WO2024209566A1 - Information processing device, information processing method, and information processing program - Google Patents
Information processing device, information processing method, and information processing program Download PDFInfo
- Publication number
- WO2024209566A1 WO2024209566A1 PCT/JP2023/014008 JP2023014008W WO2024209566A1 WO 2024209566 A1 WO2024209566 A1 WO 2024209566A1 JP 2023014008 W JP2023014008 W JP 2023014008W WO 2024209566 A1 WO2024209566 A1 WO 2024209566A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- driving
- time
- route
- target vehicle
- driver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
Definitions
- the present invention relates to an information processing device, an information processing method, and an information processing program.
- the present invention therefore proposes an information processing device, information processing method, and information processing program that can notify the driver of appropriate times to take a break.
- the information processing device described in claim 1 includes an acquisition unit that acquires a driving load ratio that indicates the ratio between a state in which the driver's driving load is high and a state in which the driver's driving load is low on the driving route of the target vehicle, and an output control unit that uses at least the driving load ratio to output the timing when the driver should take a break.
- the information processing method described in claim 13 is an information processing method executed by an information processing device, and includes an acquisition step of acquiring a driving load ratio indicating the ratio between a state in which the driver's driving load is high and a state in which the driver's driving load is low on the driving route of the target vehicle, and an output control step of outputting the timing when the driver should take a break using at least the driving load ratio.
- the information processing program described in claim 14 is an information processing program executed by an information processing device, and causes the information processing device to execute an acquisition procedure for acquiring a driving load ratio indicating the ratio between a state in which the driver's driving load is high and a state in which the driver's driving load is low on the driving route of the target vehicle, and an output control procedure for outputting the timing when the driver should take a break using at least the driving load ratio.
- FIG. 1 is a diagram illustrating an example of a system according to the first embodiment.
- FIG. 2 is a diagram illustrating an example of the configuration of a first server device according to the first embodiment.
- FIG. 3 is a diagram illustrating an example of the configuration of the second server device.
- FIG. 4 is a diagram showing a specific example of a method for estimating the WL type.
- FIG. 5 is a diagram showing a specific example (1) of a method for generating a prediction model.
- FIG. 6 is a diagram showing a specific example (2) of a method for generating a prediction model.
- FIG. 7 is a sequence diagram showing a procedure of processing performed between server devices included in the system according to the first embodiment.
- FIG. 8 is a flowchart showing the procedure of the rest timing prediction process.
- FIG. 1 is a diagram illustrating an example of a system according to the first embodiment.
- FIG. 2 is a diagram illustrating an example of the configuration of a first server device according to the first embodiment.
- FIG. 9 is a diagram illustrating an example of a system according to the second embodiment.
- FIG. 10 is a diagram illustrating an example of the configuration of a first server device according to the second embodiment.
- FIG. 11 is a flowchart showing the procedure of the range specification process.
- FIG. 12 is a diagram showing a specific example of the range specification process.
- FIG. 13 is a hardware configuration diagram showing an example of a computer that realizes the functions of the information processing device according to the embodiment.
- Fig. 1 is a diagram showing an example of a system according to the first embodiment.
- Fig. 1 shows a system SyA as an example of the system according to the first embodiment.
- Information processing according to the first embodiment is realized in the system SyA.
- the system SyA includes an in-vehicle device 10, a first server device 100A, and a second server device 200.
- the in-vehicle device 10, the first server device 100A, and the second server device 200 are connected to each other via a network N so as to be able to communicate with each other via a wired or wireless connection.
- the in-vehicle device 10 may be a dedicated navigation device built into or mounted on the vehicle VEn.
- the in-vehicle device 10 may be composed of a navigation device and a recording device (drive recorder).
- the in-vehicle device 10 may be a composite device in which a navigation device and a recording device that are independent of each other are connected so as to be able to communicate with each other.
- the in-vehicle device 10 may be a single device that has a navigation function and a recording function.
- the in-vehicle device 10 also includes various sensors.
- the in-vehicle device 10 may include various sensors such as a camera, an acceleration sensor, a gyro sensor, a GPS (Global Positioning System) sensor, and an air pressure sensor.
- the in-vehicle device 10 may also have a function of providing dialogue and information to assist driving based on sensor information acquired by the various sensors.
- the in-vehicle device 10 can use not only the sensors installed in the device itself, but also sensor information detected by sensors installed in the vehicle VEn itself as a safe driving system.
- the portable terminal device can be made to operate in the same manner as the in-vehicle device 10.
- a user refers to a person who is directly involved with vehicle VEn (for example, the driver who drives vehicle VEn, or a passenger other than the driver).
- vehicle VEn when vehicle VEn is to be uniquely displayed, an arbitrary common value is substituted for "n", and it is expressed as, for example, vehicle VE1, vehicle VE2, etc.
- the first server device 100A is a central device responsible for information processing according to the first embodiment. For example, the first server device 100A calculates a driving load ratio based on the type of driving load (workload) using the driving time of a target vehicle (referred to as a "target vehicle VEx") that is the subject of a proposal among the vehicles VEn. The first server device 100A then predicts the timing at which the driver DX of the target vehicle VEx should take a break by inputting the driving load ratio into a prediction model in which the driving time that an unspecified number of drivers actually travel before taking a break is statistically modeled. The prediction result is controlled to be output from the in-vehicle device 10 of the target vehicle VEx.
- a driving load ratio based on the type of driving load (workload) using the driving time of a target vehicle (referred to as a "target vehicle VEx") that is the subject of a proposal among the vehicles VEn.
- the first server device 100A predicts the timing at which the driver DX of the target vehicle V
- WL indicates the driving load, and may include both the driver's sense of burden (which can also be said to be the degree of difficulty) and the driving load set for a road section.
- Types of driving load i.e., WL types, include, for example, "BUSY,” “IDEAL,” and “FREE,” and indicate that in road sections designated as “BUSY,” the burden on the driver is above a standard (i.e., the difficulty of driving is high), in road sections designated as “FREE,” the burden on the driver is below a standard (i.e., the difficulty of driving is low or not high), and in road sections designated as “IDEAL,” the burden on the driver is medium (i.e., the difficulty of driving is normal or not high).
- the degree of difficulty for the driver may be expressed numerically as the driver's sense of burden, and can be defined as follows:
- a severity level of "1” corresponds to a WL type of "BUSY_MAX” and is a road section where all general drivers need to be careful when driving, and it is defined that the in-vehicle device 10 should only issue a warning notification on such road sections.
- the severity level of "0.80” corresponds to the WL type "BUSY+”, and is a road section where more than 60% of general drivers have to be careful when driving, and it is defined that in such road sections, the in-vehicle device 10 should only issue warning notifications and caution notifications.
- the severity level of "0.60” corresponds to a WL type of "BUSY,” and is a road section where more than 20% of general drivers have to be careful when driving. It is defined that in such road sections, the in-vehicle device 10 should only issue warning notifications, caution notifications, and important notifications.
- the severity level of "0.50” corresponds to the WL type "IDEAL", and it is defined that in the relevant road section, the in-vehicle device 10 may also speak content other than guidance-related information (warning notifications, caution notifications, important notifications).
- a difficulty level of "0.25" corresponds to a WL type of "FREE,” and is defined as a road section that more than 50% of general drivers would find monotonous and boring, and in which a variety of content should be spoken.
- the WL type is not necessarily limited to the above examples ("BUSY_MAX”, “BUSY+”, “BUSY”, “IDEAL”, and “FREE”).
- the WL types will be mainly described as “BUSY” and "FREE”.
- the criteria and reference values shown above are merely examples and may be any values.
- “BUSY” is an example of a first type indicating that the WL is high compared to the reference value.
- FREE is an example of a second type indicating that the WL is low compared to the reference value.
- a road section means a section between characteristic points of a road, and is called a link. Characteristic points of a road are intersections, corners, dead ends, etc., and are called nodes.
- a link means a road section that is set based on a specific rule. In other words, a link means a unit that divides a recorded section of a movement history based on a specific rule.
- a road section is represented as a link
- a connection point between links is represented as a node.
- the first server device 100A has a map information storage unit 121 (FIG. 2), which includes road data that represents a road network as a combination of nodes and links, facility data, and object information around the road.
- the object information includes information on obstacles that exist temporarily, as well as features such as signs such as road signs, road markings such as stop lines, road dividing lines such as center lines, and structures along the road. Obstacles refer to factors that impede the passage of pedestrians and bicycles, such as puddles, sunken parts of the road, fallen objects, and drains (including parts blocked by nets).
- the object information may include highly accurate point cloud information of objects to be used for vehicle position estimation, etc.
- links may be identified by link IDs.
- the second server device 200 generates a prediction model that statistically models the driving time that an unspecified number of drivers actually travel before taking a break, and provides the generated prediction model to the first server device 100A.
- the management operator may be the same or different between the first server device 100A and the second server device 200.
- each of the first server device 100A and the second server device 200 corresponds to an example of an information processing device according to the first embodiment, but the first server device 100A and the second server device 200 may be integrated into a single server device.
- this single server device corresponds to the information processing device according to the first embodiment.
- FIG. 2 is a diagram showing an example of the configuration of the first server device 100A according to the first embodiment.
- the first server device 100A includes a communication unit 110, a storage unit 120A, and a control unit 130A.
- the communication unit 110 is realized by, for example, a network interface card (NIC) etc.
- the communication unit 110 is connected to the network N by wire or wirelessly, and transmits and receives information between the second server device 200 and the in-vehicle device 10, for example.
- NIC network interface card
- the storage unit 120A is realized by, for example, a semiconductor memory element such as a random access memory (RAM) or a flash memory, or a storage device such as a hard disk or an optical disk.
- the storage unit 120A may store, for example, data and programs related to the information processing according to the embodiment.
- the storage unit 120A may include a map information storage unit 121, a WL type estimation result storage unit 122, and a ratio information storage unit 123.
- the map information storage unit 121 stores map data used for estimating the WL type.
- the map data includes road data in which a road network is represented by a combination of nodes and links.
- the links are managed by link IDs, and may be associated with the WL type and the link length.
- the WL type estimation result storage unit 122 stores the WL type estimated for each link included in the travel route (constituting the travel route).
- the ratio information storage unit 123 stores a driving load ratio indicating the ratio between a high driving load state and a low driving load state.
- Control unit 130A The control unit 130A is realized by executing various programs (e.g., the information processing program according to the embodiment) stored in a storage device inside the first server device 100A using a RAM as a working area by a CPU (Central Processing Unit), an MPU (Micro Processing Unit), etc. Also, the control unit 130A is realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- control unit 130A has an estimation unit 131, a calculation unit 132, an operating load ratio acquisition unit 133, an output control unit 134, and a search unit 135, and realizes or executes the functions and actions of the information processing described below.
- the internal configuration of the control unit 130A is not limited to the configuration shown in FIG. 2, and may be other configurations as long as they perform the information processing described below.
- the connection relationships between the processing units of the control unit 130A are not limited to the connection relationships shown in FIG. 2, and may be other connection relationships.
- the estimation unit 131 estimates the WL type for each link included in a predetermined driving route. For example, the estimation unit 131 estimates the WL type for each link included in the driving route of the target vehicle VEx.
- the driving route of the target vehicle VEx may be a driving route that has been traveled by continuous driving from the start of driving of the target vehicle VEx to the current time, or may be a planned driving route that the driver DX plans to drive the target vehicle VEx.
- the start of driving here means the start of driving from a state of a long-term stay with a specific purpose (for example, stopping at a home or a rest area) excluding a temporary stop on the road (for example, stopping at a traffic light), and can also be rephrased as engine start.
- the estimation unit 131 can distinguish between a temporary stop on the road and a long-term stay with a specific purpose based on the stopping time.
- the planned driving route may be, for example, a route that is a search result that is searched to satisfy a search condition based on information (for example, a destination) input to the in-vehicle device 10, or a route that is directly input by the user as a route to be driven from now on.
- the planned driving route may be a route to a destination predicted based on the driver DX's usual driving history.
- the estimation unit 131 also estimates the WL type for each link included in the driving route indicated by the driving records of an unspecified number of vehicles VEn, which are driving records based on continuous driving from engine start (start of driving) to engine stop (end of driving).
- driving from engine start (start of driving) to engine stop (end of driving) may be referred to as "one trip.”
- Continuous driving refers to driving without a break.
- the driving route indicated by the driving record of continuous driving from engine start to engine stop means the driving route for one trip that does not include a break, and does not include temporary stops on the road (for example, stopping at traffic lights).
- the estimation unit 131 can, for example, detect engine stoppage for a break (e.g., engine stoppage for 10 to 20 minutes) based on data representing the behavior of the vehicle VEn, and extract the driving from engine start to engine stoppage for a break as one trip.
- engine stoppage for a break e.g., engine stoppage for 10 to 20 minutes
- the estimation unit 131 may extract the driving from the engine start (start of driving) to the rest point where the driver of the vehicle VEn took a rest as one trip. For example, the estimation unit 131 generates stay point information indicating the stay points of the vehicle VEn, stay time information indicating the stay time at the stay points, and traveling direction change information indicating the change in the traveling direction of the vehicle VEn between three consecutive stay points on the driving route of the vehicle VEn, based on the driving history of the vehicle VEn. Then, the estimation unit 131 may estimate the rest point where the driver of the vehicle VEn took a rest, based on the stay point information, stay time information, and traveling direction change information.
- the estimation unit 131 may determine whether the stay time at the stay point is within a predetermined time range (e.g., 10 minutes to 20 minutes), and estimate the stay point where the stay time is determined to be within the predetermined time range as the rest point. Furthermore, the estimation unit 131 may estimate, as a rest point, a stay point that is determined to be moving away from the departure point of the vehicle VEn based on the angular relationship established between the first stay point where the vehicle VEn first arrives, the second stay point where the vehicle VEn next arrives, and the tertiary stay point where the vehicle VEn last arrives.
- a predetermined time range e.g. 10 minutes to 20 minutes
- the estimation unit 131 also stores the WL type estimation result in the WL type estimation result storage unit 122.
- FIG. 4 is a diagram showing a specific example of the method for estimating the WL type.
- FIG. 4 shows a scene in which the WL type is estimated for an arbitrary driving route RT.
- the arbitrary driving route RT may be an actual driving route traveled by continuous driving from the start of driving of the target vehicle VEx to the present time, or may be a planned driving route that the driver DX plans to travel in the target vehicle VEx.
- the arbitrary driving route RT may be a driving route for one trip, not including rest periods, by a certain vehicle VEn selected from an unspecified number of vehicles VEn.
- the method for estimating the WL type of the links included in the driving route is the same regardless of the driving route.
- the driving route RT is the actual driving route traveled by continuous driving from the start of the target vehicle VEx's driving to the present time
- the position PT1 is the point where the target vehicle VEx's driving started
- the position PT2 is the current position of the target vehicle VEx.
- position PT1 is the point where the engine of vehicle VEn is started
- position PT2 is the stop point of vehicle VEn.
- the estimation unit 131 compares the traveling route RT with map data in which a WL type is associated with each link, and links each link included in the traveling route RT with a link ID (link_id).
- FIG. 4(a) shows an example in which the estimation unit 131 divides the traveling route RT into five links by linking link ID "100", link ID "101", link ID "102", link ID "103", link ID "104", and link ID "105" to the traveling route RT.
- node ND01 is shown as information on the connection point where the link identified by link ID "100" (link 100) and the link identified by link ID "101" (link 101) are connected.
- node ND12 is shown as information on the connection point where the link identified by link ID "101" (link 101) and the link identified by link ID "102" (link 102) are connected.
- node ND23 is shown as information on the connection point where the link identified by link ID "102" (link 102) and the link identified by link ID "103" (link 103) are connected.
- node ND34 is shown as information on the connection point where the link identified by link ID "103" (link 103) and the link identified by link ID "104" (link 104) are connected.
- node ND45 is shown as information on the connection point where the link identified by link ID "104" (link 104) and the link identified by link ID "105" (link 105) are connected.
- the estimation unit 131 may also refer to map data and calculate the distance (len) of each link.
- FIG. 4(a) shows an example in which the estimation unit 131 calculates the distance "100" of link 100, the distance "200” of link 101, the distance "300” of link 102, the distance "100” of link 103, the distance “500” of link 104, and the distance "200” of link 105.
- FIG. 4(b) shows an example in which the estimation unit 131 refers to map data in which a WL type is associated with each link, and estimates the WL type of link 100 as "FREE", the WL type of link 101 as “FREE”, the WL type of link 102 as “FREE”, the WL type of link 103 as “BUSY”, the WL type of link 104 as “FREE”, and the WL type of link 105 as "BUSY".
- links whose WL type is estimated to be “BUSY” may be referred to as “BUSY sections”
- links whose WL type is estimated to be “FREE” may be referred to as “FREE sections”
- links whose WL type is estimated to be “IDEAL” may be referred to as “IDEAL sections”.
- the estimation unit 131 estimates the WL type of a link by comparing the map data in which a WL type is associated with each link with the links included in the travel route RT.
- the estimation unit 131 may estimate the WL type of each link based on the link type (link_kind) of the link included in the travel route R or the road type (road_kind) of the travel route RT.
- the link type here refers to classification information such as a main road, connecting road, etc., for example.
- the road type refers to classification information such as an expressway, national road, narrow street, etc.
- the calculation unit 132 calculates a first cumulative time, which is the cumulative time that the target vehicle VEx has traveled on links that are included in the travel route of the target vehicle VEx and that are estimated to have a WL type of "BUSY" (first type indicating that the WL is high compared to a reference value).
- the calculation unit 132 also calculates a second cumulative time, which is the cumulative time that the target vehicle VEx has traveled on links that are included in the travel route of the target vehicle VEx and that are estimated to have a WL type of "FREE" (second type indicating that the WL is low compared to a reference value). This point will be described using the example of FIG. 4(b).
- the travel route RT is assumed to be the actual travel route traveled by continuous driving from the start of the target vehicle VEx to the present time.
- the target vehicle VEx starts traveling from position PT1, and is currently traveling at position PT2 by being continuously driven without a break.
- the calculation unit 132 calculates the first cumulative time by accumulating the travel time required for traveling on each link (specifically, link 100, link 101, link 102, link 104) for which the WL type is estimated to be "BUSY".
- the calculation unit 132 calculates the second cumulative time by accumulating the travel time required for traveling on each link (specifically, link 103, link 105) for which the WL type is estimated to be "FREE".
- the calculation unit 132 can calculate the travel time based on the travel history of the target vehicle VEx acquired from the in-vehicle device 10 and sensor information.
- the calculation unit 132 also calculates the operating load ratio, which is the ratio between the first cumulative time and the second cumulative time, and transmits it to the operating load ratio acquisition unit 133.
- the calculation unit 132 may calculate a cumulative distance instead of a cumulative time. Similarly, using the example of FIG. 4(b), the calculation unit 132 may calculate a first cumulative distance by accumulating the distances of each link whose WL type is estimated to be "BUSY" (specifically, links 100, 101, 102, and 104). The calculation unit 132 may calculate a second cumulative distance by accumulating the distances of each link whose WL type is estimated to be "FREE" (specifically, links 103 and 105). In this example, the calculation unit 132 calculates a driving load ratio, which is the ratio between the first cumulative distance and the second cumulative distance, and transmits it to the driving load ratio acquisition unit 133.
- a driving load ratio which is the ratio between the first cumulative distance and the second cumulative distance
- the driving load ratio acquisition unit 133 acquires a driving load ratio indicating the ratio between a state in which the driving load of the driver DX is high and a state in which the driving load is low on the driving route of the target vehicle VEx.
- the driving load ratio acquisition unit 133 acquires a driving load ratio indicating the ratio between the first accumulated time calculated by the calculation unit 132 (information indicating a state in which the driving load is high) and the second accumulated time calculated by the calculation unit 132 (information indicating a state in which the driving load is low).
