WO2024224567A1 - Defect inspecting device - Google Patents
Defect inspecting device Download PDFInfo
- Publication number
- WO2024224567A1 WO2024224567A1 PCT/JP2023/016710 JP2023016710W WO2024224567A1 WO 2024224567 A1 WO2024224567 A1 WO 2024224567A1 JP 2023016710 W JP2023016710 W JP 2023016710W WO 2024224567 A1 WO2024224567 A1 WO 2024224567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- defect
- sample
- similarity
- defect inspection
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
Definitions
- the present invention relates to a defect inspection device that inspects sample surfaces and outputs the location, type, dimensions, etc. of defects.
- the semiconductor substrates and thin film substrates produced on the production line are used as samples, and the sample surfaces are inspected for defects such as foreign bodies and dents.
- a defect inspection device used for this inspection is known that simultaneously detects scattered light from the sample surface with multiple sensors at different positions, and obtains detailed data on the position, shape, size, etc. of defects (see Patent Document 1, etc.).
- the defect inspection device of Patent Document 1 simultaneously detects scattered light from an illumination spot using multiple detection systems with different orientations relative to the illumination spot, thereby obtaining a large amount of data on defects. Because the amount of scattered light from a defect is proportional to approximately the sixth power of the defect size, the amount of detected light from the defect drops sharply as the defect being inspected becomes smaller.
- the roughness scattered light caused by minute irregularities on the sample surface can be an obstacle to the detection of these tiny critical defects.
- the roughness scattered light obtained by shining illumination light on a polished mirror wafer has statistical variation, and is observed as shot noise when detected by a sensor. As a result, the detection light from the defect is lost in the noise, making high-speed inspection difficult.
- Patent Document 1 discloses a method of scanning a sample with laser light, removing low-frequency components other than those generated by defects from the detection signal of light from the illumination spot on the sample surface, and calculating the size of the defect on the sample surface. Specifically, a specified monitoring time width is calculated based on the half-width of the defect detection signal obtained from the rotation speed of the sample stage, etc., and a signal whose intensity is above a threshold for a period of time equal to or greater than the specified monitoring time width is extracted as a defect detection signal, and other low-level noise signals, etc. are removed.
- this prior art does not take into consideration the statistical variation of the signal itself due to a decrease in the amount of scattered light.
- the amount of scattered light from extremely small defects is often lower than the amount of roughness scattered light from the sample surface.
- the amount of light from roughness on the sample surface is also small, and the signal-to-noise ratio of the shot noise detected by the sensor is proportional to the square root of the amount of detected light, so the amount of detected light from minute defects is noisy.
- the detection signal to be discriminated needs to be bright enough to be able to be determined to be a defect detection signal, and it is difficult to discriminate tiny, noisy defects whose brightness difference with the roughness scattered light is unclear.
- the object of the present invention is to provide a defect inspection device that can detect minute and noisy defects with high sensitivity.
- the present invention provides a defect inspection device that inspects a sample for defects based on light from the sample, the defect inspection device comprising one or more sensors that detect the light from the sample, and a signal processing device that processes an input signal from the sensor, the signal processing device calculates a similarity between an observation vector based on the input signal from the sensor and a model vector related to the defect, calculates a detection signal by nonlinearly changing the intensity of the input signal corresponding to the observation vector based on the similarity, and determines defects in the sample based on the detection signal.
- the present invention makes it possible to detect minute and noisy defects with high sensitivity.
- FIG. 1 is a schematic diagram of a configuration example of a defect inspection apparatus according to a first embodiment of the present invention
- FIG. 4 is a schematic diagram showing an example of a scanning trajectory of a sample by a scanning device provided in the defect inspection device according to the first embodiment of the present invention
- FIG. 5 is a schematic diagram showing another example of the scanning trajectory of the sample by the scanning device provided in the defect inspection device according to the first embodiment of the present invention
- FIG. 1 is a schematic diagram showing an attenuator included in a defect inspection apparatus according to a first embodiment of the present invention
- FIG. 1 is a schematic diagram showing the positional relationship between the optical axis of illumination light guided obliquely to a sample surface by a scattered light illumination system provided in a defect inspection apparatus according to a first embodiment of the present invention and the illumination intensity distribution shape, in a cross section of the sample cut at the incident plane of the illumination light incident on the sample.
- FIG. 1 is a schematic diagram showing the positional relationship between the optical axis of illumination light guided obliquely to a sample surface by a scattered light illumination system provided in a defect inspection apparatus according to a first embodiment of the present invention, and the illumination intensity distribution shape, in a cross section of the sample cut by a plane that is perpendicular to the plane of incidence of the illumination light incident on the sample and includes the normal to the sample surface.
- FIG. 1 is a schematic diagram showing the positional relationship between the optical axis of illumination light guided obliquely to a sample surface by a scattered light illumination system provided in a defect inspection apparatus according to a first embodiment of the present invention,
- FIG. 2 is a top view of an opening for collecting scattered light by a scattered light detection system provided in the defect inspection apparatus according to the first embodiment of the present invention
- FIG. 1 is a configuration diagram of a scattered light detection system provided in a defect inspection apparatus according to a first embodiment of the present invention, which irradiates light onto a sample from a normal direction and collects scattered light from the sample surface.
- a top view of FIG. 8. A top view of the light intensity distribution of scattered light generated by oblique incidence illumination of a micro defect.
- FIG. 1 is a configuration diagram of a scattered light detection system provided in a defect inspection apparatus according to a first embodiment of the present invention, which irradiates light onto a sample from a normal direction and collects scattered light from the sample surface.
- a top view of FIG. 8. A top view of the light intensity distribution of scattered light generated by oblique incidence illumination of
- FIG. 1 is a processing block diagram of a main part of a signal processing device provided in a defect inspection device according to a first embodiment of the present invention
- FIG. 1 is an explanatory diagram of the similarity with a model vector in the signal processing device according to the first embodiment of the present invention.
- FIG. 11 is a diagram showing an example of a gain based on the similarity to a model vector in the signal processing device according to the first embodiment of the present invention.
- 1 is a processing block diagram of a main part of a signal processing device provided in a signal processing device according to a second embodiment of the present invention
- FIG. 11 is an explanatory diagram of the similarity with a model vector in the signal processing device according to the second embodiment of the present invention.
- FIG. 11 is a processing block diagram of a main part of a signal processing device according to a third embodiment of the present invention
- 13 is a processing block diagram of a main part of a signal processing device provided in a signal processing device according to a fourth embodiment of the present invention
- FIG. 13 is a schematic diagram of a scattered light imaging detection unit provided in a defect inspection apparatus according to a fifth embodiment of the present invention
- FIG. 13 is a processing block diagram of a main part of a signal processing device provided in a signal processing device according to a fifth embodiment of the present invention
- FIG. 13 is an explanatory diagram of overlap scanning of illumination according to the sixth embodiment of the present invention and a model vector based on the overlap scanning.
- 13 is a processing block diagram of a main part of a signal processing device provided in a signal processing device according to a sixth embodiment of the present invention
- 13 is a processing block diagram of a main part of a signal processing device provided in a signal processing device according to a sixth embodiment of the present invention
- FIG. 23 is an explanatory diagram of the similarity with a model vector according to the seventh embodiment of the present invention.
- FIG. 13 is a schematic diagram of a configuration example of a defect inspection apparatus according to an eighth embodiment of the present invention;
- FIG. 13 is an explanatory diagram of an inspection target sample according to the eighth embodiment of the present invention.
- 13 is a processing block diagram of a main part of a signal processing device according to an eighth embodiment of the present invention.
- FIG. 23 is an explanatory diagram of the similarity with a model vector in the signal processing device according to the eighth embodiment of the present invention.
- the defect inspection device described in the following embodiments as an application of the present invention is used for defect inspection of the surface of a sample (wafer) performed during the manufacturing process of, for example, semiconductors.
- the defect inspection device according to each embodiment is suitable for quickly detecting minute defects and acquiring data on the number, position, size, and type of defects.
- the present invention can be applied to defect inspection devices of various types, such as an illumination spot scanning type laser scattering type, an imaging type laser scattering type, or a scanning electron microscope.
- FIG. 1 is a schematic diagram of a configuration example of a defect inspection apparatus according to a first embodiment of the present invention.
- the defect inspection apparatus 100 inspects a sample 1, and detects and inspects defects such as foreign matter and dents on the sample 1, particularly defects of a type according to the inspection purpose, based on light from the surface of the sample 1 (hereinafter referred to as the sample surface).
- a representative example of the sample 1 is a disk-shaped semiconductor silicon wafer having a flat surface on which no pattern is formed.
- the defect inspection apparatus 100 includes a stage ST, a scattered light illumination system A, a plurality (n) of scattered light detection systems B1-Bn, a signal processing device D, a control device E1, a user interface E2, a monitor E3, and a secondary storage device DB.
- the scattered light detection systems B1-Bn include sensors C1P-CnP and C1S-CnS, respectively.
- the scattered light detection system Bi refers to the i-th scattered light detection system Bi.
- the sensor CiP it refers to a sensor that detects P-polarized light of the scattered light detection system Bi.
- sensor CiS when sensor CiS is mentioned, it refers to a sensor that detects S-polarized light of scattered light detection system Bi.
- the stage ST includes a sample stage ST1 and a scanning device ST2.
- the sample stage ST1 is a stage that supports the sample 1.
- the scanning device ST2 is a device that drives the sample stage ST1 to change the relative position between the sample 1 and the scattered light illumination system A, and includes a translation stage, a rotation stage, and a Z stage, which are not shown in detail.
- the translation stage supports the rotation stage via the Z stage, and the sample stage ST1 is supported on the rotation stage.
- the translation stage translates in the horizontal direction together with the rotation stage, and the rotation stage rotates around an axis that extends vertically.
- the Z stage serves to adjust the height of the sample surface.
- Figure 2 is a schematic diagram showing the scanning trajectory of the sample 1 by the scanning device ST2.
- the illumination spot BS formed on the sample surface by the illumination light emitted from the scattered light illumination system A has an illumination intensity distribution that is long in one direction as shown in the figure.
- the long axis direction of the illumination spot BS is s2, and the direction intersecting the long axis (for example, the short axis direction perpendicular to the long axis) is s1.
- the sample 1 rotates with the rotation of the rotating stage, and the illumination spot BS is scanned in the s1 direction relative to the sample surface, and the sample 1 moves in the horizontal direction with the translation stage translation, and the illumination spot BS is scanned in the s2 direction relative to the sample surface.
- the illumination spot BS moves in a spiral trajectory from the center to the outer edge of the sample 1 as shown in Figure 2, and the entire surface of the sample 1 is scanned.
- the illumination spot BS moves in the s2 direction by a distance less than the length of the illumination spot BS in the s2 direction during one rotation of the sample 1.
- the illumination spot BS scans the sample surface by folding over a linear trajectory instead of a spiral trajectory.
- the first translation stage is driven in translation at a constant speed in the s1 direction
- the second translation stage is driven in the s2 direction by a predetermined distance (for example, a distance equal to or less than the length of the illumination spot BS in the s2 direction)
- the first translation stage is turned back in the s1 direction and driven in translation again.
- the illumination spot BS repeats linear scanning in the s1 direction and movement in the s2 direction to scan the entire surface of the sample 1.
- the spiral scanning method shown in FIG. 2 does not involve reciprocating motion, and is therefore advantageous in performing sample inspection in a short time.
- the scattered light illumination system A shown in Fig. 1 is configured to include a group of optical elements for irradiating a desired illumination light onto a sample 1 placed on a sample stage ST1.
- this scattered light illumination system A includes a laser light source A1, an attenuator A2, an emitted light adjustment unit A3, a beam expander A4, a polarization control unit A5, a focusing optical unit A6, reflection mirrors A7-A10, etc.
- the laser light source A1 is a unit that emits a laser beam as illumination light.
- a laser light source A1 that emits a high-power laser beam with an output of 2 W or more in ultraviolet or vacuum ultraviolet with a short wavelength (wavelength of 355 nm or less) that does not easily penetrate into the inside of the sample 1 is used.
- the diameter of the laser beam emitted by the laser light source A1 is typically about 1 mm.
- a laser light source A1 that emits a visible or infrared laser beam with a long wavelength that easily penetrates into the inside of the sample 1 is used.
- FIG. 4 is a schematic diagram showing the attenuator A2.
- the attenuator A2 is a unit that attenuates the light intensity of the illumination light from the laser light source A1.
- the attenuator A2 is a combination of a first polarizing plate A2a, a half-wave plate A2b, and a second polarizing plate A2c.
- the half-wave plate A2b is configured to be rotatable around the optical axis of the illumination light.
- the illumination light incident on the attenuator A2 is converted into linearly polarized light by the first polarizing plate A2a, and then the polarization direction is adjusted to the slow axis azimuth angle of the half-wave plate A2b and passes through the second polarizing plate A2c.
- the light intensity of the illumination light can be attenuated at an arbitrary ratio by adjusting the azimuth angle of the half-wave plate A2b. If the linear polarization degree of the illumination light incident on the attenuator A2 is sufficiently high, the first polarizing plate A2a can be omitted.
- the attenuator A2 is not limited to the configuration illustrated in FIG. 4, but can also be configured using an ND filter having a gradation density distribution, and can also be configured in such a way that the attenuation effect can be adjusted by combining multiple ND filters with different densities.
- the emitted light adjustment unit A3 shown in FIG. 1 is a unit that adjusts the angle of the optical axis of the illumination light attenuated by the attenuator A2, and in this embodiment, it is configured to include multiple reflecting mirrors A3a and A3b.
- the reflecting mirrors A3a and A3b sequentially reflect the illumination light, but in this embodiment, the incident and exit surfaces of the illumination light to the reflecting mirror A3a are configured to be perpendicular to the incident and exit surfaces of the illumination light to the reflecting mirror A3b.
- the incident and exit surfaces are surfaces that include the optical axis incident on the reflecting mirror and the optical axis emitted from the reflecting mirror.
- the illumination light is incident on the reflecting mirror A3a in the +X direction
- the illumination light is redirected in the +Y direction by the reflecting mirror A3a and then in the +Z direction by the reflecting mirror A3b, although this is different from the schematic FIG. 1.
- the incident and exit surfaces of the illumination light to the reflecting mirror A3a are the XY plane
- the incident and exit surfaces to the reflecting mirror A3b are the YZ plane.
- the reflecting mirrors A3a and A3b are provided with a mechanism for translating and tilting the reflecting mirrors A3a and A3b, respectively, although not shown.
- the reflecting mirrors A3a and A3b translate, for example, in the incident or outgoing direction of the illumination light with respect to themselves, and tilt around the normal to the incident and outgoing surfaces. This allows, for example, the offset amount and angle in the XZ plane and the offset amount and angle in the YZ plane of the optical axis of the illumination light emitted in the +Z direction from the outgoing light adjustment unit A3 to be independently adjusted.
- a configuration using two reflecting mirrors A3a and A3b is illustrated, but a configuration using three or more reflecting mirrors may be used.
- the beam expander A4 is a unit that expands the diameter of the luminous flux of the incident illumination light, and has a plurality of lenses A4a and A4b.
- An example of the beam expander A4 is a Galilean type that uses a concave lens as the lens A4a and a convex lens as the lens A4b.
- the beam expander A4 is provided with a mechanism for adjusting the distance between the lenses A4a and A4b (zoom mechanism), and the expansion rate of the luminous flux diameter changes by adjusting the distance between the lenses A4a and A4b.
- the expansion rate of the luminous flux diameter by the beam expander A4 is, for example, about 5-10 times.
- the beam system of the illumination light is expanded to about 5-10 mm.
- the illumination light incident on the beam expander A4 is not a parallel luminous flux, collimation (quasi-parallelization of the luminous flux) is also possible in addition to the luminous flux diameter by adjusting the distance between the lenses A4a and A4b.
- the collimation of the light beam may be performed by disposing a collimating lens upstream of the beam expander A4 separately from the beam expander A4.
- Beam expander A4 is installed on a translation stage with two or more axes (two degrees of freedom) and is configured so that its position can be adjusted so that its center coincides with the incident illumination light. Beam expander A4 also has a swing angle adjustment function with two or more axes (two degrees of freedom) so that the incident illumination light coincides with the optical axis.
- the polarization control unit A5 is an optical system that controls the polarization state of the illumination light, and is configured to include a 1/2 wavelength plate A5a and a 1/4 wavelength plate A5b. For example, when performing oblique incidence illumination by inserting a reflecting mirror A7 described later into the optical path, the amount of scattered light from defects on the sample surface is increased by making the illumination light P-polarized by the polarization control unit A5 compared to polarization other than P polarization. If scattered light (called haze) from minute irregularities on the surface of the sample itself hinders the detection of minute defects, the haze can be reduced by making the illumination light S-polarized compared to polarization other than S polarization.
- the polarization control unit A5 can also make the illumination light circularly polarized or 45-degree polarized, which is intermediate between P polarization and S polarization.
- the reflecting mirror A7 can be moved in parallel in the direction of the arrow by a driving mechanism (not shown) to enter and exit the optical path of the illumination light toward the sample 1, thereby switching the incidence path of the illumination light to the sample 1.
- a driving mechanism not shown
- the illumination light emitted from the polarization control unit A5 is reflected by the reflecting mirror A7 and enters the sample 1 obliquely via the focusing optical unit A6 and the reflecting mirror A8 as described above.
- the illumination light emitted from the polarization control unit A5 enters the sample 1 perpendicularly via the reflecting mirrors A9 and A10, the polarization control unit B2', the reflecting mirror B1', and the scattered light detection system B3.
- the polarization control unit B2' includes a 1/2 wavelength plate Ba' and a 1/4 wavelength plate Bb', similar to the polarization control unit A5.
- Figures 5 and 6 are schematic diagrams showing the positional relationship between the optical axis of the illumination light guided obliquely to the sample surface by the scattered light illumination system A and the illumination intensity distribution shape.
- Figure 5 shows a schematic cross-section of the sample 1 cut at the plane of incidence of the illumination light incident on the sample 1.
- Figure 6 shows a schematic cross-section of the sample 1 cut at a plane that is perpendicular to the plane of incidence of the illumination light incident on the sample 1 and includes the normal to the sample surface.
- the plane of incidence is a plane that includes the optical axis OA of the illumination light incident on the sample 1 and the normal to the sample surface. Note that Figures 5 and 6 show only a portion of the scattered light illumination system A, and for example, the exit light adjustment unit A3 and the reflecting mirrors A7 and A8 are not shown.
- the scattered light illumination system A is configured to allow illumination light to be incident on the sample 1 from a direction oblique to the normal line of the sample surface.
- This oblique incidence illumination has its light intensity adjusted by the attenuator A2, its light beam diameter adjusted by the beam expander A4, and its polarization adjusted by the polarization control unit A5, so that the illumination intensity distribution is uniform within the incident surface.
- the illumination spot formed on the sample 1 has a Gaussian light intensity distribution in the s2 direction, and the length of the beam width l1 defined at 13.5% of the peak is, for example, about 25 ⁇ m to 4 mm.
- the illumination spot has a light intensity distribution with weak intensity at the periphery relative to the center of the optical axis OA, as shown in the illumination intensity distribution (illumination profile) LD2 in FIG. 6.
- the intensity distribution is a Gaussian distribution reflecting the intensity distribution of the light incident on the focusing optical unit A6, or an intensity distribution similar to a first-order Bessel function of the first kind or a sinc function reflecting the aperture shape of the focusing optical unit A6.
- the length l2 of the illumination intensity distribution in the plane perpendicular to the incident surface and the sample surface is shorter than the beam width l1 shown in FIG.
- This length l2 of the illumination intensity distribution is the length of the area having an illumination intensity of 13.5% or more of the maximum illumination intensity in the plane perpendicular to the incident surface and the sample surface.
- the angle of incidence of the oblique incidence illumination on the sample 1 (the inclination angle of the incident optical axis with respect to the normal to the sample surface) is adjusted to an angle suitable for detecting minute defects by adjusting the positions and angles of the reflecting mirrors A7 and A8.
- the angle of the reflecting mirror A8 is adjusted by the adjustment mechanism A8a. For example, the larger the angle of incidence of the illumination light on the sample 1 (the smaller the illumination elevation angle, which is the angle between the sample surface and the incident optical axis), the weaker the haze that becomes noise in the scattered light from minute foreign objects on the sample surface, making it more suitable for detecting minute defects.
- the incidence angle of the illumination light is set to, for example, 75 degrees or more (elevation angle 15 degrees or less).
- the smaller the illumination incidence angle the greater the absolute amount of scattered light from minute foreign objects, so from the viewpoint of aiming to increase the amount of scattered light from defects, it is preferable to set the incidence angle of the illumination light to, for example, 60 degrees or more and 75 degrees or less (elevation angle 15 degrees or more and 30 degrees or less).
- the scattered light detection systems B1-Bn are units that collect and detect scattered light from the illumination spot BS on the sample surface, and are configured to include a plurality of optical elements including a collecting lens (objective lens). This optical system detects scattered light from the sample surface and performs laser scattering detection.
- the i-th scattered light detection system Bi is configured to include an objective lens Bi1, a half-wave plate Bi2 that can be rotated around the optical axis of the scattered light detection system Bi by a rotation mechanism not shown, and a polarizing beam splitter Bi3.
- the polarization direction is controlled by rotating the half-wave plate Bi2, and the polarizing beam splitter Bi3 separates the light into two desired lights whose polarization directions are orthogonal to each other.
- the P-polarized light that travels straight through the polarizing beam splitter Bi3 is detected by a sensor CiP, and the S-polarized light that is reflected by the polarizing beam splitter Bi3 is detected by a sensor CiS.
- FIG. 7 shows the openings through which the scattered light detection system B1-B13 collects scattered light as viewed from above, and corresponds to the arrangement of the objective lenses in the scattered light detection system B1-B13.
- the incident direction of the oblique incidence illumination on the sample 1 is used as a reference, and the direction of travel of the incident light with respect to the illumination spot BS on the sample surface as viewed from above (to the right in FIG. 7) is treated as the forward direction, and the opposite direction (to the left in FIG. 7) is treated as the backward direction. Therefore, the lower side in FIG. 7 is the right side and the upper side is the left side with respect to the illumination spot BS.
- Each objective lens of the scattered light detection system B1-B13 is arranged along the upper half of a hemisphere (celestial sphere) centered on the illumination spot BS on the sample 1. This hemisphere is divided into 13 regions, apertures L1-L6, H1-H6, and V, and the scattered light detection systems B1-B13 each collect and focus the scattered light at the corresponding aperture.
- Aperture V is an area that overlaps the zenith and is located directly above the illumination spot BS formed on the sample surface.
- Apertures L1-L6 are equal divisions of a ring-shaped region that surrounds 360 degrees around the illumination spot BS at a low angle, and are lined up in the order of apertures L1, L2, L3, L4, L5, and L6 in a counterclockwise direction from the direction of incidence of the oblique incidence illumination when viewed from above.
- apertures L1-L6 are located to the right of the illumination spot BS, aperture L1 is located to the rear right of the illumination spot BS, aperture L2 is located to the right, and aperture L3 is located to the front right.
- Apertures L4-L6 are located to the left of the illumination spot BS, aperture L4 is located to the front left of the illumination spot BS, aperture L5 is located to the left, and aperture L6 is located to the rear left.
- the remaining apertures H1-H6 are equal divisions of a ring-shaped region that surrounds the illumination spot BS 360 degrees at high angles (between apertures L1-L6 and aperture V), and are arranged in the order of apertures H1, H2, H3, H4, H5, and H6 in a counterclockwise direction from the direction of incidence of the oblique incidence illumination as viewed from above.
- the high-angle apertures H1-H6 are positioned 30 degrees apart as viewed from above.
- aperture H1 is located behind the illumination spot BS, and aperture H4 is located in front.
- Apertures H2 and H3 are located to the right of the illumination spot BS, aperture H2 is located to the rear right of the illumination spot BS, and aperture H3 is located to the front right.
- Apertures H5 and H6 are located to the left of the illumination spot BS, aperture H5 is located to the front left of the illumination spot BS, and aperture H6 is located to the rear left.
- the scattered light detection system B1 in Figure 1 can be treated as an example of an optical system that collects scattered light at the aperture L4 in Figure 7, the scattered light detection system B2 at the aperture L6, and the scattered light detection system B3 at the aperture V.
- FIG 8 is a schematic diagram of the scattered light detection system B3 into which the scattered light emitted from the sample 1 in the normal direction is incident
- Figure 9 is a plan view of Figure 8 viewed from above.
- the scattered light detection system B3 is composed of a condenser lens (objective lens) B3a and an imaging lens B3b, and the scattered light collected by the condenser lens B3a is detected by sensors C3P, C3S via the imaging lens B3b, 1/2 wavelength plate B32, and polarizing beam splitter B33. This is the same as the other scattered light detection systems B1, B2, B4, etc.
- the scattered light detection system B3 differs from the other scattered light detection systems in that a reflecting mirror B1' is placed at the position of its own pupil between the condenser lens B3a and the imaging lens B3b.
- the condenser lens B3a of the scattered light detection system B3 also serves as a condenser lens that guides the epi-illumination to the sample 1.
- the illumination spot BS has a long linear intensity distribution in the s2 direction.
- the reflecting mirror B1' is longer than the illumination spot BS in the minor axis direction (s1 direction) of the linear illumination spot BS when viewed from the side of the sensors C3P, C3S, and shorter than the illumination spot BS in the major axis direction (s2 direction) of the illumination spot BS.
- the reflecting mirror B1' is positioned at the pupil position of the focusing lens B3a, and the directly reflected light incident on the focusing lens B3a from the sample 1 is reflected by the reflecting mirror B1', and the scattered light that is not reflected here is guided to the imaging lens B3b.
- the sensors C1P-CnP and C1S-CnS are sensors that detect light from the sample 1, and are single-pixel point sensors that convert the scattered light collected through the corresponding aperture into an electrical signal and output it.
- a photomultiplier tube, SiPM (silicon photomultiplier tube), or the like that photoelectrically converts a weak signal with high gain can be used.
- SiPM silicon photomultiplier tube
- a SiPM is compact and robust against magnetic noise, while a photomultiplier tube is superior in terms of signal linearity. Therefore, both of these may be applied simultaneously.
- a SiPM is applied to the sensor C1P-CnP
- a photomultiplier tube is applied to the sensor C1S-CnS.
- the polarization direction of the light incident on the sensors CiP and CiS can be adjusted by setting the rotation angle of the half-wave plate Bi2. For example, the types of defects that require highly sensitive detection differ depending on the inspection process, but by adjusting the rotation angle of the polarizing beam splitter Bi2, it is possible to guide light in a polarization direction that requires highly sensitive detection to the sensor CiP.
- the output signals of the sensors C1P-CnP and C1S-CnS are input to the signal processing device D as needed.
- the control device E1 is a computer that controls the defect inspection device 100, and includes a ROM, a RAM, and other memories, as well as a CPU, an FPGA, a timer, and the like.
- the control device E1 is connected to the monitor E30 and the signal processing device D by wire or wirelessly.
- the control device E1 is connected to a device E2 that allows a user to input various operations, and various input devices such as a keyboard, a mouse, and a touch panel are appropriately connected to E2.
