[go: up one dir, main page]

WO2025049865A1 - Procédés, architectures, appareils et systèmes de détection d'informations à partir de sources 3gpp et/ou non-3 gpp et de transmission de rapport d'état de détection - Google Patents

Procédés, architectures, appareils et systèmes de détection d'informations à partir de sources 3gpp et/ou non-3 gpp et de transmission de rapport d'état de détection Download PDF

Info

Publication number
WO2025049865A1
WO2025049865A1 PCT/US2024/044612 US2024044612W WO2025049865A1 WO 2025049865 A1 WO2025049865 A1 WO 2025049865A1 US 2024044612 W US2024044612 W US 2024044612W WO 2025049865 A1 WO2025049865 A1 WO 2025049865A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
information
3gpp
wtru
dataset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/US2024/044612
Other languages
English (en)
Inventor
Ognen OGNENOSKI
Yasser MESTRAH
Alain Mourad
Benoit Pelletier
Fumihiro Hasegawa
Patrick Tooher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
InterDigital Patent Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by InterDigital Patent Holdings Inc filed Critical InterDigital Patent Holdings Inc
Publication of WO2025049865A1 publication Critical patent/WO2025049865A1/fr
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0258Hybrid positioning by combining or switching between measurements derived from different systems
    • G01S5/02585Hybrid positioning by combining or switching between measurements derived from different systems at least one of the measurements being a non-radio measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • Some example embodiments described in the present disclosure are generally directed to the fields of communications, software and encoding, including, for example, to methods, architectures, apparatuses, systems related to sensing information from 3GPP and/or non-3GPP sources, and transmitting of sensing status report(s).
  • Integrated sensing and communications like artificial intelligence (Al) has become a prominent technology for 6G wireless technology.
  • Al artificial intelligence
  • 3GPP system there is no support for sensing capabilities; however, it may be anticipated that emerging trends related to sensing and communications will be adopted in 3GPP.
  • Some embodiments may include a method, which may be implemented by a wireless transmit/receive unit (WTRU) or other device or node.
  • the method may include receiving, e.g., from a network element or other device, configuration information indicating any of 3GPP measurement configurations, localization measurement configurations, and/or sensing-related measurement information.
  • the method may include determining, in accordance with any of the 3GPP measurement configurations, the localization measurement configurations and/or the sensing-related measurement information, 3 GPP sensing information based on 3 GPP sources and non-3GPP sensing information based on non-3GPP sources.
  • the method may include receiving at least one filter, and determining a sensing dataset based on an association between the 3 GPP sensing information and the non-3GPP sensing information.
  • the method may include transmitting a sensing report or a portion of the sensing report to the network element, wherein the sensing report or the portion of the sensing report indicates information based on a result of processing the sensing dataset with the at least one filter.
  • WTRU wireless transmit/receive unit
  • the circuitry may be configured to receive, e.g., from a network element or other device, configuration information indicating any of: 3GPP measurement configurations, localization measurement configurations, and/or sensing- related measurement information.
  • the circuitry may be configured to determine, in accordance with any of the 3 GPP measurement configurations, the localization measurement configurations and/or the sensing-related measurement information, 3GPP sensing information based on 3GPP sources and non-3GPP sensing information based on non-3GPP sources.
  • the circuitry may be configured to receive at least one filter, and to determine a sensing dataset based on an association between the 3 GPP sensing information and the non-3GPP sensing information.
  • the circuitry may be configured to transmit a sensing report or portion of the sensing report to the network element, wherein the sensing report or the portion of the sensing report indicates information based on a result of processing the sensing dataset with the at least one filter.
  • the sensing dataset is determined according to a predefined criteria that may include or indicate any of raw sensing data and/or processed sensing data, such as, but not limited to, one or more timestamps, number of obstacles, and/or one or more density coefficients, etc.
  • the configuration information further indicates rules for integrity or validation criteria, and the sensing report may be generated according to these rules for integrity or validation criteria.
  • the 3GPP measurement configurations may include any of: measurement configurations and/or resources, reporting configurations, and/or assistance information.
  • the localization measurement configuration may be used to determine localization information associated with the WTRU including any of positions and/or coordinates associated with the WTRU.
  • the sensing-related measurement information may include an indication of any of measurement methods and/or associated metrics.
  • the 3 GPP sources may include any of positioning measurements, methods or signals and/or sensing measurements, methods or signals.
  • the non-3GPP sources may include any of a wireless local area network (WLAN), Bluetooth, mounted or embedded cameras, and/or lidar measurements.
  • the WTRU may be configured to receive and/or determine whether one or more trigger conditions are satisfied and, based on the trigger condition being satisfied, the WTRU may determine the sensing dataset and transmit the sensing report.
  • the WTRU may be configured to receive and/or determine whether one or more triggering conditions are satisfied and, based on the trigger condition being satisfied, the WTRU may determine which actions to perform and/or which information to apply, for example, when determining the sensing data and/or transmitting the sensing report or portion of it, and/or when determining any of the other information or actions discussed herein.
  • the transmitting of the sensing report or portion thereof may include transmitting an indication of one or more elements from the sensing dataset.
  • FIG. 1 A is a system diagram illustrating an example communications system
  • FIG. IB is a system diagram illustrating an example wireless transmit/receive unit (WTRU) that may be used within the communications system illustrated in FIG. 1 A;
  • WTRU wireless transmit/receive unit
  • FIG. 1C is a system diagram illustrating an example radio access network (RAN) and an example core network (CN) that may be used within the communications system illustrated in FIG. 1A;
  • RAN radio access network
  • CN core network
  • FIG. ID is a system diagram illustrating a further example RAN and a further example CN that may be used within the communications system illustrated in FIG. 1 A;
  • FIG. 2A illustrates an example of downlink (DL) localization of a WTRU
  • FIG. 2B illustrates an example of monostatic sensing in which transmission and reception are collocated on the same devices
  • FIG. 2C illustrates an example of bistatic sensing in which transmission and reception are not collocated