- the driving load ratio acquisition unit 133 acquires a driving load ratio indicating the ratio between the first cumulative distance calculated by the calculation unit 132 (information indicating a state in which the driving load is high) and the second cumulative distance calculated by the calculation unit 132 (information indicating a state in which the driving load is low).
- the driving load ratio is stored in the ratio information storage unit 123.
- the driving load ratio acquisition unit 133 may also perform a process of calculating a predicted driving time of the target vehicle VEx based on the driving load ratio and the prediction model generated by the second server device 200. Specifically, the driving load ratio acquisition unit 133 predicts the time for which the target vehicle VEx will be continuously driven (the time for which the driver DX will drive continuously without a break) based on the driving load ratio and the prediction model. The method of generating the prediction model will be described later.
- the output control unit 134 predicts the timing when the driver DX should take a rest based on the predicted driving time calculated by the driving load ratio acquisition unit 133. Specifically, the output control unit 134 predicts the timing when the driver DX should take a rest based on the difference between the driving time of the target vehicle VEx and the predicted driving time. For example, the output control unit 134 predicts the timing when the driver DX should take a rest based on the difference between the predicted driving time and the driving time calculated for the actual driving route traveled by continuous driving from the start of driving of the target vehicle VEx to the present time as the driving time of the target vehicle VEx.
- the timing when driver DX should take a break may be expressed in terms of time, such as "Driver DX should take a break at x:00" or in terms of distance, such as "Driver DX should take a break after traveling ⁇ meters.”
- the search unit 135 searches for a rest spot that the target vehicle VEx can reach by the time it is time to take a rest. For example, the search unit 135 searches for a rest spot within a range of a predicted driving distance, which is a distance that the target vehicle VEx is predicted to travel until the time it is time to take a rest. The search unit 135 may also calculate a predicted arrival time, which is a time when the target vehicle VEx is predicted to arrive at the rest spot. In this case, the output control unit 134 controls output so that proposal information including information indicating the contents of the rest spot and a predicted arrival time at the rest spot is output from the in-vehicle device 10 as proposal information proposing the rest spot.
- the search unit 135 may estimate a point on the planned driving route that the target vehicle VEx may reach at the time when the driver DX takes a rest, and search for a rest spot in the area corresponding to the estimated point.
- the planned driving route referred to here may be a guided route searched based on input information by the driver DX (e.g., a destination input before departure).
- the time when the driver DX takes a rest may be predicted based on a prediction result that predicts the timing when the driver DX should take a rest.
- the search unit 135 may perform a search process for a rest spot using such a guided route, and output the search result to the output control unit 134.
- the output control unit 134 outputs suggestion information that suggests rest spots along with the planned driving route, which is the guidance route.
- the driver DX can decide on rest spots in advance, for example, at the time of setting the route before departure, and can therefore make an appropriate driving plan before departure.
- the search unit 135 may also perform general route guidance processing, specifically, route search to a destination using search conditions.
- the search conditions and destination are input to the in-vehicle device 10 by the user.
- [Second Server Device] 3 is a diagram showing an example of the configuration of the second server device 200.
- the second server device 200 includes a communication unit 210, a storage unit 220, and a control unit 230.
- the communication unit 210 is realized by, for example, a NIC etc.
- the communication unit 210 is connected to the network N by wire or wirelessly, and transmits and receives information between the first server device 100A and the in-vehicle device 10, for example.
- the storage unit 220 is realized by, for example, a semiconductor memory element such as a RAM or a flash memory, or a storage device such as a hard disk or an optical disk.
- the storage unit 220 may store, for example, data and programs related to the information processing according to the embodiment.
- the storage unit 220 may include a WL type estimation result storage unit 221 and a prediction model storage unit 222.
- Control unit 230 is realized by a CPU, an MPU, or the like executing various programs (e.g., the information processing program according to the embodiment) stored in a storage device inside the second server device 200 using a RAM as a working area.
- the control unit 230 is also realized by an integrated circuit such as an ASIC or an FPGA.
- control unit 230 has a WL type acquisition unit 231, a prediction model generation unit 232, and a transmission unit 233, and realizes or executes the functions and actions of the information processing described below.
- the internal configuration of the control unit 230 is not limited to the configuration shown in FIG. 3, and may be other configurations as long as they perform the information processing described below.
- the connection relationships between the processing units of the control unit 230 are not limited to the connection relationships shown in FIG. 3, and may be other connection relationships.
- the WL type acquisition unit 231 acquires the WL type estimated by the estimation unit 131. Specifically, the WL type acquisition unit 231 acquires information on the WL type estimated for each link included in a travel route for one trip, which is indicated by the travel records of an unspecified number of vehicles VEn and does not include rest periods. The acquired WL type is stored in the WL type estimation result storage unit 221.
- the prediction model generation unit 232 generates a prediction model that predicts the driving time by continuous driving based on the WL type estimated for each link included in the driving route of one trip, which is indicated by the driving history of an unspecified number of vehicles VEn, and does not include rest breaks.
- the prediction model generation unit 232 calculates a model ratio, which is the ratio of links whose WL type is estimated to be "BUSY" (first type indicating that the WL is high compared to a reference value) to links whose WL type is estimated to be "FREE” (second type indicating that the WL is low compared to a reference value) among the links included in the driving route of one trip that does not include a break.
- the driving route of one trip that does not include a break that is treated here may be common between vehicles VEn, or may be different between vehicles VEn.
- the prediction model generation unit 232 also calculates, for each model ratio, the average driving time, which is the average time that the vehicle VEn is continuously driven. Then, the prediction model generation unit 232 generates a prediction model based on the model ratio and the average driving time.
- the prediction model generation unit 232 generates a prediction model based on a three-dimensional graph that shows the relationship between the model ratio and the average driving time in three dimensions.
- Figure 5 is a diagram showing a specific example (1) of a method for generating a predictive model.
- Figure 6 is a diagram showing a specific example (2) of a method for generating a predictive model.
- the prediction model generation unit 232 tallies, for each model ratio, the time that the vehicle VEn corresponding to that model ratio was continuously driven.
- the model ratio may be the ratio between the distance of a link whose WL type is estimated to be "BUSY” and the distance of a link whose WL type is estimated to be "FREE” among the links included in a driving route for one trip that does not include rest breaks.
- the model ratio may be the ratio between the cumulative time that the vehicle VEn traveled on links whose WL type is estimated to be "BUSY” and the cumulative time that the vehicle VEn traveled on links whose WL type is estimated to be "FREE” among the links included in a driving route for one trip that does not include rest breaks.
- the prediction model generation unit 232 counts the driving time required to travel the driving route for one trip for each vehicle VEn, such as vehicle VE11 and vehicle VE12, which have a common model ratio of "100:0". For example, the prediction model generation unit 232 can calculate the driving time based on the driving history of vehicle VEn acquired from the in-vehicle device 10 and sensor information.
- FIG. 5(a) shows an example in which the prediction model generation unit 232 calculates "TM11” as the driving time required for vehicle VE11 to travel the driving route for one trip, and calculates "TM12” as the driving time required for vehicle VE12 to travel the driving route for one trip.
- the prediction model generation unit 232 aggregates the driving time "TM11”, the driving time "TM12”, etc., and calculates the average driving time AV1, which is the average of the aggregated driving times.
- a model ratio which is the ratio between busy and free sections, of "90:10” is calculated based on the result of estimating the WL type for one trip of the driving route of vehicle VE21.
- a model ratio which is the ratio between busy and free sections, of "90:10” is calculated based on the result of estimating the WL type for one trip of the driving route of vehicle VE22.
- the prediction model generation unit 232 tallies the driving time required to travel the driving route for one trip for each vehicle VEn, such as vehicle VE21 and vehicle VE22, which have a common model ratio of "90:10", as shown in FIG. 5(b).
- Figure 5(b) shows an example in which the prediction model generation unit 232 calculates "TM21" as the driving time required for vehicle VE21 to travel the driving route for one trip, and calculates "TM22” as the driving time required for vehicle VE22 to travel the driving route for one trip.
- the prediction model generation unit 232 aggregates the driving time "TM21”, the driving time "TM22”, etc., and calculates the average driving time AV2, which is the average of the aggregated driving times.
- a model ratio which is the ratio between busy and free sections, of "80:20” is calculated based on the result of estimating the WL type for one trip of the driving route of vehicle VE31.
- a model ratio which is the ratio between busy and free sections, of "80:20” is calculated based on the result of estimating the WL type for one trip of the driving route of vehicle VE32.
- the prediction model generation unit 232 tallies up the driving time required to travel the driving route for one trip for each vehicle VEn, such as vehicle VE31 and vehicle VE32, which have a common model ratio of "80:20", as shown in FIG. 5(c).
- FIG. 5(c) shows an example in which the prediction model generation unit 232 calculates "TM31” as the travel time required for vehicle VE31 to travel the travel route for one trip, and calculates "TM32” as the travel time required for vehicle VE32 to travel the travel route for one trip.
- the prediction model generation unit 232 aggregates the driving time "TM31", the driving time "TM32”, etc., and calculates the average driving time AV3, which is the average of the aggregated driving times.
- the driving time required to travel the driving route for one trip can be rephrased as the time during which the vehicle VEn was driven continuously (continuous driving time).
- the Re-Suri LT is information that forms the basis of the prediction model and may be stored in the prediction model storage unit 222.
- Figure 6 shows a scene in which a prediction model is generated from information contained in the list LT.
- the prediction model generation unit 232 generates a three-dimensional graph G in which the relationship between the model ratio and the average driving time is expressed in three dimensions, with "BUSY” as the x-axis, "FREE” as the y-axis, and "predicted average time” as the z-axis.
- the prediction model generation unit 232 generates the three-dimensional graph G using a combination of "BUSY"/"FREE"/"predicted average time".
- the prediction model generation unit 232 generates a bar graph with the average running time "AV1" fitted to the z-axis for the x-y coordinate position where BUSY "100” and FREE "0" intersect.
- the prediction model generation unit 232 also generates a bar graph with the average running time "AV2" fitted to the z-axis for the x-y coordinate position where BUSY "90” and FREE "10" intersect.
- the prediction model generation unit 232 also generates a bar graph with the average running time "AV3" fitted to the z-axis for the x-y coordinate position where BUSY "80” and FREE "20” intersect.
- the same process is performed for the other model ratios. As a result, a three-dimensional graph G as shown in FIG. 6(a) is generated.
- the prediction model generation unit 232 generates a prediction model from this three-dimensional graph G. For example, the prediction model generation unit 232 performs statistical processing on the three-dimensional graph G to generate a prediction model M as shown in FIG. 6(b). In a simple example, the prediction model generation unit 232 generates a planar prediction model M using the vertices of the three-dimensional graph G.
- the x-axis of the prediction model M represents "BUSY"
- the y-axis represents "FREE”
- the z-axis represents "predicted driving time” (estimated driving time).
- the predicted driving time here is the time that the driver DX of the target vehicle VEx is predicted to drive continuously without taking a break.
- the driving load ratio is actually the ratio of the cumulative time or distance obtained for each of the "BUSY” section, the "FREE” section, and the "IDEAL” section.
- the proportion of the driving load ratio that is occupied by the "IDEAL” section may be treated as the remaining proportion of the proportions occupied by the "BUSY” section and the "FREE” section.
- the transmission unit 233 transmits the prediction model generated by the prediction model generation unit 232 to the first server device 100A.
- the driving load ratio acquisition unit 133 acquires the transmitted prediction model and inputs the driving load ratio to the prediction model.
- the driving load ratio acquisition unit 133 then calculates a predicted driving time based on the output result of the prediction model.
- the output control unit 134 uses the predicted driving time to predict the timing when the driver DX should take a rest.
- the driving load ratio which is the ratio between the first accumulated time and the second accumulated time, is calculated as "100:0".
- the prediction model generation unit 232 inputs the driving load ratio of "100:0" to the prediction model M.
- FIG. 6(b) shows an example in which a driving load ratio of "100:0" is input and a predicted driving time of "16 minutes” for the target vehicle VEx is predicted from the output information output by the prediction model M.
- This corresponds to an estimation that, assuming that the driver DX continues driving continuously with a driving load ratio of "100:0”, it would be optimal to take a break "16 minutes” after the start of driving, since there is a statistical tendency to take a break at "16 minutes” when the driving load ratio, which is the ratio between the first accumulated time and the second accumulated time, is "100:0" (in other words, when the driver continues driving continuously through the "BUSY" section).
- the output control unit 134 calculates "6 minutes", which is the difference between the driving time "10 minutes” and the predicted driving time "16 minutes”. Then, the output control unit 134 predicts the timing when the driver DX should take a break based on the current time and the difference time "6 minutes”. For example, if the current time is "14:00", the output control unit 134 predicts that the driver DX should take a break at "14:06", which is "6 minutes” after the current time "14:00".
- FIG. 6(b) shows an example in which a driving load ratio of "0:100” is input and a predicted driving time of "78 minutes” for the target vehicle VEx is predicted from the output information output by the prediction model M.
- This corresponds to an estimation that, assuming that the driver DX continues driving continuously with a driving load ratio of "0:100", it would be optimal to take a break "78 minutes” after the start of driving, since there is a statistical tendency to take a break at "78 minutes” when the driving load ratio, which is the ratio between the first accumulated time and the second accumulated time, is "0:100" (in other words, when the driver drives continuously through the "FREE” section).
- the output control unit 134 calculates "68 minutes", which is the difference between the driving time "10 minutes” and the predicted driving time "78 minutes”. Then, the output control unit 134 predicts the timing when the driver DX should take a break based on the current time and the difference time "68 minutes”. For example, if the current time is "14:00", the output control unit 134 predicts that the driver DX should take a break at "15:08", which is "68 minutes” after the current time "14:00".
- the above example shows an example in which the actual driving route traveled by continuous driving from the start of driving of the target vehicle VEx to the present time is handled.
- the output control unit 134 may predict the timing of the rest break by using "0 minutes" as the driving time of the target vehicle VEx.
- Fig. 7 is a sequence diagram showing a procedure of processing performed between the server devices included in the system SyA according to the first embodiment.
- the estimation unit 131 of the first server device 100A acquires the driving records (driving history) of an unspecified number of vehicles VEn (step S701).
- the estimation unit 131 also extracts information on the driving route for one trip from the driving route indicated by the driving records, and estimates the WL type for each link included in the driving route for one trip (step S702).
- the estimation unit 131 transmits the WL type estimated for one trip of each vehicle VEn to the second server device 200 (step S703).
- the transmitted WL type is acquired by the WL type acquisition unit 231 of the second server device 200.
- the prediction model generation unit 232 calculates a model ratio, which is the ratio of links whose WL type is estimated to be "BUSY” to links whose WL type is estimated to be "FREE” among the links included in the driving route for one trip of each vehicle VEn (step S704).
- the prediction model generation unit 232 counts, for each model ratio, the time during which the vehicle VEn corresponding to that model ratio was continuously driven (the driving time required for the vehicle VEn to travel the driving route for one trip) (step S705).
- the prediction model generation unit 232 calculates, for each model ratio, the average driving time, which is the average time that the vehicle VEn is continuously driven (step S706).
- the prediction model generation unit 232 then expresses the relationship between the model ratio and the average driving time in a three-dimensional graph (step S707), and generates a prediction model based on the three-dimensional graph (step S708).
- the transmission unit 233 transmits the prediction model to the first server device 100A (step S709).
- the transmitted prediction model is acquired by the operating load ratio acquisition unit 133 (step S710).
- Fig. 8 is a flowchart showing the procedure for predicting rest timing.
- the estimation unit 131 determines whether or not driving of the target vehicle VEx has started (step S801). While driving of the target vehicle VEx has not started (step S801; No), the estimation unit 131 waits until it can determine that driving of the target vehicle VEx has started.
- the estimation unit 131 determines whether it is time to predict the timing of a break (step S802). For example, the estimation unit 131 may determine that it is time to predict the timing of a break when a predetermined time has elapsed since driving of the target vehicle VEx has started, or when a certain amount of driving history has been accumulated by driving a predetermined distance since driving of the target vehicle VEx has started. When it is not time to predict the timing of a break (step S802; No), the estimation unit 131 waits until it is time to predict the timing of a break.
- the estimation unit 131 acquires driving route information indicating the driving route of the target vehicle VEx (step S803). For example, the estimation unit 131 acquires information on the actual driving route traveled by the target vehicle VEx during continuous driving from the start of driving to the present time.
- the estimation unit 131 estimates the WL type for each link included in the travel route of the target vehicle VEx (step S804).
- the method for estimating the WL type is as described in FIG. 4.
- the calculation unit 132 calculates a first cumulative time, which is the cumulative time that the target vehicle VEx has traveled through the "BUSY” section during continuous driving from the start of driving to the current time (step S805).
- the calculation unit 132 also calculates a second cumulative time, which is the cumulative time that the target vehicle VEx has traveled through the "FREE" section during continuous driving from the start of driving to the current time (step S806).
- the calculation unit 132 calculates the operating load ratio, which is the ratio between the first cumulative time and the second cumulative time, and transmits it to the operating load ratio acquisition unit 133 (step S807).
- the driving load ratio acquisition unit 133 has already acquired the prediction model from the second server device 200. Therefore, the driving load ratio acquisition unit 133 inputs the driving load ratio into the prediction model and calculates the predicted driving time of the target vehicle VEx (step S808).
- the output control unit 134 predicts the timing when the driver DX should take a rest based on the difference between the driving time of the target vehicle VEx so far, i.e., the time spent continuously driving from the start of driving to the present time, and the predicted driving time, and controls the output so that the information on the predicted rest timing is notified from the in-vehicle device 10 (step S809).
- the notification may be by voice or a screen display.
- Second Embodiment 1 System configuration From here, the second embodiment will be described.
- an appropriate timing for the driver DX to take a rest was predicted.
- the purpose is to present an estimated range that the driver DX can reach without taking a rest by the time of the rest, using information on the rest timing predicted by the information processing according to the first embodiment.
- the driver DX can grasp the rough position where he/she should take a rest, for example, before driving, which makes it easier to make a driving plan.
- FIG. 9 is a diagram showing an example of a system according to the second embodiment.
- FIG. 9 shows a system SyB as an example of a system according to the second embodiment.
- Information processing according to the second embodiment is realized in system SyB.
- system SyB differs in that it has a first server device 100B according to the second embodiment instead of server device 100A according to the first embodiment, but is otherwise similar.
- the first server device 100B is a central device that handles the information processing according to the second embodiment. For example, the first server device 100B identifies a reachable range that is the range that the target vehicle VEx can reach from the driving start point based on the prediction result predicted by the information processing according to the first embodiment, i.e., the timing when the driver DX should take a rest, and a predetermined route centered on the driving start point of the target vehicle VEx. Specifically, the first server device 100B identifies, as the reachable range, the range that the driver DX is estimated to be able to reach without taking a rest by the time it is time to take a rest.
- the first server device 100B is configured by adding a processing unit that realizes information processing according to the second embodiment to the first server device 100A.
- FIG. 10 is a diagram showing an example of the configuration of a first server device 100B according to the second embodiment.
- the first server device 100B includes a communication unit 110, a storage unit 120B, and a control unit 130B.
- the storage unit 120B is realized by, for example, a semiconductor memory element such as a RAM or a flash memory, or a storage device such as a hard disk or an optical disk.
- the storage unit 120B may store, for example, data and programs related to the information processing according to the embodiment.
- the storage unit 120B may further include a range information storage unit 124.
- the range information storage unit 124 stores information on a reachable range. Specifically, the range information storage unit 124 stores information on a range that is estimated to be reachable by the driver DX without taking a break until it is time to take a break.
- Control unit 130B The control unit 130B is realized by a CPU or the like executing various programs (e.g., an information processing program according to the embodiment) stored in a storage device inside the first server device 100B using a RAM as a working area.
- the control unit 130B is also realized by an integrated circuit such as an ASIC or an FPGA.
