WO2025041308A1 - Wireless communication system - Google Patents
Wireless communication system Download PDFInfo
- Publication number
- WO2025041308A1 WO2025041308A1 PCT/JP2023/030342 JP2023030342W WO2025041308A1 WO 2025041308 A1 WO2025041308 A1 WO 2025041308A1 JP 2023030342 W JP2023030342 W JP 2023030342W WO 2025041308 A1 WO2025041308 A1 WO 2025041308A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- circuit
- learning model
- receiving station
- communication system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/005—Control of transmission; Equalising
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
Definitions
- This disclosure relates to wireless communication systems.
- Radio stations that transmit and receive radio signals
- device failures such as IQ imbalance, carrier frequency offset, phase noise, and nonlinear distortion of amplifiers occur, which are known to degrade the quality of wireless communications.
- radio signals can experience failures such as channel fading during propagation, which further degrades the quality of communications.
- Non-Patent Document 1 discloses an estimation and compensation technique for IQ imbalance.
- the type of interference contained in the wireless signal was estimated separately and compensation was then performed. In some cases, compensation was performed using a separate compensation circuit for each type of interference.
- the present disclosure aims to provide a wireless communication system that can compensate for wireless signals without separating the types of impairments contained in the wireless signals.
- An aspect of the present disclosure is A transmitting station for transmitting a radio signal; a receiving station for receiving the radio signal; Equipped with The receiving station, A compensation circuit including a learning model is provided. a process of processing an input signal including a received signal at the receiving station caused by a known bit sequence transmitted from the transmitting station using the learning model to generate an output signal; A process of training the learning model so that the output signal approaches training data consisting of the known bit string; A process of processing a newly input signal based on the learned learning model and outputting an improved output signal;
- the wireless communication system is configured to:
- FIG. 1 is a diagram illustrating a failure that occurs in wireless communication.
- FIG. 1 is a diagram illustrating a method for estimating and compensating for a fault according to the prior art of the present disclosure.
- 1 is a configuration example of a wireless communication system according to a first embodiment of the present disclosure.
- 4 illustrates an example of the configuration of an input signal according to the first embodiment of the present disclosure.
- 4 is a diagram illustrating a data size of an input signal according to the first embodiment of the present disclosure.
- FIG. FIG. 10 is a diagram illustrating the data size of an output signal in TD and FD according to the first embodiment of the present disclosure.
- 13 is a configuration example of a receiving digital circuit according to a second embodiment of the present disclosure.
- 13 illustrates an example of the configuration of an input signal according to a second embodiment of the present disclosure.
- 13 is a configuration example of a receiving digital circuit according to a third embodiment of the present disclosure.
- 13 illustrates an example of the configuration of an input signal according to a third embodiment of the present disclosure.
- 13 illustrates a configuration example of a receiving digital circuit in a case where a compensation circuit receives LLR data according to a first modified example of the present disclosure.
- 13 illustrates a configuration example of a receiving digital circuit in a case where a compensation circuit receives bit string data according to a second modified example of the present disclosure.
- FIG. 1 is a diagram for explaining a failure that occurs in wireless communication.
- a conventional wireless communication system 200 includes a transmitting station 210 and a receiving station 220.
- the transmitting station 210 includes a transmitting digital circuit 211 and a transmitting analog circuit 212.
- the transmitting digital circuit 211 is a part that performs digital signal processing such as modulation and error correction coding on the data signal to be transmitted.
- the transmitting analog circuit 212 includes a quadrature modulation circuit 214, a frequency conversion circuit 215, and a power amplification circuit 216.
- the quadrature modulation circuit 214 is a part that performs quadrature modulation on the analog signal.
- the frequency conversion circuit 215 is a part that converts the intermediate frequency band signal into a high-frequency radio signal 10.
- the power amplification circuit 216 is a part that amplifies the high-frequency radio signal 10.
- the antenna 217 is a part that transmits the amplified radio signal 10 to the receiving station 220.
- the receiving station 220 like the transmitting station 210, includes a receiving digital circuit 221 and a receiving analog circuit 222.
- the frequency conversion circuit 225 of the receiving analog circuit 222 converts the high-frequency radio signal 10 received by the antenna 226 into an intermediate frequency band.
- the orthogonal demodulation circuit 224 is a part that performs analog orthogonal demodulation on the intermediate frequency band signal.
- the receiving digital circuit 221 performs demodulation, error correction decoding, etc. on the digitized signal.
- an IQ imbalance occurs in which the phase difference between the I component and the Q component is no longer 90 degrees.
- phase noise occurs due to phase fluctuation, and a frequency offset occurs due to a frequency shift between the transmitting station 210 and the receiving station 220.
- the wireless signal 10 transmitted and received between the transmitting station 210 and the receiving station 220 is subject to interference such as channel fading, which deteriorates the communication quality.
- FIG. 2 is a diagram illustrating a method for estimating and compensating for impairments according to the prior art of the present disclosure.
- the transmitting analog circuit 212 of the transmitting station 210 two types of impairments occur during signal processing of the wireless signal 10. These two types of impairments are later modeled as functions G TX,1 and G TX,2, respectively, in the receiving station 220.
- the radio signal 10 transmitted from the transmitting station 210 is subject to impairments due to channel fading. These impairments are later modeled as a function H in the receiving station 220.
- the receiving digital circuit 221 of the receiving station 220 includes an estimation circuit 21 and a compensation circuit 22.
- the estimation circuit 21 estimates the impairments included in the input wireless signal 10 for each type of impairment based on a pilot signal having a predetermined pattern between the transmitting station 210 and the receiving station 220. That is, the estimation circuit 21 calculates functions G TX,1 , G TX,2 , H, G RX,1 and G RX,2 to estimate the impairments. Furthermore, the estimation circuit 21 calculates compensation weights based on the calculated functions.
- the compensation circuit 22 compensates for the disturbance that occurs based on the compensation weight calculated by the estimation circuit 21.
- the compensation here also includes equalizing the disturbance that occurs in the wireless signal 10 due to channel fading.
- the compensation circuit 22 then transmits the compensated digital signal to the downstream circuit 23, which includes a demodulation circuit, a bit detection circuit, etc.
