation devices in the ventilation system according to the third embodiment. The ventilation system 100 according to the third embodiment includes a plurality of ventilation devices 1. The ventilation devices 1 include a west-side ventilation device 3 installed on a west wall 31 of the building 30, and a north-side ventilation device 4 installed on a north wall 32 of the building 30.

 実施の形態3に係る換気システム100において、換気制御装置2は、雨水の浸入の可能性がある降水が予測される場合に、予測される風向に基づいて換気装置1を制御する。例えば、雨水の浸入の可能性がある降水が予測される時間帯に西風が予測される場合には、西壁31に設置された西側換気装置3は、プロペラファンの風洞部が西向きであるため、西風によって雨が吹き込んでくる可能性がある。一方、北壁32に設置された北側換気装置4は、プロペラファンの風洞部が西向きではないため、西風によって雨が吹き込む可能性は小さい。したがって、換気制御装置2は、西側換気装置3の運転を停止するか、西側換気装置3による給気量を低下させ、北側換気装置4による給気量は変更せずに維持する。このように、実施の形態3に係る換気システム100は、雨水の浸入の可能性がある降水が予測される場合でも、風によって雨が吹き込む可能性が小さい換気装置1の運転を継続することにより、風向によらず全ての換気装置1の運転を停止又は給気量を低下させる場合と比較して、降水中の換気量を増大させることができる。 In the ventilation system 100 according to the third embodiment, the ventilation control device 2 controls the ventilation device 1 based on the predicted wind direction when precipitation that may cause rainwater to infiltrate is predicted. For example, if a westerly wind is predicted during the time period when precipitation that may cause rainwater to infiltrate is predicted, the west-side ventilation device 3 installed on the west wall 31 may have rain blown in by the westerly wind because the wind tunnel of the propeller fan faces west. On the other hand, the north-side ventilation device 4 installed on the north wall 32 has a small possibility of having rain blown in by the westerly wind because the wind tunnel of the propeller fan does not face west. Therefore, the ventilation control device 2 stops the operation of the west-side ventilation device 3 or reduces the amount of air supplied by the west-side ventilation device 3, and maintains the amount of air supplied by the north-side ventilation device 4 unchanged. In this way, even when precipitation that may cause rainwater infiltration is predicted, the ventilation system 100 according to embodiment 3 can increase the ventilation volume during precipitation by continuing to operate the ventilation devices 1 that are unlikely to blow rain into the building due to wind, compared to stopping the operation of all ventilation devices 1 or reducing the air supply volume regardless of wind direction.

実施の形態4.
 実施の形態4に係る換気システム100の構成は、実施の形態3に係る換気システム100と同様である。実施の形態4に係る換気システム100において、換気制御装置2は、建屋30の西壁31付近の気象予測データと建屋30の北壁32付近の気象予測データとを別々に取得し、西側換気装置3において雨水が浸入する可能性があるか否かと、北側換気装置4において雨水が浸入する可能性があるか否かとを別々に判断する。そして、換気制御装置2は、換気装置1のうち、雨水が浸入する可能性があるもののみ、運転を停止するか、給気量を低下させる。
Embodiment 4.
The configuration of the ventilation system 100 according to embodiment 4 is similar to that of the ventilation system 100 according to embodiment 3. In the ventilation system 100 according to embodiment 4, the ventilation control device 2 separately acquires weather forecast data for the vicinity of the west wall 31 of the building 30 and weather forecast data for the vicinity of the north wall 32 of the building 30, and separately determines whether or not there is a possibility of rainwater infiltrating into the west-side ventilation device 3 and whether or not there is a possibility of rainwater infiltrating into the north-side ventilation device 4. Then, the ventilation control device 2 stops operation or reduces the amount of air supply only for those ventilation devices 1 into which rainwater is likely to infiltrate.

 例えば、換気装置1周辺の局所的な風速を予測することで、雨水浸入の可能性を判断し、換気装置1の制御を行う方法が挙げられる。換気装置1が設置されている建屋30周辺の地域単位での気象予測による風速とは別に、建屋30及びその周辺の特有の構造に起因して局所的に変化する風速を予測することで、換気装置1の設置位置ごとに雨水浸入の可能性を判断し、換気装置1の制御を行うことができる。 For example, there is a method of predicting the local wind speed around the ventilation device 1, determining the possibility of rainwater infiltration, and controlling the ventilation device 1. By predicting the wind speed that changes locally due to the unique structure of the building 30 and its surroundings separately from the wind speed based on weather forecasts for the area around the building 30 in which the ventilation device 1 is installed, it is possible to determine the possibility of rainwater infiltration for each installation position of the ventilation device 1 and control the ventilation device 1.

実施の形態5.
 図8は、実施の形態5に係る換気システムの構成を示す図である。実施の形態5に係る換気システム100は、換気制御装置2による換気制御履歴を記憶する換気制御履歴記憶装置5と、換気制御履歴、気象予測データ及び気象実測データを時刻データとともに表示する表示器6を備える。
Embodiment 5.
Fig. 8 is a diagram showing the configuration of a ventilation system according to embodiment 5. The ventilation system 100 according to embodiment 5 includes a ventilation control history storage device 5 that stores the ventilation control history by the ventilation control device 2, and a display device 6 that displays the ventilation control history, weather forecast data, and actual weather measurement data together with time data.

 換気制御履歴記憶装置5は、換気制御装置2から換気装置1に送られた、換気送風機11のオンオフ指令、速度調節又はダンパ13の開閉量指示を時刻データと関連付けた換気制御履歴を記憶し、換気制御装置2からの指示に応じて換気制御履歴を表示器6へ出力する。 The ventilation control history storage device 5 stores the ventilation control history that associates the on/off command for the ventilation blower 11, the speed adjustment, or the opening/closing amount instruction for the damper 13 sent from the ventilation control device 2 to the ventilation device 1 with time data, and outputs the ventilation control history to the display 6 in response to the instruction from the ventilation control device 2.

 気象予測データ及び気象実測データは、降水量、温度、湿度、気圧、日射量、風向、風速などの気象データのうちの一つ以上と時刻データとを関連付けて、表示器6へ入力される。 The weather forecast data and actual weather measurement data are input to the display 6 in association with one or more of the weather data such as precipitation, temperature, humidity, air pressure, solar radiation, wind direction, and wind speed, and time data.

 気象予測データ及び気象実測データは、温度センサ、湿度センサ、風速計などの現地に設置されている各種気象センサによって得られたものであってもよいし、気象機関又は気象情報を提供する事業者など外部から取得されたものであってもよい。 The weather forecast data and actual weather measurement data may be obtained by various weather sensors installed on-site, such as temperature sensors, humidity sensors, and anemometers, or may be obtained from external sources, such as meteorological agencies or businesses that provide weather information.

 表示器6には、気象予測データと気象実測データと換気制御履歴とが、同じ日付の同時刻においてどのような状態であったかがわかるように示される。例えば、表示器6には、横軸に時刻をとり、縦軸に実際の降水量、予測された降水量及び換気送風機の速度調節量をとったグラフが表示される。このようにすることで、換気システム100のユーザは、気象実測データに対して気象予測データが正しかったかどうか、また、その気象予測データに基づいた換気装置1の制御結果が適切であったかどうか判断することができる。 The display 6 shows the weather forecast data, actual weather data, and ventilation control history so that it is clear what the conditions were at the same time on the same date. For example, the display 6 shows a graph with time on the horizontal axis and actual precipitation, predicted precipitation, and ventilation fan speed adjustment on the vertical axis. In this way, the user of the ventilation system 100 can determine whether the weather forecast data was correct compared to the actual weather data, and whether the control results of the ventilation device 1 based on the weather forecast data were appropriate.