- the control device E1 receives the encoders of the rotation stage and the translation stage, and the inspection conditions input from the input device E2 in response to the operation of the operator.
- the inspection conditions include, for example, the type, size, shape, material, illumination conditions, and defect judgment conditions of the sample 1.
- the control device E1 also outputs a command signal that commands the operation of the stage ST and the scattered light illumination system A, etc., in response to the inspection conditions, and outputs coordinate data of the illumination spot BS synchronized with the defect detection signal to the signal processing device D.
- the control device E1 also displays and outputs the output of the signal processing device D (such as the defect inspection result of the sample 1) to the monitor E3.
- the control device E1 is connected to a network, and the input of inspection condition data and the output of inspection results can be performed via the network. It is also possible to output the inspection results to an inspection/measurement device connected to this network.
- a DR-SEM Defect Review-Scanning Electron Microscope
- Example of scattered light distribution-- Figure 10 shows the distribution of scattered light from a foreign particle on the sample surface when illuminated with oblique incidence from the left side of the figure, viewed from the wafer normal direction.
- Light scattered in the direction of direct reflection of the illumination is called forward scattering
- light scattered in the direction of incidence of the illumination is called back scattering, and are labeled "front” and “back” respectively in the figure.
- Light scattered to the left and right of the incidence of the illumination is called “left side scattering” and “right side scattering”, respectively, and are labeled “left” and "right” respectively in the figure.
- Scattering from a foreign particle on the sample surface is isotropic, and the amount of scattered light at high angles is weaker than the amount of scattered light at low angles. The distribution of scattered light changes depending on the shape of the defect, and the scattering is not always isotropic.
- Figure 11 shows the distribution of roughness scattered light from arbitrary coordinates on the sample surface when a polished wafer with a polished surface is used as the sample and illuminated with oblique incidence in the same way.
- Roughness scattered light generates shot noise in the sensor, worsening the defect detection sensitivity.
- roughness scattered light is strongly backscattered and weakly forward scattered, so good sensitivity can be obtained with a front or side sensor.
- epitaxial wafers created by vapor-phase growth of silicon single crystals on the surface of a polished wafer directional roughness occurs on the surface due to the orientation of the silicon single crystals on the surface.
- the intensity of the roughness scattered light changes individually at each aperture position as the wafer rotates. Therefore, the sensor that provides good sensitivity changes from moment to moment as the angle of the sample 1 relative to the oblique incidence illumination changes.
- the signal processing device D is a computer that processes input signals from the sensors C1P-CnP and C1S-CnS, and like the control device E1, is configured to include a ROM, RAM, and other memories as well as a CPU, FPGA, a timer, and the like.
- the signal processing device D is assumed to be configured as a single computer that forms a unit with the device body of the defect inspection device 100 (stage, scattered light illumination system, scattered light detection system, etc.), but it may be configured as multiple computers.
- a server set apart from the device body can be used as one of the multiple computers, and this server can also be included as a component of the defect inspection device 100.
- a computer attached to the device body can acquire defect detection signals from the device body, process the detection data as necessary and send it to a server, and the server can execute processes such as defect detection and classification.
- the signal processing device D includes a frequency separation unit D1, a model similarity calculation unit D2, a defect manifestation unit D3, and a defect determination unit D4.
- the frequency separation unit D1, the model similarity calculation unit D2, the defect manifestation unit D3, and the defect determination unit D4 may be virtually realized by software, or may be realized by hardware such as an electronic circuit.
- Some of the frequency separation unit D1, the model similarity calculation unit D2, the defect manifestation unit D3, and the defect determination unit D4 (particularly the upstream process of the frequency separation unit D1, etc.) can be configured with an FPGA or DSP.
- some or all of the functions of the frequency separation unit D1, the model similarity calculation unit D2, the defect manifestation unit D3, and the defect determination unit D4 can be configured to be executed by a server as the signal processing device D.
- FIG. 12 is a schematic diagram showing an example of the processing blocks of the frequency separation unit D1, model similarity calculation unit D2, and defect manifestation unit D3.
- FIG. 12 shows a data processing unit that processes the signal of one specific sensor among sensors C1S-CnS and sensors C1P-CnP. If the total number of sensors is N, then there are the same number of data processing units in FIG. 12 in parallel as the number of sensors (i.e., N sets). The signal photoelectrically converted by each sensor is converted into a digital signal by an A/D converter and input to the frequency separation unit D1, which processes each sensor.
- the frequency separation unit D1 separates the input signal from the corresponding sensor of the scattered light detection system B1-Bn into a high frequency component and a low frequency component.
- the frequency separation unit D1 includes a low pass filter D11A and a difference calculation unit D11B.
- the low pass filter D11A extracts a low frequency signal from the input signal from the sensor, and the difference calculation unit D11B subtracts the low frequency signal from the input signal to obtain a detection signal S11, which is a time series signal of the high frequency component of the input signal.
- the model similarity calculation unit D2 calculates a similarity between an observation vector based on the detection signal S11 and a model vector related to a defect, based on the detection signal S11 obtained by the frequency separation unit D1.
- the model similarity calculation unit D2 includes a model vector generation unit D21A and a similarity calculation unit D21B.
- a minute defect (e.g., a standard particle) of an ideal shape that is sufficiently small in size relative to the illumination wavelength or optical resolution and present on the sample surface before the pattern is formed is scanned with the illumination spot BS, and multiple samplings are performed while the illumination spot BS passes over the defect, thereby obtaining a time series signal including multiple detection signals while the defect crosses the illumination spot BS once.
- the time series signal expected to be detected in this case has a profile that correlates with the illumination profile LD2 (FIG. 6).
- Model data of the defect having this time series distribution is stored in the model vector generation unit D21A.
- the profile of this model data is determined by the intensity of the illumination light and the relative speed (scanning speed) of the defect with respect to the illumination spot BS, and may be given in advance in multiple values according to the scanning speed, or may be generated by an operator based on the scanning speed.
- the model vector is generated based on the model data, and correlates with the time series signal expected to be detected when light from an ideal minute defect (e.g., a standard particle) is detected by a sensor.
- a window x1 having a time width corresponding to the width of the illumination profile LD2 is set for the time-series detection signal S11, and the time-series signal (detection signal set) sampled within this window x1 is converted into a vector signal to generate an observation vector.
- This observation vector is a vector whose components (feature quantities) are the time-series signals sampled at different timings, specifically the intensities of the detection signals sampled within the section of window x1, in other words, a vector whose components are the time-series signals obtained by sampling performed multiple times while the illumination spot BS crosses the point of interest.
- the model vector generation unit 21A generates an L-dimensional model vector based on the model data corresponding to the illumination profile LD2, and transmits the model vector to the similarity calculation unit D21B. f1301 shown in FIG. 13 shows this feature space.
- the model vector V-M1 generated by the model vector generation unit 21A is represented by a dotted line
- the observation vector V-X1 of the micro defect is represented by a solid line.
- the similarity c1 of the observation vector V-X1 to the model vector V-M1 is calculated.
- a value that is invariant to the norm change of the vectors V-X1 and V-M1, for example, the angle ⁇ between the vectors V-X1 and V-M1 can be used.
- values based on the angle ⁇ such as a modified Euclidean distance, cosine similarity, or values obtained by deep learning of these values, can also be used as the similarity c1.
- the window x1 is shifted sequentially in the time direction, and the similarity c1 is calculated for each window x1 and transmitted to the defect manifestation unit D3.
- the defect revealing unit D3 performs a nonlinear operation between the observation vector V-X1 and the model vector V-M1 based on the similarity c1 calculated by the model similarity calculation unit D2, and outputs a detection signal that nonlinearly changes the intensity of the input signal corresponding to the observation vector V-X1 to reveal a defect.
- the signal processing device D (defect revealing unit D3) acquires or calculates a gain that controls the intensity of the input signal corresponding to the observation vector V-X1 based on the similarity c1 between the observation vector V-X1 and the model vector V-M1, and calculates the detection signal based on the product of the input signal and the gain.
- the processing of the defect revealing unit D3 will be described below.
- the frequency of the noise is generally white, and the maximum SNR can be obtained by applying a filter with the same characteristics as the frequency of the signal profile.
- a nonlinear filter is applied as this filter.
- the optimal linear filter can be considered as a projection of the observation vector V-X1 between the model vector V-M1. In other words, it can be expressed as the inner product of the vectors V-X1 and V-M1.
- the angle between the vectors V-X1 and V-M1 is 0, the square norm of the observation vector V-X1 is output. On the other hand, when this angle is ⁇ /2 rad, this output value is 0.
- the filter applied in the present invention can be expressed as a nonlinear filter determined by the similarity c1.
- Figure 14 shows an example of a non-linear gain.
- f1401 is a graph with similarity c1 on the X-axis and gain on the Y-axis.
- Gain is a numerical value between 0 and 1.
- the angle ⁇ between vectors V-X1 and V-M1 ( Figure 13) is applied as similarity c1. Therefore, similarity c1 is highest when it is 0 (the characteristics of vectors V-X1 and V-M1 match), and decreases as it moves away from 0.
- the correspondence between similarity c1 and gain is set so that the gain corresponding to an arbitrary similarity c1 is larger than the gain corresponding to a similarity lower than the arbitrary similarity c1.
- gain curve P14-G1 shows cos ⁇ , and represents the same output as a linear filter.
- gain curves P14G2-P14G5 are set so that the gain is lower than gain curve P14G1 as c1 moves away from 0. This means that for detection signal waveforms that deviate greatly from the model vector V-M1, a small gain is given to the detection signal regardless of the signal strength (even if the signal strength is large), and noise is suppressed according to the similarity c1.
- the gain curves P14G4 and P14G5 are set so that the gain is not set low when the similarity c1 with the model is high, and the value drops sharply when the similarity c1 with the model falls below a preset allowable value. Since the waveform of the defect signal actually obtained changes depending on the adjustment state of the device, such a gain may be appropriate.
- P14G1 and P14G5 can be input to the defect revealing unit D3 as signal processing parameters, so that an appropriate gain curve can be obtained in actual operation.
- the gain curves in FIG. 14 can be prepared in advance, or can be calculated according to the scanning speed.
- the defect revealing unit D3 multiplies the length (light intensity) of the observation vector V-X1 projected onto the model vector V-M1 by a gain based on the gain curve in FIG. 14.
- the square norm of the observation vector V-X1 may be multiplied by a gain.
- it is expressed as a gain here it is also possible to achieve a similar effect by other methods.
- the maximum output can be obtained when the two vectors match. Therefore, after multiplying the gain so that the L2 norm of the model vector V-M1 is the same as the L2 norm of the observation vector V-X1, the difference between the vectors V-M1 and V-X1 is regarded as the similarity.
- the closer the vector difference is to 0, the higher the similarity It is also possible to configure a filter that calculates the output value of a Gaussian kernel for two vectors after gain correction, and outputs the product of this output value and the L2 norm of V-X1. In this configuration, the output value of the Gaussian kernel has the same effect as the gain.
- the signal processing device D performs the above process while moving the window x1 in the time direction, thereby calculating a time series signal S21 ( Figure 21), which is a detection signal in which noise has been suppressed and defects have been made apparent.
- the signal obtained through this process is integrated with signals made apparent by similar processing in other sensors, and input to the defect determination unit D4. Then, in the defect determination unit D4, defects in the sample are determined based on the made-up detection signal.
- defect inspection devices are being required to have the ability to detect extremely small defects.
- the inventors of the present application have focused on the fact that the scattered light intensity typically changes in proportion to the sixth power of the defect size, and that the scattered light intensity increases or decreases rapidly with a slight change in the defect size. Therefore, by evaluating the similarity between the model vector and the observation vector (for example, the angle between the vectors) as an index that is not easily affected by the intensity of the defect detection signal, and further applying a nonlinear weighting coefficient (gain) based on this index, it is possible to make the detection signal of a small defect hidden among the roughness scattered light, etc. apparent (time-series signal S21 in FIG. 12). This makes it possible to detect small and noisy defects quickly and with high sensitivity.
- Second Embodiment 15 is a processing block diagram of the main parts of a signal processing device D provided in a signal processing device 100 according to a second embodiment of the present invention.
- the hardware is the same as in the first embodiment, and only the signal processing device D is different from the first embodiment.
- simultaneous processing of input signals from a plurality of sensors is performed for the similarity determination process.
- the frequency separation unit D1 of this embodiment includes low-pass filters D11A and D12A, and difference calculation units D11B and D12B.
- the low-pass filter D11A and the difference calculation unit D11B function similarly in this embodiment.
- the low-pass filter D12A performs the same process as the low-pass filter D11A
- the difference calculation unit D12B performs the same process as the difference calculation unit D11B.
- the model similarity calculation D2 of this embodiment includes a model vector generation unit D21A-2 and a similarity calculation unit D21B-2.
- the model vector generation unit D21A-2 stores model data M1 and M2 of the illumination light profile, similar to the model vector generation unit D21A.
- the model data M1 corresponds to the input signal in1 from the first sensor
- the model data M2 corresponds to the input signal in2 from the second sensor.
- the first sensor and the second sensor are any sensors selected from the sensors C1P-CnP and C1S-CnS.
- this time series data is determined only by the profile in the s1 direction of the illumination spot BS, so the model data M1 and M2 are basically the same profile. Therefore, the model data M1 and M2 can be the same.
- the similarity calculation unit D21B-2 corresponds to the similarity calculation unit D21B in the first embodiment.
- the scattered light from a defect may not be scattered isotropically depending on the defect type. If the scattering is not isotropic, the signal strength from the defect may differ between the detection signal S11 by the first sensor and the detection signal S12 by the second sensor. However, even if the scattered light from the defect is not isotropic, there is a high possibility that a profile correlated with the model data M1 or the model data M2 will be observed at the time the defect is scanned. Focusing on this point, in this embodiment, a similarity determination is performed based on input signals from multiple sensors.
- FIG. 16 is an explanatory diagram of the similarity with the model vector in this embodiment.
- f1601 is a feature space, and has the same dimension as the sum of the sampling numbers of windows x1 and x2 shown in FIG. 15. Note that since the first sensor and the second sensor detect different scattered light from the same coordinates, it is necessary to normalize the noise distribution in advance so that it is similar before forming the feature space.
- V16-1 and V16-2 represent model vectors based on model data M1 and M2, respectively.
- V16-X represents an observation vector of a waveform observed by scanning.
- the observation vector V16-X is a vector whose components are signals (amount of light from the sample detected simultaneously at multiple different positions in the far field) of multiple sensors (first sensor and second sensor). Although the signal strength of the defect detected by the first sensor and the second sensor is unknown, if defect information based on the defect model is detected, the observation vector V16-X will be detected within a plane p1601 that includes the two vectors V16-1 and V16-2.
- the similarity c2 of the observation vector V16-X to the model can be found by calculating the angle ⁇ 2 between the observation vector V16-X and the plane p1601.
- the angle ⁇ 2 is an angle within a plane that includes the observation vector V16-X and is perpendicular to the plane p1601.
- the similarity calculation unit D21B-2 calculates the similarity c2 based on ⁇ 2.
- defect revealing parts D31A-2 and D32A-2 corresponding to the input signals in1 and in2, respectively, are included.
- the defect revealing parts D31A-2 and D32A-2 estimate light intensity by projecting an observation vector V16-X onto model vectors V16-1 and V16-2 which are models of the input signals in1 and in2, respectively, and multiply the light intensity by a gain (FIG. 14) based on the similarity c2 in the same manner as in the first embodiment, thereby suppressing noise with low similarity c2 to the model, and obtaining a detection signal S21 of the first sensor and a detection signal S22 of the second sensor in which a defect signal is revealed.
- this embodiment is similar to the first embodiment.
- the similarity c2 is determined using the outputs of multiple sensors, which allows for stronger model constraints than in the first embodiment, and a higher SNR can be expected compared to the first embodiment.
- FIG. 17 is a processing block diagram of the main part of the signal processing device D provided in the signal processing device 100 according to the third embodiment of the present invention.
- the hardware is the same as in the first embodiment, and only the signal processing device D is different from the first embodiment.
- the data processing units in FIG. 17 are arranged in parallel and the number of the data processing units is the same as the number of the sensors.
- the detection signal D11B-out shown in FIG. 17 is a two-dimensional map of the signal intensity obtained by the spiral scanning described in FIG. 2.
- the horizontal axis of the detection signal D11B-out represents time, and the vertical axis represents the spiral position (or r coordinate). In the spiral scanning as in FIG.
- the spiral scanning pitch in the S2 direction is typically set to 1/2 or less of the beam size in the longitudinal direction (i.e., S2 direction) defined by the intensity of exp(-2) of the peak light intensity of the illumination spot BS.
- the intensity profile of the defect signal obtained by detecting a typical micro defect is almost correlated with the intensity profile of the illumination spot BS.
- this intensity profile is applied as a model.
- the frequency separation unit D1 of this embodiment includes a low-pass filter D11A, a difference calculation unit D11B, and a memory unit D11C.
- the low-pass filter D11A and the difference calculation unit D11B perform the same processes as those in the first embodiment.
- the memory unit D11C holds high-frequency components of the detection light obtained by multiple spiral scans.
- the model similarity calculation unit D2 includes a model vector generation unit D21A-3, a model vector generation unit D21A-3, and a similarity calculation unit D21B-3.
- the model vector generation unit D21A-3 holds data on the beam profile of the illumination spot BS, and generates a model vector corresponding to the window area x3 of the map in D11B-out based on the scanning speed in the S1 direction of the sample to be inspected and the pitch of the spiral scan in the S2 direction.
- the pitch of the spiral scan in the S2 direction is typically coarse, about half the size of the illumination spot BS, so as shown in D21A-3-out, multiple different model vectors are generated by combining the illumination light and the assumed position of the defect.
- D21A-3-out shows multiple (four) examples of one-dimensional time series signals (data strings) only in the S2 direction.
- D21A-3-out shows an example of a one-dimensional data string in only the S2 direction, but the model vector generation unit D21A-3 generates a two-dimensional data string by combining the S2 direction profile with the S1 direction profile, and transmits it as a model vector to the similarity calculation unit D21B-3.
- the similarity calculation unit D21B-3 generates an observation vector from the signal sequence in the window x3, and calculates the similarity between the observation vector and the model vector.
- a calculation method a method of calculating the angle between the observation vector and the model vector, as in the first embodiment, cosine similarity, Euclidean distance, or a method using deep learning can be applied.
- the defect revealing unit D31A-3 calculates the nonlinear gain for the observation vector calculated from the window for evaluating the nonlinear gain described in FIG. 14 as in the first embodiment.
- the similarity calculation unit D21B-3 calculates a gain for each of the multiple similarities based on the nonlinear gain in order to calculate a plurality of similarities based on the illumination spot BS and the assumed defect position.
- the observation vector is projected onto the model vector and multiplied by the gain.
- the square norm of the observation vector may be multiplied by the gain.
- this embodiment is similar to the first embodiment.
- the data from a specific spiral scan was targeted, so if a defect is scanned at a position that is off in the S2 direction from the center of the illumination spot BS, the strength of the defect signal decreases, and the similarity with the model must be evaluated for defect signals with a weak amount of scattered light, and even signals that detect minute defects may be calculated with a low similarity.
- the similarity is calculated based on all scattered light intensities obtained from multiple spiral scans, making the system robust against this issue.
- FIG. 18 is a processing block diagram of the main part of the signal processing device D provided in the signal processing device 100 according to the fourth embodiment of the present invention.
- the hardware is the same as in the first embodiment, and only the signal processing device D is different from the first embodiment.
- the fourth embodiment is a combination of the second and third embodiments.
- a similarity with strong constraints is calculated by utilizing the structural characteristics of the defect inspection device 100 that simultaneously observes the same defect using the outputs of multiple sensors, thereby achieving a high SNR.
- FIG. 18 for the sake of simplicity, a case in which the similarity is calculated based on input signals from two sensors is described, but similar to the second embodiment, the outputs of up to N sensors can be used.
- the frequency separation unit D1 of this embodiment includes low-pass filters D11A and D12A, difference calculation units D11B and D12B, and memory units D11C and D12C.
- the low-pass filters D11A and D12A and the difference calculation units D11B and D12B have the same functions as those of the second embodiment.
- the memory units D11C and D12C like the memory unit D11C of the third embodiment, hold high-frequency components of input signals obtained by multiple revolutions of spiral scanning for each sensor.
- the model similarity calculation D2 of this embodiment includes a model vector generation unit D21A-4 and a similarity calculation unit D21B-2.
- the model vector generation unit D21A-4 holds data on the beam profile of the illumination spot BS, similar to the model vector generation unit D21A-3 of the third embodiment, and generates model data M3 and M4 based on the scanning speed of the illumination spot BS in the S1 direction and the pitch of the spiral scan in the S2 direction.
- the model data M3 is a beam profile detected by the first sensor
- the model data M4 is a beam profile detected by the second sensor, but since both sensors detect scattered light from the same illumination spot BS, no significant difference occurs, and the model data M3 and M4 can be the same.
- the similarity calculation unit D21B-4 evaluates the similarity by utilizing the fact that the detection signals from the two sensors are similar to the model vector at the same timing.
- the basic processing algorithm is the same as that of the second embodiment (FIG. 16), but here, as explained in the third embodiment, the difference is that there are multiple types of model vectors (four in FIG. 17), for example, as explained in FIG. 17 for D21A3-3-out.
- multiple planes (four in this example) in the multidimensional feature space determined by the two model vectors are generated depending on the positional relationship between the assumed illumination spot BS and the defect, and the deviation ( ⁇ ) of the observation vector with respect to these multiple planes is output as multiple similarities (four in this example).
- the number of planes is not limited to four, and can be set arbitrarily, for example, to two or eight.
- the similarity can be calculated using the angle ⁇ between the plane and the vector, as well as Euclidean distance, cosine similarity, and similar features output by deep learning.
- the defect revealing unit D31A-4 plays a role of revealing a defect signal for the output signal of the first sensor
- the defect revealing unit D32A-4 plays a role of revealing a defect signal for the output signal of the second sensor.
- the defect revealing unit D31A-4 projects an observation vector obtained by vectorizing the data of the window x4-1 of the detection signal D11B-out output by the difference calculation unit D11B onto a plurality of model vectors (four in this example) generated based on the model data M3, multiplies the observation vector by a gain based on the similarity calculated by the similarity calculation unit D21B-4, and obtains outputs in the same number as the number of model vectors generated from one window x4-1.
- This process is performed while moving the window x4-1 in the detection signal D11B-out in the time direction and the spiral number direction, thereby obtaining a two-dimensional map of the time series signal D31A-4-out, which is a detection signal in which a defect signal is revealed.
- the defect revealing section D32A-4 also executes the same process as the defect revealing section D31A-4 to obtain a two-dimensional map of the time-series signal D32A-4-out. These two maps are transferred to the defect determining section D4, where the defect determining process is executed.
- this embodiment is similar to the other embodiments.
- This embodiment achieves the combined effects of the second and third embodiments.
- Fifth Embodiment - Oblique imaging detection system - 19 is a schematic diagram of a scattered light detection system B1-Bn provided in a defect inspection apparatus 100 according to a fifth embodiment of the present invention.
- the scattered light detection system B1-Bn is partially different from the embodiments described above.
- the scattered light detection system B1-Bn is a light collection detection system, and the sensors C1P-CnP, C1S-CnS are point sensors, but in this embodiment, the scattered light detection system B1-Bn is an imaging detection system B", and the sensors C1P-CnP, C1S-CnS are line sensors CP", CS".
- this embodiment is similar to the first embodiment.
- the oblique imaging detection system B comprises an objective lens B1", a half-wave plate B2", a polarizing beam splitter B3", half-wave plates B4P” and B4S", and imaging lenses B5P" and B5S".
- the half-wave plate B2" can be rotated by a rotation mechanism (not shown), and the polarization direction of the light detected by the objective lens B1" can be rotated to the desired direction.
- the polarizing beam splitter B3" splits the detected light into two optical paths, one for P polarization and one for S polarization.
- the optical path for P polarization is lined with the half-wave plate B4P", the imaging lens B5P", and the line sensor CP".
- the optical path for S polarization is lined with the half-wave plate B4S", the imaging lens B5S", and the line sensor CS".
- the half-wave plates B4P", B4S" are each set on a rotation stage (not shown), and the polarization direction is rotated so as to optimize the detection efficiency of the line sensors CP", CS".
- the line sensors CP'', CS'' are inclined with respect to the optical axis of the oblique imaging detection system B'' so as to be conjugate with the illumination spot BS on the sample surface. Since the focal depth of the imaging detection system is shallower than that of the light collection detection system, in addition to the optical system provided in the first embodiment, a Z sensor is provided that measures the working distance between the sample surface and the detection optical system using the principle of an optical lever. A Z stage is also added to the stage ST so that the height between the top surface of the sample and the detection optical system can be changed.
- the control device E1 controls the working distance between the detection system and the sample surface to be constant on the order of micrometers based on the output value of the Z sensor.
- the spiral scanning of the stage ST has a scanning speed of several tens of meters per second, making it difficult to keep the working distance constant as expected.
- the imaging detection system B" becomes out of focus and the imaging position shifts.
- L1P, L3P, L4P, L6P, H2P, H3P, H5P, and H6P respectively indicate how the light incident on the apertures L1, L3, L4, L6, H2, H3, H5, and H6 ( Figure 7) and passing through the polarizing beam splitter B3" expands in the S2 direction on the line sensor when the working distance shifts ⁇ Z from the designed position (PSF).
- - Depth of focus of the illumination system - Fig. 21 shows the change in the spread of the image of the illumination spot BS on the sample surface in the S1 direction due to the shift ⁇ Z in the working distance.
- the width of the illumination spot BS in the S1 direction is reduced to a linear shape.
- the illumination spot BS does not shift but expands in response to ⁇ Z.
- the frequency separation unit D1 of this embodiment includes a low-pass filter D11A-2 and a difference calculation unit D11B-2.
- the low-pass filter D11A-2 is applied to the input signal D11A-2IN from the sensor in the S1 direction, i.e., in the time direction, to extract a low-frequency signal.
- the low-pass filter D11A-2 does not apply a filter in the S2 direction.
- the difference calculation unit D11B-2 subtracts the low-frequency signal obtained by the low-pass filter D11A-2 from the input signal D11A-2IN to obtain a detection signal D11B-2-out of high-frequency components from which low frequencies near the DC component have been removed.
- the model similarity calculation unit D2 of this embodiment includes a model vector generation unit D21A-5 and a similarity calculation unit D21B-5.
- the model vector generating unit D21A-5 holds model data M5-M7 of the defect profile obtained when the working distance ⁇ Z changes.
- the S2-direction profile of the model data M5-M7 is determined based on the PSF (point spread function) in FIG. 20, which shows the beam spread in the S2 direction for each sensor with respect to ⁇ Z, and the pixel size of the sensor.
- the S2-direction profile of the model data M5-M7 is determined by convolution of the PSF with a square wave representing the sensor pixel.
- the S1-direction profile of the model data M5-M7 is calculated based on the profile of the illumination spot BS (FIG.