- the type of impairment contained in the wireless signal 10 was estimated individually and then compensation was performed.
- First embodiment 3 shows a configuration example of a wireless communication system 100 according to the first embodiment of the present disclosure.
- the wireless communication system 100 includes a transmitting station 110 and a receiving station 120.
- the transmitting station 110 is similar to the transmitting station 210 of the related art described in FIG. 2, and therefore a description thereof will be omitted.
- the receiving station 120 receives the radio signal 10 from the transmitting station 110.
- the receiving analog circuit 232 performs analog signal processing on the radio signal 10 and transmits it to the receiving digital circuit 231.
- the time domain (TD) signal received by the receiving digital circuit 231 is branched into two. One of the branches is input directly to the compensation circuit 30. The other is FFT (Fast Fourier Transform) converted by the FFT circuit 20 into a frequency domain (FD) signal, and then input to the compensation circuit 30.
- FFT Fast Fourier Transform
- FD frequency domain
- the signal input to the compensation circuit 30 is referred to as the input signal 50.
- the machine learning circuit 31 of the compensation circuit 30 performs machine learning using a learning model on the input signal 50.
- the machine learning circuit 31 executes processing of the input signal 50, which includes a received signal caused by a known bit sequence transmitted from the transmitting station 110, using the learning model to generate an output signal 60. Furthermore, it executes a learning process to learn the learning model so that the output signal 60 approaches teacher data consisting of a known bit sequence.
- RMSE Root Mean Squared Error
- the teacher data consisting of a known bit sequence is the input signal 50 in TD and FD that is generated from a known bit sequence in the transmitting station 110 and can be considered to have been unaffected by a disturbance that requires compensation until it reaches the compensation circuit 30 in the receiving station 120. However, if it is equivalent to this, the teacher data does not have to be generated from the wireless signal 10 actually transmitted from the transmitting station 110 to the receiving station 120.
- the input signal 50 can be generated by arithmetic processing from a known bit sequence and used as the teacher data.
- a received signal resulting from a known bit sequence is a received signal that is generated from a known bit sequence in the transmitting station 110 and can be considered to have been affected by a fault that requires compensation before it reaches the compensation circuit 30 of the receiving station 120.
- the received signal does not have to be a signal that the receiving station 120 actually received from the transmitting station 110.
- it may be a signal that is generated by calculation from a known bit sequence based on a model of distortion of the received signal due to a fault that requires compensation.
- Learning methods include well-known methods such as random forest, SVM (Support Vector Machine), K-nearest neighbor method, and neural network.
- the compensation circuit 30 executes a compensation process that processes the newly input signal 50 based on the learning model obtained by the learning process and outputs an improved output signal 61.
- the input signal 50 here is the input signal 50 that is generated from an arbitrary bit string in the transmitting station 110 and reaches the compensation circuit 30 of the receiving station 120.
- FIG. 4 shows an example of the configuration of an input signal 50 according to the first embodiment of the present disclosure.
- FIG. 5 is a diagram illustrating the data size of the input signal 50 according to the first embodiment of the present disclosure.
- the input signal 50 is symbol point data 51 on the IQ coordinate plane of the wireless signal 10.
- the input signal 50 has a multi-dimensional array format as shown in Fig. 4.
- the dimensions here are a first dimension having N F elements and representing the number of subcarriers, a second dimension having N S elements and representing the number of OFDM symbols, and a third dimension having x elements and representing the coordinates of the symbol point.
- the symbol points are expressed as real numbers, and the number of elements required for this is 2, but since symbol points exist in both TD and FD, x is 4.
- FIG. 4 shows the input signal 50 when x is 4.
- the value of x is only an example and is not limited to this.
- the compensation circuit 30 is capable of accepting input in the form of complex numbers, x is not limited to this.
- the first dimension may be the symbol block size instead of the number of subcarriers.
- the second dimension may be the number of symbol blocks.
- the data size of the input signal 50 is expressed as follows: Note that as the superscript indicates, the data size depends on the total number of elements in the multi-dimensional array of the input signal 50 (N F ⁇ N S ⁇ x).
- FIG. 6 is a diagram illustrating the data size of the output signal 60 in TD and FD according to the first embodiment of the present disclosure.
- the output signal 60 may be in the form of a symbol point on the I-Q coordinate plane, like the input signal 50. Furthermore, it may be in the form of a bit log-likelihood ratio (hereinafter referred to as LLR) that indicates the reliability of the transmitted bit, or in the form of a bit string.
- LLR bit log-likelihood ratio
- the data size of the output signal 60 in TD is expressed as follows: As in the case of the input signal 50, the data size depends on the total number of elements in the multi-dimensional array (N F ⁇ N S ⁇ 2).
- the data size of the output signal 60 in the FD domain is expressed as follows:
- the data size depends on the total number of elements of the multidimensional array (N F ⁇ N S ⁇ 2).
- the data size is expressed as follows: where B is the number of bits per symbol.
- the data size is expressed as follows:
- the present disclosure can provide a wireless communication system that can compensate for wireless signals without separating the types of impairments contained in the wireless signals.
- the processing performed by the receiving station 120 may be executed by a program using a computer equipped with a CPU and memory and storing a program in the memory.
- the processing may be executed by a program using an integrated circuit such as an FPGA (Field Programmable Gate Array).
- the program may be provided by recording it on a storage medium, or may be provided via a network. This point is common to all of the following embodiments.
- the input signal 50 does not necessarily have to be in the form of a multidimensional array as long as it contains the above-mentioned information on the number of subcarriers, the number of OFDM symbols, and the coordinates of the symbol points. Furthermore, the input signal 50 may be processed on a frame-by-frame basis or on a symbol-by-symbol basis.
- Embodiment 2 the compensation circuit 30 receives a pilot signal 52 having a predetermined pattern between the transmitting station 110 and the receiving station 120.
- a pilot signal 52 having a predetermined pattern between the transmitting station 110 and the receiving station 120.
- FIG. 7 shows an example configuration of a receiving digital circuit 231 according to a second embodiment of the present disclosure.