 換気制御装置2と、換気制御履歴記憶装置5と、表示器6とは一体化されていてもよいし、それぞれ個別の筐体に格納されていてもよい。例えば、換気制御装置2と換気制御履歴記憶装置5とを同一のコンピュータシステム内に設け、表示器6となるモニターを別途コンピュータシステムに接続する構成が挙げられる。 The ventilation control device 2, ventilation control history storage device 5, and display device 6 may be integrated together, or may be stored in separate housings. For example, the ventilation control device 2 and ventilation control history storage device 5 may be provided in the same computer system, and a monitor serving as the display device 6 may be connected to a separate computer system.

実施の形態6.
 図9は、実施の形態6に係る換気システムの構成を示す図である。実施の形態6に係る換気システム100は、換気制御装置2に制御条件を入力及び変更するための換気制御条件入力装置7を備える点で実施の形態5に係る換気システム100と相違する。
Embodiment 6.
9 is a diagram showing the configuration of a ventilation system according to embodiment 6. The ventilation system 100 according to embodiment 6 differs from the ventilation system 100 according to embodiment 5 in that it includes a ventilation control condition input device 7 for inputting and changing control conditions to the ventilation control device 2.

 換気制御条件入力装置7は、換気制御装置2に事前に設定されている気象データの閾値と、その閾値を超えた場合の換気装置1への制御内容との入力及び変更を行う。例えば、一定の降水量又は風速が予測される場合には予測された時刻における給気量を減少させるように換気送風機の速度調節量を変化させる制御条件が事前に設定されていた場合、換気制御条件入力装置7は、降水量又は風速の閾値と、換気送風機11の速度調節量とを変更することができる。 The ventilation control condition input device 7 inputs and changes the weather data thresholds set in advance in the ventilation control device 2 and the control content for the ventilation device 1 when the thresholds are exceeded. For example, if a control condition is set in advance to change the speed adjustment amount of the ventilation blower so as to reduce the amount of air supplied at the predicted time when a certain amount of precipitation or wind speed is predicted, the ventilation control condition input device 7 can change the threshold value of the amount of precipitation or wind speed and the speed adjustment amount of the ventilation blower 11.

 従って、換気制御履歴記憶装置5と合わせて換気制御条件入力装置7を用いることで、気象予測データと気象実測データと換気制御履歴とを確認しながらより適切な制御条件に調整していくことが可能となる。使用するセンサの感度及び気象の変化に対する追従性、換気装置1の雨水の浸入のしやすさ、地域ごとの気象条件などは、個別の物件及び時期によって異なるため、降水量又は風速の閾値と、換気送風機11の速度調節量とを調整できるようにすることで、立地及び時期によらず適切に雨水の浸入を抑制する換気制御条件を設定することが可能となる。 Therefore, by using the ventilation control condition input device 7 in conjunction with the ventilation control history storage device 5, it is possible to adjust the control conditions to more appropriate conditions while checking weather forecast data, actual weather data, and ventilation control history. Since the sensitivity of the sensor used and its ability to track weather changes, the ease with which rainwater can penetrate the ventilation device 1, and regional weather conditions vary depending on the individual property and time of year, by making it possible to adjust the precipitation or wind speed threshold and the speed adjustment amount of the ventilation blower 11, it is possible to set ventilation control conditions that appropriately suppress the infiltration of rainwater regardless of the location and time of year.

実施の形態7.
 実施の形態7に係る換気システム100の構成は、実施の形態1から実施の形態6のいずれかに係る換気システム100と同様である。実施の形態7に係る換気システム100において、給気量管理部22は、花粉及び微小粒子状物質の飛散の予測データに基づいて給気量の制御、記憶及び表示を行う。例えば、花粉又は微小粒子状物質の飛散量が多くなることが予測される場合には、換気装置1による給気を停止又は給気量を減少させることにより、建屋30の内部に花粉又は微小粒子状物質が侵入することを抑制する。この場合、気象予測データの取得にあたり、花粉及び微小粒子状物質の飛散を計測するための微粒子計測器を用いたり、外部の花粉の飛散予測データ及び微小粒子状物質の分布予測データを参照してもよい。
Embodiment 7.
The configuration of the ventilation system 100 according to the seventh embodiment is the same as that of the ventilation system 100 according to any one of the first to sixth embodiments. In the ventilation system 100 according to the seventh embodiment, the supply air amount management unit 22 controls, stores, and displays the supply air amount based on the predicted data of the dispersion of pollen and fine particulate matter. For example, when it is predicted that the dispersion amount of pollen or fine particulate matter will increase, the supply of air by the ventilation device 1 is stopped or the supply amount is reduced to suppress the intrusion of pollen or fine particulate matter into the building 30. In this case, when acquiring the weather forecast data, a particle measuring device for measuring the dispersion of pollen and fine particulate matter may be used, or external pollen dispersion forecast data and fine particulate matter distribution forecast data may be referred to.

 実施の形態7に係る換気システム100は、花粉又は微小粒子状物質の飛散量が多くなることが予測される場合には、換気装置1による給気を停止又は給気量を減少させることにより、建屋30内の空気が花粉又は微小粒子状物質で汚染されることを抑制できる。 The ventilation system 100 according to the seventh embodiment can prevent the air in the building 30 from becoming contaminated with pollen or fine particulate matter by stopping the air supply by the ventilation device 1 or reducing the amount of air supply when it is predicted that the amount of pollen or fine particulate matter dispersed in the air is increased.

実施の形態8.
 実施の形態8に係る換気システム100の構成は、実施の形態1から実施の形態6のいずれかに係る換気システム100と同様である。実施の形態8に係る換気システム100において給気量管理部22は、屋外の一酸化炭素濃度又は二酸化炭素濃度の予測データに基づいて給気量の制御、記憶及び表示を行う。例えば、屋外の一酸化炭素濃度又は二酸化炭素濃度が高くなることが予測される場合には、換気装置1による給気を停止又は給気量を減少させることにより、建屋30内部の空気の一酸化炭素濃度又は二酸化炭素濃度が高くなることを抑制する。この場合、気象予測データの取得にあたり、一酸化炭素センサ又は二酸化炭素センサを用いる他、外部の渋滞予測などの道路交通情報を用いてもよく、カメラにより交通量を取得してもよい。これにより、空気中の自動車の排気ガス濃度が高くなる場合に、その空気を室内に取り込まないようにすることができる。自動車の排気ガス濃度の推移は一酸化炭素濃度又は二酸化炭素濃度によって予測できるほか、道路交通情報から近くの道路の交通量が多いか少ないかに基づいても予測できる。
Embodiment 8.
The configuration of the ventilation system 100 according to the eighth embodiment is the same as that of the ventilation system 100 according to any one of the first to sixth embodiments. In the ventilation system 100 according to the eighth embodiment, the supply air amount management unit 22 controls, stores, and displays the supply air amount based on the predicted data of the outdoor carbon monoxide concentration or carbon dioxide concentration. For example, when it is predicted that the outdoor carbon monoxide concentration or carbon dioxide concentration will be high, the supply air by the ventilation device 1 is stopped or the supply air amount is reduced, thereby suppressing the increase in the carbon monoxide concentration or carbon dioxide concentration in the air inside the building 30. In this case, in addition to using a carbon monoxide sensor or a carbon dioxide sensor, road traffic information such as an external congestion prediction may be used to obtain weather forecast data, and traffic volume may be obtained by a camera. In this way, when the concentration of automobile exhaust gas in the air becomes high, the air can be prevented from being taken into the room. The transition of the automobile exhaust gas concentration can be predicted by the carbon monoxide concentration or carbon dioxide concentration, and can also be predicted based on whether the traffic volume on nearby roads is high or low from road traffic information.