- control unit 130B has an estimation unit 131, a calculation unit 132, an operating load ratio acquisition unit 133, an output control unit 134, and a search unit 135, similar to the first server device 100A.
- control unit 130B has a start point acquisition unit 136, a prediction unit 137, and a range identification unit 138 as additional functions to the first server device 100A.
- control unit 130B is not limited to the configuration shown in FIG. 10, and may be other configurations that perform the information processing described below.
- connection relationships between the processing units in control unit 130B are not limited to the connection relationships shown in FIG. 10, and may be other connection relationships.
- the start point acquisition unit 136 corresponds to a first acquisition unit, and acquires information on a travel start point, which is a point where the travel of the target vehicle VEx starts. For example, the start point acquisition unit 136 acquires information on the travel start point of the target vehicle VEx. When the engine is started, information on the position where the engine is started may be acquired as information on the travel start point.
- the estimation unit 131 estimates the WL type for each link included in the searched route (hereinafter, abbreviated as "searched route”) obtained by route search when a destination is set as a predetermined route centered on the travel start point, which is a point in each direction centered on the travel start point and is a point located a predetermined distance from the travel start point.
- searched route a predetermined route centered on the travel start point
- the method of estimating the WL type is as described in FIG. 4.
- the route search when a destination is set as a point located a predetermined distance from the travel start point is performed by the search unit 135.
- the calculation unit 132 calculates a first cumulative time, which is the cumulative time that the target vehicle VEx has traveled on links included in the route search that are estimated to have a WL type of "BUSY" (first type indicating that the WL is high compared to a reference value).
- the calculation unit 132 also calculates a second cumulative time, which is the cumulative time that the target vehicle VEx has traveled on links included in the search route of the target vehicle VEx that are estimated to have a WL type of "FREE" (second type indicating that the WL is low compared to a reference value).
- the calculation unit 132 may calculate the first cumulative distance by accumulating the distances of the links included in the route search whose WL type is estimated to be "BUSY" (first type indicating that the WL is high compared to a reference value).
- the calculation unit 132 may calculate the second cumulative distance by accumulating the distances of the links included in the route search whose WL type is estimated to be "FREE" (second type indicating that the WL is high compared to a reference value).
- the driving load ratio acquisition unit 133 acquires a driving load ratio indicating the ratio between the first cumulative time (information indicating a high driving load state) calculated by the calculation unit 132 for each search route and the second cumulative time (information indicating a low driving load state) calculated by the calculation unit 132 for each search route.
- the driving load ratio acquisition unit 133 acquires a driving load ratio indicating the ratio between the first cumulative distance (information indicating a high driving load state) calculated by the calculation unit 132 for each search route and the second cumulative distance (information indicating a low driving load state) calculated by the calculation unit 132 for each search route.
- the driving load ratio acquisition unit 133 may also perform a process of calculating a predicted driving time of the target vehicle VEx for each search route based on the driving load ratio and the prediction model generated by the second server device 200. Specifically, the driving load ratio acquisition unit 133 predicts the time for which the target vehicle VEx will be continuously driven (the time for which the driver DX will drive continuously without a break) for each search route based on the driving load ratio and the prediction model.
- the prediction model used here is the one generated by the second server device 200.
- the prediction unit 137 predicts the arrival time at which the target vehicle VEx will arrive at each change point where the WL type changes on each search route. Specifically, the prediction unit 137 predicts the arrival time at which the target vehicle VEx will arrive at each change point where the WL type changes on each search route, based on the distance between the travel start point and each link included in the search route, and the WL type estimated for each link. This point will be described using the example of FIG. 4.
- position PT1 is the travel start point of the target vehicle VEx
- position PT2 is the destination that is determined based on a specified distance from the travel start point.
- the prediction unit 137 detects a node that connects links of different WL types as a change point where the WL type changes.
- node ND23 is a node that connects link 102 of WL type "FREE” and link 103 of WL type "BUSY”.
- Node ND34 is a node that connects link 103 of WL type "BUSY” and link 104 of WL type "FREE”.
- Node ND45 is a node that connects link 104 of WL type "FREE” and link 105 of WL type "BUSY”. For this reason, the prediction unit 137 detects nodes ND23, ND34, and ND45 as nodes that connect links of different WL types as change points where the WL type changes.
- the prediction unit 137 predicts the arrival time at which the target vehicle VEx will reach node ND23 based on the average speed from position PT1 to node ND23 (connection point) and the distance from position PT1 to node ND23 (connection point). The prediction unit 137 also predicts the arrival time at which the target vehicle VEx will reach node ND34 based on the average speed from position PT1 to node ND34 (connection point) and the distance from position PT1 to node ND34 (connection point).
- the prediction unit 137 also predicts the arrival time at which the target vehicle VEx will reach node ND45 based on the average speed from position PT1 to node ND45 (connection point) and the distance from position PT1 to node ND45 (connection point). Furthermore, the prediction unit 137 predicts the arrival time at which the target vehicle VEx will arrive at position PT2 based on the average speed from position PT1 to position PT2 and the distance from position PT1 to position PT2.
- the range specifying unit 138 extracts, as rest candidate points, those change points whose calculated arrival times are within a predetermined range of the timing when it is predicted that the driver DX should take a rest, from among the change points detected by the prediction unit 137.
- the range specifying unit 138 specifies, as a reachable range, a polygon formed by connecting the rest candidate points.
- the range specifying unit 138 may extract, as rest candidate points, those change points whose calculated arrival times are later than the timing when it is predicted that the driver DX should take a rest.
- the output control unit 134 controls output so that the in-vehicle device 10 displays a screen on which information about the reachable range is superimposed on a map.
- Fig. 11 is a flowchart showing the procedure of the range specification process.
- Fig. 12 is a diagram showing a specific example of the range specification process.
- the start point acquisition unit 136 acquires information on the travel start point of the target vehicle VEx (step S1101).
- FIG. 12(a) shows an example in which the start point acquisition unit 136 detects the travel start point BA as the travel start point of the target vehicle VEx and acquires information on the travel start point BA (e.g., position information).
- the search unit 135 sets destinations at a predetermined distance in each direction of 360 degrees from the travel start point BA (step S1102).
- Figure 12(a) shows an example in which the search unit 135 has set seven destinations (destinations G1 to G7), namely, destination G1, destination G2, destination G3, destination G4, destination G5, destination G6, and destination G7.
- the search unit 135 executes a route search to search for a route from the travel start point BA to each of the destinations G1 to G7 (step S1103).
- FIG. 12(a) shows an example in which the search unit 135 acquires search route SR1 as a route in the search results by performing a route search from the driving start point BA to destination G1.
- FIG. 12(a) also shows an example in which the search unit 135 acquires search route SR2 as a route in the search results by performing a route search from the driving start point BA to destination G2.
- FIG. 12(a) also shows an example in which the search unit 135 acquires search route SR31 and search route SR32 as routes in the search results by performing a route search from the driving start point BA to destination G3.
- FIG. 12(a) also shows an example in which the search unit 135 performs a route search from the driving start point BA to the destination G4, and acquires search route SR41, search route SR42, and search route SR43 as routes in the search results.
- FIG. 12(a) also shows an example in which the search unit 135 performs a route search from the driving start point BA to the destination G5, and acquires search route SR51 and search route SR52 as routes in the search results.
- FIG. 12(a) also shows an example in which the search unit 135 acquires a search route SR6 as a route resulting from a route search from the driving start point BA to the destination G6.
- FIG. 12(a) also shows an example in which the search unit 135 acquires a search route SR7 as a route resulting from a route search from the driving start point BA to the destination G7.
- the estimation unit 131 estimates the WL type for each link included in each search route acquired by the search unit 135 (step S1104).
- the prediction unit 137 predicts the arrival time at which the target vehicle VEx will arrive at each change point where the WL type changes on each search route (step S1105).
- the method of detecting the change point and the method of predicting the arrival time are as described using the example in FIG. 4(b).
- the calculation unit 132 calculates the driving load ratio for each searched route (step S1106). For example, the calculation unit 132 calculates a first cumulative time, which is a cumulative time estimated when it is assumed that the target vehicle VEx has traveled through links included in the route search and for which the WL type is estimated to be "BUSY". The calculation unit 132 also calculates a second cumulative time, which is a cumulative time estimated when it is assumed that the target vehicle VEx has traveled through links included in the route search and for which the WL type is estimated to be "FREE". For example, the calculation unit 132 can calculate the first cumulative time and the second cumulative time based on statistical information known in advance about the BUSY sections.
- the calculation unit 132 calculates the operating load ratio, which is the ratio between the first cumulative time and the second cumulative time, and transmits it to the operating load ratio acquisition unit 133 (step S1107).
- the driving load ratio acquisition unit 133 has already acquired the prediction model from the second server device 200. Therefore, the driving load ratio acquisition unit 133 inputs the driving load ratio into the prediction model and calculates the predicted driving time of the target vehicle VEx for each search route (step S1108). Specifically, the driving load ratio acquisition unit 133 calculates the predicted driving time for each search route in which the driver DX is predicted to drive the search route continuously without taking a break.
- the output control unit 134 predicts, for each search route, the timing of rest (the timing when the driver DX should take a rest) for that search route based on the predicted travel time obtained for that search route (step S1109). Specifically, the output control unit 134 predicts the time of the rest timing based on the current time and the predicted travel time.
- the range determination unit 138 extracts, from among the change points detected for each search route, change points whose arrival times are predicted to exceed within a predetermined time range based on the time of the predicted rest timing for that search route as candidate rest points (step S1110). Note that the range determination unit 138 does not need to extract candidate rest points if there is no arrival time that exceeds within the predetermined time range from the time of the rest timing.
- the range determination unit 138 may extract, from among the change points detected for each search route, change points whose arrival times are predicted to be below within a predetermined time range based on the time of the predicted rest timing for that search route, as candidate rest points.
- the candidate rest points extracted for each of the 11 search routes, including search route SR11, are indicated by "X" marks.
- the range determination unit 138 determines a reachable range based on the 11 candidate rest points (step S1111). For example, as shown in FIG. 12(b), the range determination unit 138 determines an area AR obtained by connecting the 11 candidate rest points as the reachable range that is estimated to be reachable by the driver DX without taking a break by the time of the break timing predicted in step S1109.
- the output control unit 134 controls the in-vehicle device 10 so that the reachable range AR is provided to the driver DX with the reachable range AR superimposed on the map (step S1112).
- FIG. 12(b) shows an example in which a shape generated by simply connecting candidate rest points is identified as the reachable range AR
- the method of generating the reachable range AR is not limited to this example.
- the range identification unit 138 may identify as the reachable range AR a shape that is smoother than the shape generated by simply connecting candidate rest points.
- the range identification unit 138 may also identify as the reachable range AR a polygon obtained by applying a convex hull algorithm to the candidate rest points.
- the range determination unit 138 determines a reachable range that is a range that the driver DX is estimated to be able to reach without taking a break. However, the range determination unit 138 may also determine a range that the driver DX is estimated to be able to reach with one break in between. This point will be explained using FIG. 12.
- the range determination unit 138 extracts one candidate rest point for each of the eleven search routes, but the range determination unit 138 regards these candidate rest points as the starting point of travel and executes steps S1101 to S1111 again. Specifically, the range determination unit 138 assumes that the candidate rest points are the starting point of travel and further determines a reachable range, which is the range that can be reached from the candidate rest points by the target vehicle VEx, and determines a range that the driver DX is estimated to be able to reach with one rest break in between, based on the reachable range.
- the range identification unit 138 may, for example, identify one polygon that covers the 11 reachable ranges as the range that is estimated to be reachable by the driver DX with one rest break in between.
- the above-described information processing devices may be realized, for example, by a computer 1000 having a configuration as shown in Fig. 13.
- Fig. 13 is a hardware configuration diagram showing an example of a computer that realizes the functions of the information processing device according to the embodiment.
- the computer 1000 has a CPU 1100, a RAM 1200, a ROM 1300, a HDD 1400, a communication interface (I/F) 1500, an input/output interface (I/F) 1600, and a media interface (I/F) 1700.
- the CPU 1100 operates based on the programs stored in the ROM 1300 or the HDD 1400, and controls each component.
- the ROM 1300 stores a boot program executed by the CPU 1100 when the computer 1000 starts up, and programs that depend on the hardware of the computer 1000, etc.
- HDD 1400 stores programs executed by CPU 1100 and data used by such programs.
- Communication interface 1500 receives data from other devices via a specified communication network and sends it to CPU 1100, and transmits data generated by CPU 1100 to other devices via the specified communication network.
- the CPU 1100 controls an output device such as a display and an input device such as a keyboard via the input/output interface 1600.
- the CPU 1100 acquires data from the input device via the input/output interface 1600.
- the CPU 1100 also outputs generated data to the output device via the input/output interface 1600.
- the media interface 1700 reads a program or data stored in the recording medium 1800 and provides it to the CPU 1100 via the RAM 1200.
- the CPU 1100 loads the program from the recording medium 1800 onto the RAM 1200 via the media interface 1700 and executes the loaded program.
- the recording medium 1800 is, for example, an optical recording medium such as a DVD (Digital Versatile Disc) or a PD (Phase change rewritable Disk), a magneto-optical recording medium such as an MO (Magneto-Optical disk), a tape medium, a magnetic recording medium, or a semiconductor memory.
- the CPU 1100 of the computer 1000 executes programs loaded onto the RAM 1200 to realize the functions of the control unit 130A.
- the CPU 1100 of the computer 1000 reads and executes these programs from the recording medium 1800, but as another example, the CPU 1100 may obtain these programs from another device via a specified communication network.
- the CPU 1100 of the computer 1000 executes programs loaded onto the RAM 1200 to realize the functions of the control unit 130B.
- the CPU 1100 of the computer 1000 reads and executes these programs from the recording medium 1800, but as another example, the CPU 1100 may obtain these programs from another device via a specified communication network.
- the CPU 1100 of the computer 1000 executes programs loaded onto the RAM 1200 to realize the functions of the control unit 230.
- the CPU 1100 of the computer 1000 reads and executes these programs from the recording medium 1800, but as another example, the CPU 1100 may obtain these programs from another device via a specified communication network.
- each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure.
- the specific form of distribution and integration of each device is not limited to that shown in the figure, and all or part of them can be functionally or physically distributed and integrated in any unit depending on various loads, usage conditions, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Navigation (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
本発明は、情報処理装置、情報処理方法、および、情報処理プログラムに関する。 The present invention relates to an information processing device, an information processing method, and an information processing program.
従来のカーナビゲーションシステムでは、単純に、運転時間設定値(例えば、2時間)が経過した場合に、休憩を促す内容を報知するというものが休憩提案の一般的な手法であった。しかしながら、走行状況によっては提案するタイミングが遅く、適切な休憩提案とはいえないケースが生じていた。 In conventional car navigation systems, the general method of suggesting a break was to simply notify the driver of a message encouraging them to take a break when a set driving time (e.g., two hours) had elapsed. However, depending on the driving conditions, the timing of the suggestion could come too late, resulting in cases where the break suggestion was not appropriate.
一方で、眠気や疲れなどの生体情報を入力とし、学習モデルを利用した休憩に関するレコメンドを行う手法が提案されている。しかしながら、係る手法では、生体情報が変化しない時点においては、休憩が必要なタイミングの推定が難しかった。 On the other hand, a method has been proposed that uses biometric information such as drowsiness or fatigue as input and uses a learning model to recommend breaks. However, with this method, it is difficult to estimate the timing when a break is necessary when the biometric information is not changing.
そこで、本発明では、休憩すべき適切なタイミングを運転者に報知することができる情報処理装置、情報処理方法、および、情報処理プログラムを提案する。 The present invention therefore proposes an information processing device, information processing method, and information processing program that can notify the driver of appropriate times to take a break.
請求項1に記載の情報処理装置は、対象車両の走行経路における運転者の運転負荷が高い状態と、運転負荷が低い状態との比率を示す運転負荷比率を取得する取得部と、少なくとも前記運転負荷比率を用いて、前記運転者が休憩すべきタイミングを出力させる出力制御部とを備える。 The information processing device described in claim 1 includes an acquisition unit that acquires a driving load ratio that indicates the ratio between a state in which the driver's driving load is high and a state in which the driver's driving load is low on the driving route of the target vehicle, and an output control unit that uses at least the driving load ratio to output the timing when the driver should take a break.
請求項13に記載の情報処理方法は、情報処理装置が実行する情報処理方法であって、対象車両の走行経路における運転者の運転負荷が高い状態と、運転負荷が低い状態との比率を示す運転負荷比率を取得する取得工程と、少なくとも前記運転負荷比率を用いて、前記運転者が休憩すべきタイミングを出力させる出力制御工程とを含む。 The information processing method described in claim 13 is an information processing method executed by an information processing device, and includes an acquisition step of acquiring a driving load ratio indicating the ratio between a state in which the driver's driving load is high and a state in which the driver's driving load is low on the driving route of the target vehicle, and an output control step of outputting the timing when the driver should take a break using at least the driving load ratio.
請求項14に記載の情報処理プログラムは、情報処理装置によって実行される情報処理プログラムであって、対象車両の走行経路における運転者の運転負荷が高い状態と、運転負荷が低い状態との比率を示す運転負荷比率を取得する取得手順と、少なくとも前記運転負荷比率を用いて、前記運転者が休憩すべきタイミングを出力させる出力制御手順とを前記情報処理装置に実行させる。 The information processing program described in claim 14 is an information processing program executed by an information processing device, and causes the information processing device to execute an acquisition procedure for acquiring a driving load ratio indicating the ratio between a state in which the driver's driving load is high and a state in which the driver's driving load is low on the driving route of the target vehicle, and an output control procedure for outputting the timing when the driver should take a break using at least the driving load ratio.
[実施形態]
以下に、本発明の実施形態について図面に基づいて詳細に説明する。なお、この実施形態により本発明に係る情報処理装置、情報処理方法、および、情報処理プログラムが限定されるものではない。また、以下の実施形態において同一の部位には同一の符号を付し、重複する説明は省略する。
[Embodiment]
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. Note that the information processing device, information processing method, and information processing program according to the present invention are not limited to the embodiment. In addition, the same components in the following embodiments are given the same reference numerals, and duplicated descriptions will be omitted.
(第1の実施形態)
<1.システム構成>
まず、図1を用いて、第1の実施形態に係るシステムの構成を説明する。図1は、第1の実施形態に係るシステムの一例を示す図である。図1には、第1の実施形態に係るシステムの一例として、システムSyAが示される。第1の実施形態に係る情報処理は、システムSyAにおいて実現される。
First Embodiment
1. System configuration
First, the configuration of a system according to the first embodiment will be described with reference to Fig. 1. Fig. 1 is a diagram showing an example of a system according to the first embodiment. Fig. 1 shows a system SyA as an example of the system according to the first embodiment. Information processing according to the first embodiment is realized in the system SyA.