  • FIG. 3 is an example flow diagram of a method, according to an embodiment.
  • FIG. 4 is an example diagram of a process, according to an embodiment. DETAILED DESCRIPTION
  • the methods, apparatuses and systems provided herein are well-suited for communications involving both wired and wireless networks.
  • An overview of various types of wireless devices and infrastructure is provided with respect to FIGs. 1A-1D, where various elements of the network may utilize, perform, be arranged in accordance with and/or be adapted and/or configured for the methods, apparatuses and systems provided herein.
  • FIG. 1A is a system diagram illustrating an example communications system 100 in which one or more disclosed embodiments may be implemented.
  • the communications system 100 may be a multiple access system that provides content, such as voice, data, video, messaging, broadcast, etc., to multiple wireless users.
  • the communications system 100 may enable multiple wireless users to access such content through the sharing of system resources, including wireless bandwidth.
  • the communications systems 100 may employ one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA), singlecarrier FDMA (SC-FDMA), zero-tail (ZT) unique-word (UW) discreet Fourier transform (DFT) spread OFDM (ZT UW DTS-s OFDM), unique word OFDM (UW-OFDM), resource block- filtered OFDM, filter bank multicarrier (FBMC), and the like.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA singlecarrier FDMA
  • ZT zero-tail
  • ZT UW unique-word
  • DFT discreet Fourier transform
  • OFDM ZT UW DTS-s OFDM
  • UW-OFDM unique word OFDM
  • FBMC filter bank multicarrier
  • the communications system 100 may include wireless transmit/receive units (WTRUs) 102a, 102b, 102c, 102d, a radio access network (RAN) 104/113, a core network (CN) 106/115, a public switched telephone network (PSTN) 108, the Internet 110, and other networks 112, though it will be appreciated that the disclosed embodiments contemplate any number of WTRUs, base stations, networks, and/or network elements.
  • Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in a wireless environment.
  • the WTRUs 102a, 102b, 102c, 102d may be configured to transmit and/or receive wireless signals and may include (or be) a user equipment (UE), a mobile station, a fixed or mobile subscriber unit, a subscription-based unit, a pager, a cellular telephone, a personal digital assistant (PDA), a smartphone, a laptop, a netbook, a personal computer, a wireless sensor, a hotspot or Mi- Fi device, an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD), a vehicle, a drone, a medical device and applications (e.g., remote surgery), an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts), a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and
  • UE user equipment
  • PDA personal digital assistant
  • HMD head-mounted display
  • the communications systems 100 may also include a base station 114a and/or a base station 114b.
  • Each of the base stations 114a, 114b may be any type of device configured to wirelessly interface with at least one of the WTRUs 102a, 102b, 102c, 102d, e.g., to facilitate access to one or more communication networks, such as the CN 106/115, the Internet 110, and/or the networks 112.
  • the base stations 114a, 114b may be any of a base transceiver station (BTS), a Node-B (NB), an eNode-B (eNB), a Home Node-B (HNB), a Home eNode-B (HeNB), a gNode-B (gNB), a NR Node-B (NR NB), a site controller, an access point (AP), a wireless router, and the like. While the base stations 114a, 114b are each depicted as a single element, it will be appreciated that the base stations 114a, 114b may include any number of interconnected base stations and/or network elements.
  • the communications system 100 may be a multiple access system and may employ one or more channel access schemes, such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like.
  • the base station 114a in the RAN 104/113 and the WTRUs 102a, 102b, 102c may implement a radio technology such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may establish the air interface 116 using wideband CDMA (WCDMA).
  • WCDMA may include communication protocols such as High-Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+).
  • HSPA may include High-Speed Downlink Packet Access (HSDPA) and/or High-Speed Uplink Packet Access (HSUPA).
  • the base station 114a and the WTRUs 102a, 102b, 102c may implement multiple radio access technologies.
  • the base station 114a and the WTRUs 102a, 102b, 102c may implement LTE radio access and NR radio access together, for instance using dual connectivity (DC) principles.
  • DC dual connectivity
  • the air interface utilized by WTRUs 102a, 102b, 102c may be characterized by multiple types of radio access technologies and/or transmissions sent to/from multiple types of base stations (e.g., an eNB and a gNB).
  • the base station 114a and the WTRUs 102a, 102b, 102c may implement radio technologies such as IEEE 802.11 (i.e., Wireless Fidelity (Wi-Fi), IEEE 802.16 (i.e., Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA2000 IX, CDMA2000 EV-DO, Interim Standard 2000 (IS-2000), Interim Standard 95 (IS-95), Interim Standard 856 (IS-856), Global System for Mobile communications (GSM), Enhanced Data rates for GSM Evolution (EDGE), GSM EDGE (GERAN), and the like.
  • IEEE 802.11 i.e., Wireless Fidelity (Wi-Fi)
  • IEEE 802.16 i.e., Worldwide Interoperability for Microwave Access (WiMAX)
  • CDMA2000, CDMA2000 IX, CDMA2000 EV-DO Code Division Multiple Access 2000
  • IS-2000 Interim Standard 95
  • IS-856 Interim Standard 856
  • GSM Global
  • the RAN 104/113 may be in communication with the CN 106/115, which may be any type of network configured to provide voice, data, applications, and/or voice over internet protocol (VoIP) services to one or more of the WTRUs 102a, 102b, 102c, 102d.
  • the data may have varying quality of service (QoS) requirements, such as differing throughput requirements, latency requirements, error tolerance requirements, reliability requirements, data throughput requirements, mobility requirements, and the like.
  • QoS quality of service
  • the CN 106/115 may provide call control, billing services, mobile location-based services, pre-paid calling, Internet connectivity, video distribution, etc., and/or perform high-level security functions, such as user authentication.
  • Some or all of the WTRUs 102a, 102b, 102c, 102d in the communications system 100 may include multi-mode capabilities (e.g., the WTRUs 102a, 102b, 102c, 102d may include multiple transceivers for communicating with different wireless networks over different wireless links).
  • the WTRU 102c shown in FIG. 1A may be configured to communicate with the base station 114a, which may employ a cellular-based radio technology, and with the base station 114b, which may employ an IEEE 802 radio technology.
  • FIG. IB is a system diagram illustrating an example WTRU 102.
  • the WTRU 102 may include a processor 118, a transceiver 120, a transmit/receive element 122, a speaker/microphone 124, a keypad 126, a display/touchpad 128, non-removable memory 130, removable memory 132, a power source 134, a global positioning system (GPS) chipset 136, and/or other elements/peripherals 138, among others.
  • GPS global positioning system
  • the WTRU 102 may include any number of transmit/receive elements 122.
  • the WTRU 102 may employ MIMO technology.
  • the WTRU 102 may include two or more transmit/receive elements 122 (e.g., multiple antennas) for transmitting and receiving wireless signals over the air interface 116.