 実施の形態8に係る換気システム100は、屋外の一酸化炭素濃度又は二酸化炭素濃度が高くなることが予測される場合には、換気装置1による給気を停止又は給気量を減少させることにより、建屋30内部の空気の一酸化炭素濃度又は二酸化炭素濃度が高くなることを抑制することができる。 The ventilation system 100 according to the eighth embodiment can prevent the carbon monoxide or carbon dioxide concentration in the air inside the building 30 from increasing by stopping the supply of air by the ventilation device 1 or reducing the amount of air supplied when it is predicted that the carbon monoxide or carbon dioxide concentration outdoors will become high.

実施の形態9.
 図10は、実施の形態9に係る換気システムの構成を示す図である。実施の形態9に係る換気システム100は、換気装置1と、換気制御装置2と、雨水浸入量計測装置8と、学習装置23と、学習済モデル記憶部24と、推論装置25とを備える。学習装置23は、換気制御条件と、気象予測データと、雨水浸入量との関係を学習する。学習済モデル記憶部24は、学習済モデル241を記憶する。推論装置25は、学習済モデル241を利用して換気制御条件を推論する。
Embodiment 9.
10 is a diagram showing the configuration of a ventilation system according to a ninth embodiment. The ventilation system 100 according to the ninth embodiment includes a ventilation device 1, a ventilation control device 2, a rainwater infiltration amount measuring device 8, a learning device 23, a learned model storage unit 24, and an inference device 25. The learning device 23 learns the relationship between the ventilation control conditions, the weather forecast data, and the amount of rainwater infiltration. The learned model storage unit 24 stores a learned model 241. The inference device 25 infers the ventilation control conditions using the learned model 241.

 図11は、実施の形態9に係る換気システムの学習装置の構成を示す図である。学習装置23は、学習用データ取得部231と、モデル生成部232とを備える。学習用データ取得部231は、換気制御条件、気象予測データ、雨水浸入量を学習用データとして取得する。換気制御条件は換気送風機の速度と、ダンパ13の開閉角度と、のうち一つ以上によって構成される。気象予測データは、降水量、温度、湿度、気圧、日射量、風向、風速などのうち一つ以上で構成される。 FIG. 11 is a diagram showing the configuration of a learning device for a ventilation system according to embodiment 9. The learning device 23 includes a learning data acquisition unit 231 and a model generation unit 232. The learning data acquisition unit 231 acquires the ventilation control conditions, weather forecast data, and rainwater infiltration amount as learning data. The ventilation control conditions are composed of one or more of the speed of the ventilation blower and the opening/closing angle of the damper 13. The weather forecast data is composed of one or more of the amount of precipitation, temperature, humidity, air pressure, solar radiation, wind direction, wind speed, etc.

 雨水浸入量は雨水浸入量計測装置8によって計測される。雨水浸入量計測装置8は一般に市販される雨センサ又は雨量計を、換気装置1の屋内側に設置することで構成される。雨量の大小を検知できない雨センサを使用する場合は、複数個設置することで、雨センサが反応した個数に応じて雨水浸入量の大小を把握する。また、他の方法として、雨水浸入が目視により確認された場合に、作業者又は管理者によって雨水浸入の大小を雨水浸入量計測装置8に直接入力する方法がある。この場合、雨センサは不要である。 The amount of rainwater infiltration is measured by rainwater infiltration amount measuring device 8. Rainwater infiltration amount measuring device 8 is constructed by installing a commercially available rain sensor or rain gauge on the indoor side of ventilation device 1. If a rain sensor that cannot detect the amount of rain is used, multiple rain sensors are installed and the amount of rainwater infiltration can be determined according to the number of rain sensors that react. As another method, when rainwater infiltration is visually confirmed, an operator or manager can directly input the amount of rainwater infiltration into rainwater infiltration amount measuring device 8. In this case, a rain sensor is not necessary.

 モデル生成部232は、換気制御条件、気象予測データ、雨水浸入量を含む学習用データに基づいて、換気制御条件を学習する。すなわち、換気システム100の気象予測データと雨水浸入量とから換気制御条件を推論する学習済モデル241を生成する。 The model generation unit 232 learns the ventilation control conditions based on learning data including the ventilation control conditions, weather forecast data, and the amount of rainwater infiltration. In other words, it generates a learned model 241 that infers the ventilation control conditions from the weather forecast data and the amount of rainwater infiltration of the ventilation system 100.

 モデル生成部232が用いる学習アルゴリズムは教師あり学習、教師なし学習、強化学習等の公知のアルゴリズムを用いることができる。一例として、強化学習(Reinforcement Learning)を適用した場合について説明する。強化学習では、ある環境内における行動主体であるエージェントが、現在の状態である環境のパラメータを観測し、取るべき行動を決定する。エージェントの行動により環境が動的に変化し、エージェントには環境の変化に応じて報酬が与えられる。エージェントはこれを繰り返し、一連の行動を通じて報酬が最も多く得られる行動方針を学習する。強化学習の代表的な手法として、Q学習(Q-learning)及びTD学習(TD-learning)が知られている。例えば、Q学習の場合、行動価値関数Q(s,a)の一般的な更新式は、下記式(1)で表される。 The learning algorithm used by the model generation unit 232 may be a known algorithm such as supervised learning, unsupervised learning, or reinforcement learning. As an example, a case where reinforcement learning is applied will be described. In reinforcement learning, an agent, which is the subject of action in a certain environment, observes the parameters of the environment, which is the current state, and determines the action to be taken. The environment changes dynamically due to the agent's actions, and the agent is given a reward according to the change in the environment. The agent repeats this process, and learns the course of action that will obtain the most reward through a series of actions. Q-learning and TD-learning are known as representative methods of reinforcement learning. For example, in the case of Q-learning, the general update formula for the action value function Q(s, a) is expressed as the following formula (1).

Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

 上記式(1)において、sは時刻tにおける環境の状態を表し、aは時刻tにおける行動を表す。行動aにより、状態はst+1に変わる。rt+1はその状態の変化によってもらえる報酬を表し、γは割引率を表し、αは学習係数を表す。なお、γは0<γ≦1、αは0<α≦1の範囲とする。換気制御条件が行動aとなり、雨水浸入量が状態sとなり、時刻tの状態sにおける最良の行動aを学習する。 In the above formula (1), s t represents the state of the environment at time t, and a t represents the action at time t. The state changes to s t+1 due to the action a t . r t+1 represents the reward obtained due to the change in state, γ represents the discount rate, and α represents the learning coefficient. Note that γ is in the range of 0<γ≦1, and α is in the range of 0<α≦1. The ventilation control condition becomes the action a t , the amount of rainwater infiltration becomes the state s t , and the best action a t in the state s t at time t is learned.