- the receiving digital circuit 231 further includes a signal creation circuit 40.
- the signal creation circuit 40 creates a pilot signal 52 on the IQ coordinate plane. Furthermore, the signal creation circuit 40 adds the pilot signal 52 to the receiving signal derived from the wireless signal 10 input to the compensation circuit 30.
- FIG. 8 shows an example of the configuration of an input signal 50 according to the second embodiment of the present disclosure.
- a pilot signal 52 corresponding to a symbol point is added to a received signal represented as symbol point data 51 on an I-Q coordinate plane. Therefore, the number of elements x in the third dimension representing the coordinates of the symbol point is 6.
- the pilot signal 52 is generated so as to correspond to the modulation multi-level number of the wireless signal 10.
- the number of elements in the first dimension representing the number of subcarriers matches the number of elements in the second dimension representing the number of symbols included in the subcarriers.
- the pilot signal 52 is subjected to processing such as zero padding.
- the received signal includes a pilot data signal generated in the transmitting station 110.
- the pilot data signal generated in the transmitting station 110 is affected by interference before it reaches the compensation circuit 30 in the receiving station 120.
- Embodiment 3 the compensation circuit 30 receives quality data 53 of the wireless signal 10.
- the compensation circuit 30 receives quality data 53 of the wireless signal 10.
- FIG. 9 shows an example configuration of a receiving digital circuit 231 according to the third embodiment of the present disclosure.
- the receiving digital circuit 231 further includes a quality estimation circuit 70.
- the quality estimation circuit 70 estimates the quality of the received signal derived from the wireless signal 10.
- the quality is, for example, a channel estimation value.
- the quality estimation circuit 70 adds quality data 53 to the received signal derived from the wireless signal 10 that is input to the compensation circuit 30. Note that, as in the second embodiment, the quality data 53 is also generated so as to correspond to the modulation multi-level number of the wireless signal 10.
- FIG. 10 shows an example of the configuration of an input signal 50 according to the third embodiment of the present disclosure.
- a received signal is represented as symbol point data 51 on an IQ coordinate plane, and quality data 53 corresponding to the symbol point is added to the received signal.
- the compensation circuit 30 can grasp the characteristics of the fault based on the quality. This allows the machine learning circuit 31 to further advance the learning of the learning model, resulting in improved learning accuracy. By improving the accuracy of the learning model, the quality of the improved output signal 61 output by the compensation process can also be improved.
- the present disclosure is not limited to the above-described embodiments, and various modifications can be made in the implementation stage without departing from the gist of the disclosure. Furthermore, the embodiments may be implemented in appropriate combination, in which case the combined effects can be obtained.
- the compensation circuit 30 may be configured to accept all of the symbol point data 51, the pilot signal 52, and the quality data 53.
- the received signal included in the input signal 50 is the symbol point data 51 on the IQ coordinate plane.
- the format of the received signal does not have to be the symbol point data 51 format.
- the received signal may be LLR data 54.
- FIG. 11 shows a configuration example of the receiving digital circuit 231 according to the first modified example of the present disclosure, in which the compensation circuit 30 receives LLR data 54.
- the receiving digital circuit 231 here further includes an LLR calculation circuit 80 in addition to the configuration example in the first embodiment.
- the LLR calculation circuit 80 receives symbol point data 51 on the IQ coordinate plane. Furthermore, the LLR calculation circuit 80 calculates a bit log-likelihood ratio (hereinafter referred to as LLR) representing the reliability of the transmitted bit from the symbol point. Furthermore, the LLR calculation circuit 80 inputs the calculation result to the FFT transformation circuit 20 and the compensation circuit 30 as LLR data 54.
- LLR bit log-likelihood ratio
- the FFT conversion circuit 20 accepts the LLR data 54 in TD, converts it to FD, and transmits it to the compensation circuit 30.
- FIG. 12 shows a configuration example of the receiving digital circuit 231 according to the second modified example of the present disclosure, in which the compensation circuit 30 accepts bit string data 55.
- the receiving digital circuit 231 here further includes an error correction decoding circuit 90 in addition to the configuration example in the first modified example.
- the error correction decoding circuit 90 performs error correction decoding on the LLR calculated by the LLR calculation circuit 80, and calculates a bit string. Furthermore, the error correction decoding circuit 90 inputs the calculation result as bit string data 55 to the FFT transformation circuit 20 and the compensation circuit 30.
- the FFT conversion circuit 20 accepts the bit string data 55 in TD, converts it to FD, and transmits it to the compensation circuit 30.
- Modifications 1 and 2 make it possible to convert the format of the input signal 50 in advance so that it matches the format of the output signal 60. This eliminates the need to convert the format of the output signal 60 in the compensation circuit 30, making it possible to simplify the configuration of the compensation circuit 30.
- the embodiment has been described here in combination with the first embodiment, it may also be combined with other embodiments, in which case the effects of the combination can be obtained.
- ⁇ Modification 3> In addition, in cases where the learning accuracy of the machine learning circuit 31 is sufficient with only the input signal 50 in TD, the input signal 50 in FD is not necessary, and the FFT conversion circuit 20 is not necessarily required. This makes it possible to reduce the data size of the input signal 50, and to reduce the burden associated with the learning process and compensation process.
- radio signal 10 radio signal, 20 FFT conversion circuit, 21 estimation circuit, 22 compensation circuit, 23 subsequent circuit, 30 compensation circuit, 31 machine learning circuit, 40 signal creation circuit, 50 input signal, 51 symbol point data, 52 pilot signal, 53 quality data, 54 LLR data, 55 bit string data, 60 output signal, 61 improved output signal, 70 quality estimation circuit, 80 LLR calculation circuit, 90 error correction decoding circuit, 100 radio communication system, 110 transmitting station, 120 receiving station, 200 wireless communication system, 210 transmitting station, 211 transmitting digital circuit, 212 transmitting analog circuit, 214 quadrature modulation circuit, 215 frequency conversion circuit, 216 power amplifier circuit, 217 antenna, 220 receiving station, 221 receiving digital circuit, 222 receiving analog circuit, 224 quadrature demodulation circuit, 225 frequency conversion circuit, 226 antenna, 231 receiving digital circuit, 232 receiving analog circuit
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
本開示は、無線通信システムに関する。 This disclosure relates to wireless communication systems.