  • the processor 118 of the WTRU 102 may be coupled to, and may receive user input data from, the speaker/microphone 124, the keypad 126, and/or the display/touchpad 128 (e.g., a liquid crystal display (LCD) display unit or organic light-emitting diode (OLED) display unit).
  • the processor 118 may also output user data to the speaker/microphone 124, the keypad 126, and/or the display/touchpad 128.
  • the processor 118 may access information from, and store data in, any type of suitable memory, such as the non-removable memory 130 and/or the removable memory 132.
  • the processor 118 may receive power from the power source 134, and may be configured to distribute and/or control the power to the other components in the WTRU 102.
  • the power source 134 may be any suitable device for powering the WTRU 102.
  • the power source 134 may include one or more dry cell batteries (e.g., nickel-cadmium (NiCd), nickel-zinc (NiZn), nickel metal hydride (NiMH), lithium-ion (Li-ion), etc.), solar cells, fuel cells, and the like.
  • the processor 118 may further be coupled to other elements/peripherals 138, which may include one or more software and/or hardware modules/units that provide additional features, functionality and/or wired or wireless connectivity.
  • the elements/peripherals 138 may include an accelerometer, an e-compass, a satellite transceiver, a digital camera (e.g., for photographs and/or video), a universal serial bus (USB) port, a vibration device, a television transceiver, a hands free headset, a Bluetooth® module, a frequency modulated (FM) radio unit, a digital music player, a media player, a video game player module, an Internet browser, a virtual reality and/or augmented reality (VR/AR) device, an activity tracker, and the like.
  • FM frequency modulated
  • the elements/peripherals 138 may include one or more sensors, the sensors may be one or more of a gyroscope, an accelerometer, a hall effect sensor, a magnetometer, an orientation sensor, a proximity sensor, a temperature sensor, a time sensor; a geolocation sensor; an altimeter, a light sensor, a touch sensor, a magnetometer, a barometer, a gesture sensor, a biometric sensor, and/or a humidity sensor.
  • a gyroscope an accelerometer, a hall effect sensor, a magnetometer, an orientation sensor, a proximity sensor, a temperature sensor, a time sensor; a geolocation sensor; an altimeter, a light sensor, a touch sensor, a magnetometer, a barometer, a gesture sensor, a biometric sensor, and/or a humidity sensor.
  • the WTRU 102 may include a full duplex radio for which transmission and reception of some or all of the signals (e.g., associated with particular subframes for both the uplink (e.g., for transmission) and downlink (e.g., for reception) may be concurrent and/or simultaneous.
  • the full duplex radio may include an interference management unit to reduce and or substantially eliminate self-interference via either hardware (e.g., a choke) or signal processing via a processor (e.g., a separate processor (not shown) or via processor 118).
  • the RAN 104 may include eNode-Bs 160a, 160b, 160c, though it will be appreciated that the RAN 104 may include any number of eNode-Bs while remaining consistent with an embodiment.
  • the eNode-Bs 160a, 160b, 160c may each include one or more transceivers for communicating with the WTRUs 102a, 102b, 102c over the air interface 116.
  • the eNode-Bs 160a, 160b, 160c may implement MIMO technology.
  • the eNode-B 160a for example, may use multiple antennas to transmit wireless signals to, and receive wireless signals from, the WTRU 102a.
  • Each of the eNode-Bs 160a, 160b, and 160c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, scheduling of users in the uplink (UL) and/or downlink (DL), and the like. As shown in FIG. 1C, the eNode-Bs 160a, 160b, 160c may communicate with one another over an X2 interface.
  • the CN 106 shown in FIG. 1C may include a mobility management entity (MME) 162, a serving gateway (SGW) 164, and a packet data network (PDN) gateway (PGW) 166. While each of the foregoing elements are depicted as part of the CN 106, it will be appreciated that any one of these elements may be owned and/or operated by an entity other than the CN operator.
  • MME mobility management entity
  • SGW serving gateway
  • PGW packet data network gateway
  • the MME 162 may be connected to each of the eNode-Bs 160a, 160b, and 160c in the RAN 104 via an SI interface and may serve as a control node.
  • the MME 162 may be responsible for authenticating users of the WTRUs 102a, 102b, 102c, bearer activation/deactivation, selecting a particular serving gateway during an initial attach of the WTRUs 102a, 102b, 102c, and the like.
  • the MME 162 may provide a control plane function for switching between the RAN 104 and other RANs (not shown) that employ other radio technologies, such as GSM and/or WCDMA.
  • the SGW 164 may be connected to each of the eNode-Bs 160a, 160b, 160c in the RAN 104 via the SI interface.
  • the SGW 164 may generally route and forward user data packets to/from the WTRUs 102a, 102b, 102c.
  • the SGW 164 may perform other functions, such as anchoring user planes during inter-eNode-B handovers, triggering paging when DL data is available for the WTRUs 102a, 102b, 102c, managing and storing contexts of the WTRUs 102a, 102b, 102c, and the like.
  • the SGW 164 may be connected to the PGW 166, which may provide the WTRUs 102a, 102b, 102c with access to packet-switched networks, such as the Internet 110, to facilitate communications between the WTRUs 102a, 102b, 102c and IP-enabled devices.
  • packet-switched networks such as the Internet 110
  • the CN 106 may facilitate communications with other networks.
  • the CN 106 may provide the WTRUs 102a, 102b, 102c with access to circuit-switched networks, such as the PSTN 108, to facilitate communications between the WTRUs 102a, 102b, 102c and traditional land-line communications devices.
  • the CN 106 may include, or may communicate with, an IP gateway (e.g., an IP multimedia subsystem (IMS) server) that serves as an interface between the CN 106 and the PSTN 108.
  • IMS IP multimedia subsystem
  • the CN 106 may provide the WTRUs 102a, 102b, 102c with access to the other networks 112, which may include other wired and/or wireless networks that are owned and/or operated by other service providers.
  • the WTRU is described in FIGs. 1A-1D as a wireless terminal, it is contemplated that in certain representative embodiments that such a terminal may use (e.g., temporarily or permanently) wired communication interfaces with the communication network.
  • the other network 112 may be a WLAN.
  • a WLAN in infrastructure basic service set (BSS) mode may have an access point (AP) for the BSS and one or more stations (STAs) associated with the AP.
  • the AP may have an access or an interface to a distribution system (DS) or another type of wired/wireless network that carries traffic into and/or out of the BSS.
  • Traffic to STAs that originates from outside the BSS may arrive through the AP and may be delivered to the STAs.
  • Traffic originating from STAs to destinations outside the BSS may be sent to the AP to be delivered to respective destinations.
  • Traffic between STAs within the BSS may be sent through the AP, for example, where the source STA may send traffic to the AP and the AP may deliver the traffic to the destination STA.
  • the traffic between STAs within a BSS may be considered and/or referred to as peer-to-peer traffic.
  • the peer-to-peer traffic may be sent between (e.g., directly between) the source and destination STAs with a direct link setup (DLS).
  • the DLS may use an 802. l ie DLS or an 802.1 Iz tunneled DLS (TDLS).
  • a WLAN using an Independent BSS (IBSS) mode may not have an AP, and the STAs (e.g., all of the STAs) within or using the IBSS may communicate directly with each other.
  • the IBSS mode of communication may sometimes be referred to herein as an "ad-hoc" mode of communication.
  • the AP may transmit a beacon on a fixed channel, such as a primary channel.
  • the primary channel may be a fixed width (e.g., 20 MHz wide bandwidth) or a dynamically set width via signaling.
  • the primary channel may be the operating channel of the BSS and may be used by the STAs to establish a connection with the AP.
  • Carrier sense multiple access with collision avoidance (CSMA/CA) may be implemented, for example in in 802.11 systems.
  • the STAs e.g., every STA, including the AP, may sense the primary channel. If the primary channel is sensed/detected and/or determined to be busy by a particular STA, the particular STA may back off.
  • One STA (e.g., only one station) may transmit at any given time in a given BSS.
  • High throughput (HT) STAs may use a 40 MHz wide channel for communication, for example, via a combination of the primary 20 MHz channel with an adjacent or nonadj acent 20 MHz channel to form a 40 MHz wide channel.
  • Very high throughput (VHT) STAs may support 20 MHz, 40 MHz, 80 MHz, and/or 160 MHz wide channels.
  • the 40 MHz, and/or 80 MHz, channels may be formed by combining contiguous 20 MHz channels.
  • a 160 MHz channel may be formed by combining 8 contiguous 20 MHz channels, or by combining two non-contiguous 80 MHz channels, which may be referred to as an 80+80 configuration.
  • the data may be passed through a segment parser that may divide the data into two streams. Inverse fast fourier transform (IFFT) processing, and time domain processing, may be done on each stream separately.
  • IFFT Inverse fast fourier transform
  • the streams may be mapped on to the two 80 MHz channels, and the data may be transmitted by a transmitting STA.
  • the above-described operation for the 80+80 configuration may be reversed, and the combined data may be sent to a medium access control (MAC) layer, entity, etc.
  • MAC medium access control
  • Sub 1 GHz modes of operation are supported by 802.1 laf and 802.11 ah.
  • the channel operating bandwidths, and carriers, are reduced in 802.1 laf and 802.1 lah relative to those used in
  • 802.1 laf supports 5 MHz, 10 MHz and 20 MHz bandwidths in the TV white space (TVWS) spectrum
  • 802.1 lah supports 1 MHz, 2 MHz, 4 MHz, 8 MHz, and 16 MHz bandwidths using non-TVWS spectrum. According to a representative embodiment,
  • MTC meter type control/machine-type communications
  • MTC devices may have certain capabilities, for example, limited capabilities including support for (e.g., only support for) certain and/or limited bandwidths.
  • the MTC devices may include a battery with a battery life above a threshold (e.g., to maintain a very long battery life).
  • WLAN systems which may support multiple channels, and channel bandwidths, such as
  • 802.1 In, 802.1 lac, 802.1 laf, and 802.1 lah include a channel which may be designated as the primary channel.
  • the primary channel may have a bandwidth equal to the largest common operating bandwidth supported by all STAs in the BSS.
  • the bandwidth of the primary channel may be set and/or limited by a STA, from among all STAs in operating in a BSS, which supports the smallest bandwidth operating mode.
  • the primary channel may be 1 MHz wide for STAs (e.g., MTC type devices) that support (e.g., only support) a 1 MHz mode, even if the AP, and other STAs in the BSS support 2 MHz, 4 MHz, 8 MHz, 16 MHz, and/or other channel bandwidth operating modes.
  • Carrier sensing and/or network allocation vector (NAV) settings may depend on the status of the primary channel. If the primary channel is busy, for example, due to a STA (which supports only a 1 MHz operating mode), transmitting to the AP, the entire available frequency bands may be considered busy even though a majority of the frequency bands remains idle and may be available.
  • the available frequency bands which may be used by 802.1 lah, are from 902 MHz to 928 MHz. In Korea, the available frequency bands are from 917.5 MHz to 923.5 MHz. In Japan, the available frequency bands are from 916.5 MHz to 927.5 MHz. The total bandwidth available for 802.1 lah is 6 MHz to 26 MHz depending on the country code.
  • FIG. ID is a system diagram illustrating the RAN 113 and the CN 115 according to an embodiment.
  • the RAN 113 may employ an NR radio technology to communicate with the WTRUs 102a, 102b, 102c over the air interface 116.
  • the RAN 113 may also be in communication with the CN 115.
  • the RAN 113 may include gNBs 180a, 180b, 180c, though it will be appreciated that the RAN 113 may include any number of gNBs while remaining consistent with an embodiment.
  • the gNBs 180a, 180b, 180c may each include one or more transceivers for communicating with the WTRUs 102a, 102b, 102c over the air interface 116.
  • the gNBs 180a, 180b, 180c may implement MIMO technology.
  • gNBs 180a, 180b may utilize beamforming to transmit signals to and/or receive signals from the WTRUs 102a, 102b, 102c.
  • the gNB 180a may use multiple antennas to transmit wireless signals to, and/or receive wireless signals from, the WTRU 102a.
  • the gNBs 180a, 180b, 180c may implement carrier aggregation technology.
  • the gNB 180a may transmit multiple component carriers to the WTRU 102a (not shown). A subset of these component carriers may be on unlicensed spectrum while the remaining component carriers may be on licensed spectrum.
  • the gNBs 180a, 180b, 180c may implement Coordinated Multi-Point (CoMP) technology.
  • WTRU 102a may receive coordinated transmissions from gNB 180a and gNB 180b (and/or gNB 180c).
  • CoMP Coordinated Multi-Point
  • the WTRUs 102a, 102b, 102c may communicate with gNBs 180a, 180b, 180c using transmissions associated with a scalable numerology. For example, OFDM symbol spacing and/or OFDM subcarrier spacing may vary for different transmissions, different cells, and/or different portions of the wireless transmission spectrum.
  • the WTRUs 102a, 102b, 102c may communicate with gNBs 180a, 180b, 180c using subframe or transmission time intervals (TTIs) of various or scalable lengths (e.g., including a varying number of OFDM symbols and/or lasting varying lengths of absolute time).
  • TTIs subframe or transmission time intervals
  • the gNBs 180a, 180b, 180c may be configured to communicate with the WTRUs 102a, 102b, 102c in a standalone configuration and/or a non- standalone configuration.
  • WTRUs 102a, 102b, 102c may communicate with gNBs 180a, 180b, 180c without also accessing other RANs (e.g., such as eNode-Bs 160a, 160b, 160c).
  • WTRUs 102a, 102b, 102c may utilize one or more of gNBs 180a, 180b, 180c as a mobility anchor point.
  • WTRUs 102a, 102b, 102c may communicate with gNBs 180a, 180b, 180c using signals in an unlicensed band.
  • WTRUs 102a, 102b, 102c may communicate with/connect to gNBs 180a, 180b, 180c while also communicating with/connecting to another RAN such as eNode-Bs 160a, 160b, 160c.
  • WTRUs 102a, 102b, 102c may implement DC principles to communicate with one or more gNBs 180a, 180b, 180c and one or more eNode-Bs 160a, 160b, 160c substantially simultaneously.
  • eNode-Bs 160a, 160b, 160c may serve as a mobility anchor for WTRUs 102a, 102b, 102c and gNBs 180a, 180b, 180c may provide additional coverage and/or throughput for servicing WTRUs 102a, 102b, 102c.