 また、降水量及び風速が雨水浸入量に影響を与えることから、気象予測データと雨水浸入量は一定の相関がある。したがって、時刻tの状態sにおける最良の行動aと同時刻の気象予測データは関連付けられる。すなわち、時刻tの気象予測データにおける最良の行動aが学習される。 In addition, since the amount of precipitation and wind speed affect the amount of rainwater infiltration, there is a certain correlation between the weather forecast data and the amount of rainwater infiltration. Therefore, the best action a t in state s t at time t is associated with the weather forecast data at the same time. In other words, the best action a t in the weather forecast data at time t is learned.

 式(1)で表される更新式は、時刻t+1における最もQ値の高い行動aの行動価値Qが、時刻tにおいて実行された行動aの行動価値Qよりも大きければ、行動価値Qを大きくし、逆の場合は、行動価値Qを小さくする。換言すれば、時刻tにおける行動aの行動価値Qを、時刻t+1における最良の行動価値に近づけるように、行動価値関数Q(s,a)を更新する。それにより、ある環境における最良の行動価値が、それ以前の環境における行動価値に順次伝播していくようになる。 The update formula expressed by equation (1) increases the action value Q if the action value Q of the action a with the highest Q value at time t+1 is greater than the action value Q of the action a executed at time t, and decreases the action value Q in the opposite case. In other words, it updates the action value function Q(s, a) so that the action value Q of action a at time t approaches the best action value at time t+1. This allows the best action value in a certain environment to be propagated sequentially to the action value in the previous environment.

 上記のように、強化学習によって学習済モデル241を生成するモデル生成部232は、報酬計算部232aと、関数更新部232bと、を備えている。 As described above, the model generation unit 232 that generates the trained model 241 by reinforcement learning includes a reward calculation unit 232a and a function update unit 232b.

 報酬計算部232aは、換気制御条件、雨水浸入量に基づいて報酬を計算する。報酬計算部232aは、雨水浸入量の増減に基づいて、報酬rを計算する。例えば、雨水浸入量減の場合には報酬rを増大させ、雨水浸入量増の場合には報酬rを低減する。例えば、雨水浸入量減の場合には「1」の報酬を与え、雨水浸入量増の場合には「-1」の報酬を与える。 The reward calculation unit 232a calculates the reward based on the ventilation control conditions and the amount of rainwater infiltration. The reward calculation unit 232a calculates the reward r based on the increase or decrease in the amount of rainwater infiltration. For example, if the amount of rainwater infiltration decreases, the reward r is increased, and if the amount of rainwater infiltration increases, the reward r is decreased. For example, if the amount of rainwater infiltration decreases, a reward of "1" is given, and if the amount of rainwater infiltration increases, a reward of "-1" is given.

 関数更新部232bは、報酬計算部232aによって計算される報酬に従って、換気制御条件を決定するための関数を更新し、学習済モデル記憶部24に出力する。例えばQ学習の場合、式(1)で表される行動価値関数Q(s,a)を、換気制御条件を算出するための関数として用いる。 The function update unit 232b updates the function for determining the ventilation control condition in accordance with the reward calculated by the reward calculation unit 232a, and outputs the function to the learned model storage unit 24. For example, in the case of Q-learning, the action value function Q(s t , a t ) expressed by the formula (1) is used as a function for calculating the ventilation control condition.

 以上のような学習を繰り返し実行する。学習済モデル記憶部24は、関数更新部によって更新された行動価値関数Q(s,a)、すなわち、学習済モデル241を記憶する。 The learning process described above is repeated. The learned model storage unit 24 stores the action value function Q(s t , a t ) updated by the function update unit, that is, the learned model 241.

 次に、学習装置23が学習する処理について説明する。図12は、実施の形態9に係る換気システムの学習装置の学習処理に関するフローチャートである。 Next, the learning process performed by the learning device 23 will be described. Figure 12 is a flowchart showing the learning process performed by the learning device of the ventilation system according to embodiment 9.

 ステップS21において、学習用データ取得部231は換気制御条件と、気象予測データ及び雨水浸入量とを学習用データとして取得する。 In step S21, the learning data acquisition unit 231 acquires the ventilation control conditions, weather forecast data, and the amount of rainwater infiltration as learning data.

 ステップS22において、モデル生成部232は、換気制御条件と、雨水浸入量とに基づいて報酬を計算する。具体的には、報酬計算部232aは、換気制御条件、雨水浸入量を取得し、予め定められた雨水浸入量の増減に基づいて報酬を増大させるか又は報酬を減少させるかを判断する。 In step S22, the model generation unit 232 calculates the reward based on the ventilation control conditions and the amount of rainwater infiltration. Specifically, the reward calculation unit 232a acquires the ventilation control conditions and the amount of rainwater infiltration, and determines whether to increase or decrease the reward based on a predetermined increase or decrease in the amount of rainwater infiltration.

 雨水浸入量が減少する場合は、ステップS22で「雨水浸入量減」となる。この場合は、報酬計算部232aは、報酬を増加させると判断しているため、ステップS23において報酬を増大させる。一方、雨水浸入量が増大する場合は、ステップS22で「雨水浸入量増」となる。この場合は、報酬計算部232aは、報酬を減少させると判断しているため、ステップS24において報酬を減少させる。 If the amount of rainwater infiltration decreases, the result in step S22 is "rainwater infiltration amount decreased." In this case, the reward calculation unit 232a determines that the reward should be increased, and so increases the reward in step S23. On the other hand, if the amount of rainwater infiltration increases, the result in step S22 is "rainwater infiltration amount increased." In this case, the reward calculation unit 232a determines that the reward should be decreased, and so decreases the reward in step S24.

 ステップS25において、関数更新部232bは、報酬計算部232aによって計算された報酬に基づいて、学習済モデル記憶部24が記憶する式(1)で表される行動価値関数Q(s,a)を更新する。 In step S25, the function update unit 232b updates the action value function Q(s t , a t ) represented by equation (1) stored in the learned model storage unit 24, based on the reward calculated by the reward calculation unit 232a.

 学習装置23は、以上のステップS21からS25までのステップを繰り返し実行し、生成された行動価値関数Q(s,a)を学習済モデル241として記憶する。 The learning device 23 repeatedly executes the above steps S21 to S25, and stores the generated action value function Q(s t , a t ) as the learned model 241.

 また、学習済モデル241の生成において、時刻tの状態sにおける最良の行動aと同時刻の気象予測データは関連付けられる。すなわち、時刻tの気象予測データに対する最良の行動aが学習される。 In addition, in generating the trained model 241, the best action a t in state s t at time t is associated with the weather forecast data at the same time. That is, the best action a t for the weather forecast data at time t is trained.

 本実施の形態に係る学習装置23は、学習済モデル241を学習装置23の外部に設けられた学習済モデル記憶部24に記憶するものとしたが、学習済モデル記憶部24を学習装置23の内部に備えていてもよい。 The learning device 23 according to this embodiment stores the learned model 241 in a learned model storage unit 24 provided outside the learning device 23, but the learned model storage unit 24 may be provided inside the learning device 23.

 図13は、実施の形態9に係る換気システムに関する推論装置の構成を示す図である。推論装置25は、推論用データ取得部251及び推論部252を備える。 FIG. 13 is a diagram showing the configuration of an inference device for a ventilation system according to embodiment 9. The inference device 25 includes an inference data acquisition unit 251 and an inference unit 252.

 推論用データ取得部251は、気象予測データを取得する。気象予測データは、降水量、温度、湿度、気圧、日射量、風向、風速などのうち一つ以上で構成される。 The inference data acquisition unit 251 acquires weather forecast data. The weather forecast data consists of one or more of precipitation, temperature, humidity, air pressure, solar radiation, wind direction, wind speed, etc.

 推論部252は、学習済モデル241を利用して換気制御条件を推論する。すなわち、学習済モデル241に推論用データ取得部251が取得した気象予測データを入力することで、気象予測データに適した換気制御条件を推論することができる。 The inference unit 252 infers ventilation control conditions using the trained model 241. That is, by inputting the weather forecast data acquired by the data-for-inference acquisition unit 251 to the trained model 241, it is possible to infer ventilation control conditions suitable for the weather forecast data.

 この時、気象予測データは学習済モデル241の生成時に雨水浸入量と関連付けられたものである。 At this time, the weather forecast data was associated with the amount of rainwater infiltration when the trained model 241 was generated.

 なお、本実施の形態では、モデル生成部232で学習した学習済モデル241を用いて換気制御条件を出力するものとして説明したが、他の換気システム100から学習済モデル241を取得し、この学習済モデル241に基づいて換気制御条件を出力するようにしてもよい。また、換気システム100以外の装置が学習済モデル241を生成してもよい。すなわち、換気システム100とは別個に設けられた学習装置23によって学習済モデル241を生成してもよい。 In the present embodiment, the ventilation control conditions are output using the trained model 241 trained by the model generation unit 232. However, the trained model 241 may be acquired from another ventilation system 100, and the ventilation control conditions may be output based on this trained model 241. Also, the trained model 241 may be generated by a device other than the ventilation system 100. In other words, the trained model 241 may be generated by a learning device 23 provided separately from the ventilation system 100.

 次に、推論装置25を使って換気制御条件を得るための処理を説明する。図14は、実施の形態9に係る換気システムの推論装置の推論処理に関するフローチャートである。 Next, we will explain the process for obtaining ventilation control conditions using the inference device 25. Figure 14 is a flowchart showing the inference process of the inference device of the ventilation system according to embodiment 9.

 ステップS31において、推論用データ取得部251は、推論用データである気象予測データを取得する。 In step S31, the inference data acquisition unit 251 acquires weather forecast data, which is inference data.

 ステップS32において、推論部252は、学習済モデル記憶部24に記憶された学習済モデル241に気象予測データを入力し、換気制御条件を得る。 In step S32, the inference unit 252 inputs the weather forecast data into the trained model 241 stored in the trained model storage unit 24 to obtain ventilation control conditions.

 ステップS33において、推論部252は、学習済モデル241により得られた換気制御条件のデータを給気量管理部22に出力する。 In step S33, the inference unit 252 outputs the data on the ventilation control conditions obtained by the learned model 241 to the air supply volume management unit 22.

 ステップS34において、給気量管理部22は、出力された換気制御条件を用いて、換気装置1を制御する。これにより、換気装置1からの雨水浸入量をより少なくすることができる。換気装置1は、換気送風機の速度と、ダンパ13の開閉角度と、により制御される。 In step S34, the air supply volume management unit 22 controls the ventilation device 1 using the output ventilation control conditions. This makes it possible to reduce the amount of rainwater entering through the ventilation device 1. The ventilation device 1 is controlled by the speed of the ventilation blower and the opening/closing angle of the damper 13.

 なお、本実施の形態では、モデル生成部232が用いる学習アルゴリズムに強化学習を適用した場合について説明したが、これに限られるものではない。学習アルゴリズムについては、強化学習以外にも、教師あり学習、教師なし学習、又は半教師あり学習等を適用することも可能である。 In the present embodiment, a case has been described in which reinforcement learning is applied to the learning algorithm used by the model generation unit 232, but this is not limited to this. As for the learning algorithm, it is also possible to apply supervised learning, unsupervised learning, semi-supervised learning, etc. in addition to reinforcement learning.

 また、モデル生成部232に用いられる学習アルゴリズムとしては、特徴量そのものの抽出を学習する、深層学習(Deep Learning)を用いることもでき、他の公知の方法、例えばニューラルネットワーク、遺伝的プログラミング、機能論理プログラミング、サポートベクターマシンなどに従って機械学習を実行してもよい。 The learning algorithm used in the model generation unit 232 can be deep learning, which learns to extract the features themselves, or machine learning can be performed according to other known methods, such as neural networks, genetic programming, functional logic programming, and support vector machines.

 なお、学習装置23及び推論装置25は、換気システム100とは別個の装置であって、ネットワークを介して換気システム100に接続されてもよい。さらに、学習装置23及び推論装置25は、クラウドサーバ上に存在していてもよい。 The learning device 23 and the inference device 25 may be separate devices from the ventilation system 100 and connected to the ventilation system 100 via a network. Furthermore, the learning device 23 and the inference device 25 may exist on a cloud server.

 また、モデル生成部232は、複数の換気システム100から取得される学習用データを用いて、換気制御条件を学習するようにしてもよい。なお、モデル生成部232は、同一のエリアで使用される複数の換気システム100から学習用データを取得してもよいし、異なるエリアで独立して動作する複数の換気システム100から収集される学習用データを利用して換気制御条件を学習してもよい。また、学習用データを収集する換気システム100を途中で対象に追加したり、対象から除去することも可能である。さらに、ある換気システム100に関して換気制御条件を学習した学習装置23を、これとは別の換気システム100に適用し、当該別の換気システム100に関して換気制御条件を再学習して更新するようにしてもよい。 The model generation unit 232 may learn the ventilation control conditions using learning data acquired from multiple ventilation systems 100. The model generation unit 232 may acquire learning data from multiple ventilation systems 100 used in the same area, or may learn the ventilation control conditions using learning data collected from multiple ventilation systems 100 operating independently in different areas. It is also possible to add or remove a ventilation system 100 from which learning data is collected during the process. Furthermore, the learning device 23 that has learned the ventilation control conditions for a certain ventilation system 100 may be applied to another ventilation system 100, and the ventilation control conditions for the other ventilation system 100 may be re-learned and updated.

 実施の形態9に係る換気システム100は、換気制御条件、気象予測データ、雨水浸入量を含む学習用データに基づいて換気制御条件を学習して学習済モデル241を生成し、学習済モデル241を用いて換気制御条件を推論するため、雨水が浸入する可能性があるか否かを人間が判断することが難しい気象条件の場合でも、雨水が浸入する可能性を低減することができる。 The ventilation system 100 according to embodiment 9 learns the ventilation control conditions based on learning data including the ventilation control conditions, weather forecast data, and the amount of rainwater infiltration to generate a trained model 241, and infers the ventilation control conditions using the trained model 241. Therefore, even in weather conditions where it is difficult for a human to determine whether or not rainwater is likely to infiltrate, the possibility of rainwater infiltration can be reduced.