無線信号の送受信を行う無線局においては、IQインバランス、キャリア周波数オフセット、位相雑音、増幅器の非線形歪みなどのデバイス障害が発生し、無線通信の品質が劣化することが知られる。また、伝搬中の無線信号には、チャネルフェージングなどの障害が発生し、さらなる通信品質劣化の要因となる。 In radio stations that transmit and receive radio signals, device failures such as IQ imbalance, carrier frequency offset, phase noise, and nonlinear distortion of amplifiers occur, which are known to degrade the quality of wireless communications. In addition, radio signals can experience failures such as channel fading during propagation, which further degrades the quality of communications.
このような障害を推定し補償する技術が提案されている。例えば、非特許文献1には、IQインバランスに対する推定と補償技術が開示されている。
Technologies have been proposed to estimate and compensate for such impairments. For example, Non-Patent
しかしながら、従来の方法では、無線信号に含まれる障害を種類ごとに個別に推定したうえで、補償を行っていた。場合によっては補償についても、障害の種類ごとに個別の補償回路により行っていた。 However, in conventional methods, the type of interference contained in the wireless signal was estimated separately and compensation was then performed. In some cases, compensation was performed using a separate compensation circuit for each type of interference.
本開示は上述の課題を解決するため、無線信号に含まれる障害を種類ごとに分けることなく、当該無線信号に対する補償を実施できる無線通信システムを提供することを目的とする。 In order to solve the above-mentioned problems, the present disclosure aims to provide a wireless communication system that can compensate for wireless signals without separating the types of impairments contained in the wireless signals.
本開示の態様は、
無線信号を送信する送信局と、
前記無線信号を受信する受信局と、
を備え、
前記受信局は、
学習モデルを含む補償回路を有し、
前記送信局から送信された既知のビット列に起因する前記受信局の受信信号を含む入力信号を前記学習モデルにより処理して出力信号を生成する処理と、
前記出力信号が前記既知のビット列からなる教師データに近づくように前記学習モデルに学習させる処理と、
学習させた学習モデルに基づき、新たに入力される入力信号に対して処理を施して改善出力信号を出力する処理と、
を実行するように構成される、無線通信システムであることが好ましい。
An aspect of the present disclosure is
A transmitting station for transmitting a radio signal;
a receiving station for receiving the radio signal;
Equipped with
The receiving station,
A compensation circuit including a learning model is provided.
a process of processing an input signal including a received signal at the receiving station caused by a known bit sequence transmitted from the transmitting station using the learning model to generate an output signal;
A process of training the learning model so that the output signal approaches training data consisting of the known bit string;
A process of processing a newly input signal based on the learned learning model and outputting an improved output signal;
Preferably, the wireless communication system is configured to:
本開示の態様によれば、無線信号に含まれる障害を種類ごとに分けることなく、当該無線信号に対する補償を実施できる無線通信システムを提供できる。 According to an aspect of the present disclosure, it is possible to provide a wireless communication system that can compensate for a wireless signal without separating the types of impairments contained in the wireless signal.
〈比較例〉
ここでは比較例として従来技術について説明する。図1は無線通信において発生する障害について説明する図である。従来の無線通信システム200は送信局210と受信局220を備える。
Comparative Example
Here, a conventional technique will be described as a comparative example. Fig. 1 is a diagram for explaining a failure that occurs in wireless communication. A conventional
送信局210は、送信デジタル回路211と送信アナログ回路212を備える。送信デジタル回路211は、送信予定のデータ信号に対して変調、誤り訂正符号化などのデジタル信号処理を行う部分である。
The transmitting
送信アナログ回路212は、直交変調回路214、周波数変換回路215、電力増幅回路216を備える。直交変調回路214はアナログ化された信号に対して、直交変調を行う部分である。周波数変換回路215は、中間周波数帯の信号を高周波の無線信号10に変換する部分である。電力増幅回路216は、高周波の無線信号10を増幅する部分である。アンテナ217は、増幅された無線信号10を受信局220に送信する部分である。
The transmitting
受信局220は、送信局210と同様に、受信デジタル回路221と受信アナログ回路222を備える。受信アナログ回路222の周波数変換回路225は、アンテナ226が受信した高周波の無線信号10を中間周波数帯に変換する。直交復調回路224は、中間周波数帯の信号に対してアナログの直交復調を行う部分である。
The
受信デジタル回路221はデジタル化された信号に対して復調と誤り訂正復号化などを行う。
The receiving
送信局210と受信局220が備える上記の信号処理回路においては、装置の不完全性による障害が発生し、結果として通信品質が劣化することが知られる。
It is known that in the signal processing circuits provided in the transmitting
例えば、直交変調回路214および直交復調回路224においては、I成分とQ成分の位相差が90度ではなくなるIQインバランスが発生する。また、周波数変換回路215、および周波数変換回路225においては、位相揺らぎによる位相雑音、および送信局210と受信局220間の周波数ずれによる周波数オフセットが発生する。
For example, in the
また、送信局210と受信局220において送受信される無線信号10には、チャネルフェージングなどの障害が発生し、通信品質が劣化することが知られる。
It is also known that the
図2は本開示の従来技術に係る、障害の推定方法と補償方法を説明する図である。送信局210の送信アナログ回路212では、無線信号10に対する信号処理時に、2種類の障害が発生する。これら2種類の障害は、後に受信局220において関数GTX、1およびGTX、2としてそれぞれモデル化されるものである。
2 is a diagram illustrating a method for estimating and compensating for impairments according to the prior art of the present disclosure. In the transmitting
さらに、送信局210から送信された無線信号10には、チェネルフェージング由来の障害が発生する。この障害は、後に受信局220において関数Hとしてモデル化されるものである。
Furthermore, the
さらに、受信局220の受信アナログ回路222では、受信した無線信号10に対する信号処理時に、2種類の障害が発生する。これら2種類の障害は、後に関数GRX、1およびGRX、2としてそれぞれモデル化されるものである。
Furthermore, in the receiving
受信局220の受信デジタル回路221は、推定回路21と補償回路22を備える。
The receiving
推定回路21は送信局210と受信局220間であらかじめ定められたパターンを有するパイロット信号を基に、入力された無線信号10に含まれる障害を、障害の種類ごとに推定する。すなわち推定回路21は関数GTX、1、GTX、2、H、GRX、1およびGRX、2をそれぞれ算出し、障害を推定する。さらに、推定回路21は算出されたそれぞれの関数に基づき補償ウェイトを算出する。
The
補償回路22は、推定回路21が算出した補償ウェイトに基づき発生した障害を補償する。なお、ここでの補償はチャネルフェージングによって無線信号10に生じた障害を等化することも含む。さらに補償回路22は、補償を施したデジタル信号を復調、ビット検出回路等の後段回路23に伝送する。
The
このように従来技術では、無線信号10に含まれる障害を種類ごとに個別に推定したうえで、補償を行っていた。
In this way, in conventional technology, the type of impairment contained in the
以降では本開示の実施の形態について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。 The following describes embodiments of the present disclosure with reference to the drawings. The same or corresponding components are given the same reference numerals, and repeated descriptions may be omitted.