  • Each of the gNBs 180a, 180b, 180c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, scheduling of users in the UL and/or DL, support of network slicing, dual connectivity, interworking between NR and E-UTRA, routing of user plane data towards user plane functions (UPFs) 184a, 184b, routing of control plane information towards access and mobility management functions (AMFs) 182a, 182b, and the like. As shown in FIG. ID, the gNBs 180a, 180b, 180c may communicate with one another over an Xn interface.
  • UPFs user plane functions
  • AMFs access and mobility management functions
  • the CN 115 shown in FIG. ID may include at least one AMF 182a, 182b, at least one UPF 184a, 184b, at least one session management function (SMF) 183a, 183b, and at least one Data Network (DN) 185a, 185b. While each of the foregoing elements are depicted as part of the CN 115, it will be appreciated that any of these elements may be owned and/or operated by an entity other than the CN operator.
  • AMF session management function
  • the AMF 182a, 182b may be connected to one or more of the gNBs 180a, 180b, 180c in the RAN 113 via an N2 interface and may serve as a control node.
  • the AMF 182a, 182b may be responsible for authenticating users of the WTRUs 102a, 102b, 102c, support for network slicing (e.g., handling of different protocol data unit (PDU) sessions with different requirements), selecting a particular SMF 183a, 183b, management of the registration area, termination of NAS signaling, mobility management, and the like.
  • PDU protocol data unit
  • Network slicing may be used by the AMF 182a, 182b, e.g., to customize CN support for WTRUs 102a, 102b, 102c based on the types of services being utilized WTRUs 102a, 102b, 102c.
  • different network slices may be established for different use cases such as services relying on ultra-reliable low latency (URLLC) access, services relying on enhanced massive mobile broadband (eMBB) access, services for MTC access, and/or the like.
  • URLLC ultra-reliable low latency
  • eMBB enhanced massive mobile broadband
  • the AMF 162 may provide a control plane function for switching between the RAN 113 and other RANs (not shown) that employ other radio technologies, such as LTE, LTE-A, LTE-A Pro, and/or non-3GPP access technologies such as WiFi.
  • radio technologies such as LTE, LTE-A, LTE-A Pro, and/or non-3GPP access technologies such as WiFi.
  • the SMF 183a, 183b may be connected to an AMF 182a, 182b in the CN 115 via an N11 interface.
  • the SMF 183a, 183b may also be connected to a UPF 184a, 184b in the CN 115 via an N4 interface.
  • the SMF 183a, 183b may select and control the UPF 184a, 184b and configure the routing of traffic through the UPF 184a, 184b.
  • the SMF 183a, 183b may perform other functions, such as managing and allocating UE IP address, managing PDU sessions, controlling policy enforcement and QoS, providing downlink data notifications, and the like.
  • a PDU session type may be IP -based, non-IP based, Ethernet-based, and the like.
  • the UPF 184a, 184b may be connected to one or more of the gNBs 180a, 180b, 180c in the RAN 113 via an N3 interface, which may provide the WTRUs 102a, 102b, 102c with access to packet-switched networks, such as the Internet 110, e.g., to facilitate communications between the WTRUs 102a, 102b, 102c and IP-enabled devices.
  • the UPF 184, 184b may perform other functions, such as routing and forwarding packets, enforcing user plane policies, supporting multihomed PDU sessions, handling user plane QoS, buffering downlink packets, providing mobility anchoring, and the like.
  • the CN 115 may facilitate communications with other networks.
  • the CN 115 may include, or may communicate with, an IP gateway (e.g., an IP multimedia subsystem (IMS) server) that serves as an interface between the CN 115 and the PSTN 108.
  • IMS IP multimedia subsystem
  • the CN 115 may provide the WTRUs 102a, 102b, 102c with access to the other networks 112, which may include other wired and/or wireless networks that are owned and/or operated by other service providers.
  • the WTRUs 102a, 102b, 102c may be connected to a local Data Network (DN) 185a, 185b through the UPF 184a, 184b via the N3 interface to the UPF 184a, 184b and an N6 interface between the UPF 184a, 184b and the DN 185a, 185b.
  • DN local Data Network
  • one or more, or all, of the functions described herein with regard to any of: WTRUs 102a-d, base stations 114a- b, eNode-Bs 160a-c, MME 162, SGW 164, PGW 166, gNBs 180a-c, AMFs 182a-b, UPFs 184a- b, SMFs 183a-b, DNs 185a-b, and/or any other element(s)/device(s) described herein, may be performed by one or more emulation elements/devices (not shown).
  • the emulation devices may be one or more devices configured to emulate one or more, or all, of the functions described herein. For example, the emulation devices may be used to test other devices and/or to simulate network and/or WTRU functions.
  • the emulation devices may be designed to implement one or more tests of other devices in a lab environment and/or in an operator network environment.
  • the one or more emulation devices may perform the one or more, or all, functions while being fully or partially implemented and/or deployed as part of a wired and/or wireless communication network in order to test other devices within the communication network.
  • the one or more emulation devices may perform the one or more, or all, functions while being temporarily implemented/deployed as part of a wired and/or wireless communication network.
  • the emulation device may be directly coupled to another device for purposes of testing and/or may performing testing using over-the-air wireless communications.
  • the one or more emulation devices may perform the one or more, including all, functions while not being implemented/deployed as part of a wired and/or wireless communication network.
  • the emulation devices may be utilized in a testing scenario in a testing laboratory and/or a non-deployed (e.g., testing) wired and/or wireless communication network in order to implement testing of one or more components.
  • the one or more emulation devices may be test equipment. Direct RF coupling and/or wireless communications via RF circuitry (e.g., which may include one or more antennas) may be used by the emulation devices to transmit and/or receive data.
  • RF circuitry e.g., which may include one or more antennas
  • Embodiments disclosed herein are representative and do not limit the applicability of the apparatus, procedures, functions and/or methods to any particular wireless technology, any particular communication technology and/or other technologies.
  • the term network in this disclosure may generally refer to one or more base stations or gNBs or other network entity which in turn may be associated with one or more Transmission/Reception Points (TRPs), or to any other node in the radio access network.
  • TRPs Transmission/Reception Points
  • serving base station may be used interchangeably to designate any network element such as, e.g., a network element acting as a serving base station.
  • base station may be used interchangeably to designate any network element such as, e.g., a network element acting as a serving base station.
  • gNB network element acting as a serving base station.
  • Embodiments described herein are not limited to gNBs and are applicable to any other type of base stations.