実施の形態10.
 図15は、実施の形態10に係る換気システムの構成を示す図である。実施の形態10に係る換気システム100は、複数の建物で学習済モデル241を共有するシステムである。実施の形態10に係る換気システム100は、複数の建屋30が換気対象であり、それぞれの換気制御装置2がネットワーク40を通じてサーバ50と通信する。通信の対象とするデータとしては、換気制御条件、気象予測データ、雨水浸入量、に加えて、それぞれの建屋30の大きさ及び換気装置1等の設置位置の情報を用いる。
Embodiment 10.
15 is a diagram showing the configuration of a ventilation system according to a tenth embodiment. The ventilation system 100 according to the tenth embodiment is a system in which a trained model 241 is shared among a plurality of buildings. In the ventilation system 100 according to the tenth embodiment, a plurality of buildings 30 are the targets of ventilation, and each ventilation control device 2 communicates with a server 50 through a network 40. Data to be communicated includes ventilation control conditions, weather forecast data, and the amount of rainwater infiltration, as well as information on the size of each building 30 and the installation position of the ventilation device 1, etc.

 学習装置23、学習済モデル記憶部24及び推論装置25は、サーバ50に設けられている。 The learning device 23, the learned model storage unit 24, and the inference device 25 are provided in the server 50.

 実施の形態10に係る換気システム100では、学習装置23は、建屋30ごとに学習済モデル241を生成する。学習済モデル241は、建屋30の立地地域、建屋30の大きさ及び換気送風機11の設置位置によっても変化するため、そのままではある建屋30の換気制御装置2が作成した学習済モデル241を、他の建屋30の換気制御装置2に適用することはできない。そこで、学習装置23は、複数の建屋30の学習済モデル241について、建物情報を追加した学習用データを用いて学習する。推論装置25は、気象予測データと建物情報とに基づいて、換気制御条件を推論する。 In the ventilation system 100 according to the tenth embodiment, the learning device 23 generates a learned model 241 for each building 30. The learned model 241 varies depending on the location of the building 30, the size of the building 30, and the installation position of the ventilation blower 11, and therefore the learned model 241 created by the ventilation control device 2 of one building 30 cannot be applied as is to the ventilation control device 2 of another building 30. Therefore, the learning device 23 learns the learned models 241 of multiple buildings 30 using learning data to which building information has been added. The inference device 25 infers ventilation control conditions based on the weather forecast data and the building information.

 建物情報としては、建屋30の立地地域、建屋30の大きさ、換気装置1の配置位置、雨水浸入量計測装置8の配置位置、及び各換気装置1の換気制御条件などが挙げられる。 The building information includes the location of the building 30, the size of the building 30, the location of the ventilation devices 1, the location of the rainwater infiltration measurement devices 8, and the ventilation control conditions of each ventilation device 1.

 建物情報を加えた学習用データを用いて学習装置23が学習を行うことにより、異なる建物についても、学習済モデル241を活用して、換気制御を行うことが可能になる。 The learning device 23 learns using learning data that includes building information, making it possible to use the learned model 241 to perform ventilation control for different buildings.

 なお、複数の建屋30のうち、一部の建屋30のみに雨水浸入量計測装置8を設置して学習済モデル241を生成することで、他の建屋30では雨水浸入量計測装置8を設置しなくても、学習済モデル241と建物情報とを含む推論用データにより、換気装置1を制御することができる。 In addition, by installing rainwater infiltration amount measuring devices 8 in only some of the buildings 30 out of the multiple buildings 30 and generating a trained model 241, the ventilation device 1 can be controlled using inference data including the trained model 241 and building information, even if rainwater infiltration amount measuring devices 8 are not installed in the other buildings 30.

 また、ある建屋30へ本システムを導入した際に、導入後一定期間は貸与された雨水浸入量計測装置8を設置して学習済モデル241を生成し、一定期間経過後に雨水浸入量計測装置8を順次別の建屋30で使用して学習済モデル241を生成することにより、設備負担を最小限にして各建屋30における学習済モデル241を生成することができる。 In addition, when this system is introduced into a certain building 30, the loaned rainwater infiltration amount measuring device 8 is installed for a certain period of time after the introduction to generate a trained model 241, and after a certain period of time has passed, the rainwater infiltration amount measuring device 8 is used sequentially in other buildings 30 to generate trained models 241, thereby minimizing the burden on equipment and generating trained models 241 for each building 30.

 学習済モデル241をサーバ50で管理することにより、学習済モデル241を随時更新することも可能である。 By managing the trained model 241 on the server 50, it is also possible to update the trained model 241 at any time.

 実施の形態1から実施の形態10に係る学習装置23及び推論装置25のハードウェア構成について説明する。図16は、実施の形態9及び実施の形態10に係る学習装置のハードウェア構成を示す図である。学習装置23は、各種処理を実行するプロセッサ91と、メインメモリであるメモリ92と、情報を記憶する記憶装置93とを備えたコンピュータシステムによって実現される。 The hardware configuration of the learning device 23 and the inference device 25 according to the first to tenth embodiments will be described. FIG. 16 is a diagram showing the hardware configuration of the learning device according to the ninth and tenth embodiments. The learning device 23 is realized by a computer system including a processor 91 that executes various processes, a memory 92 that is a main memory, and a storage device 93 that stores information.

 プロセッサ91は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ92には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)といった不揮発性又は揮発性の半導体メモリを用いることができる。記憶装置93には、換気制御条件を学習する処理を行うためのプログラムが格納されている。 The processor 91 may be a calculation means such as an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor). The memory 92 may be a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), or an EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). The storage device 93 stores a program for performing a process of learning ventilation control conditions.

 上記のコンピュータシステムは、プロセッサ91が記憶装置93に記憶された、各構成要素の処理に対応するプログラムをメモリ92に読み出して実行することにより、モデル生成部232の機能を実現する。また、メモリ92は、プロセッサ91が実行する各処理における一時メモリとしても使用される。プロセッサ91が実行するプログラムは、記憶媒体に記憶された状態で提供されてもよいし、ネットワークを介して提供されてもよい。 The above computer system realizes the functions of the model generation unit 232 by the processor 91 reading into the memory 92 the programs stored in the storage device 93 and corresponding to the processing of each component, and executing them. The memory 92 is also used as a temporary memory for each process executed by the processor 91. The programs executed by the processor 91 may be provided in a state stored in a storage medium, or may be provided via a network.

 推論装置25も学習装置23と同様に、各種処理を実行するプロセッサ91と、メインメモリであるメモリ92と、情報を記憶する記憶装置93とを備えたコンピュータシステムによって実現される。推論装置25を実現するコンピュータシステムでは、記憶装置93には、学習済モデルを用いて、換気制御条件を推論する処理を行うためのプログラムが格納されている。 Similar to the learning device 23, the inference device 25 is realized by a computer system including a processor 91 that executes various processes, a memory 92 that is a main memory, and a storage device 93 that stores information. In the computer system that realizes the inference device 25, the storage device 93 stores a program for performing a process of inferring ventilation control conditions using a learned model.

 以上の実施の形態に示した構成は、内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the above embodiments are merely examples of the content, and may be combined with other known technologies. Parts of the configurations may be omitted or modified without departing from the spirit of the invention.

