WO2024202466A1 - Computer program, information processing method, and information processing device - Google Patents
Computer program, information processing method, and information processing device Download PDFInfo
- Publication number
- WO2024202466A1 WO2024202466A1 PCT/JP2024/002133 JP2024002133W WO2024202466A1 WO 2024202466 A1 WO2024202466 A1 WO 2024202466A1 JP 2024002133 W JP2024002133 W JP 2024002133W WO 2024202466 A1 WO2024202466 A1 WO 2024202466A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- image data
- patient
- endovascular treatment
- vascular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/045—Control thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/313—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
Definitions
- the present invention relates to a computer program, an information processing method, and an information processing device.
- Intravascular treatments such as percutaneous coronary intervention (PCI) are used as minimally invasive treatments for ischemic heart diseases, such as angina pectoris or myocardial infarction.
- Intravascular imaging diagnostic devices such as ultrasound imaging diagnostic devices using ultrasound (IVUS: IntraVascular Ultra Sound) and optical coherence imaging diagnostic devices using near-infrared rays (OCT: Optical Coherence Tomography), are used for preoperative diagnosis in endovascular treatments or to confirm the results after surgery (see, for example, Patent Document 1).
- the prognosis of patients who have undergone endovascular treatment is thought to be influenced by the experience and skills of the doctor performing the treatment, as well as the patient's medical history, but it is difficult to predict the risk of a patient being readmitted to hospital after endovascular treatment.
- the objective of this disclosure is to provide a computer program, an information processing method, and an information processing device that can calculate the risk of readmission for patients who have undergone endovascular treatment.
- the present invention provides a computer program that (1) causes a computer to execute a process of acquiring tomographic image data obtained by scanning a patient's blood vessels after endovascular treatment and the patient's medical record information, calculating vascular information indicating the characteristics of the blood vessels after endovascular treatment based on the acquired tomographic image data, and inputting the calculated vascular information and the acquired medical record information into a learning model that outputs the readmission risk of the patient who has undergone endovascular treatment when vascular information based on the tomographic image data of the blood vessels and the patient's medical record information are input.
- the vascular information includes information regarding the presence or absence of vascular dissection, poor stent compression, poor stent expansion, protrusion, or minimum stent area (MSA), which are calculated based on tomographic image data after endovascular treatment.
- MSA minimum stent area
- the computer program of (1) or (2) above acquires tomographic image data obtained by scanning the patient's blood vessels before endovascular treatment, calculates vascular information indicating characteristics of the blood vessels before endovascular treatment based on the acquired tomographic image data of the blood vessels before endovascular treatment, and calculates the risk of readmission of the patient who underwent endovascular treatment by inputting the calculated vascular information based on the tomographic image data of the blood vessels before endovascular treatment, the vascular information based on the tomographic image data of the blood vessels after endovascular treatment, and the acquired medical record information into the learning model.
- the vascular information includes information relating to plaque burden, lipid plaque, attenuating plaque, calcified plaque, or unstable plaque calculated based on tomographic image data before endovascular treatment.
- the tomographic image data includes ultrasound tomographic image data obtained by scanning a blood vessel using ultrasound, and optical coherence tomographic image data obtained by scanning a blood vessel using light.
- the medical record information includes information relating to renal damage.
- the information processing method of the present invention is (7) an information processing method for acquiring tomographic image data and the patient's medical record information obtained by scanning the patient's blood vessels after endovascular treatment, calculating vascular information indicating the characteristics of the blood vessels after endovascular treatment based on the acquired tomographic image data, and inputting the calculated vascular information and the acquired medical record information into a learning model that outputs the readmission risk of the patient who underwent endovascular treatment when vascular information based on the tomographic image data of the blood vessels and the patient's medical record information are input.
- the information processing device of the present invention (8) is an information processing device that includes a learning model that outputs the risk of readmission of a patient who has undergone endovascular treatment when vascular information based on vascular tomographic image data and the patient's medical record information are input, an acquisition unit that acquires the tomographic image data and the patient's medical record information obtained by scanning the patient's blood vessels after endovascular treatment, and a processing unit that calculates vascular information indicating the characteristics of the blood vessels after endovascular treatment based on the acquired tomographic image data, and calculates the risk of readmission of a patient who has undergone endovascular treatment by inputting the calculated vascular information and the acquired medical record information.
- FIG. 1 is a block diagram showing an example of the configuration of an information processing device according to a first embodiment
- FIG. 2 is an explanatory diagram showing an information processing method according to the first embodiment
- 4 is a flowchart showing an information processing procedure according to the first embodiment
- FIG. 13 is a schematic diagram showing an example of a readmission risk display screen.
- FIG. 11 is an explanatory diagram showing an information processing method according to a second embodiment.
- (Embodiment 1) 1 is a block diagram showing an example of the configuration of an information processing device 1 according to embodiment 1.
- the information processing device 1 is a computer, and includes a processing unit 11, a storage unit 12, a display unit 13, an operation unit 14, and a communication unit 15. Each unit is connected via a bus.
- the information processing device 1 may be a multi-computer consisting of multiple computers, or may be a virtual machine virtually constructed by software.
- the processing unit 11 is an arithmetic processing device or processor having one or more CPUs (Central Processing Units), MPUs (Micro-Processing Units), GPUs (Graphics Processing Units), GPGPUs (General-purpose computing on graphics processing units), TPUs (Tensor Processing Units), etc.
- the processing unit 11 reads out and executes a computer program P (program product) stored in the memory unit 12, thereby implementing the information processing method of embodiment 1 and calculating the risk of readmission of a patient who has undergone endovascular treatment.
- a computer program P program product
- the communication unit 15 includes a communication circuit for performing communication processing with the diagnostic imaging device 3.
- the communication unit 15 transmits and receives various information with the diagnostic imaging device 3.
- the imaging diagnostic device 3 constitutes an imaging diagnostic system using, for example, a dual-type catheter equipped with both intravascular ultrasound (IVUS) and optical coherence tomography (OCT) functions.
- the imaging diagnostic device 3 includes an imaging diagnostic catheter, an MDU (Motor Drive Unit), and an image processing device.
- the imaging diagnostic catheter has a sensor unit that emits ultrasound or light at the tip.
- the MDU can perform a pull-back operation to rotate the sensor unit and shaft inserted into the probe of the imaging diagnostic catheter in a circumferential direction while pulling them toward the MDU side at a constant speed.
- the sensor unit rotates while moving from the tip side to the base end by the pull-back operation, and continuously scans the inside of the blood vessel at a predetermined time interval, and the imaging diagnostic device 3 can continuously generate multiple tomographic images approximately perpendicular to the probe based on the scanning results.
- the image processing unit acquires signal data based on reflected waves of ultrasound or light emitted from the sensor unit in the radial direction of the diagnostic imaging catheter toward the tubular organ, and generates IVUS image data (ultrasound tomographic image data) and OCT image data (optical coherence tomographic image data) that visualize the reflection intensity versus the distance from the sensor unit based on the acquired signal data.
- the diagnostic imaging device 3 transmits the generated IVUS image data and OCT image data to the information processing device 1.
- the information processing device 1 receives the IVUS image data and OCT image data transmitted from the diagnostic imaging device 3 at the communication unit 15.
- the IVUS image data and OCT image data will be collectively referred to as tomographic image data.
- the memory unit 12 has, for example, a main memory unit and an auxiliary memory unit.
- the main memory unit is a temporary storage area such as SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), or flash memory, and temporarily stores data necessary for the processing unit 11 to execute arithmetic processing.
- the auxiliary memory unit is a storage device such as a hard disk or EEPROM (Electrically Erasable Programmable ROM).
- the auxiliary memory unit stores the computer program P executed by the processing unit 11, the learning model 2, the electronic medical record DB 12a, the tomographic image DB 12b, and various other data necessary for processing. Details of the learning model 2 will be described later.
- the electronic medical record DB 12a stores the medical record information of patients undergoing endovascular treatment.
- the patient's name, date of birth, sex, height, weight, and medical history are stored in a patient ID that identifies the patient. It is preferable that the medical record information includes information indicating the presence or absence of renal impairment.
- the tomographic image DB 12b stores the IVUS image data and OCT image data of the patient that the information processing device 1 receives via the communication unit 15. Specifically, the tomographic image DB 12b stores the IVUS image data and OCT image data before the endovascular treatment and the IVUS image data and OCT image data after the endovascular treatment in association with the patient ID.
- the auxiliary storage unit may be an external storage device connected to the information processing device 1.
- the computer program P may be written to the auxiliary storage unit during the manufacturing stage of the information processing device 1, or the computer program P may be distributed by an external information processing device 1 and acquired by the information processing device 1 via communication and stored in the auxiliary storage unit.
- the computer program P may be recorded in a readable manner on a recording medium 1a such as a magnetic disk, optical disk, or semiconductor memory, and may be read from the recording medium 1a by a reading device and stored in the auxiliary storage unit.