  • the association in this case may be done across sub-datasets, and the results of this association may include the generation of the third sensing dataset (e.g., WTRU-sensing dataset).
  • Some embodiments may include representative procedure(s) for using different reporting methods to transmit sensing report(s) or associated sensing information to the NW.
  • the WTRU may transmit the sensing report or elements and/or entries from the sensing report using existing reporting procedures, for example, as additional information appended to the MAC CE for the BSR.
  • the WTRU may receive any one or more of the relevant configurations and/or models at 410, and the WTRU may associate 3GPP and non-3GPP sensing datasets into a unified WTRU-sensing dataset, e.g., based on a criterion at 418.
  • the WTRU may generate a sensing report based on the result of the filter and may transmit the sensing report, for example, based on a predefined trigger condition.
  • the sensing report may be generated towards the NW, and may contain information related to the perceptual information about the surrounding environment, as information generated by the WTRU, and not available at the NW.
  • the sensing information can allow design and optimization of multiple operational procedures at the NW, such as beamforming, scheduling, etc.
  • Any characteristic, variant or embodiment described for a method is compatible with an apparatus device comprising means for processing the disclosed method, such as with a device comprising a processor configured to process the disclosed method, a computer program product comprising program code instructions and a non-transitory computer-readable storage medium storing program instructions.
  • FIGs. 1 A-1D Details of an example WTRU, which may be representative of any WTRU recited herein, are provided herein with respect to FIGs. 1 A-1D.
  • various disclosed embodiments herein supra and infra are described as utilizing a head mounted display.
  • a device other than the head mounted display may be utilized and some or all of the disclosure and various disclosed embodiments can be modified accordingly without undue experimentation. Examples of such other device may include a drone or other device configured to stream information for providing the adapted reality experience.
  • the methods provided herein may be implemented in a computer program, software, or firmware incorporated in a computer-readable medium for execution by a computer or processor.
  • Examples of computer-readable media include electronic signals (transmitted over wired or wireless connections) and computer-readable storage media.
  • Examples of computer- readable storage media include, but are not limited to, a read only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs).
  • a processor in association with software may be used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, RNC, or any host computer.
  • processing platforms, computing systems, controllers, and other devices that include processors are noted. These devices may include at least one Central Processing Unit (“CPU”) and memory.
  • CPU Central Processing Unit
  • memory In accordance with the practices of persons skilled in the art of computer programming, reference to acts and symbolic representations of operations or instructions may be performed by the various CPUs and memories. Such acts and operations or instructions may be referred to as being “executed,” “computer executed” or “CPU executed.”
  • an electrical system represents data bits that can cause a resulting transformation or reduction of the electrical signals and the maintenance of data bits at memory locations in a memory system to thereby reconfigure or otherwise alter the CPU's operation, as well as other processing of signals.
  • the memory locations where data bits are maintained are physical locations that have particular electrical, magnetic, optical, or organic properties corresponding to or representative of the data bits. It should be understood that the embodiments are not limited to the above-mentioned platforms or CPUs and that other platforms and CPUs may support the provided methods.
  • the data bits may also be maintained on a computer readable medium including magnetic disks, optical disks, and any other volatile (e.g., Random Access Memory (RAM)) or non-volatile (e.g., Read-Only Memory (ROM)) mass storage system readable by the CPU.
  • the computer readable medium may include cooperating or interconnected computer readable medium, which exist exclusively on the processing system or are distributed among multiple interconnected processing systems that may be local or remote to the processing system. It should be understood that the embodiments are not limited to the above-mentioned memories and that other platforms and memories may support the provided methods.
  • any of the operations, processes, etc. described herein may be implemented as computer-readable instructions stored on a computer-readable medium.
  • the computer-readable instructions may be executed by a processor of a mobile unit, a network element, and/or any other computing device.
  • a signal bearing medium examples include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a CD, a DVD, a digital tape, a computer memory, etc., and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link, etc.).
  • a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a CD, a DVD, a digital tape, a computer memory, etc.
  • a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link, etc.).
  • a typical data processing system may generally include one or more of a system unit housing, a video display device, a memory such as volatile and non-volatile memory, processors such as microprocessors and digital signal processors, computational entities such as operating systems, drivers, graphical user interfaces, and applications programs, one or more interaction devices, such as a touch pad or screen, and/or control systems including feedback loops and control motors (e.g., feedback for sensing position and/or velocity, control motors for moving and/or adjusting components and/or quantities).
  • a typical data processing system may be implemented utilizing any suitable commercially available components, such as those typically found in data computing/communication and/or network computing/communication systems.
  • any two components so associated may also be viewed as being “operably connected”, or “operably coupled”, to each other to achieve the desired functionality, and any two components capable of being so associated may also be viewed as being “operably couplable” to each other to achieve the desired functionality.
  • operably couplable include but are not limited to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.
  • the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”
  • the terms “any of' followed by a listing of a plurality of items and/or a plurality of categories of items, as used herein, are intended to include “any of,” “any combination of,” “any multiple of,” and/or “any combination of multiples of the items and/or the categories of items, individually or in conjunction with other items and/or other categories of items.
  • the term “set” is intended to include any number of items, including zero.
  • the term “number” is intended to include any number, including zero.
  • the term “multiple”, as used herein, is intended to be synonymous with “a plurality”.
  • a range includes each individual member.
  • a group having 1-3 cells refers to groups having 1, 2, or 3 cells.
  • a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

L'invention concerne des procédures, des procédés, des architectures, des appareils, des systèmes, des dispositifs et des produits-programmes informatiques de détection d'informations à partir de sources 3GPP et/ou non 3GPP et de transmission d'un ou de plusieurs rapports d'état de détection. Un procédé peut consister à recevoir des informations de configuration qui indiquent des configurations de mesure 3GPP, des configurations de mesure de localisation et/ou des informations de mesure associées à la détection. Le procédé peut consister à déterminer, en fonction des informations de configuration reçues, des informations de détection 3GPP sur la base de sources 3GPP et des informations de détection non 3GPP sur la base de sources non 3GPP. Le procédé peut comprendre consister à recevoir au moins un filtre, à déterminer un ensemble de données de détection sur la base d'une association entre les informations de détection 3GPP et les informations de détection non 3GPP, ainsi qu'à transmettre un rapport de détection ou une partie du rapport de détection, qui indique des informations sur la base d'un résultat de traitement de l'ensemble de données de détection avec ledit au moins un filtre.
PCT/US2024/044612 2023-09-01 2024-08-30 Procédés, architectures, appareils et systèmes de détection d'informations à partir de sources 3gpp et/ou non-3 gpp et de transmission de rapport d'état de détection Pending WO2025049865A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202363536148P 2023-09-01 2023-09-01
US63/536,148 2023-09-01