 1 換気装置、2 換気制御装置、3 西側換気装置、4 北側換気装置、5 換気制御履歴記憶装置、6 表示器、7 換気制御条件入力装置、8 雨水浸入量計測装置、11 換気送風機、12 速度調整器、13 ダンパ、21 雨水浸入可能性判定部、22 給気量管理部、23 学習装置、24 学習済モデル記憶部、25 推論装置、30 建屋、31 西壁、32 北壁、40 ネットワーク、50 サーバ、91 プロセッサ、92 メモリ、93 記憶装置、100 換気システム、231 学習用データ取得部、232 モデル生成部、232a 報酬計算部、232b 関数更新部、241 学習済モデル、251 推論用データ取得部、252 推論部。 1 ventilation device, 2 ventilation control device, 3 west side ventilation device, 4 north side ventilation device, 5 ventilation control history storage device, 6 display device, 7 ventilation control condition input device, 8 rainwater infiltration amount measurement device, 11 ventilation blower, 12 speed regulator, 13 damper, 21 rainwater infiltration possibility determination unit, 22 air supply amount management unit, 23 learning device, 24 trained model storage unit, 25 inference device, 30 building, 31 west wall, 32 north wall, 40 network, 50 server, 91 processor, 92 memory, 93 storage device, 100 ventilation system, 231 learning data acquisition unit, 232 model generation unit, 232a reward calculation unit, 232b function update unit, 241 trained model, 251 inference data acquisition unit, 252 inference unit.

Claims (13)

 建屋に設置される換気装置と、
 気象予測データに基づいて前記換気装置を制御する換気制御装置とを備え、
 前記換気制御装置は、
 前記気象予測データに基づいて前記換気装置に雨水が浸入する可能性があるか否かを判定する雨水浸入可能性判定部と、
 前記換気装置に雨水が浸入する可能性がある場合には、前記換気装置による給気を停止するか又は前記換気装置による給気量を低減させることにより前記換気装置による給気量を管理する給気量管理部とを有することを特徴とする換気システム。
A ventilation system installed in the building;
A ventilation control device that controls the ventilation device based on weather forecast data,
The ventilation control device includes:
a rainwater infiltration possibility determination unit that determines whether or not there is a possibility of rainwater infiltration into the ventilation device based on the weather forecast data;
A ventilation system characterized by having an air supply volume management unit that manages the amount of air supplied by the ventilation device by stopping the air supply by the ventilation device or reducing the amount of air supplied by the ventilation device when there is a possibility of rainwater entering the ventilation device.
 前記換気装置を複数備え、
 複数の前記換気装置は、前記建屋の異なる箇所に設置されており、
 前記雨水浸入可能性判定部は、複数の前記換気装置の各々について、雨水が浸入する可能性があるか否かを判定し、
 前記給気量管理部は、雨水が浸入する可能性がある前記換気装置のみ給気を停止するか又は前記換気装置による給気量を低減させることを特徴とする請求項1に記載の換気システム。
A plurality of the ventilation devices are provided,
The plurality of ventilation devices are installed in different locations of the building,
The rainwater infiltration possibility determination unit determines whether or not there is a possibility of rainwater infiltration for each of the plurality of ventilation devices,
The ventilation system according to claim 1, characterized in that the air supply volume management unit stops air supply to only the ventilation device into which rainwater may enter or reduces the amount of air supply by the ventilation device.
 前記雨水浸入可能性判定部は、複数の前記換気装置の各々の設置箇所に個別に前記気象予測データを取得し、複数の前記換気装置に雨水が浸入する可能性があるか否かを判定することを特徴とする請求項2に記載の換気システム。 The ventilation system according to claim 2, characterized in that the rainwater infiltration possibility determination unit obtains the weather forecast data individually for each of the installation locations of the multiple ventilation devices and determines whether or not there is a possibility of rainwater infiltrating into the multiple ventilation devices.  前記換気制御装置による換気装置の制御履歴である換気制御履歴を記憶する換気制御履歴記憶装置と、
 気象予測データと、実際の気象データである気象実測データと、前記換気制御履歴を時刻データとともに表示する表示器とを備えることを特徴とする請求項1から3のいずれか1項に記載の換気システム。
A ventilation control history storage device that stores a ventilation control history, which is a control history of the ventilation device by the ventilation control device;
The ventilation system according to any one of claims 1 to 3, characterized in that it is provided with a display that displays weather forecast data, actual weather data which is measured weather data, and the ventilation control history together with time data.
 前記換気制御装置に、前記換気装置の制御条件である換気制御条件を入力するための換気制御条件入力装置を備えることを特徴とする請求項1から4のいずれか1項に記載の換気システム。 The ventilation system according to any one of claims 1 to 4, characterized in that the ventilation control device is provided with a ventilation control condition input device for inputting ventilation control conditions, which are control conditions for the ventilation device.  前記給気量管理部は、花粉又は微小粒子状物質の飛散量又は予測飛散量に基づいて、前記換気装置による給気を停止するか又は前記換気装置による給気量を低減させることを特徴とする請求項1から5のいずれか1項に記載の換気システム。 The ventilation system according to any one of claims 1 to 5, characterized in that the air supply volume management unit stops the air supply by the ventilation device or reduces the air supply volume by the ventilation device based on the amount of pollen or fine particulate matter dispersed or the predicted amount of dispersion.  前記給気量管理部は、外気の一酸化炭素又は二酸化炭素の予測濃度データに基づいて、前記換気装置による給気を停止するか又は前記換気装置による給気量を低減させることを特徴とする請求項1から5のいずれか1項に記載の換気システム。 The ventilation system according to any one of claims 1 to 5, characterized in that the air supply volume management unit stops the air supply by the ventilation device or reduces the amount of air supply by the ventilation device based on predicted concentration data of carbon monoxide or carbon dioxide in the outside air.  前記換気装置への雨水浸入量を計測する雨水浸入量計測装置と、
 前記雨水浸入量と、前記気象予測データと、前記換気装置の制御条件である換気制御条件とを含む学習用データを取得する学習用データ取得部と、
 前記学習用データを用いて、前記気象予測データから前記換気制御条件を推論するための学習済モデルを生成するモデル生成部とを有する学習装置とを備えることを特徴とする請求項1から7のいずれか1項に記載の換気システム。
A rainwater infiltration amount measuring device that measures the amount of rainwater infiltration into the ventilation device;
A learning data acquisition unit that acquires learning data including the rainwater infiltration amount, the weather forecast data, and a ventilation control condition that is a control condition of the ventilation device;
The ventilation system described in any one of claims 1 to 7, characterized in that it is provided with a learning device having a model generation unit that uses the learning data to generate a learned model for inferring the ventilation control conditions from the weather forecast data.
 前記気象予測データを取得する推論用データ取得部と、
 前記気象予測データから前記換気装置の制御条件である換気制御条件を推論するための学習済モデルを用いて、前記推論用データ取得部で取得した前記気象予測データから前記換気制御条件を出力する推論部とを有する推論装置を備えることを特徴とする請求項1から8のいずれか1項に記載の換気システム。
An inference data acquisition unit that acquires the weather forecast data;
The ventilation system described in any one of claims 1 to 8, characterized in that it is provided with an inference device having an inference unit that outputs ventilation control conditions, which are control conditions of the ventilation device, from the weather forecast data acquired by the inference data acquisition unit using a learned model for inferring ventilation control conditions, which are control conditions of the ventilation device, from the weather forecast data.
 建屋に設置される換気装置への雨水浸入量と、前記換気装置が設置された箇所における気象予測データと、前記換気装置の換気制御条件とを含む学習用データを取得する学習用データ取得部と、
 前記学習用データを用いて、前記気象予測データから前記換気制御条件を推論するための学習済モデルを生成するモデル生成部とを備えることを特徴とする学習装置。
A learning data acquisition unit that acquires learning data including an amount of rainwater infiltrating into a ventilation device installed in a building, weather forecast data for a location where the ventilation device is installed, and ventilation control conditions for the ventilation device;
and a model generation unit that uses the learning data to generate a trained model for inferring the ventilation control conditions from the weather forecast data.
 前記モデル生成部は、
 前記換気装置への雨水浸入量の報酬基準に基づいて、報酬を計算する報酬計算部と、
 前記報酬計算部によって計算される報酬に従って、前記換気制御条件を決定するための関数を更新する関数更新部とを有することを特徴とする請求項10に記載の学習装置。
The model generation unit
A reward calculation unit that calculates a reward based on a reward standard for the amount of rainwater infiltration into the ventilation device;
11. The learning device according to claim 10, further comprising a function updating unit that updates a function for determining the ventilation control condition in accordance with the reward calculated by the reward calculation unit.
 建屋に設置される換気装置の設置箇所における気象予測データを取得する推論用データ取得部と、
 前記気象予測データから前記換気装置の制御条件である換気制御条件を推論するための学習済モデルを用いて、前記推論用データ取得部で取得した前記気象予測データから前記換気制御条件を推論する推論部とを備えることを特徴とする推論装置。
an inference data acquisition unit that acquires weather forecast data for a location where a ventilation device is installed in a building;
an inference unit that infers ventilation control conditions, which are control conditions of the ventilation device, from the weather forecast data acquired by the inference data acquisition unit using a learned model for inferring the ventilation control conditions, which are control conditions of the ventilation device, from the weather forecast data.
 複数の建屋の各々に設置される換気装置の各々への雨水浸入量と、複数の前記建屋の各々の前記換気装置が設置された箇所における気象予測データと、複数の前記建屋の各々に設置された前記換気装置の換気制御条件と、複数の前記建屋の各々の立地情報とを含む学習用データを取得する学習用データ取得部と、
 前記学習用データを用いて、前記気象予測データから前記換気制御条件を推論するための学習済モデルを生成するモデル生成部とを備えることを特徴とする学習装置。
a learning data acquisition unit that acquires learning data including the amount of rainwater infiltration into each of the ventilation devices installed in each of a plurality of buildings, weather forecast data for the locations where the ventilation devices of each of the plurality of buildings are installed, ventilation control conditions for the ventilation devices installed in each of the plurality of buildings, and location information for each of the plurality of buildings;
and a model generation unit that uses the learning data to generate a trained model for inferring the ventilation control conditions from the weather forecast data.
PCT/JP2023/032581 2023-09-06 2023-09-06 Ventilation system, learning device, and inference device Pending WO2025052607A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/032581 WO2025052607A1 (en) 2023-09-06 2023-09-06 Ventilation system, learning device, and inference device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/032581 WO2025052607A1 (en) 2023-09-06 2023-09-06 Ventilation system, learning device, and inference device

