[go: up one dir, main page]

WO2024214427A1 - Method for predicting cross-sectional dimension of shape steel, method for manufacturing shape steel, cross-sectional dimension prediction device for shape steel, and method for generating cross-sectional dimension prediction model - Google Patents

Method for predicting cross-sectional dimension of shape steel, method for manufacturing shape steel, cross-sectional dimension prediction device for shape steel, and method for generating cross-sectional dimension prediction model Download PDF

Info

Publication number
WO2024214427A1
WO2024214427A1 PCT/JP2024/008236 JP2024008236W WO2024214427A1 WO 2024214427 A1 WO2024214427 A1 WO 2024214427A1 JP 2024008236 W JP2024008236 W JP 2024008236W WO 2024214427 A1 WO2024214427 A1 WO 2024214427A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
sectional dimension
steel
rolling
sectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2024/008236
Other languages
French (fr)
Japanese (ja)
Inventor
英仁 山口
寛人 後藤
隼人 前野
片山 享
馬場 将彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2024541786A priority Critical patent/JP7619533B1/en
Priority to KR1020257032848A priority patent/KR20250163910A/en
Publication of WO2024214427A1 publication Critical patent/WO2024214427A1/en
Anticipated expiration legal-status Critical
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby

Definitions

  • the present invention relates to a method for predicting the cross-sectional dimensions of a steel section having a web and a flange, a method for manufacturing a steel section, a device for predicting the cross-sectional dimensions of a steel section, and a method for generating a cross-sectional dimension prediction model.
  • Steel sections with webs and flanges are primarily manufactured by hot rolling, where heated steel slabs are rolled to the target product dimensions using multiple rolling mills.
  • multiple passes are performed using a rough rolling mill with multiple grooves to roughly shape the steel slab to approximate the shape of the product.
  • multiple passes are performed using one or more intermediate universal rolling mills and one or more edging rolling mills to bring the outer dimensions and thickness closer to the target product dimensions.
  • a finishing universal rolling mill usually performs one pass of rolling to roll to the target dimensions.
  • the cross-sectional dimensions of H-beams a type of shaped steel, have set representative values for dimensions such as web height H, flange width B, web thickness tw, and flange thickness tf, as well as allowable ranges for dimensional tolerances, and all cross-sectional dimensions must be within the dimensional tolerances (within the target dimensions). Therefore, the rolling conditions are adjusted so that the cross-sectional dimensions after hot rolling are within the dimensional tolerances. Specifically, each dimension of the cross-section of the rolled shaped steel is measured, and if any dimension deviates from the dimensional tolerances, the roll spacing of each rolling mill is adjusted so that the dimension is within the dimensional tolerances.
  • Patent Document 1 discloses a method for controlling the thickness of H-shaped steel sections, in which the dimensions of the hot-rolled steel sections are measured and the amount of roll correction for the horizontal rolls and the vertical rolls is made approximately the same between successive passes, including the final pass of rough universal rolling.
  • the thickness of the H-shaped steel sections can be controlled by predetermining the correspondence between the web thickness and flange thickness and the amount of roll correction for each roll, measuring the web thickness and flange thickness to determine the deviation from the target value, and adding the amount of roll correction to the setup calculation for the next material.
  • Patent Document 2 describes a method for controlling the thickness of H-shaped steel sections, which specifies a method for adjusting the roll positions to eliminate variations in flange thickness at four points.
  • Patent Document 3 discloses the following technology for continuously manufacturing steel sections with the same cross-sectional dimensions. According to Patent Document 3, rolling operation parameters are acquired for each of the preceding and succeeding rolled materials of the steel section, and their cross-sectional dimensions are measured. Machine learning is performed using multiple data sets that include the relationship between the difference in rolling operation parameters and the difference in cross-sectional dimensions of the preceding and succeeding rolled materials. Then, a method for generating a prediction model for the amount of change in cross-sectional dimensions of steel sections, which generates a prediction model that predicts the amount of change in cross-sectional dimensions corresponding to the amount of correction of the rolling operation parameters, and a rolling control method using this model are disclosed.
  • Patent Documents 1 and 2 measure the dimensions of the shaped steel during or after hot rolling, and change the settings of each roll to eliminate the difference from the target dimensions, thereby controlling the dimensions of the shaped steel to some extent.
  • there are a great many dimensions of shaped steel and it would take a lot of effort to predict the dimensions of all of them with high accuracy.
  • the effects of changes in material temperature during rolling due to differences in the number of passes and material weight, and the effects of steel type and chemical components on the rolling load are not taken into consideration, resulting in problems with the accuracy of dimensional control.
  • Patent Document 3 the technology disclosed in Patent Document 3 is effective only when shaped steel with the same cross-sectional dimensions are rolled continuously, and there is a problem that it cannot handle the first cross-sectional change when rolling shaped steel with various cross-sections with the same roll set. In addition, there is also the problem that it takes time to accumulate actual data that serves as learning data for generating a prediction model.
  • the present invention has been made in consideration of the problems with the conventional technology, and aims to provide a method and device for predicting the cross-sectional dimensions of shaped steel that can be applied to shaped steel of various cross-sectional dimensions, so long as the shaped steel is manufactured by hot rolling with the same roll set.
  • Another aim of the present invention is to provide a method for manufacturing shaped steel using the method for predicting the cross-sectional dimensions of shaped steel, and a method for generating a cross-sectional dimension prediction model to be used in the method for predicting the cross-sectional dimensions of shaped steel.
  • a method for predicting the cross-sectional dimension of a structural steel to be manufactured by hot rolling comprising: a cross-sectional dimension prediction model which takes as input the difference in rolling operation parameters for two structural steels manufactured by hot rolling with the same roll set; and outputs the difference in cross-sectional dimension deviation of the two structural steels; the method inputs the difference between the rolling operation parameters of a structural steel to be a predecessor material manufactured by hot rolling with the roll set and the rolling operation parameters of a structural steel to be manufactured by hot rolling with the roll set, and outputs the difference in cross-sectional dimension deviation, the cross-sectional dimension deviation being the deviation between the target dimension and actual dimension of the structural steel; and predicts the cross-sectional dimension of the structural steel to be manufactured using the output difference in cross-sectional dimension deviation and the cross-sectional dimension of the structural steel to be the predecessor material.
  • [2] The method for predicting cross-sectional dimensions of a structural steel as described in [1], wherein the structural steel is produced by hot rolling a steel slab using a roughing mill, an intermediate rolling mill and a finishing rolling mill, and the rolling operation parameters include the weight of the steel slab, a correction amount from a reference position of the rolling rolls of the intermediate rolling mill, the number of passes through the roughing mill and the intermediate rolling mill, and the rolling time of the roughing mill and the intermediate rolling mill.
  • [3] The method for predicting cross-sectional dimensions of structural steel according to [1] or [2], wherein the input of the cross-sectional dimension prediction model includes an attribute parameter indicating the steel type classification of the structural steel.
  • [4] The method for predicting the cross-sectional dimensions of a structural steel according to any one of [1] to [3], wherein the cross-sectional dimensions are at least one of the cross-sectional dimensions of the web thickness of the structural steel, the four flange thicknesses at the top, bottom, left and right, the web height and the flange width.
  • a method for manufacturing structural steel comprising: identifying a difference in rolling operation parameters that brings a cross-sectional dimension of a structural steel predicted using the method for predicting a cross-sectional dimension of a structural steel according to any one of [1] to [4] into a range of a target dimension; and manufacturing the structural steel under manufacturing conditions that include rolling operation parameters determined from the identified difference in rolling operation parameters.
  • a cross-sectional dimension prediction device for structural steel that predicts the cross-sectional dimensions of structural steel to be manufactured by hot rolling the device having a cross-sectional dimension prediction model that takes as input the difference in rolling operation parameters for two structural steels manufactured by hot rolling with the same roll set and outputs the difference in cross-sectional dimension deviation of the two structural steels, and outputs the difference in cross-sectional dimension deviation by inputting the difference between the rolling operation parameters of a structural steel that is a predecessor material manufactured by hot rolling with the roll set and the rolling operation parameters of a structural steel that is to be manufactured by hot rolling with the roll set, the difference in cross-sectional dimension deviation being the deviation between the target dimension and actual dimension of the structural steel, and the device having a cross-sectional dimension prediction unit that predicts the cross-sectional dimension of the structural steel to be manufactured using the output difference in cross-sectional dimension deviation and the actual value of the cross-sectional dimension of the structural steel that is to be the predecessor material.
  • a method for generating a cross-sectional dimension prediction model comprising: training a machine learning model using multiple data sets as training data, each set being a set of actual values of the difference in rolling operation parameters for two structural steels manufactured by hot rolling with the same roll set and actual values of the difference in cross-sectional dimension deviations of the two structural steels; generating a cross-sectional dimension prediction model that uses the difference in rolling operation parameters for the two structural steels as input and the difference in the cross-sectional dimension deviations of the two structural steels as output; and using the deviation between the target dimension and the actual dimension of the structural steel as the cross-sectional dimension deviation.
  • a cross-sectional dimension prediction model can be applied to steel sections of various cross-sectional dimensions, so long as the steel sections are manufactured by hot rolling. This makes it possible to apply the model to any two sets of steel sections, not just the preceding and succeeding rolled materials that are hot rolled in succession, and therefore makes it possible to predict the cross-sectional dimensions of the steel section even if it is the first steel section after a cross-section change.
  • FIG. 1 is a schematic cross-sectional view showing the cross-sectional shape of an H-shaped steel.
  • FIG. 2 is a schematic diagram showing an example of a hot rolling facility including a section dimension prediction device for section steel in which the section dimension prediction method for section steel according to this embodiment can be implemented.
  • FIG. 3 is a functional block diagram of a section steel cross-sectional dimension prediction device.
  • FIG. 4 is a flow diagram showing a flow of a rolling operation parameter specification process by the rolling operation parameter specification unit.
  • FIG. 5 is a graph showing the relationship between the number of learning data and the average value of RMSE for each dimension of H-section steel.
  • Figure 1 is a schematic cross-sectional view showing the cross-sectional shape of an H-shaped steel 10.
  • the relatively thick parts of the H-shaped steel 10 are the flanges 12, and the relatively thin parts that are connected to the pair of flanges 12 are the webs 14.
  • the outside dimension is the web height H of the H-shaped steel 10
  • the inside dimension is the dimension obtained by subtracting the flange thickness from the outside dimension.
  • the strength classification of the H-shaped steel 10 is broadly divided into three classes based on tensile strength: 400 N/ mm2 , 490 N/mm2, and more.
  • the chemical composition of the H-shaped steel 10 is adjusted for each steel type classification (40k steel, 50k steel, and more) according to this strength classification.
  • Such H-shaped steel 10 is mainly manufactured by hot rolling.
  • the H-shaped steel 10 manufactured by hot rolling is called rolled H-shaped steel.
  • FIG. 2 is a schematic diagram showing an example of a hot rolling facility 100 including a structural steel cross-sectional dimension prediction device capable of implementing the structural steel cross-sectional dimension prediction method according to this embodiment.
  • H-shaped steel is manufactured by rough rolling, intermediate rolling, and finish rolling using multiple rolling mills on a steel slab preheated in a heating furnace 20, and shaping it into structural steel of the target dimensions.
  • the intermediate rolling mill 24 is often a combination of one or more intermediate universal rolling mills 26 and edger rolling mills 28.
  • approximately 5 to 30 passes of reverse rolling are performed, and the material is rolled to a state that is roughly close to the cross-sectional shape of the final product.
  • the finish rolling process using the finish rolling mill 30 typically one pass of rolling is performed, and the material is formed into the target thickness and cross-sectional shape.
  • the intermediate universal rolling mill 26 which is one of the intermediate rolling mills 24, is a rolling mill that has a total of four rolls: upper and lower horizontal rolls that are driven to rotate about a horizontal axis, and left and right vertical rolls that rotate freely about a vertical axis.
  • the diameter of the upper and lower horizontal rolls is approximately 1000 to 1500 mm, and the width of the upper and lower horizontal rolls is appropriately adjusted according to the web height H of the H-shaped steel to be rolled, and is installed in the rolling mill.
  • the diameter of the left and right vertical rolls is approximately 600 to 1000 mm.
  • These upper and lower horizontal rolls and left and right vertical rolls are each designed so that their positions can be adjusted with a reduction device, and the spacing between the upper and lower horizontal rolls and the spacing between the sides of the horizontal rolls and the vertical rolls can be set as desired.
  • the intermediate universal rolling mill 26 has the function of simultaneously reducing the web thickness tw and the flange thickness tf, and is characterized by rolling with the flange 12 tilted outward by a maximum of approximately 10°.
  • the edger rolling machine 28 which is one of the intermediate rolling machines 24, has two horizontal rolls (hereinafter referred to as E1 rolls) with grooves, one above the other, and adjusts the flange width B by pressing down the tip of the flange 12 from above and below with the E1 rolls.
  • the diameter of the E1 rolls is about 800 to 1200 mm, and both E1 rolls are driven.
  • a finishing universal rolling mill is used for the finishing rolling mill 30.
  • the intermediate rolled material is finished into the product cross-sectional shape in one pass.
  • the dimensions and configuration of the rolls of the finishing universal rolling mill are the same as those of the intermediate universal rolling mill 26, but in the finishing universal rolling mill, the flange 12 is rolled so that it is perpendicular to the web 14.
  • the cross-sectional dimensions of the H-shaped steel formed and manufactured by the above-mentioned hot rolling are measured in the hot state by a hot dimension gauge 32 installed downstream of the finishing rolling mill 30.
  • the hot dimension gauge 32 measures the web height H of the H-shaped steel, the left and right flange widths B, the web thickness tw, and the flange thicknesses tf at four points on the top, bottom, left and right. It is preferable that the cross-sectional dimensions are measured by the hot dimension gauge 32 at as small intervals as possible over the entire longitudinal length. In addition, the measured cross-sectional dimensions are measured in the hot state, and when cooled to room temperature, the dimensions change due to thermal contraction.
  • the actual dimensions used for predicting and controlling the cross-sectional dimensions are, for example, the average values of the cross-sectional dimensions measured over the entire length.
  • the actual dimensions may be the average cross-sectional dimensions excluding a few meters from the end, which is the unsteady part at the tip and tail, or the average cross-sectional dimensions at one or more specific positions, or even the cross-sectional dimension at one specific position, such as the center of the length.
  • the process computer 36 can be a general-purpose computer such as a workstation or a personal computer.
  • the process computer 36 is connected to the heating furnace 20, the roughing mill 22, the intermediate mill 24, the finishing mill 30, and the hot dimension gauge 32 by wire or wirelessly, and controls the manufacturing process of the H-beam by the hot rolling equipment 100.
  • the process computer 36 also acquires attribute parameters of the H-beam to be manufactured from a higher-level computer.
  • the attribute parameters include information on the target dimensions of the H-beam (web height H, left and right flange widths B, web thickness tw, and flange thicknesses tf at four locations (top, bottom, left, and right)), steel type classification (40k steel, 50k steel, and three types higher than this), chemical composition (contents of C, Si, Mn, Cr, Mo, V, etc.), and target values of mechanical properties (yield stress, tensile strength, elongation, toughness, hardness, etc.).
  • the process computer 36 sets rolling operation parameters such as the number of passes and roll spacing for each rolling mill according to the attribute information of the H-shaped steel.
  • the set values of normal rolling operation parameters are based on past rolling performance and are set as table values associated with the attribute parameters of the H-shaped steel.
  • the process computer 36 sets, as rolling operation parameters for the rolling process, a correction value from the standard conditions for the horizontal roll gap in each pass in the roughing mill 22 and a correction value for the axial relative position of the horizontal roll.
  • the process computer 36 also sets, as rolling operation parameters for the rolling process, the correction amount from the standard conditions for the horizontal roll gap in the intermediate universal mill 26, the correction amount for the thrust position of the horizontal roll, the correction amount for the horizontal roll height, the correction amount from the standard conditions for the vertical roll gap, and the center correction amount for the vertical rolls, as well as the correction amount from the standard conditions for the E1 roll gap in the edger mill 28, the leveling correction amount for the E1 roll, and the correction amount for the thrust relative position of the E1 roll.
  • the process computer 36 sets the amount of correction from the standard conditions for the horizontal roll gap in the finishing mill 30, the amount of correction for the thrust position of the horizontal roll, the amount of correction for the height of the horizontal roll, the amount of correction from the standard conditions for the vertical roll gap, and the amount of center correction for the vertical roll as rolling operation parameters for the rolling process.
  • the process computer 36 outputs the set rolling operation parameters to the roughing mill 22, the intermediate universal mill 26, the edger mill 28, and the finishing mill 30.
  • Each rolling mill controls the roll spacing, roll position, etc. of each rolling mill in accordance with the acquired rolling operation parameters.
  • the process computer 36 also collects the actual dimensions of the H-beam measured by the hot dimension gauge 32.
  • the process computer 36 stores in the database of the process computer 36 the target dimensions of the manufactured H-beam, the steel type classification, the chemical composition, the target characteristics, the cross-sectional dimensions of the steel piece, the weight of the steel piece, the rolling operation parameters, the actual dimensions, and an identification number identifying the roll set used, in association with the manufacturing lot number of the H-beam.
  • the section steel cross-sectional dimension prediction device 38 acquires from the process computer 36 the rolling operation parameters of the H-shaped steel, which is the precursor material that has been hot rolled with the same roll set as the H-shaped steel to be manufactured. The difference between the rolling operation parameters of the H-shaped steel to be manufactured and the rolling operation parameters of the precursor material is then input into the cross-sectional dimension prediction model, and the difference in the cross-sectional dimension deviation of the H-shaped steel is output to predict the cross-sectional dimensions of the H-shaped steel to be manufactured.
  • the cross-sectional dimension prediction device 38 of the shape steel according to this embodiment is used to predict the cross-sectional dimensions of the H-shaped steel when the rolling operation parameters are changed while rolling with the same roll set.
  • hot rolling with the same roll set means that all rolls used in hot rolling (rough rolling, intermediate rolling, and finishing rolling) are rolled without rearrangement or replacement.
  • this cross-sectional dimension prediction model is a model that can predict the effect of changes in rolling operation parameters on the deviation from the target dimension of the H-shaped steel, so that it is a cross-sectional dimension prediction model that can be applied to various types of hot-rolled steel with different cross-sectional dimensions.
  • the cross-sectional dimension prediction model used in the cross-sectional dimension prediction device 38 for shaped steel in this embodiment can be applied to various shaped steels with different cross-sectional dimensions. This makes it possible to apply it to any two H-shaped steels hot rolled with the same roll set, not just to the preceding and succeeding rolled materials that are hot rolled in succession. As a result, it becomes possible to predict the cross-sectional dimensions of even the first H-shaped steel produced by hot rolling after changing the cross-sectional dimensions.
  • the maximum number of sets of learning data that can be obtained from two H-shaped steels that are continuously rolled as disclosed in Patent Document 3 is 99 sets.
  • a maximum of 4950 sets of learning data can be obtained, and the number of learning data obtained from the operational performance data increases significantly.
  • the difference in the operational performance data and the difference in the cross-sectional dimension deviation are limited to data from the same roll set. However, these can be used as learning data for the same cross-sectional dimension prediction model, so the number of learning data is 4950 sets x 2.
  • FIG. 3 is a functional block diagram of the section dimension prediction device 38 for section steel.
  • the section dimension prediction device 38 for section steel can be a general-purpose computer such as a workstation or a personal computer.
  • the section dimension prediction device 38 for section steel has a control unit 40, an input unit 42, an output unit 44, and a storage unit 46.
  • the control unit 40 is, for example, a CPU, and functions as a data acquisition unit 50, a difference calculation unit 52, a section dimension prediction unit 54, a rolling operation parameter identification unit 56, and a section dimension prediction model generation unit 58 by executing a program stored in the storage unit 46.
  • the input unit 42 is, for example, a keyboard, a touch panel that is integrated with a display, or the like.
  • the output unit 44 is, for example, an LCD or CRT display, or the like.
  • the storage unit 46 is, for example, an information recording medium such as an updatable flash memory, a hard disk built-in or connected via a data communication terminal, a memory card, or the like, and a read/write device for the information recording medium.