実施の形態1
図3は本開示の実施の形態1に係る、無線通信システム100の構成例である。無線通信システム100は送信局110と受信局120を備える。なお、送信局110については図2で説明した従来技術の送信局210と同様であるので説明は省略する。
First embodiment
3 shows a configuration example of a
受信局120は送信局110から無線信号10を受け付ける。受信アナログ回路232は無線信号10にアナログの信号処理を施したうえで受信デジタル回路231に送信する。
The receiving
受信デジタル回路231が受け付ける、時間領域(Time Domain、TD)の信号は2つに分岐される。分岐の片方は補償回路30に直接入力される。もう片方は、FFT変換回路20により周波数領域(Frequency Domain、FD)の信号にFFT(Fast Fourier Transform)変換されたうえで補償回路30に入力される。以降では、補償回路30に入力される信号を入力信号50と称する。
The time domain (TD) signal received by the receiving
補償回路30の機械学習回路31は、入力信号50に対して学習モデルを用いた機械学習を行う。機械学習回路31は、送信局110から送信された既知のビット列に起因する受信信号を含む入力信号50を学習モデルにより処理して出力信号60を生成する処理を実行する。さらに、出力信号60が既知のビット列からなる教師データに近づくように該学習モデルを学習する学習処理を実行する。
The
学習処理においては、RMSE(Root Mean Squared Error)値等に基づき、出力信号60が教師データに近づくように学習がなされる。そこでは、受信信号に含まれる個々の障害について、種類ごとに推定する必要は無い。すなわち、従来技術のように、関数GTX、1およびGTX、2等として表される障害の種類を個別に把握する必要が無い。なお、学習処理における基準はRMSEに限らずともよく、出力信号60と教師データとの差分を示す指標であればよい。例えばニューラルネットワークの損失関数として通常使用されるMSE(Mean Squared Error)、交差エントロピー誤差などでもよい。
In the learning process, learning is performed so that the
なお、既知のビット列からなる教師データとは、送信局110において既知のビット列から生成され、受信局120の補償回路30に到達するまで、補償が必要とされる障害の影響を受けなかったとみなせるTDおよびFDにおける入力信号50である。ただしこれと等価であれば、教師データは実際に送信局110から受信局120に送信された無線信号10から生成されなくともよい。例えば、既知のビット列から入力信号50を演算処理により生成し、教師データとしてもよい。
The teacher data consisting of a known bit sequence is the
また、既知のビット列に起因する受信信号とは、送信局110において既知のビット列から生成され、受信局120の補償回路30に到達するまでに補償が必要とされる障害の影響を受けたとみなせる受信信号である。ただしこれと等価であれば、該受信信号は実際に受信局120が送信局110から受信した信号でなくともよい。例えば、補償が必要とされる障害による受信信号の歪みのモデルに基づき既知のビット列から演算処理により生成されたものでもよい。
Furthermore, a received signal resulting from a known bit sequence is a received signal that is generated from a known bit sequence in the transmitting station 110 and can be considered to have been affected by a fault that requires compensation before it reaches the
なお、学習方法としては、ランダムフォレスト、SVM(Support Vector Machine)、K-近傍法、ニューラルネットワーク等の公知の方法が挙げられる。 Learning methods include well-known methods such as random forest, SVM (Support Vector Machine), K-nearest neighbor method, and neural network.
補償回路30は、学習処理により得られた学習モデルに基づき、新たに入力される入力信号50に対して処理を施して改善出力信号61を出力する補償処理を実行する。なお、ここでの入力信号50とは、送信局110において任意のビット列から生成され受信局120の補償回路30に到達する入力信号50である。
The
図4は、本開示の実施の形態1に係る、入力信号50の構成例である。また図5は、本開示の実施の形態1に係る、入力信号50のデータサイズを説明する図である。入力信号50は、無線信号10におけるI-Q座標平面上のシンボル点データ51である。
FIG. 4 shows an example of the configuration of an
シンボル点はOFDMのサブキャリアごとに存在するものであるから、図4に示すように、入力信号50は多次元配列の形式を有する。ここでの次元とは、NF個の要素数を有し、サブキャリア数を表す第一の次元と、NS個の要素数を有し、OFDMシンボル数を表す第二の次元と、x個の要素数を有し、シンボル点の座標を表す第三の次元である。なお、ここではシンボル点を実数表示しており、そのために必要な要素数は2であるが、TDとFDの両方においてシンボル点が存在するため、xは4となることに留意されたい。
Since a symbol point exists for each OFDM subcarrier, the
図4はxが4の場合の入力信号50である。ただし、xの値は一例であってこれに限られない。例えば複素数での入力が可能な補償回路30である場合、xはこの限りではない。また、第一の次元はサブキャリア数でなくシンボルブロックサイズでもよい。また第二の次元はシンボルブロック数でもよい。
FIG. 4 shows the
入力信号50のデータサイズは、以下のように表される。上付き文字が示すように、データサイズは入力信号50の多次元配列における総要素数(NF×NS×x)に依存することに留意されたい。
図6は、本開示の実施の形態1に係る、TDおよびFDにおける出力信号60のデータサイズを説明する図である。出力信号60は、入力信号50と同じくI-Q座標平面上のシンボル点の形式でもよい。さらには、送信ビットの信頼度を表すビット対数尤度比(Log‐Likelihood Ratio;以下LLRと称する)の形式でもよく、ビット列の形式でもよい。
FIG. 6 is a diagram illustrating the data size of the
出力信号60がI-Q座標平面上のシンボル点の形式である場合、TDにおける出力信号60のデータサイズは、以下のように表される。入力信号50の場合と同様に、データサイズは多次元配列における総要素数(NF×NS×2)に依存する。
同様に、FD領域における出力信号60のデータサイズは、以下のように表される。ここでも、データサイズは多次元配列の総要素数(NF×NS×2)に依存する。
一方、出力信号60がLLRの形式である場合、データサイズは以下のように表される。ここでBは1シンボル当たりのビット数である。
また、出力信号60がビット列である場合、データサイズは以下のように表される。
なお、図6の説明は改善出力信号61においても共通である。 Note that the explanation in Figure 6 also applies to the improved output signal 61.
以上説明したように、本開示によれば無線信号に含まれる障害を種類ごとに分けることなく、当該無線信号に対する補償を実施できる無線通信システムを提供することができる。 As described above, the present disclosure can provide a wireless communication system that can compensate for wireless signals without separating the types of impairments contained in the wireless signals.
なお、受信局120が行う処理は、CPUとメモリを備え、メモリにプログラムを格納したコンピュータを用いて、プログラムで実行するようにしてもよい。もしくはFPGA(Field Programmable Gate Array)などの集積回路を用いて、プログラムで実行するようにしてもよい。尚、プログラムは、記憶媒体に記録して提供されてもよいし、ネットワークを通して提供されてもよい。この点は以下の全ての実施の形態において共通である。
The processing performed by the receiving
なお、入力信号50は、上述のサブキャリア数の情報、OFDMシンボル数の情報、シンボル点の座標の情報を含んでいれば必ずしも多次元配列の形式でなくともよい。さらには、入力信号50はフレーム単位で処理されてもよく、シンボル単位で処理されてもよい。
Note that the
実施の形態2
本実施形態では、補償回路30が送信局110と受信局120間であらかじめ定められたパターンを有するパイロット信号52を受け付ける。なお、以降では、実施の形態1からの変更点を説明する。
In this embodiment, the
図7は本開示の実施の形態2に係る、受信デジタル回路231の構成例である。受信デジタル回路231は、実施の形態1の構成例に加えて、信号作成回路40をさらに備える。信号作成回路40は、I-Q座標平面上のパイロット信号52を作成する。さらに、信号作成回路40は、補償回路30に入力される無線信号10由来の受信信号に、パイロット信号52を付加する。
FIG. 7 shows an example configuration of a receiving
図8は、本開示の実施の形態2に係る、入力信号50の構成例である。I-Q座標平面上のシンボル点データ51として表される受信信号に、該シンボル点に対応するパイロット信号52が付加されている。そのため、シンボル点の座標を表す第三の次元の要素数xは6となっている。なお、パイロット信号52は無線信号10の変調多値数に対応するように生成される。これにより、シンボル点データ51とパイロット信号52において、サブキャリア数を表す第一の次元と、サブキャリアに含まれるシンボル数を表す第二の次元における要素数が一致する。なお対応しない変調多値数には、パイロット信号52には例えば0パディングなどの処理がなされる。
FIG. 8 shows an example of the configuration of an
なお受信信号には、送信局110において生成されたパイロットデータ信号が含まれている。送信局110において生成されたパイロットデータ信号は、受信局120の補償回路30に到達するまでに障害の影響を受けている。
The received signal includes a pilot data signal generated in the transmitting station 110. The pilot data signal generated in the transmitting station 110 is affected by interference before it reaches the
入力信号50に障害の影響を含まない本来のパイロット信号52を含めておくことで、受信信号に含まれるパイロットデータ信号との差分を把握することができる。これにより機械学習回路31において学習モデルの学習を更に進めることが可能となり、学習時間の短縮、学習精度の向上につなげることができる。学習モデルの精度が向上することで補償処理によって出力される改善出力信号61の品質も向上させることができる。
By including the
実施の形態3
本実施形態では、補償回路30が無線信号10の品質データ53を受け付ける。なお、以降では、実施の形態1からの変更点を説明する。
Embodiment 3
In this embodiment, the
図9は本開示の実施の形態3に係る、受信デジタル回路231の構成例である。受信デジタル回路231は、実施の形態1の構成例に加えて、品質推定回路70をさらに備える。品質推定回路70は、無線信号10由来の受信信号に対して品質を推定する。ここでの品質とは、例えばチャネル推定値である。さらに、品質推定回路70は、補償回路30に入力される無線信号10由来の受信信号に、品質データ53を付加する。なお、実施の形態2と同様に品質データ53も無線信号10の変調多値数に対応するように生成される。
FIG. 9 shows an example configuration of a receiving
図10は、本開示の実施の形態3に係る、入力信号50の構成例である。I-Q座標平面上のシンボル点データ51として表される受信信号に、該シンボル点に対応する品質データ53が付加されている。
FIG. 10 shows an example of the configuration of an
入力信号50に品質データ53を含めておくことで、補償回路30は、該品質に基づき障害の特徴を把握することができる。これにより機械学習回路31において学習モデルの学習を更に進めることが可能となり、結果として学習精度を向上させることができる。学習モデルの精度が向上することにより補償処理によって出力される改善出力信号61の品質も向上させることができる。
By including
なお、本開示は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。例えば実施の形態2と3を組み合わせることにより、補償回路30がシンボル点データ51、パイロット信号52と品質データ53をすべて受け付けるようにしてもよい。
Note that the present disclosure is not limited to the above-described embodiments, and various modifications can be made in the implementation stage without departing from the gist of the disclosure. Furthermore, the embodiments may be implemented in appropriate combination, in which case the combined effects can be obtained. For example, by combining the second and third embodiments, the
〈変形例1〉
なお、上述では、入力信号50に含まれる受信信号がI-Q座標平面上のシンボル点データ51であることを説明した。しかしながら、受信信号の形式はシンボル点データ51の形式でなくともよい。例えばLLRデータ54でもよい。
<
In the above description, the received signal included in the
図11は本開示の第一の変形例に係る、補償回路30がLLRデータ54を受け付ける場合の受信デジタル回路231の構成例である。ここでの受信デジタル回路231は実施の形態1における構成例に加えてLLR算出回路80をさらに含む。LLR算出回路80はI-Q座標平面上のシンボル点データ51を受け付ける。さらに、LLR算出回路80は、該シンボル点から送信ビットの信頼度を表すビット対数尤度比(Log‐Likelihood Ratio;以下LLRと称する)を算出する。さらに、LLR算出回路80は、算出結果をLLRデータ54としてFFT変換回路20および補償回路30に入力する。
FIG. 11 shows a configuration example of the receiving
FFT変換回路20はTDにおけるLLRデータ54を受け付け、FDに変換したうえで補償回路30に送信する。
The
〈変形例2〉