Publications (1)

Publication Number Publication Date
WO2025049865A1 true WO2025049865A1 (fr) 2025-03-06

Family

ID=92800161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2024/044612 Pending WO2025049865A1 (fr) 2023-09-01 2024-08-30 Procédés, architectures, appareils et systèmes de détection d'informations à partir de sources 3gpp et/ou non-3 gpp et de transmission de rapport d'état de détection

Country Status (1)

Country Link
WO (1) WO2025049865A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220046385A1 (en) * 2020-08-04 2022-02-10 Qualcomm Incorporated Selective triggering of neural network functions for positioning measurement feature processing at a user equipment
WO2022155244A2 (fr) * 2021-01-12 2022-07-21 Idac Holdings, Inc. Procédés et appareil de positionnement basé sur l'apprentissage dans des systèmes de communication sans fil
WO2023014795A1 (fr) * 2021-08-03 2023-02-09 Interdigital Patent Holdings, Inc. Procédés et appareil pour la prise en charge d'un positionnement collaboratif

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220046385A1 (en) * 2020-08-04 2022-02-10 Qualcomm Incorporated Selective triggering of neural network functions for positioning measurement feature processing at a user equipment
WO2022155244A2 (fr) * 2021-01-12 2022-07-21 Idac Holdings, Inc. Procédés et appareil de positionnement basé sur l'apprentissage dans des systèmes de communication sans fil
WO2023014795A1 (fr) * 2021-08-03 2023-02-09 Interdigital Patent Holdings, Inc. Procédés et appareil pour la prise en charge d'un positionnement collaboratif

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ATLE MONRAD ET AL: "Update of use case on sensing in smart cities", vol. SA WG1, no. Athens, GR; 20230220 - 20230224, 10 February 2023 (2023-02-10), XP052236782, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/tsg_sa/WG1_Serv/TSGS1_101_Athens/Docs/S1-230060.zip S1-230060_Sensing_UC_on_smart-cities_v2.docx> [retrieved on 20230210] *
TS 37.355 V17.5.0, June 2023 (2023-06-01)
TS 38.331 V17.5.0, June 2023 (2023-06-01)

Similar Documents

Publication Publication Date Title
US20240188153A1 (en) Nr positioning - methods for resource provision in sidelink positioning
EP4075871B1 (fr) Relocalisation de plan d&#39;utilisateur
WO2022212126A1 (fr) Procédé et unité wtru permettant un positionnement avec une latence réduite dans des systèmes de communication sans fil
WO2024030411A1 (fr) Procédés, architectures, appareils, et systèmes pour une création de rapport de mesurage et un transfert conditionnel
EP4470178A1 (fr) Procédé et appareil de surveillance et de prédiction de qualité de service en temps réel
EP4476988A1 (fr) Procédés et appareil de positionnement basé sur un groupe d&#39;unités d&#39;émission/réception sans fil dans un réseau de communication sans fil
US12445391B2 (en) Methods, apparatuses and systems directed to wireless transmit/receive unit based joint selection and configuration of multi-access edge computing host and reliable and available wireless network
WO2022216549A1 (fr) Procédés, appareil et systèmes pour des services d&#39;exposition de commande d&#39;événement/exception de système volant sans équipage/sans pilote embarqué (uas) et de politique
WO2025096568A1 (fr) Procédés, appareils et systèmes de surveillance et de prévention de performance anormale de réseau par collecte de données améliorée pour une fonction d&#39;analyse de données de réseau
WO2024097292A1 (fr) Procédé et appareil de coexistence de mobilité déclenchée par couche 1/couche 2 et déclenchée par couche 3
WO2025049865A1 (fr) Procédés, architectures, appareils et systèmes de détection d&#39;informations à partir de sources 3gpp et/ou non-3 gpp et de transmission de rapport d&#39;état de détection
WO2025029919A1 (fr) Améliorations de système 5gs sensibles à la latence de bout en bout pour xrm
WO2024173545A1 (fr) Procédés, architectures, appareils et systèmes de sélection de ressources de liaison latérale sur la base d&#39;un ou plusieurs rapports de paire de faisceaux à partir d&#39;une autre unité d&#39;émission/réception sans fil
WO2025208007A1 (fr) Procédés, architectures, appareils et systèmes de gestion de défaillance pour mobilité de couche 2 conditionnelle
WO2025212620A1 (fr) Procédés, architectures, appareils et systèmes pour mobilité de couche 2
WO2024233904A1 (fr) Procédés, architectures, appareils et systèmes de gestion de conflits de ressources
WO2024233897A1 (fr) Procédés, architectures, appareils et systèmes pour établir des règles de facturation et de contrôle de politique
WO2025144879A1 (fr) Procédés, architectures, appareils et systèmes de découverte et de sélection de relais wtru à réseau dans connexion à sauts multiples
WO2025151592A1 (fr) Procédés, architectures, appareils et systèmes de détection intégrée initiée par mobile
WO2024233272A1 (fr) Procédés, architectures, appareils et systèmes pour déterminer une configuration de gestion de liaison radio sur la base d&#39;un profil de qos reçu d&#39;une wtru source
KR20250172596A (ko) 네트워크 슬라이스 가용성 분석을 사용한 wtru 멤버 선택 방법 및 장치
WO2024233264A1 (fr) Procédés, architectures, appareils et systèmes permettant de déterminer des première et seconde configurations sur la base d&#39;un profil de qos
WO2025240695A1 (fr) Changement de périodicité de trafic dynamique et configuration de surveillance de paramètres n6
WO2024145327A1 (fr) Détection intégrée périodique avec support de mobilité
WO2025049534A1 (fr) Sélection de csi-rs déclenchée par réseau

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24772533

Country of ref document: EP

Kind code of ref document: A1