- the display unit 13 is, for example, a display device such as a liquid crystal panel or an organic EL (Electro Luminescence) display.
- a display device such as a liquid crystal panel or an organic EL (Electro Luminescence) display.
- the operation unit 14 is, for example, an input device such as a touch panel, a hardware keyboard, or a mouse built into the display unit 13.
- a user can operate the information processing device 1 using the operation unit 14 to input information required for the readmission risk of patients who have undergone endovascular treatment and to display the readmission risk.
- FIG. 2 is an explanatory diagram showing an information processing method according to the first embodiment.
- the information processing device 1 includes a first feature calculation unit 11a and a second feature calculation unit 11b as functional units of the processing unit 11.
- the first feature calculation unit 11a calculates vascular information representing the characteristics of vascular lesions from the IVUS image data and OCT image data of the patient before endovascular treatment.
- the vascular information calculated from the IVUS image data and OCT image data before endovascular treatment includes information related to plaque burden, lipid plaque, attenuating plaque, calcified plaque, and unstable plaque.
- the vascular information calculated in this manner is input to the learning model 2.
- the information related to plaque burden includes the ratio of the plaque cross-sectional area to the blood vessel cross-sectional area. It is preferable that the plaque burden is calculated using both IVUS image data and OCT image data.
- the first feature calculation unit 11a calculates the blood vessel diameter based on the IVUS image data and calculates the lumen diameter based on the OCT image data.
- the blood vessel diameter is a distance obtained by detecting a closed curve showing the boundary of the external elastic lamina (blood vessel) on the image, setting the center of gravity based on the detected closed curve, and then measuring the linear distance between the center of gravity and the closed curve on the image.
- the blood vessel diameter may be a statistical value such as the average diameter, maximum diameter, and minimum diameter of the distance measured at multiple circumferential positions.
- the method of calculating the blood vessel diameter is not particularly limited, and it is sufficient that the square value roughly corresponds to the cross-sectional area of the inner space of the blood vessel when a state in which no plaque is attached is assumed.
- the lumen diameter is a distance obtained by detecting a closed curve showing the boundary of the lumen on an image, setting a center of gravity based on the detected closed curve, and then measuring the linear distance between the center of gravity and the closed curve on the image.
- the lumen diameter may be a statistical value such as an average diameter, a maximum diameter, or a minimum diameter of the distance measured at a plurality of circumferential positions.
- the method of calculating the lumen diameter is not particularly limited, and the square value may be any value that roughly corresponds to the cross-sectional area of the inner space of the blood vessel to which plaque is attached.
- the blood vessel diameter may be a numerical value that represents the size of the inner space of the blood vessel before plaque is attached
- the lumen diameter may be a numerical value that represents the size of the inner space of the blood vessel to which plaque is attached.
- the first feature amount calculation unit 11a calculates the ratio (plaque burden) of the cross-sectional area of the plaque to the blood vessel media area (blood vessel cross-sectional area) based on the calculated blood vessel diameter and lumen diameter.
- the plaque burden is expressed as (blood vessel media area - blood vessel lumen area) / blood vessel media area.
- the first feature amount calculator 11a calculates the maximum or average value of plaque burden (plaque burden per unit length) as vascular information.
- the average plaque burden is expressed as the sum of the plaque cross-sectional area over the entire lesion/lesion length.
- the information related to lipid plaque includes the presence or absence of lipid plaque, the number of lipid plaques, the maximum angle indicating the circumferential spread of lipid plaque in the cross section of the blood vessel, the area of lipid plaque, etc.
- the area of lipid plaque includes, for example, the maximum or average value of the lipid plaque area in the lesion (lipid plaque area per unit length). The average value is expressed as the sum of the lipid plaque area over the entire lesion/lesion length. It is preferable that the information related to lipid plaque is calculated based on OCT image data and IVUS image data.
- Information related to attenuating plaque includes the presence or absence of attenuating plaque, the number of attenuating plaques, the maximum angle indicating the circumferential spread of attenuating plaque in the cross section of the blood vessel, the area of attenuating plaque, etc.
- the area of attenuating plaque includes, for example, the maximum or average value of the attenuating plaque area in the lesion (attenuating plaque area per unit length). The average value is expressed as the sum of the attenuating plaque areas over the entire lesion/lesion length.
- Attenuating plaque is, for example, lipid plaque.
- Attenuating plaque is plaque defined based on IVUS image data, and is therefore calculated based on IVUS image data.
- Information related to calcified plaque includes the presence or absence of calcified plaque, the number of calcified plaques, the maximum angle indicating the circumferential spread of calcified plaque in the cross section of the blood vessel, the area of calcified plaque, etc.
- the area of calcified plaque includes, for example, the maximum or average value of the area of calcified plaque in the lesion (calcified plaque area per unit length). The average value is expressed as the total value of the area of calcified plaque over the entire lesion/lesion length. It is preferable that the presence or absence and the number of calcified plaques are calculated based on IVUS image data. It is preferable that the area of calcified plaques is calculated based on OCT image data.
- Information related to unstable plaque includes the presence or absence of unstable plaque, the number of unstable plaques, the area of unstable plaques, etc. It is preferable that information related to unstable plaques is calculated using both IVUS image data and OCT image data.
- the second feature calculation unit 11b calculates vascular information representing the characteristics of the vascular lesion from the IVUS image data and OCT image data of the patient after endovascular treatment.
- the vascular information calculated from the IVUS image data and OCT image data after endovascular treatment includes information related to the presence or absence of vascular dissection, poor stent crimping, poor stent expansion, tissue protrusion (vascular tissue protruding into the lumen from the stent mesh), and minimum stent area.
- the vascular information calculated in this way is input to learning model 2.
- Information related to vascular dissection includes, for example, the presence or absence of a vascular dissection, the maximum angle indicating the circumferential extent of the vascular dissection in the vascular cross section, and the length of the vascular dissection in the longitudinal direction of the vascular dissection.
- Information related to stent poor crimping includes, for example, the presence or absence of stent poor crimping, the maximum distance between the stent and the blood vessel wall in the area where the stent poor crimping occurs, and the length of the blood vessel in the longitudinal direction in the area where the stent poor crimping occurs.
- Information related to poor stent expansion includes the ratio of the blood vessel diameter in the normal area to the minimum stent area. It is preferable that the minimum stent area is calculated using OCT image data, and the blood vessel diameter in the normal area is calculated using IVUS image data.
- the learning model 2 is a trained model that has been trained to output a patient's risk of readmission from vascular information based on IVUS and OCT images and the patient's medical record information through machine learning using teacher data.
- the learning model 2 performs a predetermined calculation on the input values and outputs the calculation results, and the memory unit 12 stores data such as coefficients and thresholds of functions that define this calculation as the learning model 2.
- the processing unit 11 By reading the data stored as the learning model 2, the processing unit 11 becomes able to execute calculation processing of the risk of readmission from vascular information and medical record information extracted from IVUS and OCT images.
- the learning process of the learning model 2 is performed by a learning computer.
- Data related to the learned learning model 2 may be provided in the form of distribution via a communication network, similar to the computer program P, or may be provided in the form of being recorded on a recording medium 1a.
- the learning model 2 is a neural network having an input layer 2a to which vascular information calculated based on IVUS images and OCT images of the patient before endovascular treatment, vascular information calculated based on IVUS images and OCT images of the patient after endovascular treatment, and medical record information of the patient are input, an intermediate layer 2b that extracts features of the vascular information and medical record information, and an output layer 2c that outputs the risk of readmission calculated based on the extracted features.
- the input layer 2a of the neural network has multiple neurons to which vascular information and medical record information are input, and passes each input data to the intermediate layer 2b.
- the intermediate layer 2b has multiple layers made up of multiple neurons. Each layer extracts features related to the risk of readmission from the input data and passes them on to the next layer in turn, with the last layer passing them on to the output layer 2c.
- the output layer 2c includes neurons that output the calculation results, and these neurons output the readmission risk of a patient who has undergone endovascular treatment.
- the readmission risk is, for example, a real value between 0 and 1. "0" indicates the lowest readmission risk, and "1" indicates the highest readmission risk.
- the learning model 2 is a general neural network, but it may also be a model having a configuration such as other neural networks such as a transformer, an SVM (Support Vector Machine), a Bayesian network, or a regression tree.
- a transformer an example has been described in which the learning model 2 is a general neural network, but it may also be a model having a configuration such as other neural networks such as a transformer, an SVM (Support Vector Machine), a Bayesian network, or a regression tree.
- SVM Small Vector Machine
- Bayesian network a Bayesian network
- a learning method for the learning model 2 will be described.
- the computer collects a plurality of IVUS images, OCT images, and medical record information that are the source of the training data.
- the computer generates training data by adding training data indicating the risk of re-admission of the patient to the vascular information and medical record information calculated based on the IVUS images and OCT images of the patient.