- the convolution of the time-direction profile converted from the profile of the illumination spot BS based on the scanning speed and the square wave representing the exposure time of the sensor pixel becomes the model data M5-M7 to be applied to the signal processing. Since the scanning speed changes depending on the spiral position during inspection, the model data M5-M7 to be applied to the signal processing is changed according to the change in the scanning speed.
- the signal processing device D also receives the input signal D11A-2-IN from the sensor, along with the output value of the Z sensor at the time the signal was acquired.
- the model vector generation unit D21A-5 determines the deviation ⁇ Z from the design value of the working distance at the time of imaging of the input signal D11A-2-IN from the output value of the Z sensor, and determines which of the model data M5-M7 is appropriate.
- the model vector generation unit D21A-5 converts the profile of the determined model data into the scanning speed at that time, determines the model vector corresponding to the window x5, and transfers it to the similarity calculation unit D21B-5.
- the similarity calculation unit D21B-5 calculates the similarity of the observation vector to the model vector based on the evaluation value (the angle between the observation vector and the model vector, as well as cosine similarity, Euclidean distance, or evaluation value based on deep learning) based on the observation vector set from the data string in the window x5 and the model vector obtained from the model vector generation unit D21A-5.
- the position of the window x5 is changed in the S1 direction and the S2 direction, and the similarity is calculated for all of the detection signals D11B-2-out obtained by scanning.
- the defect revealing unit D31A-5 reveals a defect signal by multiplying the signal intensity of a vector within a window x5 of the detection signal D11B-2-out by a gain based on a nonlinear gain curve.
- this embodiment is similar to the first embodiment.
- the hardware is the same as in the fifth embodiment, and only the signal processing device D is different from the fifth embodiment.
- the fifth embodiment an example in which similarity is calculated for data of a specific revolution has been described, but in this embodiment, a change in the amount of detected light due to multiple revolutions of spiral scanning is added to the model data, and the constraints are strengthened to improve sensitivity.
- FIG. 23 is an explanatory diagram of overlapping illumination scanning according to the sixth embodiment of the present invention and the model vector based on it.
- the spiral pitch is set so that half of the illumination beam diameter defined by exp(-2) of the illumination peak overlaps in the S2 direction. This allows the same defect to be detected twice.
- the horizontal axis is the S2 direction
- p2301 represents the illumination light intensity in the i-th rotation
- p2302 represents the illumination light intensity in the i+1th rotation.
- scattered light p2301-a is detected in the i-th rotation scan
- scattered light p2301-b is detected in the i+1th rotation scan.
- the line sensor pixels are arranged in an array to form a light receiving section, and the expected detection light amount illum(i,r) for each r coordinate on the sample surface can be specified.
- i is the spiral number
- r is the r coordinate.
- Feature space f2302 shown at the bottom of the figure illustrates model vector V23-a obtained by spiral scanning in the i-th rotation and model vector V23-b obtained in the i+1th rotation for a defect on the sample surface whose center is the scanning trajectory of a specific pixel.
- the observation vector obtained from an ideal defect has the same vector components as model vector V23-c, which is a combination of these two model vectors V23-a and V23-b. Therefore, the similarity between observation vector V23-d and model vector V23-c can be calculated based on the angle ⁇ between the two vectors, cosine similarity, Euclidean distance, or an evaluation value obtained by deep learning, as in the respective embodiments described above. This series of processes will be explained using Figures 24 and 25.
- the 24 and 25 are processing block diagrams of the main parts of the signal processing device D provided in the signal processing device 100 according to this embodiment.
- the low-pass filter D11A-2, the difference calculation unit D11B-2, and the model vector generation unit D21A-5 are the same as those in the fifth embodiment.
- the model vector generation unit D21A-5 transmits a model vector to the model vector projection unit D11D.
- the model vector projection unit D11D outputs the light intensity D11D-out obtained by projecting the observation vector defined in the window x5 set in the same manner as in the fifth embodiment onto the model vector for the detection signal D11B-2-out output by the difference calculation unit D11B-2, and stores this in the memory unit D11C-6.
- the signal intensity calculation unit D11E outputs the map D11E-out of the square norm of the observation vector obtained from the window x5, and stores this in the memory unit D11C-6.
- the data stored in the memory unit D11C-6 is processed by the similarity calculation unit D21B-6 and then further processed by the defect manifestation unit D31A-6.
- FIG. 25 shows model vector projection maps D11C-6-a and D11C-6-b obtained by the i-th and i+1-th spiral scans stored in the memory unit D11C-6, and square norm maps D11C-6-c and D11C-6-d obtained by the i-th and i+1-th spiral scans.
- the similarity of the positions of each map is calculated from these maps using the vector angle ⁇ , cosine similarity, Euclidean distance, or deep learning, and transmitted to the defect revealing unit D31A-6.
- the defect revealing unit D31A-6 sets a nonlinear gain based on the similarity and reveals defects.
- this embodiment is similar to the other embodiments.
- the hardware is the same as that in the fifth embodiment, and only the signal processing device D is different from the fifth embodiment.
- the similarity with the model vector is calculated based on input signals from a plurality of sensors.
- a processing block diagram of the main parts of the signal processing device D provided in the signal processing device 100 according to the seventh embodiment of the present invention is shown in FIG.
- the frequency separation unit D1 of this embodiment includes low-pass filters D11A-2 and D12A, difference calculation units D11B-2 and D12B, model vector projection units D11D and D12D, and signal intensity calculation units D11E and D12E.
- the low-pass filters D11A-2 and D12A, difference calculation units D11B-2 and D12B, model vector projection units D11D and D12D, and signal intensity calculation units D11E and D12E execute the same processes as those of the sixth embodiment.
- the model similarity calculation D2 of this embodiment includes a model vector generation unit D21A-7 and a similarity calculation unit D21B-2.
- the model vector generation unit D21A-7 holds the profile of the detection system and the profile of the illumination system when the Z sensor is changed for each of the first and second sensors in the same manner as the model vector generation unit D21A-5.
- the illumination profile is generally observed in the same manner for each sensor, but the detection system detects from different orientations, and the working distance to the sample surface does not completely match in the adjusted state, so an assumed profile is prepared for each sensor.
- the model vector generation unit D21A-7 generates a model vector for each timing at which data is acquired based on the input Z sensor output and the scanning speed in the S1 direction at that time, and outputs the vector to the model vector projection units D11D and D12D.
- the model vector projection units D11D and D12D output the result of projecting the observation vector onto the input model vector to the memory unit D11C-3.
- the signal intensity calculation units D11E and D12E calculate the square norm within the window and transmit it to the memory unit D11C-3.
- the memory unit D11C-3 holds a map of the square norm and a map of the projection onto the model vector obtained by two adjacent rotations of the spiral scan in each sensor.
- D21B-7-in-1 and D21B-7-in-2 are maps calculated based on the data acquired by the first sensor and the second sensor, respectively.
- the similarity with the model vector is calculated based on the maps of D21B-7-in-1 and D21B-7-in-2.
- the vector direction determined by the position in the S2 direction between the two spiral scans described in FIG. 23 is set for the first and second sensors.
- the angle ⁇ between the plane containing these two vectors and the observation vector is calculated.
- the angle ⁇ may be used as the similarity, or a value converted using a method such as cosine similarity, Euclidean distance, or deep learning may be used as the similarity.
- the defect revealing units D3A-7-1 and D3A-7-2 reveal defects by multiplying a map in which the output of each sensor is projected onto a model vector or a map of square norm by a nonlinear gain determined for each data constituting the map. A common value of the nonlinear gain is applied to the two sensors, but the signal revealing the SNR of each sensor is output independently.
- the similarity is calculated for two sensors to suppress noise.
- the defect revealing units D3A-7-1 and D3A-7-2 calculate the similarity to the model from a combination of two sensors, but as in the previously described embodiment, the number of sensors is not limited to two. For example, it is also possible to calculate the similarity using the output of all sensors provided in the defect inspection device 100 and determine the nonlinear gain.
- the defect determination unit D4 will be described with reference to FIG. 27.
- the process of the defect determination unit D4 described below is not limited to this embodiment, and can be performed in other embodiments.
- the defect manifestation units D3A-7-1 to D3A-7-N output signals with suppressed noise for each sensor to the defect determination unit D4.
- the output signals from each sensor are mapped to a feature space with the same dimension as the number of sensors.
- V-f1 to N are output signals from each sensor.
- a known defect scattering distribution is given as a model, and the gain is maintained for signals with a high similarity to the model, and the gain of defects that are not similar is suppressed, thereby improving the detection sensitivity of the defect to be detected.
- the low-angle detector emits scattered light almost isotropically.
- This feature is represented by a model vector f-D4.
- the angle between the observation vector X-28 and the model vector f-D4 is calculated, and the gain is reduced as the angle moves away from 0. Since the important defects to be detected differ depending on the inspection, the gain is made controllable by the inspection parameters.
- this embodiment is similar to the other embodiments.
- FIG. 29 is a configuration diagram of a defect inspection apparatus 200 according to the eighth embodiment of the present invention.
- the defect inspection device 200 of this embodiment is a device that captures an external image of the sample 10 and uses the external image to inspect defects in the sample 10.
- the defect inspection device 200 and the signal processing device D-B are described separately below, but they can also be configured as an integrated device or can be interconnected via an appropriate communication line.
- the sample 10 is an object to be inspected, such as a semiconductor wafer.
- the stage ST3 is composed of a combination of three stages that mount the sample 10 and move in a straight line in each of the X, Y and Z directions, and a rotating stage that rotates the wafer.
- a Z sensor (not shown) measures the height of the surface of the sample to be inspected, controls the stage that moves in a straight line in the Z direction, and keeps the working distance between the optical system and the sample surface constant.
- the upper detection system 241 and the oblique detection system 242 form an image of the scattered light from the sample 10.
- the image sensors 261 and 262 receive the optical images formed by each detection system and convert them into image signals.
- a line sensor is used as the image sensor.
- a typical line sensor in which the light receiving parts are arranged one-dimensionally or a TDI sensor arranged two-dimensionally can be applied. In this embodiment, a TDI sensor is applied.
- An analyzer 252 is arranged in front of the image sensor 261. A two-dimensional image of the sample 10 can be obtained by detecting the scattered light while moving the stage ST3 in the horizontal direction.
- the light source for the illumination optical systems 231 and 232 may be a laser or a lamp.
- the wavelength of each light source may be a single wavelength or may be broadband wavelength light (white light).
- ultraviolet light Ultra Violet Light
- the illumination optical systems 231 and 232 may also be equipped with a means for reducing coherence.
- the polarization state of the illumination light incident on the sample 10 can be changed.
- the control device E1 controls the overall operation of the defect inspection device 200, including each illumination optical system and each image sensor.
- the signal processing device D-B can be connected to the defect inspection device 200 via the control device E-1.
- the signal processing device D-B has an image processing unit D-B1, a defect determination unit D-B2, an image storage unit D-B3, an extraction condition calculation unit D-B4, an extraction condition storage unit D-B5, and a display unit D-B6.
- Each of the above functional units is a function that is realized by the memory of the processor and by executing a program on the processor.
- the image processing unit D-B1 acquires an external image of the sample 10 via the control unit E-1, and performs the processing described later in FIG. 31.
- the defect determination unit D-B2 extracts defects in the sample 10 based on the feature amounts of the external image, according to the extraction conditions described in the extraction condition data stored in the extraction condition storage unit D-B5.
- the image storage unit D-B3 stores a feature amount image representing the feature amounts of the sample 10, the determination results by the defect determination unit D-B2, etc.
- the extraction condition calculation unit D-B4 calculates new defect extraction conditions according to the procedure described later, and the defect determination unit D-B2 extracts defects using those conditions.
- the display unit D-B6 displays and outputs the processing results by the signal processing device D-B, such as the determination results by the defect determination unit D-B2, on the monitor E3 (FIG. 1).
- Figure 30 is a top view showing an example of sample 10.
- sample 10 is, for example, a semiconductor wafer
- identical semiconductor chips (dies) 111 to 115 are formed on sample 10.
- Memory areas 1151-1, 1151-2, and 1151-3 and a peripheral circuit area 1152 are formed on semiconductor chip 115.
- Defect inspection device 100 acquires an external image while moving stage ST3 in a direction perpendicular to illumination line (scanning line) 1153, which is an illumination spot.
- Signal processing device D-B extracts defects by comparing the images of semiconductor chips 111 to 115 with each other. Details will be described later.
- FIG. 31 is a configuration diagram of the internal calculation block provided in the signal processing device D-B.
- the signal processing device D-B has the internal calculation block of FIG. 31 for each detection system provided in the defect inspection device 200, and processes the appearance image detected by each detection system individually.
- the internal calculation block 302a is shown as an example, which processes the appearance image detected by the first detection system (e.g., upper detection system 141).
- the other internal calculation blocks have the same configuration, so alphabetical suffixes are used when it is necessary to distinguish between them. The same applies to the drawings described later.
- the internal calculation block 302a receives pixel values 301a of the appearance image of the sample 10 and stores them in the image memory 311 to generate an inspection target image (e.g., semiconductor chip 111) 302. Similarly, a comparison target image is generated.
- an adjacent image e.g., semiconductor chips 112 to 115
- a similar image within the same die 303-2 e.g., memory areas 1151-1 to 1151-3 of the same design formed within the same semiconductor chip
- the similar image within the die is close to the inspection target, an image that is more similar to the inspection target can be expected. Therefore, when a similar image within the same die similar to the inspection target area can be obtained, the similar image within the same die 303-2 is used as the comparison target image, and when such an image is not available, the adjacent image 303-1 is used as the comparison target image.
- the position shift calculation unit 312 calculates the amount of position shift between the inspection target image 302 and the adjacent image 303, for example, by calculating the normalized correlation between the two images.
- the alignment unit 313 aligns the positions of the inspection target image 302 or the adjacent image 303 by moving them according to the amount of position shift.
- the reference image synthesizer 314-1 generates a reference image composed of, for example, the median value of the pixel values (brightness values) of multiple adjacent images 303.
- the reference image synthesizer 314-2 which is independent of this, synthesizes a reference image using only the inspection target image 302. For example, semiconductor chips are often composed of locally repeated identical patterns, and the reference image is synthesized by taking the median value of the brightness values by utilizing the repetition of the same patterns.
- an image of uniform brightness obtained by taking the median value of the unresolved image area may be used as the reference image.
- Examples of this include line patterns and memory cell sections with a wiring pitch of several tens of nanometers. If a UV laser is used as the illumination light source for 131 and 132, the wavelength size is 200 nm or more, so line patterns and memory cell sections with a pitch of several tens of nanometers cannot be resolved and are generally imaged as extremely dark uniform areas.
- Reference image synthesizer 314-3 synthesizes the final reference image based on the reference images input from reference image synthesizers 314-1 and 314-2.
- a reference image can be synthesized in the vicinity of the inspection target, an approximation image that is most appropriate as a normal part of the inspection target can be obtained, so the output of reference image synthesizer 314-2 is applied as the reference image, and if this cannot be obtained, the output of reference image synthesizer 314-1 is applied as the reference image. Also, although not shown, it is possible to configure the configuration so that the outputs of both reference image combiners 314-1 and 314-2 are applied as reference images, and two comparison image processes are performed for one inspection target image using different reference images.
- the difference calculation unit D1-B creates a difference image by calculating the difference between the inspection target image 302 and the reference image.
- the model vector generation unit D21A-B stores defect model data M8-M10.
- the defect model vector is calculated by convolution of the PSF of the detection system and a rectangular pattern representing the pixel size for both the S1 and S2 directions.
- the deviation ⁇ Z from the ideal working distance is input from the Z sensor, and the model data is changed according to the deviation ⁇ Z to calculate the model vector.
- the similarity calculation unit D21B-B calculates the similarity based on the angle between the observation vector obtained from the data string in the set window in the difference calculation unit D1-B and the model vector generated by the model vector generation unit D21A-B.
- FIG. 32 The processing of the defect revealing unit D3A-B will be explained using FIG. 32.
- V-f1 to V-f3 are the coordinate axes of the feature space
- f-D4 is the model vector generated by the model vector generating unit D21A-B.
- X-32 is the observation vector to be evaluated. Statistically, there are not an extremely large number of defects in the sample 10 to be inspected, and most are normal. Therefore, the variation in the feature space of this normal point group is calculated.
- Examples of the method of calculating the variation include a method using K times the standard deviation of the same design part, or a maximum value by Poisson distribution estimation.
- morphological processing such as taking the maximum value of N neighborhoods for the map subjected to these statistical processing may be adopted. This determines the variance for each pixel in the window, and then normalizes the variance so that the variance for all pixels is the same.
- the observation vector X-32 is transformed into X-32'
- the model vector f-D4 is transformed into f-D4'.
- the distribution of normal data also changes.
- the similarity can be calculated based on the angle ⁇ between the model vector f-D4' and the observation vector X-32'.
- the defect revealing unit D3A-B reveals the defects.
- the nonlinear gain explained in FIG. 14 is applied as the revealing gain.
- the gain can be applied to either the normalized observed data or the data projected onto the model vector.
- this embodiment is similar to the other embodiments.
- processing of the output of a specific sensor has been described, but as in the other embodiments, it is also possible to use a method that uses the output of multiple image sensors, or to apply overlapping results to calculate similarity and gain.
- the present invention is not limited to the above-described embodiments, and includes various modified examples.
- the above-described embodiments have been described in detail to easily explain the present invention, and all of the configurations described are not necessarily required. It is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
- an example has been described in which the invention is applied to a defect inspection device that detects light from a sample using multiple sensors, but the present invention can also be applied to a defect inspection device that has only one sensor that detects light from a sample.
- the above configurations, functions, processing units, processing means, etc. may be realized in part or in whole by hardware, such as an integrated circuit.
- the above configurations, functions, etc. may be realized by software, with a processor interpreting and executing a program that realizes each function.
- Information on the programs, tables, files, etc. that realize each function may be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or on a recording medium such as a flash memory card or a DVD (Digital Versatile Disk).
- control lines and information lines are those that are considered necessary for the explanation, and not all control lines and information lines in the product are necessarily shown. In reality, it can be considered that almost all components are interconnected.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
本発明は、試料面を検査し、欠陥の位置、種類、寸法等を出力する欠陥検査装置に関する。 The present invention relates to a defect inspection device that inspects sample surfaces and outputs the location, type, dimensions, etc. of defects.
半導体基板や薄膜基板等の製品の歩留りを向上させるため、製造ラインで製造される半導体基板や薄膜基板等を試料として、試料面の異物や凹み等の欠陥が検査される。この検査に用いる欠陥検査装置として、試料面からの散乱光を位置の異なる複数のセンサで同時に検出し、欠陥の位置や形状、サイズ等について詳細にデータを取得するものが知られている(特許文献1等参照)。
In order to improve the yield of products such as semiconductor substrates and thin film substrates, the semiconductor substrates and thin film substrates produced on the production line are used as samples, and the sample surfaces are inspected for defects such as foreign bodies and dents. A defect inspection device used for this inspection is known that simultaneously detects scattered light from the sample surface with multiple sensors at different positions, and obtains detailed data on the position, shape, size, etc. of defects (see
例えば、半導体製造プロセスで使用する各種溶液には、15nm以下の極めて小さな異物が混入する場合がある。近年、欠陥検査装置には、こうした極微小な欠陥の検出性能が求められつつある。特許文献1の欠陥検査装置では、照明スポットに対する方向が異なる複数の検出系で照明スポットからの散乱光を同時に検出することにより、欠陥について多くのデータが得られる。欠陥からの散乱光量は欠陥サイズの約6乗に比例するため、検査対象とする欠陥の微細化すると欠陥からの検出光量は急激に低下する。
For example, extremely small foreign matter of 15 nm or less may be mixed into various solutions used in semiconductor manufacturing processes. In recent years, there has been an increasing demand for defect inspection devices to be able to detect such extremely small defects. The defect inspection device of
15nm以下の微小な重要欠陥からの散乱光は微弱であるため、これら微細な重要欠陥の検出においては試料面の微小な凹凸で生じるラフネス散乱光が障害となり得る。表面を研磨した鏡面ウェハに照明光を当てて得られるラフネス散乱光には統計的なばらつきがあり、センサで検出されるとショットノイズとして観測される。この結果、欠陥からの検出光はノイズに紛れてしまい、高速な検査が困難になる。 Since the scattered light from tiny critical defects of 15 nm or less is weak, the roughness scattered light caused by minute irregularities on the sample surface can be an obstacle to the detection of these tiny critical defects. The roughness scattered light obtained by shining illumination light on a polished mirror wafer has statistical variation, and is observed as shot noise when detected by a sensor. As a result, the detection light from the defect is lost in the noise, making high-speed inspection difficult.
これに対し、特許文献1の技術では、試料にレーザ光を走査し、試料面上の照明スポットからの光の検出信号から欠陥以外で発生する低周波成分を除去し、試料面の欠陥の大きさを算出する方法が開示されている。具体的には、試料ステージの回転数等から求まる欠陥の検出信号の半値幅を基に規定監視時間幅を算出し、強度がしきい値以上の期間が規定監視時間幅以上である信号を欠陥の検出信号として抽出し、これ以外の低レベルノイズ信号等を除去している。
In response to this, the technology in
しかし、この先行技術では、散乱光量の低下による信号自体の統計的なばらつきについての考慮が不足している。極微細な欠陥からの散乱光量は、試料面からのラフネス散乱光量より低い場合も少なくない。試料面のラフネスからの光量も小さく、センサで検出されるショットノイズのSNは検出光量の平方根に比例するため、微小欠陥からの検出光量はノイジーになる。先行技術のように信号強度を単純にしきい値と比較して欠陥の検出信号を弁別する方法では、弁別される検出信号が欠陥の検出信号であると判断できる程度に高輝度である必要があり、ラフネス散乱光との輝度差が不明瞭な微小でノイジーな欠陥を弁別することは困難である。 However, this prior art does not take into consideration the statistical variation of the signal itself due to a decrease in the amount of scattered light. The amount of scattered light from extremely small defects is often lower than the amount of roughness scattered light from the sample surface. The amount of light from roughness on the sample surface is also small, and the signal-to-noise ratio of the shot noise detected by the sensor is proportional to the square root of the amount of detected light, so the amount of detected light from minute defects is noisy. In the prior art method of discriminating defect detection signals by simply comparing signal intensity with a threshold value, the detection signal to be discriminated needs to be bright enough to be able to be determined to be a defect detection signal, and it is difficult to discriminate tiny, noisy defects whose brightness difference with the roughness scattered light is unclear.
本発明の目的は、微小でノイジーな欠陥を高感度に検出することができる欠陥検査装置を提供することにある。 The object of the present invention is to provide a defect inspection device that can detect minute and noisy defects with high sensitivity.
上記目的を達成するために、本発明は、試料からの光を基に前記試料の欠陥を検査する欠陥検査装置において、前記試料からの光を検出する1つ以上のセンサと、前記センサからの入力信号を処理する信号処理装置とを備え、前記信号処理装置は、前記センサからの入力信号に基づく観測ベクトルと、欠陥に係るモデルベクトルとの類似度を算出し、前記類似度を基に前記観測ベクトルに対応する前記入力信号の強度を非線形に変化させた検出信号を算出し、前記検出信号に基づき前記試料の欠陥を判定する欠陥検査装置を提供する。 In order to achieve the above object, the present invention provides a defect inspection device that inspects a sample for defects based on light from the sample, the defect inspection device comprising one or more sensors that detect the light from the sample, and a signal processing device that processes an input signal from the sensor, the signal processing device calculates a similarity between an observation vector based on the input signal from the sensor and a model vector related to the defect, calculates a detection signal by nonlinearly changing the intensity of the input signal corresponding to the observation vector based on the similarity, and determines defects in the sample based on the detection signal.
本発明によれば、微小でノイジーな欠陥を高感度に検出することができる。 The present invention makes it possible to detect minute and noisy defects with high sensitivity.
以下に図面を用いて本発明の実施形態を説明する。 The following describes an embodiment of the present invention using the drawings.
以下の実施形態で本発明の適用対象として説明する欠陥検査装置は、例えば半導体等の製造工程の間で実施する試料(ウェハ)の表面の欠陥検査に使用される。各実施形態に係る欠陥検査装置によれば、微小欠陥の検出、欠陥の個数・位置・寸法・種類に関するデータの取得の処理を高速に実行するのに適している。なお、本発明は、照明スポット走査型のレーザ散乱方式、結像型のレーザ散乱方式、又は走査電子顕微鏡等、多様な方式の欠陥検査装置に適用可能である。 The defect inspection device described in the following embodiments as an application of the present invention is used for defect inspection of the surface of a sample (wafer) performed during the manufacturing process of, for example, semiconductors. The defect inspection device according to each embodiment is suitable for quickly detecting minute defects and acquiring data on the number, position, size, and type of defects. The present invention can be applied to defect inspection devices of various types, such as an illumination spot scanning type laser scattering type, an imaging type laser scattering type, or a scanning electron microscope.