さらには、受信信号の形式はビット列データ55でもよい。
<
Furthermore, the received signal may be in the form of
図12は本開示の第二の変形例に係る、補償回路30がビット列データ55を受け付ける場合の受信デジタル回路231の構成例である。ここでの受信デジタル回路231は第一の変形例における構成例に加えて誤り訂正復号化回路90をさらに含む。誤り訂正復号化回路90は、LLR算出回路80が算出したLLRに対する誤り訂正復号化を行い、ビット列を算出する。さらに、誤り訂正復号化回路90は算出結果をビット列データ55としてFFT変換回路20および補償回路30に入力する。
FIG. 12 shows a configuration example of the receiving
FFT変換回路20はTDにおけるビット列データ55を受け付け、FDに変換したうえで補償回路30に送信する。
The
変形例1と変形例2の構成により、出力信号60の形式に一致するように、あらかじめ入力信号50の形式を変換しておくことが可能とある。これにより、補償回路30において出力信号60の形式を変換する必要がなくなり、補償回路30の構成をより簡単にできる。なおここでは実施の形態1と組み合わせた説明したが、他の実施形態と組み合わせてもよく、その場合組み合わせた効果が得られる。
〈変形例3〉
なお、機械学習回路31の学習精度がTDの入力信号50のみで十分である等の場合は、FDにおける入力信号50は必要なく、FFT変換回路20は必ずしもなくともよい。これにより、入力信号50のデータサイズを小さくすることができ、学習処理および補償処理に係る負担を軽くすることができる。
The configurations of
<Modification 3>
In addition, in cases where the learning accuracy of the
10 無線信号、20 FFT変換回路、21 推定回路、22 補償回路、23 後段回路、30 補償回路、31 機械学習回路、40 信号作成回路、50 入力信号、51 シンボル点データ、52 パイロット信号、53 品質データ、54 LLRデータ、55 ビット列データ、60 出力信号、61 改善出力信号、70 品質推定回路、80 LLR算出回路、90 誤り訂正復号化回路、100 無線通信システム、110 送信局、120 受信局、200 無線通信システム、210 送信局、211 送信デジタル回路、212 送信アナログ回路、214 直交変調回路、215 周波数変換回路、216 電力増幅回路、217 アンテナ、220 受信局、221 受信デジタル回路、222 受信アナログ回路、224 直交復調回路、225 周波数変換回路、226 アンテナ、231 受信デジタル回路、232 受信アナログ回路 10 radio signal, 20 FFT conversion circuit, 21 estimation circuit, 22 compensation circuit, 23 subsequent circuit, 30 compensation circuit, 31 machine learning circuit, 40 signal creation circuit, 50 input signal, 51 symbol point data, 52 pilot signal, 53 quality data, 54 LLR data, 55 bit string data, 60 output signal, 61 improved output signal, 70 quality estimation circuit, 80 LLR calculation circuit, 90 error correction decoding circuit, 100 radio communication system, 110 transmitting station, 120 receiving station, 200 wireless communication system, 210 transmitting station, 211 transmitting digital circuit, 212 transmitting analog circuit, 214 quadrature modulation circuit, 215 frequency conversion circuit, 216 power amplifier circuit, 217 antenna, 220 receiving station, 221 receiving digital circuit, 222 receiving analog circuit, 224 quadrature demodulation circuit, 225 frequency conversion circuit, 226 antenna, 231 receiving digital circuit, 232 receiving analog circuit
Claims (4)
前記無線信号を受信する受信局と、
を備え、
前記受信局は、
学習モデルを含む補償回路を有し、
前記送信局から送信された既知のビット列に起因する前記受信局の受信信号を含む入力信号を前記学習モデルにより処理して出力信号を生成する処理と、
前記出力信号が前記既知のビット列からなる教師データに近づくように前記学習モデルに学習させる処理と、
学習させた学習モデルに基づき、新たに入力される入力信号に対して処理を施して改善出力信号を出力する処理と、
を実行するように構成される、無線通信システム。 A transmitting station for transmitting a radio signal;
a receiving station for receiving the radio signal;
Equipped with
The receiving station,
A compensation circuit including a learning model is provided.
a process of processing an input signal including a received signal at the receiving station caused by a known bit sequence transmitted from the transmitting station using the learning model to generate an output signal;
A process of training the learning model so that the output signal approaches training data consisting of the known bit string;
A process of processing a newly input signal based on the learned learning model and outputting an improved output signal;
A wireless communication system configured to:
前記出力信号の形式も、前記3つの形式のいずれかである、請求項1または2に記載の無線通信システム。 the form of the received signal resulting from the known bit sequence is one of three forms: a symbol point on an IQ coordinate plane of the wireless signal, a bit log-likelihood ratio indicating the reliability of a transmitted bit in the wireless signal, and a bit sequence obtained by performing error correction decoding on the wireless signal;
3. The wireless communication system according to claim 1, wherein the format of the output signal is also one of the three formats.
前記既知のビット列に起因する前記受信信号に対する品質の推定結果である品質データと、
の少なくとも一方を含み、
前記パイロット信号および前記品質データの少なくとも一方に基づき前記学習モデルの学習を更に進める、
請求項1から3いずれか1項に記載の無線通信システム。 The input signal includes a pilot signal having a predetermined pattern between the transmitting station and the receiving station;
quality data that is an estimation result of the quality of the received signal caused by the known bit sequence;
At least one of
Further learning of the learning model based on at least one of the pilot signal and the quality data;
A wireless communication system according to any one of claims 1 to 3.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/030342 WO2025041308A1 (en) | 2023-08-23 | 2023-08-23 | Wireless communication system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/030342 WO2025041308A1 (en) | 2023-08-23 | 2023-08-23 | Wireless communication system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025041308A1 true WO2025041308A1 (en) | 2025-02-27 |
Family
ID=94731731
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2023/030342 Pending WO2025041308A1 (en) | 2023-08-23 | 2023-08-23 | Wireless communication system |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025041308A1 (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05235792A (en) * | 1992-02-18 | 1993-09-10 | Fujitsu Ltd | Adaptive equalizer |
| JP2014135605A (en) * | 2013-01-09 | 2014-07-24 | Fujitsu Ltd | Receiving device |
| US20200343985A1 (en) * | 2019-04-23 | 2020-10-29 | DeepSig Inc. | Processing communications signals using a machine-learning network |
| US20220014398A1 (en) * | 2018-10-29 | 2022-01-13 | Board Of Regents, The University Of Texas System | Low resolution ofdm receivers via deep learning |
| JP2023517681A (en) * | 2020-03-12 | 2023-04-26 | ノキア ソリューションズ アンド ネットワークス オサケユキチュア | wireless receiver |
-
2023
- 2023-08-23 WO PCT/JP2023/030342 patent/WO2025041308A1/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05235792A (en) * | 1992-02-18 | 1993-09-10 | Fujitsu Ltd | Adaptive equalizer |
| JP2014135605A (en) * | 2013-01-09 | 2014-07-24 | Fujitsu Ltd | Receiving device |
| US20220014398A1 (en) * | 2018-10-29 | 2022-01-13 | Board Of Regents, The University Of Texas System | Low resolution ofdm receivers via deep learning |
| US20200343985A1 (en) * | 2019-04-23 | 2020-10-29 | DeepSig Inc. | Processing communications signals using a machine-learning network |
| JP2023517681A (en) * | 2020-03-12 | 2023-04-26 | ノキア ソリューションズ アンド ネットワークス オサケユキチュア | wireless receiver |
Non-Patent Citations (3)
| Title |
|---|
| OU JINGLAN; WANG JIAYING; PENG QIHAO; ZHU XINGXIN; WU HAOWEI: "Learning-Based Signal Detection for OFDM Systems with I/Q Imbalance", 2020 IEEE 3RD INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SIGNAL PROCESSING (ICICSP), IEEE, 12 September 2020 (2020-09-12), pages 69 - 73, XP033844395, DOI: 10.1109/ICICSP50920.2020.9232099 * |
| RU XIN, WEI LI, XU YOUYUN: "Model-Driven Channel Estimation for OFDM Systems Based on Image Super-Resolution Network", 2020 IEEE 5TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), IEEE, 23 October 2020 (2020-10-23) - 25 October 2020 (2020-10-25), pages 804 - 808, XP093280629, ISBN: 978-1-7281-6896-8, DOI: 10.1109/ICSIP49896.2020.9339375 * |
| YONG YOU ET AL.: "Research on OFDM Receivers Using Deep Learning", IEICE TECHNICAL REPORT, vol. 122, no. 110, 7 July 2022 (2022-07-07), pages 74 - 77, XP009561303 * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8213525B2 (en) | Method of estimating and removing noise in OFDM systems | |
| JP4421635B2 (en) | Wireless communication method and wireless communication device | |
| EP2130343B1 (en) | Frequency offset correction | |
| US20140079407A1 (en) | Updating apparatus and method for equalizer coefficient, receiver and otpical communication system | |
| CN109600332B (en) | A CO-FBMC/OQAM modulation method and system | |
| WO2018042838A1 (en) | Optical transmission distortion compensation device, optical transmission distortion compensation method, and communication device | |
| JP2007060106A (en) | IQ imbalance compensation method in MIMO-OFDM communication system | |
| US20050180534A1 (en) | Iterative estimation and equalization of asymmetries between inphase and quadrature branches in multicarrier transmission systems | |
| JP7675181B2 (en) | Method and apparatus for estimating radio frequency transmission interference - Patents.com | |
| CN104639490A (en) | Joint estimation and compensation method for frequency-dependent IQ (In-phase Quadrature) mismatch and channel | |
| JP5147089B2 (en) | A method for determining a hybrid domain compensation parameter of analog loss in an OFDM communication system and a compensation method. | |
| WO2023061213A1 (en) | Optical signal skew extraction method and apparatus, electronic device, and storage medium | |
| CN102130864A (en) | Channel estimation method and device | |
| CN117353827B (en) | A DSP method and system for QAM coherent optical communication | |
| CN110380996A (en) | Frequency dependence IQ imbalance compensation method in SC-FDE system | |
| US9106326B2 (en) | Method for determining the imperfections of a transmit pathway and of a receive pathway of an apparatus, and associated radio apparatus | |
| WO2025041308A1 (en) | Wireless communication system | |
| WO2025041306A1 (en) | Wireless communication system | |
| CN108540187B (en) | Method and device for improving performance of nonlinear MU MIMO system based on MMSE criterion | |
| WO2016095261A1 (en) | Method for estimating and restraining distributed iq imbalance | |
| WO2025041309A1 (en) | Wireless communication system | |
| JP5662892B2 (en) | Multi-carrier modulation signal receiver | |
| CN101945062B (en) | Receiving processing method in single-carrier wireless communication system | |
| JP5418835B2 (en) | QAM demodulation | |
| CN108206798B (en) | A communication method for suppressing interference from adjacent transmitters |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23949765 Country of ref document: EP Kind code of ref document: A1 |