図1に示すように、システムSyAは、車載装置10と、第1のサーバ装置100Aと、第2のサーバ装置200とを含む。車載装置10と、第1のサーバ装置100Aと、第2のサーバ装置200とは、ネットワークNを介して、有線または無線により通信可能に接続される。
As shown in FIG. 1, the system SyA includes an in-
車載装置10は、車両VEnに内蔵あるいは積載される専用のナビゲーション装置であってよい。例えば、車載装置10は、ナビゲーション装置と、録画装置(ドライブレコーダー)とで構成されてもよい。この一例として、車載装置10は、互いに独立したナビゲーション装置および録画装置が通信可能に接続された複合的な装置であってよい。他の例として、車載装置10は、ナビゲーション機能と、録画機能とを有する1つの装置であってもよい。
The in-
また、車載装置10は、各種のセンサを備える。例えば、車載装置10は、カメラ、加速度センサ、ジャイロセンサ、GPS(Global Positioning System)センサ、気圧センサ等の各種センサを備えていてよい。このようなことから、車載装置10は、各種センサによって取得されたセンサ情報に基づいて、運転を支援するための対話や情報提供を行う機能も有してよい。
The in-
また、車載装置10は、自装置に備えられるセンサだけでなく、安全走行システムとして、車両VEn自体に備えられるセンサが検知したセンサ情報も用いることができる。
In addition, the in-
また、利用者は、日常的に使用している携帯型端末装置(例えば、スマートフォン、タブレット型端末、ノート型PC、PDA等)に所定のアプリケーションソフトウェアを導入することで、この携帯型端末装置を車載装置10と同様に動作させることができる。
In addition, by installing specific application software into a portable terminal device (e.g., a smartphone, tablet terminal, notebook PC, PDA, etc.) that a user uses on a daily basis, the portable terminal device can be made to operate in the same manner as the in-
本実施形態において、利用者とは、車両VEnに直接かかわる人物(例えば、車両VEnを運転する運転者や、運転者以外の同乗者)を指し示すものとする。また、車両VEnを一意に区別表示する場合には、「n」に任意の通数値を当て嵌めて、例えば、車両VE1,車両VE2等と表記する。 In this embodiment, a user refers to a person who is directly involved with vehicle VEn (for example, the driver who drives vehicle VEn, or a passenger other than the driver). In addition, when vehicle VEn is to be uniquely displayed, an arbitrary common value is substituted for "n", and it is expressed as, for example, vehicle VE1, vehicle VE2, etc.
第1のサーバ装置100Aは、第1の実施形態に係る情報処理を担う中心的な装置である。例えば、第1のサーバ装置100Aは、車両VEnのうち提案の対象となっている対象車両(「対象車両VEx」とする)の走行時間を用いて、運転負荷(ワークロード)の種別に基づく運転負荷比率を算出する。そして、第1のサーバ装置100Aは、不特定多数の運転者が実際に休憩するまでに走行した走行時間が統計的にモデル化された予測モデルに運転負荷比率を入力することで、対象車両VExの運転者DXが休憩すべきタイミングを予測する。予測結果は、対象車両VExの車載装置10から出力されるよう制御される。
The
ここで、ワークロード(以下、「WL」と略す)について説明する。WLは、運転負荷を指し示し、運転者の負担感(大変度ともいえる)と、道路区間に対して定められる運転負荷との双方を内包したものであってよい。 Here, we will explain the workload (hereinafter abbreviated as "WL"). WL indicates the driving load, and may include both the driver's sense of burden (which can also be said to be the degree of difficulty) and the driving load set for a road section.
運転負荷の種別、すなわちWL種別には、例えば、「BUSY」、「IDEAL」、「FREE」等が存在し、「BUSY」が定められた道路区間では運転者に対して掛かる負担が基準以上であり(すなわち、運転大変度が高い)、「FREE」が定められた道路区間では運転者に対して掛かる負担が基準未満であり(すなわち、運転大変度が低い、もしくは高くない)、「IDEAL」が定められた道路区間では運転者に対して掛かる負担が中間(すなわち、運転大変度が普通、もしくは高くない)であることを示す。 Types of driving load, i.e., WL types, include, for example, "BUSY," "IDEAL," and "FREE," and indicate that in road sections designated as "BUSY," the burden on the driver is above a standard (i.e., the difficulty of driving is high), in road sections designated as "FREE," the burden on the driver is below a standard (i.e., the difficulty of driving is low or not high), and in road sections designated as "IDEAL," the burden on the driver is medium (i.e., the difficulty of driving is normal or not high).
また、運転者の大変度は、運転者の負担感を数値で表すものであってよく、以下のように定義することができる。 Furthermore, the degree of difficulty for the driver may be expressed numerically as the driver's sense of burden, and can be defined as follows:
例えば、大変度「1」は、WL種別「BUSY_MAX」に相当し、全ての一般的な運転者が運転に気を遣う道路区間であり、係る道路区間では、車載装置10は警告通知のみを発話すべきと定義される。
For example, a severity level of "1" corresponds to a WL type of "BUSY_MAX" and is a road section where all general drivers need to be careful when driving, and it is defined that the in-
大変度「0.80」は、WL種別「BUSY+」に相当し、6割以上の一般的な運転者が運転に気を遣う道路区間であり、係る道路区間では、車載装置10は警告通知および注意通知のみを発話すべきと定義される。
The severity level of "0.80" corresponds to the WL type "BUSY+", and is a road section where more than 60% of general drivers have to be careful when driving, and it is defined that in such road sections, the in-
大変度「0.60」は、WL種別「BUSY」に相当し、2割以上の一般的な運転者が運転に気を遣う道路区間であり、係る道路区間では、車載装置10は警告通知、注意通知、重要通知のみを発話すべきと定義される。
The severity level of "0.60" corresponds to a WL type of "BUSY," and is a road section where more than 20% of general drivers have to be careful when driving. It is defined that in such road sections, the in-
大変度「0.50」は、WL種別「IDEAL」に相当し、係る道路区間では、車載装置10は誘導系(警告通知、注意通知、重要通知)以外のコンテンツも発話してよいと定義される。
The severity level of "0.50" corresponds to the WL type "IDEAL", and it is defined that in the relevant road section, the in-
大変度「0.25」は、WL種別「FREE」に相当し、5割以上の一般的な運転者が単調で退屈と感じ得る道路区間であり、様々な内容のコンテンツを発話すべきと定義される。 A difficulty level of "0.25" corresponds to a WL type of "FREE," and is defined as a road section that more than 50% of general drivers would find monotonous and boring, and in which a variety of content should be spoken.
なお、WL種別は、必ずしも上記例(「BUSY_MAX」、「BUSY+」、「BUSY」、「IDEAL」、「FREE」)に限定されない。また、以下の実施形態では、WL種別として、「BUSY」および「FREE」を主に用いて説明する。また、上記で示した基準および基準値は一例であり、任意の値であってよい。例えば、「BUSY」は、基準値と比較してWLが高いことを示す第1の種別の一例である。また、「FREE」は、基準値と比較してWLが低いことを示す第2の種別の一例である。 Note that the WL type is not necessarily limited to the above examples ("BUSY_MAX", "BUSY+", "BUSY", "IDEAL", and "FREE"). In the following embodiment, the WL types will be mainly described as "BUSY" and "FREE". The criteria and reference values shown above are merely examples and may be any values. For example, "BUSY" is an example of a first type indicating that the WL is high compared to the reference value. Furthermore, "FREE" is an example of a second type indicating that the WL is low compared to the reference value.
次に、道路区間についても説明する。例えば、道路区間は、道路の特徴点間の区間を意味し、リンクと称される。道路の特徴点は、交差点、曲り角、行き止まり等であり、ノードと称される。すなわち、リンクは、所定規則に基づいて設定される道路区間を意味する。言い換えると、リンクは、移動履歴の記録区間を所定規則に基づいて区切った単位を意味する。 Next, road sections will be explained. For example, a road section means a section between characteristic points of a road, and is called a link. Characteristic points of a road are intersections, corners, dead ends, etc., and are called nodes. In other words, a link means a road section that is set based on a specific rule. In other words, a link means a unit that divides a recorded section of a movement history based on a specific rule.
上記例に倣い、以下の実施形態では、道路区間をリンクと表現し、リンクとリンクとの接続地点をノードと表現する。例えば、第1のサーバ装置100Aは、地図情報記憶部121(図2)を有しており、地図情報記憶部121は、道路網をノードとリンクの組合せにより表した道路データ、施設データ、および道路周辺のオブジェクト情報等を含む。オブジェクト情報は、道路標識等の看板や停止線等の道路標示、センターライン等の道路区画線や道路沿いの構造物等の地物の他、一時的に存在する障害物の情報を含む。障害物は、例えば、水たまり、道路の陥没部分、落下物、排水溝(網で塞がれた部分含む)等の歩行者や自転車の通行の障害となる要因となるものを指す。オブジェクト情報は、自車位置推定等に用いるためのオブジェクトの高精度な点群情報などを含んでもよい。また、地図情報記憶部121において、リンクは、リンクIDによって識別されてよい。
Following the above example, in the following embodiment, a road section is represented as a link, and a connection point between links is represented as a node. For example, the
図1に戻り、第2のサーバ装置200は、不特定多数の運転者が実際に休憩するまでに走行した走行時間が統計的にモデル化された予測モデルを生成し、生成した予測モデルを第1のサーバ装置100Aに提供する。
Returning to FIG. 1, the
なお、第1のサーバ装置100Aと、第2のサーバ装置200との間で、管理事業者は同一であってもよいし、異なっていてもよい。また、第1のサーバ装置100A、および、第2のサーバ装置200のそれぞれは、第1の実施形態に係る情報処理装置の一例に相当するが、第1のサーバ装置100Aと第2のサーバ装置200とは1台のサーバ装置として統合されてもよい。第1のサーバ装置100Aと第2のサーバ装置200とは1台のサーバ装置として実装される場合には、この1台のサーバ装置が第1の実施形態に係る情報処理装置に相当する。
Note that the management operator may be the same or different between the
<2.機能構成>
ここからは、第1のサーバ装置100Aおよび第2のサーバ装置200の構成例について説明する。
<2. Functional configuration>
From here on, configuration examples of the
〔第1のサーバ装置100A〕
図2は、第1の実施形態に係る第1のサーバ装置100Aの構成例を示す図である。図2に示すように、第1のサーバ装置100Aは、通信部110と、記憶部120Aと、制御部130Aとを有する。
[
Fig. 2 is a diagram showing an example of the configuration of the
〔通信部110〕
通信部110は、例えば、NIC(Network Interface Card)等によって実現される。そして、通信部110は、ネットワークNと有線または無線で接続され、例えば、第2のサーバ装置200、車載装置10との間で情報の送受信を行う。
[Communication unit 110]
The
〔記憶部120A〕
記憶部120Aは、例えば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子またはハードディスク、光ディスク等の記憶装置によって実現される。記憶部120Aは、例えば、実施形態に係る情報処理に関するデータやプログラムが記憶されてよい。また、図2の例によれば、記憶部120Aは、地図情報記憶部121と、WL種別推定結果記憶部122と、比率情報記憶部123とを有してよい。
[Memory unit 120A]
The storage unit 120A is realized by, for example, a semiconductor memory element such as a random access memory (RAM) or a flash memory, or a storage device such as a hard disk or an optical disk. The storage unit 120A may store, for example, data and programs related to the information processing according to the embodiment. According to the example of FIG. 2, the storage unit 120A may include a map
〔地図情報記憶部121〕
地図情報記憶部121は、WL種別の推定に用いられる地図データが記憶される。係る地図データでは、道路網をノードとリンクの組合せにより表した道路データ等が含まれる。リンクは、リンクIDによって管理され、WL種別やリンク長が紐付けられてよい。
[Map information storage unit 121]
The map
〔WL種別推定結果記憶部122〕
WL種別推定結果記憶部122は、走行経路に含まれる(走行経路を構成する)リンクごとに推定されたWL種別を記憶する。
[WL type estimation result storage unit 122]
The WL type estimation result storage unit 122 stores the WL type estimated for each link included in the travel route (constituting the travel route).
〔比率情報記憶部123〕
比率情報記憶部123は、運転負荷が高い状態と、運転負荷が低い状態との比率を示す運転負荷比率を記憶する。
[Ratio information storage unit 123]
The ratio
〔制御部130A〕
制御部130Aは、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等によって、第1のサーバ装置100A内部の記憶装置に記憶されている各種プログラム(例えば、実施形態に係る情報処理プログラム)がRAMを作業領域として実行されることにより実現される。また、制御部130Aは、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現される。
[Control unit 130A]
The control unit 130A is realized by executing various programs (e.g., the information processing program according to the embodiment) stored in a storage device inside the
図2に示すように、制御部130Aは、推定部131と、算出部132と、運転負荷比率取得部133と、出力制御部134と、探索部135とを有し、以下に説明する情報処理の機能や作用を実現または実行する。なお、制御部130Aの内部構成は、図2に示した構成に限られず、後述する情報処理を行う構成であれば他の構成であってもよい。また、制御部130Aが有する各処理部の接続関係は、図2に示した接続関係に限られず、他の接続関係であってもよい。
As shown in FIG. 2, the control unit 130A has an estimation unit 131, a
〔推定部131〕
推定部131は、所定の運転経路に含まれるリンクごとに、WL種別を推定する。例えば、推定部131は、対象車両VExの走行経路に含まれるリンクごとに、WL種別を推定する。対象車両VExの走行経路は、対象車両VExの走行開始から現時点までの連続運転によって走行された実績の走行経路であってもよいし、運転者DXが対象車両VExで走行する予定の走行予定経路であってもよい。なお、ここでいう走行開始とは、道路上での一時停止(例えば、信号での停止)を除外し、特定の目的を有する長期滞在(例えば、自宅での停車や、休憩地点での停車)の状態からの走行開始を意味し、エンジン始動とも言い換えることができる。例えば、推定部131は、停車時間に基づき、道路上での一時停止と、特定の目的を有する長期滞在とを区別することができる。また、走行予定経路とは、例えば、車載装置10に入力された情報(例えば、目的地)に基づき、探索条件を満たすように探索された探索結果の経路であってもよいし、これから走行する予定の経路として利用者が直接入力した経路であってもよい。または、走行予定経路は、運転者DXの普段の運転履歴から予測される目的地までの経路であってもよい。
[Estimation unit 131]
The estimation unit 131 estimates the WL type for each link included in a predetermined driving route. For example, the estimation unit 131 estimates the WL type for each link included in the driving route of the target vehicle VEx. The driving route of the target vehicle VEx may be a driving route that has been traveled by continuous driving from the start of driving of the target vehicle VEx to the current time, or may be a planned driving route that the driver DX plans to drive the target vehicle VEx. Note that the start of driving here means the start of driving from a state of a long-term stay with a specific purpose (for example, stopping at a home or a rest area) excluding a temporary stop on the road (for example, stopping at a traffic light), and can also be rephrased as engine start. For example, the estimation unit 131 can distinguish between a temporary stop on the road and a long-term stay with a specific purpose based on the stopping time. In addition, the planned driving route may be, for example, a route that is a search result that is searched to satisfy a search condition based on information (for example, a destination) input to the in-
また、推定部131は、エンジン始動(走行開始)からエンジン停止(走行終了)までの連続運転による走行実績であって、不特定多数の車両VEnの走行実績が示す走行経路に含まれるリンクそれぞれについても、WL種別を推定する。 The estimation unit 131 also estimates the WL type for each link included in the driving route indicated by the driving records of an unspecified number of vehicles VEn, which are driving records based on continuous driving from engine start (start of driving) to engine stop (end of driving).
なお、以下では、エンジン始動(走行開始)からエンジン停止(走行終了)までの走行を「1トリップ」と表現する場合がある。また、連続運転とは、休憩なしによる運転を指し示す。このようなことから、例えば、エンジン始動からエンジン停止までの連続運転による走行実績が示す走行経路とは、休憩を含まない1トリップ分の走行経路を意味し、道路上での一時停止(例えば、信号での停止)等は除外される。 In the following, driving from engine start (start of driving) to engine stop (end of driving) may be referred to as "one trip." Continuous driving refers to driving without a break. For this reason, for example, the driving route indicated by the driving record of continuous driving from engine start to engine stop means the driving route for one trip that does not include a break, and does not include temporary stops on the road (for example, stopping at traffic lights).
ここで、推定部131は、例えば、車両VEnの挙動を表すデータに基づいて、休憩のためのエンジン停止(例えば、10分~20分間のエンジン停止)を検出することで、エンジン始動から休憩のためのエンジン停止までの走行を1トリップとして抽出することもできる。 Here, the estimation unit 131 can, for example, detect engine stoppage for a break (e.g., engine stoppage for 10 to 20 minutes) based on data representing the behavior of the vehicle VEn, and extract the driving from engine start to engine stoppage for a break as one trip.
他の例として、推定部131は、エンジン始動(走行開始)から車両VEnの運転者が休憩した休憩地点までの走行を1トリップとして抽出してもよい。例えば、推定部131は、車両VEnの走行履歴に基づいて、車両VEnの滞在地点を示す滞在地点情報と、滞在地点での滞在時間を示す滞在時間情報と、車両VEnの走行経路上で連続する3つの滞在地点の間での車両のVEnの進行方向の変化を示す進行方向変化情報とを生成する。そして、推定部131は、滞在地点情報と、滞在時間情報と、進行方向変化情報とに基づいて、車両VEnの運転者が休憩した休憩地点を推定してよい。一例として、推定部131は、滞在地点での滞在時間が所定の時間範囲(例えば、10分~20分)内であるか否かを判定し、滞在時間が所定の時間範囲であると判定された滞在地点を休憩地点として推定してよい。また、推定部131は、3つの滞在地点として、車両VEnが始めに到達した1次滞在地点と、車両VEnが次に到達した2次滞在地点と、車両VEnが最後に到達した3次滞在地点との間で成立する角度関係に基づいて、車両VEnが出発地点から遠ざかっている判断できた滞在地点を休憩地点として推定してもよい。 As another example, the estimation unit 131 may extract the driving from the engine start (start of driving) to the rest point where the driver of the vehicle VEn took a rest as one trip. For example, the estimation unit 131 generates stay point information indicating the stay points of the vehicle VEn, stay time information indicating the stay time at the stay points, and traveling direction change information indicating the change in the traveling direction of the vehicle VEn between three consecutive stay points on the driving route of the vehicle VEn, based on the driving history of the vehicle VEn. Then, the estimation unit 131 may estimate the rest point where the driver of the vehicle VEn took a rest, based on the stay point information, stay time information, and traveling direction change information. As an example, the estimation unit 131 may determine whether the stay time at the stay point is within a predetermined time range (e.g., 10 minutes to 20 minutes), and estimate the stay point where the stay time is determined to be within the predetermined time range as the rest point. Furthermore, the estimation unit 131 may estimate, as a rest point, a stay point that is determined to be moving away from the departure point of the vehicle VEn based on the angular relationship established between the first stay point where the vehicle VEn first arrives, the second stay point where the vehicle VEn next arrives, and the tertiary stay point where the vehicle VEn last arrives.
また、推定部131は、WL種別を推定した推定結果をWL種別推定結果記憶部122に記憶する。 The estimation unit 131 also stores the WL type estimation result in the WL type estimation result storage unit 122.
ここで、図4を用いて、WL種別の推定手法を説明する。図4は、WL種別の推定手法の具体例を示す図である。図4では、任意の走行ルートRTについてWL種別が推定される場面を示す。任意の走行ルートRTは、対象車両VExの走行開始から現時点までの連続運転によって走行された実績の走行経路であってもよいし、運転者DXが対象車両VExで走行する予定の走行予定経路であってもよい。また、任意の走行ルートRTは、不特定多数の車両VEnの中から選択されたある1台の車両VEnによる、休憩を含まない1トリップ分の走行経路であってもよい。つまり、如何なる走行経路であっても、当該走行経路に含まれるリンクのWL種別を推定する手法は同じである。 Here, a method for estimating the WL type will be described with reference to FIG. 4. FIG. 4 is a diagram showing a specific example of the method for estimating the WL type. FIG. 4 shows a scene in which the WL type is estimated for an arbitrary driving route RT. The arbitrary driving route RT may be an actual driving route traveled by continuous driving from the start of driving of the target vehicle VEx to the present time, or may be a planned driving route that the driver DX plans to travel in the target vehicle VEx. In addition, the arbitrary driving route RT may be a driving route for one trip, not including rest periods, by a certain vehicle VEn selected from an unspecified number of vehicles VEn. In other words, the method for estimating the WL type of the links included in the driving route is the same regardless of the driving route.
例えば、走行ルートRTが、対象車両VExの走行開始から現時点までの連続運転によって走行された実績の走行経路である場合には、位置PT1は対象車両VExの走行が開始された地点となり、位置PT2は対象車両VExの現在地点となる。 For example, if the driving route RT is the actual driving route traveled by continuous driving from the start of the target vehicle VEx's driving to the present time, the position PT1 is the point where the target vehicle VEx's driving started, and the position PT2 is the current position of the target vehicle VEx.
他の例として、走行ルートRTが、ある1台の車両VEnによる休憩を含まない1トリップ分の走行経路である場合には、位置PT1は車両VEnのエンジンが始動された地点となり、位置PT2は車両VEnの滞在地点となる。 As another example, if the travel route RT is a travel route for one trip by a single vehicle VEn that does not include a rest stop, position PT1 is the point where the engine of vehicle VEn is started, and position PT2 is the stop point of vehicle VEn.
ここで、図4(a)の例によれば、推定部131は、走行ルートRTと、リンクごとにWL種別が対応付けられた地図データとを照らし合わせて、走行ルートRTに含まれる各リンクに対して、リンクID(link_id)を紐付ける。図4(a)には、推定部131が、走行ルートRTに対して、リンクID「100」、リンクID「101」、リンクID「102」、リンクID「103」、リンクID「104」、リンクID「105」を紐付けることで、走行ルートRTを5つのリンクに分割した例が示される。 Here, in the example of FIG. 4(a), the estimation unit 131 compares the traveling route RT with map data in which a WL type is associated with each link, and links each link included in the traveling route RT with a link ID (link_id). FIG. 4(a) shows an example in which the estimation unit 131 divides the traveling route RT into five links by linking link ID "100", link ID "101", link ID "102", link ID "103", link ID "104", and link ID "105" to the traveling route RT.
また、図4(a)には、リンクID「100」で識別されるリンク(リンク100)と、リンクID「101」で識別されるリンク(リンク101)とが接続される接続地点の情報として、ノードND01が示される。 In addition, in FIG. 4(a), node ND01 is shown as information on the connection point where the link identified by link ID "100" (link 100) and the link identified by link ID "101" (link 101) are connected.
また、リンクID「101」で識別されるリンク(リンク101)と、リンクID「102」で識別されるリンク(リンク102)とが接続される接続地点の情報として、ノードND12が示される。 In addition, node ND12 is shown as information on the connection point where the link identified by link ID "101" (link 101) and the link identified by link ID "102" (link 102) are connected.
また、リンクID「102」で識別されるリンク(リンク102)と、リンクID「103」で識別されるリンク(リンク103)とが接続される接続地点の情報として、ノードND23が示される。 In addition, node ND23 is shown as information on the connection point where the link identified by link ID "102" (link 102) and the link identified by link ID "103" (link 103) are connected.
また、リンクID「103」で識別されるリンク(リンク103)と、リンクID「104」で識別されるリンク(リンク104)とが接続される接続地点の情報として、ノードND34が示される。 In addition, node ND34 is shown as information on the connection point where the link identified by link ID "103" (link 103) and the link identified by link ID "104" (link 104) are connected.
また、リンクID「104」で識別されるリンク(リンク104)と、リンクID「105」で識別されるリンク(リンク105)とが接続される接続地点の情報として、ノードND45が示される。 In addition, node ND45 is shown as information on the connection point where the link identified by link ID "104" (link 104) and the link identified by link ID "105" (link 105) are connected.
また、推定部131は、地図データを参照し、各リンクの距離(len)も算出してよい。図4(a)には、推定部131が、リンク100の距離「100」、リンク101の距離「200」、リンク102の距離「300」、リンク103の距離「100」、リンク104の距離「500」、リンク105の距離「200」を算出した例が示される。
The estimation unit 131 may also refer to map data and calculate the distance (len) of each link. FIG. 4(a) shows an example in which the estimation unit 131 calculates the distance "100" of
図4(b)には、推定部131が、リンクごとにWL種別が対応付けられた地図データを参照し、リンク100のWL種別「FREE」、リンク101のWL種別「FREE」、リンク102のWL種別「FREE」、リンク103のWL種別「BUSY」、リンク104のWL種別「FREE」、リンク105のWL種別「BUSY」を推定した例が示される。
FIG. 4(b) shows an example in which the estimation unit 131 refers to map data in which a WL type is associated with each link, and estimates the WL type of
以下ででは、WL種別「BUSY」を推定されたリンクを「BUSY区間」、WL種別「FREE」を推定されたリンクを「FREE区間」、WL種別「IDEAL」を推定されたリンクを「IDEAL区間」と表現する場合がある。 In the following, links whose WL type is estimated to be "BUSY" may be referred to as "BUSY sections", links whose WL type is estimated to be "FREE" may be referred to as "FREE sections", and links whose WL type is estimated to be "IDEAL" may be referred to as "IDEAL sections".
図4では、推定部131が、リンクごとにWL種別が対応付けられた地図データと、走行ルートRTに含まれるリンクとを照らし合わせることで、係るリンクのWL種別を推定する例を示した。しかしながら、推定部131は、走行ルートRに含まれるリンクのリンク種別(link_kind)、あるいは、走行ルートRTの道路種別(road_kind)に基づいて、各リンクのWL種別を推定してもよい。ここでいうリンク種別とは、例えば、本線、連結路等といった分類情報である。また、道路種別とは、高速道路、国道、細街路等といった分類情報である。 In FIG. 4, an example is shown in which the estimation unit 131 estimates the WL type of a link by comparing the map data in which a WL type is associated with each link with the links included in the travel route RT. However, the estimation unit 131 may estimate the WL type of each link based on the link type (link_kind) of the link included in the travel route R or the road type (road_kind) of the travel route RT. The link type here refers to classification information such as a main road, connecting road, etc., for example. The road type refers to classification information such as an expressway, national road, narrow street, etc.
〔算出部132〕
図2に戻り、算出部132は、対象車両VExの走行経路に含まれるリンクのうち、WL種別として、「BUSY」(基準値と比較してWLが高いことを示す第1の種別)が推定されたリンクを、対象車両VExが走行した累積時間である第1の累積時間を算出する。また、算出部132は、対象車両VExの走行経路に含まれるリンクのうち、WL種別として、「FREE」(基準値と比較してWLが低いことを示す第2の種別)が推定されたリンクを、対象車両VExが走行した累積時間である第2の累積時間を算出する。この点について、図4(b)の例を用いて説明する。
[Calculation unit 132]
Returning to FIG. 2, the
算出部132の処理を説明するにあたって、走行ルートRTは、対象車両VExの走行開始から現時点までの連続運転によって走行された実績の走行経路であるものとする。係る例では、対象車両VExは、位置PT1から走行を開始し、休憩なしで連続運転されることで、現在は位置PT2を走行中である。この場合、算出部132は、WL種別「BUSY」を推定されたリンク(具体的には、リンク100、リンク101、リンク102、リンク104)ぞれぞれの走行に要した走行時間を積算することで、第1の累積時間を算出する。また、算出部132は、WL種別「FREE」を推定されたリンク(具体的には、リンク103、リンク105)ぞれぞれの走行に要した走行時間を積算することで、第2の累積時間を算出する。例えば、算出部132は、車載装置10から取得した対象車両VExの走行履歴や、センサ情報に基づいて、走行時間を算出することができる。
In explaining the processing of the
また、算出部132は、第1の累積時間と、第2の累積時間との比率である運転負荷比率を算出し、運転負荷比率取得部133に伝送する。
The
なお、算出部132は、累積時間ではなく累積距離を算出してもよい。同じく、図4(b)の例を用いると、算出部132は、WL種別「BUSY」を推定されたリンク(具体的には、リンク100、リンク101、リンク102、リンク104)ぞれぞれの距離を積算することで、第1の累積距離を算出してよい。また、算出部132は、WL種別「FREE」を推定されたリンク(具体的には、リンク103、リンク105)ぞれぞれの距離を積算することで、第2の累積距離を算出してよい。係る例では、算出部132は、第1の累積距離と、第2の累積距離との比率である運転負荷比率を算出し、運転負荷比率取得部133に伝送する。
The
〔運転負荷比率取得部133〕
運転負荷比率取得部133は、対象車両VExの走行経路における運転者DXの運転負荷が高い状態と、運転負荷が低い状態との比率を示す運転負荷比率を取得する。
[Operating load ratio acquisition unit 133]
The driving load ratio acquisition unit 133 acquires a driving load ratio indicating the ratio between a state in which the driving load of the driver DX is high and a state in which the driving load is low on the driving route of the target vehicle VEx.
具体的には、運転負荷比率取得部133は、算出部132により算出された第1の累積時間(運転負荷が高い状態を示す情報)と、算出部132により算出された第2の累積時間(運転負荷が低い状態を示す情報)との比率を示す運転負荷比率を取得する。 Specifically, the driving load ratio acquisition unit 133 acquires a driving load ratio indicating the ratio between the first accumulated time calculated by the calculation unit 132 (information indicating a state in which the driving load is high) and the second accumulated time calculated by the calculation unit 132 (information indicating a state in which the driving load is low).
他の例として、運転負荷比率取得部133は、算出部132により算出された第1の累積距離(運転負荷が高い状態を示す情報)と、算出部132により算出された第2の累積距離(運転負荷が低い状態を示す情報)との比率を示す運転負荷比率を取得する。運転負荷比率は、比率情報記憶部123に記憶される。
As another example, the driving load ratio acquisition unit 133 acquires a driving load ratio indicating the ratio between the first cumulative distance calculated by the calculation unit 132 (information indicating a state in which the driving load is high) and the second cumulative distance calculated by the calculation unit 132 (information indicating a state in which the driving load is low). The driving load ratio is stored in the ratio
また、運転負荷比率取得部133は、運転負荷比率と、第2のサーバ装置200によって生成された予測モデルとに基づいて、対象車両VExの予測走行時間を算出する処理も行ってよい。具体的には、運転負荷比率取得部133は、運転負荷比率と、予測モデルとに基づいて、対象車両VExが連続運転される時間(運転者DXが休憩なしで連続運転する時間)を予測する。予測モデルの生成手法については後述する。
The driving load ratio acquisition unit 133 may also perform a process of calculating a predicted driving time of the target vehicle VEx based on the driving load ratio and the prediction model generated by the
〔出力制御部134〕
出力制御部134は、運転負荷比率取得部133により算出された予測走行時間に基づいて、運転者DXが休憩すべきタイミングを予測する。具体的には、出力制御部134は、対象車両VExの走行時間と、予測走行時間との差分に基づいて、運転者DXが休憩すべきタイミングを予測する。例えば、出力制御部134は、対象車両VExの走行時間として、対象車両VExの走行開始から現時点までの連続運転によって走行された実績の走行経路を対象として算出された走行時間と、予測走行時間との差分に基づいて、運転者DXが休憩すべきタイミングを予測する。
[Output control unit 134]
The output control unit 134 predicts the timing when the driver DX should take a rest based on the predicted driving time calculated by the driving load ratio acquisition unit 133. Specifically, the output control unit 134 predicts the timing when the driver DX should take a rest based on the difference between the driving time of the target vehicle VEx and the predicted driving time. For example, the output control unit 134 predicts the timing when the driver DX should take a rest based on the difference between the predicted driving time and the driving time calculated for the actual driving route traveled by continuous driving from the start of driving of the target vehicle VEx to the present time as the driving time of the target vehicle VEx.
運転者DXが休憩すべきタイミングは、「〇時×分になったタイミングで休憩すべき」といったように時刻で表されてもよいし、「△メートル進んだタイミングで休憩すべき」といったように距離で表されてもよい。 The timing when driver DX should take a break may be expressed in terms of time, such as "Driver DX should take a break at x:00" or in terms of distance, such as "Driver DX should take a break after traveling △ meters."
〔探索部135〕
探索部135は、休憩すべきタイミングとなるまでに、対象車両VExが到達できる休憩スポットを探索する。例えば、探索部135は、休憩すべきタイミングまで対象車両VExが走行すると予測される距離である予測走行距離の範囲内で休憩スポットを探索する。また、探索部135は、休憩スポットに対象車両VExが到達すると予測される時刻である到達予測時刻も算出してよい。この場合、出力制御部134は、休憩スポットを提案する提案情報として、休憩スポットの内容を示す情報と、休憩スポットへの到着予想時刻とを含む提案情報が車載装置10から出力されるよう出力制御する。
[Search Unit 135]
The
他の例として、探索部135は、対象車両VExの走行予定経路が事前に判明していることから、この走行予定経路を対象に休憩タイミングが予測された場合には、走行予定経路上の地点のうち、運転者DXが休憩する時刻に対象車両VExが到達し得る地点を推定し、推定した地点に対応するエリアを対象に休憩スポットを探索してもよい。なお、ここでいう走行予定経路は、運転者DXによる入力情報(例えば、出発前に入力された目的地)を基に探索された案内ルートであってよい。また、運転者DXが休憩する時刻は、運転者DXが休憩すべきタイミングとして予測された予測結果に基づき予測されてよい。また、探索部135は、運転者DXによる要求(例えば、休憩スポットの要求)操作が受け付けられた場合に、このような案内ルートを活用した休憩スポットの探索処理を行い、探索結果を出力制御部134に出力させてよい。
As another example, since the planned driving route of the target vehicle VEx is known in advance, when a rest timing is predicted for this planned driving route, the
例えば、出力制御部134は、案内ルートである走行予定経路とともに、休憩スポットを提案する提案情報を出力させる。このような事前提案によれば、運転者DXは、例えば、出発前のルート設定の時点で予め休憩スポットを決めることができるため、出発前に適切に運転計画を立てることができるようになる。 For example, the output control unit 134 outputs suggestion information that suggests rest spots along with the planned driving route, which is the guidance route. With such advance suggestions, the driver DX can decide on rest spots in advance, for example, at the time of setting the route before departure, and can therefore make an appropriate driving plan before departure.
さらに上記例によれば、探索部135は、一般的な経路案内の処理、具体的には、探索条件を用いた目的地までの経路探索も行ってよい。探索条件や目的地は利用者によって車載装置10に入力される。
Furthermore, according to the above example, the
〔第2のサーバ装置〕
続いて、図3は、第2のサーバ装置200の構成例を示す図である。図3に示すように、第2のサーバ装置200は、通信部210と、記憶部220と、制御部230とを有する。
[Second Server Device]
3 is a diagram showing an example of the configuration of the
〔通信部210〕
通信部210は、例えば、NIC等によって実現される。そして、通信部210は、ネットワークNと有線または無線で接続され、例えば、第1のサーバ装置100A、車載装置10との間で情報の送受信を行う。
[Communication unit 210]
The communication unit 210 is realized by, for example, a NIC etc. The communication unit 210 is connected to the network N by wire or wirelessly, and transmits and receives information between the
〔記憶部220〕
記憶部220は、例えば、RAM、フラッシュメモリ等の半導体メモリ素子またはハードディスク、光ディスク等の記憶装置によって実現される。記憶部220は、例えば、実施形態に係る情報処理に関するデータやプログラムが記憶されてよい。また、図3の例によれば、記憶部220は、WL種別推定結果記憶部221と、予測モデル記憶部222とを有してよい。
[Memory unit 220]
The storage unit 220 is realized by, for example, a semiconductor memory element such as a RAM or a flash memory, or a storage device such as a hard disk or an optical disk. The storage unit 220 may store, for example, data and programs related to the information processing according to the embodiment. In addition, according to the example of FIG. 3, the storage unit 220 may include a WL type estimation
〔制御部230〕
制御部230は、CPUやMPU等によって、第2のサーバ装置200内部の記憶装置に記憶されている各種プログラム(例えば、実施形態に係る情報処理プログラム)がRAMを作業領域として実行されることにより実現される。また、制御部230は、例えば、ASICやFPGA等の集積回路により実現される。
[Control unit 230]
The control unit 230 is realized by a CPU, an MPU, or the like executing various programs (e.g., the information processing program according to the embodiment) stored in a storage device inside the
図3に示すように、制御部230は、WL種別取得部231と、予測モデル生成部232と、送信部233とを有し、以下に説明する情報処理の機能や作用を実現または実行する。なお、制御部230の内部構成は、図3に示した構成に限られず、後述する情報処理を行う構成であれば他の構成であってもよい。また、制御部230が有する各処理部の接続関係は、図3に示した接続関係に限られず、他の接続関係であってもよい。
As shown in FIG. 3, the control unit 230 has a WL
〔WL種別取得部231〕
WL種別取得部231は、推定部131により推定されたWL種別を取得する。具体的には、WL種別取得部231は、不特定多数の車両VEnの走行実績が示す走行経路であって、休憩を含まない1トリップ分の走行経路に含まれるリンクごとに推定されたWL種別の情報を取得する。取得されたWL種別は、WL種別推定結果記憶部221に記憶される。
[WL type acquisition unit 231]
The WL
〔予測モデル生成部232〕
予測モデル生成部232は、不特定多数の車両VEnの走行実績が示す走行経路であって、休憩を含まない1トリップ分の走行経路に含まれるリンクごとに推定されたWL種別に基づいて、連続運転による走行時間を予測する予測モデルを生成する。
[Prediction model generation unit 232]
The prediction
具体的には、予測モデル生成部232は、休憩を含まない1トリップ分の走行経路に含まれるリンクのうち、WL種別として、「BUSY」(基準値と比較してWLが高いことを示す第1の種別)が推定されたリンクと、WL種別として、「FREE」(基準値と比較してWLが低いことを示す第2の種別)が推定されたリンクとの比率であるモデル比率を算出する。ここで扱われる休憩を含まない1トリップ分の走行経路は、車両VEn間で共通のものであってもよいし、車両VEn間で異なるものであってもよい。
Specifically, the prediction
また、予測モデル生成部232は、モデル比率ごとに、車両VEnが連続運転された時間の平均である平均走行時間を算出する。そして、予測モデル生成部232は、モデル比率と、平均走行時間とに基づいて、予測モデルを生成する。
The prediction
例えば、予測モデル生成部232は、モデル比率と、平均走行時間との関係性が3次元で表現された3次元グラフに基づいて、予測モデルを生成する。
For example, the prediction
ここで、図5および図6を用いて、予測モデルの生成手法を説明する。図5は、予測モデルの生成手法の具体例(1)を示す図である。図6は、予測モデルの生成手法の具体例(2)を示す図である。 Here, a method for generating a predictive model will be described with reference to Figures 5 and 6. Figure 5 is a diagram showing a specific example (1) of a method for generating a predictive model. Figure 6 is a diagram showing a specific example (2) of a method for generating a predictive model.
図5の例によれば、予測モデル生成部232は、モデル比率ごとに、当該モデル比率に対応する車両VEnが連続運転された時間を集計する。なお、モデル比率は、休憩を含まない1トリップ分の走行経路に含まれるリンクのうち、WL種別「BUSY」が推定されたリンクの距離と、WL種別「FREE」が推定されたリンクの距離との比率であってよい。一方で、モデル比率は、休憩を含まない1トリップ分の走行経路に含まれるリンクのうち、WL種別「BUSY」を推定されたリンクを車両VEnが走行した累積時間と、WL種別「FREE」を推定されたリンクを車両VEnが走行した累積時間との比率であってもよい。
According to the example of FIG. 5, the prediction
一例として、車両VE11の1トリップ分の走行経路に対してWL種別を推定された結果に基づいて、BUSY区間とFREE区間との比率であるモデル比率として「100:0」が算出されたとする。また、車両VE12の1トリップ分の走行経路に対してWL種別を推定された結果に基づいて、BUSY区間とFREE区間との比率であるモデル比率として同じく「100:0」が算出されたとする。係る例では、予測モデル生成部232は、図5(a)に示すように、モデル比率「100:0」で共通する車両VE11や車両VE12等の各車両VEnについて、1トリップ分の走行経路の走行に要した走行時間を集計する。例えば、予測モデル生成部232は、車載装置10から取得した車両VEnの走行履歴や、センサ情報に基づいて、走行時間を算出することができる。
As an example, let us assume that a model ratio, which is the ratio between busy and free sections, of "100:0" is calculated based on the result of estimating the WL type for one trip of the driving route of vehicle VE11. Let us also assume that a model ratio, which is the ratio between busy and free sections, of "100:0" is calculated based on the result of estimating the WL type for one trip of the driving route of vehicle VE12. In this example, as shown in FIG. 5(a), the prediction
図5(a)には、予測モデル生成部232が、車両VE11が1トリップ分の走行経路の走行に要した走行時間として「TM11」を算出し、車両VE12が1トリップ分の走行経路の走行に要した走行時間として「TM12」を算出した例が示される。
FIG. 5(a) shows an example in which the prediction
このような状態において、予測モデル生成部232は、走行時間「TM11」や走行時間「TM12」等を集計した結果、その平均である平均走行時間AV1を算出する。
In this state, the prediction
他の例として、車両VE21の1トリップ分の走行経路に対してWL種別を推定された結果に基づいて、BUSY区間とFREE区間との比率であるモデル比率として「90:10」が算出されたとする。また、車両VE22の1トリップ分の走行経路に対してWL種別を推定された結果に基づいて、BUSY区間とFREE区間との比率であるモデル比率として同じく「90:10」が算出されたとする。係る例では、予測モデル生成部232は、図5(b)に示すように、モデル比率「90:10」で共通する車両VE21や車両VE22等の各車両VEnについて、1トリップ分の走行経路の走行に要した走行時間を集計する。
As another example, let us say that a model ratio, which is the ratio between busy and free sections, of "90:10" is calculated based on the result of estimating the WL type for one trip of the driving route of vehicle VE21. Also, let us say that a model ratio, which is the ratio between busy and free sections, of "90:10" is calculated based on the result of estimating the WL type for one trip of the driving route of vehicle VE22. In this example, the prediction
図5(b)には、予測モデル生成部232が、車両VE21が1トリップ分の走行経路の走行に要した走行時間として「TM21」を算出し、車両VE22が1トリップ分の走行経路の走行に要した走行時間として「TM22」を算出した例が示される。
Figure 5(b) shows an example in which the prediction
このような状態において、予測モデル生成部232は、走行時間「TM21」や走行時間「TM22」等を集計した結果、その平均である平均走行時間AV2を算出する。
In this state, the prediction
さらに他の例として、車両VE31の1トリップ分の走行経路に対してWL種別を推定された結果に基づいて、BUSY区間とFREE区間との比率であるモデル比率として「80:20」が算出されたとする。また、車両VE32の1トリップ分の走行経路に対してWL種別を推定された結果に基づいて、BUSY区間とFREE区間との比率であるモデル比率として同じく「80:20」が算出されたとする。係る例では、予測モデル生成部232は、図5(c)に示すように、モデル比率「80:20」で共通する車両VE31や車両VE32等の各車両VEnについて、1トリップ分の走行経路の走行に要した走行時間を集計する。
As yet another example, let us assume that a model ratio, which is the ratio between busy and free sections, of "80:20" is calculated based on the result of estimating the WL type for one trip of the driving route of vehicle VE31. Also, let us assume that a model ratio, which is the ratio between busy and free sections, of "80:20" is calculated based on the result of estimating the WL type for one trip of the driving route of vehicle VE32. In this example, the prediction
図5(c)には、予測モデル生成部232が、車両VE31が1トリップ分の走行経路の走行に要した走行時間として「TM31」を算出し、車両VE32が1トリップ分の走行経路の走行に要した走行時間として「TM32」を算出した例が示される。
FIG. 5(c) shows an example in which the prediction
このような状態において、予測モデル生成部232は、走行時間「TM31」や走行時間「TM32」等を集計した結果、その平均である平均走行時間AV3を算出する。
In this state, the prediction
なお、図5(a)、図5(b)、図5(c)の例において、1トリップ分の走行経路の走行に要した走行時間は、車両VEnが連続運転された時間(連続運転時間)と言い換えることができる。 In the examples of Figures 5(a), 5(b), and 5(c), the driving time required to travel the driving route for one trip can be rephrased as the time during which the vehicle VEn was driven continuously (continuous driving time).
図5には、「モデル比率」ごとに、「連続運転時間」と、「平均走行時間」とがリスト化されリスリLTが示される。リスリLTは、予測モデルの基となる情報であり、予測モデル記憶部222に記憶されてよい。 In FIG. 5, the "continuous driving time" and "average driving time" are listed for each "model ratio" and the Re-Suri LT is shown. The Re-Suri LT is information that forms the basis of the prediction model and may be stored in the prediction model storage unit 222.
図6の説明に移る。図6には、リスリLTに含まれる情報から予測モデルが生成される場面が示される。図6に示すように、予測モデル生成部232は、「BUSY」をx軸、「FREE」をy軸、「予測平均時間」をz軸として、モデル比率と、平均走行時間との関係性が3次元で表現された3次元グラフGを生成する。具体的には、予測モデル生成部232は、「BUSY」/「FREE」/「予測平均時間」という組合せを用いて、3次元グラフGを生成する。
We now turn to the explanation of Figure 6. Figure 6 shows a scene in which a prediction model is generated from information contained in the list LT. As shown in Figure 6, the prediction
リストLTの例によれば、予測モデル生成部232は、BUSY「100」と、FREE「0」とが交わるxy座標の位置に対して、平均走行時間「AV1」をz軸に当て嵌めた1つの棒グラフを生成する。また、予測モデル生成部232は、BUSY「90」と、FREE「10」とが交わるxy座標の位置に対して、平均走行時間「AV2」をz軸に当て嵌めた1つの棒グラフを生成する。また、予測モデル生成部232は、BUSY「80」と、FREE「20」とが交わるxy座標の位置に対して、平均走行時間「AV3」をz軸に当て嵌めた1つの棒グラフを生成する。同じ処置が、その他のモデル比率についても行われる。この結果、図6(a)に示すような、3次元グラフGが生成される。
In the example of list LT, the prediction
予測モデル生成部232は、この3次元グラフGから予測モデルを生成する。例えば、予測モデル生成部232は、3次元グラフGに対して統計処理を行い、図6(b)に示すような、予測モデルMを生成する。単純な例では、予測モデル生成部232は、3次元グラフGの頂点を用いて、面状の予測モデルMを生成する。予測モデルMのx軸は「BUSY」を表し、y軸は「FREE」を表し、z軸は「予測走行時間」(推定走行時間)を表す。ここでいう予測走行時間とは、対象車両VExの運転者DXが休憩なしで連続運転すると予測される時間である。
The prediction
また、図6(a)および図6(b)では不図示であるが、「FREE」と反対側のもう1つのy軸には「IDEAL」が用いられてよい。このため、運転負荷比率は、実際には、「BUSY」区間、「FREE」区間、「IDEAL」区間それぞれについて求められた累積時間あるいは距離の比率である。ただし、運転負荷比率において「IDEAL」区間が占める割合は、「BUSY」区間および「FREE」区間が占める割合の残りの割合として取り扱われてよい。 Furthermore, although not shown in Figures 6(a) and 6(b), "IDEAL" may be used on the other y-axis opposite "FREE". Therefore, the driving load ratio is actually the ratio of the cumulative time or distance obtained for each of the "BUSY" section, the "FREE" section, and the "IDEAL" section. However, the proportion of the driving load ratio that is occupied by the "IDEAL" section may be treated as the remaining proportion of the proportions occupied by the "BUSY" section and the "FREE" section.
〔送信部233〕
図3に戻り、送信部233は、予測モデル生成部232により生成された予測モデルを、第1のサーバ装置100Aに送信する。上述したように、運転負荷比率取得部133は、送信された予測モデルを取得し、予測モデルに運転負荷比率を入力する。そして、運転負荷比率取得部133は、予測モデルの出力結果に基づいて、予測走行時間を算出する。また、出力制御部134は、予測走行時間を用いて、運転者DXが休憩すべきタイミングを予測する。
[Transmitting unit 233]
Returning to Fig. 3, the
続いて、図6(b)の例を用いて、休憩タイミングの予測手法の具体例を説明する。例えば、対象車両VExの走行開始から現時点までの連続運転によって走行された実績の走行経路には、リンクとして「BUSY」区間のみ含まれていたとすると、第1の累積時間と第2の累積時間との比率である運転負荷比率は「100:0」と算出される。係る例では、予測モデル生成部232は、運転負荷比率「100:0」を予測モデルMに入力する。
Next, a specific example of a method for predicting rest timing will be described using the example of FIG. 6(b). For example, if the actual driving route traveled by continuous driving from the start of driving of the target vehicle VEx to the present time includes only "BUSY" sections as links, the driving load ratio, which is the ratio between the first accumulated time and the second accumulated time, is calculated as "100:0". In this example, the prediction
図6(b)には、運転負荷比率「100:0」を入力として、予測モデルMが出力した出力情報から対象車両VExの予測走行時間「16分」を予測された例が示される。これは、第1の累積時間と第2の累積時間との比率である運転負荷比率が「100:0」の場合(換言すると、「BUSY」区間をひたすら連続運転された場合)には、統計的に「16分」で休憩される傾向にあることから、運転者DXが運転負荷比率「100:0」の状態で連続運転を継続したと仮定すると、運転開始から「16分」経過した時点で休憩を取ることが最適であろうという推定に相当する。 FIG. 6(b) shows an example in which a driving load ratio of "100:0" is input and a predicted driving time of "16 minutes" for the target vehicle VEx is predicted from the output information output by the prediction model M. This corresponds to an estimation that, assuming that the driver DX continues driving continuously with a driving load ratio of "100:0", it would be optimal to take a break "16 minutes" after the start of driving, since there is a statistical tendency to take a break at "16 minutes" when the driving load ratio, which is the ratio between the first accumulated time and the second accumulated time, is "100:0" (in other words, when the driver continues driving continuously through the "BUSY" section).
例えば、対象車両VExの走行開始から現時点までの連続運転による走行時間を「10分」とすると、出力制御部134は、走行時間「10分」と、予測走行時間「16分」との差分である「6分」を算出する。そして、出力制御部134は、現在時刻と、差分時間「6分」とに基づいて、運転者DXが休憩すべきタイミングを予測する。例えば、現在時刻が「14時」であるとすると、出力制御部134は、現在時刻「14時」より「6分」後の「14時6分」を運転者DXが休憩すべきタイミングとして予測する。 For example, if the driving time of the target vehicle VEx from the start of driving to the present time is "10 minutes", the output control unit 134 calculates "6 minutes", which is the difference between the driving time "10 minutes" and the predicted driving time "16 minutes". Then, the output control unit 134 predicts the timing when the driver DX should take a break based on the current time and the difference time "6 minutes". For example, if the current time is "14:00", the output control unit 134 predicts that the driver DX should take a break at "14:06", which is "6 minutes" after the current time "14:00".
また、図6(b)には、運転負荷比率は「0:100」を入力として、予測モデルMが出力した出力情報から対象車両VExの予測走行時間「78分」を予測された例が示される。これは、第1の累積時間と第2の累積時間との比率である運転負荷比率が「0:100」の場合(換言すると、「FREE」区間をひたすら連続運転された場合)には、統計的に「78分」で休憩される傾向にあることから、運転者DXが運転負荷比率「0:100」の状態で連続運転を継続したと仮定すると、運転開始から「78分」経過した時点で休憩を取ることが最適であろうという推定に相当する。 In addition, FIG. 6(b) shows an example in which a driving load ratio of "0:100" is input and a predicted driving time of "78 minutes" for the target vehicle VEx is predicted from the output information output by the prediction model M. This corresponds to an estimation that, assuming that the driver DX continues driving continuously with a driving load ratio of "0:100", it would be optimal to take a break "78 minutes" after the start of driving, since there is a statistical tendency to take a break at "78 minutes" when the driving load ratio, which is the ratio between the first accumulated time and the second accumulated time, is "0:100" (in other words, when the driver drives continuously through the "FREE" section).
例えば、対象車両VExの走行開始から現時点までの連続運転による走行時間を「10分」とすると、出力制御部134は、走行時間「10分」と、予測走行時間「78分」との差分である「68分」を算出する。そして、出力制御部134は、現在時刻と、差分時間「68分」とに基づいて、運転者DXが休憩すべきタイミングを予測する。例えば、現在時刻が「14時」であるとすると、出力制御部134は、現在時刻「14時」より「68分」後の「15時8分」を運転者DXが休憩すべきタイミングとして予測する。 For example, if the driving time of the target vehicle VEx from the start of driving to the present time is "10 minutes", the output control unit 134 calculates "68 minutes", which is the difference between the driving time "10 minutes" and the predicted driving time "78 minutes". Then, the output control unit 134 predicts the timing when the driver DX should take a break based on the current time and the difference time "68 minutes". For example, if the current time is "14:00", the output control unit 134 predicts that the driver DX should take a break at "15:08", which is "68 minutes" after the current time "14:00".
ここで、上記例は、対象車両VExの走行開始から現時点までの連続運転によって走行された実績の走行経路が取り扱われる例を示した。しかしながら、例えば、運転者DXが対象車両VExで走行する予定の走行予定経路が取り扱われる場合には、出力制御部134は、対象車両VExの走行時間として「0分」を用いて、休憩タイミングを予測してよい。 The above example shows an example in which the actual driving route traveled by continuous driving from the start of driving of the target vehicle VEx to the present time is handled. However, for example, when the planned driving route that the driver DX plans to drive in the target vehicle VEx is handled, the output control unit 134 may predict the timing of the rest break by using "0 minutes" as the driving time of the target vehicle VEx.
<3.装置間での処理手順>
次に、図7を用いて、第1のサーバ装置100Aと、第2のサーバ装置200との間で行われる処理の手順を説明する。図7は、第1の実施形態に係るシステムSyAに含まれるサーバ装置間で行われる処理の手順を示すシーケンス図である。
3. Processing procedure between devices
Next, a procedure of processing performed between the
まず、第1のサーバ装置100Aの推定部131は、不特定多数の車両VEnの走行実績(走行履歴)を取得する(ステップS701)。また、推定部131は、走行実績が示す走行経路から1トリップ分の走行経路の情報を抽出し、1トリップ分の走行経路に含まれるリンクごとに、WL種別を推定する(ステップS702)。
First, the estimation unit 131 of the
推定部131は、車両VEnそれぞれの1トリップ分の走行経路について推定したWL種別を第2のサーバ装置200に送信する(ステップS703)。送信されたWL種別は、第2のサーバ装置200のWL種別取得部231によって取得される。
The estimation unit 131 transmits the WL type estimated for one trip of each vehicle VEn to the second server device 200 (step S703). The transmitted WL type is acquired by the WL
WL種別が取得されると、予測モデル生成部232は、車両VEnそれぞれの1トリップ分の走行経路に含まれるリンクのうち、WL種別「BUSY」が推定されたリンクと、WL種別「FREE」が推定されたリンクとの比率であるモデル比率を算出する(ステップS704)。
Once the WL type is obtained, the prediction
次に、予測モデル生成部232は、モデル比率ごとに、当該モデル比率に対応する車両VEnが連続運転された時間(車両VEnが1トリップ分の走行経路の走行に要した走行時間)を集計する(ステップS705)。
Next, the prediction
予測モデル生成部232は、モデル比率ごとに、車両VEnが連続運転された時間の平均である平均走行時間を算出する(ステップS706)。そして、予測モデル生成部232は、モデル比率と、平均走行時間との関係性を3次元グラフで表現し(ステップS707)、3次元グラフに基づいて、予測モデルを生成する(ステップS708)。
The prediction
送信部233は、予測モデルを第1のサーバ装置100Aに送信する(ステップS709)。送信された予測モデルは、運転負荷比率取得部133によって取得される(ステップS710)。
The
<4.休憩タイミング予測処理手順>
次に、予測モデルを用いて行われる、休憩タイミングの予測処理の手順を説明する。図8は、休憩タイミングの予測処理の手順を示すフォローチャートである。
<4. Break Timing Prediction Processing Procedure>
Next, a procedure for predicting rest timing using a prediction model will be described below. Fig. 8 is a flowchart showing the procedure for predicting rest timing.
まず、推定部131は、対象車両VExの運転が開始されたか否かを判定する(ステップS801)。推定部131は、対象車両VExの運転が開始されていない間は(ステップS801;No)、対象車両VExの運転が開始されたと判定できるまで待機する。 First, the estimation unit 131 determines whether or not driving of the target vehicle VEx has started (step S801). While driving of the target vehicle VEx has not started (step S801; No), the estimation unit 131 waits until it can determine that driving of the target vehicle VEx has started.
一方、推定部131は、対象車両VExの運転が開始されたと判定した場合には(ステップS801;Yes)、休憩タイミングを予測するタイミングになったか否かを判定する(ステップS802)。例えば、推定部131は、対象車両VExの運転が開始されてから所定時間経過、あるいは、対象車両VExの運転が開始されてから所定距離走行によって走行実績が一定以上蓄積された場合には、休憩タイミングを予測するタイミングになったと判定してよい。推定部131は、休憩タイミングを予測するタイミングになっていない場合には(ステップS802;No)、休憩タイミングを予測するタイミングになるまで待機する。 On the other hand, when the estimation unit 131 determines that driving of the target vehicle VEx has started (step S801; Yes), it determines whether it is time to predict the timing of a break (step S802). For example, the estimation unit 131 may determine that it is time to predict the timing of a break when a predetermined time has elapsed since driving of the target vehicle VEx has started, or when a certain amount of driving history has been accumulated by driving a predetermined distance since driving of the target vehicle VEx has started. When it is not time to predict the timing of a break (step S802; No), the estimation unit 131 waits until it is time to predict the timing of a break.
また、推定部131は、休憩タイミングを予測するタイミングになった場合には(ステップS802;Yes)、対象車両VExの走行経路を示す走行経路情報を取得する(ステップS803)。例えば、推定部131は、対象車両VExの走行開始から現時点までの連続運転によって走行された実績の走行経路の情報を取得する。 In addition, when it is time to predict the rest timing (step S802; Yes), the estimation unit 131 acquires driving route information indicating the driving route of the target vehicle VEx (step S803). For example, the estimation unit 131 acquires information on the actual driving route traveled by the target vehicle VEx during continuous driving from the start of driving to the present time.
そして、推定部131は、対象車両VExの走行経路に含まれるリンクごとに、WL種別を推定する(ステップS804)。WL種別の推定手法については図4で説明した通りである。 Then, the estimation unit 131 estimates the WL type for each link included in the travel route of the target vehicle VEx (step S804). The method for estimating the WL type is as described in FIG. 4.
算出部132は、走行開始から現時点までの連続運転の間に対象車両VExが「BUSY」区間を走行した累積の時間である第1の累積時間を算出する(ステップS805)。また、算出部132は、走行開始から現時点までの連続運転の間に対象車両VExが「FREE」区間を走行した累積の時間である第2の累積時間を算出する(ステップS806)。
The
算出部132は、第1の累積時間と、第2の累積時間との比率である運転負荷比率を算出し運転負荷比率取得部133に伝送する(ステップS807)。
The
図7の例によれば、運転負荷比率取得部133は、この時点で、第2のサーバ装置200から予測モデルを取得済みである。そこで、運転負荷比率取得部133は、運転負荷比率を予測モデルに入力し、対象車両VExの予測走行時間を算出する(ステップS808)。
According to the example of FIG. 7, at this point, the driving load ratio acquisition unit 133 has already acquired the prediction model from the
出力制御部134は、対象車両VExのこれまでの走行時間、すなわち、走行開始から現時点までの連続運転に費やされた時間と、予測走行時間との差分に基づいて、運転者DXが休憩すべきタイミングを予測し、予測した休憩タイミングの情報が車載装置10から報知されるよう出力制御する(ステップS809)。なお、報知の手段は、音声でもよいし、画面表示でもよい。 The output control unit 134 predicts the timing when the driver DX should take a rest based on the difference between the driving time of the target vehicle VEx so far, i.e., the time spent continuously driving from the start of driving to the present time, and the predicted driving time, and controls the output so that the information on the predicted rest timing is notified from the in-vehicle device 10 (step S809). The notification may be by voice or a screen display.
(第2の実施形態)
<1.システム構成>
ここからは、第2の実施形態について説明する。第1の実施形態に係る情報処理では、運転者DXが休憩すべき適切なタイミングが予測された。第2の実施形態に係る情報処理では、第1の実施形態に係る情報処理で予測された休憩タイミングの情報を用いて、休憩タイミングとなるまでに、運転者DXが休憩なしで到達可能と推定される範囲を提示することを目的とする。休憩なしで到達可能な範囲が提示されることにより、運転者DXは、例えば、運転前の段階で、休憩すべき大まかな位置を把握することができるようになるため、運転計画を立てやすくなる。
Second Embodiment
1. System configuration
From here, the second embodiment will be described. In the information processing according to the first embodiment, an appropriate timing for the driver DX to take a rest was predicted. In the information processing according to the second embodiment, the purpose is to present an estimated range that the driver DX can reach without taking a rest by the time of the rest, using information on the rest timing predicted by the information processing according to the first embodiment. By presenting the range that can be reached without taking a rest, the driver DX can grasp the rough position where he/she should take a rest, for example, before driving, which makes it easier to make a driving plan.
まずは、図9を用いて、第2の実施形態に係るシステムの構成を説明する。図9は、第2の実施形態に係るシステムの一例を示す図である。図9には、第2の実施形態に係るシステムの一例として、システムSyBが示される。第2の実施形態に係る情報処理は、システムSyBにおいて実現される。 First, the configuration of a system according to the second embodiment will be described with reference to FIG. 9. FIG. 9 is a diagram showing an example of a system according to the second embodiment. FIG. 9 shows a system SyB as an example of a system according to the second embodiment. Information processing according to the second embodiment is realized in system SyB.
システムSyA(図1)と比較して、システムSyBの異なる点は、第1の実施形態に係るサーバ装置100Aの代わりに、第2の実施形態に係る第1のサーバ装置100Bを有する点であり、その他は同様である。
Compared to system SyA (FIG. 1), system SyB differs in that it has a
第1のサーバ装置100Bは、第2の実施形態に係る情報処理を担う中心的な装置である。例えば、第1のサーバ装置100Bは、第1の実施形態に係る情報処理で予測された予測結果すなわち運転者DXが休憩すべきタイミングと、対象車両VExの走行開始地点を中心とした所定の経路とに基づいて、走行開始地点から対象車両VExが到達可能な範囲である到達可能範囲を特定する。具体的には、第1のサーバ装置100Bは、到達可能範囲として、休憩すべきタイミングとなるまでに、運転者DXが休憩なしで到達可能と推定される範囲を特定する。
The
<2.機能構成>
ここからは、第1のサーバ装置100Bの構成例について説明する。第1のサーバ装置100Bは、第2の実施形態に係る情報処理を実現する処理部が第1のサーバ装置100Aに追加されたものである。
<2. Functional configuration>
From here, a configuration example of the
〔第1のサーバ装置100B〕
図10は、第2の実施形態に係る第1のサーバ装置100Bの構成例を示す図である。図10に示すように、第1のサーバ装置100Bは、通信部110と、記憶部120Bと、制御部130Bとを有する。
[
Fig. 10 is a diagram showing an example of the configuration of a
〔記憶部120B〕
記憶部120Bは、例えば、RAM、フラッシュメモリ等の半導体メモリ素子またはハードディスク、光ディスク等の記憶装置によって実現される。記憶部120Bは、例えば、実施形態に係る情報処理に関するデータやプログラムが記憶されてよい。また、図10の例によれば、記憶部120Bは、範囲情報記憶部124をさらに有してよい。
[
The
〔範囲情報記憶部124〕
範囲情報記憶部124は、到達可能範囲の情報を記憶する。具体的には、範囲情報記憶部124は、休憩すべきタイミングとなるまでに、運転者DXが休憩なしで到達可能と推定される範囲の情報を記憶する。
[Range information storage unit 124]
The range information storage unit 124 stores information on a reachable range. Specifically, the range information storage unit 124 stores information on a range that is estimated to be reachable by the driver DX without taking a break until it is time to take a break.
〔制御部130B〕
制御部130Bは、CPU等によって、第1のサーバ装置100B内部の記憶装置に記憶されている各種プログラム(例えば、実施形態に係る情報処理プログラム)がRAMを作業領域として実行されることにより実現される。また、制御部130Bは、例えば、ASICやFPGA等の集積回路により実現される。
[
The
図10に示すように、制御部130Bは、第1のサーバ装置100Aと同様に、推定部131と、算出部132と、運転負荷比率取得部133と、出力制御部134と、探索部135とを有する。また、制御部130Bは、第1のサーバ装置100Aに対する追加機能として、開始地点取得部136と、予測部137と、範囲特定部138とを有する。
As shown in FIG. 10, the
これらの処理部は、以下に説明する情報処理の機能や作用を実現または実行する。なお、制御部130Bの内部構成は、図10に示した構成に限られず、後述する情報処理を行う構成であれば他の構成であってもよい。また、制御部130Bが有する各処理部の接続関係は、図10に示した接続関係に限られず、他の接続関係であってもよい。
These processing units realize or execute the information processing functions and actions described below. Note that the internal configuration of
〔開始地点取得部136〕
開始地点取得部136は、第1の取得部に対応し、対象車両VExの走行が開始された地点である走行開始地点の情報を取得する。例えば、開始地点取得部136は、対象車両VExのエンジンが始動された場合に、エンジンが始動された位置の情報を、走行開始地点の情報として取得してよい。
[Starting point acquisition unit 136]
The start point acquisition unit 136 corresponds to a first acquisition unit, and acquires information on a travel start point, which is a point where the travel of the target vehicle VEx starts. For example, the start point acquisition unit 136 acquires information on the travel start point of the target vehicle VEx. When the engine is started, information on the position where the engine is started may be acquired as information on the travel start point.
〔推定部131〕
推定部131は、走行開始地点を中心とした所定の経路として、走行開始地点を中心とする各方面の地点であって、前記走行開始地点から所定距離の位置にある地点を目的地と定めた場合の経路探索により得られた探索結果の経路(以下、「探索経路」と略す)それぞれについて、当該探索経路に含まれるリンクごとに、WL種別を推定する。WL種別の推定手法については図4で説明した通りである。また、走行開始地点から所定距離の位置にある地点を目的地と定めた場合の経路探索は、探索部135によって行われる。
[Estimation unit 131]
The estimation unit 131 estimates the WL type for each link included in the searched route (hereinafter, abbreviated as "searched route") obtained by route search when a destination is set as a predetermined route centered on the travel start point, which is a point in each direction centered on the travel start point and is a point located a predetermined distance from the travel start point. The method of estimating the WL type is as described in FIG. 4. The route search when a destination is set as a point located a predetermined distance from the travel start point is performed by the
〔算出部132〕
算出部132は、経路探索に含まれるリンクのうち、WL種別として、「BUSY」(基準値と比較してWLが高いことを示す第1の種別)が推定されたリンクを、対象車両VExが走行した累積時間である第1の累積時間を算出する。また、算出部132は、対象車両VExの探索経路に含まれるリンクのうち、WL種別として、「FREE」(基準値と比較してWLが低いことを示す第2の種別)が推定されたリンクを、対象車両VExが走行した累積時間である第2の累積時間を算出する。
[Calculation unit 132]
The
また、算出部132は、第1の累積時間と、第2の累積時間との比率である運転負荷比率を算出し、運転負荷比率取得部133に伝送する。
The
なお、算出部132は、経路探索に含まれるリンクのうち、WL種別として、「BUSY」(基準値と比較してWLが高いことを示す第1の種別)が推定されたリンクそれぞれの距離を積算することで、第1の累積距離を算出してもよい。また、算出部132は、経路探索に含まれるリンクのうち、WL種別として、「FREE」(基準値と比較してWLが高いことを示す第2の種別)が推定されたリンクそれぞれの距離を積算することで、第2の累積距離を算出してもよい。
The
〔運転負荷比率取得部133〕
運転負荷比率取得部133は、第2の取得部に対応し、走行開始地点を中心とする各方面の地点であって、走行開始地点から所定距離の位置にある地点を目的地と定めた場合の経路探索により得られた探索結果の経路ごとに、運転負荷が高い状態と、運転負荷が低い状態との比率を示す運転負荷比率を取得する。
[Operating load ratio acquisition unit 133]
The driving load ratio acquisition unit 133 corresponds to the second acquisition unit, and acquires a driving load ratio indicating the ratio between a high driving load state and a low driving load state for each route in the search results obtained by route search when a destination is set to a point in each direction centered on the starting point of driving, and located a predetermined distance from the starting point of driving.
具体的には、運転負荷比率取得部133は、探索経路それぞれについて算出部132により算出された第1の累積時間(運転負荷が高い状態を示す情報)と、探索経路それぞれについて算出部132により算出された第2の累積時間(運転負荷が低い状態を示す情報)との比率を示す運転負荷比率を取得する。
Specifically, the driving load ratio acquisition unit 133 acquires a driving load ratio indicating the ratio between the first cumulative time (information indicating a high driving load state) calculated by the
他の例として、運転負荷比率取得部133は、探索経路それぞれについて算出部132により算出された第1の累積距離(運転負荷が高い状態を示す情報)と、探索経路それぞれについて算出部132により算出された第2の累積距離(運転負荷が低い状態を示す情報)との比率を示す運転負荷比率を取得する。
As another example, the driving load ratio acquisition unit 133 acquires a driving load ratio indicating the ratio between the first cumulative distance (information indicating a high driving load state) calculated by the
また、運転負荷比率取得部133は、運転負荷比率と、第2のサーバ装置200によって生成された予測モデルとに基づいて、探索経路ごとに、対象車両VExの予測走行時間を算出する処理も行ってよい。具体的には、運転負荷比率取得部133は、運転負荷比率と、予測モデルとに基づいて、探索経路ごとに、対象車両VExが連続運転される時間(運転者DXが休憩なしで連続運転する時間)を予測する。ここで用いられる予測モデルは、第2のサーバ装置200によって生成されたものである。
The driving load ratio acquisition unit 133 may also perform a process of calculating a predicted driving time of the target vehicle VEx for each search route based on the driving load ratio and the prediction model generated by the
〔予測部137〕
予測部137は、各探索経路においてWL種別が変化する変化地点ごとに、対象車両VExが到達する到達時刻を予測する。具体的には、予測部137は、走行開始地点と、探索経路に含まれるリンクそれぞれの距離と、リンクごとに推定されたWL種別とに基づいて、各探索経路においてWL種別が変化する変化地点ごとに、対象車両VExが到達する到達時刻を予測する。この点について、図4の例を用いて説明する。
[Prediction unit 137]
The
図4に示す走行ルートRTを、探索経路とすると、位置PT1は対象車両VExの走行開始地点となり、位置PT2は走行開始地点から所定距離を条件に定められた目的地となる。 If the travel route RT shown in Figure 4 is the search route, then position PT1 is the travel start point of the target vehicle VEx, and position PT2 is the destination that is determined based on a specified distance from the travel start point.
例えば、予測部137は、WL種別が異なるリンク同士を接続するノードを、WL種別が変化する変化地点として検出する。図4(b)の例によれば、ノードND23は、WL種別「FREE」のリンク102と、WL種別「BUSY」のリンク103を接続するノードである。ノードND34は、WL種別「BUSY」のリンク103と、WL種別「FREE」のリンク104を接続するノードである。ノードND45は、WL種別「FREE」のリンク104と、WL種別「BUSY」のリンク105を接続するノードである。このため、予測部137は、WL種別が異なるリンク同士を接続するノードとして、ノードND23と、ノードND34と、ノードND45とを、WL種別が変化する変化地点として検出する。
For example, the
そして、予測部137は、位置PT1からノードND23(接続地点)までの平均速度と、位置PT1からノードND23(接続地点)までの距離とに基づいて、ノードND23に対象車両VExが到達する到達時刻を予測する。また、予測部137は、位置PT1からノードND34(接続地点)までの平均速度と、位置PT1からノードND34(接続地点)までの距離とに基づいて、ノードND34に対象車両VExが到達する到達時刻を予測する。また、予測部137は、位置PT1からノードND45(接続地点)までの平均速度と、位置PT1からノードND45(接続地点)までの距離とに基づいて、ノードND45に対象車両VExが到達する到達時刻を予測する。さらに、予測部137は、位置PT1から位置PT2までの平均速度と、位置PT1から位置PT2までの距離とに基づいて、位置PT2に対象車両VExが到達する到達時刻を予測する。
Then, the
〔範囲特定部138〕
範囲特定部138は、予測部137により検出された変化地点のうち、運転者DXが休憩すべきと予測されているタイミングに対して所定範囲内の到達時刻が算出された変化地点を休憩候補地点として抽出する。そして、範囲特定部138は、休憩候補地点を繋いで形成されるポリゴンを到達可能範囲として特定する。一例として、範囲特定部138は、変化地点のうち、休憩すべきと予測されているタイミングを上回った到達時刻が算出された変化地点を休憩候補地点として抽出してよい。
[Range Identification Unit 138]
The range specifying unit 138 extracts, as rest candidate points, those change points whose calculated arrival times are within a predetermined range of the timing when it is predicted that the driver DX should take a rest, from among the change points detected by the
〔出力制御部134〕
出力制御部134は、到達可能範囲の情報が地図上に重畳表示された画面が車載装置10によって表示されるよう出力制御する。
[Output control unit 134]
The output control unit 134 controls output so that the in-
<3.範囲特定処理手順>
図11を用いて、到達可能範囲を特定する範囲特定処理の手順を説明する。図11は、範囲特定処理の手順を示すフォローチャートである。また、範囲特定処理の具体例について図12を用いて説明する。図12は、範囲特定処理の具体例を示す図である。
3. Range Identification Processing Procedure
The procedure of the range specification process for specifying a reachable range will be described with reference to Fig. 11. Fig. 11 is a flowchart showing the procedure of the range specification process. A specific example of the range specification process will be described with reference to Fig. 12. Fig. 12 is a diagram showing a specific example of the range specification process.
まず、開始地点取得部136は、対象車両VExの走行開始地点の情報を取得する(ステップS1101)。図12(a)には、開始地点取得部136が、対象車両VExの走行開始地点として走行開始地点BAを検出したことで、走行開始地点BAの情報(例えば、位置情報)を取得した例が示される。 First, the start point acquisition unit 136 acquires information on the travel start point of the target vehicle VEx (step S1101). FIG. 12(a) shows an example in which the start point acquisition unit 136 detects the travel start point BA as the travel start point of the target vehicle VEx and acquires information on the travel start point BA (e.g., position information).
次に、探索部135は、走行開始地点BAを中心として、360度方向の各方面に対して、所定距離の地点を目的地として設定する(ステップS1102)。図12(a)には、探索部135が、目的地G1,目的地G2,目的地G3,目的地G4,目的地G5,目的地G6,目的地G7という7つの目的地(目的地G1~G7)を設定した例が示される。
Next, the
このような状態において、探索部135は、走行開始地点BAから目的地G1~G7それぞれまでの経路を探索する経路探索を実行する(ステップS1103)。
In this state, the
ここで、図12(a)には、探索部135が、走行開始地点BAから目的地G1を対象とする経路探索によって、探索結果の経路として探索経路SR1を取得した例が示される。また、図12(a)には、探索部135が、走行開始地点BAから目的地G2を対象とする経路探索によって、探索結果の経路として探索経路SR2を取得した例が示される。また、図12(a)には、探索部135が、走行開始地点BAから目的地G3を対象とする経路探索によって、探索結果の経路として探索経路SR31と探索経路SR32とを取得した例が示される。
FIG. 12(a) shows an example in which the
また、図12(a)には、探索部135が、走行開始地点BAから目的地G4を対象とする経路探索によって、探索結果の経路として探索経路SR41、探索経路SR42および探索経路SR43を取得した例が示される。また、図12(a)には、探索部135が、走行開始地点BAから目的地G5を対象とする経路探索によって、探索結果の経路として探索経路SR51と探索経路SR52とを取得した例が示される。
FIG. 12(a) also shows an example in which the
また、図12(a)には、探索部135が、走行開始地点BAから目的地G6を対象とする経路探索によって、探索結果の経路として探索経路SR6を取得した例が示される。また、図12(a)には、探索部135が、走行開始地点BAから目的地G7を対象とする経路探索によって、探索結果の経路として探索経路SR7を取得した例が示される。
FIG. 12(a) also shows an example in which the
推定部131は、探索部135により取得された探索経路ごとに、当該探索経路に含まれる各リンクについて、WL種別を推定する(ステップS1104)。 The estimation unit 131 estimates the WL type for each link included in each search route acquired by the search unit 135 (step S1104).
次に、予測部137は、各探索経路においてWL種別が変化する変化地点ごとに、対象車両VExが到達する到達時刻を予測する(ステップS1105)。変化地点の検出手法や、到達時刻の予測手法については、図4(b)の例を用いて説明した通りである。
Next, the
ここで、算出部132は、探索経路ごとに、運転負荷比率を算出する(ステップS1106)。例えば、算出部132は、経路探索に含まれるリンクのうち、WL種別「BUSY」が推定されたリンクを、対象車両VExが走行したと仮定した場合に推定される累積時間である第1の累積時間を算出する。また、算出部132は、経路探索に含まれるリンクのうち、WL種別「FREE」が推定されたリンクを、対象車両VExが走行したと仮定した場合に推定される累積時間である第2の累積時間を算出する。例えば、算出部132は、BUSY区間について予め判明している統計的な情報に基づいて、第1の累積時間および第2の累積時間を算出することができる。
Here, the
算出部132は、第1の累積時間と、第2の累積時間との比率である運転負荷比率を算出し運転負荷比率取得部133に伝送する(ステップS1107)。
The
運転負荷比率取得部133は、この時点で、第2のサーバ装置200から予測モデルを取得済みである。そこで、運転負荷比率取得部133は、運転負荷比率を予測モデルに入力し、探索経路ごとに、対象車両VExの予測走行時間を算出する(ステップS1108)。具体的には、運転負荷比率取得部133は、探索経路ごとに、当該探索経路を運転者DXが休憩なしで連続運転すると予測される予測走行時間を算出する。
At this point, the driving load ratio acquisition unit 133 has already acquired the prediction model from the
出力制御部134は、探索経路ごとに、当該探索経路について得られている予測走行時間に基づいて、当該探索経路を対象とした休憩タイミング(運転者DXが休憩すべきタイミング)を予測する(ステップS1109)。具体的には、出力制御部134は、現在時刻と、予測走行時間とに基づいて、休憩タイミングの時刻を予測する。 The output control unit 134 predicts, for each search route, the timing of rest (the timing when the driver DX should take a rest) for that search route based on the predicted travel time obtained for that search route (step S1109). Specifically, the output control unit 134 predicts the time of the rest timing based on the current time and the predicted travel time.
範囲特定部138は、探索経路ごとに検出されている変化地点のうち、当該探索経路について予測された休憩タイミングの時刻を基準として、所定時間範囲内で上回る到達時刻が予想された変化地点を、休憩候補地点として抽出する(ステップS1110)。なお、範囲特定部138は、休憩タイミングの時刻から所定時間範囲内で上回る到達時刻が存在しない場合には、休憩候補地点を抽出せずともよい。 The range determination unit 138 extracts, from among the change points detected for each search route, change points whose arrival times are predicted to exceed within a predetermined time range based on the time of the predicted rest timing for that search route as candidate rest points (step S1110). Note that the range determination unit 138 does not need to extract candidate rest points if there is no arrival time that exceeds within the predetermined time range from the time of the rest timing.
他の例として、範囲特定部138は、探索経路ごとに検出されている変化地点のうち、当該探索経路について予測された休憩タイミングの時刻を基準として、所定時間範囲内で下回る到達時刻が予想された変化地点を、休憩候補地点として抽出してもよい。 As another example, the range determination unit 138 may extract, from among the change points detected for each search route, change points whose arrival times are predicted to be below within a predetermined time range based on the time of the predicted rest timing for that search route, as candidate rest points.
ここで、図12(a)には、探索経路SR11等、計11の探索経路それぞれについて抽出された休憩候補地点が「×」印で示されている。このような状態において、範囲特定部138は、11個の休憩候補地点に基づいて、到達可能範囲を特定する(ステップS1111)。例えば、範囲特定部138は、図12(b)に示すように、11個の休憩候補地点を繋いで得られた領域ARを、ステップS1109で予測された休憩タイミングとなるまでに、運転者DXが休憩なしで到達可能と推定される範囲である到達可能範囲として特定する。 In FIG. 12(a), the candidate rest points extracted for each of the 11 search routes, including search route SR11, are indicated by "X" marks. In this state, the range determination unit 138 determines a reachable range based on the 11 candidate rest points (step S1111). For example, as shown in FIG. 12(b), the range determination unit 138 determines an area AR obtained by connecting the 11 candidate rest points as the reachable range that is estimated to be reachable by the driver DX without taking a break by the time of the break timing predicted in step S1109.
出力制御部134は、到達可能範囲ARが地図上に重畳表示された状態で運転者DXに提供されるよう車載装置10を制御する(ステップS1112)。なお、図12(b)には、休憩候補地点を単純に繋ぎ合わせて生成される形状を到達可能範囲ARとして特定する例が示されるが、到達可能範囲ARの生成手法は掛かる例に限定されない。例えば、範囲特定部138は、休憩候補地点を単純に繋ぎ合わせて生成される形状をより滑らかにした形状を到達可能範囲ARとして特定してもよい。また、範囲特定部138は、休憩候補地点に凸包のアルゴリズムを適用して得られたポリゴンを到達可能範囲ARとして特定してもよい。
The output control unit 134 controls the in-
ここで、上記例では、範囲特定部138が、運転者DXが休憩なしで到達可能と推定される範囲である到達可能範囲を特定する例を示した。しかしながら、範囲特定部138は、運転者DXが1回の休憩を挟んで到達可能と推定される範囲を特定してもよい。この点について、図12を用いて説明する。 In the above example, the range determination unit 138 determines a reachable range that is a range that the driver DX is estimated to be able to reach without taking a break. However, the range determination unit 138 may also determine a range that the driver DX is estimated to be able to reach with one break in between. This point will be explained using FIG. 12.
図12(a)の例では、範囲特定部138は、11の探索経路それぞれについて1つずつ休憩候補地点を抽出しているが、範囲特定部138は、これら休憩候補地点を走行開始地点と見做すことで、ステップS1101~ステップS1111を再度実行させる。具体的には、範囲特定部138は、休憩候補地点を走行開始地点と仮定して、休憩候補地点から対象車両VExで到達可能な範囲である到達可能範囲をさらに特定し、当該到達可能範囲に基づいて、運転者DXが1回の休憩を挟んで到達可能と推定される範囲を特定する。 In the example of FIG. 12(a), the range determination unit 138 extracts one candidate rest point for each of the eleven search routes, but the range determination unit 138 regards these candidate rest points as the starting point of travel and executes steps S1101 to S1111 again. Specifically, the range determination unit 138 assumes that the candidate rest points are the starting point of travel and further determines a reachable range, which is the range that can be reached from the candidate rest points by the target vehicle VEx, and determines a range that the driver DX is estimated to be able to reach with one rest break in between, based on the reachable range.
係る例によれば、例えば、11個の休憩候補地点それぞれからさらに伸延された複数の探索経路上の変化地点のうち、休憩タイミングの時刻を所定時間範囲内で上回る到達時刻が予想された変化地点が、休憩候補地点として抽出される。よって、単純な例では、11個の休憩候補地点に応じて、11個の到達可能範囲が特定されることになる。このような状態において、範囲特定部138は、例えば、11個の到達可能範囲を覆う1つのポリゴンを、運転者DXが1回の休憩を挟んで到達可能と推定される範囲として特定してよい。 According to this example, for example, among the change points on the multiple search routes that are further extended from each of the 11 candidate rest points, the change points whose predicted arrival times are greater than the rest timing within a predetermined time range are extracted as the candidate rest points. Therefore, in a simple example, 11 reachable ranges are identified according to the 11 candidate rest points. In this state, the range identification unit 138 may, for example, identify one polygon that covers the 11 reachable ranges as the range that is estimated to be reachable by the driver DX with one rest break in between.
(ハードウェア構成)
上述してきた情報処理装置(例えば、第1のサーバ装置100A、第1のサーバ装置100B、第2のサーバ装置200)は、例えば、図13に示すような構成のコンピュータ1000によって実現されてよい。図13は、実施形態に係る情報処理装置の機能を実現するコンピュータの一例を示すハードウェア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM1300、HDD1400、通信インターフェイス(I/F)1500、入出力インターフェイス(I/F)1600、及びメディアインターフェイス(I/F)1700を有する。
(Hardware configuration)
The above-described information processing devices (e.g., the
CPU1100は、ROM1300またはHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。
The CPU 1100 operates based on the programs stored in the
HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を格納する。通信インターフェイス1500は、所定の通信網を介して他の機器からデータを受信してCPU1100へ送り、CPU1100が生成したデータを所定の通信網を介して他の機器へ送信する。
CPU1100は、入出力インターフェイス1600を介して、ディスプレイ等の出力装置、及び、キーボード等の入力装置を制御する。CPU1100は、入出力インターフェイス1600を介して、入力装置からデータを取得する。また、CPU1100は、生成したデータを入出力インターフェイス1600を介して出力装置へ出力する。 The CPU 1100 controls an output device such as a display and an input device such as a keyboard via the input/output interface 1600. The CPU 1100 acquires data from the input device via the input/output interface 1600. The CPU 1100 also outputs generated data to the output device via the input/output interface 1600.
メディアインターフェイス1700は、記録媒体1800に格納されたプログラムまたはデータを読み取り、RAM1200を介してCPU1100に提供する。CPU1100は、かかるプログラムを、メディアインターフェイス1700を介して記録媒体1800からRAM1200上にロードし、ロードしたプログラムを実行する。記録媒体1800は、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。
The
例えば、コンピュータ1000が第1の実施形態に係る第1のサーバ装置100Aとして機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされたプログラムを実行することにより、制御部130Aの機能を実現する。コンピュータ1000のCPU1100は、これらのプログラムを記録媒体1800から読み取って実行するが、他の例として、他の装置から所定の通信網を介してこれらのプログラムを取得してもよい。
For example, when the computer 1000 functions as the
また、コンピュータ1000が第2の実施形態に係る第1のサーバ装置100Bとして機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされたプログラムを実行することにより、制御部130Bの機能を実現する。コンピュータ1000のCPU1100は、これらのプログラムを記録媒体1800から読み取って実行するが、他の例として、他の装置から所定の通信網を介してこれらのプログラムを取得してもよい。
Furthermore, when the computer 1000 functions as the
また、コンピュータ1000が実施形態に係る第2のサーバ装置200として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされたプログラムを実行することにより、制御部230の機能を実現する。コンピュータ1000のCPU1100は、これらのプログラムを記録媒体1800から読み取って実行するが、他の例として、他の装置から所定の通信網を介してこれらのプログラムを取得してもよい。
Furthermore, when the computer 1000 functions as the
(その他)
また、上記各実施形態において説明した処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
(others)
Furthermore, among the processes described in each of the above embodiments, all or part of the processes described as being performed automatically can be performed manually, or all or part of the processes described as being performed manually can be performed automatically by a known method. In addition, the information including the processing procedures, specific names, various data and parameters shown in the above documents and drawings can be changed arbitrarily unless otherwise specified. For example, the various information shown in each drawing is not limited to the illustrated information.
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。 Furthermore, each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure. In other words, the specific form of distribution and integration of each device is not limited to that shown in the figure, and all or part of them can be functionally or physically distributed and integrated in any unit depending on various loads, usage conditions, etc.
また、上記各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 In addition, the above embodiments can be combined as appropriate to the extent that the processing content is not contradictory.
以上、本願の実施形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、本発明の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。 Although several embodiments of the present application have been described in detail above with reference to the drawings, these are merely examples, and the present invention can be embodied in other forms that incorporate various modifications and improvements based on the knowledge of those skilled in the art, including the aspects described in the "present invention" section.
SyA システム
100A 第1のサーバ装置
120A 記憶部
121 地図情報記憶部
122 WL種別推定結果記憶部
123 比率情報記憶部
130A 制御部
131 推定部
132 算出部
133 運転負荷比率取得部
134 出力制御部
135 探索部
SyB システム
100B 第1のサーバ装置
120B 記憶部
124 範囲情報記憶部
130B 制御部
136 開始地点取得部
137 予測部
138 範囲特定部
Claims (14)
少なくとも前記運転負荷比率を用いて、前記運転者が休憩すべきタイミングを出力させる出力制御部と
を備えることを特徴とする情報処理装置。 An acquisition unit that acquires a driving load ratio indicating a ratio between a state in which a driving load of a driver is high and a state in which a driving load of a driver is low on a travel route of the target vehicle;
and an output control unit that uses at least the driving load ratio to output a timing when the driver should take a break.
ことを特徴とする請求項1に記載の情報処理装置。 The information processing device according to claim 1 , wherein the travel route of the target vehicle is an actual travel route traveled by continuous driving of the target vehicle from a start of travel to a current time.
ことを特徴とする請求項1に記載の情報処理装置。 The information processing device according to claim 1 , wherein the driving route of the target vehicle is a planned driving route that the driver of the target vehicle plans to drive.
前記対象車両の走行経路に含まれる道路区間のうち、前記運転負荷の種別として、基準値と比較して前記運転負荷が高いことを示す第1の種別が推定された道路区間を、前記対象車両が走行した累積時間である第1の累積時間と、前記対象車両の走行経路に含まれる道路区間のうち、前記運転負荷の種別として、基準値と比較して前記運転負荷が低いことを示す第2の種別が推定された道路区間を、前記対象車両が走行した累積時間である第2の累積時間とを算出する算出部と
をさらに備え、
前記取得部は、前記運転負荷が高い状態として前記第1の累積時間と、前記運転負荷が低い状態として前記第2の累積時間との比率を示す前記運転負荷比率を取得する
ことを特徴とする請求項1に記載の情報処理装置。 An estimation unit that estimates a type of driving load for each road section included in a travel route of the target vehicle;
a calculation unit that calculates a first cumulative time, which is a cumulative time that the target vehicle has traveled on road sections included in a driving route of the target vehicle, in which a first type, which indicates that the driving load is high compared to a reference value, is estimated as a type of the driving load, and a second cumulative time, which is a cumulative time that the target vehicle has traveled on road sections included in a driving route of the target vehicle, in which a second type, which indicates that the driving load is low compared to a reference value, is estimated as a type of the driving load,
The information processing device according to claim 1 , wherein the acquisition unit acquires the driving load ratio indicating a ratio between the first accumulated time in a state where the driving load is high and the second accumulated time in a state where the driving load is low.
前記取得部は、前記運転負荷比率と、前記予測モデルとに基づいて、前記対象車両の予測走行時間を算出し、
前記出力制御部は、前記対象車両の予測走行時間に基づいて、前記運転者が休憩すべきタイミングを予測する
ことを特徴とする請求項4に記載の情報処理装置。 A generating unit that generates a prediction model for predicting a driving time by continuous driving based on a driving record of a specific vehicle, the driving record being a driving record by continuous driving from the start of driving to the end of driving,
The acquisition unit calculates a predicted traveling time of the target vehicle based on the driving load ratio and the prediction model,
The information processing device according to claim 4 , wherein the output control unit predicts a timing for the driver to take a rest based on a predicted traveling time of the target vehicle.
前記生成部は、前記走行実績が示す走行経路に含まれる道路区間のうち、前記運転負荷の種別として、基準値と比較して前記運転負荷が高いことを示す第1の種別が推定された道路区間と、前記運転負荷の種別として、基準値と比較して前記運転負荷が低いことを示す第2の種別が推定された道路区間との比率であるモデル比率ごとに、前記所定の車両が連続運転された時間の平均である平均走行時間を算出し、前記モデル比率と、前記平均走行時間とに基づいて、前記予測モデルを生成し、
前記取得部は、前記運転負荷比率を入力として前記予測モデルが出力した出力情報に基づいて、前記対象車両の予測走行時間を算出する
ことを特徴とする請求項5に記載の情報処理装置。 The estimation unit estimates a type of driving load for each road section included in the driving route indicated by the driving record,
the generation unit calculates an average driving time, which is an average of the time that the predetermined vehicle was driven continuously, for each model ratio, which is a ratio between a road section in which a first type indicating that the driving load is high compared to a reference value and a road section in which a second type indicating that the driving load is low compared to a reference value, as the type of the driving load, among road sections included in the driving route indicated by the driving record, and generates the prediction model based on the model ratio and the average driving time;
The information processing device according to claim 5 , wherein the acquisition unit calculates a predicted travel time of the target vehicle based on output information output by the prediction model using the driving load ratio as an input.
ことを特徴とする請求項6に記載の情報処理装置。 The information processing device according to claim 6 , wherein the generation unit generates the prediction model based on a three-dimensional graph in which a relationship between the model ratio and the average running time is expressed in three dimensions.
ことを特徴とする請求項5に記載の情報処理装置。 The information processing device according to claim 5 , wherein the output control unit predicts a timing for the driver to take a rest based on a difference between a travel time of the target vehicle and the predicted travel time.
前記出力制御部は、前記休憩スポットを提案する提案情報を出力させる
ことを特徴とする請求項1に記載の情報処理装置。 A search unit is further provided to search for a rest spot that the target vehicle can reach by the time when the driver should take a rest,
The information processing device according to claim 1 , wherein the output control unit outputs suggestion information that suggests the rest spot.
ことを特徴とする請求項9に記載の情報処理装置。 The information processing device according to claim 9, characterized in that the search unit searches for the rest spot within a range of a predicted driving distance, which is a distance that the target vehicle is predicted to travel until the time to take the rest, and calculates a predicted arrival time, which is a time that the target vehicle is predicted to arrive at the rest spot.
前記出力制御部は、前記走行予定経路とともに、前記休憩スポットを提案する提案情報を出力させる
ことを特徴とする請求項9に記載の情報処理装置。 the search unit uses the driving load ratio corresponding to a planned driving route along which the driver is scheduled to drive the target vehicle as a driving route of the target vehicle, and when a timing at which the driver should take a rest is predicted, searches for rest spots within a range corresponding to a point on the planned driving route at which the driver is estimated to take a rest;
The information processing device according to claim 9 , wherein the output control unit outputs, together with the planned driving route, proposal information proposing the rest spots.
ことを特徴とする請求項11に記載の情報処理装置。 The information processing device according to claim 11 , wherein the planned driving route is a guide route searched based on a destination of the target vehicle.
対象車両の走行経路における運転者の運転負荷が高い状態と、運転負荷が低い状態との比率を示す運転負荷比率を取得する取得工程と、
少なくとも前記運転負荷比率を用いて、前記運転者が休憩すべきタイミングを出力させる出力制御工程と
を含むことを特徴とする情報処理方法。 An information processing method executed by an information processing device,
An acquisition step of acquiring a driving load ratio indicating a ratio between a state in which the driver's driving load is high and a state in which the driver's driving load is low on a travel route of the target vehicle;
and an output control step of outputting a timing when the driver should take a rest, using at least the driving load ratio.
対象車両の走行経路における運転者の運転負荷が高い状態と、運転負荷が低い状態との比率を示す運転負荷比率を取得する取得手順と、
少なくとも前記運転負荷比率を用いて、前記運転者が休憩すべきタイミングを出力させる出力制御手順と
を前記情報処理装置に実行させるための情報処理プログラム。 An information processing program executed by an information processing device,
An acquisition step of acquiring a driving load ratio indicating a ratio between a state in which the driver's driving load is high and a state in which the driver's driving load is low on a travel route of the target vehicle;
and an output control procedure for outputting a timing for the driver to take a rest, using at least the operating load ratio.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/014008 WO2024209566A1 (en) | 2023-04-04 | 2023-04-04 | Information processing device, information processing method, and information processing program |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/014008 WO2024209566A1 (en) | 2023-04-04 | 2023-04-04 | Information processing device, information processing method, and information processing program |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2024209566A1 true WO2024209566A1 (en) | 2024-10-10 |
Family
ID=92971464
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2023/014008 Pending WO2024209566A1 (en) | 2023-04-04 | 2023-04-04 | Information processing device, information processing method, and information processing program |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2024209566A1 (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009146185A (en) * | 2007-12-14 | 2009-07-02 | Fujitsu Ten Ltd | Degree-of-fatigue determination device |
| JP2019061480A (en) * | 2017-09-26 | 2019-04-18 | 株式会社Subaru | Driver support apparatus and driver support method |
| JP2022527912A (en) * | 2019-03-29 | 2022-06-07 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | Route search for individuals based on driver fatigue map |
-
2023
- 2023-04-04 WO PCT/JP2023/014008 patent/WO2024209566A1/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009146185A (en) * | 2007-12-14 | 2009-07-02 | Fujitsu Ten Ltd | Degree-of-fatigue determination device |
| JP2019061480A (en) * | 2017-09-26 | 2019-04-18 | 株式会社Subaru | Driver support apparatus and driver support method |
| JP2022527912A (en) * | 2019-03-29 | 2022-06-07 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | Route search for individuals based on driver fatigue map |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12067810B2 (en) | Intervention in operation of a vehicle having autonomous driving capabilities | |
| US12135547B2 (en) | Intervention in operation of a vehicle having autonomous driving capabilities | |
| KR102177826B1 (en) | Intervention in the operation of vehicles with autonomous driving capabilities | |
| US10514692B2 (en) | Intervention in operation of a vehicle having autonomous driving capabilities | |
| US20190258246A1 (en) | Intervention in operation of a vehicle having autonomous driving capabilities | |
| US10599141B2 (en) | Intervention in operation of a vehicle having autonomous driving capabilities | |
| US9919740B2 (en) | Situational deactivation of lane keep assist system | |
| JP2022516382A (en) | Autonomous vehicle planning and forecasting | |
| US11112789B2 (en) | Intervention in operation of a vehicle having autonomous driving capabilities | |
| JP2006208385A (en) | Travel planning method, system and logic program | |
| US11441908B2 (en) | Method for determining a destination different from an intended location, system, and motor vehicle equipped with a system | |
| JP7483343B2 (en) | Vehicle driving management system, vehicle driving management device, and vehicle driving management method | |
| CN112037518A (en) | Calculation method and system for predicting traffic state and vehicle | |
| JP5169572B2 (en) | Information providing apparatus and information providing method | |
| WO2024209566A1 (en) | Information processing device, information processing method, and information processing program | |
| WO2024209567A1 (en) | Information processing device, information processing method, and information processing program | |
| JP7537375B2 (en) | BEHAVIOR PREDICTION SYSTEM, BEHAVIOR PREDICTION DEVICE, BEHAVIOR PREDICTION METHOD, BEHAVIOR PREDICTION PROGRAM | |
| JP7605907B2 (en) | Method and system for dynamically reducing the complexity of 3D maps - Patents.com | |
| JP2024084534A (en) | Information processing device, information processing method, and information processing program | |
| EP4515181A1 (en) | Routing of an autonomous vehicle to arrive at a target time of arrival | |
| CN119354227A (en) | Method, device, storage medium and system for planning driving route memory | |
| CN119002327A (en) | Automatic driving vehicle |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23931978 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2025512269 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2025512269 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |