WO2024247160A1 - Trajectory generation method and trajectory generation device - Google Patents
Trajectory generation method and trajectory generation device Download PDFInfo
- Publication number
- WO2024247160A1 WO2024247160A1 PCT/JP2023/020263 JP2023020263W WO2024247160A1 WO 2024247160 A1 WO2024247160 A1 WO 2024247160A1 JP 2023020263 W JP2023020263 W JP 2023020263W WO 2024247160 A1 WO2024247160 A1 WO 2024247160A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lane
- vehicle
- intersection
- candidate
- trajectory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
Definitions
- the present invention relates to a trajectory generation method and a trajectory generation device.
- Patent Document 1 When a vehicle passes through an intersection and there are more lanes ahead of the intersection in the direction of travel of the vehicle than before the intersection, a vehicle control device is known that selects the approach lane beyond the intersection depending on the position of the lane the vehicle is traveling in (Patent Document 1).
- the above-mentioned conventional technology has the problem that if the number of lanes beyond an intersection cannot be accurately recognized, the vehicle cannot properly enter the lanes beyond the intersection, and cannot continue autonomously driving along the lanes.
- the problem that this invention aims to solve is to provide a trajectory generation method and device that can continue autonomous driving along a traffic lane after exiting an intersection.
- the present invention solves the above problem by calculating the probability that the vehicle can travel in the candidate lanes through autonomous driving control when multiple candidate lanes are detected as candidates for the lane along which the vehicle will travel when exiting the intersection when a vehicle enters an intersection, and then selecting an exit lane along which the vehicle will travel when exiting the intersection from among the candidate lanes based on the calculated probability.
- the vehicle can continue autonomously driving along the lane after exiting an intersection.
- FIG. 1 is a block diagram showing an example of an embodiment of a driving assistance device including a trajectory generation device according to the present invention.
- 2 is a plan view showing an example of a driving scene in which driving assistance is performed by the driving assistance device of FIG. 1 .
- 10 is a flowchart showing an example of a processing procedure of accuracy calculation by an accuracy calculation unit in FIG. 1 .
- FIG. 2 is a plan view showing an example of a travel locus generated by the locus generating device of FIG. 1 . 1.
- FIG. 4 is a plan view showing another example of a travel locus generated by the locus generating device of FIG. 2 is a flowchart showing an example of a processing procedure in the driving assistance device of FIG. 1 .
- 10 is a flowchart showing another example of the processing procedure in the driving assistance device of FIG. 1 (part 1).
- 10 is a flowchart showing another example of the processing procedure in the driving assistance device of FIG. 1 (part 2).
- FIG. 1 is a block diagram showing a driving assistance device 10 according to the present invention.
- the driving assistance device 10 is a group of devices that execute driving assistance for a vehicle, and for example, drives the vehicle by autonomous driving control.
- the driving assistance device 10 generates a driving route to a destination set by a vehicle occupant or the like, and controls an actuator of the vehicle to drive the vehicle along the driving route.
- the driving assistance device 10 may present information to the driver of the vehicle and assist the driver in driving operations.
- the driving assistance device 10 may be an in-vehicle system, or a part of it may be provided outside the vehicle.
- Autonomous driving control refers to autonomously controlling the driving operations of a vehicle using a vehicle control device, and this driving operation includes all driving operations such as acceleration, deceleration, starting, stopping, and steering.
- Autonomously controlling driving operations means that the control device controls the driving operations using the vehicle's devices. The control device controls these driving operations within a predetermined range, and driving operations that are not controlled by the control device are manually operated by the driver. When the vehicle is driven manually by the driver without autonomous driving control, the control device does not autonomously control the driving operations, and the vehicle's driving operations are controlled by the driver's operation.
- the map database 11 is a storage medium that stores map information, and is provided inside or outside the vehicle.
- the control device 16 acquires map information from the map database 11 as necessary.
- the map information is used for generating driving routes, and includes information on nodes corresponding to specific points on roads where the vehicle's traveling direction changes (intersections, branching points, etc.), and information on links corresponding to road sections connecting the nodes.
- Node information includes location information (e.g., latitude and longitude), information on entering and exiting intersections and branching points, and link information includes road width, road curvature radius, road shoulder structures, road traffic regulations (e.g., traffic direction), junctions, branching points, and the like.
- Link information may include information on link lines along the road that indicate the shape of the road.
- the map information may also be high-precision map information (HD map) that can grasp the movement trajectory for each lane.
- HD map high-precision map information
- the navigation device 12 is a device that references map information to generate a driving route from the vehicle's current position, detected by a positioning system (not shown), to a set destination.
- the navigation device 12 uses node and link information in the map information to search for a driving route for the vehicle to reach the destination.
- the driving route includes at least information on the roads the vehicle will travel on and the vehicle's traveling direction, and is displayed, for example, by nodes and link lines.
- the control device 16 may display the generated driving route on the display device 15.
- the imaging device 13 is a device that captures images of objects around the vehicle, and examples of such devices include a camera equipped with an imaging element such as a CCD, an ultrasonic camera, and an infrared camera. In order to reduce blind spots when recognizing objects, multiple imaging devices 13 are installed in the front grille of the vehicle, under the left and right door mirrors, near the rear bumper, etc.
- the distance measuring device 14 is a device that acquires the relative distance and relative speed between the distance measuring device 14 and an object, and examples of such devices include laser radar, millimeter wave radar, and LiDAR (Light Detection and Ranging) units. In order to reduce blind spots when recognizing an object, multiple distance measuring devices 14 are installed at the front, right side, left side, and rear of the vehicle.
- the object is an object that exists on the road or its surroundings, and includes lane boundaries, center lines, road markings, medians, guard rails, curbs, road signs, traffic lights, and crosswalks.
- the object also includes obstacles that may affect the travel of the vehicle, such as automobiles other than the vehicle itself, motorcycles, bicycles, and pedestrians.
- the control device 16 obtains the detection results of the imaging device 13 and the distance measuring device 14 at a predetermined time interval (for example, every 0.1 to 1 millisecond).
- the detection results of the imaging device 13 and the distance measuring device 14 may also be integrated or synthesized (sensor fusion) by the control device 16. This makes it possible to supplement missing information about the object.
- the ranging device 14 may generate point cloud data in which information on ranging points of objects around the vehicle is arranged two-dimensionally in the left-right and up-down directions of the vehicle.
- the ranging points of the object are points on the object whose distance to the ranging device 14 is measured.
- the ranging point information includes the reflectance of electromagnetic waves at the ranging point in addition to the position information of the ranging point.
- the position information of the ranging point includes information on the coordinates of the ranging point, information on the distance from the ranging device 14 to the ranging point, etc.
- the distance measuring device 14 generates point cloud data by scanning electromagnetic waves in the left-right direction of the vehicle. For example, the distance measuring device 14 irradiates electromagnetic waves along the vehicle width direction, detects the reflected electromagnetic waves (reflected waves), and calculates the distance to the ranging point and the direction of the ranging point.
- the irradiation range of the electromagnetic waves is not particularly limited. Examples of electromagnetic waves include millimeter waves, infrared rays, and lasers.
- the display device 15 is a device for providing necessary information to the vehicle occupants, and is a liquid crystal display provided on the instrument panel, a projector such as a head-up display (HUD), etc.
- the display device 15 may also be equipped with an input device (e.g., a touch panel) that allows the occupant to input instructions to the control device 16.
- the display device 15 may also be equipped with a speaker as an output device.
- the control device 16 is a device for executing driving assistance by controlling and cooperating with the devices that make up the driving assistance device 10.
- the control device 16 is, for example, a computer, and includes a CPU (Central Processing Unit) which is a processor, a ROM (Read Only Memory) in which programs are stored, and a RAM (Random Access Memory) which functions as an accessible storage device.
- the CPU is an operating circuit for executing the programs stored in the ROM and realizing the functions of the control device 16.
- the control device 16 has a driving assistance function that executes driving assistance for the vehicle.
- the control device 16 also includes a trajectory generation device 20 as part of the driving assistance function, which has a trajectory generation function that generates a driving trajectory of the vehicle as part of the driving assistance function.
- the ROM stores a program for implementing the driving assistance function, and the driving assistance function including the trajectory generation function is implemented by the CPU executing the program stored in the ROM.
- the driving control unit 17, lane detection unit 21, accuracy calculation unit 22, lane selection unit 23, and trajectory generation unit 24 are conveniently extracted and shown as functional blocks that realize the driving assistance function.
- the lane detection unit 21, accuracy calculation unit 22, lane selection unit 23, and trajectory generation unit 24 are functional blocks that realize the trajectory generation function, and are included in the trajectory generation device 20. The functions of each functional block will be explained below with reference to FIG. 2.
- FIG. 2 is a plan view showing an example of a driving scene in which the control device 16 executes autonomous driving control by the driving assistance function.
- two lanes roads A1 and A2 extend in the vertical direction of the drawing, and a three lanes road A3 extends in the horizontal direction of the drawing, with an intersection B1 between the roads A1 and A3, and an intersection B2 between the roads A2 and A3.
- a crosswalk C is provided on the side of the intersection B1 between the intersections B1 and B2, crossing the road A3.
- the vehicle V is traveling at position P1 on lane La of road A1, and travels to destination D ahead on lane Lb of road A2.
- the vehicle V traveling on lane L1 of road A3 can turn left or go straight at intersection B2
- the vehicle V traveling on lane L2 can go straight at intersection B2
- the vehicle V traveling on lane L3 can turn right or go straight at intersection B2.
- the control device 16 using the function of the driving control unit 17, generates a driving route that enters intersection B1 from position P1, turns right at intersection B1 and enters one of lanes L1 to L3 of road A3, enters intersection B2 from lane L1 and turns left, and heads toward destination D at the end of lane Lb of road A2.
- the control device 16 autonomously controls the driving operation of the vehicle V so that the vehicle V travels along the driving route.
- the lanes can be recognized from the lane information of roads A1 to A3, but if the map information does not include lane information for roads A1 to A3, the lanes of roads A1 to A3 are detected from images acquired from the imaging device 13, and a driving trajectory is generated.
- This lane detection that does not rely on map information may not be able to detect the lanes accurately, and there is a risk that autonomous driving control may not be able to continue. Therefore, the control device 16 of this embodiment selects the lane in which the vehicle V will travel based on the probability that the detected lane can be traveled by autonomous driving control.
- the driving control unit 17 has a function of generating a driving route for the vehicle V and activating the actuator of the vehicle V so that the vehicle V drives along the driving route.
- the control device 16 uses the function of the driving control unit 17 to determine whether the vehicle V driving along the driving route will enter an intersection, and if it determines that the vehicle V will enter an intersection, outputs an execution instruction to the trajectory generation device 20 to generate a driving trajectory in which the vehicle V enters the exit lane of the intersection.
- lane detection unit 21 When vehicle V enters an intersection, lane detection unit 21 has the function of detecting candidate lanes that are candidates for the lanes along which vehicle V will travel when exiting the intersection. Using the function of lane detection unit 21, trajectory generation device 20 obtains the traveling direction of vehicle V when exiting the intersection from the travel path and the current position of vehicle V obtained from a positioning system (not shown), and detects the lane along which vehicle V will travel after exiting the intersection as a candidate lane.
- trajectory generating device 20 detects the lane ahead in the traveling direction (beyond the intersection) as a candidate lane. If vehicle V turns right at the intersection, the traveling direction of vehicle V after leaving the intersection is right, and trajectory generating device 20 detects the lane on the right side of the traveling direction as a candidate lane. If vehicle V turns left at the intersection, the traveling direction of vehicle V after leaving the intersection is left, and trajectory generating device 20 detects the lane on the left side of the traveling direction as a candidate lane. Note that the reason lane candidates are used is because the lane in which vehicle V will travel when leaving the intersection has not been determined at the time of lane detection.
- the trajectory generating device 20 detects candidate lanes from the detection results of a detection device that detects lanes.
- the detection device that detects lanes is, for example, at least one of an imaging device 13 mounted on the vehicle V that captures images of the surroundings of the vehicle V, and a distance measuring device 14 mounted on the vehicle V that generates point cloud data.
- the trajectory generating device 20 detects candidate lanes from images acquired from the imaging device 13, and may alternatively or in addition detect candidate lanes from point cloud data acquired from the distance measuring device 14.
- the trajectory generating device 20 performs processes such as edge extraction, semantic segmentation, and pattern matching on the image acquired from the imaging device 13, and extracts from the image portions corresponding to lanes separated by lane boundaries or the like.
- the trajectory generating device 20 may also acquire position information of ranging points from the point cloud data acquired from the ranging device 14, generate an image on which the ranging points are plotted, and perform processes such as pattern matching on the image to extract portions corresponding to the lanes.
- the trajectory generating device 20 detects structures that define lanes, such as curbs, medians, and guardrails, from an image on which the measurement points are plotted, and recognizes lanes.
- the trajectory generating device 20 may also detect lane boundaries from information on the reflectance of electromagnetic waves, utilizing the difference in reflectance between the road surface and the lane boundary (white line) portions. Note that lane boundaries refer to boundaries marked on the road surface, and are different from structures that define lanes, such as medians.
- a driving route is set in which vehicle V turns right at intersection B1, so the trajectory generating device 20 detects the lane on the right side of vehicle V's traveling direction relative to intersection B1 as a candidate lane. If curb X1, white lines X2 and X3, and center divider X4 are detected from the detection results of imaging device 13 and distance measuring device 14, then trajectory generating device 20 detects lane L1 defined by curb X1 and white line X2, lane L2 defined by white lines X2 and X3, and lane L3 defined by white line X3 and center divider X4 as candidate lanes.
- the accuracy calculation unit 22 has a function of calculating the accuracy that the vehicle V can travel along the candidate lane.
- the accuracy that the vehicle V can travel along the candidate lane is, in particular, the accuracy that the vehicle V can travel along the candidate lane by autonomous driving control, and more specifically, the accuracy that the vehicle V exiting the intersection can enter the candidate lane by autonomous driving control and travel along the candidate lane.
- this accuracy is the accuracy that the vehicle V can pass through the intersection and enter the candidate lane by autonomous driving control, and the accuracy that the vehicle V that entered the intersection by autonomous driving control can exit the intersection and enter the candidate lane while continuing the autonomous driving control.
- the accuracy of driving through a candidate lane by autonomous driving control is calculated based on the accuracy of the lane actually existing at the position where the candidate lane was detected, the accuracy of the lane boundary line defining the candidate lane being detectable, the accuracy of the structure actually existing at the position where the structure defining the candidate lane was detected, and the accuracy of the travel direction of the candidate lane being aligned with the traveling direction of the vehicle V.
- the accuracy of a candidate lane where there is no boundary line between the sidewalk and the roadway is calculated to be lower than the accuracy of a candidate lane where there is a boundary line between the sidewalk and the roadway, and the accuracy of a candidate lane where the lane boundary line is interrupted midway is calculated to be lower than the accuracy of a candidate lane where the lane boundary line is not interrupted.
- the trajectory generating device 20 uses the function of the accuracy calculation unit 22 to calculate the accuracy of a candidate lane in which lane boundaries on both sides are detected to be higher than the accuracy of a candidate lane in which at least one lane boundary is not detected.
- the accuracy of lane L2 in the case where white lines X2 and X3 can be accurately detected is calculated to be higher than the accuracy of lane L2 in the case where white line X2 has disappeared due to wear and cannot be detected.
- the trajectory generating device 20 may calculate the accuracy of a candidate lane that is bounded on at least one side by a structure to be higher than the accuracy of a candidate lane that is bounded on both sides by lane boundary lines. This is because three-dimensional objects such as structures are less likely to be erroneously detected than lane boundary lines such as white lines. For example, in the driving scene shown in Figure 2, the accuracy of lane L3, the right side of which is bounded by a center divider X4, is calculated to be higher than the accuracy of lane L2, the right side of which is bounded by white lines X2, X3.
- the trajectory generating device 20 may calculate the accuracy of a candidate lane closer to the edge of the pedestrian crossing in the road width direction to be higher than the accuracy of a candidate lane farther from the edge of the pedestrian crossing. This is because the closer you are to the center of the pedestrian crossing, the more difficult it is to distinguish between the own lane and the oncoming lane. For example, in the driving scene shown in FIG. 2, a pedestrian crossing C is present near the exit E when vehicle V passes through intersection B1 along the driving route.
- the accuracy of lane L1 close to the edge on the left side of the crosswalk C in the traveling direction is calculated to be higher than the accuracy of lanes L2 and L3 farther from the edge on the left side of the crosswalk C in the traveling direction (i.e., closer to the center of the crosswalk C).
- the trajectory generating device 20 may calculate the accuracy of a candidate lane in which the preceding vehicle has traveled to be higher than the accuracy of a candidate lane in which the preceding vehicle has not traveled. This is because there is a high probability that vehicle V can travel in the lane since there is a track record of the preceding vehicle having traveled in the lane. For example, in the driving scene shown in FIG. 2, when there is a preceding vehicle Vx traveling at position Px of lane L2, the accuracy of lane L2 is calculated to be higher than the accuracy of lanes L1 and L3.
- the trajectory generating device 20 calculates, particularly when there are multiple candidate lanes, the probability that the vehicle V can travel through the candidate lane by autonomous driving control for each candidate lane. In contrast, when there is only one candidate lane, the trajectory generating device 20 may or may not calculate the probability. Note that when there are multiple candidate lanes, the trajectory generating device 20 may calculate the probability for only some of the candidate lanes.
- FIG. 3 is an example of a flowchart showing information processing executed in the trajectory generating device 20 when the above-mentioned accuracy is calculated using the function of the accuracy calculation unit 22.
- the processing described below is executed by the processor (CPU) of the control device 16.
- step S1 the accuracy of the candidate lane for which the accuracy is calculated is set to "0", and in the following step S2, it is determined whether or not the boundaries on both sides of the candidate lane are defined. If it is determined that the boundaries on both sides of the candidate lane are defined, "8" is added to the accuracy of the candidate lane, and if it is determined that the boundary on at least one side of the candidate lane is not defined, the process proceeds to step S4.
- step S4 it is determined whether at least one side of the candidate lane is defined by a structure. If it is determined that at least one side of the candidate lane is defined by a structure, the process proceeds to step S5, where "6" is added to the accuracy of the candidate lane. If it is determined that both sides of the candidate lane are not defined by a structure, the process proceeds to step S6.
- step S6 it is determined whether the candidate lane is closer to the edge of the crosswalk in the road width direction. If it is determined that the candidate lane is closer to the edge of the crosswalk in the road width direction, the process proceeds to step S7, where "4" is added to the accuracy of the candidate lane. If it is determined that the candidate lane is farther from the edge of the crosswalk in the road width direction, the process proceeds to step S8.
- the accuracy of lane L1 is increased by "8” due to the curb X1 and white line X2 (step S3), “6” due to the curb X1 (step S5), and “4" due to being closer to the edge of the crosswalk C in the road width direction than lanes L2 and L3 (step S7), for a total of "18.”
- the accuracy of lane L2 is increased by “8” due to the white lines X2 and X3 (step S3), and “10” due to the presence of the preceding vehicle Vx (step S9), for a total of "18.”
- the accuracy of lane L3 is increased by "8” due to the white line X3 and center divider X4 (step S3), and “6” due to the center divider X4 (step S5), for a total of "14.”
- the trajectory generating device 20 recognizes that lane L2, where the preceding vehicle Vx is present, has a higher accuracy than lane L1, and selects lane L2 as the exit lane. Note that if there is only one candidate lane, the trajectory generating device 20 sets the only candidate lane as the exit lane along which vehicle V will travel when exiting the intersection.
- the trajectory generating device 20 may also select an exit lane based on the distance between a first intersection ahead of the vehicle V and a second intersection that the vehicle V will enter after the first intersection. For example, the trajectory generating device 20 calculates the distance between a first intersection ahead of the vehicle V that the vehicle V will enter, and a second intersection that the vehicle V will enter after the first intersection. Then, if the distance between the first intersection and the second intersection is equal to or greater than a predetermined value, the candidate lane with the highest probability is selected as the exit lane.
- a candidate lane that will result in the least number of lane changes by the vehicle V between the first intersection and the second intersection is selected as the exit lane.
- a candidate lane that will result in the least number of lane changes by the vehicle V between the first intersection and the second intersection may be selected as the exit lane from among the candidate lanes whose probability of being able to travel through the candidate lane by autonomous driving control is equal to or greater than a predetermined threshold.
- the candidate lane with the highest probability may be selected as the exit lane even if the distance between the first intersection and the second intersection is less than the predetermined value.
- the predetermined threshold can be set to an appropriate value within a range in which the vehicle V can continue traveling by autonomous driving control.
- the predetermined value can be set appropriately based on the travel distance (e.g., 15 to 30 m) required for vehicle V to change lanes.
- the first intersection and the second intersection are recognized from the position information of the nodes on the travel route and the current position of vehicle V obtained from a positioning system (not shown).
- the distance between the first intersection and the second intersection is obtained from the road information of the link between the nodes corresponding to the first intersection and the second intersection.
- intersection B1 which is the first intersection
- intersection B2 which is the second intersection
- the trajectory generating device 20 selects lane L2, which has the highest probability of being able to travel among the candidate lanes by autonomous driving control, as the exit lane.
- the trajectory generating device 20 selects lane L1 as the exit lane to avoid changing lanes and turn left at intersection B2.
- the trajectory generating unit 24 has a function of generating a driving trajectory of the vehicle V entering the selected exit lane.
- the trajectory generating device 20 uses the function of the trajectory generating unit 24 to generate a driving trajectory of the vehicle V traveling from the current position to the exit lane based on the detection results of objects around the vehicle V, the minimum turning radius of the vehicle V, and the like.
- the generated driving trajectory is output to the driving control unit 17.
- the trajectory generating device 20 may also display the generated driving trajectory on the display device 15.
- FIG. 4 is a plan view showing the driving trajectory generated by the trajectory generating device 20 when the distance between intersections B1 and B2 in the driving scene shown in FIG. 2 is equal to or greater than a predetermined value.
- the trajectory generating device 20 generates driving trajectories T1 and T2 that enter lane L2 from position P1, which is the current position.
- the control device 16 using the function of the driving control unit 17, causes the vehicle V to travel from position P1 on lane La to position P2 along the driving trajectory T1, and causes the vehicle V to travel from position P2 on lane La to position P3 on lane L2 along the driving trajectory T2.
- the control device 16 generates a driving trajectory T3 in which the vehicle V changes lanes from lane L2 to lane L1.
- the control device 16 drives the vehicle V along the driving trajectory T3 from position P2 on lane L2 to position P4 on lane L1.
- the control device 16 then generates a driving trajectory T4 in which the vehicle V turns left at intersection B2 and enters lane Lb.
- the control device 16 drives the vehicle V along the driving trajectory T4 from position P4 on lane L1 to position P5 on lane Lb.
- the control device 16 controls the driving operation of the vehicle V so that it autonomously drives along lane Lb to destination D.
- FIG. 5 is a plan view showing the driving trajectory generated by the trajectory generating device 20 when the distance between intersections B1 and B2 in the driving scene shown in FIG. 2 is less than a predetermined value.
- the trajectory generating device 20 generates driving trajectories T1 and T5 that enter lane L1 from position P1, which is the current position.
- the control device 16 using the function of the driving control unit 17, causes the vehicle V to travel from position P1 on lane La to position P2 along the driving trajectory T1, and causes the vehicle V to travel from position P2 on lane La to position P6 on lane L1 along the driving trajectory T5.
- the control device 16 generates a driving trajectory T6 in which the vehicle V drives along the lane L1.
- the control device 16 drives the vehicle V from position P6 to position P4 on the lane L1 along the driving trajectory T6.
- the control device 16 then generates a driving trajectory T4 in which the vehicle V turns left at the intersection B2 and enters the lane Lb.
- the control device 16 drives the vehicle V from position P4 on the lane L1 to position P5 on the lane Lb along the driving trajectory T4.
- the control device 16 controls the driving operation of the vehicle V so that it drives autonomously along the lane Lb to the destination D.
- FIG. 6 is an example of a flowchart showing information processing executed by the driving assistance device 10 of this embodiment.
- step S11 the lane detection unit 21 detects candidate lanes, and in the following step S12, the accuracy calculation unit 22 determines whether there are multiple candidate lanes. If it is determined that there are multiple candidate lanes, the process proceeds to step S13, where the accuracy of traveling through the candidate lanes by autonomous driving control is calculated, and in the following step S14, the lane selection unit 23 selects an exit lane from the candidate lanes based on the accuracy. On the other hand, if it is determined that there is only one candidate lane, the process proceeds to step S15, where the candidate lane is set as the exit lane. Then, in step S16, a driving trajectory for entering the selected exit lane is generated.
- Figures 7A and 7B are another example of a flowchart showing information processing executed in the driving assistance device 10 of this embodiment.
- step S23 the lane detection unit 21 detects candidate lanes, and in the following step S24, the probability calculation unit 22 determines whether there are multiple candidate lanes. If it is determined that there are multiple candidate lanes, the process proceeds to step S25, where the probability that the candidate lane can be traveled through by autonomous driving control is calculated for each candidate lane, and the process proceeds to step S27 in FIG. 7B. On the other hand, if it is determined that there is only one candidate lane, the process proceeds to step S26, where the candidate lane is set as an exit lane, and the process proceeds to step S30 in FIG. 7B.
- step S27 of FIG. 7B the lane selection unit 23 calculates the distance between the first intersection and the second intersection, and in the following step S28, it is determined whether the distance between the intersections is less than a predetermined value. If it is determined that the distance between the intersections is equal to or greater than the predetermined value, the process proceeds to step S29, where the candidate lane with the highest degree of certainty is selected as the exit lane.
- step S30 it is determined whether or not the vehicle V will go straight through the second intersection. If it is determined that the vehicle V will not go straight through the second intersection, the process proceeds to step S29. In contrast, if it is determined that the vehicle V will go straight through the second intersection, the process proceeds to step S31, where the candidate lane that minimizes the number of lane changes between the first intersection and the second intersection is selected as the exit lane. Then, in step S32, the function of the trajectory generation unit 24 is used to generate a driving trajectory for entering the selected exit lane.
- step S15 in FIG. 6 is not essential to the present invention and may be omitted if necessary.
- Steps S21, S22, and S26 in FIG. 7A and steps S27, S28, S30, and S31 in FIG. 7B are not essential to the present invention and may be omitted if necessary.
- the trajectory generation device 20 detects candidate lanes that are candidates for lanes along which the vehicle V will travel when exiting the intersection from the detection results of a detection device that detects lanes when the vehicle V enters an intersection, calculates a probability that the vehicle V can travel on the candidate lanes by autonomous driving control when there are multiple candidate lanes, selects an exit lane along which the vehicle V will travel when exiting the intersection from the candidate lanes based on the probability, and generates a travel trajectory of the vehicle V entering the exit lane. This allows the vehicle V to continue autonomous driving along the lanes after exiting the intersection.
- the trajectory generation device 20 may calculate the accuracy of the candidate lane closer to the end of the pedestrian crossing in the road width direction to be higher than the accuracy of the candidate lane farther from the end of the pedestrian crossing. This allows the vehicle V to enter a lane where it is easier to continue autonomous driving.
- the trajectory generation device 20 may calculate the accuracy of the candidate lane in which the preceding vehicle Vx has traveled to be higher than the accuracy of the candidate lane in which the preceding vehicle Vx has not traveled. This allows the vehicle V to enter a lane in which it is easier to continue autonomous driving.
- the trajectory generation device 20 calculates the distance between a first intersection B1 in front of the vehicle V and a second intersection B2 that the vehicle V will enter after the first intersection B1, and if the distance is equal to or greater than a predetermined value, the candidate lane with the highest degree of certainty may be selected as the exit lane. This allows the vehicle V to enter a lane in which it is easier to continue autonomous driving.
- the trajectory generation device 20 calculates the distance between a first intersection B1 in front of the vehicle V and a second intersection B2 that the vehicle V will enter after the first intersection B1, and if the distance is less than a predetermined value, the candidate lane that will result in the fewest number of lane changes by the vehicle V between the first intersection B1 and the second intersection B2 may be selected as the exit lane. This makes it possible to prevent the occurrence of a situation in which lane changes are not completed between intersections and travel along the travel route becomes impossible.
- the trajectory generation device 20 calculates the distance between a first intersection B1 in front of the vehicle V and a second intersection B2 that the vehicle V will enter after the first intersection B1, and if the distance is less than a predetermined value, the candidate lane that minimizes the number of lane changes of the vehicle V between the first intersection B1 and the second intersection B2 may be selected as the exit lane from among the candidate lanes whose accuracy is equal to or greater than a predetermined threshold. This makes it possible to prevent the occurrence of a situation in which lane changes are not completed between intersections and travel along the travel route becomes impossible.
- a trajectory generating device 20 includes a lane detection unit 21 that detects candidate lanes that are candidates for lanes along which the vehicle V will travel when it exits the intersection from the detection results of a detection device that detects lanes when the vehicle V enters the intersection, a probability calculation unit 22 that calculates the probability that the vehicle V can travel along the candidate lanes by autonomous driving control when there are multiple candidate lanes detected by the lane detection unit 21, a lane selection unit 23 that selects an exit lane along which the vehicle V will travel when it exits the intersection from the candidate lanes based on the probability calculated by the probability calculation unit 22, and a trajectory generation unit 24 that generates a driving trajectory of the vehicle V entering the exit lane selected by the lane selection unit 23. This allows the vehicle V to continue autonomous driving along the lanes after exiting the intersection.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
本発明は、軌跡生成方法及び軌跡生成装置に関するものである。 The present invention relates to a trajectory generation method and a trajectory generation device.
車両が交差点を通過する場合に、車両の進行方向に向かう車線数が交差点手前より交差点の先の方が多いときは、車両が走行中の車線の位置に応じて交差点の先の進入車線を選択する車両制御装置が知られている(特許文献1)。 When a vehicle passes through an intersection and there are more lanes ahead of the intersection in the direction of travel of the vehicle than before the intersection, a vehicle control device is known that selects the approach lane beyond the intersection depending on the position of the lane the vehicle is traveling in (Patent Document 1).
上記従来技術では、交差点の先の車線数を正確に認識できない場合は、車両が交差点の先の車線に適切に進入できず、車線に沿った自律走行が継続できなくなるという問題がある。 The above-mentioned conventional technology has the problem that if the number of lanes beyond an intersection cannot be accurately recognized, the vehicle cannot properly enter the lanes beyond the intersection, and cannot continue autonomously driving along the lanes.
本発明が解決しようとする課題は、交差点の退出後に車線に沿った自律走行を継続できる軌跡生成方法及び軌跡生成装置を提供することである。 The problem that this invention aims to solve is to provide a trajectory generation method and device that can continue autonomous driving along a traffic lane after exiting an intersection.
本発明は、車両が交差点に進入する場合に、車両が交差点から退出するときに走行する車線の候補である候補車線が複数検出されたときは、車両が候補車線を自律走行制御により走行できる確度を算出し、算出した確度に基づき、候補車線から、車両が交差点から退出するときに走行する退出車線を選択することによって上記課題を解決する。 The present invention solves the above problem by calculating the probability that the vehicle can travel in the candidate lanes through autonomous driving control when multiple candidate lanes are detected as candidates for the lane along which the vehicle will travel when exiting the intersection when a vehicle enters an intersection, and then selecting an exit lane along which the vehicle will travel when exiting the intersection from among the candidate lanes based on the calculated probability.
本発明によれば、交差点の退出後に車線に沿った自律走行を継続できる。 According to the present invention, the vehicle can continue autonomously driving along the lane after exiting an intersection.
以下、本発明の実施形態を図面に基づいて説明する。なお、以下の説明は、左側通行の法規を有する国で、車両が左側通行で走行することを前提とする。右側通行の法規を有する国では、以下の説明の左と右を対称にして読み替えるものとする。 Below, an embodiment of the present invention will be explained with reference to the drawings. Note that the following explanation is based on the assumption that vehicles are driven on the left side of the road in countries that have laws stipulating left-hand traffic. In countries that have laws stipulating right-hand traffic, the left and right in the following explanation should be interpreted as symmetrical.
[運転支援装置の構成]
図1は、本発明に係る運転支援装置10を示すブロック図である。運転支援装置10は、車両の運転支援を実行する装置群であり、例えば、自律走行制御により車両を走行させる。一例として、運転支援装置10は、車両の乗員などが設定した目的地までの走行経路を生成し、車両のアクチュエータを制御して走行経路に沿って車両を走行させる。これに代え又はこれに加え、運転支援装置10は、車両の運転者に情報を提示し、運転者の運転操作を支援してもよい。運転支援装置10は、車載システムであってもよく、その一部が車外に設けられていてもよい。
[Configuration of driving assistance device]
FIG. 1 is a block diagram showing a driving assistance device 10 according to the present invention. The driving assistance device 10 is a group of devices that execute driving assistance for a vehicle, and for example, drives the vehicle by autonomous driving control. As an example, the driving assistance device 10 generates a driving route to a destination set by a vehicle occupant or the like, and controls an actuator of the vehicle to drive the vehicle along the driving route. Alternatively or in addition to this, the driving assistance device 10 may present information to the driver of the vehicle and assist the driver in driving operations. The driving assistance device 10 may be an in-vehicle system, or a part of it may be provided outside the vehicle.
自律走行制御とは、車両の制御装置を用いて車両の走行動作を自律的に制御することを言い、当該走行動作には、加速、減速、発進、停車、転舵など、あらゆる走行動作が含まれる。自律的に走行動作を制御するとは、制御装置が、車両の装置を用いて走行動作の制御を行うことをいう。制御装置は、予め定められた範囲内でこれらの走行動作を制御し、制御装置により制御されない走行動作については、運転者による手動の操作が行われる。自律走行制御によらず、運転者の手動運転により車両が走行する場合は、制御装置は走行動作の自律制御を行わず、運転者の操作により車両の走行動作が制御される。 Autonomous driving control refers to autonomously controlling the driving operations of a vehicle using a vehicle control device, and this driving operation includes all driving operations such as acceleration, deceleration, starting, stopping, and steering. Autonomously controlling driving operations means that the control device controls the driving operations using the vehicle's devices. The control device controls these driving operations within a predetermined range, and driving operations that are not controlled by the control device are manually operated by the driver. When the vehicle is driven manually by the driver without autonomous driving control, the control device does not autonomously control the driving operations, and the vehicle's driving operations are controlled by the driver's operation.
図1に示すように、運転支援装置10は、地図データベース11、ナビゲーション装置12、撮像装置13、測距装置14、表示装置15及び制御装置16を備える。また、本実施形態の制御装置16は、その一部として軌跡生成装置20を含む。運転支援装置10を構成する装置は、CAN(Controller Area Network)その他の車載LANによって接続され、互いに情報を授受できる。車外に設けられた装置とは、インターネット、LAN(local area network)などのネットワークを介して情報を授受する。
As shown in FIG. 1, the driving assistance device 10 comprises a
地図データベース11は、地図情報が格納された記憶媒体であり、車内又は車外に設けられている。制御装置16は、必要に応じて地図データベース11から地図情報を取得する。地図情報は、走行経路の生成などに用いる情報であり、車両の進行方向が変化する道路上の特定の地点(交差点、分岐点など)に対応するノードと、ノード間を接続する道路区間に対応するリンクとの情報を含む。ノードの情報としては、位置情報(例えば緯度と経度)、交差点及び分岐点の進入及び退出に関する情報などが挙げられ、リンクの情報としては、道路幅、道路の曲率半径、路肩の構造物、道路交通法規(例えば通行方向)、合流点、分岐点などが挙げられる。リンクの情報には、道路の形状を示す、道路に沿ったリンク線の情報が含まれていてもよい。また、地図情報は、レーン毎の移動軌跡を把握できる高精度地図情報(HDマップ)であってもよい。
The
ナビゲーション装置12は、地図情報を参照して、図示しない測位システムにより検出された車両の現在位置から、設定された目的地までの走行経路を生成する装置である。ナビゲーション装置12は、地図情報のノード及びリンクの情報を用いて、車両が目的地に到達するための走行経路を検索する。走行経路は、車両が走行する道路と、車両の進行方向との情報を少なくとも含み、例えば、ノードとリンク線により表示される。制御装置16は、生成された走行経路を表示装置15に表示してもよい。
The
撮像装置13は、車両の周囲の対象物を撮像する装置であり、CCDなどの撮像素子を備えるカメラ、超音波カメラ、赤外線カメラなどが挙げられる。対象物を認識する際の死角を減らすため、撮像装置13は、車両のフロントグリル部、左右ドアミラーの下部及びリアバンパ近傍などに複数台設置する。 The imaging device 13 is a device that captures images of objects around the vehicle, and examples of such devices include a camera equipped with an imaging element such as a CCD, an ultrasonic camera, and an infrared camera. In order to reduce blind spots when recognizing objects, multiple imaging devices 13 are installed in the front grille of the vehicle, under the left and right door mirrors, near the rear bumper, etc.
測距装置14は、測距装置14と対象物との相対距離及び相対速度を取得する装置であり、レーザーレーダー、ミリ波レーダー、LiDAR(Light Detection and Ranging)ユニットなどが挙げられる。対象物を認識する際の死角を減らすため、測距装置14は、車両の前方、右側方、左側方及び後方に複数台設置する。 The distance measuring device 14 is a device that acquires the relative distance and relative speed between the distance measuring device 14 and an object, and examples of such devices include laser radar, millimeter wave radar, and LiDAR (Light Detection and Ranging) units. In order to reduce blind spots when recognizing an object, multiple distance measuring devices 14 are installed at the front, right side, left side, and rear of the vehicle.
対象物とは、道路及びその周辺に存在する物体であり、道路の車線境界線、中央線、路面標識、中央分離帯、ガードレール、縁石、道路標識、信号機、横断歩道などが含まれる。また、対象物には、自車両以外の自動車、自動二輪車(オートバイ)、自転車、歩行者など、車両の走行に影響を与え得る障害物も含まれる。制御装置16は、所定の時間間隔で(例えば0.1~1ミリ秒毎に)撮像装置13及び測距装置14の検出結果を取得する。また、撮像装置13及び測距装置14の検出結果は、制御装置16にて統合又は合成(センサフュージョン)してもよい。これにより、対象物の不足する情報を補完できる。 The object is an object that exists on the road or its surroundings, and includes lane boundaries, center lines, road markings, medians, guard rails, curbs, road signs, traffic lights, and crosswalks. The object also includes obstacles that may affect the travel of the vehicle, such as automobiles other than the vehicle itself, motorcycles, bicycles, and pedestrians. The control device 16 obtains the detection results of the imaging device 13 and the distance measuring device 14 at a predetermined time interval (for example, every 0.1 to 1 millisecond). The detection results of the imaging device 13 and the distance measuring device 14 may also be integrated or synthesized (sensor fusion) by the control device 16. This makes it possible to supplement missing information about the object.
測距装置14は、車両の周囲に存在する対象物の測距点の情報を車両の左右方向及び上下方向に二次元配列した点群データを生成してもよい。対象物の測距点とは、測距装置14との距離が測定された対象物上の点である。測距点の情報には、測距点の位置情報に加えて、測距点における電磁波の反射率などが含まれる。測距点の位置情報としては、測距点の座標の情報、測距装置14から測距点までの距離の情報などが挙げられる。 The ranging device 14 may generate point cloud data in which information on ranging points of objects around the vehicle is arranged two-dimensionally in the left-right and up-down directions of the vehicle. The ranging points of the object are points on the object whose distance to the ranging device 14 is measured. The ranging point information includes the reflectance of electromagnetic waves at the ranging point in addition to the position information of the ranging point. The position information of the ranging point includes information on the coordinates of the ranging point, information on the distance from the ranging device 14 to the ranging point, etc.
測距装置14は、車両の左右方向に電磁波を走査することで点群データを生成する。例えば、測距装置14は、車幅方向に沿って電磁波を照射して反射した電磁波(反射波)を検出し、測距点までの距離及び測距点の方向を算出する。電磁波の照射範囲は特に限定されない。電磁波としては、ミリ波、赤外線、レーザーなどが挙げられる。 The distance measuring device 14 generates point cloud data by scanning electromagnetic waves in the left-right direction of the vehicle. For example, the distance measuring device 14 irradiates electromagnetic waves along the vehicle width direction, detects the reflected electromagnetic waves (reflected waves), and calculates the distance to the ranging point and the direction of the ranging point. The irradiation range of the electromagnetic waves is not particularly limited. Examples of electromagnetic waves include millimeter waves, infrared rays, and lasers.
表示装置15は、車両の乗員に必要な情報を提供するための装置であり、インストルメントパネルに設けられた液晶ディスプレイ、ヘッドアップディスプレイ(HUD)などのプロジェクターである。表示装置15は、乗員が制御装置16に指示を入力するための入力装置(例えばタッチパネル)を備えていてもよい。また、表示装置15は、出力装置としてスピーカーを備えていてもよい。
The
制御装置16は、運転支援装置10を構成する装置を制御して協働させることで運転支援を実行するための装置である。制御装置16は、例えばコンピュータであり、プロセッサであるCPU(Central Processing Unit)と、プログラムが格納されたROM(Read Only Memory)と、アクセス可能な記憶装置として機能するRAM(Random Access Memory)とを備える。CPUは、ROMに格納されたプログラムを実行し、制御装置16が有する機能を実現するための動作回路である。 The control device 16 is a device for executing driving assistance by controlling and cooperating with the devices that make up the driving assistance device 10. The control device 16 is, for example, a computer, and includes a CPU (Central Processing Unit) which is a processor, a ROM (Read Only Memory) in which programs are stored, and a RAM (Random Access Memory) which functions as an accessible storage device. The CPU is an operating circuit for executing the programs stored in the ROM and realizing the functions of the control device 16.
制御装置16は、車両の運転支援を実行する運転支援機能を有する。また、制御装置16は、その一部として軌跡生成装置20を含み、軌跡生成装置20は、運転支援機能の一部として、車両の走行軌跡を生成する軌跡生成機能を有する。ROMには、運転支援機能を実現するためのプログラムが格納され、CPUがROMに格納されたプログラムを実行することで、軌跡生成機能を含む運転支援機能が実現される。 The control device 16 has a driving assistance function that executes driving assistance for the vehicle. The control device 16 also includes a trajectory generation device 20 as part of the driving assistance function, which has a trajectory generation function that generates a driving trajectory of the vehicle as part of the driving assistance function. The ROM stores a program for implementing the driving assistance function, and the driving assistance function including the trajectory generation function is implemented by the CPU executing the program stored in the ROM.
図1には、運転支援機能を実現する機能ブロックとして走行制御部17、車線検出部21、確度算出部22、車線選択部23及び軌跡生成部24を便宜的に抽出して示す。これらの機能ブロックのうち、車線検出部21、確度算出部22、車線選択部23及び軌跡生成部24が軌跡生成機能を実現する機能ブロックであり、軌跡生成装置20に含まれる。以下、各機能ブロックが有する機能について、図2を用いて説明する。
In FIG. 1, the driving
[軌跡生成装置の機能]
図2は、制御装置16が運転支援機能により自律走行制御を実行する走行シーンの一例を示す平面図である。図2に示す走行シーンでは、片側2車線の道路A1,A2が図面の上下方向に延在し、片側3車線の道路A3が図面の左右方向に延在し、道路A1と道路A3の交差部分が交差点B1であり、道路A2と道路A3の交差部分が交差点B2である。また、交差点B1,B2の間の交差点B1側には、道路A3を横断する横断歩道Cが設けられている。
[Functions of the trajectory generation device]
Fig. 2 is a plan view showing an example of a driving scene in which the control device 16 executes autonomous driving control by the driving assistance function. In the driving scene shown in Fig. 2, two lanes roads A1 and A2 extend in the vertical direction of the drawing, and a three lanes road A3 extends in the horizontal direction of the drawing, with an intersection B1 between the roads A1 and A3, and an intersection B2 between the roads A2 and A3. In addition, a crosswalk C is provided on the side of the intersection B1 between the intersections B1 and B2, crossing the road A3.
図2に示す走行シーンでは、車両Vが、道路A1の車線Laの位置P1を走行しており、道路A2の車線Lbの前方にある目的地Dまで走行するものとする。また、道路A3の車線L1を走行する車両Vは交差点B2を左折又は直進でき、車線L2を走行する車両Vは交差点B2を直進でき、車線L3を走行する車両Vは交差点B2を右折又は直進できるものとする。この場合、制御装置16は、走行制御部17の機能により、位置P1から交差点B1に進入し、交差点B1を右折して道路A3の車線L1~L3のいずれかに進入し、車線L1から交差点B2に進入して左折し、道路A2の車線Lbの先の目的地Dに向かう走行経路を生成する。そして、走行経路に沿って車両Vが走行するように車両Vの走行動作を自律制御する。
In the driving scene shown in FIG. 2, the vehicle V is traveling at position P1 on lane La of road A1, and travels to destination D ahead on lane Lb of road A2. In addition, the vehicle V traveling on lane L1 of road A3 can turn left or go straight at intersection B2, the vehicle V traveling on lane L2 can go straight at intersection B2, and the vehicle V traveling on lane L3 can turn right or go straight at intersection B2. In this case, the control device 16, using the function of the driving
地図データベース11に格納された地図情報が高精度地図情報である場合は、道路A1~A3の車線情報から車線を認識できるが、地図情報に道路A1~A3の車線情報が含まれていない場合は、撮像装置13から取得した画像などから道路A1~A3の車線を検出し、走行軌跡を生成することになる。この地図情報に依らない車線検出では、必ずしも正確に車線を検出できず、自律走行制御が継続できなくなるおそれがある。そこで、本実施形態の制御装置16は、検出した車線を自律走行制御により走行できる確度に基づいて車両Vが走行する車線を選択する。
If the map information stored in the
走行制御部17は、車両Vの走行経路を生成し、車両Vが走行経路に沿って走行するように車両Vのアクチュエータを作動させる機能を有する。制御装置16は、走行制御部17の機能により、走行経路に沿って走行する車両Vが交差点に進入するか否かを判定し、車両Vが交差点に進入すると判定した場合は、軌跡生成装置20に、交差点の退出車線に車両Vが進入する走行軌跡を生成する実行指示を出力する。
The driving
車線検出部21は、車両Vが交差点に進入する場合に、車両Vが交差点から退出するときに走行する車線の候補である候補車線を検出する機能を有する。軌跡生成装置20は、車線検出部21の機能により、走行経路と、図示しない測位システムから取得した車両Vの現在位置とから、交差点から退出する時の車両Vの進行方向を取得し、交差点退出後の車両Vの進行方向の車線を候補車線として検出する。
When vehicle V enters an intersection,
具体的には、車両Vが交差点を直進する場合は、交差点退出後の車両Vの進行方向は前方であり、軌跡生成装置20は、交差点に対して進行方向前方(交差点の先)の車線を候補車線として検出する。車両Vが交差点を右折する場合は、交差点退出後の車両Vの進行方向は右方であり、軌跡生成装置20は、交差点に対して進行方向右側の車線を候補車線として検出する。車両Vが交差点を左折する場合は、交差点退出後の車両Vの進行方向は左方であり、軌跡生成装置20は、交差点に対して進行方向左側の車線を候補車線として検出する。なお、車線の候補としたのは、車線検出時点では交差点退出時に車両Vが走行する車線が確定していないためである。 Specifically, if vehicle V goes straight through the intersection, the traveling direction of vehicle V after leaving the intersection is forward, and trajectory generating device 20 detects the lane ahead in the traveling direction (beyond the intersection) as a candidate lane. If vehicle V turns right at the intersection, the traveling direction of vehicle V after leaving the intersection is right, and trajectory generating device 20 detects the lane on the right side of the traveling direction as a candidate lane. If vehicle V turns left at the intersection, the traveling direction of vehicle V after leaving the intersection is left, and trajectory generating device 20 detects the lane on the left side of the traveling direction as a candidate lane. Note that the reason lane candidates are used is because the lane in which vehicle V will travel when leaving the intersection has not been determined at the time of lane detection.
軌跡生成装置20は、車線を検出する検出装置の検出結果から候補車線を検出する。車線を検出する検出装置とは、例えば、車両Vに搭載された、車両Vの周囲を撮像する撮像装置13と、車両Vに搭載された、点群データを生成する測距装置14とのうち少なくとも一方である。軌跡生成装置20は、撮像装置13から取得した画像から候補車線を検出し、これに代え又はこれに加え、測距装置14から取得した点群データから候補車線を検出してもよい。 The trajectory generating device 20 detects candidate lanes from the detection results of a detection device that detects lanes. The detection device that detects lanes is, for example, at least one of an imaging device 13 mounted on the vehicle V that captures images of the surroundings of the vehicle V, and a distance measuring device 14 mounted on the vehicle V that generates point cloud data. The trajectory generating device 20 detects candidate lanes from images acquired from the imaging device 13, and may alternatively or in addition detect candidate lanes from point cloud data acquired from the distance measuring device 14.
具体的には、軌跡生成装置20は、撮像装置13から取得した画像に対してエッジ抽出、セマンティックセグメンテーション及びパターンマッチングなどの処理を行い、画像から、車線境界線などで区切られた車線に対応する部分を抽出する。また、軌跡生成装置20は、測距装置14から取得した点群データから測距点の位置情報を取得し、測距点をプロットした画像を生成し、当該画像に対してパターンマッチングなどの処理を行い、車線に対応する部分を抽出してもよい。 Specifically, the trajectory generating device 20 performs processes such as edge extraction, semantic segmentation, and pattern matching on the image acquired from the imaging device 13, and extracts from the image portions corresponding to lanes separated by lane boundaries or the like. The trajectory generating device 20 may also acquire position information of ranging points from the point cloud data acquired from the ranging device 14, generate an image on which the ranging points are plotted, and perform processes such as pattern matching on the image to extract portions corresponding to the lanes.
例えば、軌跡生成装置20は、測距点をプロットした画像から、縁石や中央分離帯、ガードレールのような車線を画定する構造物を検出して車線を認識する。また、軌跡生成装置20は、道路の路面部分と、車線境界線(白線)部分との反射率の差異を利用し、電磁波の反射率の情報から車線境界線を検出してもよい。なお、車線境界線とは、道路の路面に標示された境界線のことを言い、中央分離帯などの車線を画定する構造物とは異なるものである。 For example, the trajectory generating device 20 detects structures that define lanes, such as curbs, medians, and guardrails, from an image on which the measurement points are plotted, and recognizes lanes. The trajectory generating device 20 may also detect lane boundaries from information on the reflectance of electromagnetic waves, utilizing the difference in reflectance between the road surface and the lane boundary (white line) portions. Note that lane boundaries refer to boundaries marked on the road surface, and are different from structures that define lanes, such as medians.
図2に示す走行シーンでは、車両Vが交差点B1を右折する走行経路が設定されているため、軌跡生成装置20は、交差点B1に対して車両Vの進行方向右側の車線を候補車線として検出する。撮像装置13及び測距装置14の検出結果から、縁石X1と、白線X2,X3と、中央分離帯X4とが検出されたとすると、軌跡生成装置20は、縁石X1及び白線X2で画定された車線L1と、白線X2,X3で画定された車線L2と、白線X3及び中央分離帯X4で画定された車線L3とを候補車線として検出する。 In the driving scene shown in FIG. 2, a driving route is set in which vehicle V turns right at intersection B1, so the trajectory generating device 20 detects the lane on the right side of vehicle V's traveling direction relative to intersection B1 as a candidate lane. If curb X1, white lines X2 and X3, and center divider X4 are detected from the detection results of imaging device 13 and distance measuring device 14, then trajectory generating device 20 detects lane L1 defined by curb X1 and white line X2, lane L2 defined by white lines X2 and X3, and lane L3 defined by white line X3 and center divider X4 as candidate lanes.
確度算出部22は、車両Vが候補車線に沿って走行できる確度を算出する機能を有する。候補車線に沿って走行できる確度とは、特に、車両Vが候補車線を自律走行制御により走行できる確度であり、具体的には、交差点を退出する車両Vが、自律走行制御により候補車線に進入し、候補車線に沿って走行できる確からしさである。換言すると、当該確度は、車両Vが自律走行制御により交差点を通過し、候補車線に進入できる確からしさであり、自律走行制御により交差点に進入した車両Vが、自律走行制御を継続したまま交差点から退出して候補車線に進入できる確からしさである。 The accuracy calculation unit 22 has a function of calculating the accuracy that the vehicle V can travel along the candidate lane. The accuracy that the vehicle V can travel along the candidate lane is, in particular, the accuracy that the vehicle V can travel along the candidate lane by autonomous driving control, and more specifically, the accuracy that the vehicle V exiting the intersection can enter the candidate lane by autonomous driving control and travel along the candidate lane. In other words, this accuracy is the accuracy that the vehicle V can pass through the intersection and enter the candidate lane by autonomous driving control, and the accuracy that the vehicle V that entered the intersection by autonomous driving control can exit the intersection and enter the candidate lane while continuing the autonomous driving control.
候補車線を自律走行制御により走行できる確度は、候補車線が検出された位置に実際に車線が存在する確度、候補車線を画定する車線境界線を検出できる確度、候補車線を画定する構造物が検出された位置に実際に構造物が存在する確度、候補車線の通行方向が車両Vの進行方向に沿っている確度などに基づいて算出する。例えば、歩道と車道の境界線が存在しない候補車線の確度は、歩道と車道の境界線が存在する候補車線の確度より低く算出され、車線境界線が途中で途切れている候補車線の確度は、車線境界線が途切れていない候補車線の確度より低く算出される。 The accuracy of driving through a candidate lane by autonomous driving control is calculated based on the accuracy of the lane actually existing at the position where the candidate lane was detected, the accuracy of the lane boundary line defining the candidate lane being detectable, the accuracy of the structure actually existing at the position where the structure defining the candidate lane was detected, and the accuracy of the travel direction of the candidate lane being aligned with the traveling direction of the vehicle V. For example, the accuracy of a candidate lane where there is no boundary line between the sidewalk and the roadway is calculated to be lower than the accuracy of a candidate lane where there is a boundary line between the sidewalk and the roadway, and the accuracy of a candidate lane where the lane boundary line is interrupted midway is calculated to be lower than the accuracy of a candidate lane where the lane boundary line is not interrupted.
一例として、軌跡生成装置20は、確度算出部22の機能により、両側の車線境界線が検出された候補車線の確度を、少なくとも片側の車線境界線が検出されなかった候補車線の確度より高く算出する。例えば、図2に示す走行シーンにおいて、白線X2,X3が正確に検出できる場合の車線L2の確度は、摩滅により白線X2が消えて検出できない場合の車線L2の確度より高く算出される。 As an example, the trajectory generating device 20 uses the function of the accuracy calculation unit 22 to calculate the accuracy of a candidate lane in which lane boundaries on both sides are detected to be higher than the accuracy of a candidate lane in which at least one lane boundary is not detected. For example, in the driving scene shown in FIG. 2, the accuracy of lane L2 in the case where white lines X2 and X3 can be accurately detected is calculated to be higher than the accuracy of lane L2 in the case where white line X2 has disappeared due to wear and cannot be detected.
軌跡生成装置20は、少なくとも片側が構造物により区切られている候補車線の確度を、両側が車線境界線により区切られている候補車線の確度より高く算出してもよい。構造物のような立体物の方が、白線のような車線境界線より誤検出が起こりにくいためである。例えば、図2に示す走行シーンでは、右側が中央分離帯X4により画定された車線L3の確度は、両側が白線X2,X3により画定された車線L2の確度より高く算出される。 The trajectory generating device 20 may calculate the accuracy of a candidate lane that is bounded on at least one side by a structure to be higher than the accuracy of a candidate lane that is bounded on both sides by lane boundary lines. This is because three-dimensional objects such as structures are less likely to be erroneously detected than lane boundary lines such as white lines. For example, in the driving scene shown in Figure 2, the accuracy of lane L3, the right side of which is bounded by a center divider X4, is calculated to be higher than the accuracy of lane L2, the right side of which is bounded by white lines X2, X3.
また、軌跡生成装置20は、車両Vが交差点から退出する退出口付近に横断歩道が存在する場合は、横断歩道の道路幅方向の端部に近い候補車線の確度を、横断歩道の端部から遠い候補車線の確度より高く算出してもよい。横断歩道の中央付近に近いほど自車線か対向車線かの区別がつきにくいためである。例えば、図2に示す走行シーンでは、車両Vが走行経路に沿って交差点B1を通過する場合の退出口Eの付近に、横断歩道Cが存在する。この場合、横断歩道Cの進行方向左側の端部に近い車線L1の確度は、横断歩道Cの進行方向左側の端部から遠い(つまり、横断歩道Cの中央部分に近い)車線L2,L3の確度より高く算出される。 In addition, if a pedestrian crossing is present near the exit where vehicle V exits the intersection, the trajectory generating device 20 may calculate the accuracy of a candidate lane closer to the edge of the pedestrian crossing in the road width direction to be higher than the accuracy of a candidate lane farther from the edge of the pedestrian crossing. This is because the closer you are to the center of the pedestrian crossing, the more difficult it is to distinguish between the own lane and the oncoming lane. For example, in the driving scene shown in FIG. 2, a pedestrian crossing C is present near the exit E when vehicle V passes through intersection B1 along the driving route. In this case, the accuracy of lane L1 close to the edge on the left side of the crosswalk C in the traveling direction is calculated to be higher than the accuracy of lanes L2 and L3 farther from the edge on the left side of the crosswalk C in the traveling direction (i.e., closer to the center of the crosswalk C).
さらに、軌跡生成装置20は、車両Vの前方を走行する先行車両が存在する場合は、先行車両が走行した候補車線の確度を、先行車両が走行していない候補車線の確度より高く算出してもよい。先行車両が走行した実績があるため、車両Vが走行できる可能性が高いためである。例えば、図2に示す走行シーンにおいて、車線L2の位置Pxを走行する先行車両Vxが存在する場合は、車線L2の確度は、車線L1,L3の確度より高く算出される。 Furthermore, when there is a preceding vehicle traveling ahead of vehicle V, the trajectory generating device 20 may calculate the accuracy of a candidate lane in which the preceding vehicle has traveled to be higher than the accuracy of a candidate lane in which the preceding vehicle has not traveled. This is because there is a high probability that vehicle V can travel in the lane since there is a track record of the preceding vehicle having traveled in the lane. For example, in the driving scene shown in FIG. 2, when there is a preceding vehicle Vx traveling at position Px of lane L2, the accuracy of lane L2 is calculated to be higher than the accuracy of lanes L1 and L3.
軌跡生成装置20は、特に、候補車線が複数存在する場合に、候補車線毎に、車両Vが候補車線を自律走行制御により走行できる確度を算出する。これに対し、候補車線が一つしか存在しない場合は、軌跡生成装置20は、当該確度を算出してもよく、算出しなくともよい。なお、軌跡生成装置20は、候補車線が複数存在する場合に、一部の候補車線のみの当該確度を算出してもよい。 The trajectory generating device 20 calculates, particularly when there are multiple candidate lanes, the probability that the vehicle V can travel through the candidate lane by autonomous driving control for each candidate lane. In contrast, when there is only one candidate lane, the trajectory generating device 20 may or may not calculate the probability. Note that when there are multiple candidate lanes, the trajectory generating device 20 may calculate the probability for only some of the candidate lanes.
図3は、確度算出部22の機能により上述の確度を算出する場合に、軌跡生成装置20において実行される情報の処理を示すフローチャートの一例である。以下に説明する処理は、制御装置16のプロセッサ(CPU)により実行される。 FIG. 3 is an example of a flowchart showing information processing executed in the trajectory generating device 20 when the above-mentioned accuracy is calculated using the function of the accuracy calculation unit 22. The processing described below is executed by the processor (CPU) of the control device 16.
まず、ステップS1にて、確度を算出する候補車線の確度を「0」に設定し、続くステップS2にて、候補車線の両側の境界が画定しているか否かを判定する。候補車線の両側の境界が画定していると判定した場合は、候補車線の確度に「8」を加算し、候補車線の少なくとも片側の境界が画定していないと判定した場合は、ステップS4に進む。 First, in step S1, the accuracy of the candidate lane for which the accuracy is calculated is set to "0", and in the following step S2, it is determined whether or not the boundaries on both sides of the candidate lane are defined. If it is determined that the boundaries on both sides of the candidate lane are defined, "8" is added to the accuracy of the candidate lane, and if it is determined that the boundary on at least one side of the candidate lane is not defined, the process proceeds to step S4.
ステップS4にて、候補車線の少なくとも片側が構造物により画定されているか否かを判定する。候補車線の少なくとも片側が構造物により画定されていると判定した場合は、ステップS5に進み、候補車線の確度に「6」を加算し、候補車線の両側が構造物では画定されていないと判定した場合は、ステップS6に進む。 In step S4, it is determined whether at least one side of the candidate lane is defined by a structure. If it is determined that at least one side of the candidate lane is defined by a structure, the process proceeds to step S5, where "6" is added to the accuracy of the candidate lane. If it is determined that both sides of the candidate lane are not defined by a structure, the process proceeds to step S6.
ステップS6にて、候補車線が横断歩道の道路幅方向の端部により近いか否かを判定する。候補車線が横断歩道の道路幅方向の端部により近いと判定した場合は、ステップS7に進み、候補車線の確度に「4」を加算し、候補車線が横断歩道の道路幅方向の端部からより遠いと判定した場合は、ステップS8に進む。 In step S6, it is determined whether the candidate lane is closer to the edge of the crosswalk in the road width direction. If it is determined that the candidate lane is closer to the edge of the crosswalk in the road width direction, the process proceeds to step S7, where "4" is added to the accuracy of the candidate lane. If it is determined that the candidate lane is farther from the edge of the crosswalk in the road width direction, the process proceeds to step S8.
ステップS8にて、候補車線を走行する先行車両Vxが存在するか否かを判定する。候補車線を走行する先行車両Vxが存在すると判定した場合は、ステップS9に進み、候補車線の確度に「10」を加算し、候補車線を走行する先行車両Vxが存在しないと判定した場合は、ステップS10に進む。 In step S8, it is determined whether or not there is a preceding vehicle Vx traveling in the candidate lane. If it is determined that there is a preceding vehicle Vx traveling in the candidate lane, the process proceeds to step S9, where "10" is added to the accuracy of the candidate lane, and if it is determined that there is no preceding vehicle Vx traveling in the candidate lane, the process proceeds to step S10.
ステップS10にて、全ての候補車線について確度を算出したか否かを判定する。全ての候補車線について確度を算出したと判定した場合は、処理を終了し、一部の候補車線について確度を算出していないと判定した場合は、ステップS1に進む。 In step S10, it is determined whether the accuracy has been calculated for all candidate lanes. If it is determined that the accuracy has been calculated for all candidate lanes, the process ends, and if it is determined that the accuracy has not been calculated for some candidate lanes, the process proceeds to step S1.
図3に示すフローチャートに従って、図2に示す車線L1~L3について確度を算出すると、車線L1の確度は、縁石X1及び白線X2により「8」加算され(ステップS3)、縁石X1により「6」加算され(ステップS5)、車線L2,L3より横断歩道Cの道路幅方向の端部に近いため「4」加算され(ステップS7)、合計で「18」となる。車線L2の確度は、白線X2,X3により「8」加算され(ステップS3)、先行車両Vxの存在により「10」加算され(ステップS9)、合計で「18」となる。車線L3の確度は、白線X3及び中央分離帯X4により「8」加算され(ステップS3)、中央分離帯X4により「6」加算され(ステップS5)、合計で「14」となる。 When the accuracy of lanes L1 to L3 shown in FIG. 2 is calculated according to the flowchart shown in FIG. 3, the accuracy of lane L1 is increased by "8" due to the curb X1 and white line X2 (step S3), "6" due to the curb X1 (step S5), and "4" due to being closer to the edge of the crosswalk C in the road width direction than lanes L2 and L3 (step S7), for a total of "18." The accuracy of lane L2 is increased by "8" due to the white lines X2 and X3 (step S3), and "10" due to the presence of the preceding vehicle Vx (step S9), for a total of "18." The accuracy of lane L3 is increased by "8" due to the white line X3 and center divider X4 (step S3), and "6" due to the center divider X4 (step S5), for a total of "14."
車線選択部23は、算出された確度に基づき、候補車線から、車両Vが交差点から退出するときに実際に走行する退出車線を選択する機能を有する。例えば、軌跡生成装置20は、車線選択部23の機能により、車両Vが候補車線を自律走行制御により走行できる確度が最も高い候補車線を退出車線に選択する。
The
図2に示す走行シーンでは、車線L1,L2の確度が同じ値であるが、軌跡生成装置20は、先行車両Vxが存在する車線L2が車線L1より確度が高いと認識し、車線L2を退出車線に選択する。なお、候補車線が一つしか存在しない場合は、軌跡生成装置20は、唯一の候補車線を、車両Vが交差点から退出するときに走行する退出車線に設定する。 In the driving scene shown in FIG. 2, the accuracy of lanes L1 and L2 is the same, but the trajectory generating device 20 recognizes that lane L2, where the preceding vehicle Vx is present, has a higher accuracy than lane L1, and selects lane L2 as the exit lane. Note that if there is only one candidate lane, the trajectory generating device 20 sets the only candidate lane as the exit lane along which vehicle V will travel when exiting the intersection.
また、軌跡生成装置20は、車両Vの前方に存在する第1交差点と、車両Vが第1交差点の次に進入する第2交差点との間の距離に基づいて退出車線を選択してもよい。例えば、軌跡生成装置20は、車両Vの前方に存在し、車両Vがこれから進入する第1交差点と、車両Vが第1交差点の次に進入する第2交差点との間の距離を算出する。そして、第1交差点と第2交差点との距離が所定値以上である場合は、確度が最も高い候補車線を退出車線として選択する。 The trajectory generating device 20 may also select an exit lane based on the distance between a first intersection ahead of the vehicle V and a second intersection that the vehicle V will enter after the first intersection. For example, the trajectory generating device 20 calculates the distance between a first intersection ahead of the vehicle V that the vehicle V will enter, and a second intersection that the vehicle V will enter after the first intersection. Then, if the distance between the first intersection and the second intersection is equal to or greater than a predetermined value, the candidate lane with the highest probability is selected as the exit lane.
これに対し、第1交差点と第2交差点との距離が所定値未満である場合は、第1交差点と第2交差点との間で車両Vの車線変更の回数が最も少なくなる候補車線を退出車線として選択する。これに代え又はこれに加え、第1交差点と第2交差点との距離が所定値未満である場合は、候補車線を自律走行制御により走行できる確度が所定閾値以上の候補車線の中から、第1交差点と第2交差点との間で車両Vの車線変更の回数が最も少なくなる候補車線を退出車線として選択してもよい。ただし、第2交差点を直進する場合は、第1交差点と第2交差点との距離が所定値未満であっても、確度が最も高い候補車線を退出車線として選択してもよい。なお、所定閾値は、車両Vが自律走行制御による走行を継続できる範囲内で適宜の値を設定できる。 In contrast, if the distance between the first intersection and the second intersection is less than a predetermined value, a candidate lane that will result in the least number of lane changes by the vehicle V between the first intersection and the second intersection is selected as the exit lane. Alternatively or in addition, if the distance between the first intersection and the second intersection is less than a predetermined value, a candidate lane that will result in the least number of lane changes by the vehicle V between the first intersection and the second intersection may be selected as the exit lane from among the candidate lanes whose probability of being able to travel through the candidate lane by autonomous driving control is equal to or greater than a predetermined threshold. However, when traveling straight through the second intersection, the candidate lane with the highest probability may be selected as the exit lane even if the distance between the first intersection and the second intersection is less than the predetermined value. The predetermined threshold can be set to an appropriate value within a range in which the vehicle V can continue traveling by autonomous driving control.
所定値は、車両Vの車線変更に必要な走行距離(例えば15~30m)に基づいて適宜の値を設定できる。第1交差点と第2交差点は、走行経路のノードの位置情報と、図示しない測位システムから取得した車両Vの現在位置とから認識する。第1交差点と第2交差点との距離は、第1交差点と第2交差点とに対応するノードの間のリンクの道路情報から取得する。 The predetermined value can be set appropriately based on the travel distance (e.g., 15 to 30 m) required for vehicle V to change lanes. The first intersection and the second intersection are recognized from the position information of the nodes on the travel route and the current position of vehicle V obtained from a positioning system (not shown). The distance between the first intersection and the second intersection is obtained from the road information of the link between the nodes corresponding to the first intersection and the second intersection.
例えば、図2に示す走行シーンにおいて、第1交差点である交差点B1と、第2交差点である交差点B2との間の距離が所定値以上である場合は、軌跡生成装置20は、候補車線を自律走行制御により走行できる確度が最も高い車線L2を退出車線に選択する。これに対し、交差点B1,B2の間の距離が所定値未満である場合は、軌跡生成装置20は、車線変更を回避して交差点B2を左折するため、車線L1を退出車線に選択する。 For example, in the driving scene shown in FIG. 2, if the distance between intersection B1, which is the first intersection, and intersection B2, which is the second intersection, is equal to or greater than a predetermined value, the trajectory generating device 20 selects lane L2, which has the highest probability of being able to travel among the candidate lanes by autonomous driving control, as the exit lane. In contrast, if the distance between intersections B1 and B2 is less than the predetermined value, the trajectory generating device 20 selects lane L1 as the exit lane to avoid changing lanes and turn left at intersection B2.
軌跡生成部24は、選択した退出車線に車両Vが進入する走行軌跡を生成する機能を有する。軌跡生成装置20は、軌跡生成部24の機能により、車両Vの周囲の対象物の検出結果、車両Vの最小旋回半径などに基づいて、車両Vが現在位置から退出車線まで走行する走行軌跡を生成する。生成した走行軌跡は、走行制御部17に出力される。またこれに加え、軌跡生成装置20は、生成した走行軌跡を表示装置15に表示してもよい。
The
図4は、図2に示す走行シーンにおいて交差点B1,B2の間の距離が所定値以上である場合に、軌跡生成装置20が生成した走行軌跡を示す平面図である。軌跡生成装置20は、現在位置である位置P1から車線L2に進入する走行軌跡T1,T2を生成する。制御装置16は、走行制御部17の機能により、走行軌跡T1に沿って車線Laの位置P1から位置P2まで車両Vを走行させ、走行軌跡T2に沿って車線Laの位置P2から車線L2の位置P3まで車両Vを走行させる。
FIG. 4 is a plan view showing the driving trajectory generated by the trajectory generating device 20 when the distance between intersections B1 and B2 in the driving scene shown in FIG. 2 is equal to or greater than a predetermined value. The trajectory generating device 20 generates driving trajectories T1 and T2 that enter lane L2 from position P1, which is the current position. The control device 16, using the function of the driving
その後、制御装置16は、車両Vが車線L2から車線L1に車線変更する走行軌跡T3を生成する。制御装置16は、走行軌跡T3に沿って車線L2の位置P2から車線L1の位置P4まで車両Vを走行させる。そして、制御装置16は、車両Vが交差点B2を左折し、車線Lbに進入する走行軌跡T4を生成する。制御装置16は、走行軌跡T4に沿って車線L1の位置P4から車線Lbの位置P5まで車両Vを走行させる。車両Vが車線Lbに進入した後は、目的地Dまで車線Lbに沿って自律走行するように車両Vの走行動作を制御する。 Then, the control device 16 generates a driving trajectory T3 in which the vehicle V changes lanes from lane L2 to lane L1. The control device 16 drives the vehicle V along the driving trajectory T3 from position P2 on lane L2 to position P4 on lane L1. The control device 16 then generates a driving trajectory T4 in which the vehicle V turns left at intersection B2 and enters lane Lb. The control device 16 drives the vehicle V along the driving trajectory T4 from position P4 on lane L1 to position P5 on lane Lb. After the vehicle V enters lane Lb, the control device 16 controls the driving operation of the vehicle V so that it autonomously drives along lane Lb to destination D.
これに対し、図5は、図2に示す走行シーンにおいて交差点B1,B2の間の距離が所定値未満である場合に、軌跡生成装置20が生成した走行軌跡を示す平面図である。軌跡生成装置20は、現在位置である位置P1から車線L1に進入する走行軌跡T1,T5を生成する。制御装置16は、走行制御部17の機能により、走行軌跡T1に沿って車線Laの位置P1から位置P2まで車両Vを走行させ、走行軌跡T5に沿って車線Laの位置P2から車線L1の位置P6まで車両Vを走行させる。
In contrast, FIG. 5 is a plan view showing the driving trajectory generated by the trajectory generating device 20 when the distance between intersections B1 and B2 in the driving scene shown in FIG. 2 is less than a predetermined value. The trajectory generating device 20 generates driving trajectories T1 and T5 that enter lane L1 from position P1, which is the current position. The control device 16, using the function of the driving
その後、制御装置16は、車両Vが車線L1に沿って走行する走行軌跡T6を生成する。制御装置16は、走行軌跡T6に沿って車線L1の位置P6から位置P4まで車両Vを走行させる。そして、制御装置16は、車両Vが交差点B2を左折し、車線Lbに進入する走行軌跡T4を生成する。制御装置16は、走行軌跡T4に沿って車線L1の位置P4から車線Lbの位置P5まで車両Vを走行させる。車両Vが車線Lbに進入した後は、目的地Dまで車線Lbに沿って自律走行するように車両Vの走行動作を制御する。 Then, the control device 16 generates a driving trajectory T6 in which the vehicle V drives along the lane L1. The control device 16 drives the vehicle V from position P6 to position P4 on the lane L1 along the driving trajectory T6. The control device 16 then generates a driving trajectory T4 in which the vehicle V turns left at the intersection B2 and enters the lane Lb. The control device 16 drives the vehicle V from position P4 on the lane L1 to position P5 on the lane Lb along the driving trajectory T4. After the vehicle V enters the lane Lb, the control device 16 controls the driving operation of the vehicle V so that it drives autonomously along the lane Lb to the destination D.
[運転支援装置における処理]
図6及び7A~7Bを参照して、制御装置16が情報を処理する際の手順を説明する。以下に説明する処理は、制御装置16が備えるプロセッサ(CPU)により所定の時間間隔で(例えば0.1~1ミリ秒毎に)実行される。
[Processing in driving assistance device]
6 and 7A-7B, the procedure for processing information by the control device 16 will be described. The process described below is executed by a processor (CPU) included in the control device 16 at predetermined time intervals (for example, every 0.1 to 1 millisecond).
図6は、本実施形態の運転支援装置10において実行される、情報の処理を示すフローチャートの一例である。 FIG. 6 is an example of a flowchart showing information processing executed by the driving assistance device 10 of this embodiment.
まず、ステップS11にて、車線検出部21の機能により候補車線を検出し、続くステップS12にて、確度算出部22の機能により、候補車線が複数存在するか否かを判定する。候補車線が複数存在すると判定した場合は、ステップS13に進み、候補車線を自律走行制御により走行できる確度を算出し、続くステップS14にて、車線選択部23の機能により、確度に基づき候補車線から退出車線を選択する。これに対し、候補車線が一つしか存在しないと判定した場合は、ステップS15に進み、候補車線を退出車線に設定する。そして、ステップS16にて、選択した退出車線に進入する走行軌跡を生成する。
First, in step S11, the
次に、図7A~7Bは、本実施形態の運転支援装置10において実行される、情報の処理を示すフローチャートの他の例である。 Next, Figures 7A and 7B are another example of a flowchart showing information processing executed in the driving assistance device 10 of this embodiment.
まず、図7AのステップS21にて、走行制御部17の機能により、現在位置から目的地Dまでの走行経路を生成し、走行経路に沿って車両Vを走行させ、続くステップS22にて、車両Vが交差点に進入するか否かを判定する。車両Vが交差点に進入しないと判定した場合は、ステップS21に進む。これに対し、車両Vが交差点に進入すると判定した場合は、ステップS23に進む。
First, in step S21 of FIG. 7A, the driving
ステップS23にて、車線検出部21の機能により候補車線を検出し、続くステップS24にて、確度算出部22の機能により、候補車線が複数存在するか否かを判定する。候補車線が複数存在すると判定した場合は、ステップS25に進み、候補車線毎に、候補車線を自律走行制御により走行できる確度を算出し、図7BのステップS27に進む。これに対し、候補車線が一つしか存在しないと判定した場合は、ステップS26に進み、候補車線を退出車線に設定し、図7BのステップS30に進む。
In step S23, the
図7BのステップS27にて、車線選択部23の機能により、第1交差点と第2交差点の間の距離を算出し、続くステップS28にて、交差点間の距離が所定値未満であるか否かを判定する。交差点間の距離が所定値以上であると判定した場合は、ステップS29に進み、確度が最も高い候補車線を退出車線として選択する。
In step S27 of FIG. 7B, the
これに対し、交差点間の距離が所定値未満であると判定した場合は、ステップS30に進み、車両Vが第2交差点を直進するか否かを判定する。車両Vが第2交差点を直進しないと判定した場合は、ステップS29に進む。これに対し、車両Vが第2交差点を直進すると判定した場合は、ステップS31に進み、第1交差点と第2交差点との間で車線変更の回数が最も少なくなる候補車線を退出車線として選択する。そして、ステップS32にて、軌跡生成部24の機能により、選択した退出車線に進入する走行軌跡を生成する。
In contrast, if it is determined that the distance between the intersections is less than the predetermined value, the process proceeds to step S30, where it is determined whether or not the vehicle V will go straight through the second intersection. If it is determined that the vehicle V will not go straight through the second intersection, the process proceeds to step S29. In contrast, if it is determined that the vehicle V will go straight through the second intersection, the process proceeds to step S31, where the candidate lane that minimizes the number of lane changes between the first intersection and the second intersection is selected as the exit lane. Then, in step S32, the function of the
なお、図6のステップS15は、本発明に必須の処理でなく、必要に応じて省略してもよい。また、図7AのステップS21,S22,S26及び図7BのステップS27,S28,S30,S31は、本発明に必須の処理でなく、必要に応じて省略してもよい。 Note that step S15 in FIG. 6 is not essential to the present invention and may be omitted if necessary. Steps S21, S22, and S26 in FIG. 7A and steps S27, S28, S30, and S31 in FIG. 7B are not essential to the present invention and may be omitted if necessary.
[本発明の実施態様]
本実施形態によれば、軌跡生成装置により実行される軌跡生成方法において、前記軌跡生成装置20は、車両Vが交差点に進入する場合は、車線を検出する検出装置の検出結果から、前記車両Vが前記交差点から退出するときに走行する車線の候補である候補車線を検出し、前記候補車線が複数存在するときは、前記車両Vが前記候補車線を自律走行制御により走行できる確度を算出し、前記確度に基づき、前記候補車線から、前記車両Vが前記交差点から退出するときに走行する退出車線を選択し、前記車両Vが前記退出車線に進入する走行軌跡を生成する、軌跡生成方法が提供される。これにより、車両Vが交差点から退出した後に車線に沿った自律走行を継続できる。
[Embodiments of the invention]
According to this embodiment, in a trajectory generation method executed by a trajectory generation device, the trajectory generation device 20 detects candidate lanes that are candidates for lanes along which the vehicle V will travel when exiting the intersection from the detection results of a detection device that detects lanes when the vehicle V enters an intersection, calculates a probability that the vehicle V can travel on the candidate lanes by autonomous driving control when there are multiple candidate lanes, selects an exit lane along which the vehicle V will travel when exiting the intersection from the candidate lanes based on the probability, and generates a travel trajectory of the vehicle V entering the exit lane. This allows the vehicle V to continue autonomous driving along the lanes after exiting the intersection.
本実施形態の軌跡生成方法では、前記軌跡生成装置20は、両側の車線境界線が検出された前記候補車線の前記確度を、少なくとも片側の前記車線境界線が検出されなかった前記候補車線の前記確度より高く算出してもよい。これにより、より自律走行を継続しやすい車線に車両Vが進入できる。 In the trajectory generation method of this embodiment, the trajectory generation device 20 may calculate the accuracy of the candidate lane in which lane boundaries on both sides are detected to be higher than the accuracy of the candidate lane in which the lane boundary on at least one side is not detected. This allows the vehicle V to enter a lane in which it is easier to continue autonomous driving.
本実施形態の軌跡生成方法では、前記軌跡生成装置20は、少なくとも片側が構造物により区切られている前記候補車線の前記確度を、両側が車線境界線により区切られている前記候補車線の前記確度より高く算出してもよい。これにより、より自律走行を継続しやすい車線に車両Vが進入できる。 In the trajectory generation method of this embodiment, the trajectory generation device 20 may calculate the accuracy of the candidate lane that is separated by a structure on at least one side to be higher than the accuracy of the candidate lane that is separated by lane boundary lines on both sides. This allows the vehicle V to enter a lane where it is easier to continue autonomous driving.
本実施形態の軌跡生成方法では、前記軌跡生成装置20は、前記車両Vが前記交差点から退出する退出口付近に横断歩道が存在する場合は、前記横断歩道の道路幅方向の端部に近い前記候補車線の前記確度を、前記横断歩道の前記端部から遠い前記候補車線の前記確度より高く算出してもよい。これにより、より自律走行を継続しやすい車線に車両Vが進入できる。 In the trajectory generation method of this embodiment, if a pedestrian crossing is present near the exit where the vehicle V exits the intersection, the trajectory generation device 20 may calculate the accuracy of the candidate lane closer to the end of the pedestrian crossing in the road width direction to be higher than the accuracy of the candidate lane farther from the end of the pedestrian crossing. This allows the vehicle V to enter a lane where it is easier to continue autonomous driving.
本実施形態の軌跡生成方法では、前記軌跡生成装置20は、前記車両Vの前方を走行する先行車両Vxが存在する場合は、前記先行車両Vxが走行した前記候補車線の前記確度を、前記先行車両Vxが走行していない前記候補車線の前記確度より高く算出してもよい。これにより、より自律走行を継続しやすい車線に車両Vが進入できる。 In the trajectory generation method of this embodiment, when a preceding vehicle Vx is present traveling ahead of the vehicle V, the trajectory generation device 20 may calculate the accuracy of the candidate lane in which the preceding vehicle Vx has traveled to be higher than the accuracy of the candidate lane in which the preceding vehicle Vx has not traveled. This allows the vehicle V to enter a lane in which it is easier to continue autonomous driving.
本実施形態の軌跡生成方法では、前記軌跡生成装置20は、前記車両Vの前方に存在する第1交差点B1と、前記車両Vが前記第1交差点B1の次に進入する第2交差点B2との間の距離を算出し、前記距離が所定値以上である場合は、前記確度が最も高い前記候補車線を前記退出車線として選択してもよい。これにより、より自律走行を継続しやすい車線に車両Vが進入できる。 In the trajectory generation method of this embodiment, the trajectory generation device 20 calculates the distance between a first intersection B1 in front of the vehicle V and a second intersection B2 that the vehicle V will enter after the first intersection B1, and if the distance is equal to or greater than a predetermined value, the candidate lane with the highest degree of certainty may be selected as the exit lane. This allows the vehicle V to enter a lane in which it is easier to continue autonomous driving.
本実施形態の軌跡生成方法では、前記軌跡生成装置20は、前記車両Vの前方に存在する第1交差点B1と、前記車両Vが前記第1交差点B1の次に進入する第2交差点B2との間の距離を算出し、前記距離が所定値未満である場合は、前記第1交差点B1と前記第2交差点B2との間で前記車両Vの車線変更の回数が最も少なくなる前記候補車線を前記退出車線として選択してもよい。これにより、交差点間で車線変更が完了せず、走行経路に沿った走行ができなくなる事態の発生を抑制できる。 In the trajectory generation method of this embodiment, the trajectory generation device 20 calculates the distance between a first intersection B1 in front of the vehicle V and a second intersection B2 that the vehicle V will enter after the first intersection B1, and if the distance is less than a predetermined value, the candidate lane that will result in the fewest number of lane changes by the vehicle V between the first intersection B1 and the second intersection B2 may be selected as the exit lane. This makes it possible to prevent the occurrence of a situation in which lane changes are not completed between intersections and travel along the travel route becomes impossible.
本実施形態の軌跡生成方法では、前記軌跡生成装置20は、前記車両Vの前方に存在する第1交差点B1と、前記車両Vが前記第1交差点B1の次に進入する第2交差点B2との間の距離を算出し、前記距離が所定値未満である場合は、前記確度が所定閾値以上の前記候補車線の中から前記第1交差点B1と前記第2交差点B2との間で前記車両Vの車線変更の回数が最も少なくなる前記候補車線を前記退出車線として選択してもよい。これにより、交差点間で車線変更が完了せず、走行経路に沿った走行ができなくなる事態の発生を抑制できる。 In the trajectory generation method of this embodiment, the trajectory generation device 20 calculates the distance between a first intersection B1 in front of the vehicle V and a second intersection B2 that the vehicle V will enter after the first intersection B1, and if the distance is less than a predetermined value, the candidate lane that minimizes the number of lane changes of the vehicle V between the first intersection B1 and the second intersection B2 may be selected as the exit lane from among the candidate lanes whose accuracy is equal to or greater than a predetermined threshold. This makes it possible to prevent the occurrence of a situation in which lane changes are not completed between intersections and travel along the travel route becomes impossible.
また、本実施形態によれば、車両Vが交差点に進入する場合に、車線を検出する検出装置の検出結果から、前記車両Vが前記交差点から退出するときに走行する車線の候補である候補車線を検出する車線検出部21と、前記車線検出部21が検出した前記候補車線が複数存在するときは、前記車両Vが前記候補車線を自律走行制御により走行できる確度を算出する確度算出部22と、前記確度算出部22が算出した前記確度に基づき、前記候補車線から、前記車両Vが前記交差点から退出するときに走行する退出車線を選択する車線選択部23と、前記車線選択部23が選択した前記退出車線に前記車両Vが進入する走行軌跡を生成する軌跡生成部24と、を備える、軌跡生成装置20が提供される。これにより、車両Vが交差点から退出した後に車線に沿った自律走行を継続できる。
In addition, according to this embodiment, a trajectory generating device 20 is provided that includes a
10…運転支援装置
11…地図データベース
12…ナビゲーション装置
13…撮像装置
14…測距装置
15…表示装置
16…制御装置
17…走行制御部
20…軌跡生成装置
21…車線検出部
22…確度算出部
23…車線選択部
24…軌跡生成部
A1,A2,A3…道路
B1,B2…交差点
C…横断歩道
D…目的地
E…退出口
L1,L2,L3,La,Lb…車線
P1,P2,P3,P4,P5,P6,Px…位置
T1,T2,T3,T4,T5,T6…走行軌跡
V…車両
Vx…先行車両
X1…縁石
X2,X3…白線
X4…中央分離帯
10...driving
Claims (9)
前記軌跡生成装置は、
車両が交差点に進入する場合は、車線を検出する検出装置の検出結果から、前記車両が前記交差点から退出するときに走行する車線の候補である候補車線を検出し、
前記候補車線が複数存在するときは、前記車両が前記候補車線を自律走行制御により走行できる確度を算出し、
前記確度に基づき、前記候補車線から、前記車両が前記交差点から退出するときに走行する退出車線を選択し、
前記車両が前記退出車線に進入する走行軌跡を生成する、軌跡生成方法。 A trajectory generation method executed by a trajectory generation device,
The trajectory generating device is
When a vehicle enters an intersection, a candidate lane is detected from a detection result of a detection device that detects lanes, the candidate lane being a candidate for a lane in which the vehicle will travel when exiting the intersection;
When there are a plurality of the candidate lanes, a probability that the vehicle can travel in the candidate lanes by autonomous travel control is calculated;
selecting an exit lane in which the vehicle will travel when exiting the intersection from the candidate lanes based on the probability;
A trajectory generation method for generating a driving trajectory of the vehicle entering the exit lane.
前記車両の前方に存在する第1交差点と、前記車両が前記第1交差点の次に進入する第2交差点との間の距離を算出し、
前記距離が所定値以上である場合は、前記確度が最も高い前記候補車線を前記退出車線として選択する、請求項1~5のいずれか一項に記載の軌跡生成方法。 The trajectory generating device is
Calculating a distance between a first intersection ahead of the vehicle and a second intersection into which the vehicle will enter after the first intersection;
The trajectory generating method according to any one of claims 1 to 5, wherein, if the distance is equal to or greater than a predetermined value, the candidate lane having the highest degree of certainty is selected as the exit lane.
前記車両の前方に存在する第1交差点と、前記車両が前記第1交差点の次に進入する第2交差点との間の距離を算出し、
前記距離が所定値未満である場合は、前記第1交差点と前記第2交差点との間で前記車両の車線変更の回数が最も少なくなる前記候補車線を前記退出車線として選択する、請求項1~6のいずれか一項に記載の軌跡生成方法。 The trajectory generating device is
Calculating a distance between a first intersection ahead of the vehicle and a second intersection into which the vehicle will enter after the first intersection;
A trajectory generation method according to any one of claims 1 to 6, wherein if the distance is less than a predetermined value, the candidate lane that results in the least number of lane changes by the vehicle between the first intersection and the second intersection is selected as the exit lane.
前記車両の前方に存在する第1交差点と、前記車両が前記第1交差点の次に進入する第2交差点との間の距離を算出し、
前記距離が所定値未満である場合は、前記確度が所定閾値以上の前記候補車線の中から前記第1交差点と前記第2交差点との間で前記車両の車線変更の回数が最も少なくなる前記候補車線を前記退出車線として選択する、請求項1~7のいずれか一項に記載の軌跡生成方法。 The trajectory generating device is
Calculating a distance between a first intersection ahead of the vehicle and a second intersection into which the vehicle will enter after the first intersection;
A trajectory generation method as described in any one of claims 1 to 7, wherein if the distance is less than a predetermined value, the candidate lane that minimizes the number of lane changes of the vehicle between the first intersection and the second intersection is selected as the exit lane from among the candidate lanes whose accuracy is equal to or greater than a predetermined threshold.
前記車線検出部が検出した前記候補車線が複数存在するときは、前記車両が前記候補車線を自律走行制御により走行できる確度を算出する確度算出部と、
前記確度算出部が算出した前記確度に基づき、前記候補車線から、前記車両が前記交差点から退出するときに走行する退出車線を選択する車線選択部と、
前記車線選択部が選択した前記退出車線に前記車両が進入する走行軌跡を生成する軌跡生成部と、を備える、軌跡生成装置。 a lane detection unit that detects candidate lanes, which are candidates for lanes along which a vehicle will travel when exiting an intersection, based on a detection result of a detection device that detects lanes when the vehicle enters an intersection;
a probability calculation unit that calculates a probability that the vehicle can travel in the candidate lane by autonomous travel control when there are a plurality of the candidate lanes detected by the lane detection unit;
a lane selection unit that selects, from the candidate lanes, an exit lane in which the vehicle will travel when exiting the intersection, based on the certainty calculated by the certainty calculation unit;
a trajectory generation unit that generates a travel trajectory of the vehicle entering the exit lane selected by the lane selection unit.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/020263 WO2024247160A1 (en) | 2023-05-31 | 2023-05-31 | Trajectory generation method and trajectory generation device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/020263 WO2024247160A1 (en) | 2023-05-31 | 2023-05-31 | Trajectory generation method and trajectory generation device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2024247160A1 true WO2024247160A1 (en) | 2024-12-05 |
Family
ID=93657002
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2023/020263 Pending WO2024247160A1 (en) | 2023-05-31 | 2023-05-31 | Trajectory generation method and trajectory generation device |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2024247160A1 (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001227970A (en) * | 2000-02-16 | 2001-08-24 | Matsushita Electric Ind Co Ltd | Lane guidance display method at intersection, navigation device and recording medium |
| JP2017054296A (en) * | 2015-09-09 | 2017-03-16 | 株式会社デンソー | Travel supporting device and travel supporting method |
| JP2018124641A (en) * | 2017-01-30 | 2018-08-09 | 株式会社デンソー | Driving support device |
| JP2019014369A (en) * | 2017-07-06 | 2019-01-31 | トヨタ自動車株式会社 | Vehicle travel support device |
-
2023
- 2023-05-31 WO PCT/JP2023/020263 patent/WO2024247160A1/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001227970A (en) * | 2000-02-16 | 2001-08-24 | Matsushita Electric Ind Co Ltd | Lane guidance display method at intersection, navigation device and recording medium |
| JP2017054296A (en) * | 2015-09-09 | 2017-03-16 | 株式会社デンソー | Travel supporting device and travel supporting method |
| JP2018124641A (en) * | 2017-01-30 | 2018-08-09 | 株式会社デンソー | Driving support device |
| JP2019014369A (en) * | 2017-07-06 | 2019-01-31 | トヨタ自動車株式会社 | Vehicle travel support device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102347036B1 (en) | Track prediction method and device for obstacle at junction | |
| RU2760046C1 (en) | Driving assistance and driving assistance device | |
| US11845435B2 (en) | Driving assistance device | |
| JP7129495B2 (en) | Driving support method and driving support device | |
| JP7401978B2 (en) | Intersection start determination device | |
| WO2018173582A1 (en) | Driving assistance device | |
| WO2020039224A1 (en) | Driving plan display method and driving plan display device | |
| CN116802709A (en) | Display control device and display control method | |
| US11685404B2 (en) | Autonomous driving control method and autonomous driving control system | |
| WO2017013692A1 (en) | Travel lane determination device and travel lane determination method | |
| JPH11301343A (en) | Vehicle lighting system | |
| WO2024247160A1 (en) | Trajectory generation method and trajectory generation device | |
| US12430925B2 (en) | Vehicle control system and vehicle driving method using the vehicle control system | |
| JP4911094B2 (en) | Driving support device, driving support method, and computer program | |
| US12162479B2 (en) | Driving assistance apparatus | |
| JP7589605B2 (en) | Driving support method and driving support device | |
| JP7674947B2 (en) | Driving Support Devices | |
| JP7698495B2 (en) | Parking Assistance Device | |
| JP2023167861A (en) | Driving support method and driving support device for vehicle | |
| JP2023170832A (en) | Route generation method and route generation device | |
| JP2023169524A (en) | Driving support method and driving support device for vehicle | |
| WO2023047148A1 (en) | Travel assistance method and travel assistance device | |
| JP7768360B2 (en) | Information providing device and information providing method | |
| JP7428294B2 (en) | Driving support method and driving support device | |
| JP7788049B2 (en) | Driving support method and driving support device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23938705 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2025523787 Country of ref document: JP Kind code of ref document: A |