(第1実施形態)
-欠陥検査装置-
図1は本発明の第1実施形態に係る欠陥検査装置の一構成例の概略図である。本実施形態に係る欠陥検査装置100は、試料1を検査対象とし、この試料1の表面(以下、試料面と記載する)からの光を基に、試料1の異物や凹み等の欠陥、特に検査目的に応じた種類の欠陥を検出し検査する。試料1としては、パターンが形成されていない平坦な表面を持つ円板状の半導体シリコンウェハが代表例として想定される。欠陥検査装置100は、ステージST、散乱光照明系A、複数(n個)の散乱光検出系B1-Bn、信号処理装置D、制御装置E1、ユーザーインターフェースE2、モニタE3、二次記憶装置DBを含んで構成されている。散乱光検出系B1-Bnは、それぞれセンサC1P-CnP,C1S-CnSを含む。散乱光検出系Biと記載する場合には、i番目の散乱光検出系Biを指す。センサCiPと記載する場合には、散乱光検出系BiのP偏光の光を検出するセンサを指す。同様に、センサCiSと記載する場合には、散乱光検出系BiのS偏光の光を検出するセンサを指す。
First Embodiment
- Defect inspection equipment -
FIG. 1 is a schematic diagram of a configuration example of a defect inspection apparatus according to a first embodiment of the present invention. The
-ステージ-
ステージSTは、試料台ST1と走査装置ST2を含んで構成されている。試料台ST1は試料1を支持する台である。走査装置ST2は試料台ST1を駆動して試料1と散乱光照明系Aの相対位置を変化させる装置であり、詳しく図示していないが、並進ステージ、回転ステージ、Zステージを含んで構成されている。並進ステージにZステージを介して回転ステージが支持され、回転ステージに試料台ST1が支持された構成である。並進ステージは回転ステージと共に水平方向に並進移動し、回転ステージが上下に延びる軸心を中心にして回転する。Zステージは試料面の高さ調整の機能を果たす。
-stage-
The stage ST includes a sample stage ST1 and a scanning device ST2. The sample stage ST1 is a stage that supports the
図2は走査装置ST2による試料1の走査軌道を表した模式図である。後述するが、散乱光照明系Aから出射される照明光により試料面に形成される照明スポットBSは、同図に示すように一方向に長い照明強度分布を持つ。照明スポットBSの長軸方向をs2、長軸に交わる方向(例えば長軸に直交する短軸方向)をs1とする。回転ステージの回転に伴って試料1が回転し照明スポットBSが試料面に相対してs1方向に走査され、並進ステージの並進に伴って試料1が水平方向に移動し照明スポットBSが試料面に相対してs2方向に走査される。走査装置ST2の動作により試料1が回転しながら移動することで、図2に示すように、試料1の中心から外縁まで螺旋状の軌跡を描いて照明スポットBSが移動して試料1の全表面が走査される。照明スポットBSは、試料1が1回転する間に照明スポットBSのs2方向の長さ以下の距離だけs2方向へ移動する。
Figure 2 is a schematic diagram showing the scanning trajectory of the
なお、並進ステージの移動軸と水平面内で交わる方向に移動軸を延ばしたもう1つの並進ステージを回転ステージに代えて備えた構成の走査装置を適用することもできる。この場合、図3に示したように、照明スポットBSは螺旋軌道ではなく直線軌道を折り重ねて試料面を走査する。具体的には、第1の並進ステージをs1方向に定速で並進駆動し、第2の並進ステージを所定距離(例えば照明スポットBSのs2方向の長さ以下の距離)だけs2方向に駆動した後、再び第1の並進ステージをs1方向に折り返して並進駆動する。これにより照明スポットBSがs1方向への直線走査とs2方向への移動を繰り返して試料1の全表面を走査する。この走査方式に比べ、図2に示した螺旋走査方式は往復動作を伴わないので短時間で試料の検査を実行する上で有利である。
It is also possible to apply a scanning device having a configuration in which, instead of a rotation stage, another translation stage whose movement axis extends in a direction intersecting with the movement axis of the translation stage in a horizontal plane is provided. In this case, as shown in FIG. 3, the illumination spot BS scans the sample surface by folding over a linear trajectory instead of a spiral trajectory. Specifically, the first translation stage is driven in translation at a constant speed in the s1 direction, the second translation stage is driven in the s2 direction by a predetermined distance (for example, a distance equal to or less than the length of the illumination spot BS in the s2 direction), and then the first translation stage is turned back in the s1 direction and driven in translation again. As a result, the illumination spot BS repeats linear scanning in the s1 direction and movement in the s2 direction to scan the entire surface of the
-散乱光照明系-
図1に示した散乱光照明系Aは、試料台ST1に載せた試料1に所望の照明光を照射するために光学素子群を含んで構成されている。この散乱光照明系Aは、図1に示したように、レーザ光源A1、アッテネータA2、出射光調整ユニットA3、ビームエキスパンダA4、偏光制御ユニットA5、集光光学ユニットA6、反射ミラーA7-A10等を備えている。
- Scattered light illumination system -
The scattered light illumination system A shown in Fig. 1 is configured to include a group of optical elements for irradiating a desired illumination light onto a
・レーザ光源
レーザ光源A1は、照明光としてレーザビームを出射するユニットである。欠陥検査装置100で試料面近傍の微小な欠陥を検出する場合、試料1の内部に浸透し難い短波長(波長355nm以下)の紫外又は真空紫外で出力2W以上の高出力のレーザビームを発振するものがレーザ光源A1として用いられる。レーザ光源A1が出射するレーザビームの直径は、代表的には1mm程度である。欠陥検査装置100で試料1の内部の欠陥を検出する場合、波長が長く試料1の内部に浸透し易い可視又は赤外のレーザビームを発振するものがレーザ光源A1として用いられる。
Laser light source The laser light source A1 is a unit that emits a laser beam as illumination light. When the
・アッテネータ
図4はアッテネータA2を抜き出して表した模式図である。アッテネータA2はレーザ光源A1からの照明光の光強度を減衰させるユニットであり、本実施形態では、第1偏光板A2a、1/2波長板A2b、第2偏光板A2cを組み合わせた構成を例示している。1/2波長板A2bは、照明光の光軸周りに回転可能に構成されている。アッテネータA2に入射した照明光は、第1偏光板A2aで直線偏光に変換された後、1/2波長板A2bの遅相軸方位角に偏光方向が調整されて第2偏光板A2cを通過する。1/2波長板A2bの方位角調整により、照明光の光強度が任意の比率で減衰されるようにすることができる。アッテネータA2に入射する照明光の直線偏光度が十分に高い場合は、第1偏光板A2aは省略可能である。なお、アッテネータA2としては、図4に例示した構成に限らず、グラデーション濃度分布を持つNDフィルタを用いて構成することもでき、濃度の異なる複数のNDフィルタの組み合わせにより減衰効果が調整可能な構成とすることもできる。
Attenuator FIG. 4 is a schematic diagram showing the attenuator A2. The attenuator A2 is a unit that attenuates the light intensity of the illumination light from the laser light source A1. In this embodiment, the attenuator A2 is a combination of a first polarizing plate A2a, a half-wave plate A2b, and a second polarizing plate A2c. The half-wave plate A2b is configured to be rotatable around the optical axis of the illumination light. The illumination light incident on the attenuator A2 is converted into linearly polarized light by the first polarizing plate A2a, and then the polarization direction is adjusted to the slow axis azimuth angle of the half-wave plate A2b and passes through the second polarizing plate A2c. The light intensity of the illumination light can be attenuated at an arbitrary ratio by adjusting the azimuth angle of the half-wave plate A2b. If the linear polarization degree of the illumination light incident on the attenuator A2 is sufficiently high, the first polarizing plate A2a can be omitted. Note that the attenuator A2 is not limited to the configuration illustrated in FIG. 4, but can also be configured using an ND filter having a gradation density distribution, and can also be configured in such a way that the attenuation effect can be adjusted by combining multiple ND filters with different densities.
・出射光調整ユニット
図1に示した出射光調整ユニットA3は、アッテネータA2で減衰した照明光の光軸の角度を調整するユニットであり、本実施形態では複数の反射ミラーA3a,A3bを含んで構成されている。反射ミラーA3a,A3bで照明光を順次反射する構成であるが、本実施形態では、反射ミラーA3aに対する照明光の入射・出射面が、反射ミラーA3bに対する照明光の入射・出射面に直交するように構成されている。入射・出射面とは、反射ミラーに入射する光軸と反射ミラーから出射される光軸を含む面である。例えば三次元のXYZ直交座標系を定義し、反射ミラーA3aに照明光が+X方向に入射するとした場合、模式的な図1とは異なるが、例えば照明光は反射ミラーA3aで+Y方向に、その後反射ミラーA3bで+Z方向に変向する。反射ミラーA3aに対する照明光の入射・出射面がXY平面、反射ミラーA3bに対する入射・出射面がYZ平面となる例である。そして、反射ミラーA3a,A3bには、図示していないが反射ミラーA3a,A3bをそれぞれ並進移動させる機構及びチルトさせる機構が備わっている。反射ミラーA3a,A3bは、例えば自己に対する照明光の入射方向又は出射方向に平行移動し、また入射・出射面との法線周りにチルトする。これにより、例えば出射光調整ユニットA3から+Z方向に出射する照明光の光軸について、XZ平面内におけるオフセット量及び角度と、YZ面内におけるオフセット量及び角度とを独立して調整することができる。本例では2枚の反射ミラーA3a,A3bを使用した構成を例示しているが、3枚以上の反射ミラーを用いた構成としても構わない。
Emitted light adjustment unit The emitted light adjustment unit A3 shown in FIG. 1 is a unit that adjusts the angle of the optical axis of the illumination light attenuated by the attenuator A2, and in this embodiment, it is configured to include multiple reflecting mirrors A3a and A3b. The reflecting mirrors A3a and A3b sequentially reflect the illumination light, but in this embodiment, the incident and exit surfaces of the illumination light to the reflecting mirror A3a are configured to be perpendicular to the incident and exit surfaces of the illumination light to the reflecting mirror A3b. The incident and exit surfaces are surfaces that include the optical axis incident on the reflecting mirror and the optical axis emitted from the reflecting mirror. For example, if a three-dimensional XYZ orthogonal coordinate system is defined and the illumination light is incident on the reflecting mirror A3a in the +X direction, the illumination light is redirected in the +Y direction by the reflecting mirror A3a and then in the +Z direction by the reflecting mirror A3b, although this is different from the schematic FIG. 1. In this example, the incident and exit surfaces of the illumination light to the reflecting mirror A3a are the XY plane, and the incident and exit surfaces to the reflecting mirror A3b are the YZ plane. The reflecting mirrors A3a and A3b are provided with a mechanism for translating and tilting the reflecting mirrors A3a and A3b, respectively, although not shown. The reflecting mirrors A3a and A3b translate, for example, in the incident or outgoing direction of the illumination light with respect to themselves, and tilt around the normal to the incident and outgoing surfaces. This allows, for example, the offset amount and angle in the XZ plane and the offset amount and angle in the YZ plane of the optical axis of the illumination light emitted in the +Z direction from the outgoing light adjustment unit A3 to be independently adjusted. In this example, a configuration using two reflecting mirrors A3a and A3b is illustrated, but a configuration using three or more reflecting mirrors may be used.
・ビームエキスパンダ
ビームエキスパンダA4は入射する照明光の光束直径を拡大するユニットであり、複数のレンズA4a,A4bを有する。レンズA4aとして凹レンズ、レンズA4bとして凸レンズを用いたガリレオ型をビームエキスパンダA4の一例として挙げることができる。ビームエキスパンダA4にはレンズA4a,A4bの間隔調整機構(ズーム機構)が備わっており、レンズA4a,A4bの間隔を調整することで光束直径の拡大率が変わる。ビームエキスパンダA4による光束直径の拡大率は例えば5-10倍程度であり、この場合、レーザ光源A1から出射した照明光のビーム径が1mmであるとすると、照明光のビーム系が5-10mm程度に拡大される。ビームエキスパンダA4に入射する照明光が平行光束でない場合、レンズA4a,A4bの間隔調整によって光束直径と併せてコリメート(光束の準平行光化)も可能である。但し、光束のコリメートについては、ビームエキスパンダA4の上流にビームエキスパンダA4とは別個にコリメートレンズを設置して行う構成としても良い。
Beam Expander The beam expander A4 is a unit that expands the diameter of the luminous flux of the incident illumination light, and has a plurality of lenses A4a and A4b. An example of the beam expander A4 is a Galilean type that uses a concave lens as the lens A4a and a convex lens as the lens A4b. The beam expander A4 is provided with a mechanism for adjusting the distance between the lenses A4a and A4b (zoom mechanism), and the expansion rate of the luminous flux diameter changes by adjusting the distance between the lenses A4a and A4b. The expansion rate of the luminous flux diameter by the beam expander A4 is, for example, about 5-10 times. In this case, if the beam diameter of the illumination light emitted from the laser light source A1 is 1 mm, the beam system of the illumination light is expanded to about 5-10 mm. If the illumination light incident on the beam expander A4 is not a parallel luminous flux, collimation (quasi-parallelization of the luminous flux) is also possible in addition to the luminous flux diameter by adjusting the distance between the lenses A4a and A4b. However, the collimation of the light beam may be performed by disposing a collimating lens upstream of the beam expander A4 separately from the beam expander A4.
なお、ビームエキスパンダA4は、2軸(2自由度)以上の並進ステージに設置され、入射する照明光と中心が一致するように位置調整ができるように構成されている。また、入射する照明光と光軸が一致するように、ビームエキスパンダA4には2軸(2自由度)以上のあおり角調整機能も備わっている。 Beam expander A4 is installed on a translation stage with two or more axes (two degrees of freedom) and is configured so that its position can be adjusted so that its center coincides with the incident illumination light. Beam expander A4 also has a swing angle adjustment function with two or more axes (two degrees of freedom) so that the incident illumination light coincides with the optical axis.
・偏光制御ユニット
偏光制御ユニットA5は照明光の偏光状態を制御する光学系であり、1/2波長板A5a及び1/4波長板A5bを含んで構成されている。例えば、後述する反射ミラーA7を光路に入れて斜入射照明を行う場合、偏光制御ユニットA5により照明光をP偏光とすることで、P偏光以外の偏光に比べて試料面上の欠陥からの散乱光量が増加する。試料自体の表面の微小な凹凸からの散乱光(ヘイズと称する)が微小欠陥の検出の妨げとなる場合には、照明光をS偏光とすることで、S偏光以外の偏光と比べてヘイズを減少させることができる。偏光制御ユニットA5により照光を円偏光やP偏光とS偏光の中間の45度偏光にすることも可能である。
Polarization control unit The polarization control unit A5 is an optical system that controls the polarization state of the illumination light, and is configured to include a 1/2 wavelength plate A5a and a 1/4 wavelength plate A5b. For example, when performing oblique incidence illumination by inserting a reflecting mirror A7 described later into the optical path, the amount of scattered light from defects on the sample surface is increased by making the illumination light P-polarized by the polarization control unit A5 compared to polarization other than P polarization. If scattered light (called haze) from minute irregularities on the surface of the sample itself hinders the detection of minute defects, the haze can be reduced by making the illumination light S-polarized compared to polarization other than S polarization. The polarization control unit A5 can also make the illumination light circularly polarized or 45-degree polarized, which is intermediate between P polarization and S polarization.
・反射ミラー
図1に示したように、反射ミラーA7は、駆動機構(不図示)により矢印方向に平行移動して試料1に向かう照明光の光路から出入りし、試料1に対する照明光の入射経路を切り替えることができる。反射ミラーA7を光路に挿入することで、上記の通り偏光制御ユニットA5から出射した照明光は、反射ミラーA7で反射されて集光光学ユニットA6及び反射ミラーA8を介し試料1に斜めに入射する。他方、反射ミラーA7を光路から外すと、偏光制御ユニットA5から出射した照明光は、反射ミラーA9,A10、偏光制御ユニットB2’、反射ミラーB1’、散乱光検出系B3を介して試料1に垂直に入射する。偏光制御ユニットB2’は,偏光制御ユニットA5と同様、1/2波長板Ba’、1/4波長板Bb’を含んでいる。
Reflecting Mirror As shown in Fig. 1, the reflecting mirror A7 can be moved in parallel in the direction of the arrow by a driving mechanism (not shown) to enter and exit the optical path of the illumination light toward the
図5及び図6は散乱光照明系Aにより斜方から試料面に導かれる照明光の光軸と照明強度分布形状との位置関係を表す模式図である。図5は試料1に入射する照明光の入射面で試料1を切断した断面を模式的に表している。図6は試料1に入射する照明光の入射面に直交し試料面の法線を含む面で試料1を切断した断面を模式的に表している。入射面とは、試料1に入射する照明光の光軸OAと試料面の法線とを含む面である。なお、図5及び図6では散乱光照明系Aの一部を抜き出して表しており、例えば出射光調整ユニットA3や反射ミラーA7,A8は図示省略してある。
Figures 5 and 6 are schematic diagrams showing the positional relationship between the optical axis of the illumination light guided obliquely to the sample surface by the scattered light illumination system A and the illumination intensity distribution shape. Figure 5 shows a schematic cross-section of the
反射ミラーA7を光路に挿入した場合、レーザ光源A1から射出された照明光は、集光光学ユニットA6で集光され、反射ミラーA8で反射されて試料1に斜めに入射する。このように散乱光照明系Aは、試料面の法線に対し傾斜した方向から試料1に照明光を入射させることができるように構成されている。この斜入射照明は、アッテネータA2で光強度、ビームエキスパンダA4で光束直径、偏光制御ユニットA5で偏光をそれぞれ調整され、入射面内において照明強度分布が均一化される。図5に示した照明強度分布(照明プロファイル)LD1のように、試料1に形成される照明スポットはs2方向にガウス状の光強度分布を持ち、ピークの13.5%で定義されるビーム幅l1の長さは例えば25μmから4mm程度である。
When the reflecting mirror A7 is inserted into the optical path, the illumination light emitted from the laser light source A1 is collected by the focusing optical unit A6, reflected by the reflecting mirror A8, and obliquely incident on the
入射面と試料面に直交する面内では、図6に示した照明強度分布(照明プロファイル)LD2のように、照明スポットは光軸OAの中心に対して周辺の強度が弱い光強度分布を持つ。具体的には、集光光学ユニットA6に入射する光の強度分布を反映したガウス分布、又は集光光学ユニットA6の開口形状を反映した第一種第一次のベッセル関数若しくはsinc関数に類似した強度分布となる。入射面と試料面に直交する面内における照明強度分布の長さl2は、試料面から発生するヘイズを低減するためも図5に示したビーム幅l1より短く、例えば1.0μmから20μm程度に設定されている。この照明強度分布の長さl2は、入射面と試料面に直交する面内において最大照明強度の13.5%以上の照明強度を持つ領域の長さである。 In the plane perpendicular to the incident surface and the sample surface, the illumination spot has a light intensity distribution with weak intensity at the periphery relative to the center of the optical axis OA, as shown in the illumination intensity distribution (illumination profile) LD2 in FIG. 6. Specifically, the intensity distribution is a Gaussian distribution reflecting the intensity distribution of the light incident on the focusing optical unit A6, or an intensity distribution similar to a first-order Bessel function of the first kind or a sinc function reflecting the aperture shape of the focusing optical unit A6. The length l2 of the illumination intensity distribution in the plane perpendicular to the incident surface and the sample surface is shorter than the beam width l1 shown in FIG. 5 in order to reduce haze generated from the sample surface, and is set to, for example, about 1.0 μm to 20 μm. This length l2 of the illumination intensity distribution is the length of the area having an illumination intensity of 13.5% or more of the maximum illumination intensity in the plane perpendicular to the incident surface and the sample surface.
また、斜入射照明の試料1に対する入射角(試料面の法線に対する入射光軸の傾き角)は、反射ミラーA7,A8の位置と角度で微小な欠陥の検出に適した角度に調整される。反射ミラーA8の角度は調整機構A8aで調整される。例えば試料1に対する照明光の入射角が大きいほど(試料面と入射光軸とのなす角である照明仰角が小さいほど)、試料面の微小な異物からの散乱光に対してノイズとなるヘイズが弱まるため微小な欠陥の検出に適する。微小欠陥の検出に対するヘイズの影響を抑える観点では、照明光の入射角は例えば75度以上(仰角15度以下)に設定するのが好ましい。他方、斜入射照明では照明入射角が小さいほど微小な異物からの散乱光の絶対量が増すため、欠陥からの散乱光量の増加を狙う観点では、照明光の入射角は例えば60度以上75度以下(仰角15度以上30度以下)に設定するのが好ましい。 The angle of incidence of the oblique incidence illumination on the sample 1 (the inclination angle of the incident optical axis with respect to the normal to the sample surface) is adjusted to an angle suitable for detecting minute defects by adjusting the positions and angles of the reflecting mirrors A7 and A8. The angle of the reflecting mirror A8 is adjusted by the adjustment mechanism A8a. For example, the larger the angle of incidence of the illumination light on the sample 1 (the smaller the illumination elevation angle, which is the angle between the sample surface and the incident optical axis), the weaker the haze that becomes noise in the scattered light from minute foreign objects on the sample surface, making it more suitable for detecting minute defects. From the viewpoint of suppressing the effect of haze on the detection of minute defects, it is preferable to set the incidence angle of the illumination light to, for example, 75 degrees or more (elevation angle 15 degrees or less). On the other hand, in the case of oblique incidence illumination, the smaller the illumination incidence angle, the greater the absolute amount of scattered light from minute foreign objects, so from the viewpoint of aiming to increase the amount of scattered light from defects, it is preferable to set the incidence angle of the illumination light to, for example, 60 degrees or more and 75 degrees or less (elevation angle 15 degrees or more and 30 degrees or less).
-散乱光検出系-
散乱光検出系B1-Bnは試料面の照明スポットBSからの散乱光を集光し検出するユニットであり、集光レンズ(対物レンズ)を含む複数の光学素子を含んで構成する。この光学系で試料面からの散乱光を検出し、レーザ散乱検出を行う。散乱光検出系Bnのnは散乱光検出系の数を表しており、本実施形態の欠陥検査装置100では13組の散乱光検出系が備わっている場合を例に挙げて説明する(n=13)。i番目の散乱光検出系Biは、対物レンズBi1、図示していない回転機構により、散乱光検出系Biの光軸を中心として回転可能な1/2波長板Bi2、偏光ビームスプリッタBi3を含んで構成される。1/2波長板Bi2を回転させることに偏光方向が制御され、偏光ビームスプリッタBi3により偏光方向が直交する所望の2つの光に分離される。偏光ビームスプリッタBi3を直進するP偏光の光はセンサCiPで検出され、偏光ビームスプリッタBi3で反射するS偏光の光はセンサCiSで検出される。
- Scattered light detection system -
The scattered light detection systems B1-Bn are units that collect and detect scattered light from the illumination spot BS on the sample surface, and are configured to include a plurality of optical elements including a collecting lens (objective lens). This optical system detects scattered light from the sample surface and performs laser scattering detection. The n in the scattered light detection systems Bn represents the number of scattered light detection systems, and the
図7は上方から見て散乱光検出系B1-B13が散乱光を捕集する開口を表した図であり、散乱光検出系B1-B13の各対物レンズの配置に対応している。以下の説明において、試料1への斜入射照明の入射方向を基準として、上から見て試料面上の照明スポットBSに対して入射光の進行方向(図7中の右方向)を前方、反対方向(同左方向)を後方として扱う。従って、照明スポットBSに対して同図中の下側は右側、上側は左側となる。
FIG. 7 shows the openings through which the scattered light detection system B1-B13 collects scattered light as viewed from above, and corresponds to the arrangement of the objective lenses in the scattered light detection system B1-B13. In the following explanation, the incident direction of the oblique incidence illumination on the
散乱光検出系B1-B13の各対物レンズは試料1に対する照明スポットBSを中心とする球(天球)の上半分の半球面に沿って配置されている。この半球面を開口L1-L6,H1-H6,Vの13の領域に分割し、散乱光検出系B1-B13が各々対応する開口で散乱光を捕集し集光する。
Each objective lens of the scattered light detection system B1-B13 is arranged along the upper half of a hemisphere (celestial sphere) centered on the illumination spot BS on the
開口Vは天頂に重なる領域であり、試料面に形成される照明スポットBSの真上に位置する。 Aperture V is an area that overlaps the zenith and is located directly above the illumination spot BS formed on the sample surface.
開口L1-L6は低角で照明スポットBSの周囲360度を囲う環状の領域を等分した領域であり、上方見て斜入射照明の入射方向から左回りに開口L1,L2,L3,L4,L5,L6の順に並んでいる。これら開口L1-L6のうち開口L1-L3は照明スポットBSに対して右側に位置し、開口L1は照明スポットBSの右後方、開口L2は右側方、開口L3は右前方に位置する。開口L4-L6は照明スポットBSに対して左側に位置し、開口L4は照明スポットBSの左前方、開口L5は左側方、開口L6は左後方に位置する。 Apertures L1-L6 are equal divisions of a ring-shaped region that surrounds 360 degrees around the illumination spot BS at a low angle, and are lined up in the order of apertures L1, L2, L3, L4, L5, and L6 in a counterclockwise direction from the direction of incidence of the oblique incidence illumination when viewed from above. Of these apertures L1-L6, apertures L1-L3 are located to the right of the illumination spot BS, aperture L1 is located to the rear right of the illumination spot BS, aperture L2 is located to the right, and aperture L3 is located to the front right. Apertures L4-L6 are located to the left of the illumination spot BS, aperture L4 is located to the front left of the illumination spot BS, aperture L5 is located to the left, and aperture L6 is located to the rear left.
残る開口H1-H6は高角(開口L1-L6と開口Vとの間)において照明スポットBSの周囲360度を囲う環状の領域を等分した領域であり、上から見て斜入射照明の入射方向から左回りに開口H1,H2,H3,H4,H5,H6の順に並んでいる。低角の開口L1-L6に対して、高角の開口H1-H6は配置が上から見て30度ずれている。開口H1-H6のうち開口H1は照明スポットBSに対して後方に、開口H4は前方に位置している。開口H2,H3は照明スポットBSに対して右側に位置し、開口H2は照明スポットBSの右後方、開口H3は右前方に位置する。開口H5,H6は照明スポットBSに対して左側に位置し、開口H5は照明スポットBSの左前方、開口H6は左後方に位置する。 The remaining apertures H1-H6 are equal divisions of a ring-shaped region that surrounds the illumination spot BS 360 degrees at high angles (between apertures L1-L6 and aperture V), and are arranged in the order of apertures H1, H2, H3, H4, H5, and H6 in a counterclockwise direction from the direction of incidence of the oblique incidence illumination as viewed from above. Compared to the low-angle apertures L1-L6, the high-angle apertures H1-H6 are positioned 30 degrees apart as viewed from above. Of the apertures H1-H6, aperture H1 is located behind the illumination spot BS, and aperture H4 is located in front. Apertures H2 and H3 are located to the right of the illumination spot BS, aperture H2 is located to the rear right of the illumination spot BS, and aperture H3 is located to the front right. Apertures H5 and H6 are located to the left of the illumination spot BS, aperture H5 is located to the front left of the illumination spot BS, and aperture H6 is located to the rear left.
図1において散乱光検出系Biに入射した散乱光が集光されて対応するセンサCiP,CiSに導かれる。図1と図7を対比した場合、例えば図1の散乱光検出系B1は図7の開口L4で、散乱光検出系B2は開口L6で、散乱光検出系B3は開口Vで散乱光を捕集する光学系を例示したもの扱うことができる。 In Figure 1, scattered light incident on the scattered light detection system Bi is collected and guided to the corresponding sensors CiP, CiS. When comparing Figure 1 with Figure 7, for example, the scattered light detection system B1 in Figure 1 can be treated as an example of an optical system that collects scattered light at the aperture L4 in Figure 7, the scattered light detection system B2 at the aperture L6, and the scattered light detection system B3 at the aperture V.
図8は試料1から法線方向に出射する散乱光が入射する散乱光検出系B3の構成図、図9は図8を上方からみた平面図である。散乱光検出系B3は集光レンズ(対物レンズ)B3aと結像レンズB3bを含んで構成されており、集光レンズB3aで集光した散乱光を、結像レンズB3b、1/2波長板B32、偏光ビームスプリッタB33を介してセンサC3P,C3Sで検出される。この点は他の散乱光検出系B1,B2,B4…等と同じである。散乱光検出系B3は集光レンズB3a及び結像レンズB3bの間の自己の瞳の位置に反射ミラーB1’が配置されている点で他の散乱光検出系と異なる。前述した通り、落射照明の際には反射ミラーB1’を介して法線方向から試料1に照明光が入射する。従って、散乱光検出系B3の集光レンズB3aは落射照明を試料1に導く集光レンズを兼ねる。
Figure 8 is a schematic diagram of the scattered light detection system B3 into which the scattered light emitted from the
照明スポットBSがs2方向に長い線状の強度分布を持つことは前述した。反射ミラーB1’は、図9に示したようにセンサC3P,C3Sの側から見て線状の照明スポットBSの短軸方向(s1方向)に照明スポットBSより長く、照明スポットBSの長軸方向(s2方向)に照明スポットBSより短い形状をしている。反射ミラーB1’は集光レンズB3aの瞳位置に配置され、試料1から集光レンズB3aに入射する直接反射光は反射ミラーB1’で反射され、ここで反射されない散乱光が結像レンズB3bに導かれる。
As mentioned above, the illumination spot BS has a long linear intensity distribution in the s2 direction. As shown in Figure 9, the reflecting mirror B1' is longer than the illumination spot BS in the minor axis direction (s1 direction) of the linear illumination spot BS when viewed from the side of the sensors C3P, C3S, and shorter than the illumination spot BS in the major axis direction (s2 direction) of the illumination spot BS. The reflecting mirror B1' is positioned at the pupil position of the focusing lens B3a, and the directly reflected light incident on the focusing lens B3a from the
-センサ-
センサC1P-CnP,C1S-CnSは、試料1からの光を検出するセンサであり、対応する開口を介して集光された散乱光を電気信号に変換し出力する単画素のポイントセンサである。センサC1P-CnP,C1S-CnSには、高ゲインで微弱信号を光電変換する光電子増倍管、SiPM(シリコン光電子増倍管)等を用いることができる。典型的には、SiPMは光電子増倍管に対して、コンパクトで磁気ノイズに対して頑強である一方、光電子増倍管は信号のリニアリティの点で優れる。そこで、この両者をそれぞれ同時に適用しても良い。本実施形態では、センサC1P-CnPにはSiPM、センサC1S-CnSには光電子増倍管を適用する。1/2波長板Bi2の回転角度の設定により、センサCiP,CiSに入射する光の偏光方向は調整可能である。例えば、検査工程によって高感度な検出が要求される欠陥種は異なるが、偏光ビームスプリッタBi2の回転角度を調整することで高感度な検出が要求される偏光方向の光をセンサCiPに導くことができる。センサC1P-CnP,C1S-CnSの出力信号は信号処理装置Dに随時入力される。
-Sensor-
The sensors C1P-CnP and C1S-CnS are sensors that detect light from the
-制御装置-
制御装置E1は、欠陥検査装置100を統括して制御するコンピュータであり、ROM、RAM、その他のメモリの他、CPUやFPGA、タイマー等を含んで構成されている。制御装置E1は、モニタE30や信号処理装置Dと有線又は無線で接続されている。制御装置E1は、ユーザが各種操作を入力する装置E2が接続され、E2にはキーボードやマウス、タッチパネル等の各種入力装置が適宜接続される。制御装置E1には、回転ステージ及び並進ステージのエンコーダや、オペレータの操作に応じて入力装置E2から入力される検査条件等が入力される。検査条件としては、例えば試料1の種類や大きさ、形状、材質、照明条件、欠陥判定条件等が含まれる。また、制御装置E1は、検査条件に応じてステージSTや散乱光照明系A等の動作を指令する指令信号を出力したり、欠陥の検出信号と同期する照明スポットBSの座標データを信号処理装置Dに出力したりする。制御装置E1はまた、信号処理装置Dの出力(試料1の欠陥検査結果等)をモニタE3に表示出力する。図1に示したように、制御装置E1はネットワークに接続されており、検査条件データの入力や検査結果の出力をネットワーク経由で行うことができるようになっている。このネットワークに接続された検査・計測装置に検査結果を出力することも可能である。一例としては欠陥検査用の電子顕微鏡であるDR-SEM(Defect Review-Scanning Electron Microscope)が接続される。この場合には、制御装置E1から検査結果をDR-SEMからの欠陥検査結果のデータを送信し、DR-SEMで欠陥を観察し、その欠陥の種類を決定した後に、この結果を制御装置E1で受信することも可能である。
-Control device-
The control device E1 is a computer that controls the
-散乱光分布の例-
ここで、図10に同図左側から斜入射照明したときの試料面の異物からの散乱光分布をウェハ法線方向からの視点で図示する。照明の直接反射の方向に散乱する光を前方散乱、照明の入射方向に散乱する光を後方散乱と呼び、図中にそれぞれ、前、後と記載した。照明の入射に対して左右に散乱する光をそれぞれ、左側方散乱、右側方散乱とし、それぞれ、図中に左、右と記載した。試料面の異物からの散乱は等方的であり、高角の散乱光量は低角の散乱光量に対して弱い。欠陥の形状によって散乱光の分布が変化し、常にその散乱が等方的になるわけではない。
--Example of scattered light distribution--
Figure 10 shows the distribution of scattered light from a foreign particle on the sample surface when illuminated with oblique incidence from the left side of the figure, viewed from the wafer normal direction. Light scattered in the direction of direct reflection of the illumination is called forward scattering, and light scattered in the direction of incidence of the illumination is called back scattering, and are labeled "front" and "back" respectively in the figure. Light scattered to the left and right of the incidence of the illumination is called "left side scattering" and "right side scattering", respectively, and are labeled "left" and "right" respectively in the figure. Scattering from a foreign particle on the sample surface is isotropic, and the amount of scattered light at high angles is weaker than the amount of scattered light at low angles. The distribution of scattered light changes depending on the shape of the defect, and the scattering is not always isotropic.
図11に表面を研磨した研磨ウェハを試料として同様に斜入射照明したときの試料面上の任意の座標からのラフネス散乱光の分布を示す。ラフネス散乱光は、センサにおいてショットノイズを発生させて欠陥検出感度を悪化させる。図11に示すようにラフネス散乱光は後方散乱が強く、前方散乱が弱いため、前方、又は側方のセンサで良好な感度を得ることができる。研磨ウェハの表面にシリコン単結晶を気相成長させて作成したエピタキシャルウェハでは表面のシリコンの単結晶の向きにより表面に方向性を持つラフネスが発生する。 Figure 11 shows the distribution of roughness scattered light from arbitrary coordinates on the sample surface when a polished wafer with a polished surface is used as the sample and illuminated with oblique incidence in the same way. Roughness scattered light generates shot noise in the sensor, worsening the defect detection sensitivity. As shown in Figure 11, roughness scattered light is strongly backscattered and weakly forward scattered, so good sensitivity can be obtained with a front or side sensor. In epitaxial wafers created by vapor-phase growth of silicon single crystals on the surface of a polished wafer, directional roughness occurs on the surface due to the orientation of the silicon single crystals on the surface.
試料1が研磨済みウェハである場合、開口位置による感度差はほぼ一定である。例えば、先に図10に示したように試料面の異物では欠陥からの散乱光は低角の開口L1-L6でほぼ等方的に同一の光量が得られる。図11のラフネス散乱光の分布は、前方散乱の光量が低いため、ウェハを回転させて検査しても開口L3,L4の開口と対応するセンサにおいて常に良好な感度で試料面の異物を検出することができる。
When
それに対し、エピタキシャルウェハのように試料面のラフネスに方向性がある場合、ラフネス散乱光の強度が各開口位置で個別にウェハの回転に伴って変化する。そのため、良好な感度が得られるセンサが斜入射照明に対する試料1の角度変化に伴って刻々と変化する。
In contrast, when the roughness of the sample surface has directionality, such as in the case of an epitaxial wafer, the intensity of the roughness scattered light changes individually at each aperture position as the wafer rotates. Therefore, the sensor that provides good sensitivity changes from moment to moment as the angle of the
-信号処理装置-
信号処理装置Dは、センサC1P-CnP,C1S-CnSからの入力信号を処理するコンピュータであり、制御装置E1と同じく、ROM、RAM、その他のメモリの他、CPUやFPGA、タイマー等を含んで構成されている。信号処理装置Dは、欠陥検査装置100の装置本体(ステージや散乱光照明系、散乱光検出系等)とユニットをなす単一のコンピュータで構成することが一例として想定されるが、複数のコンピュータで構成される場合もある。この場合、複数のコンピュータの1つに装置本体とは離れて設定されたサーバを用いることもでき、このサーバも欠陥検査装置100の構成要素に含まれ得る。例えば装置本体に付属するコンピュータで装置本体からの欠陥の検出信号を取得して、検出データを必要に応じて加工してサーバに送信し、欠陥の検出や分類等の処理をサーバで実行する構成とすることができる。
- Signal processing device -
The signal processing device D is a computer that processes input signals from the sensors C1P-CnP and C1S-CnS, and like the control device E1, is configured to include a ROM, RAM, and other memories as well as a CPU, FPGA, a timer, and the like. As an example, the signal processing device D is assumed to be configured as a single computer that forms a unit with the device body of the defect inspection device 100 (stage, scattered light illumination system, scattered light detection system, etc.), but it may be configured as multiple computers. In this case, a server set apart from the device body can be used as one of the multiple computers, and this server can also be included as a component of the
本実施形態において、信号処理装置Dは、周波数分離部D1、モデル類似度算出部D2、欠陥顕在化部D3、欠陥判定部D4を含んで構成されている。周波数分離部D1、モデル類似度算出部D2、欠陥顕在化部D3、欠陥判定部D4は、ソフトウェアにより仮想的に実現されていても良いし、電子回路等のハードウェアにより実現されていても良い。周波数分離部D1、モデル類似度算出部D2、欠陥顕在化部D3、欠陥判定部D4のうちの一部(特に周波数分離部D1等の上流工程)は、FPGAやDSPで構成することができる。また、周波数分離部D1、モデル類似度算出部D2、欠陥顕在化部D3、欠陥判定部D4のうち、機能の一部又は全部を信号処理装置Dとしてのサーバで実行する構成とすることもできる。 In this embodiment, the signal processing device D includes a frequency separation unit D1, a model similarity calculation unit D2, a defect manifestation unit D3, and a defect determination unit D4. The frequency separation unit D1, the model similarity calculation unit D2, the defect manifestation unit D3, and the defect determination unit D4 may be virtually realized by software, or may be realized by hardware such as an electronic circuit. Some of the frequency separation unit D1, the model similarity calculation unit D2, the defect manifestation unit D3, and the defect determination unit D4 (particularly the upstream process of the frequency separation unit D1, etc.) can be configured with an FPGA or DSP. In addition, some or all of the functions of the frequency separation unit D1, the model similarity calculation unit D2, the defect manifestation unit D3, and the defect determination unit D4 can be configured to be executed by a server as the signal processing device D.
図12は周波数分離部D1、モデル類似度算出部D2、欠陥顕在化部D3の一例の処理ブロックを表す模式図である。図12では、センサC1S-CnS及びセンサC1P-CnPのうち特定の1つのセンサの信号を処理するデータ処理部を表しており、センサの総数をNとおくと、図12のデータ処理部が並列でセンサ数と同数だけ(つまりNセット)存在する。各センサで光電変換された信号は、A/D変換器でデジタル信号化され、それぞれのセンサを処理する周波数分離部D1に入力される。 FIG. 12 is a schematic diagram showing an example of the processing blocks of the frequency separation unit D1, model similarity calculation unit D2, and defect manifestation unit D3. FIG. 12 shows a data processing unit that processes the signal of one specific sensor among sensors C1S-CnS and sensors C1P-CnP. If the total number of sensors is N, then there are the same number of data processing units in FIG. 12 in parallel as the number of sensors (i.e., N sets). The signal photoelectrically converted by each sensor is converted into a digital signal by an A/D converter and input to the frequency separation unit D1, which processes each sensor.
-周波数分離部(図12)-
周波数分離部D1は、散乱光検出系B1-Bnの対応するセンサからの入力信号を高周波成分と低周波成分に分離する。具体的には、周波数分離部D1は、ローパスフィルタD11A、及び差分演算部D11Bを含んで構成される。センサからの入力信号からローパスフィルタD11Aで低周波数信号を抽出し、差分演算部D11Bにより入力信号から低周波信号を差し引き、入力信号の高周波数成分の時系列信号である検出信号S11を得る。
- Frequency separation section (Fig. 12) -
The frequency separation unit D1 separates the input signal from the corresponding sensor of the scattered light detection system B1-Bn into a high frequency component and a low frequency component. Specifically, the frequency separation unit D1 includes a low pass filter D11A and a difference calculation unit D11B. The low pass filter D11A extracts a low frequency signal from the input signal from the sensor, and the difference calculation unit D11B subtracts the low frequency signal from the input signal to obtain a detection signal S11, which is a time series signal of the high frequency component of the input signal.
-モデル類似度算出部(図12)-
モデル類似度算出部D2は、周波数分離部D1で得られる検出信号S11を基に、検出信号S11に基づく観測ベクトルと欠陥に係るモデルベクトルとの類似度を算出する。具体的には、モデル類似度算出部D2は、モデルベクトル生成部D21A、及び類似度算出部D21Bを含んで構成される。
-Model similarity calculation unit (Fig. 12)-
The model similarity calculation unit D2 calculates a similarity between an observation vector based on the detection signal S11 and a model vector related to a defect, based on the detection signal S11 obtained by the frequency separation unit D1. Specifically, the model similarity calculation unit D2 includes a model vector generation unit D21A and a similarity calculation unit D21B.
ここで、パターンが形成される前の試料面に存在する、照明波長又は光学分解能に対して十分にサイズが小さい理想的な形状の微小な欠陥(例えば標準粒子)に対し、照明スポットBSを走査し照明スポットBSが欠陥を通過する間に複数回のサンプリングを実行することにより、相対的に照明スポットBSを欠陥が一回横切る間に複数の検出信号を含む時系列信号が得られる。この場合に検出されることが期待される時系列信号は、照明プロファイルLD2(図6)に相関するプロファイルを持つ。この時系列分布を持つ欠陥のモデルデータが、モデルベクトル生成部D21Aに格納されている。このモデルデータのプロファイルは、照明光の強度と照明スポットBSに対する欠陥の相対速度(走査速度)により決定され、予め走査速度に応じて複数与えられていても良いし、走査速度を基に演算子生成しても良い。モデルベクトルは、モデルデータに基づき生成され、理想的な微小欠陥(例えば標準粒子)からの光がセンサで検出される場合に検出されることが期待される時系列信号に相関する。 Here, a minute defect (e.g., a standard particle) of an ideal shape that is sufficiently small in size relative to the illumination wavelength or optical resolution and present on the sample surface before the pattern is formed is scanned with the illumination spot BS, and multiple samplings are performed while the illumination spot BS passes over the defect, thereby obtaining a time series signal including multiple detection signals while the defect crosses the illumination spot BS once. The time series signal expected to be detected in this case has a profile that correlates with the illumination profile LD2 (FIG. 6). Model data of the defect having this time series distribution is stored in the model vector generation unit D21A. The profile of this model data is determined by the intensity of the illumination light and the relative speed (scanning speed) of the defect with respect to the illumination spot BS, and may be given in advance in multiple values according to the scanning speed, or may be generated by an operator based on the scanning speed. The model vector is generated based on the model data, and correlates with the time series signal expected to be detected when light from an ideal minute defect (e.g., a standard particle) is detected by a sensor.
また、本実施形態においては、図12に示したように、時系列の検出信号S11に対し照明プロファイルLD2の幅に対応する時間幅を持つウィンドウx1を設定し、このウィンドウx1内でサンプリングされた時系列信号(検出信号セット)をベクトル信号化して観測ベクトルを生成する。この観測ベクトルは、異なるタイミングでサンプルした時系列信号、具体的にはウィンドウx1の区間でサンプリングされる検出信号のそれぞれの強度を成分(特徴量)とするベクトル、つまり照明スポットBSが注目点を横切る間に複数回実施されるサンプリングで得られる時系列信号を成分とするベクトルである。 In addition, in this embodiment, as shown in FIG. 12, a window x1 having a time width corresponding to the width of the illumination profile LD2 is set for the time-series detection signal S11, and the time-series signal (detection signal set) sampled within this window x1 is converted into a vector signal to generate an observation vector. This observation vector is a vector whose components (feature quantities) are the time-series signals sampled at different timings, specifically the intensities of the detection signals sampled within the section of window x1, in other words, a vector whose components are the time-series signals obtained by sampling performed multiple times while the illumination spot BS crosses the point of interest.
例えば、ウィンドウx1の区間の信号サンプリング数(検出信号数)をLとすると、L次元の特徴空間が想定される。モデルベクトル生成部21Aは、照明プロファイルLD2に応じたモデルデータに基づきL次元のモデルベクトルを生成し、類似度算出部D21Bにモデルベクトルを送信する。図13に示したf1301はこの特徴空間を示している。図13では、モデルベクトル生成部21Aで生成されるモデルベクトルV-M1を点線で、微小欠陥の観測ベクトルV-X1を実線で表している。検出信号強度は不明であるが、観測ベクトルV-X1が欠陥を観測するものであれば、ベクトルV-X1,V-M1が相関することが分かっている。そこで、モデルベクトルV-M1に対する観測ベクトルV-X1の類似度c1を算出する。類似度c1には、ベクトルV-X1,V-M1のノルム変化に対して不変な値、例えばベクトルV-X1,V-M1のなす角度θを用いることができる。その他、ユークリッド距離を変形したものやコサイン類似度、これらの値のディープラーニングにより得られる値等、角度θに基づく値を類似度c1として採用することもできる。類似度算出部D21Bにおいては、ウィンドウx1を時間方向に順次ずらされ、ウィンドウx1毎に類似度c1が算出されて欠陥顕在化部D3に送信される。 For example, if the number of signal samplings (number of detection signals) in the section of window x1 is L, an L-dimensional feature space is assumed. The model vector generation unit 21A generates an L-dimensional model vector based on the model data corresponding to the illumination profile LD2, and transmits the model vector to the similarity calculation unit D21B. f1301 shown in FIG. 13 shows this feature space. In FIG. 13, the model vector V-M1 generated by the model vector generation unit 21A is represented by a dotted line, and the observation vector V-X1 of the micro defect is represented by a solid line. Although the detection signal strength is unknown, if the observation vector V-X1 observes a defect, it is known that the vectors V-X1 and V-M1 are correlated. Therefore, the similarity c1 of the observation vector V-X1 to the model vector V-M1 is calculated. For the similarity c1, a value that is invariant to the norm change of the vectors V-X1 and V-M1, for example, the angle θ between the vectors V-X1 and V-M1, can be used. In addition, values based on the angle θ, such as a modified Euclidean distance, cosine similarity, or values obtained by deep learning of these values, can also be used as the similarity c1. In the similarity calculation unit D21B, the window x1 is shifted sequentially in the time direction, and the similarity c1 is calculated for each window x1 and transmitted to the defect manifestation unit D3.
-欠陥顕在化部(図12)-
本実施形態において、欠陥顕在化部D3はモデル類似度算出部D2で算出される類似度c1を基に、観測ベクトルV-X1とモデルベクトルV-M1との間で非線形な演算を行って、観測ベクトルV-X1に対応する入力信号の強度を非線形に変化させて欠陥を顕在化する検出信号を出力する。例えば、信号処理装置D(欠陥顕在化部D3)は、観測ベクトルV-X1とモデルベクトルV-M1との類似度c1に基づき観測ベクトルV-X1に対応する入力信号の強度を制御するゲインを取得又は算出し、入力信号と前記ゲインの積に基づき上記検出信号を算出する。欠陥顕在化部D3の処理について以下に説明する。
- Defect manifestation area (Fig. 12) -
In this embodiment, the defect revealing unit D3 performs a nonlinear operation between the observation vector V-X1 and the model vector V-M1 based on the similarity c1 calculated by the model similarity calculation unit D2, and outputs a detection signal that nonlinearly changes the intensity of the input signal corresponding to the observation vector V-X1 to reveal a defect. For example, the signal processing device D (defect revealing unit D3) acquires or calculates a gain that controls the intensity of the input signal corresponding to the observation vector V-X1 based on the similarity c1 between the observation vector V-X1 and the model vector V-M1, and calculates the detection signal based on the product of the input signal and the gain. The processing of the defect revealing unit D3 will be described below.
ノイズがショットノイズで引き起こされる場合、ノイズの周波数は一般に白色であり、信号のプロファイルが持つ周波数と同じ特性のフィルタを適用することで最大のSNRを得ることができる。しかし、本発明では、このフィルタとして非線形のものを適用する。最適な線形フィルタは、観測ベクトルV-X1をモデルベクトルV-M1間で射影するものとして考えることができる。すなわち、ベクトルV-X1,V-M1の内積として表すことができる。ベクトルV-X1,V-M1のなす角度が0の場合に、観測ベクトルV-X1の2乗ノルムを出力する。一方、このなす角度がπ/2radの場合、この出力値は0である。この中間では、2つのベクトルのなす角のcosθのゲインが2乗ノルムに乗じられると解釈できる。出力値はベクトルの要素の一次の式によって表すことができる。
これに対して本発明で適用するフィルタとしては、類似度c1によって決まる非線形なフィルタとして表現できる。
When the noise is caused by shot noise, the frequency of the noise is generally white, and the maximum SNR can be obtained by applying a filter with the same characteristics as the frequency of the signal profile. However, in the present invention, a nonlinear filter is applied as this filter. The optimal linear filter can be considered as a projection of the observation vector V-X1 between the model vector V-M1. In other words, it can be expressed as the inner product of the vectors V-X1 and V-M1. When the angle between the vectors V-X1 and V-M1 is 0, the square norm of the observation vector V-X1 is output. On the other hand, when this angle is π/2 rad, this output value is 0. In between, it can be interpreted that the gain of cosθ of the angle between the two vectors is multiplied by the square norm. The output value can be expressed by a linear expression of the vector elements.
In contrast, the filter applied in the present invention can be expressed as a nonlinear filter determined by the similarity c1.
図14に非線形なゲインの例を示す。f1401はX軸を類似度c1、Y軸をゲインに設定したグラフである。ゲインは0以上1以下の数値である。ここでは類似度c1としてベクトルV-X1,V-M1のなす角度θ(図13)を適用している。従って、類似度c1は0のときに最高(ベクトルV-X1,V-M1の特徴が一致)であり、0から離れるにつれて低下する。図14の例において、類似度c1とゲインとの対応について、任意の類似度c1に対応するゲインが、任意の類似度c1よりも低い類似度に対応するゲインよりも大きくなるように設定されている。 Figure 14 shows an example of a non-linear gain. f1401 is a graph with similarity c1 on the X-axis and gain on the Y-axis. Gain is a numerical value between 0 and 1. Here, the angle θ between vectors V-X1 and V-M1 (Figure 13) is applied as similarity c1. Therefore, similarity c1 is highest when it is 0 (the characteristics of vectors V-X1 and V-M1 match), and decreases as it moves away from 0. In the example of Figure 14, the correspondence between similarity c1 and gain is set so that the gain corresponding to an arbitrary similarity c1 is larger than the gain corresponding to a similarity lower than the arbitrary similarity c1.
図14において、ゲインカーブP14-G1はcosθを示しており、線形なフィルタと同一の出力を表す。これに対して、ゲインカーブP14G2-P14G5は、c1が0から離れるにつれてゲインカーブP14G1よりもゲインが低くなるように設定してある。これはモデルベクトルV-M1との乖離が大きな検出信号波形に対しては、信号強度の大小に関わらず(信号強度が大きくても)検出信号に小さいゲインが与えられ、類似度c1に応じてノイズ抑制が図られる。ゲインカーブP14G2,P14G3は、ベクトルV-M1,V-X1の特徴が一致する場合(θ=0)にのみ線形なゲインを表すゲインカーブP14-G1とゲインが一致し、それ以外の場合はゲインカーブP14-G1よりもゲインが低く設定されている。ゲインカーブP14G4,P14G5は、ベクトルV-M1,V-X1の特徴が一致する場合(θ=0)にゲインカーブP14-G1とゲインが一致し、一致はしないが類似度c1高い(θが0付近)である場合はP14G1よりもゲインが大きく設定してある。ゲインカーブP14G4,P14G5は、モデルとの類似度c1が高い場合にはゲインを低く設定せず、モデルとの類似度c1が予め設定した許容値を下回る場合に値が急激に低下するように設定してある。実際に得られる欠陥信号の波形は装置の調整状態によって変化するため、このようなゲインが適する場合もある。P14G1,P14G5は信号処理パラメータとして欠陥顕在化部D3に入力可能にしておき、実際の運用において適切なゲインカーブを得られるようにする。図14の各ゲインカーブは、予め用意しておくこともできるが、走査速度に応じて演算することもできる。 In Figure 14, gain curve P14-G1 shows cosθ, and represents the same output as a linear filter. In contrast, gain curves P14G2-P14G5 are set so that the gain is lower than gain curve P14G1 as c1 moves away from 0. This means that for detection signal waveforms that deviate greatly from the model vector V-M1, a small gain is given to the detection signal regardless of the signal strength (even if the signal strength is large), and noise is suppressed according to the similarity c1. The gain of gain curves P14G2 and P14G3 matches that of gain curve P14-G1, which represents a linear gain, only when the characteristics of vectors V-M1 and V-X1 match (θ = 0); otherwise, the gain is set lower than that of gain curve P14-G1. The gain curves P14G4 and P14G5 are set so that the gain is the same as that of the gain curve P14-G1 when the characteristics of the vectors V-M1 and V-X1 match (θ=0), and are set to be larger than that of P14G1 when they do not match but the similarity c1 is high (θ is near 0). The gain curves P14G4 and P14G5 are set so that the gain is not set low when the similarity c1 with the model is high, and the value drops sharply when the similarity c1 with the model falls below a preset allowable value. Since the waveform of the defect signal actually obtained changes depending on the adjustment state of the device, such a gain may be appropriate. P14G1 and P14G5 can be input to the defect revealing unit D3 as signal processing parameters, so that an appropriate gain curve can be obtained in actual operation. The gain curves in FIG. 14 can be prepared in advance, or can be calculated according to the scanning speed.
欠陥顕在化部D3は、一例としては観測ベクトルV-X1をモデルベクトルV-M1に射影した長さ(光強度)に、図14のゲインカーブに基づくゲインを乗じる。欠陥顕在化部D3の処理の別の例として、観測ベクトルV-X1の二乗ノルムにゲインを乗じても良い。また、ここではゲインとして表現したが、同様の効果を他の方法によって実現することも可能である。例えば、観測ベクトルV-X1とモデルベクトルV-M1より、値を算出する非線形なカーネル関数を定義することで同様の演算を行うことも可能である。カーネル関数の出力としては、類似度が高い場合の出力が、その類似度よりも低い場合の出力よりも低いことが求められる。一例として、機械学習のサポートベクタと併用されるガウシアンカーネル関数を考えると、2つのベクトルが一致する際に最大の出力を得ることができる。よって、モデルベクトルV-M1のL2ノルムが観測ベクトルV-X1のL2ノルムと同一になるようにゲインを乗じたのちに、V-M1とV-X1のベクトルの差分を類似度とみなす。ここではベクトルの差分が0に近いほど、類似度が高いと解釈することができる。ゲイン補正した後の2つのベクトルに対してガウシアンカーネルの出力値を算出し、この出力値とV-X1のL2ノルムの積を出力するフィルタを構成することも可能である。この構成においてはガウシアンカーネルの出力値がゲインと同様の効果をもつことになる。 As an example, the defect revealing unit D3 multiplies the length (light intensity) of the observation vector V-X1 projected onto the model vector V-M1 by a gain based on the gain curve in FIG. 14. As another example of the processing of the defect revealing unit D3, the square norm of the observation vector V-X1 may be multiplied by a gain. Although it is expressed as a gain here, it is also possible to achieve a similar effect by other methods. For example, it is also possible to perform a similar calculation by defining a nonlinear kernel function that calculates a value from the observation vector V-X1 and the model vector V-M1. The output of the kernel function is required to be lower when the similarity is high than when the similarity is lower than that. As an example, considering a Gaussian kernel function used in conjunction with a support vector for machine learning, the maximum output can be obtained when the two vectors match. Therefore, after multiplying the gain so that the L2 norm of the model vector V-M1 is the same as the L2 norm of the observation vector V-X1, the difference between the vectors V-M1 and V-X1 is regarded as the similarity. Here, it can be interpreted that the closer the vector difference is to 0, the higher the similarity. It is also possible to configure a filter that calculates the output value of a Gaussian kernel for two vectors after gain correction, and outputs the product of this output value and the L2 norm of V-X1. In this configuration, the output value of the Gaussian kernel has the same effect as the gain.
信号処理装置Dは、ウィンドウx1を時間方向に移動させながら以上の処理を実行することにより、ノイズを抑制して欠陥を顕在化した検出信号である時系列信号S21(図21)を算出する。この処理を経て得られた信号は、他のセンサにおいて同様の処理をして顕在化した信号と統合され、欠陥判定部D4に入力される。そして、欠陥判定部D4において、顕在化された検出信号に基づき試料の欠陥が判定される。 The signal processing device D performs the above process while moving the window x1 in the time direction, thereby calculating a time series signal S21 (Figure 21), which is a detection signal in which noise has been suppressed and defects have been made apparent. The signal obtained through this process is integrated with signals made apparent by similar processing in other sensors, and input to the defect determination unit D4. Then, in the defect determination unit D4, defects in the sample are determined based on the made-up detection signal.
-効果-
極微小な欠陥の検出性能が欠陥検査装置に求められつつある近年の状況にあって、本願発明者等は、散乱光強度が典型的には欠陥サイズの6乗に比例して変化し、多少の欠陥サイズの変化により急激に散乱光強度が増減する点に着目した。そこで、欠陥の検出信号の強度に影響を受け難い指標としてモデルベクトルと観察ベクトルの類似度(例えば、ベクトルのなす角度)を評価し、更にこの指標に基づく非線形な重み係数(ゲイン)を適用することで、ラフネス散乱光等に紛れた微小欠陥の検出信号を顕在化することができる(図12の時系列信号S21)。これにより、微小でノイジーな欠陥を高速かつ高感度に検出することができる。
-effect-
In recent years, defect inspection devices are being required to have the ability to detect extremely small defects. The inventors of the present application have focused on the fact that the scattered light intensity typically changes in proportion to the sixth power of the defect size, and that the scattered light intensity increases or decreases rapidly with a slight change in the defect size. Therefore, by evaluating the similarity between the model vector and the observation vector (for example, the angle between the vectors) as an index that is not easily affected by the intensity of the defect detection signal, and further applying a nonlinear weighting coefficient (gain) based on this index, it is possible to make the detection signal of a small defect hidden among the roughness scattered light, etc. apparent (time-series signal S21 in FIG. 12). This makes it possible to detect small and noisy defects quickly and with high sensitivity.
(第2実施形態)
図15は本発明の第2実施形態に係る信号処理装置100に備わった信号処理装置Dの要部の処理ブロック図である。第2実施形態において、ハードウェアは第1実施形態と同様であり、信号処理装置Dのみが第1実施形態と異なる。本実施形態では、類似度の判定処理に関し複数のセンサからの入力信号の同時処理を実行する。
Second Embodiment
15 is a processing block diagram of the main parts of a signal processing device D provided in a
-周波数分離部(図15)-
本実施形態の周波数分離部D1は、ローパスフィルタD11A,D12A、及び差分演算部D11B,D12Bを含む。ローパスフィルタD11A,差分演算部D11Bは本実施形態でも同様に機能する。また、ローパスフィルタD12AはローパスフィルタD11Aと同様、差分演算部D12Bは差分演算部D11Bと同様の処理を実行する。
- Frequency separation section (Fig. 15) -
The frequency separation unit D1 of this embodiment includes low-pass filters D11A and D12A, and difference calculation units D11B and D12B. The low-pass filter D11A and the difference calculation unit D11B function similarly in this embodiment. The low-pass filter D12A performs the same process as the low-pass filter D11A, and the difference calculation unit D12B performs the same process as the difference calculation unit D11B.
-モデル類似度算出部(図15)-
本実施形態のモデル類似度算出D2は、モデルベクトル生成部D21A-2、及び類似度算出部D21B-2を含む。モデルベクトル生成部D21A-2は、モデルベクトル生成部D21Aと同様、照明光のプロファイルのモデルデータM1,M2が格納されている。モデルデータM1は第1センサからの入力信号in1、モデルデータM2は第2センサからの入力信号in2に対応する。第1センサ及び第2センサは、センサC1P-CnP,C1S-CnSから選択される任意のセンサである。典型的には、この時系列データは照明スポットBSのs1方向のプロファイルのみによって決定されるため、モデルデータM1,M2は基本的には同一のプロファイルとなる。従って、モデルデータM1,M2は同一とすることもできる。
-Model Similarity Calculation Unit (FIG. 15)-
The model similarity calculation D2 of this embodiment includes a model vector generation unit D21A-2 and a similarity calculation unit D21B-2. The model vector generation unit D21A-2 stores model data M1 and M2 of the illumination light profile, similar to the model vector generation unit D21A. The model data M1 corresponds to the input signal in1 from the first sensor, and the model data M2 corresponds to the input signal in2 from the second sensor. The first sensor and the second sensor are any sensors selected from the sensors C1P-CnP and C1S-CnS. Typically, this time series data is determined only by the profile in the s1 direction of the illumination spot BS, so the model data M1 and M2 are basically the same profile. Therefore, the model data M1 and M2 can be the same.
類似度算出部D21B-2は、第1実施形態の類似度算出部D21Bに対応する。欠陥からの散乱光は、欠陥種によって等方的に散乱しない場合もある。散乱が当方的でない場合、第1センサによる検出信号S11と第2センサによる検出信号S12とで、欠陥からの信号強度が異なり得る。しかし、欠陥からの散乱光が当方的でない場合であっても、欠陥が走査されるタイミングでモデルデータM1又はモデルデータM2と相関のあるプロファイルが観測される可能性が高い。この点に着目し、本実施形態では複数のセンサからの入力信号に基づき類似度判定を実行する。 The similarity calculation unit D21B-2 corresponds to the similarity calculation unit D21B in the first embodiment. The scattered light from a defect may not be scattered isotropically depending on the defect type. If the scattering is not isotropic, the signal strength from the defect may differ between the detection signal S11 by the first sensor and the detection signal S12 by the second sensor. However, even if the scattered light from the defect is not isotropic, there is a high possibility that a profile correlated with the model data M1 or the model data M2 will be observed at the time the defect is scanned. Focusing on this point, in this embodiment, a similarity determination is performed based on input signals from multiple sensors.
図16は本実施形態におけるモデルベクトルとの類似度の説明図である。f1601は、特徴空間であり、図15に示したウィンドウx1,x2のサンプリング数の和と同じ次元を持つ。なお、第1センサと第2センサは同一座標からの異なる散乱光を検出するため、特徴空間を形成する前に、予めノイズの分布が同様になるように正規化する必要がある。 FIG. 16 is an explanatory diagram of the similarity with the model vector in this embodiment. f1601 is a feature space, and has the same dimension as the sum of the sampling numbers of windows x1 and x2 shown in FIG. 15. Note that since the first sensor and the second sensor detect different scattered light from the same coordinates, it is necessary to normalize the noise distribution in advance so that it is similar before forming the feature space.
図16の特徴空間において、V16-1,V16-2はそれぞれモデルデータM1,M2に基づくモデルベクトルを表す。V16-Xは、走査により観測された波形の観測ベクトルを表す。観測ベクトルV16-Xは、複数のセンサ(第1センサ及び第2センサ)の信号(試料からの光を遠方界の異なる複数の位置で同時に検出された光量)を成分とするベクトルである。第1センサと第2センサで検出する欠陥の信号強度は不明であるが、欠陥モデルに基づく欠陥情報が検出されていれば、観測ベクトルV16-Xは、2つのベクトルV16-1,V16-2を含む平面p1601内で検出されることになる。よって観測ベクトルV16-Xのモデルとの類似度c2は、観測ベクトルV16-Xと平面p1601とのなす角度θ2を算出することによって求めることができる。角度θ2は、観測ベクトルV16-Xを含み平面p1601に直交する平面内の角度である。類似度算出部D21B-2はθ2に基づいて類似度c2を算出する。 In the feature space of FIG. 16, V16-1 and V16-2 represent model vectors based on model data M1 and M2, respectively. V16-X represents an observation vector of a waveform observed by scanning. The observation vector V16-X is a vector whose components are signals (amount of light from the sample detected simultaneously at multiple different positions in the far field) of multiple sensors (first sensor and second sensor). Although the signal strength of the defect detected by the first sensor and the second sensor is unknown, if defect information based on the defect model is detected, the observation vector V16-X will be detected within a plane p1601 that includes the two vectors V16-1 and V16-2. Therefore, the similarity c2 of the observation vector V16-X to the model can be found by calculating the angle θ2 between the observation vector V16-X and the plane p1601. The angle θ2 is an angle within a plane that includes the observation vector V16-X and is perpendicular to the plane p1601. The similarity calculation unit D21B-2 calculates the similarity c2 based on θ2.
-欠陥顕在化部(図15)-
本実施形態では、入力信号in1,in2にそれぞれ対応する欠陥顕在化部D31A-2,D32A-2が含まれる。欠陥顕在化部D31A-2,D32A-2は、それぞれ入力信号in1,in2のモデルであるモデルベクトルV16-1,V16-2に観測ベクトルV16-Xを射影して光強度を見積もり、第1実施形態と同様にそれら光強度に対して類似度c2に基づくゲイン(図14)を乗じることにより、モデルとの類似度c2の低いノイズを抑制し、欠陥信号を顕在化させた第1センサの検出信号S21、及び第2センサの検出信号S22を得る。
- Defect manifestation area (Fig. 15) -
In this embodiment, defect revealing parts D31A-2 and D32A-2 corresponding to the input signals in1 and in2, respectively, are included. The defect revealing parts D31A-2 and D32A-2 estimate light intensity by projecting an observation vector V16-X onto model vectors V16-1 and V16-2 which are models of the input signals in1 and in2, respectively, and multiply the light intensity by a gain (FIG. 14) based on the similarity c2 in the same manner as in the first embodiment, thereby suppressing noise with low similarity c2 to the model, and obtaining a detection signal S21 of the first sensor and a detection signal S22 of the second sensor in which a defect signal is revealed.
その他の点について、本実施形態は第1実施形態と同様である。 In all other respects, this embodiment is similar to the first embodiment.
本実施形態によれば、複数のセンサの出力を用いて類似度c2を判定することにより、第1実施形態よりもよりモデルによる制約を強めることができ、第1実施形態と比較しても高いSNRが期待できる。 According to this embodiment, the similarity c2 is determined using the outputs of multiple sensors, which allows for stronger model constraints than in the first embodiment, and a higher SNR can be expected compared to the first embodiment.
なお、本実施形態に係る以上の説明では、理解の容易化のために2つのセンサを用いる例を説明したが、3つ以上のセンサからの入力信号を用いることも可能であり、欠陥検査装置100に実装した全てのセンサの出力を用いることもできる。本実施形態によれば、複数のセンサで同一座標について同時に信号波形が得られる欠陥検査装置100の物理的な特性を活かして、より強い制約を設定してノイズの抑制を図ることができる。
In the above explanation of this embodiment, an example using two sensors has been described for ease of understanding, but it is also possible to use input signals from three or more sensors, and it is also possible to use the output of all sensors implemented in the
(第3実施形態)
図17は本発明の第3実施形態に係る信号処理装置100に備わった信号処理装置Dの要部の処理ブロック図である。第3実施形態においても、ハードウェアは第1実施形態と同様であり、信号処理装置Dのみが第1実施形態と異なる。第1実施形態と同様に、図17のデータ処理部が並列でセンサ数と同数だけ存在する。図17に示した検出信号D11B-outは、図2で説明した螺旋走査をして得られる信号強度を2次元マップで表したものである。検出信号D11B-outの横軸は時間、縦軸はスパイラル位置(又はr座標)を表している。図2のような螺旋走査において、S2方向の螺旋走査ピッチは、照明スポットBSのピーク光強度のexp(-2)の強度で規定する長手方向(すなわちS2方向)のビームサイズに対し、典型的には1/2以下に設定される。このとき、検出信号D11B-outのマップにおいて、典型的な微小欠陥を検出して得られる欠陥信号の強度プロファイルは、ほぼ照明スポットBSの強度プロファイルと相関する。第3実施形態では、この強度プロファイルをモデルとして適用する。
Third Embodiment
FIG. 17 is a processing block diagram of the main part of the signal processing device D provided in the
-周波数分離部(図17)-
本実施形態の周波数分離部D1は、ローパスフィルタD11A、差分演算部D11B、及びメモリ部D11Cを含む。ローパスフィルタD11A及び差分演算部D11Bは、第1実施形態と同じ処理を実行する。メモリ部D11Cは、複数の螺旋走査によって得られる検出光の高周波成分を保持する。
- Frequency separation section (Fig. 17) -
The frequency separation unit D1 of this embodiment includes a low-pass filter D11A, a difference calculation unit D11B, and a memory unit D11C. The low-pass filter D11A and the difference calculation unit D11B perform the same processes as those in the first embodiment. The memory unit D11C holds high-frequency components of the detection light obtained by multiple spiral scans.
-モデル類似度算出部(図17)-
モデル類似度算出部D2は、モデルベクトル生成部D21A-3、モデルベクトル生成部D21A-3、及び類似度算出部D21B-3を含む。
-Model similarity calculation unit (FIG. 17)-
The model similarity calculation unit D2 includes a model vector generation unit D21A-3, a model vector generation unit D21A-3, and a similarity calculation unit D21B-3.
モデルベクトル生成部D21A-3は、照明スポットBSのビームプロファイルのデータを保持しており、検査対象試料のS1方向の走査速度とS2方向の螺旋走査のピッチに基づき、D11B-outのマップのウィンドウの領域x3に対応するモデルベクトルを生成する。前述した通り、典型的にはS2方向の螺旋走査のピッチは照明スポットBSのサイズの半分程度と粗いため、D21A-3-outとして示したように、照明光と想定される欠陥の位置との組み合わせにより複数の異なるモデルベクトルを生成する。D21A-3-outには、S2方向のみの1次元の時系列信号(データ列)の例を複数(4つ)示している。これらの時系列信号は、センサによるサンプリングのタイミングにサンプリング周期以下の差があることを考慮し、サンプリングのタイミングが異なる(プロファイルの異なる)複数種を用意することができる。D21A-3-outには、S2方向のみの1次元のデータ列の例を示しているが、モデルベクトル生成部D21A-3では、S2方向のプロファイルにS1方向のプロファイルを組み合わせて2次元のデータ列が生成され、モデルベクトルとして類似度算出部D21B-3に送信される。類似度算出部D21B-3は、ウィンドウx3内の信号列から観測ベクトルを生成し、観測ベクトルとモデルベクトルの類似度を算出する。算出する方式としては、第1実施形態と同様に観測ベクトルとモデルベクトルとのベクトルのなす角度を算出する方法、コサイン類似度、ユークリッド距離、ディープラーニングを用いた方法を適用することができる。 The model vector generation unit D21A-3 holds data on the beam profile of the illumination spot BS, and generates a model vector corresponding to the window area x3 of the map in D11B-out based on the scanning speed in the S1 direction of the sample to be inspected and the pitch of the spiral scan in the S2 direction. As mentioned above, the pitch of the spiral scan in the S2 direction is typically coarse, about half the size of the illumination spot BS, so as shown in D21A-3-out, multiple different model vectors are generated by combining the illumination light and the assumed position of the defect. D21A-3-out shows multiple (four) examples of one-dimensional time series signals (data strings) only in the S2 direction. Considering that there is a difference in the timing of sampling by the sensor that is less than the sampling period, multiple types of time series signals with different sampling timings (different profiles) can be prepared. D21A-3-out shows an example of a one-dimensional data string in only the S2 direction, but the model vector generation unit D21A-3 generates a two-dimensional data string by combining the S2 direction profile with the S1 direction profile, and transmits it as a model vector to the similarity calculation unit D21B-3. The similarity calculation unit D21B-3 generates an observation vector from the signal sequence in the window x3, and calculates the similarity between the observation vector and the model vector. As a calculation method, a method of calculating the angle between the observation vector and the model vector, as in the first embodiment, cosine similarity, Euclidean distance, or a method using deep learning can be applied.
-欠陥顕在化(図17)-
欠陥顕在化部D31A-3は、第1実施形態と同様に図14で説明した非線形ゲインを評価するウィンドウから算出した観測ベクトルに対して算出する。ここで類似度算出部D21B-3は、照明スポットBSと想定される欠陥位置に基づき複数の類似度を算出するため、複数の類似度に対してそれぞれ非線形ゲインを基にゲインを算出する。次いで、観測ベクトルをモデルベクトルに射影しゲインを乗じる。別の例としては、観測ベクトルの二乗ノルムに対してゲインを乗じても良い。ウィンドウx3を時間方向、螺旋ピッチ方向に二次元で移動させながら処理を実行することにより、ノイズを抑制して欠陥を顕在化した二次元マップD31-A3-outを算出する。この得られた信号は、他のセンサにおいて同様の処理をして顕在化した信号と統合され、D4の判定部において欠陥判定が行われる。
- Defect manifestation (Fig. 17) -
The defect revealing unit D31A-3 calculates the nonlinear gain for the observation vector calculated from the window for evaluating the nonlinear gain described in FIG. 14 as in the first embodiment. Here, the similarity calculation unit D21B-3 calculates a gain for each of the multiple similarities based on the nonlinear gain in order to calculate a plurality of similarities based on the illumination spot BS and the assumed defect position. Next, the observation vector is projected onto the model vector and multiplied by the gain. As another example, the square norm of the observation vector may be multiplied by the gain. By performing processing while moving the window x3 two-dimensionally in the time direction and the spiral pitch direction, a two-dimensional map D31-A3-out in which the noise is suppressed and the defect is revealed is calculated. This obtained signal is integrated with signals revealed by similar processing in other sensors, and the defect is judged in the judgment unit D4.
その他の点において、本実施形態は第1実施形態と同様である。 In other respects, this embodiment is similar to the first embodiment.
第1実施形態では、特定の螺旋走査のデータを対象としたため、照明スポットBSの中心からS2方向に外れた位置で欠陥が走査された場合、欠陥信号の強度が低下し、散乱光量が弱い欠陥信号についてモデルとの類似度を評価せざるを得ず、微小な欠陥を検出する信号であっても類似度が低く演算される可能性がある。本実施形態においては、複数の螺旋走査で得られる全ての散乱光強度に基づき類似度を算出して、この課題に対して頑強にする。 In the first embodiment, the data from a specific spiral scan was targeted, so if a defect is scanned at a position that is off in the S2 direction from the center of the illumination spot BS, the strength of the defect signal decreases, and the similarity with the model must be evaluated for defect signals with a weak amount of scattered light, and even signals that detect minute defects may be calculated with a low similarity. In this embodiment, the similarity is calculated based on all scattered light intensities obtained from multiple spiral scans, making the system robust against this issue.
(第4実施形態)
図18は本発明の第4実施形態に係る信号処理装置100に備わった信号処理装置Dの要部の処理ブロック図である。第4実施形態においても、ハードウェアは第1実施形態と同様であり、信号処理装置Dのみが第1実施形態と異なる。第4実施形態は、第2実施形態と第3実施形態の組み合わせである。第4実施形態では第2実施形態と同様に、複数のセンサの出力で同一の欠陥を同時に観測する欠陥検査装置100の構成的特徴を利用して、制約の強い類似度を算出して高SNR化を図る。図18では説明を簡単にするため、2つのセンサからの入力信号に基づき類似度を算出する場合を説明するが、第2実施径形態と同様、最大N個のセンサの出力を用いることができる。
Fourth Embodiment
FIG. 18 is a processing block diagram of the main part of the signal processing device D provided in the
-周波数分離部(図18)-
本実施形態の周波数分離部D1は、ローパスフィルタD11A,D12A、差分演算部D11B,D12B、及びメモリ部D11C,D12Cを含む。ローパスフィルタD11A,D12A、及び差分演算部D11B,D12Bは、第2実施形態と同じ機能を持つ。メモリ部D11C,D12Cは、第3実施形態のメモリ部D11Cと同様に、各センサについて複数周の螺旋走査によって得られる入力信号の高周波成分を保持する。
- Frequency separation section (Fig. 18) -
The frequency separation unit D1 of this embodiment includes low-pass filters D11A and D12A, difference calculation units D11B and D12B, and memory units D11C and D12C. The low-pass filters D11A and D12A and the difference calculation units D11B and D12B have the same functions as those of the second embodiment. The memory units D11C and D12C, like the memory unit D11C of the third embodiment, hold high-frequency components of input signals obtained by multiple revolutions of spiral scanning for each sensor.
-モデル類似度算出部(図18)-
本実施形態のモデル類似度算出D2は、モデルベクトル生成部D21A-4、及び類似度算出部D21B-2を含む。モデルベクトル生成部D21A-4は、第3実施形態のモデルベクトル生成部D21A-3と同様、照明スポットBSのビームプロファイルのデータを保持しており、照明スポットBSのS1方向の走査速度とS2方向の螺旋走査のピッチに基づきモデルデータM3,M4を生成する。モデルデータM3は第1センサ、モデルデータM4は第2センサで検出されるビームプロファイルであるが、いずれのセンサも同一の照明スポットBSからの散乱光を検出するため、大きな差異が発生することはなく、モデルデータM3,M4は同一とすることもできる。
-Model Similarity Calculation Unit (FIG. 18)-
The model similarity calculation D2 of this embodiment includes a model vector generation unit D21A-4 and a similarity calculation unit D21B-2. The model vector generation unit D21A-4 holds data on the beam profile of the illumination spot BS, similar to the model vector generation unit D21A-3 of the third embodiment, and generates model data M3 and M4 based on the scanning speed of the illumination spot BS in the S1 direction and the pitch of the spiral scan in the S2 direction. The model data M3 is a beam profile detected by the first sensor, and the model data M4 is a beam profile detected by the second sensor, but since both sensors detect scattered light from the same illumination spot BS, no significant difference occurs, and the model data M3 and M4 can be the same.
類似度算出部D21B-4は、2つのセンサによる検出信号が同じタイミングでモデルベクトルと類似することを利用して類似度を評価する。基本的な処理アルゴリスムは第2実施形態(図16)と同様であるが、ここでは、第3実施形態で説明したように、モデルベクトルが例えば図17にD21A3-3-outで説明したように複数種類(図17では4つ)ある点が異なる。複数種類のモデルベクトルも、2つのセンサに対応してそれぞれ2つ存在する。ウィンドウx4-1,x4-2に対してそれぞれ複数のモデルベクトルとの類似度を判定する場合には、それぞれの判定において第1センサ及び第2センサの寄与度によって図16の平面p1601に相当する平面ができる。ウィンドウx4-1,x4-2の2つのウィンドウで得られる観測ベクトルに対し、2つのモデルベクトルによって決定される多次元の特徴空間内の平面が、想定される照明スポットBSと欠陥の位置関係によって複数(本例では4つ)生成され、この複数の平面に対する観測ベクトルのずれ(θ)を類似度として複数(本例では4つ)出力する。なお、この平面の個数は4つに限らず、例えば2つや8つ等、任意に設定することができる。類似度としては、本実施形態においても、平面とベクトルのなす角度θの他、ユークリッド距離、cos類似度、ディープラーニングで出力した類似特徴等を適用することができる。 The similarity calculation unit D21B-4 evaluates the similarity by utilizing the fact that the detection signals from the two sensors are similar to the model vector at the same timing. The basic processing algorithm is the same as that of the second embodiment (FIG. 16), but here, as explained in the third embodiment, the difference is that there are multiple types of model vectors (four in FIG. 17), for example, as explained in FIG. 17 for D21A3-3-out. There are also two types of model vectors corresponding to the two sensors. When determining the similarity between multiple model vectors for each of the windows x4-1 and x4-2, a plane corresponding to the plane p1601 in FIG. 16 is created depending on the contribution of the first and second sensors in each determination. For the observation vectors obtained in the two windows x4-1 and x4-2, multiple planes (four in this example) in the multidimensional feature space determined by the two model vectors are generated depending on the positional relationship between the assumed illumination spot BS and the defect, and the deviation (θ) of the observation vector with respect to these multiple planes is output as multiple similarities (four in this example). The number of planes is not limited to four, and can be set arbitrarily, for example, to two or eight. In this embodiment, the similarity can be calculated using the angle θ between the plane and the vector, as well as Euclidean distance, cosine similarity, and similar features output by deep learning.
-欠陥顕在化部(図18)-
欠陥顕在化部D31A-4は第1センサの出力信号について欠陥信号を顕在化する役割を果たし、欠陥顕在化部D32A-4は第2センサの出力信号について欠陥信号を顕在化する役割を果たす。欠陥顕在化部D31A-4は、差分演算部D11Bが出力する検出信号D11B-outのウィンドウx4-1のデータをベクトル化した観測ベクトルを、モデルデータM3を基に生成した複数(本例では4つ)のモデルベクトルに対して射影し、類似度算出部D21B-4で算出した類似度に基づくゲインを乗じ、1つのウィンドウx4-1から作成したモデルベクトルの数と同数の出力を得る。この処理を検出信号D11B-outにおいてウィンドウx4-1を時間方向、及び螺旋数方向に移動させながら実行することで、欠陥信号が顕在化された検出信号である時系列信号D31A-4-outの二次元マップを得る。欠陥顕在化部D32A-4も、欠陥顕在化部D31A-4と同様の処理を実行し、時系列信号D32A-4-outの二次元マップを得る。この2つのマップが欠陥判定部D4に転送され、欠陥判定部D4において欠陥判定処理が実行される。
- Defect manifestation area (Fig. 18) -
The defect revealing unit D31A-4 plays a role of revealing a defect signal for the output signal of the first sensor, and the defect revealing unit D32A-4 plays a role of revealing a defect signal for the output signal of the second sensor. The defect revealing unit D31A-4 projects an observation vector obtained by vectorizing the data of the window x4-1 of the detection signal D11B-out output by the difference calculation unit D11B onto a plurality of model vectors (four in this example) generated based on the model data M3, multiplies the observation vector by a gain based on the similarity calculated by the similarity calculation unit D21B-4, and obtains outputs in the same number as the number of model vectors generated from one window x4-1. This process is performed while moving the window x4-1 in the detection signal D11B-out in the time direction and the spiral number direction, thereby obtaining a two-dimensional map of the time series signal D31A-4-out, which is a detection signal in which a defect signal is revealed. The defect revealing section D32A-4 also executes the same process as the defect revealing section D31A-4 to obtain a two-dimensional map of the time-series signal D32A-4-out. These two maps are transferred to the defect determining section D4, where the defect determining process is executed.
その他の点について、本実施形態は他の実施形態と同様である。 In all other respects, this embodiment is similar to the other embodiments.
本実施形態によれば、第2実施形態や第3実施形態の効果を組み合わせて得られる。 This embodiment achieves the combined effects of the second and third embodiments.
(第5実施形態)
-斜方結像検出系-
図19は本発明の第5実施形態に係る欠陥検査装置100に備わった散乱光検出系B1-Bnの模式図である。第5実施形態においては、散乱光検出系B1-Bnが前述した各実施形態と一部相違する。第1実施形態から第4実施形態においては、散乱光検出系B1-Bnは集光検出系であり、センサC1P-CnP,C1S-CnSはポイントセンサであったが、本実施形態において、散乱光検出系B1-Bnは結像検出系B”であり、センサC1P-CnP,C1S-CnSはラインセンサCP”,CS”である。その他のハードウェアに関しては、本実施形態は第1実施形態と同様である。
Fifth Embodiment
- Oblique imaging detection system -
19 is a schematic diagram of a scattered light detection system B1-Bn provided in a
試料面の照明スポットBSを斜方から検出する場合、試料面と対物レンズの作動距離が対物レンズの光軸との距離により異なってくる。そのため、センサの受光面が検出系の光軸に直交する場合、焦点ずれが発生する。そこで、センサの受光面が試料面に共役になるように、光軸に対してセンサの受光面を傾斜させる。この点を図19で説明する。 When detecting the illumination spot BS on the sample surface from an oblique direction, the working distance between the sample surface and the objective lens varies depending on the distance from the optical axis of the objective lens. Therefore, if the light receiving surface of the sensor is perpendicular to the optical axis of the detection system, a focus shift occurs. Therefore, the light receiving surface of the sensor is tilted with respect to the optical axis so that it is conjugate with the sample surface. This point is explained in Figure 19.
斜方結像検出系B”は、対物レンズB1”、1/2波長板B2”、偏光ビームスプリッタB3”、1/2波長板B4P”,B4S”、及び結像レンズB5P”,B5S”を備える。 The oblique imaging detection system B" comprises an objective lens B1", a half-wave plate B2", a polarizing beam splitter B3", half-wave plates B4P" and B4S", and imaging lenses B5P" and B5S".
1/2波長板B2”は、図示しない回転機構により回転可能であり、対物レンズB1”で検出した光の偏光方向を所望の方向に回転させることができる。偏光ビームスプリッタB3”は、検出した光をP偏光とS偏光、2つの光路に分岐する。P偏光用の光路には、1/2波長板B4P”、結像レンズB5P”、ラインセンサCP”が並ぶ。同じく、S偏光用の光路にも、1/2波長板B4S”、結像レンズB5S”、ラインセンサCS”が並ぶ。1/2波長板B4P”,B4S”は、それぞれ図示しない回転ステージにセットされ、ラインセンサCP”,CS”の検出効率が最良となるように偏光方向を回転させる。 The half-wave plate B2" can be rotated by a rotation mechanism (not shown), and the polarization direction of the light detected by the objective lens B1" can be rotated to the desired direction. The polarizing beam splitter B3" splits the detected light into two optical paths, one for P polarization and one for S polarization. The optical path for P polarization is lined with the half-wave plate B4P", the imaging lens B5P", and the line sensor CP". Similarly, the optical path for S polarization is lined with the half-wave plate B4S", the imaging lens B5S", and the line sensor CS". The half-wave plates B4P", B4S" are each set on a rotation stage (not shown), and the polarization direction is rotated so as to optimize the detection efficiency of the line sensors CP", CS".
ラインセンサCP”,CS”は、試料面の照明スポットBSと共役になるように、斜方結像検出系B”の光軸に対して傾斜している。
結像検出系は集光検出系に対して焦点深度が浅いため、第1実施形態に備えられる光学系に加えて試料面と検出光学系との作動距離を光テコの原理で計測するZセンサを備える。またステージSTには試料の上面と検出光学系との高さを変化させることができるようにZステージを追加する。制御装置E1はZセンサの出力値に基づき、検出系と試料面の作動距離がマイクロメートルオーダーで一定になるよう制御する。
The line sensors CP'', CS'' are inclined with respect to the optical axis of the oblique imaging detection system B'' so as to be conjugate with the illumination spot BS on the sample surface.
Since the focal depth of the imaging detection system is shallower than that of the light collection detection system, in addition to the optical system provided in the first embodiment, a Z sensor is provided that measures the working distance between the sample surface and the detection optical system using the principle of an optical lever. A Z stage is also added to the stage ST so that the height between the top surface of the sample and the detection optical system can be changed. The control device E1 controls the working distance between the detection system and the sample surface to be constant on the order of micrometers based on the output value of the Z sensor.
ステージSTの螺旋走査は、高速な検査モードにおいては、走査速度が毎秒数十メートルにもなるため、作動距離を想定通りに一定にすることは困難である。作動距離が変動すると、結像検出系B”にはフォーカスボケが発生すると共に、結像位置のずれが発生する。このことを図20で説明する。同図中のL1P,L3P,L4P,L6P,H2P,H3P,H5P,H6Pはそれぞれ、開口L1,L3,L4,L6,H2,H3,H5,H6(図7)に入射してそれぞれ偏光ビームスプリッタB3”を透過する各光が、作動距離が設計位置からΔZずれるとラインセンサ上でS2方向にどのように拡がるか(PSF)を示している。設計位置(各図のΔZ方向の中央)に対する作動距離のずれΔZが拡大すると、いずれのセンサ面でも像はs2方向にシフトしながら拡大する。高角に散乱した光(H2P,H3P,H5P,H6P)に対し、低角に散乱した光(L1P,L3P,L4P,L6P)では、ずれΔZに対するs2方向へのシフト量が大きくなることが分かる。 In the high-speed inspection mode, the spiral scanning of the stage ST has a scanning speed of several tens of meters per second, making it difficult to keep the working distance constant as expected. When the working distance fluctuates, the imaging detection system B" becomes out of focus and the imaging position shifts. This is explained in Figure 20. In the figure, L1P, L3P, L4P, L6P, H2P, H3P, H5P, and H6P respectively indicate how the light incident on the apertures L1, L3, L4, L6, H2, H3, H5, and H6 (Figure 7) and passing through the polarizing beam splitter B3" expands in the S2 direction on the line sensor when the working distance shifts ΔZ from the designed position (PSF). When the working distance shift ΔZ from the designed position (the center of each figure in the ΔZ direction) increases, the image expands while shifting in the s2 direction on each sensor surface. It can be seen that the amount of shift in the s2 direction relative to the deviation ΔZ is greater for light scattered at low angles (L1P, L3P, L4P, L6P) than for light scattered at high angles (H2P, H3P, H5P, H6P).
-照明系の焦点深度-
図21は作動距離のずれΔZに伴う試料面上の照明スポットBSのS1方向の像の拡がりの変化を示す。第5実施形態では、照明スポットBSのS1方向の幅を縮小し線状にする。図21に示したように、図20に示したセンサ面の像とは異なり、照明スポットBSはシフトしないがΔZに応じて拡大する。
- Depth of focus of the illumination system -
Fig. 21 shows the change in the spread of the image of the illumination spot BS on the sample surface in the S1 direction due to the shift ΔZ in the working distance. In the fifth embodiment, the width of the illumination spot BS in the S1 direction is reduced to a linear shape. As shown in Fig. 21, unlike the image on the sensor surface shown in Fig. 20, the illumination spot BS does not shift but expands in response to ΔZ.
-周波数分離部(図22)-
図22は本実施形態に係る信号処理装置100に備わった信号処理装置Dの要部の処理ブロック図である。本実施形態の周波数分離部D1は、ローパスフィルタD11A-2、及び差分演算部D11B-2を含む。ローパスフィルタD11A-2は、センサからの入力信号D11A-2INに対し、S1方向、すなわち時間方向に適用されて低周波信号を抽出する。ローパスフィルタD11A-2は、S2方向にはフィルタは適用しない。差分演算部D11B-2は、ローパスフィルタD11A-2で得られた低周波信号を入力信号D11A-2INから差し引くことにより、DC成分付近の低周波数を除去した高周波成分の検出信号D11B-2-outを得る。
- Frequency separation section (Fig. 22) -
22 is a processing block diagram of the main parts of the signal processing device D provided in the
-モデル類似度算出部(図22)-
本実施形態のモデル類似度算出部D2は、モデルベクトル生成部D21A-5、及び類似度算出部D21B-5を含んで構成される。
-Model Similarity Calculation Unit (FIG. 22)-
The model similarity calculation unit D2 of this embodiment includes a model vector generation unit D21A-5 and a similarity calculation unit D21B-5.
モデルベクトル生成部D21A-5は、作動距離ΔZが変化したときに得られる欠陥のプロファイルのモデルデータM5-M7を保持する。モデルデータM5-M7のS2方向のプロファイルは、センサ毎のΔZに対するS2方向のビームの拡がりを示す図20のPSF(点拡がり関数)とセンサの画素サイズに基づいて決定する。典型的にはPSFとセンサ画素を表す矩形波とのコンボリューションによって、モデルデータM5-M7のS2方向のプロファイルが決まる。一方、モデルデータM5-M7のS1方向のプロファイルは、作動距離のずれΔZに応じて変化する照明スポットBSのプロファイル(図21)とセンサ画素の露光時間に基づいて算出される。走査速度に基づき照明スポットBSのプロファイルから変換された時間方向のプロファイルと、センサ画素の露光時間を表す矩形波とのコンボリューションが、信号処理に適用されるモデルデータM5-M7となる。走査速度は検査中にスパイラル位置によって変化するため、信号処理に適用されるモデルデータM5-M7は走査速度の変化に応じて変更される。 The model vector generating unit D21A-5 holds model data M5-M7 of the defect profile obtained when the working distance ΔZ changes. The S2-direction profile of the model data M5-M7 is determined based on the PSF (point spread function) in FIG. 20, which shows the beam spread in the S2 direction for each sensor with respect to ΔZ, and the pixel size of the sensor. Typically, the S2-direction profile of the model data M5-M7 is determined by convolution of the PSF with a square wave representing the sensor pixel. On the other hand, the S1-direction profile of the model data M5-M7 is calculated based on the profile of the illumination spot BS (FIG. 21), which changes according to the working distance deviation ΔZ, and the exposure time of the sensor pixel. The convolution of the time-direction profile converted from the profile of the illumination spot BS based on the scanning speed and the square wave representing the exposure time of the sensor pixel becomes the model data M5-M7 to be applied to the signal processing. Since the scanning speed changes depending on the spiral position during inspection, the model data M5-M7 to be applied to the signal processing is changed according to the change in the scanning speed.
また、信号処理装置Dには、センサからの入力信号D11A-2-INと共に、その信号の取得時のZセンサの出力値が入力される。モデルベクトル生成部D21A-5は、Zセンサの出力値から、入力信号D11A-2-INの撮像時における作動距離の設計値からのずれΔZを求め、モデルデータM5-M7のいずれが適正であるかを決定する。モデルベクトル生成部D21A-5は、決定したモデルデータのプロファイルをその時点における走査速度で換算し、ウィンドウx5に対応するモデルベクトルを決定し、類似度算出部D21B-5に転送する。 The signal processing device D also receives the input signal D11A-2-IN from the sensor, along with the output value of the Z sensor at the time the signal was acquired. The model vector generation unit D21A-5 determines the deviation ΔZ from the design value of the working distance at the time of imaging of the input signal D11A-2-IN from the output value of the Z sensor, and determines which of the model data M5-M7 is appropriate. The model vector generation unit D21A-5 converts the profile of the determined model data into the scanning speed at that time, determines the model vector corresponding to the window x5, and transfers it to the similarity calculation unit D21B-5.
類似度算出部D21B-5は、ウィンドウx5内のデータ列より設定する観測ベクトルとモデルベクトル生成部D21A-5から得たモデルベクトルとに基づく評価値(観測ベクトルとモデルベクトルのなす角度の他、コサイン類似度、ユークリッド距離、又はディープラーニングに基づいた評価値)を基に、モデルベクトルに対する観測ベクトルの類似度を算出する。ウィンドウx5の位置をS1方向及びS2方向に変化させ、走査により得られる検出信号D11B-2-outの全部について類似度を算出する。 The similarity calculation unit D21B-5 calculates the similarity of the observation vector to the model vector based on the evaluation value (the angle between the observation vector and the model vector, as well as cosine similarity, Euclidean distance, or evaluation value based on deep learning) based on the observation vector set from the data string in the window x5 and the model vector obtained from the model vector generation unit D21A-5. The position of the window x5 is changed in the S1 direction and the S2 direction, and the similarity is calculated for all of the detection signals D11B-2-out obtained by scanning.
-欠陥顕在化(図22)-
欠陥顕在化部D31A-5は、第1実施形態と同様に、検出信号D11B-2-outのウィンドウx5内のベクトルの信号強度に、非線形のゲインカーブに基づくゲインを乗じることで欠陥信号を顕在化する。
- Defect manifestation (Fig. 22) -
As in the first embodiment, the defect revealing unit D31A-5 reveals a defect signal by multiplying the signal intensity of a vector within a window x5 of the detection signal D11B-2-out by a gain based on a nonlinear gain curve.
その他の点において、本実施形態は第1実施形態と同様である。 In other respects, this embodiment is similar to the first embodiment.
本実施形態のように、散乱光検出系B1-Bnに結像検出系B”を用いた欠陥検査装置100においても、第1実施形態と同様に効果を得ることができる。
As in this embodiment, even in a
(第6実施形態)
第6実施形態において、ハードウェアは第5実施形態と同様であり、信号処理装置Dのみが第5実施形態と異なる。第5実施形態では特定の一周のデータについて類似度を算出する例を説明したが、本実施形態においては、複数周の螺旋走査による検出光量の変化をモデルデータに加え、制約を強めて感度向上を図る。
Sixth Embodiment
In the sixth embodiment, the hardware is the same as in the fifth embodiment, and only the signal processing device D is different from the fifth embodiment. In the fifth embodiment, an example in which similarity is calculated for data of a specific revolution has been described, but in this embodiment, a change in the amount of detected light due to multiple revolutions of spiral scanning is added to the model data, and the constraints are strengthened to improve sensitivity.
図23は本発明の第6実施形態に係る照明のオーバーラップ走査とそれに基づくモデルベクトルの説明図である。本実施形態では、照明ピークのexp(-2)で規定される照明ビーム径の半分がS2方向にオーバーラップするように螺旋ピッチを設定する。これにより同一の欠陥が2回検出される。f2301のグラフにおいて、横軸はS2方向、p2301はi周目の照明光強度、p2302はi+1周目の照明光強度を表す。この例では、同一欠陥について、i周目の走査で散乱光p2301-aが、i+1周目の走査で散乱光p2301-bが検出されている。ラインセンサにおいては、アレイ状に画素が配列されて受光部が形成されおり、試料面上のr座標毎に期待される検出光量illum(i,r)が特定可能である。iはスパイラル数、rはr座標である。 FIG. 23 is an explanatory diagram of overlapping illumination scanning according to the sixth embodiment of the present invention and the model vector based on it. In this embodiment, the spiral pitch is set so that half of the illumination beam diameter defined by exp(-2) of the illumination peak overlaps in the S2 direction. This allows the same defect to be detected twice. In the graph of f2301, the horizontal axis is the S2 direction, p2301 represents the illumination light intensity in the i-th rotation, and p2302 represents the illumination light intensity in the i+1th rotation. In this example, for the same defect, scattered light p2301-a is detected in the i-th rotation scan, and scattered light p2301-b is detected in the i+1th rotation scan. In the line sensor, pixels are arranged in an array to form a light receiving section, and the expected detection light amount illum(i,r) for each r coordinate on the sample surface can be specified. i is the spiral number, and r is the r coordinate.
図中下側に表した特徴空間f2302には、ある特定の画素の走査軌道が中心を通る試料面上の欠陥について、i周目の螺旋走査で得られるモデルベクトルV23-a、及びi+1周目で得られるモデルベクトルV23-bが例示されている。理想的な欠陥から得られる観測ベクトルは、これら2つのモデルベクトルV23-a,V23-bを合成したモデルベクトルV23-cとベクトル成分が同一になる。従って、観測ベクトルV23-dとモデルベクトルV23-cとの類似度を、先に説明した各実施形態と同じく、両ベクトルのなす角度θ、cos類似度、ユークリッド距離、又はディープラーニングで求めた評価値を基に算出することができる。この一連の処理を図24及び図25を用いて説明する。 Feature space f2302 shown at the bottom of the figure illustrates model vector V23-a obtained by spiral scanning in the i-th rotation and model vector V23-b obtained in the i+1th rotation for a defect on the sample surface whose center is the scanning trajectory of a specific pixel. The observation vector obtained from an ideal defect has the same vector components as model vector V23-c, which is a combination of these two model vectors V23-a and V23-b. Therefore, the similarity between observation vector V23-d and model vector V23-c can be calculated based on the angle θ between the two vectors, cosine similarity, Euclidean distance, or an evaluation value obtained by deep learning, as in the respective embodiments described above. This series of processes will be explained using Figures 24 and 25.
図24及び図25は本実施形態に係る信号処理装置100に備わった信号処理装置Dの要部の処理ブロック図である。ローパスフィルタD11A-2、差分演算部D11B-2、モデルベクトル生成部D21A-5は第5実施形態と同様である。ただし、モデルベクトル生成部D21A-5は、モデルベクトル射影部D11Dにモデルベクトルを送信する。モデルベクトル射影部D11Dは、差分演算部D11B-2が出力する検出信号D11B-2-outに対して第5実施形態と同様に設定したウィンドウx5で規定した観測ベクトルをモデルベクトルに射影して得られる光強度D11D-outを出力し、これをメモリ部D11C-6に格納する。一方、シグナル強度算出部D11Eは、ウィンドウx5から得られる観測ベクトルの2乗ノルムのマップD11E-outを出力し、これをメモリ部D11C-6に格納する。メモリ部D11C-6に格納されたデータは、類似度算出部D21B-6で処理され、更に欠陥顕在化部D31A-6で処理される。
24 and 25 are processing block diagrams of the main parts of the signal processing device D provided in the
図25にメモリ部D11C-6に格納したi周目、i+1周目の螺旋走査で得られるモデルベクトル射影マップD11C-6-a,D11C-6-b、及びi周目、i+1周目の螺旋走査で得られる2乗ノルムのマップD11C-6-c,D11C-6-dを例示する。これらマップから、他の実施形態と同様に、ベクトルのなす角度θ、cos類似度、ユークリッド距離、又はディープラーニングで各マップの位置の類似度を算出し、欠陥顕在化部D31A-6に送信する。欠陥顕在化部D31A-6は他の実施形態と同様に、類似度に基づき非線形なゲインを設定し、欠陥を顕在化する。 FIG. 25 shows model vector projection maps D11C-6-a and D11C-6-b obtained by the i-th and i+1-th spiral scans stored in the memory unit D11C-6, and square norm maps D11C-6-c and D11C-6-d obtained by the i-th and i+1-th spiral scans. As in other embodiments, the similarity of the positions of each map is calculated from these maps using the vector angle θ, cosine similarity, Euclidean distance, or deep learning, and transmitted to the defect revealing unit D31A-6. As in other embodiments, the defect revealing unit D31A-6 sets a nonlinear gain based on the similarity and reveals defects.
その他の点について、本実施形態は他の実施形態と同様である。 In all other respects, this embodiment is similar to the other embodiments.
本実施形態においても、他の実施形態と同様に効果を得ることができる。 In this embodiment, the same effects can be obtained as in the other embodiments.
(第7実施形態)
第7実施形態において、ハードウェアは第5実施形態と同様であり、信号処理装置Dのみが第5実施形態と異なる。本実施形態では複数のセンサからの入力信号に基づき、モデルベクトルとの類似度を算出する。本発明の第7実施形態に係る信号処理装置100に備わった信号処理装置Dの要部の処理ブロック図を図26に示す。
Seventh Embodiment
In the seventh embodiment, the hardware is the same as that in the fifth embodiment, and only the signal processing device D is different from the fifth embodiment. In this embodiment, the similarity with the model vector is calculated based on input signals from a plurality of sensors. A processing block diagram of the main parts of the signal processing device D provided in the
-モデル類似度算出部(図26)-
本実施形態の周波数分離部D1は、ローパスフィルタD11A-2,D12A、差分演算部D11B-2,D12B、モデルベクトル射影部D11D,D12D、シグナル強度算出部D11E,D12Eを含む。ローパスフィルタD11A-2,D12A、差分演算部D11B-2,D12B、モデルベクトル射影部D11D,D12D、シグナル強度算出部D11E,D12Eは第6実施形態と同様の処理を実行する。
-Model similarity calculation unit (FIG. 26)-
The frequency separation unit D1 of this embodiment includes low-pass filters D11A-2 and D12A, difference calculation units D11B-2 and D12B, model vector projection units D11D and D12D, and signal intensity calculation units D11E and D12E. The low-pass filters D11A-2 and D12A, difference calculation units D11B-2 and D12B, model vector projection units D11D and D12D, and signal intensity calculation units D11E and D12E execute the same processes as those of the sixth embodiment.
-モデル類似度算出部(図26)-
本実施形態のモデル類似度算出D2は、モデルベクトル生成部D21A-7、及び類似度算出部D21B-2を含む。モデルベクトル生成部D21A-7は、第1センサと第2センサそれぞれについて、モデルベクトル生成部D21A-5と同じようにZセンサを変化させたときの検出系のプロファイルと照明系のプロファイルを保持する。照明のプロファイルは、一般にはいずれのセンサでも同様に観測されるが、検出系は異なる方位から検出し、また、試料面との作動距離も調整の状態で完全には一致しないため、それぞれのセンサ用に想定プロファイルを用意しておく。モデルベクトル生成部D21A-7は、入力したZセンサ出力及びそのときのS1方向の走査速度を基に、データを取得したそれぞれのタイミングのモデルベクトルを生成し、モデルベクトル射影部D11D,D12Dにベクトルを出力する。モデルベクトル射影部D11D,D12Dは、第6実施形態と同様、入力されたモデルベクトルに観測ベクトルを射影した結果をメモリ部D11C-3に出力する。また、シグナル強度算出部D11E,D12Eは、第6実施形態と同様、ウィンドウ内の2乗ノルムを算出し、メモリ部D11C-3に送信する。メモリ部D11C-3は、それぞれのセンサにおける隣接する2周の螺旋走査で得られたモデルベクトルに射影したマップと2乗ノルムのマップを保持する。D21B-7-in-1,D21B-7-in-2は、第6実施形態と同様、それぞれ第1センサ及び第2センサで取得したデータに基づき算出したマップである。
-Model similarity calculation unit (FIG. 26)-
The model similarity calculation D2 of this embodiment includes a model vector generation unit D21A-7 and a similarity calculation unit D21B-2. The model vector generation unit D21A-7 holds the profile of the detection system and the profile of the illumination system when the Z sensor is changed for each of the first and second sensors in the same manner as the model vector generation unit D21A-5. The illumination profile is generally observed in the same manner for each sensor, but the detection system detects from different orientations, and the working distance to the sample surface does not completely match in the adjusted state, so an assumed profile is prepared for each sensor. The model vector generation unit D21A-7 generates a model vector for each timing at which data is acquired based on the input Z sensor output and the scanning speed in the S1 direction at that time, and outputs the vector to the model vector projection units D11D and D12D. As in the sixth embodiment, the model vector projection units D11D and D12D output the result of projecting the observation vector onto the input model vector to the memory unit D11C-3. Similarly to the sixth embodiment, the signal intensity calculation units D11E and D12E calculate the square norm within the window and transmit it to the memory unit D11C-3. The memory unit D11C-3 holds a map of the square norm and a map of the projection onto the model vector obtained by two adjacent rotations of the spiral scan in each sensor. Similarly to the sixth embodiment, D21B-7-in-1 and D21B-7-in-2 are maps calculated based on the data acquired by the first sensor and the second sensor, respectively.
D21B-7-in-1,D21B-7-in-2のマップを基に、モデルベクトルとの類似度を算出する。類似度を算出する場合、まず図23で説明した2つの螺旋走査間でのS2方向の位置によって定まるベクトル方向を、第1センサ及び第2センサについて設定する。次いで、これら2つのベクトルを含む平面と観測ベクトルとのなす角度θを算出する。説明済みの実施形態と同様、角度θを類似度としても良いし、cos類似度、ユークリッド距離、又はディープラーニング等の手法を用いて変換した値を類似度としても良い。 The similarity with the model vector is calculated based on the maps of D21B-7-in-1 and D21B-7-in-2. When calculating the similarity, first, the vector direction determined by the position in the S2 direction between the two spiral scans described in FIG. 23 is set for the first and second sensors. Next, the angle θ between the plane containing these two vectors and the observation vector is calculated. As in the previously described embodiment, the angle θ may be used as the similarity, or a value converted using a method such as cosine similarity, Euclidean distance, or deep learning may be used as the similarity.
-欠陥顕在化部(図26)-
欠陥顕在化部D3A-7-1,D3A-7-2は、説明済みの実施形態と同様、それぞれのセンサの出力をモデルベクトルに射影したマップ、又は二乗ノルムのマップに対して、マップを構成する各データに対して決定した非線形ゲインを乗じて欠陥を顕在化する。非線形ゲインは2つのセンサについて共通の値が適用されるが、各センサのSNRを顕在化した信号は独立に出力される。
- Defect manifestation area (Fig. 26) -
As in the embodiment described above, the defect revealing units D3A-7-1 and D3A-7-2 reveal defects by multiplying a map in which the output of each sensor is projected onto a model vector or a map of square norm by a nonlinear gain determined for each data constituting the map. A common value of the nonlinear gain is applied to the two sensors, but the signal revealing the SNR of each sensor is output independently.
なお、図26では2つのセンサについて類似度を算出し、ノイズを抑制した。欠陥顕在化部D3A-7-1,D3A-7-2は2つのセンサの組み合わせからモデルに対する類似度を算出したが、説明済みの実施形態と同様、センサ数は2つに限定されず、例えば欠陥検査装置100に備えられる全てのセンサの出力を用いて類似度を算出し、非線形ゲインを決定することもできる。
In FIG. 26, the similarity is calculated for two sensors to suppress noise. The defect revealing units D3A-7-1 and D3A-7-2 calculate the similarity to the model from a combination of two sensors, but as in the previously described embodiment, the number of sensors is not limited to two. For example, it is also possible to calculate the similarity using the output of all sensors provided in the
-欠陥判定部-
図27を用いて欠陥判定部について説明する。以下に説明する欠陥判定部D4の処理は、本実施形態に限らず、他の実施形態でも実行可能である。欠陥顕在化部D3A-7-1乃至D3A-7-Nは、欠陥判定部D4にセンサ毎のノイズを抑制した信号を出力する。欠陥判定部D4では、図28に例示するように、各センサからの出力信号がセンサ数と同じ次元の特徴空間にマッピングされる。図28において、V-f1乃至Nは各センサからの出力信号である。ここで、既知の欠陥散乱分布をモデルとして与え、モデルとの類似度の高い信号に対してはゲインを維持し、そうでない欠陥のゲインを抑制することで検出目的の欠陥の検出感度を向上させることができる。例えば、表面異物を検出することが目的である場合には、低角用の検出器においてほぼ等方的に散乱光が放射される。この特徴をモデルベクトルf-D4で表す。観測ベクトルX-28とモデルベクトルf-D4とのベクトルのなす角度を算出し、これが0から離れるに従いゲインを小さくする。検出目的とする重要欠陥は検査により異なるため、検査パラメータによってゲインをコントロールできるようにしておく。
- Defect Judgment Section -
The defect determination unit will be described with reference to FIG. 27. The process of the defect determination unit D4 described below is not limited to this embodiment, and can be performed in other embodiments. The defect manifestation units D3A-7-1 to D3A-7-N output signals with suppressed noise for each sensor to the defect determination unit D4. In the defect determination unit D4, as illustrated in FIG. 28, the output signals from each sensor are mapped to a feature space with the same dimension as the number of sensors. In FIG. 28, V-f1 to N are output signals from each sensor. Here, a known defect scattering distribution is given as a model, and the gain is maintained for signals with a high similarity to the model, and the gain of defects that are not similar is suppressed, thereby improving the detection sensitivity of the defect to be detected. For example, when the purpose is to detect surface foreign matter, the low-angle detector emits scattered light almost isotropically. This feature is represented by a model vector f-D4. The angle between the observation vector X-28 and the model vector f-D4 is calculated, and the gain is reduced as the angle moves away from 0. Since the important defects to be detected differ depending on the inspection, the gain is made controllable by the inspection parameters.
その他の点について、本実施形態は他の実施形態と同様である。 In all other respects, this embodiment is similar to the other embodiments.
本実施形態においても、他の実施形態と同様に効果を得ることができる。 In this embodiment, the same effects can be obtained as in the other embodiments.
(第8実施形態)
図29は本発明の第8実施形態に係る欠陥検査装置200の構成図である。
Eighth embodiment
FIG. 29 is a configuration diagram of a
本実施形態の欠陥検査装置200は、試料10の外観画像を撮像し、その外観画像を用いて試料10が有する欠陥を検査する装置である。以下では記載の便宜上、欠陥検査装置200と信号処理装置D-Bを個別に記載するが、これらは一体的に構成することもできるし、適当な通信線を介して相互接続することもできる。
The
試料10は、例えば半導体ウェハ等の被検査物である。ステージST3は、試料10を搭載してXYZそれぞれの方向に直進する3つのステージ及びウェハ回転させる回転ステージの組み合わせで構成する。図示しないZセンサによって、検査対象試料表面の高さを計測し、Z方向に直進するステージを制御し、光学系と試料面との作動距離を一定に保つ。
The
照明光学系231,232のいずれかは、試料10に対して斜方から照明光を照射する。上方検出系241と斜方検出系242は、試料10からの散乱光を結像する。イメージセンサ261,262は、各検出系が結像した光学像を受光して画像信号に変換する。イメージセンサとしてはラインセンサを用いる。ラインセンサの種類としては、受光部が一次元に配置された典型的なラインセンサや二次元状に配置されたTDIセンサが適用可能である。本実施形態ではTDIセンサを適用する。イメージセンサ261の前段には検光子252が配置されている。ステージST3を水平方向に移動させながら散乱光を検出することにより、試料10の2次元画像を得ることができる。
Either of the illumination
照明光学系231,232の光源としては、レーザを用いてもよいしランプを用いてもよい。各光源の波長は、単波長であってもよいし、広帯域波長光(白色光)であってもよい。短波長光を用いる場合、検出する画像の分解能を上げる(微細な欠陥を検出する)ために紫外領域光(Ultra Violet Light)を用いることもできる。光源としてレーザを用いる場合、単波長レーザであれば、照明光学系231,232は干渉性を低減する手段を備えることもできる。
The light source for the illumination
図示しない波長板を各照明光学系231,232と試料10との間にそれぞれ配置することにより、試料10に対して入射する照明光の偏光状態を変えることができる。
By placing a wave plate (not shown) between each of the illumination
制御装置E1は、各照明光学系、各イメージセンサ等欠陥検査装置200の全体動作を制御する。信号処理装置D-Bは、制御装置E-1を介して欠陥検査装置200と接続することができる。
The control device E1 controls the overall operation of the
信号処理装置D-Bは、画像処理部D-B1、欠陥判定部D-B2、画像記憶部D-B3、抽出条件算出部D-B4、抽出条件記憶部D-B5、表示部D-B6を有する。上記各機能部は、プロセッサが持つメモリ及びプロセッサでプログラムを実行することで実現される機能である。 The signal processing device D-B has an image processing unit D-B1, a defect determination unit D-B2, an image storage unit D-B3, an extraction condition calculation unit D-B4, an extraction condition storage unit D-B5, and a display unit D-B6. Each of the above functional units is a function that is realized by the memory of the processor and by executing a program on the processor.
画像処理部D-B1は、制御装置E-1を介して試料10の外観画像を取得し、図31で後述する処理を実施する。欠陥判定部D-B2は、抽出条件記憶部D-B5が格納している抽出条件データが記述している抽出条件にしたがって、外観画像の特徴量に基づき試料10の欠陥を抽出する。画像記憶部D-B3は、試料10の特徴量を表す特徴量画像、欠陥判定部D-B2による判定結果等を記憶する。抽出条件算出部D-B4は、後述する手順にしたがって新たな欠陥抽出条件を算出し、欠陥判定部D-B2はその条件を用いて欠陥を抽出する。表示部D-B6は、欠陥判定部D-B2による判定結果等、信号処理装置D-Bによる処理結果をモニタE3(図1)に表示出力する。
The image processing unit D-B1 acquires an external image of the
図30は試料10の例を示す上面図である。試料10が例えば半導体ウェハである場合、試料10上に同じ半導体チップ(ダイ)111~115が形成されている。半導体チップ115上には、メモリエリア1151-1,1151-2,1151-3と周辺回路エリア1152が形成されている。欠陥検査装置100は、ステージST3を照明スポットである照明線(走査線)1153に対して直交する方向に移動させながら外観画像を取得する。信号処理装置D-Bは、半導体チップ111~115の画像を相互に比較することにより、欠陥を抽出する。詳細は後述する。
Figure 30 is a top view showing an example of
図31は信号処理装置D-Bが備える内部演算ブロックの構成図である。信号処理装置D-Bは、欠陥検査装置200が備える検出系毎に図31の内部演算ブロックを備え、各検出系によって検出した外観画像を個別に処理する。ここでは1つ目の検出系(例えば上方検出系141)によって検出した外観画像を処理する内部演算ブロック302aを例示した。その他内部演算ブロックも同様の構成を備えるので、これらを区別する必要がある場合はアルファベットの添字を用いる。後述する図面においても同様である。
FIG. 31 is a configuration diagram of the internal calculation block provided in the signal processing device D-B. The signal processing device D-B has the internal calculation block of FIG. 31 for each detection system provided in the
内部演算ブロック302aは、試料10の外観画像の画素値301aを受け取り、これを画像メモリ311内に蓄積することにより、検査対象画像(例えば半導体チップ111)302を生成する。同様に比較対象画像を生成する。比較対象画像としては隣接画像(例えば半導体チップ112~115)303-1、又は同一ダイ内類似画像303-2(例えば同一半導体チップ内に形成された同一設計のメモリエリア1151-1~1151-3)を生成する。ダイ内類似画像は検査対象と距離が近接しているため、検査対象とより類似した画像が期待できるため、検査対象領域と類似した同一ダイ内類似画像が得られる場合には同一ダイ内類似画像303-2を、それが無い領域では隣接画像303-1をそれぞれ比較対象画像として用いる。
The
位置ずれ算出部312は、例えば検査対象画像302と隣接画像303との間の正規化相関を算出する等によって両画像間の位置ずれ量を算出する。位置合わせ部313は、その位置ずれ量にしたがって検査対象画像302又は隣接画像303を移動させることにより両画像の位置を揃える。参照画像合成器314-1は、例えば複数の隣接画像303の画素値(輝度値)のメディアン値によって構成された参照画像を生成する。一方、これとは独立の参照画像合成器314-2は検査対象画像302のみを用いて参照画像を合成する。例えば半導体チップでは局所的に同一のパターンの繰り返しで構成される場合が多く、この同一パターンの繰り返しを利用してその輝度値のメディアン値をとることによって、参照画像を合成する。
The position
また、パターンが検出系の解像度に対して極めて微細な場合には、その解像されていない画像の領域のメディアン値をとった一様な明度の画像を参照画像としても良い。この例としては配線ピッチが数10nmのラインパターンやメモリセル部がある。131と132の照明光源としてUVレーザを用いた場合、その波長サイズは200nm以上になるため、数10nmピッチのラインパターンやメモリセル部は解像できず、一般には極めて暗い一様な領域として撮像される。参照画像合成器314-3は、参照画像合成器314-1,314-2から入力される参照画像を基に最終的な参照画像を合成する。検査対象の近傍で参照画像を合成できた場合、最も検査対象の正常部として適切な近似画像が得られるため、参照画像合成器314-2の出力が参照画像として適用され、これが得られない場合には参照画像合成器314-1の出力が参照画像として適用される。また、図示されていないが、参照画像合成器314-1,314-2の両方の出力を参照画像として適用し、1つの検査対象画像に対して参照画像が異なる2回の比較画像処理を実施する構成とすることもできる。差分算出部D1-Bは、検査対象画像302と参照画像との間の差分を算出することにより、差分画像を作成する。
Also, if the pattern is extremely fine relative to the resolution of the detection system, an image of uniform brightness obtained by taking the median value of the unresolved image area may be used as the reference image. Examples of this include line patterns and memory cell sections with a wiring pitch of several tens of nanometers. If a UV laser is used as the illumination light source for 131 and 132, the wavelength size is 200 nm or more, so line patterns and memory cell sections with a pitch of several tens of nanometers cannot be resolved and are generally imaged as extremely dark uniform areas. Reference image synthesizer 314-3 synthesizes the final reference image based on the reference images input from reference image synthesizers 314-1 and 314-2. If a reference image can be synthesized in the vicinity of the inspection target, an approximation image that is most appropriate as a normal part of the inspection target can be obtained, so the output of reference image synthesizer 314-2 is applied as the reference image, and if this cannot be obtained, the output of reference image synthesizer 314-1 is applied as the reference image. Also, although not shown, it is possible to configure the configuration so that the outputs of both reference image combiners 314-1 and 314-2 are applied as reference images, and two comparison image processes are performed for one inspection target image using different reference images. The difference calculation unit D1-B creates a difference image by calculating the difference between the
モデルベクトル生成部D21A-Bには、欠陥のモデルデータM8-M10が格納されている。イメージセンサとしてTDIを用いる場合には、S1,S2いずれの方向についても、欠陥のモデルベクトルは、検出系のPSFと画素サイズを表す矩形パターンとのコンボリューションによって算出される。理想的な作動距離からのずれΔZをZセンサから入力し、ずれΔZに応じてモデルデータを変更してモデルベクトルを算出する。 The model vector generation unit D21A-B stores defect model data M8-M10. When a TDI is used as the image sensor, the defect model vector is calculated by convolution of the PSF of the detection system and a rectangular pattern representing the pixel size for both the S1 and S2 directions. The deviation ΔZ from the ideal working distance is input from the Z sensor, and the model data is changed according to the deviation ΔZ to calculate the model vector.
類似度算出部D21B-Bでは、差分算出部D1-Bにおいて設定のウィンドウ内のデータ列から得られた観測ベクトルとモデルベクトル生成部D21A-Bで生成したモデルベクトルのなす角度を基に類似度を算出する。 The similarity calculation unit D21B-B calculates the similarity based on the angle between the observation vector obtained from the data string in the set window in the difference calculation unit D1-B and the model vector generated by the model vector generation unit D21A-B.
欠陥顕在化部D3A-Bの処理について図32を用いて説明する。試料10のようなパターン付きの半導体ウェハは、その表面に形成された回路パターンによってノイズの分布状態が変化する。このノイズの分布状態は、ウィンドウの位置によって変化するため、参照画像パターン、又は半導体ウェハの座標によって、ノイズの分布状態を評価する。図32において、V-f1乃至V-f3が特徴空間の座標軸であり、f-D4がモデルベクトル生成部D21A-Bで生成したモデルベクトルである。X-32が評価対象となる観測ベクトルである。統計的に検査対象となる試料10に極めて多数の欠陥は存在せず、多くは正常である。そこで、この正常な点群の特徴空間内におけるばらつきを算出する。ばらつきの算出方法の例として、同一設計部の標準偏差のK倍、又はポアソン分布推定による最大値を用いる方法が挙げられる。また、これらの統計処理を行ったマップに対して、そのN近傍の最大値をとるといったモルフォロジー処理を採用しても良い。これにより、ウィンドウ内の各画素についてばらつきが求まるため、求めたばらつきを正規化し、全ての画素についてのばらつきが同一になるように変換する。この結果、観測ベクトルX-32はX-32’に、モデルベクトルf-D4はf-D4’に変換される。正常データの分布も変化する。この変換された特徴空間内でモデルベクトルf-D4’と観測ベクトルX-32’のなす角度θに基づいて類似度を算出することができる。
The processing of the defect revealing unit D3A-B will be explained using FIG. 32. In a semiconductor wafer with a pattern such as the
この類似度を基に欠陥顕在化部D3A-Bで欠陥を顕在化する。顕在化するゲインとしては、図14で説明した非線形なものを適用する。ゲインを適用する対象は、正規化後の観測データ、又はこれをモデルベクトルに射影したデータのいずれでも良い。 Based on this similarity, the defect revealing unit D3A-B reveals the defects. The nonlinear gain explained in FIG. 14 is applied as the revealing gain. The gain can be applied to either the normalized observed data or the data projected onto the model vector.
その他の点について、本実施形態は他の実施形態と同様である。 In all other respects, this embodiment is similar to the other embodiments.
本実施形態においても、他の実施形態と同様に効果を得ることができる。 In this embodiment, the same effects can be obtained as in the other embodiments.
本実施形態では特定のセンサの出力に対する処理について述べたが、その他の実施形態と同様に、複数のイメージセンサの出力を用いる方法や、オーバーラップした結果を適用して類似度、及びゲインを算出することも可能である。 In this embodiment, processing of the output of a specific sensor has been described, but as in the other embodiments, it is also possible to use a method that uses the output of multiple image sensors, or to apply overlapping results to calculate similarity and gain.
なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば上記した各実施形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を必須とするわけではない。ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
例えば、試料からの光を複数のセンサで検出する欠陥検査装置に発明を適用した例を説明したが、試料からの光を検出するセンサを1つのみ備えた欠陥検査装置にも本発明は適用可能である。
The present invention is not limited to the above-described embodiments, and includes various modified examples. For example, the above-described embodiments have been described in detail to easily explain the present invention, and all of the configurations described are not necessarily required. It is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
For example, an example has been described in which the invention is applied to a defect inspection device that detects light from a sample using multiple sensors, but the present invention can also be applied to a defect inspection device that has only one sensor that detects light from a sample.
上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路等のハードウェアで実現してもよい。上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈して実行することにより、ソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記録装置、又は、フラッシュメモリカード、DVD(Digital Versatile Disk)等の記録媒体に格納しておくことができる。 The above configurations, functions, processing units, processing means, etc. may be realized in part or in whole by hardware, such as an integrated circuit. The above configurations, functions, etc. may be realized by software, with a processor interpreting and executing a program that realizes each function. Information on the programs, tables, files, etc. that realize each function may be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or on a recording medium such as a flash memory card or a DVD (Digital Versatile Disk).
各実施形態において、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には、殆ど全ての構成が相互に接続されていると考えて良い。 In each embodiment, the control lines and information lines are those that are considered necessary for the explanation, and not all control lines and information lines in the product are necessarily shown. In reality, it can be considered that almost all components are interconnected.
1,10…試料、100,200…欠陥検査装置、A…散乱光照明系、BS…照明スポット、c1…類似度、C1P-CnP,C1S-CnS,CP”,CS”…センサ、D…信号処理装置、ST2…走査装置、V-X1,V16-X,V23-d,X-32…観測ベクトル、V-M1,V23-a,V23-b,V23-c,f-D4…モデルベクトル、θ…角度 1,10...sample, 100,200...defect inspection device, A...scattered light illumination system, BS...illumination spot, c1...similarity, C1P-CnP, C1S-CnS, CP", CS"...sensor, D...signal processing device, ST2...scanning device, V-X1, V16-X, V23-d, X-32...observation vector, V-M1, V23-a, V23-b, V23-c, f-D4...model vector, θ...angle
Claims (11)
前記試料からの光を検出する1つ以上のセンサと、
前記センサからの入力信号を処理する信号処理装置とを備え、
前記信号処理装置は、
前記センサからの入力信号に基づく観測ベクトルと、欠陥に係るモデルベクトルとの類似度を算出し、
前記類似度を基に前記観測ベクトルに対応する前記入力信号の強度を非線形に変化させた検出信号を算出し、
前記検出信号に基づき前記試料の欠陥を判定する
ことを特徴とする欠陥検査装置。 1. A defect inspection apparatus for inspecting a sample for defects based on light from the sample, comprising:
one or more sensors that detect light from the sample;
a signal processing device for processing an input signal from the sensor,
The signal processing device includes:
Calculating a similarity between an observation vector based on an input signal from the sensor and a model vector related to a defect;
calculating a detection signal by nonlinearly changing the intensity of the input signal corresponding to the observation vector based on the similarity;
a defect inspection apparatus for determining defects in the sample based on the detection signal.
前記信号処理装置は、前記観測ベクトルと前記モデルベクトルとの類似度に基づき前記観測ベクトルに対応する入力信号の強度を制御するゲインを取得、あるいは算出することと、
前記検出信号は前記入力信号と前記ゲインの積に基づき算出されることと、
前記類似度と前記ゲインとの対応において、任意の類似度に対応するゲインは、前記任意の類似度よりも低い類似度に対応するゲインよりも大きくなるように設定すること
を特徴とする欠陥検査装置。 2. The defect inspection apparatus according to claim 1,
the signal processing device acquires or calculates a gain that controls an intensity of an input signal corresponding to the observation vector based on a similarity between the observation vector and the model vector;
The detection signal is calculated based on a product of the input signal and the gain;
A defect inspection apparatus comprising: a gain setting unit that sets a gain corresponding to an arbitrary similarity in correspondence with the similarity and the gain so as to be greater than a gain corresponding to a similarity lower than the arbitrary similarity.
前記類似度は、前記1つ以上のセンサからの入力信号より算出され、
前記検出信号は、前記1つ以上のセンサからのそれぞれの入力信号に対して個々に算出される
ことを特徴とする欠陥検査装置。 2. The defect inspection apparatus according to claim 1,
the similarity is calculated from input signals from the one or more sensors;
A defect inspection apparatus, characterized in that the detection signal is calculated individually for each input signal from the one or more sensors.
前記観測ベクトルは、異なるタイミングでサンプルした時系列信号であり、
前記検出信号は、時系列信号である
ことを特徴とする欠陥検査装置。 2. The defect inspection apparatus according to claim 1,
The observation vector is a time series signal sampled at different times,
The defect inspection device according to claim 1, wherein the detection signal is a time series signal.
前記観測ベクトルは、照明スポットが注目点を横切る間に複数回実施されるサンプリングで得られる時系列信号を成分とするベクトルであることを特徴とする欠陥検査装置。 2. The defect inspection apparatus according to claim 1,
A defect inspection apparatus according to claim 1, wherein the observation vector is a vector whose components are time-series signals obtained by sampling performed a plurality of times while an illumination spot crosses a target point.
前記観測ベクトルは、前記試料からの光を遠方界の異なる複数の位置で同時に検出された光量を成分とするベクトルであることを特徴とする欠陥検査装置。 2. The defect inspection apparatus according to claim 1,
A defect inspection apparatus, wherein the observation vector is a vector whose components are the amounts of light from the sample detected simultaneously at a plurality of different positions in the far field.
前記モデルベクトルは、前記試料を走査した際に照明波長に対してサイズが小さい標準粒子からの光が前記センサで検出される場合に検出されることが期待される時系列信号と相関するベクトルであることを特徴とする欠陥検査装置。 2. The defect inspection apparatus according to claim 1,
A defect inspection apparatus characterized in that the model vector is a vector that correlates with a time series signal that is expected to be detected when the sensor detects light from a standard particle whose size is small relative to the illumination wavelength when the sample is scanned.
前記モデルベクトルは、前記センサによるサンプリングのタイミングにサンプリング周期以下の差がある複数の時系列信号に基づいて複数生成されることを特徴とする欠陥検査装置。 8. The defect inspection apparatus according to claim 7,
a plurality of model vectors are generated based on a plurality of time-series signals in which the difference in sampling timing by the sensor is equal to or less than a sampling period;
前記類似度は、前記モデルベクトルと前記観測ベクトルのノルム変化に対して不変な値であることを特徴とする欠陥検査装置。 2. The defect inspection apparatus according to claim 1,
A defect inspection apparatus, wherein the similarity is a value that is invariant to a change in the norm of the model vector and the observation vector.
前記類似度は、前記モデルベクトルと前記観測ベクトルのなす角度又はこれに基づく値であることを特徴とする欠陥検査装置。 2. The defect inspection apparatus according to claim 1,
A defect inspection apparatus, wherein the similarity is an angle between the model vector and the observation vector or a value based thereon.
試料に対して照明を入射して照明スポットを形成する照明系と、
前記試料上で前記照明スポットを走査する走査装置と
を備えていることを特徴とする欠陥検査装置。 2. The defect inspection apparatus according to claim 1,
an illumination system that applies illumination to the sample to form an illumination spot;
a scanning device that scans the illumination spot on the sample.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/016710 WO2024224567A1 (en) | 2023-04-27 | 2023-04-27 | Defect inspecting device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/016710 WO2024224567A1 (en) | 2023-04-27 | 2023-04-27 | Defect inspecting device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2024224567A1 true WO2024224567A1 (en) | 2024-10-31 |
Family
ID=93255800
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2023/016710 Pending WO2024224567A1 (en) | 2023-04-27 | 2023-04-27 | Defect inspecting device |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2024224567A1 (en) |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000099727A (en) * | 1998-09-18 | 2000-04-07 | Hitachi Ltd | Appearance image classification device and method |
| US20050075841A1 (en) * | 2003-08-05 | 2005-04-07 | Netanel Peles | Automated defect classification system and method |
| WO2007125941A1 (en) * | 2006-04-27 | 2007-11-08 | Sharp Kabushiki Kaisha | Method and system for classifying defect distribution, method and system for specifying causative equipment, computer program and recording medium |
| JP2014149177A (en) * | 2013-01-31 | 2014-08-21 | Hitachi High-Technologies Corp | Defect inspection device and defect inspection method |
| CN106600600A (en) * | 2016-12-26 | 2017-04-26 | 华南理工大学 | Wafer defect detection method based on characteristic matching |
| JP2017528697A (en) * | 2014-07-22 | 2017-09-28 | ケーエルエー−テンカー コーポレイション | Virtual inspection system with multiple modes |
| JP2019537839A (en) * | 2016-10-14 | 2019-12-26 | ケーエルエー コーポレイション | Diagnostic system and method for deep learning models configured for semiconductor applications |
-
2023
- 2023-04-27 WO PCT/JP2023/016710 patent/WO2024224567A1/en active Pending
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000099727A (en) * | 1998-09-18 | 2000-04-07 | Hitachi Ltd | Appearance image classification device and method |
| US20050075841A1 (en) * | 2003-08-05 | 2005-04-07 | Netanel Peles | Automated defect classification system and method |
| WO2007125941A1 (en) * | 2006-04-27 | 2007-11-08 | Sharp Kabushiki Kaisha | Method and system for classifying defect distribution, method and system for specifying causative equipment, computer program and recording medium |
| JP2014149177A (en) * | 2013-01-31 | 2014-08-21 | Hitachi High-Technologies Corp | Defect inspection device and defect inspection method |
| JP2017528697A (en) * | 2014-07-22 | 2017-09-28 | ケーエルエー−テンカー コーポレイション | Virtual inspection system with multiple modes |
| JP2019537839A (en) * | 2016-10-14 | 2019-12-26 | ケーエルエー コーポレイション | Diagnostic system and method for deep learning models configured for semiconductor applications |
| CN106600600A (en) * | 2016-12-26 | 2017-04-26 | 华南理工大学 | Wafer defect detection method based on characteristic matching |
Non-Patent Citations (2)
| Title |
|---|
| "Optimal Feature Selection for Defect Classification in Semiconductor Wafers", IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, vol. 35, no. 2, 26 January 2022 (2022-01-26), pages 324 - 331, XP011907395, DOI: 10.1109/TSM.2022.3146849 * |
| "Recognition of unknown wafer defect via optimal embedding technique", THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, vol. 121, 22 June 2022 (2022-06-22), pages 3439 - 3451, XP037899730, DOI: 10.1007/ s 00170-022 -09447-y * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI774708B (en) | Methods and systems for inspection of semiconductor structures | |
| JP6918931B2 (en) | Defect marking for semiconductor wafer inspection | |
| JP6755323B2 (en) | Methods and equipment for polarized wafer inspection | |
| JP5572293B2 (en) | Defect inspection method and defect inspection apparatus | |
| TWI679710B (en) | System, non-transitory computer-readable medium and method for determining defects on a specimen | |
| US9773641B2 (en) | Method and apparatus for observing defects | |
| US20120092656A1 (en) | Defect Inspection Method and Defect Inspection Apparatus | |
| US9400254B2 (en) | Method and device for measuring critical dimension of nanostructure | |
| JP2009283633A (en) | Surface inspection device, and surface inspection method | |
| WO2012153652A1 (en) | Defect observation method and device therefor | |
| JP2011211035A (en) | Inspecting device, defect classifying method, and defect detecting method | |
| JP2018163175A (en) | Inspection beam shaping for improved detection sensitivity | |
| US12366443B2 (en) | Surface inspection device and shape measurement software | |
| US12422377B2 (en) | Defect inspection apparatus and defect inspection method | |
| WO2011105016A1 (en) | Defect inspection device and method of inspecting defect | |
| WO2021245937A1 (en) | Defect inspection device | |
| JP4674382B1 (en) | Inspection apparatus and defect inspection method | |
| CN120153249A (en) | Method and system for determining the absolute structure of a crystal | |
| JP5798099B2 (en) | Image quality adjusting method, program, and electron microscope | |
| US20250012732A1 (en) | Surface inspection apparatus | |
| WO2024224567A1 (en) | Defect inspecting device | |
| WO2023152848A1 (en) | Defect inspecting device and defect inspecting method | |
| TW202311732A (en) | Method of manufacturing a semiconductor device | |
| CN115096208A (en) | Broad spectrum ellipsometry measuring equipment | |
| WO2023119587A1 (en) | Defect inspection device and defect inspection method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23935345 Country of ref document: EP Kind code of ref document: A1 |