Publications (1)

Publication Number Publication Date
WO2025052607A1 true WO2025052607A1 (en) 2025-03-13

Family

ID=94923911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032581 Pending WO2025052607A1 (en) 2023-09-06 2023-09-06 Ventilation system, learning device, and inference device

Country Status (1)

Country Link
WO (1) WO2025052607A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660638U (en) * 1993-01-28 1994-08-23 鈴木シャッター工業株式会社 Flood prevention device
JP2009274603A (en) * 2008-05-15 2009-11-26 Calsonic Kansei Corp Intake door control device for vehicle
JP2021120601A (en) * 2020-01-30 2021-08-19 三菱電機株式会社 Air conditioning ventilation system
WO2021181566A1 (en) * 2020-03-11 2021-09-16 三菱電機株式会社 Air-conditioning system and learning device
WO2022101989A1 (en) * 2020-11-10 2022-05-19 三菱電機株式会社 Air conditioning device, and learning device of air conditioning device
WO2022244061A1 (en) * 2021-05-17 2022-11-24 三菱電機株式会社 Information processing device and air conditioning system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660638U (en) * 1993-01-28 1994-08-23 鈴木シャッター工業株式会社 Flood prevention device
JP2009274603A (en) * 2008-05-15 2009-11-26 Calsonic Kansei Corp Intake door control device for vehicle
JP2021120601A (en) * 2020-01-30 2021-08-19 三菱電機株式会社 Air conditioning ventilation system
WO2021181566A1 (en) * 2020-03-11 2021-09-16 三菱電機株式会社 Air-conditioning system and learning device
WO2022101989A1 (en) * 2020-11-10 2022-05-19 三菱電機株式会社 Air conditioning device, and learning device of air conditioning device
WO2022244061A1 (en) * 2021-05-17 2022-11-24 三菱電機株式会社 Information processing device and air conditioning system

Similar Documents

Publication Publication Date Title
CN111486557B (en) Libraries, systems, and methods for minimizing air pollution in enclosed structures
US9400119B2 (en) Retrofitting a constant volume air handling unit with a variable frequency drive
US20160069579A1 (en) Air-conditioning system and controller
WO2022124276A1 (en) Indoor air quality prediction method and indoor air quality detection system
JP2018501457A (en) System and method for predicting HVAC filter changes
WO2014156157A1 (en) Ventilation control device, ventilation system, and program
CN118863292B (en) A road tunnel environment monitoring method, device and medium
Ardiansyah et al. Rain detection system for estimate weather level using Mamdani fuzzy inference system
WO2025052607A1 (en) Ventilation system, learning device, and inference device
CN116109011B (en) Energy consumption management method and terminal for intelligent park
JP7517597B2 (en) Elevator motor abnormality detection system
WO2021079547A1 (en) Control device and control program
CN120702085A (en) A method and device for intelligent air conditioning control based on comfort model
US20230366377A1 (en) Method for controlling noise generated by a wind farm
US10711426B2 (en) Blower control system
CN114121141B (en) Control method and control device for top protection assembly
CN112432306B (en) Method, device and air conditioner for swing blade control of air conditioner
KR102850805B1 (en) Web-based livestock odor dispersion prediction system
CN115239540A (en) Intelligent environment monitoring system, method, computer equipment and storage medium
WO2025062537A1 (en) Air blowing system, learning device, and inference device
CN120121490B (en) Building construction operation environment monitoring method and system based on Internet of things
JP3228121B2 (en) Ventilation control device for road tunnel
KR102838440B1 (en) An air conditioning control method based on predicting contaminant concentration changes and a building autiomated control system performing the same
WO2021096451A1 (en) An intelligent control system for greenhouse air conditioning
JP2011012411A (en) Operation method of tunnel ventilation equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23951505

Country of ref document: EP

Kind code of ref document: A1