- the computer generates the learning model 2 by performing machine learning or deep learning on the pre-training neural network model using the generated training data.
- the computer inputs the vascular information and medical record information contained in the learning data into the pre-learning neural network model, and obtains the readmission risk output from the output layer 2c through arithmetic processing in the intermediate layer 2b.
- the computer compares the readmission risk output from the output layer 2c with the readmission risk indicated by the teacher data, and optimizes the parameters used in the arithmetic processing in the intermediate layer 2b so that the readmission risk output from the output layer 2c approaches the correct value.
- the parameters are, for example, weights (coupling coefficients) between neurons.
- the computer optimizes various parameters using the steepest descent method or the like.
- the information processing device 1 obtains a trained learning model 2 by repeatedly performing the above process based on the training data of a large number of patients contained in the training data.
- FIG. 3 is a flowchart showing the information processing procedure according to the first embodiment.
- the processing unit 11 of the information processing device 1 reads out the medical record information of a patient who is to be evaluated for risk of readmission from the electronic medical record DB 12a (step S11).
- the processing unit 11 acquires IVUS image data and OCT image data before and after endovascular treatment of the patient who is to be evaluated for risk of readmission (step S12).
- the processing unit 11 may be configured to acquire the IVUS image data and OCT image data from the imaging diagnostic device 3 via the communication unit 15, or may be configured to read out these data from the tomographic image DB 12b.
- the processing unit 11 which functions as the first feature calculation unit 11a, calculates vascular information such as information related to plaque burden, lipid plaque, attenuating plaque, calcified plaque, and unstable plaque based on the IVUS image data and OCT image data before the endovascular treatment (step S13).
- the processing unit 11 which functions as the second feature calculation unit 11b, calculates vascular information such as information related to vascular dissection, poor stent compression, and poor stent expansion based on the IVUS image data and OCT image data after endovascular treatment (step S14).
- the processing unit 11 inputs the vascular information before the endovascular treatment calculated in step S13, the vascular information calculated in step S14, and the medical record information acquired in step S11 into the learning model 2 to calculate the patient's risk of readmission (step S15).
- the processing unit 11 displays the patient's risk of readmission on the display unit 13 (step S16), and ends the process.
- FIG. 4 is a schematic diagram showing an example of the readmission risk display screen 4.
- the processing unit 11 may be configured to display the readmission risk display screen 4 as shown in FIG. 4 in step S16.
- the readmission risk display screen 4 includes, for example, a medical record information display section 41, a pre-treatment tomographic image display section 42, a post-treatment tomographic image display section 43, a pre-treatment vascular information display section 44, a post-treatment vascular information display section 45, a readmission risk display gauge 46, and an output result explanation section 47.
- the medical record information display unit 41 is a frame that displays the electronic medical record information of the patient who is the subject of an evaluation of the risk of readmission.
- the processing unit 11 displays the medical record information acquired in step S11 on the medical record information display unit 41.
- the pre-treatment tomographic image display section 42 and the post-treatment tomographic image display section 43 are frames that display tomographic image data before and after endovascular treatment.
- the pre-treatment vascular information display section 44 is a frame that displays vascular information before endovascular treatment
- the post-treatment vascular information display section 45 is a frame that displays vascular information after endovascular treatment.
- the readmission risk display gauge 46 includes a bar to indicate the degree of risk, ranging from low risk to high risk, and a line image indicating the degree of risk, and indicates the patient's risk of readmission depending on the display position of the line image.
- the output result explanation unit 47 displays the importance of each of the multiple vascular information and medical record information with respect to the readmission risk output by the learning model 2.
- the processing unit 11 can calculate the importance of each of the multiple vascular information and medical record information with respect to the readmission risk output by the learning model 2, for example, by using XAI (XAI: Explainable AI) technology.
- XAI is a technology that outputs the factor contribution rate for each piece of information input to the machine learning model and presents to humans in an explainable manner which input information led to the output result (readmission risk).
- XRAI EXplanation with Ranked Area Integrals
- the output result explanation unit 47 displays, for example, the importance of each of the various vascular information before and after endovascular treatment, and the electronic medical record information, i.e., the magnitude of the influence on the output result of the learning model 2, in numerical or graphical form.
- the output result explanation unit 47 displays characters representing the various vascular information before and after endovascular treatment, and the electronic medical record information, in association with a meter bar indicating the importance of each piece of information.
- the magnitude of the importance of each piece of information is represented by the length of the meter bar.
- the information processing device 1 configured in this manner can calculate the risk of readmission of a patient who has undergone endovascular treatment based on the tomographic image data of the patient's blood vessels and the patient's medical record information.
- the information processing device 1 according to the second embodiment differs from the first embodiment in that IVUS image data and OCT image data are also input to the learning model. Since the other configurations of the information processing device 1 are similar to those of the information processing device 1 according to the first embodiment, the same reference numerals are used for similar parts and detailed description will be omitted.
- the learning model 202 includes, for example, a convolutional neural network (CNN) that has been trained by deep learning.
- the learning model 202 according to the second embodiment is a neural network having an input layer 202a to which, for example, vascular information calculated based on IVUS images and OCT images of a patient before endovascular treatment, vascular information calculated based on IVUS images and OCT images of a patient after endovascular treatment, IVUS image data before and after endovascular treatment, OCT image data before and after endovascular treatment, and medical record information of the patient are input, an intermediate layer 202b that extracts features of the vascular information, tomographic image data, and medical record information, and an output layer 202c that outputs a readmission risk calculated based on the extracted features.
- CNN convolutional neural network
- step S15 described in embodiment 1 the processing unit 11 inputs vascular information before and after endovascular treatment, IVUS image data before and after endovascular treatment, OCT image data before and after endovascular treatment, and medical record information into the learning model 202 to calculate the patient's risk of readmission.
- vascular information that cannot be extracted by rule-based processing can be extracted from tomographic image data, and the risk of readmission to the patient can be calculated more accurately.
- Information processing device 1a Recording medium 2: Learning model 3: Image diagnostic device 4: Readmission risk display screen 11: Processing unit 12: Memory unit 13: Display unit 14: Operation unit 15: Communication unit 41: Medical record information display unit 42: Pre-treatment tomographic image display unit 43: Post-treatment tomographic image display unit 44: Pre-treatment vascular information display unit 45: Post-treatment vascular information display unit 46: Readmission risk display gauge 47: Output result explanation unit 202: Learning model P: Computer program
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Optics & Photonics (AREA)
- Image Analysis (AREA)
Abstract
Description
本発明は、コンピュータプログラム、情報処理方法及び情報処理装置に関する。 The present invention relates to a computer program, an information processing method, and an information processing device.
狭心症又は心筋梗塞等の虚血性心疾患に対する低侵襲治療として、経皮的冠動脈インターベンション(PCI: Percutaneous Coronary Intervention)に代表される血管内治療が行われている。血管内治療における術前診断、又は術後の結果確認のために、超音波を用いた超音波画像診断装置(IVUS:IntraVascular Ultra Sound)、近赤外線を用いた光干渉画像診断装置(OCT: Optical Coherence Tomography)等の血管内画像診断装置が使用されている(例えば、特許文献1)。 Intravascular treatments, such as percutaneous coronary intervention (PCI), are used as minimally invasive treatments for ischemic heart diseases, such as angina pectoris or myocardial infarction. Intravascular imaging diagnostic devices, such as ultrasound imaging diagnostic devices using ultrasound (IVUS: IntraVascular Ultra Sound) and optical coherence imaging diagnostic devices using near-infrared rays (OCT: Optical Coherence Tomography), are used for preoperative diagnosis in endovascular treatments or to confirm the results after surgery (see, for example, Patent Document 1).
ところで、血管内治療を受けた患者の予後は、血管内治療を行う医師の経験や技術、患者の既往歴などが影響していると考えられるが、血管内治療後の患者の再入院リスクを予測することは難しい。 The prognosis of patients who have undergone endovascular treatment is thought to be influenced by the experience and skills of the doctor performing the treatment, as well as the patient's medical history, but it is difficult to predict the risk of a patient being readmitted to hospital after endovascular treatment.
本開示の目的は、血管内治療を受けた患者の再入院リスクを算出することができるコンピュータプログラム、情報処理方法及び情報処理装置を提供することにある。 The objective of this disclosure is to provide a computer program, an information processing method, and an information processing device that can calculate the risk of readmission for patients who have undergone endovascular treatment.