  • the storage unit 46 stores programs and data for implementing each function of the section dimension prediction device 38 for section steel.
  • the storage unit 46 further stores a database 60 and a section dimension prediction model 62.
  • the database 60 stores 10,000 or more sets of learning data sets, each set consisting of a difference in rolling operation parameters of H-beam steel and a difference in section dimension deviation for each roll set of the hot rolling equipment 100.
  • the number of learning data sets stored in the database 60 is preferably 20,000 or more sets, and more preferably 50,000 or more sets.
  • the cross-sectional dimension prediction model 62 is a trained machine learning model that has been machine-learned using the learning data stored in the database 60 as training data.
  • the cross-sectional dimension prediction model 62 according to this embodiment is a trained machine learning model that takes the difference in the rolling operation parameters as input and outputs the difference in the cross-sectional dimension deviation of the H-beam 10, and uses the deviation between the target dimension and the actual dimension as the cross-sectional dimension deviation.
  • the difference in the cross-sectional dimension deviation that is the output of the cross-sectional dimension prediction model 62 is the difference in at least one cross-sectional dimension deviation selected from seven cross-sectional dimensions of the H-beam web height H, flange width B, web thickness tw, and flange thickness tf at four locations above, below, left, and right.
  • the data acquisition unit 50 acquires from the process computer 36 the rolling operation parameters of the H-shaped steel to be manufactured, the target dimensions of the cross-sectional dimensions of the H-shaped steel to be manufactured, and the rolling operation parameters, target dimensions, and actual dimensions of a preceding steel beam manufactured in the past with the same roll set.
  • the data acquisition unit 50 outputs the acquired rolling operation parameters to the difference calculation unit 52, and outputs the acquired target dimensions and actual dimensions to the cross-sectional dimension prediction unit.
  • the difference calculation unit 52 calculates the difference between the rolling operation parameters of the H-shaped steel to be manufactured and the rolling operation parameters of the H-shaped steel that will be the precursor material manufactured in the past with the same roll set.
  • the difference calculation unit 52 outputs the calculated difference in the rolling operation parameters to the cross-sectional dimension prediction unit 54. It is preferable to select a steel section that is as close in time as possible to the H-shaped steel section to be manufactured as the precursor material. This makes it possible to reduce the influence of parameters that change over time, such as roll wear, and that are not included in the input.
  • the cross-sectional dimension prediction unit 54 When the cross-sectional dimension prediction unit 54 acquires the difference in the rolling operation parameters, it reads out the cross-sectional dimension prediction model 62 from the storage unit 46. The cross-sectional dimension prediction unit 54 inputs the difference in the rolling operation parameters into the cross-sectional dimension prediction model 62, and outputs the difference in the cross-sectional dimension deviation between the H-shaped steel to be manufactured and the H-shaped steel that will be the preceding material manufactured in the past with the same roll set. In the cross-sectional dimension prediction device 38 for structural steel in this embodiment, the deviation between the target dimension and the actual dimension is used as the cross-sectional dimension.
  • the difference in the cross-sectional dimension deviation that is output is the sum of the difference in the target dimension between the H-shaped steel that will be the preceding material manufactured in the past and the H-shaped steel to be manufactured, and the difference in the actual dimension between the H-shaped steel to be manufactured and the H-shaped steel that will be the preceding material manufactured in the past.
  • the target dimension, the actual dimension, and the target dimension of the H-shaped steel to be manufactured of the preceding material manufactured in the past are acquired from the data acquisition unit 50. Therefore, the cross-sectional dimension prediction unit 54 can predict the cross-sectional dimensions of the H-shaped steel to be manufactured by using the difference between the predicted cross-sectional dimensions and the above-mentioned known dimensions.
  • the cross-sectional dimension prediction unit 54 may output the predicted cross-sectional dimensions of the H-shaped steel to be manufactured to the output unit 44, and display the predicted cross-sectional dimensions of the steel on the output unit 44. This allows the operator to check the predicted cross-sectional dimensions of the H-shaped steel by visually checking the output unit 44.
  • the data acquisition unit 50 preferably acquires from the process computer 36 the rolling operation parameters to be input to the cross-sectional dimension prediction model 62, such as the weight of the steel billet, the amount of correction from the standard conditions of the rolling rolls of the intermediate universal rolling mill 26 and the edger rolling mill 28 that constitute the intermediate rolling mill, and the number of passes and rolling time in the roughing mill 22 and the intermediate rolling mill 24.
  • the cross-sectional dimension prediction model 62 such as the weight of the steel billet, the amount of correction from the standard conditions of the rolling rolls of the intermediate universal rolling mill 26 and the edger rolling mill 28 that constitute the intermediate rolling mill, and the number of passes and rolling time in the roughing mill 22 and the intermediate rolling mill 24.
  • the correction amount from the standard conditions of the rolling rolls of the intermediate universal rolling mill 26 refers to the correction amount from the standard conditions of the horizontal roll opening of the intermediate universal rolling mill 26, the correction amount of the thrust position of the horizontal roll, the correction amount of the horizontal roll height, the correction amount from the standard conditions of the vertical roll opening, and the difference in the opening of the left and right vertical rolls.
  • the correction amount from the standard conditions of the rolling rolls of the edger rolling mill 28 refers to the correction amount from the standard conditions of the E1 roll opening in the edger rolling mill 28.
  • intermediate rolling the roughly rolled material is rolled in multiple passes until it roughly assumes the cross-sectional shape of the product. For this reason, the amount of correction for the roll opening and position in intermediate rolling significantly affects the cross-sectional dimensions of the H-beam. For this reason, it is preferable to include a correction amount from the standard conditions of the rolling rolls of the intermediate universal rolling mill 26 and edger rolling mill 28 that make up the intermediate rolling mill in the rolling operation parameters that are input to the cross-sectional dimension prediction model 62.
  • the number of passes and rolling time at the roughing mill 22 and intermediate rolling mill 24 also have a significant effect on the cross-sectional dimensions of the H-shaped steel, it is preferable to include the number of passes and rolling time at the roughing mill 22 and intermediate rolling mill 24 in the rolling operation parameters that are input to the cross-sectional dimension prediction model 62.
  • the weight of the steel billet which is the raw material
  • the data acquisition unit 50 preferably acquires from the process computer 36 at least one of the following rolling operation parameters to be input to the cross-sectional dimension prediction model 62: the cross-sectional dimension of the slab, the rolling time of the finishing rolling process, the transport time from the heating furnace to the roughing mill, the transport time from the roughing mill to the intermediate mill, the transport time from the intermediate mill to the finishing mill, the ambient temperature of the heating furnace 20, the time in the furnace, the gas flow rate in the furnace, the extraction temperature, the correction amount from the reference position of the horizontal roll opening of the finishing mill 30, the correction amount from the reference position of the vertical roll opening, and the correction amount of the thrust position of the horizontal roll.
  • the rolling operation parameter identification unit 56 identifies the rolling operation parameters that will bring the cross-sectional dimensions predicted by the cross-sectional dimension prediction unit 54 within the range of the target dimensions (within the tolerance range), and outputs the rolling operation parameters to the process computer 36 to reflect them in the manufacturing conditions of the H-beam.
  • FIG. 4 is a flow diagram showing the flow of the rolling operation parameter identification process by the rolling operation parameter identification unit 56.
  • the flow shown in FIG. 4 is started, for example, by receiving an input from an operator to start the process.
  • the data acquisition unit 50 acquires actual data of H-shaped steel rolled with the same roll set from the process computer 36 (step S101).
  • the rolling operation parameter identification unit 56 sets the rolling operation parameters of the H-shaped steel to be manufactured (step S102).
  • the rolling operation parameters may be set based on the target dimensions of the H-shaped steel to be manufactured and attribute parameters such as the steel type classification.
  • the data acquisition unit 50 and the rolling operation parameter identification unit 56 output these rolling operation parameters to the difference calculation unit 52.
  • the difference calculation unit 52 calculates the difference of the acquired rolling operation parameters (step S103).
  • the difference calculation unit 52 outputs the difference of the rolling operation parameters to the cross-sectional dimension prediction unit 54.
  • the cross-sectional dimension prediction unit 54 reads the cross-sectional dimension prediction model 62 from the storage unit 46.
  • the cross-sectional dimension prediction unit 54 inputs the difference of the acquired rolling operation parameters to the cross-sectional dimension prediction model 62 and outputs the difference of the cross-sectional dimension deviation of the H-shaped steel, thereby predicting the cross-sectional dimension of the H-shaped steel to be manufactured (step S104).
  • the cross-sectional dimension prediction unit 54 obtains a predicted value of the cross-sectional dimension of the H-shaped steel to be manufactured using the difference of the cross-sectional dimension deviation output from the cross-sectional dimension prediction model 62, the target dimension of the H-shaped steel rolled by the same roll, the actual dimension, and the target dimension of the H-shaped steel to be manufactured.
  • the cross-sectional dimension prediction unit 54 outputs the cross-sectional dimension of the H-shaped steel to the rolling operation parameter identification unit 56.
  • the rolling operation parameter identification unit 56 determines whether the predicted cross-sectional dimensions are within the range of the target dimensions (within the range of the dimensional tolerance) (step S105).
  • the range of the target dimensions may be input by the operator from the input unit 42, or may be acquired from the process computer 36 via the data acquisition unit 50.
  • step S105 If the predicted cross-sectional dimensions are not within the range of the target dimensions (step S105: No), the rolling operation parameter identification unit 56 changes the rolling operation parameters (step S106). The rolling operation parameter identification unit 56 returns the process to step S103, and repeats the processes of steps S103 to S106 until the cross-sectional dimensions predicted in step S105 are within the range of the target dimensions.
  • the rolling operation parameter identification unit 56 identifies the difference in the rolling operation parameters used to predict the cross-sectional dimension as the difference in the rolling operation parameters that can bring the cross-sectional dimension within the range of the target dimension (step S107).
  • the rolling operation parameter identification unit 56 calculates the rolling operation parameters to be manufactured using the rolling operation parameters of the H-section steel rolled by the same roll set obtained in step S101 and the identified difference value (step S108). By executing this process, the flow of the rolling operation parameter identification process shown in Figure 4 is completed.
  • the rolling operation parameter identification unit 56 outputs the calculated rolling operation parameters to the process computer 36, thereby reflecting the rolling operation parameters in the manufacturing conditions of the hot rolling equipment 100.
  • the data acquisition unit 50 acquires the actual values of the rolling operation parameters and the cross-sectional dimensions (deviation between the target dimensions and the actual dimensions) of two H-shaped steels manufactured in the past with the same roll set from the process computer 36.
  • the data acquisition unit 50 outputs the acquired actual values of the rolling operation parameters and the cross-sectional dimension deviation of the two H-shaped steels to the difference calculation unit 52.
  • the difference calculation unit 52 calculates the difference between the two rolling operation parameters and the difference between the cross-sectional dimension deviation, and stores a data set consisting of these differences as one set in the database 60 of the storage unit 46.
  • the number of data sets stored in the database 60 is preferably 10,000 sets or more, more preferably 20,000 sets or more, and even more preferably 50,000 sets or more.
  • the difference between the rolling operation parameters and the difference between the cross-sectional dimension deviation are calculated using the actual values of the rolling operation parameters and the cross-sectional dimensions of the steel hot rolled with the same roll set.
  • the data set that takes the difference as one set is not limited to H-shaped steel hot rolled with the same roll set, and a data set of H-shaped steel hot rolled with different roll sets can be used.
  • the cross-sectional dimension prediction model generating unit 58 reads out the machine learning model stored in advance in the storage unit 46, and trains the machine learning model using the dataset stored in the database 60 as training data to generate a trained machine learning model. This trained machine learning model becomes the cross-sectional dimension prediction model.
  • the cross-sectional dimension prediction model generating unit 58 stores the generated cross-sectional dimension prediction model 62 in the storage unit 46.
  • the machine learning model used in this embodiment may be any of the commonly used neural networks, decision tree learning, random forests, and support vector regression.
  • the cross-sectional dimension prediction model may be updated to a new cross-sectional dimension prediction model, for example, by retraining it every month or year.
  • the data acquisition unit 50 acquires actual data each time an H-shaped steel is manufactured and stores it in the database 60. As actual data of newly manufactured H-shaped steel is stored in the database 60, the amount of actual data stored increases. As the amount of actual data and the amount of training data increase, the prediction accuracy of the cross-sectional dimension prediction model improves, making it possible to predict cross-sectional dimensions with higher accuracy. Furthermore, by using new actual data, the latest state of the hot rolling equipment 100 is reflected in the cross-sectional dimension prediction model, so that by periodically training the cross-sectional dimension prediction model through machine learning, it becomes possible to predict cross-sectional dimensions with even higher accuracy.
  • the cross-sectional dimension prediction model used in the cross-sectional dimension prediction device 38 of the present embodiment the deviation between the target dimension and the actual dimension in the cross section of the H-shaped steel is used as the predicted cross-sectional dimension.
  • the cross-sectional dimension prediction model 62 becomes a model that can predict the influence on the deviation from the target dimension, and in the case of hot-rolled steel, it becomes a cross-sectional dimension prediction model that can be applied to various steels having different cross-sectional dimensions that are the target dimensions.
  • this cross-sectional dimension prediction model 62 it becomes possible to predict the cross-sectional dimension of the first steel that is manufactured by hot rolling after changing the cross-sectional dimension.
  • the difference in rolling operation parameters is used as the input to the cross-sectional dimension prediction model 62 in the cross-sectional dimension prediction device 38 for structural steel, but this is not limiting.
  • the steel type classification which is an attribute parameter of structural steel, in addition to the rolling operation parameters as the input to the cross-sectional dimension prediction model. Since the steel type classification also affects the cross-sectional dimensions of structural steel, by including the steel type classification as the input to the cross-sectional dimension prediction model 62, it becomes possible to predict the cross-sectional dimensions with high accuracy even for structural steels with different steel type classifications.
  • the chemical composition of the structural steel as an attribute parameter of the structural steel used as input to the cross-sectional dimension prediction model 62. Since the chemical composition of the structural steel also affects the cross-sectional dimensions, by including the chemical composition as input to the cross-sectional dimension prediction model 62, it becomes possible to predict the cross-sectional dimensions with high accuracy even for structural steels with different chemical compositions.
  • the hot rolling equipment 100 shown in FIG. 2 has a process computer 36 and a section steel cross-sectional dimension prediction device 38, but this is not limited to the above.
  • the process computer 36 may have the function of the section steel cross-sectional dimension prediction device 38, and these may be configured as a single device.
  • the control unit 40 has the data acquisition unit 50, the difference calculation unit 52, the section dimension prediction unit 54, the rolling operation parameter identification unit 56, and the section dimension prediction model generation unit 58, but this is not limited to this. If the section dimension prediction device 38 of the section steel predicts the section dimension, the control unit 40 does not need to have the rolling operation parameter identification unit 56. In addition, if the section dimension prediction model 62 is generated externally and the generated section dimension prediction model 62 is stored in the storage unit 46 via the data acquisition unit 50, the section dimension prediction device 38 of the section steel does not need to have the section dimension prediction model generation unit 58. Furthermore, if difference data such as the difference in the rolling operation parameters is stored in the database of the process computer 36 and the data acquisition unit 50 acquires the difference data, the control unit 40 does not need to have the difference calculation unit 52.
  • section dimension prediction device 38 can also predict the cross-sectional shapes of other sections manufactured by rolling with an intermediate universal rolling mill, such as channel steel, I-shaped steel, steel sheet piles, or rails.
  • H-shaped steel with a web height H of 600 mm and a flange width B of 300 mm was manufactured by hot rolling using the same roll set.
  • the cross-sectional dimensions of the H-beam were measured hot using a hot dimension gauge installed downstream of the finishing universal rolling mill, measuring the web height H, left and right flange width B, web thickness tw, and top, bottom, left and right flange thicknesses tf.
  • the measured cross-sectional dimensions were converted to dimensions at room temperature using the linear expansion coefficient.
  • the cross-sectional dimensions used to generate the cross-sectional dimension prediction model are the room temperature converted values of the web height H, left and right flange width B, web thickness tw, and top, bottom, left and right flange thickness tf of the H-beam measured with a hot dimension gauge, and in the example of the invention, the deviation between the target dimensions and the actual dimensions was used.
  • the rolling operation parameters used to generate the cross-sectional dimension prediction model are the values shown in (1) to (7) below.
  • Figure 5 is a graph showing the relationship between the number of training data and the average RMSE when predicting each dimension of 100 H-shaped steel pieces that were not used for training.
  • the horizontal axis is the number of training data (sets)
  • the vertical axis is the average RMSE (root mean square error: mm) of each predicted dimension of the H-shaped steel (web height H, left and right flange width B, web thickness tw, and four flange thicknesses tf at top, bottom, left and right).
  • the average RMSE value for each predicted dimension of H-beam decreases as the number of training data used to train the cross-sectional dimension prediction model increases. Considering the dimensional tolerances of H-beam, it is preferable that the average RMSE value be 0.1 mm or less. In order to make the average RMSE value 0.1 mm or less, it is preferable to use 10,000 or more sets of training data to generate the cross-sectional dimension prediction model.
  • the method for predicting the cross-sectional dimensions of structural steel according to this embodiment allows learning data to be accumulated in a short time, making it possible to obtain more than 10,000 sets of learning data in a shorter time than before. It has been confirmed that by using a cross-sectional dimension prediction model trained using a large amount of learning data acquired in this way, it is possible to predict the dimensions of H-shaped steel with high accuracy.
  • Web height ⁇ 2.0mm
  • Left and right flange width ⁇ 2.0mm
  • Web thickness ⁇ 0.7mm
  • Top, bottom, left and right flange thickness -0.7 to +2.3 mm
  • H-beams were manufactured by setting the rolling operation parameters as manufacturing conditions so that the predicted cross-sectional dimensions would fall within the above tolerances.
  • the operation parameters for the second rolled piece were determined using the actual cross-sectional dimensions of the first rolled piece, the operation parameters for the first and second rolled pieces, and the target cross-sectional dimensions of the second rolled piece.
  • the operation parameters for the third rolled piece were determined using the actual cross-sectional dimensions of the second rolled piece, the operation parameters for the second and third rolled pieces, and the target cross-sectional dimensions of the third rolled piece.
  • the operation parameters for the next H-beam to be rolled were set using the operation parameters of the preceding material and the H-beam to be next rolled. As a result, H-beams with good cross-sectional dimensions, all of which were within the above tolerances, were manufactured.
  • a cross-sectional dimension prediction model was generated using the method disclosed in Patent Document 3.
  • the difference between two sections of steel that were hot rolled in succession (the preceding rolled material and the following rolled material) is used.
  • 90 sets of data are extracted from 100 pieces selected from the same roll set. Therefore, in the comparative example, a total of 900 sets of manufacturing performance data were used as training data to generate a cross-sectional dimension prediction model.
  • This cross-sectional dimension prediction model was used to predict the cross-sectional dimensions of the web height, flange width, web thickness, and the four flange thicknesses at the top, bottom, left, and right, and the rolling operation parameters were identified that would result in the predicted cross-sectional dimensions falling within the dimensional tolerances of these cross-sectional dimensions.
  • the tolerances for each dimension are as shown above.
  • H-beams were manufactured by setting the rolling operation parameters as manufacturing conditions so that the predicted cross-sectional dimensions would fall within the above tolerances.
  • the rolling operation parameters for the next H-beam to be rolled were determined using the operation parameters for the preceding material and the next H-beam to be rolled.
  • the rolling operation parameters for the H-beam to be rolled after the cross-section was changed were determined to be the standard conditions for that cross-section without using this model.
  • some dimensions of 15 H-beams from the second H-beam onwards were outside the tolerances, and these H-beams required additional dimensional corrections and remanufacturing, and it was not possible to manufacture H-beams with good cross-sectional dimensions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

Provided is a method for predicting a cross-sectional dimension of a shape steel, the method being applicable to shape steels having various cross-sectional dimensions without being limited to a preceding rolled material and succeeding rolled material continuously hot-rolled, as long as the shape steel is manufactured by hot-rolling with the same roll set. Provided is a cross-sectional dimension prediction method of a shape steel for predicting a cross-sectional dimension for a shape steel manufactured by hot-rolling, wherein the method involves: outputting the difference between cross-sectional dimension deviations by inputting, to a cross-sectional dimension prediction model which uses, as an input, the difference between rolling operation parameters of two shape steels manufactured by hot-rolling with the same roll set and uses, as an output, the difference between cross-sectional dimension deviations of the two shape steels, the difference between rolling operation parameters of a shape steel to be a preceding material manufactured by hot-rolling with the roll set and rolling operation parameters of a shape steel to be manufactured by hot-rolling with the roll set, the cross-sectional dimension deviations being deviations between target dimensions and actual dimensions of the shape steels; and using the output difference between the cross-sectional dimension deviations and the cross-sectional dimension of the shape steel to be the preceding material to predict the cross-sectional dimension of a shape steel to be manufactured.

Description

形鋼の断面寸法予測方法、形鋼の製造方法、形鋼の断面寸法予測装置および断面寸法予測モデルの生成方法Method for predicting cross-sectional dimensions of shaped steel, manufacturing method for shaped steel, device for predicting cross-sectional dimensions of shaped steel, and method for generating cross-sectional dimension prediction model

 本発明は、ウェブ及びフランジを有する形鋼の断面寸法を予測する形鋼の断面寸法予測方法、形鋼の製造方法、形鋼の断面寸法予測装置および断面寸法予測モデルの生成方法に関する。 The present invention relates to a method for predicting the cross-sectional dimensions of a steel section having a web and a flange, a method for manufacturing a steel section, a device for predicting the cross-sectional dimensions of a steel section, and a method for generating a cross-sectional dimension prediction model.

 ウェブとフランジを有する形鋼は、主に熱間圧延で製造されており、加熱された素材鋼片を複数の圧延機を用いて目標とする製品寸法に圧延される。粗圧延工程では、複数の孔型を有する粗圧延機で複数パスの圧延を行い、素材鋼片を製品の形状に近づけるように大まかに成形する。続く中間圧延工程では、中間ユニバーサル圧延機とエッジング圧延機をそれぞれ1台以上用いて複数パスの圧延を行い、外形寸法と厚みを目標とする製品寸法に近づける。最後の仕上圧延工程では、仕上ユニバーサル圧延機により通常は1パスの圧延を行い、目標寸法になるよう圧延を行う。  Steel sections with webs and flanges are primarily manufactured by hot rolling, where heated steel slabs are rolled to the target product dimensions using multiple rolling mills. In the rough rolling process, multiple passes are performed using a rough rolling mill with multiple grooves to roughly shape the steel slab to approximate the shape of the product. In the subsequent intermediate rolling process, multiple passes are performed using one or more intermediate universal rolling mills and one or more edging rolling mills to bring the outer dimensions and thickness closer to the target product dimensions. In the final finishing rolling process, a finishing universal rolling mill usually performs one pass of rolling to roll to the target dimensions.

 形鋼の1つであるH形鋼の断面寸法には、ウェブ高さH、フランジ幅B、ウェブ厚tw、フランジ厚tfなどの寸法の代表値と寸法公差である許容範囲が定められており、すべての断面寸法が寸法公差の範囲内(目標寸法の範囲内)である必要がある。そこで、熱間圧延後の断面寸法を寸法公差の範囲内とすべく、圧延条件の調整が行われる。具体的には、圧延した形鋼の断面の各寸法を測定し、寸法公差から外れている寸法があれば、当該寸法が寸法公差の範囲内になるように各圧延機のロール間隔が調整される。 The cross-sectional dimensions of H-beams, a type of shaped steel, have set representative values for dimensions such as web height H, flange width B, web thickness tw, and flange thickness tf, as well as allowable ranges for dimensional tolerances, and all cross-sectional dimensions must be within the dimensional tolerances (within the target dimensions). Therefore, the rolling conditions are adjusted so that the cross-sectional dimensions after hot rolling are within the dimensional tolerances. Specifically, each dimension of the cross-section of the rolled shaped steel is measured, and if any dimension deviates from the dimensional tolerances, the roll spacing of each rolling mill is adjusted so that the dimension is within the dimensional tolerances.

 形鋼の寸法制御を行う方法として、特許文献1には、熱間圧延した形鋼の寸法を測定し、粗ユニバーサル圧延の最終パスを含んで連続するパスの相互間で、水平ロールと垂直ロールの圧下修正量を相互に略同一とするH形鋼の厚み制御方法が開示されている。特許文献1によれば、ウェブ厚およびフランジ厚と各ロールの圧下修正量との対応関係を予め定めておき、ウェブ厚およびフランジ厚を実測して目標値に対する偏差を求め、次材のセットアップ計算に圧下修正量を加算することでH形鋼の厚みが制御できるとしている。特許文献2には、4か所のフランジ厚のばらつきを解消するためのロール位置の調整方法を具体的に定めたH形鋼の厚み制御方法が記載されている。 As a method for controlling the dimensions of steel sections, Patent Document 1 discloses a method for controlling the thickness of H-shaped steel sections, in which the dimensions of the hot-rolled steel sections are measured and the amount of roll correction for the horizontal rolls and the vertical rolls is made approximately the same between successive passes, including the final pass of rough universal rolling. According to Patent Document 1, the thickness of the H-shaped steel sections can be controlled by predetermining the correspondence between the web thickness and flange thickness and the amount of roll correction for each roll, measuring the web thickness and flange thickness to determine the deviation from the target value, and adding the amount of roll correction to the setup calculation for the next material. Patent Document 2 describes a method for controlling the thickness of H-shaped steel sections, which specifies a method for adjusting the roll positions to eliminate variations in flange thickness at four points.

 特許文献3には、同一断面寸法の形鋼を連続して製造するに際して以下の技術が開示されている。特許文献3によれば、形鋼の先行圧延材と後行圧延材の各々について、圧延操業パラメータを取得し、その断面寸法を測定する。先行圧延材と後行圧延材の圧延操業パラメータの差分と断面寸法の差分との関係を含む複数のデータセットを用いて機械学習を行う。そして、圧延操業パラメータの修正量に対応する断面寸法の変化量を予測する予測モデルを生成する形鋼の断面寸法変化量予測モデルの生成方法と、このモデルを用いた圧延制御方法が開示されている。 Patent Document 3 discloses the following technology for continuously manufacturing steel sections with the same cross-sectional dimensions. According to Patent Document 3, rolling operation parameters are acquired for each of the preceding and succeeding rolled materials of the steel section, and their cross-sectional dimensions are measured. Machine learning is performed using multiple data sets that include the relationship between the difference in rolling operation parameters and the difference in cross-sectional dimensions of the preceding and succeeding rolled materials. Then, a method for generating a prediction model for the amount of change in cross-sectional dimensions of steel sections, which generates a prediction model that predicts the amount of change in cross-sectional dimensions corresponding to the amount of correction of the rolling operation parameters, and a rolling control method using this model are disclosed.

特開昭62-151214号公報Japanese Patent Application Laid-Open No. 62-151214 特開平10-296311号公報Japanese Patent Application Publication No. 10-296311 特開2021-194701号公報JP 2021-194701 A

 特許文献1、2に開示された技術によれば、熱間圧延途中または圧延後の形鋼の寸法を測定し、目標寸法との差を解消するように各ロールの設定を変更することで形鋼の寸法をある程度制御できる。しかしながら、形鋼の寸法は非常に多くの項目があり、その全てに高精度の寸法予測を行うことは大きな労力が必要となる。また、パス回数や素材重量の違いにより、圧延中の材料温度が変化することによる影響や、鋼種や化学成分が圧延荷重に及ぼす影響が考慮されておらず、寸法制御の精度に問題がある。また、特許文献3に開示された技術は、同一断面寸法の形鋼が連続して圧延される場合にのみ有効な技術であり、同一のロールセットで種々の断面の形鋼を圧延する際には、その断面変更1本目に対応できないという問題があった。さらに、予測モデルを生成するための学習用データとなる実績データの蓄積に時間がかかるといった問題もあった。 The technologies disclosed in Patent Documents 1 and 2 measure the dimensions of the shaped steel during or after hot rolling, and change the settings of each roll to eliminate the difference from the target dimensions, thereby controlling the dimensions of the shaped steel to some extent. However, there are a great many dimensions of shaped steel, and it would take a lot of effort to predict the dimensions of all of them with high accuracy. In addition, the effects of changes in material temperature during rolling due to differences in the number of passes and material weight, and the effects of steel type and chemical components on the rolling load are not taken into consideration, resulting in problems with the accuracy of dimensional control. In addition, the technology disclosed in Patent Document 3 is effective only when shaped steel with the same cross-sectional dimensions are rolled continuously, and there is a problem that it cannot handle the first cross-sectional change when rolling shaped steel with various cross-sections with the same roll set. In addition, there is also the problem that it takes time to accumulate actual data that serves as learning data for generating a prediction model.

 本発明は、このような従来技術の問題を鑑みてなされたものであり、同一のロールセットで熱間圧延されて製造される形鋼であれば、種々の断面寸法の形鋼に適用できる形鋼の断面寸法予測方法及び形鋼の断面寸法予測装置を提供することを目的とする。本発明の他の目的は、形鋼の断面寸法予測方法を用いる形鋼の製造方法及び形鋼の断面寸法予測方法に用いる断面寸法予測モデルの生成方法を提供することである。 The present invention has been made in consideration of the problems with the conventional technology, and aims to provide a method and device for predicting the cross-sectional dimensions of shaped steel that can be applied to shaped steel of various cross-sectional dimensions, so long as the shaped steel is manufactured by hot rolling with the same roll set. Another aim of the present invention is to provide a method for manufacturing shaped steel using the method for predicting the cross-sectional dimensions of shaped steel, and a method for generating a cross-sectional dimension prediction model to be used in the method for predicting the cross-sectional dimensions of shaped steel.

 上記課題を解決するための手段は、以下の通りである。
[1] 熱間圧延されて製造される形鋼の断面寸法を予測する形鋼の断面寸法予測方法であって、同一のロールセットで熱間圧延されて製造された2つの形鋼における圧延操業パラメータの差分を入力とし、前記2つの形鋼の断面寸法偏差の差分を出力とする断面寸法予測モデルに、前記ロールセットで熱間圧延されて製造された先行材となる形鋼の圧延操業パラメータと前記ロールセットで熱間圧延されて製造される形鋼の圧延操業パラメータとの差分を入力することで前記断面寸法偏差の差分を出力し、前記断面寸法偏差は、形鋼の目標寸法と実績寸法との偏差であり、出力された前記断面寸法偏差の差分と前記先行材となる形鋼の断面寸法を用いて、製造される形鋼の断面寸法を予測する、形鋼の断面寸法予測方法。
[2] 前記形鋼は、粗圧延機、中間圧延機および仕上圧延機によって鋼片が熱間圧延されることで製造され、前記圧延操業パラメータには、前記鋼片の重量と、前記中間圧延機の圧延ロールの基準位置からの補正量と、前記粗圧延機および前記中間圧延機でのパス回数と、前記粗圧延機および前記中間圧延機の圧延時間とが含まれる、[1]に記載の形鋼の断面寸法予測方法。
[3] 前記断面寸法予測モデルの入力には、前記形鋼の鋼種区分を示す属性パラメータが含まれる、[1]又は[2]に記載の形鋼の断面寸法予測方法。
[4] 前記断面寸法は、前記形鋼のウェブ厚、上下左右4カ所のフランジ厚、ウェブ高さおよびフランジ幅の少なくとも1つの断面寸法である、[1]から[3]のいずれかに記載の形鋼の断面寸法予測方法。
[5] [1]から[4]のいずれかに記載の形鋼の断面寸法予測方法を用いて予測された形鋼の断面寸法が目標寸法の範囲内になる圧延操業パラメータの差分を特定し、特定された圧延操業パラメータの差分から求められる圧延操業パラメータを含む製造条件で形鋼を製造する、形鋼の製造方法。
[6] 熱間圧延されて製造される形鋼の断面寸法を予測する形鋼の断面寸法予測装置であって、同一のロールセットで熱間圧延されて製造された2つの形鋼における圧延操業パラメータの差分を入力とし、前記2つの形鋼の断面寸法偏差の差分を出力とする断面寸法予測モデルに、前記ロールセットで熱間圧延されて製造された先行材となる形鋼の圧延操業パラメータと前記ロールセットで熱間圧延されて製造される形鋼の圧延操業パラメータとの差分を入力することで前記断面寸法偏差の差分を出力し、前記断面寸法偏差は、形鋼の目標寸法と実績寸法との偏差であり、出力された前記断面寸法偏差の差分と前記先行材となる形鋼の断面寸法の実績値とを用いて、製造される形鋼の断面寸法を予測する断面寸法予測部を有する、形鋼の断面寸法予測装置。
[7] 同一のロールセットで熱間圧延されて製造された2つの形鋼における圧延操業パラメータの差分の実績値と、前記2つの形鋼の断面寸法偏差の差分の実績値とを1組とする複数のデータセットを教師データとして機械学習モデルを機械学習させ、前記2つの形鋼における圧延操業パラメータの差分を入力とし、前記2つの形鋼の断面寸法偏差の差分を出力とする断面寸法予測モデルを生成し、前記断面寸法偏差として形鋼の目標寸法と実績寸法との偏差を用いる、断面寸法予測モデルの生成方法。
The means for solving the above problems are as follows.
[1] A method for predicting the cross-sectional dimension of a structural steel to be manufactured by hot rolling, comprising: a cross-sectional dimension prediction model which takes as input the difference in rolling operation parameters for two structural steels manufactured by hot rolling with the same roll set; and outputs the difference in cross-sectional dimension deviation of the two structural steels; the method inputs the difference between the rolling operation parameters of a structural steel to be a predecessor material manufactured by hot rolling with the roll set and the rolling operation parameters of a structural steel to be manufactured by hot rolling with the roll set, and outputs the difference in cross-sectional dimension deviation, the cross-sectional dimension deviation being the deviation between the target dimension and actual dimension of the structural steel; and predicts the cross-sectional dimension of the structural steel to be manufactured using the output difference in cross-sectional dimension deviation and the cross-sectional dimension of the structural steel to be the predecessor material.
[2] The method for predicting cross-sectional dimensions of a structural steel as described in [1], wherein the structural steel is produced by hot rolling a steel slab using a roughing mill, an intermediate rolling mill and a finishing rolling mill, and the rolling operation parameters include the weight of the steel slab, a correction amount from a reference position of the rolling rolls of the intermediate rolling mill, the number of passes through the roughing mill and the intermediate rolling mill, and the rolling time of the roughing mill and the intermediate rolling mill.
[3] The method for predicting cross-sectional dimensions of structural steel according to [1] or [2], wherein the input of the cross-sectional dimension prediction model includes an attribute parameter indicating the steel type classification of the structural steel.
[4] The method for predicting the cross-sectional dimensions of a structural steel according to any one of [1] to [3], wherein the cross-sectional dimensions are at least one of the cross-sectional dimensions of the web thickness of the structural steel, the four flange thicknesses at the top, bottom, left and right, the web height and the flange width.
[5] A method for manufacturing structural steel, comprising: identifying a difference in rolling operation parameters that brings a cross-sectional dimension of a structural steel predicted using the method for predicting a cross-sectional dimension of a structural steel according to any one of [1] to [4] into a range of a target dimension; and manufacturing the structural steel under manufacturing conditions that include rolling operation parameters determined from the identified difference in rolling operation parameters.
[6] A cross-sectional dimension prediction device for structural steel that predicts the cross-sectional dimensions of structural steel to be manufactured by hot rolling, the device having a cross-sectional dimension prediction model that takes as input the difference in rolling operation parameters for two structural steels manufactured by hot rolling with the same roll set and outputs the difference in cross-sectional dimension deviation of the two structural steels, and outputs the difference in cross-sectional dimension deviation by inputting the difference between the rolling operation parameters of a structural steel that is a predecessor material manufactured by hot rolling with the roll set and the rolling operation parameters of a structural steel that is to be manufactured by hot rolling with the roll set, the difference in cross-sectional dimension deviation being the deviation between the target dimension and actual dimension of the structural steel, and the device having a cross-sectional dimension prediction unit that predicts the cross-sectional dimension of the structural steel to be manufactured using the output difference in cross-sectional dimension deviation and the actual value of the cross-sectional dimension of the structural steel that is to be the predecessor material.
[7] A method for generating a cross-sectional dimension prediction model, comprising: training a machine learning model using multiple data sets as training data, each set being a set of actual values of the difference in rolling operation parameters for two structural steels manufactured by hot rolling with the same roll set and actual values of the difference in cross-sectional dimension deviations of the two structural steels; generating a cross-sectional dimension prediction model that uses the difference in rolling operation parameters for the two structural steels as input and the difference in the cross-sectional dimension deviations of the two structural steels as output; and using the deviation between the target dimension and the actual dimension of the structural steel as the cross-sectional dimension deviation.

 本発明によれば、形鋼の断面寸法偏差として、目標寸法と実績寸法との偏差を用いることで、熱間圧延されて製造される形鋼であれば、種々の断面寸法の形鋼に適用できる断面寸法予測モデルになる。これにより、連続して熱間圧延される先行圧延材と後行圧延材に限らず、任意の2組の形鋼に適用できるようになるので、断面変更後の1本目の形鋼であっても当該形鋼の断面寸法を予測できる。さらに、同一のロールセットで熱間圧延された任意の2組の形鋼の断面寸法の偏差の実績値を学習用データにできるので、断面寸法予測モデルを生成するための多くの学習用データが短時間で蓄積できるようになる。  According to the present invention, by using the deviation between the target dimension and the actual dimension as the cross-sectional dimension deviation of the steel section, a cross-sectional dimension prediction model can be applied to steel sections of various cross-sectional dimensions, so long as the steel sections are manufactured by hot rolling. This makes it possible to apply the model to any two sets of steel sections, not just the preceding and succeeding rolled materials that are hot rolled in succession, and therefore makes it possible to predict the cross-sectional dimensions of the steel section even if it is the first steel section after a cross-section change. Furthermore, since the actual values of the cross-sectional dimension deviation of any two sets of steel sections hot rolled with the same roll set can be used as learning data, a large amount of learning data for generating a cross-sectional dimension prediction model can be accumulated in a short period of time.

図1は、H形鋼の断面形状を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing the cross-sectional shape of an H-shaped steel. 図2は、本実施形態に係る形鋼の断面寸法予測方法が実施できる形鋼の断面寸法予測装置を含む熱間圧延設備の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a hot rolling facility including a section dimension prediction device for section steel in which the section dimension prediction method for section steel according to this embodiment can be implemented. 図3は、形鋼の断面寸法予測装置の機能ブロック図である。FIG. 3 is a functional block diagram of a section steel cross-sectional dimension prediction device. 図4は、圧延操業パラメータ特定部による圧延操業パラメータ特定処理のフローを示すフロー図である。FIG. 4 is a flow diagram showing a flow of a rolling operation parameter specification process by the rolling operation parameter specification unit. 図5は、学習用データ数とH形鋼の各寸法のRMSEの平均値との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the number of learning data and the average value of RMSE for each dimension of H-section steel.

 以下、図面を参照して本発明の一実施形態を説明する。なお、以下に示す実施形態は本発明の技術思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の品質、形状、構造、配置等を下記の実施形態に限定されるものではない。 Below, one embodiment of the present invention will be described with reference to the drawings. Note that the embodiment shown below is an example of an apparatus and method for embodying the technical concept of the present invention, and the technical concept of the present invention is not limited to the quality, shape, structure, arrangement, etc. of the components of the embodiment described below.

 まず、図1を用いて、形鋼の一例であるH形鋼の断面形状を説明する。図1は、H形鋼10の断面形状を示す断面模式図である。図1に示すように、H形鋼10において比較的板厚が厚い部位がフランジ12であり、比較的板厚さが薄く、一対のフランジ12と結合した部分がウェブ14である。このフランジ12の厚さtfおよび幅B、ウェブ14の厚さtwおよび高さHといったH形鋼10の断面寸法の組合せは、内法一定H形鋼(JISH)で数十、外法一定H形鋼で数百程度と数多く存在する。ここで、外法とはH形鋼10のウェブ高さHであり、内法とは外法からフランジ厚を除いた寸法である。 First, the cross-sectional shape of an H-shaped steel, which is an example of structural steel, will be explained using Figure 1. Figure 1 is a schematic cross-sectional view showing the cross-sectional shape of an H-shaped steel 10. As shown in Figure 1, the relatively thick parts of the H-shaped steel 10 are the flanges 12, and the relatively thin parts that are connected to the pair of flanges 12 are the webs 14. There are many combinations of cross-sectional dimensions of the H-shaped steel 10, such as the thickness tf and width B of the flanges 12, and the thickness tw and height H of the web 14, with dozens for constant inside dimension H-shaped steel (JIS H) and hundreds for constant outside dimension H-shaped steel. Here, the outside dimension is the web height H of the H-shaped steel 10, and the inside dimension is the dimension obtained by subtracting the flange thickness from the outside dimension.

 また、H形鋼10の強度区分は大きく分けると引張強度で400N/mm級、490N/mm級、それ以上の3つに分けられている。H形鋼10の化学成分は、この強度区分に応じて鋼種区分(40k鋼、50k鋼、それ以上の3種)ごとに調整される。このようなH形鋼10は、主に熱間圧延により製造される。熱間圧延によって製造されるH形鋼10は、圧延H形鋼と呼ばれる。 Furthermore, the strength classification of the H-shaped steel 10 is broadly divided into three classes based on tensile strength: 400 N/ mm2 , 490 N/mm2, and more. The chemical composition of the H-shaped steel 10 is adjusted for each steel type classification (40k steel, 50k steel, and more) according to this strength classification. Such H-shaped steel 10 is mainly manufactured by hot rolling. The H-shaped steel 10 manufactured by hot rolling is called rolled H-shaped steel.

 以下、本実施形態を形鋼の一例であるH形鋼に適用した例を用いて説明する。図2は、本実施形態に係る形鋼の断面寸法予測方法が実施できる形鋼の断面寸法予測装置を含む熱間圧延設備100の一例を示す模式図である。H形鋼は、加熱炉20にて予め加熱された鋼片に対して複数の圧延機により粗圧延、中間圧延、仕上圧延が施され、目標寸法の形鋼に成形されて製造される。 Below, an example of this embodiment will be described using an application to an H-shaped steel, which is an example of structural steel. Figure 2 is a schematic diagram showing an example of a hot rolling facility 100 including a structural steel cross-sectional dimension prediction device capable of implementing the structural steel cross-sectional dimension prediction method according to this embodiment. H-shaped steel is manufactured by rough rolling, intermediate rolling, and finish rolling using multiple rolling mills on a steel slab preheated in a heating furnace 20, and shaping it into structural steel of the target dimensions.

 粗圧延機22による粗圧延工程では、孔型ロールを用いて、5~30パス程度のリバース圧延が行われる。中間圧延機24は、中間ユニバーサル圧延機26とエッジャ圧延機28のそれぞれ1台以上の組み合わせが用いられる場合が多い。中間圧延工程では、5~30パス程度のリバース圧延により行われ、概ね製品となる断面形状に近い状態まで圧延される。仕上圧延機30による仕上圧延工程では、通常は1パスの圧延が行われ、目標とする厚みや断面形状に成形される。 In the rough rolling process using the roughing mill 22, approximately 5 to 30 passes of reverse rolling are performed using grooved rolls. The intermediate rolling mill 24 is often a combination of one or more intermediate universal rolling mills 26 and edger rolling mills 28. In the intermediate rolling process, approximately 5 to 30 passes of reverse rolling are performed, and the material is rolled to a state that is roughly close to the cross-sectional shape of the final product. In the finish rolling process using the finish rolling mill 30, typically one pass of rolling is performed, and the material is formed into the target thickness and cross-sectional shape.

 中間圧延機24の1つである中間ユニバーサル圧延機26は、水平な軸心に対して駆動されて回転する上下水平ロールと、垂直な軸心に対して自由回転する左右竪ロールの合計4つのロールを有する圧延機である。 The intermediate universal rolling mill 26, which is one of the intermediate rolling mills 24, is a rolling mill that has a total of four rolls: upper and lower horizontal rolls that are driven to rotate about a horizontal axis, and left and right vertical rolls that rotate freely about a vertical axis.

 上下水平ロールの直径は1000~1500mm程度であり、上下水平ロールの幅は圧延するH形鋼のウェブ高さHに応じて適切なものが圧延機に組み込まれる。左右竪ロールの直径は600~1000mm程度である。これら上下水平ロールおよび左右竪ロールは、それぞれ圧下装置で位置調整が可能な構造となっており、上下水平ロールの間隔や水平ロール側面と竪ロールの間隔を任意に設定できる。中間ユニバーサル圧延機26は、ウェブ厚twとフランジ厚tfを同時に圧下する機能を有し、フランジ12が外側に最大10°程度傾斜した状態で圧延するという特徴を有する。 The diameter of the upper and lower horizontal rolls is approximately 1000 to 1500 mm, and the width of the upper and lower horizontal rolls is appropriately adjusted according to the web height H of the H-shaped steel to be rolled, and is installed in the rolling mill. The diameter of the left and right vertical rolls is approximately 600 to 1000 mm. These upper and lower horizontal rolls and left and right vertical rolls are each designed so that their positions can be adjusted with a reduction device, and the spacing between the upper and lower horizontal rolls and the spacing between the sides of the horizontal rolls and the vertical rolls can be set as desired. The intermediate universal rolling mill 26 has the function of simultaneously reducing the web thickness tw and the flange thickness tf, and is characterized by rolling with the flange 12 tilted outward by a maximum of approximately 10°.

 中間圧延機24の1つであるエッジャ圧延機28は、孔型が設けられた上下2本の水平ロール(以下、このロールをE1ロールと記載する。)を有し、当該E1ロールでフランジ12の先端を上下から圧下することでフランジ幅Bを調整する。E1ロールの直径は800~1200mm程度であり、E1ロールのどちらもが駆動される。 The edger rolling machine 28, which is one of the intermediate rolling machines 24, has two horizontal rolls (hereinafter referred to as E1 rolls) with grooves, one above the other, and adjusts the flange width B by pressing down the tip of the flange 12 from above and below with the E1 rolls. The diameter of the E1 rolls is about 800 to 1200 mm, and both E1 rolls are driven.

 仕上圧延機30には、仕上ユニバーサル圧延機が用いられる。仕上圧延機30では、中間圧延された圧延材を1パスで製品断面形状に仕上げる。仕上ユニバーサル圧延機のロールの寸法や構成は中間ユニバーサル圧延機26と同じであるが、仕上ユニバーサル圧延機では、ウェブ14に対してフランジ12が垂直になるように圧延される。 A finishing universal rolling mill is used for the finishing rolling mill 30. In the finishing rolling mill 30, the intermediate rolled material is finished into the product cross-sectional shape in one pass. The dimensions and configuration of the rolls of the finishing universal rolling mill are the same as those of the intermediate universal rolling mill 26, but in the finishing universal rolling mill, the flange 12 is rolled so that it is perpendicular to the web 14.

 上記の熱間圧延で成形され製造されたH形鋼の断面寸法は、仕上圧延機30の下流に設けられた熱間寸法計32によって熱間で測定される。熱間寸法計32では、H形鋼のウェブ高さH、左右のフランジ幅B、ウェブ厚tw、上下左右4カ所のフランジ厚tfが測定される。熱間寸法計32による断面寸法の測定は、断面寸法を長手全長にわたってできるだけ細かい間隔で測定することが好ましい。また、測定された断面寸法は熱間での測定値であり、室温まで冷却されると熱収縮によって寸法が変化する。このため、熱間寸法計32内またはその近傍でH形鋼の温度を測定し、温度と線膨張係数を用いて冷却による熱収縮を予測し、室温での製品寸法に換算することが好ましい。なお、断面寸法の予測や制御に用いる実績寸法は、例えば、全長にわたって測定した断面寸法の平均値を用いることが好ましい。さらに、実績寸法として、先端と尾端の非定常部である端部から数メートルを除いた断面寸法の平均値を用いてもよく、また特定の位置の1つ以上の断面寸法の平均値、さらには長さ中央等の特定の位置での1箇所の断面寸法を用いてもよい。 The cross-sectional dimensions of the H-shaped steel formed and manufactured by the above-mentioned hot rolling are measured in the hot state by a hot dimension gauge 32 installed downstream of the finishing rolling mill 30. The hot dimension gauge 32 measures the web height H of the H-shaped steel, the left and right flange widths B, the web thickness tw, and the flange thicknesses tf at four points on the top, bottom, left and right. It is preferable that the cross-sectional dimensions are measured by the hot dimension gauge 32 at as small intervals as possible over the entire longitudinal length. In addition, the measured cross-sectional dimensions are measured in the hot state, and when cooled to room temperature, the dimensions change due to thermal contraction. For this reason, it is preferable to measure the temperature of the H-shaped steel in or near the hot dimension gauge 32, predict the thermal contraction due to cooling using the temperature and linear expansion coefficient, and convert it into the product dimensions at room temperature. It is preferable that the actual dimensions used for predicting and controlling the cross-sectional dimensions are, for example, the average values of the cross-sectional dimensions measured over the entire length. Furthermore, the actual dimensions may be the average cross-sectional dimensions excluding a few meters from the end, which is the unsteady part at the tip and tail, or the average cross-sectional dimensions at one or more specific positions, or even the cross-sectional dimension at one specific position, such as the center of the length.

 プロセスコンピュータ36は、ワークステーションやパソコン等の汎用コンピュータとすることができる。プロセスコンピュータ36は、加熱炉20、粗圧延機22、中間圧延機24、仕上圧延機30、熱間寸法計32と有線または無線で接続され、熱間圧延設備100によるH形鋼の製造工程を統括する。また、プロセスコンピュータ36は、さらに上位のコンピュータから製造するH形鋼の属性パラメータを取得する。属性パラメータにはH形鋼の目標寸法(ウェブ高さH、左右のフランジ幅B、ウェブ厚tw、上下左右4カ所のフランジ厚tf)、鋼種区分(40k鋼、50k鋼、それ以上の3種)、化学組成(C、Si、Mn、Cr、Mo、Vの含有量等)や機械的特性の目標値(降伏応力、引張強度、伸び、靭性、硬さ等)に関する情報が含まれる。 The process computer 36 can be a general-purpose computer such as a workstation or a personal computer. The process computer 36 is connected to the heating furnace 20, the roughing mill 22, the intermediate mill 24, the finishing mill 30, and the hot dimension gauge 32 by wire or wirelessly, and controls the manufacturing process of the H-beam by the hot rolling equipment 100. The process computer 36 also acquires attribute parameters of the H-beam to be manufactured from a higher-level computer. The attribute parameters include information on the target dimensions of the H-beam (web height H, left and right flange widths B, web thickness tw, and flange thicknesses tf at four locations (top, bottom, left, and right)), steel type classification (40k steel, 50k steel, and three types higher than this), chemical composition (contents of C, Si, Mn, Cr, Mo, V, etc.), and target values of mechanical properties (yield stress, tensile strength, elongation, toughness, hardness, etc.).

 プロセスコンピュータ36は、H形鋼の属性情報に応じて各圧延機のパス数やロール間隔等の圧延操業パラメータを設定する。通常の圧延操業パラメータの設定値は過去の圧延実績に基づき、H形鋼の属性パラメータに対応付けられたテーブル値として設定されている。 The process computer 36 sets rolling operation parameters such as the number of passes and roll spacing for each rolling mill according to the attribute information of the H-shaped steel. The set values of normal rolling operation parameters are based on past rolling performance and are set as table values associated with the attribute parameters of the H-shaped steel.

 プロセスコンピュータ36は、圧延工程の圧延操業パラメータとして、粗圧延機22における各パスにおける水平ロール間の開度の基準条件からの補正値および水平ロールの軸方向相対位置の補正値を設定する。また、プロセスコンピュータ36は、圧延工程の圧延操業パラメータとして、中間ユニバーサル圧延機26における水平ロール開度の基準条件からの補正量、水平ロールのスラスト位置の補正量、水平ロール高さの補正量、竪ロール開度の基準条件からの補正量および竪ロールのセンター補正量と、エッジャ圧延機28のE1ロールの開度の基準条件からの補正量、E1ロールのレベリング補正量およびE1ロールのスラスト相対位置の補正量を設定する。さらに、プロセスコンピュータ36は、圧延工程の圧延操業パラメータとして、仕上圧延機30における水平ロール開度の基準条件からの補正量、水平ロールのスラスト位置の補正量、水平ロール高さの補正量、竪ロール開度の基準条件からの補正量および竪ロールのセンター補正量を設定する。 The process computer 36 sets, as rolling operation parameters for the rolling process, a correction value from the standard conditions for the horizontal roll gap in each pass in the roughing mill 22 and a correction value for the axial relative position of the horizontal roll. The process computer 36 also sets, as rolling operation parameters for the rolling process, the correction amount from the standard conditions for the horizontal roll gap in the intermediate universal mill 26, the correction amount for the thrust position of the horizontal roll, the correction amount for the horizontal roll height, the correction amount from the standard conditions for the vertical roll gap, and the center correction amount for the vertical rolls, as well as the correction amount from the standard conditions for the E1 roll gap in the edger mill 28, the leveling correction amount for the E1 roll, and the correction amount for the thrust relative position of the E1 roll. Furthermore, the process computer 36 sets the amount of correction from the standard conditions for the horizontal roll gap in the finishing mill 30, the amount of correction for the thrust position of the horizontal roll, the amount of correction for the height of the horizontal roll, the amount of correction from the standard conditions for the vertical roll gap, and the amount of center correction for the vertical roll as rolling operation parameters for the rolling process.

 プロセスコンピュータ36は、設定した圧延操業パラメータを粗圧延機22、中間ユニバーサル圧延機26、エッジャ圧延機28、仕上圧延機30に出力する。各圧延機は、取得した圧延操業パラメータに対応させて各圧延機のロール間隔、ロール位置等を制御する。 The process computer 36 outputs the set rolling operation parameters to the roughing mill 22, the intermediate universal mill 26, the edger mill 28, and the finishing mill 30. Each rolling mill controls the roll spacing, roll position, etc. of each rolling mill in accordance with the acquired rolling operation parameters.

 また、プロセスコンピュータ36は、熱間寸法計32で測定されたH形鋼の実績寸法を収集する。プロセスコンピュータ36は、製造されたH形鋼の目標寸法、鋼種区分、化学組成、目標特性、鋼片の断面寸法、鋼片の重量、圧延操業パラメータ、実績寸法および使用したロールセットを識別する識別番号を、H形鋼の製造ロット番号に対応付けてプロセスコンピュータ36のデータベースに格納する。 The process computer 36 also collects the actual dimensions of the H-beam measured by the hot dimension gauge 32. The process computer 36 stores in the database of the process computer 36 the target dimensions of the manufactured H-beam, the steel type classification, the chemical composition, the target characteristics, the cross-sectional dimensions of the steel piece, the weight of the steel piece, the rolling operation parameters, the actual dimensions, and an identification number identifying the roll set used, in association with the manufacturing lot number of the H-beam.

 形鋼の断面寸法予測装置38は、製造するH形鋼と同一のロールセットで熱間圧延された先行材となるH形鋼の圧延操業パラメータをプロセスコンピュータ36から取得する。そして、製造するH形鋼の圧延操業パラメータと先行材の圧延操業パラメータとの差分を断面寸法予測モデルに入力し、H形鋼の断面寸法偏差の差分を出力させることで製造するH形鋼の断面寸法を予測する。 The section steel cross-sectional dimension prediction device 38 acquires from the process computer 36 the rolling operation parameters of the H-shaped steel, which is the precursor material that has been hot rolled with the same roll set as the H-shaped steel to be manufactured. The difference between the rolling operation parameters of the H-shaped steel to be manufactured and the rolling operation parameters of the precursor material is then input into the cross-sectional dimension prediction model, and the difference in the cross-sectional dimension deviation of the H-shaped steel is output to predict the cross-sectional dimensions of the H-shaped steel to be manufactured.

 H形鋼の熱間圧延では、目標とする断面寸法のうち、ウェブ高さHまたはウェブ内幅と、フランジ幅Bとがほぼ等しい複数のH形鋼をまとめて、同一のロールセットで連続して圧延する。このため、同一のロールセットで、ウェブ高さHとフランジ幅Bとが同じでウェブ厚twとフランジ厚tfとが変更されたH形鋼を製造する場合が多々あり、このような断面寸法変更時に寸法公差を外す場合がある。寸法公差を外した場合はもちろんであるが、寸法公差内の寸法が得られた場合であっても、寸法公差の上下限に近い寸法になった場合には圧延操業パラメータを変更する。このように、同一のロールセットで圧延しつつ圧延操業パラメータを変更する場合においてH形鋼の断面寸法を予測するのに、本実施形態に係る形鋼の断面寸法予測装置38が用いられる。なお、「同一のロールセットで熱間圧延する」とは、熱間圧延(粗圧延、中間圧延、および仕上圧延)で使用するすべてのロールについて、組替や交換を行わずに圧延することを意味する。 In hot rolling of H-shaped steel, multiple H-shaped steels with approximately the same web height H or web inner width and flange width B among the target cross-sectional dimensions are rolled together continuously with the same roll set. For this reason, there are many cases where H-shaped steels with the same web height H and flange width B but with changed web thickness tw and flange thickness tf are manufactured with the same roll set, and when changing such cross-sectional dimensions, the dimensional tolerance may be removed. Of course, when the dimensional tolerance is removed, but even if a dimension within the dimensional tolerance is obtained, if the dimension becomes close to the upper or lower limit of the dimensional tolerance, the rolling operation parameters are changed. In this way, the cross-sectional dimension prediction device 38 of the shape steel according to this embodiment is used to predict the cross-sectional dimensions of the H-shaped steel when the rolling operation parameters are changed while rolling with the same roll set. Note that "hot rolling with the same roll set" means that all rolls used in hot rolling (rough rolling, intermediate rolling, and finishing rolling) are rolled without rearrangement or replacement.

 本実施形態に係る形鋼の断面寸法予測装置38では、予測する断面寸法としてH形鋼の断面における目標寸法と実績寸法との偏差を用いる。これにより、この断面寸法予測モデルは、圧延操業パラメータの変化がH形鋼の目標寸法からの偏差に及ぼす影響を予測できるモデルになるので、熱間圧延された形鋼であれば、断面寸法が異なる種々の形鋼に適用できる断面寸法予測モデルになる。 In the section dimension prediction device 38 of this embodiment, the deviation between the target dimension and the actual dimension in the cross section of the H-shaped steel is used as the predicted cross-sectional dimension. As a result, this cross-sectional dimension prediction model is a model that can predict the effect of changes in rolling operation parameters on the deviation from the target dimension of the H-shaped steel, so that it is a cross-sectional dimension prediction model that can be applied to various types of hot-rolled steel with different cross-sectional dimensions.

 このように、本実施形態に係る形鋼の断面寸法予測装置38で用いる断面寸法予測モデルは、断面寸法が異なる種々の形鋼に適用できる。これにより、連続して熱間圧延される先行圧延材と後行圧延材に限らず、同一のロールセットで熱間圧延される任意の2つのH形鋼に適用できるようになる。この結果、断面寸法を変更した後に熱間圧延して製造される1本目のH形鋼であっても当該H形鋼の断面寸法を予測できるようになる。さらに、任意の2つのH形鋼の圧延操業パラメータの差分の実績値および断面寸法偏差の差分の実績値を断面寸法予測モデルの学習用データにできるので、断面寸法予測モデルを生成するための多くの学習用データが短時間で蓄積できるようになる。 In this way, the cross-sectional dimension prediction model used in the cross-sectional dimension prediction device 38 for shaped steel in this embodiment can be applied to various shaped steels with different cross-sectional dimensions. This makes it possible to apply it to any two H-shaped steels hot rolled with the same roll set, not just to the preceding and succeeding rolled materials that are hot rolled in succession. As a result, it becomes possible to predict the cross-sectional dimensions of even the first H-shaped steel produced by hot rolling after changing the cross-sectional dimensions. Furthermore, since the actual values of the difference between the rolling operation parameters of any two H-shaped steels and the actual values of the difference between the cross-sectional dimension deviations can be used as learning data for the cross-sectional dimension prediction model, a large amount of learning data for generating the cross-sectional dimension prediction model can be accumulated in a short period of time.

 例えば、同一のロールセットで熱間圧延して製造された100本のH形鋼の操業実績データを用いて断面寸法予測モデルを生成する場合、特許文献3に開示された連続して圧延された2つのH形鋼から取得できる学習用データは最大で99セットになる。これに対し、100本のH形鋼の操業実績データから任意の2つのH形鋼を選択する場合には、最大で4950セットの学習用データが取得できるようになり、操業実績データから得られる学習用データ数が大幅に増加する。異なる2組のロールセットで熱間圧延して製造された各100本のH形鋼の操業実績データを用いて断面寸法予測モデルを生成する場合には、操業実績データの差分および断面寸法偏差の差分は同一のロールセットでのデータに限定される。しかしながら、これらは同じ断面寸法予測モデルの学習用データとして用いることができるので、その学習用データ数は4950セット×2になる。 For example, when generating a cross-sectional dimension prediction model using operational performance data of 100 H-shaped steels manufactured by hot rolling with the same roll set, the maximum number of sets of learning data that can be obtained from two H-shaped steels that are continuously rolled as disclosed in Patent Document 3 is 99 sets. In contrast, when any two H-shaped steels are selected from the operational performance data of 100 H-shaped steels, a maximum of 4950 sets of learning data can be obtained, and the number of learning data obtained from the operational performance data increases significantly. When generating a cross-sectional dimension prediction model using operational performance data of 100 H-shaped steels manufactured by hot rolling with two different roll sets, the difference in the operational performance data and the difference in the cross-sectional dimension deviation are limited to data from the same roll set. However, these can be used as learning data for the same cross-sectional dimension prediction model, so the number of learning data is 4950 sets x 2.

 次に、形鋼の断面寸法を予測する形鋼の断面寸法予測装置38について説明する。図3は、形鋼の断面寸法予測装置38の機能ブロック図である。形鋼の断面寸法予測装置38は、ワークステーションやパソコン等の汎用コンピュータとすることができる。形鋼の断面寸法予測装置38は、制御部40と、入力部42と、出力部44と、格納部46とを有する。制御部40は、例えば、CPU等であって、格納部46に格納されたプログラムを実行することで、データ取得部50、差分演算部52、断面寸法予測部54、圧延操業パラメータ特定部56および断面寸法予測モデル生成部58として機能する。 Next, the section dimension prediction device 38 for predicting the section dimensions of section steel will be described. FIG. 3 is a functional block diagram of the section dimension prediction device 38 for section steel. The section dimension prediction device 38 for section steel can be a general-purpose computer such as a workstation or a personal computer. The section dimension prediction device 38 for section steel has a control unit 40, an input unit 42, an output unit 44, and a storage unit 46. The control unit 40 is, for example, a CPU, and functions as a data acquisition unit 50, a difference calculation unit 52, a section dimension prediction unit 54, a rolling operation parameter identification unit 56, and a section dimension prediction model generation unit 58 by executing a program stored in the storage unit 46.

 入力部42は、例えば、キーボード、ディスプレイと一体的に設けられたタッチパネル等である。出力部44は、例えば、LCDまたはCRTディスプレイ等である。格納部46は、例えば、更新記録可能なフラッシュメモリ、内蔵あるいはデータ通信端子で接続されたハードディスク、メモリーカード等の情報記録媒体およびその読み書き装置である。格納部46には、形鋼の断面寸法予測装置38の各機能を実現するためのプログラムやデータが格納されている。格納部46には、さらに、データベース60、断面寸法予測モデル62が格納されている。データベース60には、熱間圧延設備100のロールセット別にH形鋼の圧延操業パラメータの差分と、断面寸法偏差の差分とを1組とする学習用データセットが10000セット以上格納されている。データベース60に格納される学習用データ数は、20000セット以上であることが好ましく、50000セット以上であることがさらに好ましい。 The input unit 42 is, for example, a keyboard, a touch panel that is integrated with a display, or the like. The output unit 44 is, for example, an LCD or CRT display, or the like. The storage unit 46 is, for example, an information recording medium such as an updatable flash memory, a hard disk built-in or connected via a data communication terminal, a memory card, or the like, and a read/write device for the information recording medium. The storage unit 46 stores programs and data for implementing each function of the section dimension prediction device 38 for section steel. The storage unit 46 further stores a database 60 and a section dimension prediction model 62. The database 60 stores 10,000 or more sets of learning data sets, each set consisting of a difference in rolling operation parameters of H-beam steel and a difference in section dimension deviation for each roll set of the hot rolling equipment 100. The number of learning data sets stored in the database 60 is preferably 20,000 or more sets, and more preferably 50,000 or more sets.

 断面寸法予測モデル62は、データベース60に格納されている学習用データを教師データとして機械学習された学習済の機械学習モデルである。本実施形態に係る断面寸法予測モデル62は、圧延操業パラメータの差分を入力とし、H形鋼10の断面寸法偏差の差分を出力とする学習済の機械学習モデルであり、当該断面寸法偏差として目標寸法と実績寸法との偏差を用いている。断面寸法予測モデル62の出力である断面寸法偏差の差分は、H形鋼のウェブ高さH、フランジ幅B、ウェブ厚tw、上下左右4カ所のフランジ厚tfの7カ所の断面寸法のうちから選ばれる少なくとも1つの断面寸法偏差の差分である。 The cross-sectional dimension prediction model 62 is a trained machine learning model that has been machine-learned using the learning data stored in the database 60 as training data. The cross-sectional dimension prediction model 62 according to this embodiment is a trained machine learning model that takes the difference in the rolling operation parameters as input and outputs the difference in the cross-sectional dimension deviation of the H-beam 10, and uses the deviation between the target dimension and the actual dimension as the cross-sectional dimension deviation. The difference in the cross-sectional dimension deviation that is the output of the cross-sectional dimension prediction model 62 is the difference in at least one cross-sectional dimension deviation selected from seven cross-sectional dimensions of the H-beam web height H, flange width B, web thickness tw, and flange thickness tf at four locations above, below, left, and right.

 次に、製造されるH形鋼10の断面寸法を予測する場合に、データ取得部50、差分演算部52、断面寸法予測部54が実行する処理について説明する。データ取得部50は、プロセスコンピュータ36から製造されるH形鋼の圧延操業パラメータと、製造されるH形鋼の断面寸法の目標寸法と、過去に同一のロールセットで製造された先行材となる形鋼の圧延操業パラメータ、目標寸法および実績寸法とを取得する。データ取得部50は、取得した圧延操業パラメータを差分演算部52に出力し、取得した目標寸法および実績寸法を断面寸法予測部に出力する。 Next, the processing performed by the data acquisition unit 50, difference calculation unit 52, and cross-sectional dimension prediction unit 54 when predicting the cross-sectional dimensions of the H-shaped steel 10 to be manufactured will be described. The data acquisition unit 50 acquires from the process computer 36 the rolling operation parameters of the H-shaped steel to be manufactured, the target dimensions of the cross-sectional dimensions of the H-shaped steel to be manufactured, and the rolling operation parameters, target dimensions, and actual dimensions of a preceding steel beam manufactured in the past with the same roll set. The data acquisition unit 50 outputs the acquired rolling operation parameters to the difference calculation unit 52, and outputs the acquired target dimensions and actual dimensions to the cross-sectional dimension prediction unit.

 差分演算部52では、これから製造されるH形鋼の圧延操業パラメータと、過去に同一のロールセットで製造された先行材となるH形鋼の圧延操業パラメータとの差分を算出する。差分演算部52は、算出した圧延操業パラメータの差分を断面寸法予測部54に出力する。先行材となる形鋼には、これから製造されるH形鋼とできるだけ時間間隔があいていない形鋼を選択することが好ましい。これにより、ロールの摩耗等の経時的に変化するパラメータであって、入力に含めていないパラメータの影響を小さくできる。 The difference calculation unit 52 calculates the difference between the rolling operation parameters of the H-shaped steel to be manufactured and the rolling operation parameters of the H-shaped steel that will be the precursor material manufactured in the past with the same roll set. The difference calculation unit 52 outputs the calculated difference in the rolling operation parameters to the cross-sectional dimension prediction unit 54. It is preferable to select a steel section that is as close in time as possible to the H-shaped steel section to be manufactured as the precursor material. This makes it possible to reduce the influence of parameters that change over time, such as roll wear, and that are not included in the input.

 断面寸法予測部54は、圧延操業パラメータの差分を取得すると、格納部46から断面寸法予測モデル62を読み出す。断面寸法予測部54は、当該断面寸法予測モデル62に圧延操業パラメータの差分を入力して、製造されるH形鋼の断面寸法と過去に同一のロールセットで製造された先行材となるH形鋼の断面寸法偏差の差分を出力させる。本実施形態に係る形鋼の断面寸法予測装置38では、断面寸法として目標寸法と実績寸法との偏差を用いている。このため、出力される断面寸法偏差の差分は、過去に製造された先行材となるH形鋼と製造されるH形鋼との目標寸法の差分と、製造されるH形鋼と過去に製造された先行材となるH形鋼との実績寸法の差分との和になる。目標寸法の差分と実績寸法の差分のうち、過去に製造された先行材となるH形鋼の目標寸法、実績寸法および製造されるH形鋼の目標寸法はデータ取得部50から取得されている。このため、断面寸法予測部54は、予測された断面寸法の差分と上記既知の寸法を用いることで、製造されるH形鋼の断面寸法を予測できる。なお、断面寸法予測部54は、予測した製造されるH形鋼の断面寸法を出力部44に出力し、予測した形鋼の断面寸法を出力部44に表示させてもよい。これにより、オペレータは出力部44を視認することで予測されたH形鋼の断面寸法を確認できる。 When the cross-sectional dimension prediction unit 54 acquires the difference in the rolling operation parameters, it reads out the cross-sectional dimension prediction model 62 from the storage unit 46. The cross-sectional dimension prediction unit 54 inputs the difference in the rolling operation parameters into the cross-sectional dimension prediction model 62, and outputs the difference in the cross-sectional dimension deviation between the H-shaped steel to be manufactured and the H-shaped steel that will be the preceding material manufactured in the past with the same roll set. In the cross-sectional dimension prediction device 38 for structural steel in this embodiment, the deviation between the target dimension and the actual dimension is used as the cross-sectional dimension. Therefore, the difference in the cross-sectional dimension deviation that is output is the sum of the difference in the target dimension between the H-shaped steel that will be the preceding material manufactured in the past and the H-shaped steel to be manufactured, and the difference in the actual dimension between the H-shaped steel to be manufactured and the H-shaped steel that will be the preceding material manufactured in the past. Of the differences in the target dimensions and the differences in the actual dimensions, the target dimension, the actual dimension, and the target dimension of the H-shaped steel to be manufactured of the preceding material manufactured in the past are acquired from the data acquisition unit 50. Therefore, the cross-sectional dimension prediction unit 54 can predict the cross-sectional dimensions of the H-shaped steel to be manufactured by using the difference between the predicted cross-sectional dimensions and the above-mentioned known dimensions. The cross-sectional dimension prediction unit 54 may output the predicted cross-sectional dimensions of the H-shaped steel to be manufactured to the output unit 44, and display the predicted cross-sectional dimensions of the steel on the output unit 44. This allows the operator to check the predicted cross-sectional dimensions of the H-shaped steel by visually checking the output unit 44.

 データ取得部50は、プロセスコンピュータ36から、断面寸法予測モデル62の入力となる圧延操業パラメータとして、鋼片の重量と、中間圧延機を構成する中間ユニバーサル圧延機26およびエッジャ圧延機28の圧延ロールの基準条件からの補正量と、粗圧延機22と中間圧延機24でのパス回数と圧延時間とを取得することが好ましい。 The data acquisition unit 50 preferably acquires from the process computer 36 the rolling operation parameters to be input to the cross-sectional dimension prediction model 62, such as the weight of the steel billet, the amount of correction from the standard conditions of the rolling rolls of the intermediate universal rolling mill 26 and the edger rolling mill 28 that constitute the intermediate rolling mill, and the number of passes and rolling time in the roughing mill 22 and the intermediate rolling mill 24.

 ここで、中間ユニバーサル圧延機26の圧延ロールの基準条件からの補正量とは、中間ユニバーサル圧延機26の水平ロール開度の基準条件からの補正量、水平ロールのスラスト位置の補正量、水平ロール高さの補正量、竪ロール開度の基準条件からの補正量および左右の竪ロールの開度の差である。また、エッジャ圧延機28の圧延ロールの基準条件からの補正量とは、エッジャ圧延機28におけるE1ロール開度の基準条件からの補正量である。 Here, the correction amount from the standard conditions of the rolling rolls of the intermediate universal rolling mill 26 refers to the correction amount from the standard conditions of the horizontal roll opening of the intermediate universal rolling mill 26, the correction amount of the thrust position of the horizontal roll, the correction amount of the horizontal roll height, the correction amount from the standard conditions of the vertical roll opening, and the difference in the opening of the left and right vertical rolls. Also, the correction amount from the standard conditions of the rolling rolls of the edger rolling mill 28 refers to the correction amount from the standard conditions of the E1 roll opening in the edger rolling mill 28.

 中間圧延は、粗圧延された粗圧延材が複数パスで圧延されて概ね製品の断面形状になるまで圧延される。このため、中間圧延における各ロール開度や位置の補正量は、H形鋼の断面寸法に大きく影響する。このため、断面寸法予測モデル62の入力となる圧延操業パラメータに、中間圧延機を構成する中間ユニバーサル圧延機26およびエッジャ圧延機28の圧延ロールの基準条件からの補正量を含めることが好ましい。 In intermediate rolling, the roughly rolled material is rolled in multiple passes until it roughly assumes the cross-sectional shape of the product. For this reason, the amount of correction for the roll opening and position in intermediate rolling significantly affects the cross-sectional dimensions of the H-beam. For this reason, it is preferable to include a correction amount from the standard conditions of the rolling rolls of the intermediate universal rolling mill 26 and edger rolling mill 28 that make up the intermediate rolling mill in the rolling operation parameters that are input to the cross-sectional dimension prediction model 62.

 さらに、粗圧延機22と中間圧延機24でのパス回数と圧延時間も、H形鋼の断面寸法に大きく影響することから、断面寸法予測モデル62の入力となる圧延操業パラメータに粗圧延機22と中間圧延機24でのパス回数と圧延時間を含めることが好ましい。 Furthermore, since the number of passes and rolling time at the roughing mill 22 and intermediate rolling mill 24 also have a significant effect on the cross-sectional dimensions of the H-shaped steel, it is preferable to include the number of passes and rolling time at the roughing mill 22 and intermediate rolling mill 24 in the rolling operation parameters that are input to the cross-sectional dimension prediction model 62.

 さらに、素材となる鋼片の重量もH形鋼の断面寸法に大きく影響することから、断面寸法予測モデル62の入力となる圧延操業パラメータに鋼片の重量を含めることが好ましい。鋼片の重量が重いと圧延長さ及び圧延時間が長くなり、これにより、断面温度分布や変形抵抗が異なってくる。このため、鋼片の重量が異なると同じロール間隔で圧延しても圧下率が異なるので、この結果、H形鋼の断面寸法が変化する。なお、鋼片の重量に代えて、鋼片の長さを圧延操業パラメータに含めてもよい。 Furthermore, since the weight of the steel billet, which is the raw material, also has a large effect on the cross-sectional dimensions of the H-beam, it is preferable to include the weight of the billet in the rolling operation parameters that are input to the cross-sectional dimension prediction model 62. If the weight of the billet is heavy, the rolling length and rolling time will be longer, which will result in different cross-sectional temperature distributions and deformation resistance. For this reason, if the weight of the billet is different, the reduction rate will be different even if the billet is rolled with the same roll spacing, and as a result, the cross-sectional dimensions of the H-beam will change. Note that instead of the weight of the billet, the length of the billet may be included in the rolling operation parameters.

 また、データ取得部50は、プロセスコンピュータ36から、断面寸法予測モデル62の入力となる圧延操業パラメータとして、鋼片の断面寸法、仕上圧延工程の圧延時間、加熱炉から粗圧延機までの搬送時間、粗圧延機から中間圧延機までの搬送時間、中間圧延機から仕上圧延機までの搬送時間、加熱炉20の雰囲気温度、在炉時間、炉内ガス流量、抽出温度、仕上圧延機30の水平ロール開度の基準位置からの補正量、竪ロール開度の基準位置からの補正量、および水平ロールのスラスト位置の補正量のうちの少なくとも1つを取得することが好ましい。これらのパラメータも直接的または間接的にH形鋼の断面寸法に影響を及ぼすので、これらのパラメータを断面寸法予測モデル62の入力となる圧延操業パラメータに含めることで、より高い精度でH形鋼の断面寸法を予測できるようになる。 In addition, the data acquisition unit 50 preferably acquires from the process computer 36 at least one of the following rolling operation parameters to be input to the cross-sectional dimension prediction model 62: the cross-sectional dimension of the slab, the rolling time of the finishing rolling process, the transport time from the heating furnace to the roughing mill, the transport time from the roughing mill to the intermediate mill, the transport time from the intermediate mill to the finishing mill, the ambient temperature of the heating furnace 20, the time in the furnace, the gas flow rate in the furnace, the extraction temperature, the correction amount from the reference position of the horizontal roll opening of the finishing mill 30, the correction amount from the reference position of the vertical roll opening, and the correction amount of the thrust position of the horizontal roll. Since these parameters also directly or indirectly affect the cross-sectional dimension of the H-beam, by including these parameters in the rolling operation parameters to be input to the cross-sectional dimension prediction model 62, it becomes possible to predict the cross-sectional dimension of the H-beam with higher accuracy.

 次に、圧延操業パラメータ特定部56の処理について説明する。圧延操業パラメータ特定部56は、断面寸法予測部54によって予測された断面寸法が、目標寸法の範囲内(公差範囲内)となる圧延操業パラメータを特定し、当該圧延操業パラメータをプロセスコンピュータ36に出力することでH形鋼の製造条件に反映させる。 Next, the processing of the rolling operation parameter identification unit 56 will be described. The rolling operation parameter identification unit 56 identifies the rolling operation parameters that will bring the cross-sectional dimensions predicted by the cross-sectional dimension prediction unit 54 within the range of the target dimensions (within the tolerance range), and outputs the rolling operation parameters to the process computer 36 to reflect them in the manufacturing conditions of the H-beam.

 図4は、圧延操業パラメータ特定部56による圧延操業パラメータ特定処理のフローを示すフロー図である。図4に示したフローは、例えば、オペレータからの当該処理を開始する入力を受け付けることによって開始される。 FIG. 4 is a flow diagram showing the flow of the rolling operation parameter identification process by the rolling operation parameter identification unit 56. The flow shown in FIG. 4 is started, for example, by receiving an input from an operator to start the process.

 まず、データ取得部50は、プロセスコンピュータ36から、同一ロールセットで圧延されたH形鋼の実績データを取得する(ステップS101)。圧延操業パラメータ特定部56は、製造するH形鋼の圧延操業パラメータを設定する(ステップS102)。圧延操業パラメータは、製造するH形鋼の目標寸法や、鋼種区分等の属性パラメータに基づいて設定されてよい。データ取得部50および圧延操業パラメータ特定部56は、これらの圧延操業パラメータを差分演算部52に出力する。 First, the data acquisition unit 50 acquires actual data of H-shaped steel rolled with the same roll set from the process computer 36 (step S101). The rolling operation parameter identification unit 56 sets the rolling operation parameters of the H-shaped steel to be manufactured (step S102). The rolling operation parameters may be set based on the target dimensions of the H-shaped steel to be manufactured and attribute parameters such as the steel type classification. The data acquisition unit 50 and the rolling operation parameter identification unit 56 output these rolling operation parameters to the difference calculation unit 52.

 差分演算部52は、取得した圧延操業パラメータの差分を算出する(ステップS103)。差分演算部52は、圧延操業パラメータの差分を断面寸法予測部54に出力する。断面寸法予測部54は、格納部46から断面寸法予測モデル62を読み出す。断面寸法予測部54は、当該断面寸法予測モデル62に取得した圧延操業パラメータの差分を入力し、H形鋼の断面寸法偏差の差分を出力させることで、製造されるH形鋼の断面寸法を予測する(ステップS104)。断面寸法予測部54は、断面寸法予測モデル62から出力された断面寸法偏差の差分と、同一ロールで圧延されたH形鋼の目標寸法、実績寸法および製造するH形鋼の目標寸法とを用いて製造するH形鋼の断面寸法の予測値を求める。断面寸法予測部54は、H形鋼の断面寸法を圧延操業パラメータ特定部56に出力する。 The difference calculation unit 52 calculates the difference of the acquired rolling operation parameters (step S103). The difference calculation unit 52 outputs the difference of the rolling operation parameters to the cross-sectional dimension prediction unit 54. The cross-sectional dimension prediction unit 54 reads the cross-sectional dimension prediction model 62 from the storage unit 46. The cross-sectional dimension prediction unit 54 inputs the difference of the acquired rolling operation parameters to the cross-sectional dimension prediction model 62 and outputs the difference of the cross-sectional dimension deviation of the H-shaped steel, thereby predicting the cross-sectional dimension of the H-shaped steel to be manufactured (step S104). The cross-sectional dimension prediction unit 54 obtains a predicted value of the cross-sectional dimension of the H-shaped steel to be manufactured using the difference of the cross-sectional dimension deviation output from the cross-sectional dimension prediction model 62, the target dimension of the H-shaped steel rolled by the same roll, the actual dimension, and the target dimension of the H-shaped steel to be manufactured. The cross-sectional dimension prediction unit 54 outputs the cross-sectional dimension of the H-shaped steel to the rolling operation parameter identification unit 56.

 圧延操業パラメータ特定部56は、予測された断面寸法が目標寸法の範囲内(寸法公差の範囲内)であるか否かを判断する(ステップS105)。目標寸法の範囲は、入力部42からオペレータによって入力されていてもよく、データ取得部50を介してプロセスコンピュータ36から取得してもよい。 The rolling operation parameter identification unit 56 determines whether the predicted cross-sectional dimensions are within the range of the target dimensions (within the range of the dimensional tolerance) (step S105). The range of the target dimensions may be input by the operator from the input unit 42, or may be acquired from the process computer 36 via the data acquisition unit 50.

 予測された断面寸法が目法寸法の範囲内でない場合(ステップS105:No)、圧延操業パラメータ特定部56は、圧延操業パラメータを変更する(ステップS106)。圧延操業パラメータ特定部56は、処理をステップS103に戻し、ステップS105において予測された断面寸法が目標寸法の範囲内となるまで、ステップS103~ステップS106の処理を繰り返し実行する。 If the predicted cross-sectional dimensions are not within the range of the target dimensions (step S105: No), the rolling operation parameter identification unit 56 changes the rolling operation parameters (step S106). The rolling operation parameter identification unit 56 returns the process to step S103, and repeats the processes of steps S103 to S106 until the cross-sectional dimensions predicted in step S105 are within the range of the target dimensions.

 一方、予測された断面寸法が目標寸法の範囲内である場合(ステップS105:Yes)、圧延操業パラメータ特定部56は、断面寸法の予測に用いた圧延操業パラメータの差分を、断面寸法を目標寸法の範囲内にできる圧延操業パラメータの差分であると特定する(ステップS107)。圧延操業パラメータ特定部56は、ステップS101で取得された同一ロールセットで圧延されたH形鋼の圧延操業パラメータと特定された差分値とを用いて、製造する圧延操業パラメータを算出する(ステップS108)。この処理を実行することで図4に示した圧延操業パラメータ特定処理のフローは終了する。圧延操業パラメータ特定部56は、算出した圧延操業パラメータをプロセスコンピュータ36に出力することで、当該圧延操業パラメータを熱間圧延設備100の製造条件に反映させる。 On the other hand, if the predicted cross-sectional dimension is within the range of the target dimension (step S105: Yes), the rolling operation parameter identification unit 56 identifies the difference in the rolling operation parameters used to predict the cross-sectional dimension as the difference in the rolling operation parameters that can bring the cross-sectional dimension within the range of the target dimension (step S107). The rolling operation parameter identification unit 56 calculates the rolling operation parameters to be manufactured using the rolling operation parameters of the H-section steel rolled by the same roll set obtained in step S101 and the identified difference value (step S108). By executing this process, the flow of the rolling operation parameter identification process shown in Figure 4 is completed. The rolling operation parameter identification unit 56 outputs the calculated rolling operation parameters to the process computer 36, thereby reflecting the rolling operation parameters in the manufacturing conditions of the hot rolling equipment 100.

 このようにして、H形鋼の断面寸法を目標寸法の範囲内できる圧延操業パラメータを算出できる。そして、当該圧延操業パラメータを含む製造条件でH形鋼を製造することで、断面寸法が目標寸法の範囲内となるH形鋼を安定して製造できるようになる。 In this way, it is possible to calculate the rolling operation parameters that will bring the cross-sectional dimensions of the H-shaped steel within the target range. Then, by manufacturing the H-shaped steel under manufacturing conditions that include these rolling operation parameters, it becomes possible to stably manufacture H-shaped steel whose cross-sectional dimensions fall within the target range.

 次に、H形鋼の断面寸法の予測に用いる断面寸法予測モデル62の生成方法について説明する。データ取得部50は、過去に同一のロールセットで製造された2つのH形鋼の圧延操業パラメータの実績値、断面寸法(目標寸法と実績寸法との偏差)をプロセスコンピュータ36から取得する。データ取得部50は、取得した2つのH形鋼の圧延操業パラメータの実績値、断面寸法偏差を差分演算部52に出力する。差分演算部52は、2つの圧延操業パラメータの差分と断面寸法偏差の差分とを算出し、これらの差分を1セットとするデータセットを格納部46のデータベース60に格納する。データベース60に格納されるデータセット数は10000セット以上であることが好ましく、20000セット以上であることがより好ましく、50000セット以上であることがさらに好ましい。圧延操業パラメータの差分及び断面寸法偏差の差分は、同一のロールセットで熱間圧延された形鋼の圧延操業パラメータの実績値、断面寸法を用いる。しかしながら、当該差分を1セットとするデータセットは、同一のロールセットで熱間圧延されたH形鋼に限らず、異なるロールセットで熱間圧延されたH形鋼のデータセットを用いることができる。 Next, a method for generating the cross-sectional dimension prediction model 62 used to predict the cross-sectional dimensions of H-shaped steel will be described. The data acquisition unit 50 acquires the actual values of the rolling operation parameters and the cross-sectional dimensions (deviation between the target dimensions and the actual dimensions) of two H-shaped steels manufactured in the past with the same roll set from the process computer 36. The data acquisition unit 50 outputs the acquired actual values of the rolling operation parameters and the cross-sectional dimension deviation of the two H-shaped steels to the difference calculation unit 52. The difference calculation unit 52 calculates the difference between the two rolling operation parameters and the difference between the cross-sectional dimension deviation, and stores a data set consisting of these differences as one set in the database 60 of the storage unit 46. The number of data sets stored in the database 60 is preferably 10,000 sets or more, more preferably 20,000 sets or more, and even more preferably 50,000 sets or more. The difference between the rolling operation parameters and the difference between the cross-sectional dimension deviation are calculated using the actual values of the rolling operation parameters and the cross-sectional dimensions of the steel hot rolled with the same roll set. However, the data set that takes the difference as one set is not limited to H-shaped steel hot rolled with the same roll set, and a data set of H-shaped steel hot rolled with different roll sets can be used.

 断面寸法予測モデル生成部58は、格納部46に予め格納されている機械学習モデルを読み出し、データベース60に格納されているデータセットを教師データとして機械学習モデルを機械学習させて、学習済の機械学習モデルを生成する。この学習済の機械学習モデルが断面寸法予測モデルとなる。断面寸法予測モデル生成部58は、生成した断面寸法予測モデル62を格納部46に格納する。なお、本実施形態で用いる機械学習モデルは、一般的に用いられるニューラルネットワーク、決定木学習、ランダムフォレスト、サポートベクター回帰のいずれかであってよい。 The cross-sectional dimension prediction model generating unit 58 reads out the machine learning model stored in advance in the storage unit 46, and trains the machine learning model using the dataset stored in the database 60 as training data to generate a trained machine learning model. This trained machine learning model becomes the cross-sectional dimension prediction model. The cross-sectional dimension prediction model generating unit 58 stores the generated cross-sectional dimension prediction model 62 in the storage unit 46. The machine learning model used in this embodiment may be any of the commonly used neural networks, decision tree learning, random forests, and support vector regression.

 また、断面寸法予測モデルは、例えば、1カ月毎または1年毎に再び機械学習させることで新たな断面寸法予測モデルに更新してもよい。データ取得部50は、H形鋼が製造される毎にその実績データを取得し、データベース60に格納する。データベース60には、新たに製造されたH形鋼の実績データが格納されていくので、格納される実績データの数は増加する。実績データの数が増え、教師データ数が増えるほど、断面寸法予測モデルの予測精度が向上するので、より精度の高い断面寸法予測が可能となる。さらに、新しい実績データを用いることで、断面寸法予測モデルに熱間圧延設備100の最近の状態が反映されるので、定期的に機械学習して断面寸法予測モデルを更新することで、さらに高い精度で断面寸法を予測できるようになる。 Furthermore, the cross-sectional dimension prediction model may be updated to a new cross-sectional dimension prediction model, for example, by retraining it every month or year. The data acquisition unit 50 acquires actual data each time an H-shaped steel is manufactured and stores it in the database 60. As actual data of newly manufactured H-shaped steel is stored in the database 60, the amount of actual data stored increases. As the amount of actual data and the amount of training data increase, the prediction accuracy of the cross-sectional dimension prediction model improves, making it possible to predict cross-sectional dimensions with higher accuracy. Furthermore, by using new actual data, the latest state of the hot rolling equipment 100 is reflected in the cross-sectional dimension prediction model, so that by periodically training the cross-sectional dimension prediction model through machine learning, it becomes possible to predict cross-sectional dimensions with even higher accuracy.

 以上、説明したように、本実施形態に係る形鋼の断面寸法予測装置38で用いる断面寸法予測モデルでは、予測する断面寸法としてH形鋼の断面における目標寸法と実績寸法との偏差を用いる。これにより、断面寸法予測モデル62は、目標寸法からの偏差に及ぼす影響を予測できるモデルになり、熱間圧延された形鋼であれば、目標寸法である断面寸法が異なる種々の形鋼に適用できる断面寸法予測モデルになる。この断面寸法予測モデル62を用いることで、断面寸法を変更した後に熱間圧延して製造される1本目の形鋼であっても当該形鋼の断面寸法を予測できるようになる。さらに、同一のロールセットで熱間圧延された任意の2つの形鋼の圧延操業パラメータの差分の実績値および断面寸法偏差の差分の実績値を学習用データにできるようになる。これにより、形鋼の断面寸法予測モデルを生成するための多くの学習用データが短時間で蓄積できるようになり、高い精度で断面寸法を予測できるようになる。 As described above, in the cross-sectional dimension prediction model used in the cross-sectional dimension prediction device 38 of the present embodiment, the deviation between the target dimension and the actual dimension in the cross section of the H-shaped steel is used as the predicted cross-sectional dimension. As a result, the cross-sectional dimension prediction model 62 becomes a model that can predict the influence on the deviation from the target dimension, and in the case of hot-rolled steel, it becomes a cross-sectional dimension prediction model that can be applied to various steels having different cross-sectional dimensions that are the target dimensions. By using this cross-sectional dimension prediction model 62, it becomes possible to predict the cross-sectional dimension of the first steel that is manufactured by hot rolling after changing the cross-sectional dimension. Furthermore, it becomes possible to use the actual values of the difference in the rolling operation parameters and the actual values of the difference in the cross-sectional dimension deviation of any two steels hot-rolled with the same roll set as learning data. As a result, it becomes possible to accumulate a large amount of learning data for generating a cross-sectional dimension prediction model of steel in a short time, and it becomes possible to predict the cross-sectional dimension with high accuracy.

 なお、本実施形態に係る形鋼の断面寸法予測装置38における断面寸法予測モデル62の入力に圧延操業パラメータの差分を用いる例を示したがこれに限らない。断面寸法予測モデルの入力として圧延操業パラメータに加え、形鋼の属性パラメータである鋼種区分を含めることが好ましい。鋼種区分も形鋼の断面寸法に影響を及ぼすことから、当該鋼種区分を断面寸法予測モデル62の入力に含めることで、鋼種区分の異なる形鋼であっても高い精度で断面寸法を予測できるようになる。 In this embodiment, an example has been given in which the difference in rolling operation parameters is used as the input to the cross-sectional dimension prediction model 62 in the cross-sectional dimension prediction device 38 for structural steel, but this is not limiting. It is preferable to include the steel type classification, which is an attribute parameter of structural steel, in addition to the rolling operation parameters as the input to the cross-sectional dimension prediction model. Since the steel type classification also affects the cross-sectional dimensions of structural steel, by including the steel type classification as the input to the cross-sectional dimension prediction model 62, it becomes possible to predict the cross-sectional dimensions with high accuracy even for structural steels with different steel type classifications.

 断面寸法予測モデル62の入力に用いる形鋼の属性パラメータとして、さらに、形鋼の化学組成を含めることが好ましい。形鋼の化学組成も断面寸法に影響を及ぼすことから、当該化学組成を断面寸法予測モデル62の入力に含めることで、化学組成の異なる形鋼であっても高い精度で断面寸法を予測できるようになる。 It is preferable to further include the chemical composition of the structural steel as an attribute parameter of the structural steel used as input to the cross-sectional dimension prediction model 62. Since the chemical composition of the structural steel also affects the cross-sectional dimensions, by including the chemical composition as input to the cross-sectional dimension prediction model 62, it becomes possible to predict the cross-sectional dimensions with high accuracy even for structural steels with different chemical compositions.

 本実施形態の説明では、図2に示した熱間圧延設備100では、熱間圧延設備100がプロセスコンピュータ36と、形鋼の断面寸法予測装置38とを有する例を示したが、これに限らない。例えば、プロセスコンピュータ36が形鋼の断面寸法予測装置38の機能を有し、これらが1つの装置で構成されていてもよい。 In the description of this embodiment, the hot rolling equipment 100 shown in FIG. 2 has a process computer 36 and a section steel cross-sectional dimension prediction device 38, but this is not limited to the above. For example, the process computer 36 may have the function of the section steel cross-sectional dimension prediction device 38, and these may be configured as a single device.

 本実施形態の説明では、図3に示した形鋼の断面寸法予測装置38では、制御部40がデータ取得部50、差分演算部52、断面寸法予測部54、圧延操業パラメータ特定部56および断面寸法予測モデル生成部58を有する例を示したが、これに限らない。形鋼の断面寸法予測装置38で断面寸法の予測を実施するのであれば、制御部40は圧延操業パラメータ特定部56を有さなくてもよい。また、断面寸法予測モデル62を外部にて生成し、生成した断面寸法予測モデル62を、データ取得部50を介して格納部46に格納する場合には、形鋼の断面寸法予測装置38は、断面寸法予測モデル生成部58を有さなくてもよい。さらに、プロセスコンピュータ36のデータベースに圧延操業パラメータの差分等の差分データが格納され、データ取得部50が当該差分データを取得する場合には、制御部40は差分演算部52を有さなくてもよい。 In the description of this embodiment, in the section dimension prediction device 38 of the section steel shown in FIG. 3, an example was shown in which the control unit 40 has the data acquisition unit 50, the difference calculation unit 52, the section dimension prediction unit 54, the rolling operation parameter identification unit 56, and the section dimension prediction model generation unit 58, but this is not limited to this. If the section dimension prediction device 38 of the section steel predicts the section dimension, the control unit 40 does not need to have the rolling operation parameter identification unit 56. In addition, if the section dimension prediction model 62 is generated externally and the generated section dimension prediction model 62 is stored in the storage unit 46 via the data acquisition unit 50, the section dimension prediction device 38 of the section steel does not need to have the section dimension prediction model generation unit 58. Furthermore, if difference data such as the difference in the rolling operation parameters is stored in the database of the process computer 36 and the data acquisition unit 50 acquires the difference data, the control unit 40 does not need to have the difference calculation unit 52.

 本実施形態の説明では、形鋼の断面寸法予測装置38を用いてH形鋼の断面寸法を予測する例を説明したが、断面形状を予測する形鋼はH形鋼に限らない。形鋼の断面寸法予測装置38は、中間ユニバーサル圧延機で圧延されて製造される他の形鋼、例えば、溝形鋼、I形鋼、鋼矢板又はレールの断面形状も同様に予測できる。 In the explanation of this embodiment, an example of predicting the cross-sectional dimensions of H-shaped steel using the section dimension prediction device 38 has been described, but the section steel for which the cross-sectional shape is predicted is not limited to H-shaped steel. The section dimension prediction device 38 can also predict the cross-sectional shapes of other sections manufactured by rolling with an intermediate universal rolling mill, such as channel steel, I-shaped steel, steel sheet piles, or rails.

 本発明の効果を検証すべく、図2に示した熱間製造設備100を用いて、H形鋼を製造した実施例を説明する。本実施例では、同一ロールセットでウェブ高さHが600mm、フランジ幅Bが300mmのH形鋼を熱間圧延で製造した。ウェブ厚は14mmと16mmの2種類があり、フランジ厚が19mm、22mm、25mm、28mm、32mmの5種類があり、これらの組み合わせとして10種類の断面寸法がある。これら10種類のH形鋼を各100本ずつ、合計で1000本のH形鋼を、圧延操業パラメータを変えて製造した。 In order to verify the effects of the present invention, an example of manufacturing H-shaped steel using the hot manufacturing equipment 100 shown in Figure 2 will be described. In this example, H-shaped steel with a web height H of 600 mm and a flange width B of 300 mm was manufactured by hot rolling using the same roll set. There are two types of web thickness, 14 mm and 16 mm, and five types of flange thickness, 19 mm, 22 mm, 25 mm, 28 mm, and 32 mm, and there are 10 types of cross-sectional dimensions as combinations of these. 100 pieces of each of these 10 types of H-shaped steel, for a total of 1,000 H-shaped steel pieces, were manufactured by changing the rolling operation parameters.

 H形鋼の断面寸法は、仕上ユニバーサル圧延機の下流に設けた熱間寸法計でH形鋼のウェブ高さH、左右フランジ幅B、ウェブ厚tw、上下左右のフランジ厚tfを熱間で測定した。線膨張係数を用いて、測定された断面寸法を室温での寸法に換算した。 The cross-sectional dimensions of the H-beam were measured hot using a hot dimension gauge installed downstream of the finishing universal rolling mill, measuring the web height H, left and right flange width B, web thickness tw, and top, bottom, left and right flange thicknesses tf. The measured cross-sectional dimensions were converted to dimensions at room temperature using the linear expansion coefficient.

 断面寸法予測モデルの生成に用いた断面寸法は、熱間寸法計で測定されたH形鋼のウェブ高さH、左右フランジ幅B、ウェブ厚tw、上下左右のフランジ厚tfの室温換算値であり、発明例では目標寸法と実績寸法との偏差を用いた。また、断面寸法予測モデルの生成に用いた圧延操業パラメータは下記(1)~(7)に示す値である。 The cross-sectional dimensions used to generate the cross-sectional dimension prediction model are the room temperature converted values of the web height H, left and right flange width B, web thickness tw, and top, bottom, left and right flange thickness tf of the H-beam measured with a hot dimension gauge, and in the example of the invention, the deviation between the target dimensions and the actual dimensions was used. The rolling operation parameters used to generate the cross-sectional dimension prediction model are the values shown in (1) to (7) below.

 (1)中間ユニバーサル圧延機の水平ロール間隔の基準条件からの補正量
 (2)中間ユニバーサル圧延機の水平ロール高さの補正量
 (3)中間ユニバーサル圧延機の竪ロール間隔の基準条件からの補正量
 (4)中間ユニバーサル圧延機の竪ロールのセンター補正量
 (5)エッジャ圧延機のE1ロール間隔の基準条件からの補正量
 (6)鋼片の重量
 (7)中間ユニバーサル圧延機での圧延時間
(1) Correction amount of horizontal roll gap of the intermediate universal rolling mill from the standard conditions (2) Correction amount of horizontal roll height of the intermediate universal rolling mill (3) Correction amount of vertical roll gap of the intermediate universal rolling mill from the standard conditions (4) Center correction amount of vertical rolls of the intermediate universal rolling mill (5) Correction amount of E1 roll gap of the edger rolling mill from the standard conditions (6) Weight of steel billet (7) Rolling time at the intermediate universal rolling mill

 発明例では、100本からなる同一のロールセットで製造したH形鋼を10セット準備し、各ロールセットで製造された形鋼の中から抽出される2つについてすべての組み合わせを選択した。同一のロールセットから選択される100本から抽出される2つの組み合わせは4950セットなので、合計49500セットの製造実績データを学習用データとして断面寸法予測モデルを生成した。 In the invention example, 10 sets of H-shaped steel made with the same roll set of 100 pieces were prepared, and all combinations of two pieces extracted from the steel pieces made with each roll set were selected. Since there were 4,950 sets of combinations of two pieces extracted from 100 pieces selected from the same roll set, a total of 49,500 sets of manufacturing performance data were used as learning data to generate a cross-sectional dimension prediction model.

 まず、学習用データの数と断面寸法予測モデルの予測精度を確認した結果について説明する。図5は、学習用データ数と学習に使用していない100本のH形鋼の各寸法を予測したときのRMSEの平均値との関係を示すグラフである。図5において横軸は学習用データ数(セット)であり、縦軸は予測されたH形鋼の各寸法(ウェブ高さH、左右のフランジ幅B、ウェブ厚tw、上下左右4カ所のフランジ厚tf)のRMSE(2乗平均平方根誤差:mm)の平均値である。 First, we will explain the results of checking the number of training data and the prediction accuracy of the cross-sectional dimension prediction model. Figure 5 is a graph showing the relationship between the number of training data and the average RMSE when predicting each dimension of 100 H-shaped steel pieces that were not used for training. In Figure 5, the horizontal axis is the number of training data (sets), and the vertical axis is the average RMSE (root mean square error: mm) of each predicted dimension of the H-shaped steel (web height H, left and right flange width B, web thickness tw, and four flange thicknesses tf at top, bottom, left and right).

 図5に示すように、予測されたH形鋼の各寸法のRMSEの平均値は、断面寸法予測モデルの学習に用いる学習用データ数が増えるとともに小さくなった。H形鋼の各寸法公差を考慮すると、RMSEの平均値は0.1mm以下であることが好ましい。RMSEの平均値を0.1mm以下にするために、断面寸法予測モデルの生成に10000セット以上の学習用データを用いることが好ましい。 As shown in Figure 5, the average RMSE value for each predicted dimension of H-beam decreases as the number of training data used to train the cross-sectional dimension prediction model increases. Considering the dimensional tolerances of H-beam, it is preferable that the average RMSE value be 0.1 mm or less. In order to make the average RMSE value 0.1 mm or less, it is preferable to use 10,000 or more sets of training data to generate the cross-sectional dimension prediction model.

 上記の通り、本実施形態に係る形鋼の断面寸法予測方法では学習用データを短時間で蓄積できるので、10000セット以上の学習用データも従来よりも短時間で取得できるようになる。このようにして取得された多くの学習用データを用いて学習された断面寸法予測モデルを用いることで、高い精度でH形鋼の各寸法を予測できることが確認された。 As described above, the method for predicting the cross-sectional dimensions of structural steel according to this embodiment allows learning data to be accumulated in a short time, making it possible to obtain more than 10,000 sets of learning data in a shorter time than before. It has been confirmed that by using a cross-sectional dimension prediction model trained using a large amount of learning data acquired in this way, it is possible to predict the dimensions of H-shaped steel with high accuracy.

 次に、形鋼の断面寸法予測方法を用いる形鋼の製造方法を確認した結果について説明する。上記のようにして生成した断面寸法予測モデルを用いて、まず、ウェブ高さ、左右フランジ幅、ウェブ厚、上下左右のフランジ厚の断面寸法を予測した。次いで、予測された断面寸法がこれら断面寸法の寸法公差内に入る圧延操業パラメータを特定した。各寸法の公差は、下記の通りである。 Next, we will explain the results of confirming the manufacturing method of section steel using the section steel cross-sectional dimension prediction method. Using the cross-sectional dimension prediction model generated as described above, we first predicted the cross-sectional dimensions of web height, left and right flange widths, web thickness, and top, bottom, left and right flange thicknesses. Next, we identified the rolling operation parameters that would result in the predicted cross-sectional dimensions falling within the dimensional tolerances of these cross-sectional dimensions. The tolerances for each dimension are as follows:

 ウェブ高さ:±2.0mm
 左右フランジ幅:±2.0mm
 ウェブ厚:±0.7mm
 上下左右のフランジ厚:-0.7~+2.3mm
Web height: ±2.0mm
Left and right flange width: ±2.0mm
Web thickness: ±0.7mm
Top, bottom, left and right flange thickness: -0.7 to +2.3 mm

 予測された断面寸法が上記公差内となる圧延操業パラメータを製造条件に設定してH形鋼を99本製造した。圧延2本目の操業パラメータは、圧延1本目の断面寸法の実績値と、圧延1本目と2本目の操業パラメータと、圧延2本目の目標断面寸法とを用いて決定した。圧延3本目の操業パラメータは、圧延2本目の断面寸法の実績値と、圧延2本目と3本目の操業パラメータと、圧延3本目の目標断面寸法とを用いて決定した。以後のH形鋼も同様に、次に圧延するH形鋼の操業パラメータについては、その1本前の先行材と、次に圧延するH形鋼の操業パラメータを用いて設定した。この結果、すべての断面寸法が上記公差内を満足する各断面寸法が良好なH形鋼を製造できた。 99 H-beams were manufactured by setting the rolling operation parameters as manufacturing conditions so that the predicted cross-sectional dimensions would fall within the above tolerances. The operation parameters for the second rolled piece were determined using the actual cross-sectional dimensions of the first rolled piece, the operation parameters for the first and second rolled pieces, and the target cross-sectional dimensions of the second rolled piece. The operation parameters for the third rolled piece were determined using the actual cross-sectional dimensions of the second rolled piece, the operation parameters for the second and third rolled pieces, and the target cross-sectional dimensions of the third rolled piece. Similarly, for subsequent H-beams, the operation parameters for the next H-beam to be rolled were set using the operation parameters of the preceding material and the H-beam to be next rolled. As a result, H-beams with good cross-sectional dimensions, all of which were within the above tolerances, were manufactured.

 一方、比較例では、特許文献3に記載に開示された方法で断面寸法予測モデルを生成した。特許文献3に記載に開示された方法では、連続して熱間圧延された2つの形鋼(先行圧延材と後行圧延材)の差分を用いる。ただし、目標断面寸法が異なる2本間は学習用データにならないので、同一のロールセットから選択される100本から抽出されるデータは90セットになる。したがって、比較例では合計900セットの製造実績データを教師データとして断面寸法予測モデルを生成した。 In the comparative example, on the other hand, a cross-sectional dimension prediction model was generated using the method disclosed in Patent Document 3. In the method disclosed in Patent Document 3, the difference between two sections of steel that were hot rolled in succession (the preceding rolled material and the following rolled material) is used. However, since the data between two pieces with different target cross-sectional dimensions does not become learning data, 90 sets of data are extracted from 100 pieces selected from the same roll set. Therefore, in the comparative example, a total of 900 sets of manufacturing performance data were used as training data to generate a cross-sectional dimension prediction model.

 この断面寸法予測モデルを用いて予測されるウェブ高さ、フランジ幅、ウェブ厚、上下左右4カ所のフランジ厚の断面寸法を予測し、予測された断面寸法がこれら断面寸法の寸法公差内に入る圧延操業パラメータを特定した。各寸法の公差は、上記の通りである。 This cross-sectional dimension prediction model was used to predict the cross-sectional dimensions of the web height, flange width, web thickness, and the four flange thicknesses at the top, bottom, left, and right, and the rolling operation parameters were identified that would result in the predicted cross-sectional dimensions falling within the dimensional tolerances of these cross-sectional dimensions. The tolerances for each dimension are as shown above.

 予測された断面寸法が上記公差内となる圧延操業パラメータを製造条件に設定してH形鋼を99本製造した。次に圧延するH形鋼の圧延操業パラメータは、その1本前の先行材と次に圧延するH形鋼の操業パラメータを用いて決定した。断面を変更した後に圧延するH形鋼の圧延操業パラメータは、本モデルを使用せずにその断面での基準条件に決定した。その結果、圧延2本目以降のH形鋼のうち、15本のH形鋼において一部の寸法が公差を外しており、このH形鋼については追加の寸法修正や、再製造が必要になり、各断面寸法が良好なH形鋼を製造できなかった。 99 H-beams were manufactured by setting the rolling operation parameters as manufacturing conditions so that the predicted cross-sectional dimensions would fall within the above tolerances. The rolling operation parameters for the next H-beam to be rolled were determined using the operation parameters for the preceding material and the next H-beam to be rolled. The rolling operation parameters for the H-beam to be rolled after the cross-section was changed were determined to be the standard conditions for that cross-section without using this model. As a result, some dimensions of 15 H-beams from the second H-beam onwards were outside the tolerances, and these H-beams required additional dimensional corrections and remanufacturing, and it was not possible to manufacture H-beams with good cross-sectional dimensions.

 10 H形鋼
 12 フランジ
 14 ウェブ
 20 加熱炉
 22 粗圧延機
 24 中間圧延機
 26 中間ユニバーサル圧延機
 28 エッジャ圧延機
 30 仕上圧延機
 32 熱間寸法計
 36 プロセスコンピュータ
 38 形鋼の断面寸法予測装置
 40 制御部
 42 入力部
 44 出力部
 46 格納部
 50 データ取得部
 52 差分演算部
 54 断面寸法予測部
 56 圧延操業パラメータ特定部
 58 断面寸法予測モデル生成部
 60 データベース
 62 断面寸法予測モデル
 100 熱間圧延設備
REFERENCE SIGNS LIST 10 H-section steel 12 Flange 14 Web 20 Heating furnace 22 Roughing mill 24 Intermediate rolling mill 26 Intermediate universal rolling mill 28 Edger rolling mill 30 Finishing rolling mill 32 Hot dimension gauge 36 Process computer 38 Section dimension prediction device for section steel 40 Control unit 42 Input unit 44 Output unit 46 Storage unit 50 Data acquisition unit 52 Difference calculation unit 54 Section dimension prediction unit 56 Rolling operation parameter identification unit 58 Section dimension prediction model generation unit 60 Database 62 Section dimension prediction model 100 Hot rolling equipment

Claims (9)

 熱間圧延されて製造される形鋼の断面寸法を予測する形鋼の断面寸法予測方法であって、
 同一のロールセットで熱間圧延されて製造された2つの形鋼における圧延操業パラメータの差分を入力とし、前記2つの形鋼の断面寸法偏差の差分を出力とする断面寸法予測モデルに、前記ロールセットで熱間圧延されて製造された先行材となる形鋼の圧延操業パラメータと前記ロールセットで熱間圧延されて製造される形鋼の圧延操業パラメータとの差分を入力することで前記断面寸法偏差の差分を出力し、
 前記断面寸法偏差は、形鋼の目標寸法と実績寸法との偏差であり、
 出力された前記断面寸法偏差の差分と前記先行材となる形鋼の断面寸法を用いて、製造される形鋼の断面寸法を予測する、形鋼の断面寸法予測方法。
A method for predicting a cross-sectional dimension of a shaped steel to be manufactured by hot rolling, comprising:
a cross-sectional dimension prediction model which takes as input the difference in rolling operation parameters for two shaped steels produced by hot rolling with the same roll set and outputs the difference in cross-sectional dimension deviations of the two shaped steels, by inputting the difference between the rolling operation parameters of a shaped steel to be a precursor material produced by hot rolling with the roll set and the rolling operation parameters of a shaped steel to be produced by hot rolling with the roll set, and outputting the difference in cross-sectional dimension deviations;
The cross-sectional dimension deviation is a deviation between a target dimension and an actual dimension of a shaped steel,
A method for predicting the cross-sectional dimension of structural steel, which predicts the cross-sectional dimension of the structural steel to be manufactured using the output difference in cross-sectional dimension deviation and the cross-sectional dimension of the preceding structural steel material.
 前記形鋼は、粗圧延機、中間圧延機および仕上圧延機によって鋼片が熱間圧延されることで製造され、前記圧延操業パラメータには、前記鋼片の重量と、前記中間圧延機の圧延ロールの基準位置からの補正量と、前記粗圧延機および前記中間圧延機でのパス回数と、前記粗圧延機および前記中間圧延機の圧延時間とが含まれる、請求項1に記載の形鋼の断面寸法予測方法。 The method for predicting cross-sectional dimensions of a steel section as described in claim 1, wherein the steel section is manufactured by hot rolling a steel slab using a roughing mill, an intermediate rolling mill, and a finishing rolling mill, and the rolling operation parameters include the weight of the steel slab, a correction amount from a reference position of the rolling rolls of the intermediate rolling mill, the number of passes through the roughing mill and the intermediate rolling mill, and the rolling time of the roughing mill and the intermediate rolling mill.  前記断面寸法予測モデルの入力には、前記形鋼の鋼種区分を示す属性パラメータが含まれる、請求項1に記載の形鋼の断面寸法予測方法。 The method for predicting the cross-sectional dimensions of steel sections according to claim 1, wherein the input of the cross-sectional dimension prediction model includes attribute parameters indicating the steel type classification of the steel section.  前記断面寸法予測モデルの入力には、前記形鋼の鋼種区分を示す属性パラメータが含まれる、請求項2に記載の形鋼の断面寸法予測方法。 The method for predicting the cross-sectional dimensions of steel sections according to claim 2, wherein the input of the cross-sectional dimension prediction model includes attribute parameters indicating the steel type classification of the steel section.  前記断面寸法は、前記形鋼のウェブ厚、上下左右4カ所のフランジ厚、ウェブ高さおよびフランジ幅の少なくとも1つの断面寸法である、請求項1から請求項4のいずれか一項に記載の形鋼の断面寸法予測方法。 The method for predicting the cross-sectional dimensions of a steel section according to any one of claims 1 to 4, wherein the cross-sectional dimensions are at least one of the cross-sectional dimensions of the web thickness of the steel section, the thicknesses of the four flanges at the top, bottom, left and right, the web height and the flange width.  請求項1から請求項4のいずれか一項に記載の形鋼の断面寸法予測方法を用いて予測された形鋼の断面寸法が目標寸法の範囲内になる圧延操業パラメータの差分を特定し、特定された圧延操業パラメータの差分から求められる圧延操業パラメータを含む製造条件で形鋼を製造する、形鋼の製造方法。 A method for manufacturing shaped steel, comprising: identifying differences in rolling operation parameters that bring the cross-sectional dimensions of the shaped steel predicted using the method for predicting the cross-sectional dimensions of the shaped steel described in any one of claims 1 to 4 into the range of the target dimensions; and manufacturing the shaped steel under manufacturing conditions that include rolling operation parameters that are determined from the identified differences in the rolling operation parameters.  請求項5に記載の形鋼の断面寸法予測方法を用いて予測された形鋼の断面寸法が目標寸法の範囲内になる圧延操業パラメータの差分を特定し、特定された圧延操業パラメータの差分から求められる圧延操業パラメータを含む製造条件で形鋼を製造する、形鋼の製造方法。 A method for manufacturing shaped steel, which identifies differences in rolling operation parameters that will bring the cross-sectional dimensions of the shaped steel predicted using the method for predicting the cross-sectional dimensions of shaped steel described in claim 5 into the range of target dimensions, and manufactures the shaped steel under manufacturing conditions that include rolling operation parameters determined from the identified differences in rolling operation parameters.  熱間圧延されて製造される形鋼の断面寸法を予測する形鋼の断面寸法予測装置であって、
 同一のロールセットで熱間圧延されて製造された2つの形鋼における圧延操業パラメータの差分を入力とし、前記2つの形鋼の断面寸法偏差の差分を出力とする断面寸法予測モデルに、前記ロールセットで熱間圧延されて製造された先行材となる形鋼の圧延操業パラメータと前記ロールセットで熱間圧延されて製造される形鋼の圧延操業パラメータとの差分を入力することで前記断面寸法偏差の差分を出力し、
 前記断面寸法偏差は、形鋼の目標寸法と実績寸法との偏差であり、
 出力された前記断面寸法偏差の差分と前記先行材となる形鋼の断面寸法の実績値とを用いて、製造される形鋼の断面寸法を予測する断面寸法予測部を有する、形鋼の断面寸法予測装置。
A section dimension prediction device for predicting a section dimension of a section steel manufactured by hot rolling, comprising:
a cross-sectional dimension prediction model which takes as input the difference in rolling operation parameters for two shaped steels produced by hot rolling with the same roll set and outputs the difference in cross-sectional dimension deviations of the two shaped steels, by inputting the difference between the rolling operation parameters of a shaped steel to be a precursor material produced by hot rolling with the roll set and the rolling operation parameters of a shaped steel to be produced by hot rolling with the roll set, and outputting the difference in cross-sectional dimension deviations;
The cross-sectional dimension deviation is a deviation between a target dimension and an actual dimension of a shaped steel,
A cross-sectional dimension prediction device for structural steel having a cross-sectional dimension prediction unit that predicts the cross-sectional dimension of the structural steel to be manufactured using the difference in the output cross-sectional dimension deviations and the actual value of the cross-sectional dimension of the preceding structural steel material.
 同一のロールセットで熱間圧延されて製造された2つの形鋼における圧延操業パラメータの差分の実績値と、前記2つの形鋼の断面寸法偏差の差分の実績値とを1組とする複数のデータセットを教師データとして機械学習モデルを機械学習させ、
 前記2つの形鋼における圧延操業パラメータの差分を入力とし、前記2つの形鋼の断面寸法偏差の差分を出力とする断面寸法予測モデルを生成し、
 前記断面寸法偏差として形鋼の目標寸法と実績寸法との偏差を用いる、断面寸法予測モデルの生成方法。
A machine learning model is trained using a plurality of data sets as training data, each set being a combination of actual values of differences in rolling operation parameters for two shaped steels produced by hot rolling with the same roll set and actual values of differences in cross-sectional dimensional deviations for the two shaped steels;
A cross-sectional dimension prediction model is generated, in which the difference between the rolling operation parameters of the two shaped steels is input and the difference between the cross-sectional dimension deviations of the two shaped steels is output;
A method for generating a cross-sectional dimension prediction model, in which the deviation between a target dimension and an actual dimension of a steel section is used as the cross-sectional dimension deviation.
PCT/JP2024/008236 2023-04-13 2024-03-05 Method for predicting cross-sectional dimension of shape steel, method for manufacturing shape steel, cross-sectional dimension prediction device for shape steel, and method for generating cross-sectional dimension prediction model Pending WO2024214427A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024541786A JP7619533B1 (en) 2023-04-13 2024-03-05 Method for predicting cross-sectional dimension of shaped steel, manufacturing method of shaped steel, device for predicting cross-sectional dimension of shaped steel, and method for generating cross-sectional dimension prediction model
KR1020257032848A KR20250163910A (en) 2023-04-13 2024-03-05 Method for predicting the cross-sectional dimension of a steel beam, method for manufacturing a steel beam, device for predicting the cross-sectional dimension of a steel beam, and method for creating a cross-sectional dimension prediction model

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023065491 2023-04-13
JP2023-065491 2023-04-13

Publications (1)

Publication Number Publication Date
WO2024214427A1 true WO2024214427A1 (en) 2024-10-17

Family

ID=93059388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/008236 Pending WO2024214427A1 (en) 2023-04-13 2024-03-05 Method for predicting cross-sectional dimension of shape steel, method for manufacturing shape steel, cross-sectional dimension prediction device for shape steel, and method for generating cross-sectional dimension prediction model

Country Status (3)

Country Link
JP (1) JP7619533B1 (en)
KR (1) KR20250163910A (en)
WO (1) WO2024214427A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039107A (en) * 2001-07-30 2003-02-12 Nippon Steel Corp Optimal position setting and control method and apparatus for rolling rolls and guides during asymmetric section steel rolling
CN111636030A (en) * 2020-05-29 2020-09-08 南京钢铁股份有限公司 Q420C-grade hot-rolled angle steel and preparation method thereof based on machine learning
JP2021183354A (en) * 2020-05-22 2021-12-02 Jfeスチール株式会社 Shaped steel bending prediction method, shaped steel manufacturing method, trained machine learning model generation method and shaped steel curvature predicting device
JP2021194701A (en) * 2020-06-10 2021-12-27 Jfeスチール株式会社 Method for generating a model for predicting the amount of change in cross-sectional dimensions of shaped steel, a method for generating a model for predicting the amount of change in cross-sectional dimensions of shaped steel, a method for predicting cross-sectional dimensions of shaped steel, a method for controlling cross-sectional dimensions of shaped steel, and a method for manufacturing shaped steel.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039107A (en) * 2001-07-30 2003-02-12 Nippon Steel Corp Optimal position setting and control method and apparatus for rolling rolls and guides during asymmetric section steel rolling
JP2021183354A (en) * 2020-05-22 2021-12-02 Jfeスチール株式会社 Shaped steel bending prediction method, shaped steel manufacturing method, trained machine learning model generation method and shaped steel curvature predicting device
CN111636030A (en) * 2020-05-29 2020-09-08 南京钢铁股份有限公司 Q420C-grade hot-rolled angle steel and preparation method thereof based on machine learning
JP2021194701A (en) * 2020-06-10 2021-12-27 Jfeスチール株式会社 Method for generating a model for predicting the amount of change in cross-sectional dimensions of shaped steel, a method for generating a model for predicting the amount of change in cross-sectional dimensions of shaped steel, a method for predicting cross-sectional dimensions of shaped steel, a method for controlling cross-sectional dimensions of shaped steel, and a method for manufacturing shaped steel.

Also Published As

Publication number Publication date
JPWO2024214427A1 (en) 2024-10-17
KR20250163910A (en) 2025-11-21
JP7619533B1 (en) 2025-01-22

Similar Documents

Publication Publication Date Title
JP7147904B2 (en) Method for predicting bending of shaped steel, method for manufacturing shaped steel, method for generating trained machine learning model, and device for predicting curvature of shaped steel
JP7298645B2 (en) Method for generating cross-sectional dimension variation prediction model for shaped steel, apparatus for generating cross-sectional dimension variation prediction model for shaped steel, method for predicting cross-sectional dimension of shaped steel, method for controlling cross-sectional dimension of shaped steel, and method for manufacturing shaped steel
EP3928885B1 (en) Rolling load predicting method, rolling load predicting device, and rolling control method
KR102502954B1 (en) Cooling control method of thick steel plate, cooling control device, and manufacturing method of thick steel plate
JP7619533B1 (en) Method for predicting cross-sectional dimension of shaped steel, manufacturing method of shaped steel, device for predicting cross-sectional dimension of shaped steel, and method for generating cross-sectional dimension prediction model
JP6874794B2 (en) Temper rolling method for hot-rolled steel sheet
JPH02147112A (en) Web height control rolling method and equipment for H-beam steel
JP6900866B2 (en) Rolling schedule creation device, rolling schedule creation method, and program
JP2021109185A (en) Rolling equipment control method, rolling equipment control device, and steel sheet manufacturing method
KR20240039161A (en) Plate thickness schedule calculation method for tandem rolling mill and rolling plant
JP7230880B2 (en) Rolling load prediction method, rolling method, method for manufacturing hot-rolled steel sheet, and method for generating rolling load prediction model
WO2022176366A1 (en) Method for predicting shape of steel sheet, shape control method, manufacturing method, method for generating shape prediction model, and manufacturing equipment
JP4701762B2 (en) Hot rolled steel sheet rolling method
EP4596130A1 (en) Method for predicting width of rough rolled material, method for controlling width of rough rolled material, method for producing hot-rolled steel sheet, and method for generating width prediction model for rough rolled material
JP2021133415A (en) Model learning method, running plate thickness changing method, steel plate manufacturing method, model learning device, running plate thickness changing device and steel plate manufacturing device
JP4696775B2 (en) Plate width control method and apparatus
JPWO2019156078A1 (en) Manufacturing method of H-section steel
JP2024153994A (en) H-beam shape prediction method, H-beam manufacturing method, rolling equipment, and shape prediction model generation method
JP2018130734A (en) Metal strip rolling method
JP2024174381A (en) Method for predicting shape of unequal leg angle steel, manufacturing method of unequal leg angle steel, rolling equipment, and method for generating shape prediction model
JP2005319492A (en) Method for controlling shape in cold rolling
US20250355426A1 (en) Material properties prediction device for rolled products
JP7385127B2 (en) Rolling schedule creation device, rolling schedule creation method, and program
JP3211710B2 (en) Manufacturing method of section steel
JP3211709B2 (en) Manufacturing method of section steel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2024541786

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24788457

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202517081175

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 202517081175

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: KR1020257032848

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2501006686

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: P2025-03174

Country of ref document: AE

NENP Non-entry into the national phase

Ref country code: DE