本発明は、(1)血管内治療後の患者の血管を走査して得た断層画像データ及び患者のカルテ情報を取得し、取得した断層画像データに基づいて、血管内治療後の血管の特徴を示す血管情報を算出し、血管の断層画像データに基づく血管情報と、患者のカルテ情報とが入力された場合に、血管内治療を受けた前記患者の再入院リスクを出力する学習モデルに、算出した血管情報と、取得したカルテ情報とを入力することによって、血管内治療を受けた患者の再入院リスクを算出する処理をコンピュータに実行させるコンピュータプログラム。 The present invention provides a computer program that (1) causes a computer to execute a process of acquiring tomographic image data obtained by scanning a patient's blood vessels after endovascular treatment and the patient's medical record information, calculating vascular information indicating the characteristics of the blood vessels after endovascular treatment based on the acquired tomographic image data, and inputting the calculated vascular information and the acquired medical record information into a learning model that outputs the readmission risk of the patient who has undergone endovascular treatment when vascular information based on the tomographic image data of the blood vessels and the patient's medical record information are input.
(2)上記(1)のコンピュータプログラムは、前記血管情報が、血管内治療後の断層画像データに基づいて算出される血管の解離の有無、ステント圧着不良、ステント拡張不良、プロトリュージョン、又は最小ステント面積(MSA:Minimum Stent Area)に係る情報を含むことが好ましい。
(3)上記(1)又は(2)のコンピュータプログラムは、血管内治療前の患者の血管を走査して得た断層画像データを取得し、取得した血管内治療前の血管の断層画像データに基づいて、血管内治療前の血管の特徴を示す血管情報を算出し、算出した血管内治療前の血管の断層画像データに基づく血管情報と、血管内治療後の血管の断層画像データに基づく血管情報と、取得したカルテ情報とを前記学習モデルに入力することによって、血管内治療を受けた患者の再入院リスクを算出することが好ましい。
(4)上記(1)から(3)のいずれか一つに記載のコンピュータプログラムは、前記血管情報が、血管内治療前の断層画像データに基づいて算出されるプラークバーデン、脂質性プラーク、減衰性プラーク、石灰化プラーク又は不安定プラークに係る情報を含むことが好ましい。
(5)上記(1)から(4)のいずれか一つに記載のコンピュータプログラムは、前記断層画像データが、超音波を用いて血管を走査することにより得られる超音波断層画像データと、光を用いて血管を走査することにより得られる光干渉断層画像データとを含むことが好ましい。
(6)上記(1)から(5)のいずれか一つに記載のコンピュータプログラムは、前記カルテ情報が、腎障害に係る情報を含むことが好ましい。
(2) In the computer program of (1) above, it is preferable that the vascular information includes information regarding the presence or absence of vascular dissection, poor stent compression, poor stent expansion, protrusion, or minimum stent area (MSA), which are calculated based on tomographic image data after endovascular treatment.
(3) It is preferable that the computer program of (1) or (2) above acquires tomographic image data obtained by scanning the patient's blood vessels before endovascular treatment, calculates vascular information indicating characteristics of the blood vessels before endovascular treatment based on the acquired tomographic image data of the blood vessels before endovascular treatment, and calculates the risk of readmission of the patient who underwent endovascular treatment by inputting the calculated vascular information based on the tomographic image data of the blood vessels before endovascular treatment, the vascular information based on the tomographic image data of the blood vessels after endovascular treatment, and the acquired medical record information into the learning model.
(4) In the computer program described in any one of (1) to (3) above, it is preferable that the vascular information includes information relating to plaque burden, lipid plaque, attenuating plaque, calcified plaque, or unstable plaque calculated based on tomographic image data before endovascular treatment.
(5) In the computer program described in any one of (1) to (4) above, it is preferable that the tomographic image data includes ultrasound tomographic image data obtained by scanning a blood vessel using ultrasound, and optical coherence tomographic image data obtained by scanning a blood vessel using light.
(6) In the computer program according to any one of (1) to (5) above, it is preferable that the medical record information includes information relating to renal damage.
本発明の情報処理方法は、(7)血管内治療後の患者の血管を走査して得た断層画像データ及び患者のカルテ情報を取得し、取得した断層画像データに基づいて、血管内治療後の血管の特徴を示す血管情報を算出し、血管の断層画像データに基づく血管情報と、患者のカルテ情報とが入力された場合に、血管内治療を受けた前記患者の再入院リスクを出力する学習モデルに、算出した血管情報と、取得したカルテ情報とを入力することによって、血管内治療を受けた患者の再入院リスクを算出する情報処理方法。 The information processing method of the present invention is (7) an information processing method for acquiring tomographic image data and the patient's medical record information obtained by scanning the patient's blood vessels after endovascular treatment, calculating vascular information indicating the characteristics of the blood vessels after endovascular treatment based on the acquired tomographic image data, and inputting the calculated vascular information and the acquired medical record information into a learning model that outputs the readmission risk of the patient who underwent endovascular treatment when vascular information based on the tomographic image data of the blood vessels and the patient's medical record information are input.
本発明の情報処理装置は、(8)血管の断層画像データに基づく血管情報と、患者のカルテ情報とが入力された場合に、血管内治療を受けた前記患者の再入院リスクを出力する学習モデルと、血管内治療後の患者の血管を走査して得た断層画像データ及び患者のカルテ情報を取得する取得部と、取得した断層画像データに基づいて、血管内治療後の血管の特徴を示す血管情報を算出し、算出した血管情報と、取得したカルテ情報とを入力することによって、血管内治療を受けた患者の再入院リスクを算出する処理部とを備える情報処理装置。 The information processing device of the present invention (8) is an information processing device that includes a learning model that outputs the risk of readmission of a patient who has undergone endovascular treatment when vascular information based on vascular tomographic image data and the patient's medical record information are input, an acquisition unit that acquires the tomographic image data and the patient's medical record information obtained by scanning the patient's blood vessels after endovascular treatment, and a processing unit that calculates vascular information indicating the characteristics of the blood vessels after endovascular treatment based on the acquired tomographic image data, and calculates the risk of readmission of a patient who has undergone endovascular treatment by inputting the calculated vascular information and the acquired medical record information.
本開示によれば、血管内治療を受けた患者の再入院リスクを算出することができる。 According to this disclosure, it is possible to calculate the risk of readmission for patients who have undergone endovascular treatment.
本開示の実施形態に係るコンピュータプログラム、情報処理方法及び情報処理装置を、以下に図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。また、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。 A computer program, an information processing method, and an information processing device according to embodiments of the present disclosure will be described below with reference to the drawings. Note that the present disclosure is not limited to these examples, but is indicated by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims. In addition, at least some of the embodiments described below may be combined in any desired manner.
(実施形態1)
図1は、実施形態1に係る情報処理装置1の構成例を示すブロック図である。情報処理装置1は、コンピュータであり、処理部11、記憶部12、表示部13、操作部14及び通信部15を備える。各部はバスにより接続されている。なお、情報処理装置1は複数のコンピュータからなるマルチコンピュータであってもよく、ソフトウェアによって仮想的に構築された仮想マシンであってもよい。
(Embodiment 1)
1 is a block diagram showing an example of the configuration of an information processing device 1 according to embodiment 1. The information processing device 1 is a computer, and includes a
処理部11は、一又は複数のCPU(Central Processing Unit)、MPU(Micro-Processing Unit)、GPU(Graphics Processing Unit)、GPGPU(General-purpose computing on graphics processing units)、TPU(Tensor Processing Unit)等を有する演算処理装置又はプロセッサである。処理部11は、記憶部12が記憶するコンピュータプログラムP(プログラム製品)を読み出して実行することにより、実施形態1に係る情報処理方法を実施し、血管内治療を受けた患者の再入院リスクを算出する。
The
通信部15は、画像診断装置3との間で通信処理を行うための通信回路を含む。通信部15は、画像診断装置3との間で各種情報の送受信を行う。
The
画像診断装置3は、例えば、血管内超音波診断法(IVUS)及び光干渉断層診断法(OCT)の両方の機能を備えるデュアルタイプのカテーテルを用いた画像診断システムを構成する。画像診断装置3は、画像診断用カテーテルと、MDU(Motor Drive Unit)と、画像処理装置とを備える。画像診断用カテーテルは超音波又は光を発するセンサ部を先端側に有する。MDUは、画像診断用カテーテルのプローブに内挿されたセンサ部及びシャフトを一定の速度でMDU側に向けて引っ張りながら周方向に回転させるプルバック操作を行うことができる。センサ部は、プルバック操作によって先端側から基端側に移動しながら回転しつつ、所定の時間間隔で連続的に血管内を走査し、画像診断装置3は、走査結果に基づいてプローブに略垂直な複数枚の断層画像を連続的に生成することができる。画像処理部は、管腔器官に対して前記センサ部から前記画像診断用カテーテルの径方向へ発した超音波又は光の反射波に基づく信号データを取得し、取得した信号データに基づいて、センサ部からの距離に対する反射強度をイメージ化したIVUS画像データ(超音波断層画像データ)及びOCT画像データ(光干渉断層画像データ)を生成する。画像診断装置3は、生成したIVUS画像データ及びOCT画像データを情報処理装置1へ送信する。情報処理装置1は、画像診断装置3から送信されたIVUS画像データ及びOCT画像データを通信部15にて受信する。以下、IVUS画像データ及びOCT画像データを合わせて断層画像データと呼ぶ。
The imaging
記憶部12は、例えば主記憶部及び補助記憶部を有する。主記憶部は、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、フラッシュメモリ等の一時記憶領域であり、処理部11が演算処理を実行するために必要なデータを一時的に記憶する。補助記憶部は、ハードディスク、EEPROM(Electrically Erasable Programmable ROM)等の記憶装置である。補助記憶部は、処理部11が実行するコンピュータプログラムP、学習モデル2、電子カルテDB12a、断層画像DB12b、その他の処理に必要な各種データを記憶する。学習モデル2の詳細は後述する。
The
電子カルテDB12aは、血管内治療を受ける患者のカルテ情報を記憶する。例えば、患者を識別する患者IDに、当該患者の氏名、生年月日、性別、身長、体重、既往歴を記憶する。カルテ情報は、腎障害の有無を示す情報を含む構成が好ましい。 The electronic medical record DB 12a stores the medical record information of patients undergoing endovascular treatment. For example, the patient's name, date of birth, sex, height, weight, and medical history are stored in a patient ID that identifies the patient. It is preferable that the medical record information includes information indicating the presence or absence of renal impairment.
断層画像DB12bは、情報処理装置1が通信部15にて受信した患者のIVUS画像データ及びOCT画像データを記憶する。具体的には、断層画像DB12bは、患者IDに対応付けて、血管内治療前のIVUS画像データ及びOCT画像データと、血管内治療後のIVUS画像データ及びOCT画像データを対応付けて記憶する。
The
なお、補助記憶部は情報処理装置1に接続された外部記憶装置であってもよい。コンピュータプログラムPは、情報処理装置1の製造段階において補助記憶部に書き込まれてもよいし、外部の情報処理装置1が配信するものを情報処理装置1が通信にて取得して補助記憶部に記憶させてもよい。コンピュータプログラムPは、磁気ディスク、光ディスク、半導体メモリ等の記録媒体1aに読み出し可能に記録された態様であってもよく、読取装置が記録媒体1aから読み出して補助記憶部に記憶させてもよい。
The auxiliary storage unit may be an external storage device connected to the information processing device 1. The computer program P may be written to the auxiliary storage unit during the manufacturing stage of the information processing device 1, or the computer program P may be distributed by an external information processing device 1 and acquired by the information processing device 1 via communication and stored in the auxiliary storage unit. The computer program P may be recorded in a readable manner on a
表示部13は、例えば、液晶パネル又は有機EL(Electro Luminescence)ディスプレイ等の表示装置である。
The
操作部14は、例えば、表示部13に組み込まれたタッチパネル、ハードウェアキーボード、マウス等の入力装置である。ユーザ(医療関係者)は、操作部14を用いて情報処理装置1を操作し、血管内治療を受けた患者の再入院リスクに必要な情報の入力、再入院リスクの表示操作を行うことができる。
The
図2は、実施形態1に係る情報処理方法を示す説明図である。情報処理装置1は、処理部11の機能部としての第1特徴量算出部11aと、第2特徴量算出部11bとを備える。
FIG. 2 is an explanatory diagram showing an information processing method according to the first embodiment. The information processing device 1 includes a first
第1特徴量算出部11aは、血管内治療前の患者のIVUS画像データ及びOCT画像データから血管の病変部の特徴を表した血管情報を算出する。血管内治療前のIVUS画像データ及びOCT画像データから算出される血管情報は、プラークバーデン、脂質性プラーク、減衰性プラーク、石灰化プラーク及び不安定プラークに係る情報を含む。このようにして算出された血管情報は学習モデル2に入力される。
The first
プラークバーデンに係る情報は、血管断面積に対するプラーク断面積の比率を含む。プラークバーデンは、IVUS画像データ及びOCT画像データの両方を用いて算出する構成が好ましい。第1特徴量算出部11aは、IVUS画像データに基づいて血管径を算出し、OCT画像データに基づいて内腔径を算出する。血管径は、画像上で外弾性板(血管)の境界を示す閉曲線を検出し、検出した閉曲線に基づいて重心を設定し、その上で、重心と閉曲線との直線距離を画像上で計測することによって得られる距離である。重心と閉曲線との直線距離は、重心から閉曲線へ向かう方向によって異なるため、複数の周方向位置で計測される距離の平均径、最大径、最小径等の統計値を血管径とすればよい。血管径の算出方法は特に限定されるものではなく、その二乗値が、プラークが付着していない状態を想定した場合の血管の内側空間の断面積に概ね対応するものであればよい。同様に、内腔径は、画像上で内腔の境界を示す閉曲線を検出し、検出した閉曲線に基づいて重心を設定し、その上で、重心と閉曲線との直線距離を画像上で計測することによって得られる距離である。重心と閉曲線との直線距離は、重心から閉曲線へ向かう方向によって異なるため、複数の周方向位置で計測される距離の平均径、最大径、最小径等の統計値を内腔径とすればよい。内腔径の算出方法は特に限定されるものではなく、その二乗値が、プラークが付着している血管の内側空間の断面積に概ね対応するものであればよい。要するに、血管径はプラーク付着前の血管の内側空間の大きさを、内腔径は、プラークが付着した血管の内側空間の大きさを表す数値であればよい。第1特徴量算出部11aは、算出した血管径及び内腔径に基づいて、血管中膜面積(血管断面積)に占めるプラーク断面積の割合(プラークバーデン)を算出する。プラークバーデンは、(血管中膜面積-血管内腔面積)/血管中膜面積で表される。そして、第1特徴量算出部11aは、プラークバーデンの最大値又は平均値(単位長さ当たりのプラークバーデン)を血管情報として算出する。平均プラークバーデンは、病変部全体にわたるプラーク断面積の合計値/病変長で表される。
The information related to plaque burden includes the ratio of the plaque cross-sectional area to the blood vessel cross-sectional area. It is preferable that the plaque burden is calculated using both IVUS image data and OCT image data. The first
脂質性プラークに係る情報は、脂質性プラークの有無、脂質性プラークの数、血管断面における脂質性プラークの周方向の広がりを示す最大角度、脂質性プラークの面積等を含む。脂質性プラークの面積は、例えば病変部における脂質性プラーク面積の最大値又は平均値(単位長さ当たりの脂質性プラーク面積)を含む。平均値は、病変部全体にわたる脂質性プラーク面積の合計値/病変長で表される。脂質性プラークに係る情報は、OCT画像データ及びIVUS画像データに基づいて算出する構成が好ましい。 The information related to lipid plaque includes the presence or absence of lipid plaque, the number of lipid plaques, the maximum angle indicating the circumferential spread of lipid plaque in the cross section of the blood vessel, the area of lipid plaque, etc. The area of lipid plaque includes, for example, the maximum or average value of the lipid plaque area in the lesion (lipid plaque area per unit length). The average value is expressed as the sum of the lipid plaque area over the entire lesion/lesion length. It is preferable that the information related to lipid plaque is calculated based on OCT image data and IVUS image data.
減衰性プラークに係る情報は、減衰性プラークの有無、減衰性プラークの数、血管断面における減衰性プラークの周方向の広がりを示す最大角度、減衰性プラークの面積等を含む。減衰性プラークの面積は、例えば病変部における減衰性プラーク面積の最大値又は平均値(単位長さ当たりの減衰性プラーク面積)を含む。平均値は、病変部全体にわたる減衰性プラーク面積の合計値/病変長で表される。減衰性プラークは、例えば脂質性プラークである。減衰性プラークは、IVUS画像データに基づいて定義されるプラークであるため、IVUS画像データに基づいて算出される。 Information related to attenuating plaque includes the presence or absence of attenuating plaque, the number of attenuating plaques, the maximum angle indicating the circumferential spread of attenuating plaque in the cross section of the blood vessel, the area of attenuating plaque, etc. The area of attenuating plaque includes, for example, the maximum or average value of the attenuating plaque area in the lesion (attenuating plaque area per unit length). The average value is expressed as the sum of the attenuating plaque areas over the entire lesion/lesion length. Attenuating plaque is, for example, lipid plaque. Attenuating plaque is plaque defined based on IVUS image data, and is therefore calculated based on IVUS image data.
石灰化プラークに係る情報は、石灰化プラークの有無、石灰化プラークの数、血管断面における石灰化プラークの周方向の広がりを示す最大角度、石灰化プラークの面積等を含む。石灰化プラークの面積は、例えば病変部における石灰化プラーク面積の最大値又は平均値(単位長さ当たりの石灰化プラーク面積)を含む。平均値は、病変部全体にわたる石灰化プラーク面積の合計値/病変長で表される。石灰化プラークの有無及び数はIVUS画像データに基づいて算出する構成が好ましい。石灰化プラークの面積はOCT画像データに基づいて算出する構成が好ましい。 Information related to calcified plaque includes the presence or absence of calcified plaque, the number of calcified plaques, the maximum angle indicating the circumferential spread of calcified plaque in the cross section of the blood vessel, the area of calcified plaque, etc. The area of calcified plaque includes, for example, the maximum or average value of the area of calcified plaque in the lesion (calcified plaque area per unit length). The average value is expressed as the total value of the area of calcified plaque over the entire lesion/lesion length. It is preferable that the presence or absence and the number of calcified plaques are calculated based on IVUS image data. It is preferable that the area of calcified plaques is calculated based on OCT image data.
不安定プラークに係る情報は、不安定プラークの有無、不安定プラークの数、不安定プラークの面積等を含む。不安定プラークに係る情報は、IVUS画像データ及びOCT画像データの両方を用いて算出する構成が好ましい。 Information related to unstable plaque includes the presence or absence of unstable plaque, the number of unstable plaques, the area of unstable plaques, etc. It is preferable that information related to unstable plaques is calculated using both IVUS image data and OCT image data.
第2特徴量算出部11bは、血管内治療後の患者のIVUS画像データ及びOCT画像データから血管の病変部の特徴を表した血管情報を算出する。血管内治療後のIVUS画像データ及びOCT画像データから算出される血管情報は、血管の解離、ステント圧着不良、ステント拡張不良、組織のプロトリュージョン(ステントの網目から血管組織が内腔側にはみ出すこと)の有無、最小ステント面積に係る情報を含む。このようにして算出された血管情報は学習モデル2に入力される。
The second
血管の解離に係る情報は、例えば血管解離部分の有無、血管断面における血管解離部分の周方向の広がりを示す最大角度、血管解離部分の血管長軸方向の長さ等を含む。 Information related to vascular dissection includes, for example, the presence or absence of a vascular dissection, the maximum angle indicating the circumferential extent of the vascular dissection in the vascular cross section, and the length of the vascular dissection in the longitudinal direction of the vascular dissection.
ステント圧着不良に係る情報は、例えば、ステント圧着不良の有無、ステント圧着不良が生じている部分における血管壁とステントの最大距離、ステント圧着不良が生じている部分の血管長軸方向の長さ等を含む。 Information related to stent poor crimping includes, for example, the presence or absence of stent poor crimping, the maximum distance between the stent and the blood vessel wall in the area where the stent poor crimping occurs, and the length of the blood vessel in the longitudinal direction in the area where the stent poor crimping occurs.
ステント拡張不良に係る情報は、最小ステント面積に対する正常部位の血管径の割合等を含む。最小ステント面積はOCT画像データを用いて算出し、正常部位の血管径はIVUS画像データを用いて算出する構成が好ましい。 Information related to poor stent expansion includes the ratio of the blood vessel diameter in the normal area to the minimum stent area. It is preferable that the minimum stent area is calculated using OCT image data, and the blood vessel diameter in the normal area is calculated using IVUS image data.
学習モデル2は、教師データを用いた機械学習により、IVUS画像及びOCT画像に基づく血管情報と、患者のカルテ情報から、患者の再入院リスクを出力するように学習された学習済みのモデルである。学習モデル2は、入力値に対して所定の演算を行い、演算結果を出力するものであり、記憶部12にはこの演算を規定する関数の係数及び閾値等のデータが学習モデル2として記憶される。学習モデル2として記憶されたデータを読み込むことによって、処理部11は、IVUS画像及びOCT画像から抽出される血管情報及びカルテ情報から、再入院リスクの演算処理を実行することが可能になる。
The
本実施形態1において学習モデル2の学習処理は、学習用のコンピュータが行う。学習された学習モデル2に係るデータは、コンピュータプログラムPと同様に、通信ネットワークを介した配信の態様で提供されてもよく、記録媒体1aに記録された態様で提供されてもよい。
In this embodiment 1, the learning process of the
本実施形態1において学習モデル2は、例えば、血管内治療前の患者のIVUS画像及びOCT画像に基づいて算出された血管情報と、血管内治療後の患者のIVUS画像及びOCT画像に基づいて算出された血管情報と、当該患者のカルテ情報とが入力される入力層2aと、血管情報及びカルテ情報の特徴量を抽出する中間層2bと、抽出された特徴量に基づいて算出される再入院リスクを出力する出力層2cとを有するニューラルネットワークである。
In this embodiment 1, the
ニューラルネットワークの入力層2aは、血管情報及びカルテ情報が入力される複数のニューロンを有し、入力された各データを中間層2bに受け渡す。
The
中間層2bは、複数のニューロンからなる層を複数有する。各層は入力されたデータから、再入院リスクに関連する特徴量を抽出しながら前段から後段の層へ順々に受け渡し、最後段の層は出力層2cに受け渡す。
The
出力層2cは、演算結果を出力するニューロンを備え、当該ニューロンは、血管内治療を受けた患者の再入院リスクを出力する。再入院リスクは、例えば0~1の実数値である。「0」は再入院リスクが最も低いことを示し、「1」は再入院リスクが最も高いことを示している。
The
なお本実施形態1においては、学習モデル2が一般的なニューラルネットワークである例を説明したが、トランスフォーマ等のその他のニューラルネットワーク、SVM(Support Vector Machine)、ベイジアンネットワーク、又は、回帰木等の構成のモデルであってもよい。
In this embodiment 1, an example has been described in which the
学習モデル2の学習方法について説明する。まず、コンピュータは、教師データの元になる複数のIVUS画像、OCT画像及びカルテ情報を収集する。そして、コンピュータは、患者のIVUS画像及びOCT画像に基づいて算出される血管情報及びカルテ情報に対して、当該患者の再入院リスクを示す教師データを付与することによって学習用データを生成する。次いで、コンピュータは、生成した学習用データを用いて、学習前のニューラルネットワークモデルを機械学習又は深層学習させることによって、学習モデル2を生成する。
具体的には、コンピュータは、学習用データに含まれる血管情報及びカルテ情報を学習前のニューラルネットワークモデルに入力し、中間層2bでの演算処理を経て、出力層2cから出力される再入院リスクを取得する。そして、コンピュータは、出力層2cから出力された再入院リスク、教師データが示す再入院リスクと比較し、出力層2cから出力される再入院リスクが正解値に近づくように、中間層2bでの演算処理に用いるパラメータを最適化する。当該パラメータは、例えばニューロン間の重み(結合係数)などである。パラメータの最適化の方法は特に限定されないが、例えばコンピュータは最急降下法等を用いて各種パラメータの最適化を行う。
A learning method for the
Specifically, the computer inputs the vascular information and medical record information contained in the learning data into the pre-learning neural network model, and obtains the readmission risk output from the
情報処理装置1は、教師データに含まれる多数の患者の教師データに基づいて上記の処理を繰り返し行うことによって、学習済の学習モデル2を得る。
The information processing device 1 obtains a trained
図3は、実施形態1係る情報処理手順を示すフローチャートである。情報処理装置1の処理部11は、再入院リスクの評価対象である患者のカルテ情報を電子カルテDB12aから読み出す(ステップS11)。
FIG. 3 is a flowchart showing the information processing procedure according to the first embodiment. The
次いで、処理部11は、再入院リスクの評価対象である患者の血管内治療前後のIVUS画像データ及びOCT画像データを取得する(ステップS12)。処理部11は、通信部15にて画像診断装置3からIVUS画像データ及びOCT画像データを取得する構成でもよいし、断層画像DB12bからこれらのデータを読み出す構成でもよい。
Next, the
次いで、第1特徴量算出部11aとしての処理部11は、血管内治療前のIVUS画像データ及びOCT画像データに基づいて、プラークバーデン、脂質性プラーク、減衰性プラーク、石灰化プラーク及び不安定プラークに係る情報などの血管情報を算出する(ステップS13)。
Then, the
そして、第2特徴量算出部11bとしての処理部11は、血管内治療後のIVUS画像データ及びOCT画像データに基づいて、血管の解離、ステント圧着不良及びステント拡張不良に係る情報などの血管情報を算出する(ステップS14)。
Then, the
次いで、処理部11は、ステップS13で算出した血管内治療前の血管情報と、ステップS14で算出した血管情報と、ステップS11で取得したカルテ情報とを学習モデル2に入力することによって、患者の再入院リスクを算出する(ステップS15)。そして、処理部11は、患者の再入院リスクを表示部13に表示し(ステップS16)、処理を終える。
Then, the
図4は、再入院リスク表示画面4の一例を示す模式図である。処理部11は、ステップS16において、図4に示すような再入院リスク表示画面4を表示するように構成するとよい。再入院リスク表示画面4は、例えば、カルテ情報表示部41、治療前断層画像表示部42、治療後断層画像表示部43、治療前血管情報表示部44、治療後血管情報表示部45、再入院リスク表示ゲージ46、及び出力結果説明部47を含む。
FIG. 4 is a schematic diagram showing an example of the readmission risk display screen 4. The
カルテ情報表示部41は、再入院リスクの評価対象である患者の電子カルテ情報を表示するフレームである。処理部11はステップS11で取得したカルテ情報をカルテ情報表示部41に表示する。
The medical record information display unit 41 is a frame that displays the electronic medical record information of the patient who is the subject of an evaluation of the risk of readmission. The
治療前断層画像表示部42及び治療後断層画像表示部43は、血管内治療前後の断層画像データを表示するフレームである。 The pre-treatment tomographic image display section 42 and the post-treatment tomographic image display section 43 are frames that display tomographic image data before and after endovascular treatment.
治療前血管情報表示部44は血管内治療前の血管情報を表示するフレーム、治療後血管情報表示部45は血管内治療後の血管情報を表示するフレームである。 The pre-treatment vascular information display section 44 is a frame that displays vascular information before endovascular treatment, and the post-treatment vascular information display section 45 is a frame that displays vascular information after endovascular treatment.
再入院リスク表示ゲージ46は、低リスクから高リスクにわたるリスクの程度を表すためのバーと、リスクの程度を示すライン画像とを含み、ライン画像の表示位置によって、患者の再入院リスクを表す。 The readmission risk display gauge 46 includes a bar to indicate the degree of risk, ranging from low risk to high risk, and a line image indicating the degree of risk, and indicates the patient's risk of readmission depending on the display position of the line image.
出力結果説明部47は、学習モデル2が出力する再入院リスクに対する複数の血管情報及びカルテ情報それぞれの重要度を表示する。処理部11は、例えばXAI(XAI:Explainable AI)技術を利用して、学習モデル2が出力する再入院リスクに対する複数の血管情報及びカルテ情報それぞれの重要度を算出することができる。XAIは、機械学習モデルに対して入力した情報毎に因子寄与度を出力し、どの入力情報によって出力結果(再入院リスク)に至ったかを人間に対して説明可能に提示する技術である。XAI技術としては、XRAI(EXplanation with Ranked Area Integrals))を用いることができる。
出力結果説明部47は、例えば、血管内治療前の各種血管情報、血管内治療後の各種血管情報、電子カルテ情報それぞれの重要度、つまり学習モデル2の出力結果に与えた影響の大きさを数値又はグラフで表示する。図4に示す例では、出力結果説明部47は、血管内治療前の各種血管情報、血管内治療後の各種血管情報、電子カルテ情報を表す文字と、各情報の重要度を示すメータバーとを関連付けて表示する。各情報の重要度の大きさはメータバーの長さで表される。
The output result explanation unit 47 displays the importance of each of the multiple vascular information and medical record information with respect to the readmission risk output by the
The output result explanation unit 47 displays, for example, the importance of each of the various vascular information before and after endovascular treatment, and the electronic medical record information, i.e., the magnitude of the influence on the output result of the
このように構成された情報処理装置1によれば、血管内治療を受けた患者の血管の断層画像データと、カルテ情報とに基づいて、当該患者の再入院リスクを算出することができる。 The information processing device 1 configured in this manner can calculate the risk of readmission of a patient who has undergone endovascular treatment based on the tomographic image data of the patient's blood vessels and the patient's medical record information.
特に、本実施形態1では、超音波を用いて血管を走査することにより得られるIVUS画像データと、光を用いて血管を走査することにより得られるOCTデータとの双方を用いることによって、より詳細に患者の血管情報を得ることができ、より正確に当該患者の再入院リスクを算出することができる。 In particular, in this embodiment 1, by using both IVUS image data obtained by scanning blood vessels with ultrasound and OCT data obtained by scanning blood vessels with light, more detailed vascular information of the patient can be obtained, and the patient's risk of re-admission can be calculated more accurately.
また、本実施形態1では、血管内治療前後のIVUS画像データ及びOCT画像データを用いることによって、より正確に当該患者の再入院リスクを算出することができる。 In addition, in this embodiment 1, by using IVUS image data and OCT image data before and after endovascular treatment, the patient's risk of re-admission can be calculated more accurately.
(実施形態2)
実施形態2に係る情報処理装置1は、IVUS画像データ及びOCT画像データも学習モデルに入力する点が、実施形態1と異なる。情報処理装置1のその他の構成は、実施形態1に係る情報処理装置1と同様であるため、同様の箇所には同じ符号を付し、詳細な説明を省略する。
(Embodiment 2)
The information processing device 1 according to the second embodiment differs from the first embodiment in that IVUS image data and OCT image data are also input to the learning model. Since the other configurations of the information processing device 1 are similar to those of the information processing device 1 according to the first embodiment, the same reference numerals are used for similar parts and detailed description will be omitted.
図5は、実施形態2に係る情報処理方法を示す説明図である。学習モデル202は、例えば、深層学習による学習済みの畳み込みニューラルネットワーク(CNN:Convolutional neural network)を含む。実施形態2に係る学習モデル202は、例えば、血管内治療前の患者のIVUS画像及びOCT画像に基づいて算出された血管情報と、血管内治療後の患者のIVUS画像及びOCT画像に基づいて算出された血管情報と、血管内治療前後のIVUS画像データと、血管内治療前後のOCT画像データと、当該患者のカルテ情報とが入力される入力層202aと、血管情報、断層画像データ及びカルテ情報の特徴量を抽出する中間層202bと、抽出された特徴量に基づいて算出される再入院リスクを出力する出力層202cとを有するニューラルネットワークである。
5 is an explanatory diagram showing an information processing method according to the second embodiment. The
処理部11は、実施形態1で説明したステップS15において、血管内治療前後の血管情報と、血管内治療前後のIVUS画像データと、血管内治療前後のOCT画像データと、カルテ情報とを学習モデル202に入力することによって、患者の再入院リスクを算出する。
In step S15 described in embodiment 1, the
実施形態2によれば、ルールベースの処理で抽出しきれない血管情報を断層画像データから抽出することができ、より正確に当該患者の再入院リスクを算出することができる。 According to the second embodiment, vascular information that cannot be extracted by rule-based processing can be extracted from tomographic image data, and the risk of readmission to the patient can be calculated more accurately.
1 :情報処理装置
1a :記録媒体
2 :学習モデル
3 :画像診断装置
4 :再入院リスク表示画面
11 :処理部
12 :記憶部
13 :表示部
14 :操作部
15 :通信部
41 :カルテ情報表示部
42 :治療前断層画像表示部
43 :治療後断層画像表示部
44 :治療前血管情報表示部
45 :治療後血管情報表示部
46 :再入院リスク表示ゲージ
47 :出力結果説明部
202 :学習モデル
P :コンピュータプログラム
1:
Claims (8)
取得した断層画像データに基づいて、血管内治療後の血管の特徴を示す血管情報を算出し、
血管の断層画像データに基づく血管情報と、患者のカルテ情報とが入力された場合に、血管内治療を受けた前記患者の再入院リスクを出力する学習モデルに、算出した血管情報と、取得したカルテ情報とを入力することによって、血管内治療を受けた患者の再入院リスクを算出する
処理をコンピュータに実行させるコンピュータプログラム。 Obtaining cross-sectional image data obtained by scanning the patient's blood vessel after the endovascular treatment and the patient's medical record information;
Calculating vascular information that indicates characteristics of blood vessels after endovascular treatment based on the acquired tomographic image data;
A computer program that causes a computer to execute a process of calculating the risk of readmission of a patient who has undergone endovascular treatment by inputting the calculated vascular information and the acquired medical record information into a learning model that outputs the risk of readmission of the patient who has undergone endovascular treatment when vascular information based on vascular tomographic image data and the patient's medical record information are input.
血管内治療後の断層画像データに基づいて算出される血管の解離の有無、ステント圧着不良、ステント拡張不良、プロトリュージョン、又は最小ステント面積に係る情報を含む
請求項1に記載のコンピュータプログラム。 The blood vessel information is
The computer program according to claim 1 , further comprising information regarding the presence or absence of vascular dissection, stent crimping failure, stent expansion failure, protrusion, or minimum stent area, which is calculated based on the tomographic image data after endovascular treatment.
取得した血管内治療前の血管の断層画像データに基づいて、血管内治療前の血管の特徴を示す血管情報を算出し、
算出した血管内治療前の血管の断層画像データに基づく血管情報と、血管内治療後の血管の断層画像データに基づく血管情報と、取得したカルテ情報とを前記学習モデルに入力することによって、血管内治療を受けた患者の再入院リスクを算出する
請求項1又は請求項2に記載のコンピュータプログラム。 acquiring cross-sectional image data obtained by scanning a patient's blood vessel prior to endovascular treatment;
Calculating vascular information indicating characteristics of the blood vessel before the endovascular treatment based on the acquired tomographic image data of the blood vessel before the endovascular treatment;
3. The computer program according to claim 1 or 2, which calculates the risk of readmission of a patient who has undergone endovascular treatment by inputting vascular information based on the calculated tomographic image data of the blood vessel before endovascular treatment, vascular information based on the calculated tomographic image data of the blood vessel after endovascular treatment, and acquired medical record information into the learning model.
血管内治療前の断層画像データに基づいて算出されるプラークバーデン、脂質性プラーク、減衰性プラーク、石灰化プラーク又は不安定プラークに係る情報を含む
請求項3に記載のコンピュータプログラム。 The blood vessel information is
The computer program according to claim 3 , further comprising information relating to plaque burden, lipid plaque, attenuating plaque, calcified plaque, or unstable plaque, which is calculated based on tomographic image data before endovascular treatment.
請求項4に記載のコンピュータプログラム。 The computer program product according to claim 4 , wherein the tomographic image data includes ultrasonic tomographic image data obtained by scanning a blood vessel with ultrasonic waves, and optical coherence tomographic image data obtained by scanning a blood vessel with light.
請求項1又は請求項2に記載のコンピュータプログラム。 The computer program according to claim 1 or 2, wherein the medical record information includes information relating to renal disorders.
取得した断層画像データに基づいて、血管内治療後の血管の特徴を示す血管情報を算出し、
血管の断層画像データに基づく血管情報と、患者のカルテ情報とが入力された場合に、血管内治療を受けた前記患者の再入院リスクを出力する学習モデルに、算出した血管情報と、取得したカルテ情報とを入力することによって、血管内治療を受けた患者の再入院リスクを算出する
情報処理方法。 Obtaining cross-sectional image data obtained by scanning the patient's blood vessel after the endovascular treatment and the patient's medical record information;
Calculating vascular information that indicates characteristics of blood vessels after endovascular treatment based on the acquired tomographic image data;
An information processing method for calculating the risk of readmission of a patient who has undergone endovascular treatment by inputting the calculated vascular information and the acquired medical record information into a learning model that outputs the risk of readmission of the patient who has undergone endovascular treatment when vascular information based on tomographic image data of the blood vessels and the patient's medical record information are input.
血管内治療後の患者の血管を走査して得た断層画像データ及び患者のカルテ情報を取得する取得部と、
取得した断層画像データに基づいて、血管内治療後の血管の特徴を示す血管情報を算出し、算出した血管情報と、取得したカルテ情報とを入力することによって、血管内治療を受けた患者の再入院リスクを算出する処理部と
を備える情報処理装置。 a learning model that outputs a risk of readmission of a patient who has undergone endovascular treatment when vascular information based on vascular tomographic image data and patient chart information are input;
an acquisition unit that acquires tomographic image data obtained by scanning a patient's blood vessel after an intravascular treatment and medical record information of the patient;
and a processing unit that calculates vascular information indicating characteristics of blood vessels after endovascular treatment based on the acquired tomographic image data, and calculates the risk of readmission of a patient who has undergone endovascular treatment by inputting the calculated vascular information and the acquired medical record information.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2023055715 | 2023-03-30 | ||
| JP2023-055715 | 2023-03-30 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2024202466A1 true WO2024202466A1 (en) | 2024-10-03 |
Family
ID=92904911
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2024/002133 Pending WO2024202466A1 (en) | 2023-03-30 | 2024-01-25 | Computer program, information processing method, and information processing device |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2024202466A1 (en) |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110313788A1 (en) * | 2010-06-17 | 2011-12-22 | Cerner Innovation, Inc. | Readmission risk assesment |
| JP2017527418A (en) * | 2014-07-24 | 2017-09-21 | ライトラボ・イメージング・インコーポレーテッド | Stent and blood vessel visualization and diagnostic systems, devices and methods |
| JP2017536917A (en) * | 2014-12-10 | 2017-12-14 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Devices, systems, and methods for predicting in-stent restenosis |
| CN109637663A (en) * | 2018-11-14 | 2019-04-16 | 浙江大学山东工业技术研究院 | A kind of prediction meanss of the percutaneous coronary intervention (pci) Cardia cevent based on machine learning |
| US20210251577A1 (en) * | 2020-02-17 | 2021-08-19 | Siemens Healthcare Gmbh | Machine-Based Risk Prediction for Peri-Procedural Myocardial Infarction or Complication from Medical Data |
| WO2021199960A1 (en) * | 2020-03-30 | 2021-10-07 | テルモ株式会社 | Program, information processing method, and information processing system |
| JP2023032648A (en) * | 2021-08-27 | 2023-03-09 | キヤノンメディカルシステムズ株式会社 | Medical information processing apparatus, medical information processing method, and program |
-
2024
- 2024-01-25 WO PCT/JP2024/002133 patent/WO2024202466A1/en active Pending
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110313788A1 (en) * | 2010-06-17 | 2011-12-22 | Cerner Innovation, Inc. | Readmission risk assesment |
| JP2017527418A (en) * | 2014-07-24 | 2017-09-21 | ライトラボ・イメージング・インコーポレーテッド | Stent and blood vessel visualization and diagnostic systems, devices and methods |
| JP2017536917A (en) * | 2014-12-10 | 2017-12-14 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Devices, systems, and methods for predicting in-stent restenosis |
| CN109637663A (en) * | 2018-11-14 | 2019-04-16 | 浙江大学山东工业技术研究院 | A kind of prediction meanss of the percutaneous coronary intervention (pci) Cardia cevent based on machine learning |
| US20210251577A1 (en) * | 2020-02-17 | 2021-08-19 | Siemens Healthcare Gmbh | Machine-Based Risk Prediction for Peri-Procedural Myocardial Infarction or Complication from Medical Data |
| WO2021199960A1 (en) * | 2020-03-30 | 2021-10-07 | テルモ株式会社 | Program, information processing method, and information processing system |
| JP2023032648A (en) * | 2021-08-27 | 2023-03-09 | キヤノンメディカルシステムズ株式会社 | Medical information processing apparatus, medical information processing method, and program |
Non-Patent Citations (1)
| Title |
|---|
| BODEWES, THOMAS ET AL.: "Risk factors for 30-day unplanned readmission following infrainguinal endovascular interventions", JOURNAL OF VASCULAR SURGERY, vol. 65, no. 2, 23 January 2017 (2017-01-23), pages 484 - 494, XP029897600, DOI: https://doi.org/10.1016/j.jvs. 2016.08.09 3 * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN113544737B (en) | System and method for classification of arterial image regions and their characteristics | |
| US12336763B2 (en) | Systems and methods for treatment planning based on plaque progression and regression curves | |
| Tesche et al. | Machine learning and deep neural networks applications in coronary flow assessment: the case of computed tomography fractional flow reserve | |
| US20110173027A1 (en) | Health-risk metric determination and/or presentation | |
| JP7426824B2 (en) | Non-invasive imaging-based FFR interaction monitoring | |
| US20200359911A1 (en) | Arterial wall characterization in optical coherence tomography imaging | |
| JP2025120362A (en) | Information processing device, information processing method, and program | |
| WO2021193015A1 (en) | Program, information processing method, information processing device, and model generation method | |
| JP7536861B2 (en) | PROGRAM, INFORMATION PROCESSING METHOD, INFORMATION PROCESSING APPARATUS AND MODEL GENERATION METHOD | |
| JP7561833B2 (en) | COMPUTER PROGRAM, INFORMATION PROCESSING METHOD, AND INFORMATION PROCESSING APPARATUS | |
| JP7536862B2 (en) | PROGRAM, INFORMATION PROCESSING METHOD, INFORMATION PROCESSING APPARATUS AND MODEL GENERATION METHOD | |
| WO2025002905A1 (en) | Atherosclerotic tissue characterization based on endovascular treatment dynamics | |
| US20230238148A1 (en) | Information processing device, information processing method, and computer program | |
| WO2024202466A1 (en) | Computer program, information processing method, and information processing device | |
| JP7727586B2 (en) | Information processing method, program, and information processing device | |
| EP4254428A1 (en) | Intravascular procedure step prediction | |
| WO2023186610A1 (en) | Intravascular procedure step prediction | |
| JP7667134B2 (en) | PROGRAM, INFORMATION PROCESSING METHOD, INFORMATION PROCESSING APPARATUS AND MODEL GENERATION METHOD | |
| JP2021114139A (en) | Medical information processing apparatus and medical information processing program | |
| EP4510962A1 (en) | Predicting vessel compliance responsive to multiple potential treatments | |
| Shah et al. | Adjunctive intra-coronary imaging for the assessment of coronary artery disease | |
| CA3206860A1 (en) | Processing an arterial doppler ultrasound waveform | |
| JP7753240B2 (en) | Program, information processing device and information processing method | |
| RU2834685C1 (en) | Method for assessing correctness of flow-directing stent installation | |
| JP2025052747A (en) | Information processing method, program, and information processing device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24778612 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |