[go: up one dir, main page]

WO2024139666A1 - Training method and apparatus for dual-target domain recommendation model - Google Patents

Training method and apparatus for dual-target domain recommendation model Download PDF

Info

Publication number
WO2024139666A1
WO2024139666A1 PCT/CN2023/128407 CN2023128407W WO2024139666A1 WO 2024139666 A1 WO2024139666 A1 WO 2024139666A1 CN 2023128407 W CN2023128407 W CN 2023128407W WO 2024139666 A1 WO2024139666 A1 WO 2024139666A1
Authority
WO
WIPO (PCT)
Prior art keywords
representation data
target domain
user representation
user
dual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2023/128407
Other languages
French (fr)
Chinese (zh)
Inventor
苏义军
陈高德
张钧波
郑宇�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingdong City Beijing Digital Technology Co Ltd
Original Assignee
Jingdong City Beijing Digital Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingdong City Beijing Digital Technology Co Ltd filed Critical Jingdong City Beijing Digital Technology Co Ltd
Publication of WO2024139666A1 publication Critical patent/WO2024139666A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9535Search customisation based on user profiles and personalisation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/253Fusion techniques of extracted features

Definitions

  • CDR Cross-domain Recommendation
  • the above-mentioned converting the user representation data in the target domain to another target domain to obtain the converted user representation data corresponding to the target domain includes: converting the user representation data in the target domain to another target domain through a trainable orthogonal mapping matrix to obtain the converted user representation data corresponding to the target domain.
  • the above method also includes: after each iterative operation in the training process of the dual-target domain recommendation model, obtaining the orthogonal mapping matrix corresponding to the next iterative operation of the dual-target domain according to the orthogonal mapping matrix in the target domain and the orthogonal mapping matrix in another target domain.
  • the above-mentioned converting the user representation data in the target domain to another target domain through a trainable orthogonal mapping matrix to obtain the converted user representation data corresponding to the target domain includes: converting the user representation data in the target domain to another target domain through a trainable orthogonal mapping matrix to obtain the initial converted user representation data corresponding to the target domain; using local differential privacy technology to process the initial converted user representation data to obtain the converted user representation data.
  • the above-mentioned fusing the user representation data in the target domain representing the same shared user with the converted user representation data corresponding to another target domain to obtain the fused user representation data includes: determining a gated selection vector according to the similarity between the user representation data in the target domain representing the same shared user and the converted user representation data corresponding to another target domain through a trainable embedding fusion module; and fusing the user representation data in the target domain representing the same shared user with the converted user representation data corresponding to another target domain according to the gated selection vector to obtain the fused user representation data.
  • the above-mentioned interaction data is an interaction matrix that characterizes the interaction between common users in the common user set and projects in the project set; and the above-mentioned interaction data between common users in the common user set corresponding to the dual target domains and projects in the project set is used to determine the user representation data of common users and the project representation data of projects in the target domain, including: using matrix decomposition to determine the user representation data of common users and the project representation data of projects in the target domain based on the interaction matrix.
  • the above-mentioned converting the user representation data in the target domain to another target domain to obtain the converted user representation data corresponding to the target domain includes:
  • the trained orthogonal mapping matrix transforms the user representation data in the target domain into another target domain to obtain the transformed user representation data corresponding to the target domain.
  • the second obtaining unit is further configured to: perform weighted summation of the user representation data in the target domain representing the same common user and the converted user representation data corresponding to another target domain according to the gated selection vector to obtain fused user representation data.
  • FIG8 is a structural diagram of an embodiment of a training device for a dual-target domain recommendation model according to the present disclosure
  • the dual target domains include domain A and domain B, which have the same common user set U but different item sets.
  • the item sets in domain A and domain B are denoted as VA and VB , respectively.
  • RA represents the interaction matrix between common users and items in domain A; correspondingly, RB represents the interaction matrix between common users and items in domain B. Interaction matrix between users and items.
  • the above-mentioned execution entity may perform the above-mentioned data conversion process in the following manner: first, through a trainable orthogonal mapping matrix, the user representation data in the target domain is converted to another target domain to obtain the initial converted user representation data corresponding to the target domain; then, the local differential privacy technology is used to process the initial converted user representation data to obtain the converted user representation data.
  • Local differential privacy technology ensures that algorithm f satisfies local differential privacy by controlling the similarity of the output results of any two records, that is, the output is always t * , so that the eavesdropper cannot confirm whether the input is t or t * .
  • the execution entity may directly add the user representation data corresponding to the common user in the target domain and the converted user representation data corresponding to the common user in another target domain to obtain fused user representation data.
  • Existing cross-domain recommendation methods usually align and fuse features based on the embedding representation within the entire domain and the cross-domain embedding representation.
  • the fusion methods include splicing, maximum pooling, average pooling and other operations.
  • not all features contained in the auxiliary domain are beneficial to the target domain. If there is also data sparsity in the auxiliary domain, the migrated embedding representation is not sufficient, or the quality of the embedding representation in the target domain is sufficient and no additional supplement is needed, negative transfer will occur. That is, in the process of transfer learning, The knowledge learned in the auxiliary domain has a negative impact on the learning in the target domain.
  • information fusion in cross-domain recommendation is explicitly considered, and a gated selection vector is derived to extract fine-grained signals that are highly correlated with the target domain at the feature level, which can effectively avoid the negative transfer problem and thus improve the accuracy of the fused user representation data.
  • the above execution entity can perform data fusion through the following formula:
  • the above-mentioned execution entity can adopt a machine learning method, with the fused user representation data and the project representation data as input, and a label representing whether there is interaction between the common users corresponding to the input fused user representation data and the projects corresponding to the input project representation data as the expected output, to train a dual-target domain recommendation model.
  • a trained dual-target domain recommendation model is obtained, wherein the preset end condition is, for example, that the training time exceeds a preset time threshold, the number of training times exceeds a preset number threshold, and the training loss tends to converge.
  • the execution subject may perform step 204 in the following manner:
  • the model is trained in two target domains using the following objective functions:
  • yij represents the label
  • Y + represents the set of positive samples where the user and item interaction can be observed
  • Y- represents the set of negative samples where the user and item interaction has never been observed
  • max(R) represents the normalization parameter, which is the maximum rating in the entire dataset.
  • max(R) is 5
  • different yij has different effects on the loss function
  • max(R) is 1, and yij is 0 or 1.
  • a specific training method for the dual-target domain recommendation model is provided, which further improves the accuracy of the trained dual-target domain recommendation model.
  • the above-mentioned execution entity may also perform the following operations: after each iterative operation in the training process of the dual-target domain recommendation model, the orthogonal mapping matrix corresponding to the next iterative operation of the dual-target domain is obtained according to the orthogonal mapping matrix in the target domain and the orthogonal mapping matrix in the other target domain.
  • domain B directly sends its updated orthogonal mapping matrix X B ′ to domain A in plain text.
  • Domain A averages X B ′ and the updated orthogonal mapping matrix X A ′ in the domain to obtain a new orthogonal mapping matrix X A .
  • domain B which obtains a new orthogonal mapping matrix X B . This ensures that the orthogonal mapping matrices in the two domains are always the same in each iteration.
  • federated learning is introduced into the cross-domain recommendation scenario.
  • the service user data of the enterprise organization corresponding to each target domain will never leave the local area, but will always be stored on the corresponding local device, such as a local database.
  • the federated learning architecture is designed as a peer-to-peer network structure to further reduce the risk of privacy leakage, that is, there is no curious or malicious third party.
  • the two target domains only communicate twice in one iteration to exchange information related to the model.
  • each domain exchanges updated orthogonal mapping matrices.
  • no privacy protection method is used for this communication process. Because the orthogonal mapping matrix represents the migration correspondence between the two domains and does not involve sensitive data. In addition, even if an external attacker intercepts the updated orthogonal mapping matrix and the user representation data after differential privacy, it is difficult to infer valid information.
  • FIG. 4 is a schematic diagram 400 of an application scenario of the training method of the dual-target domain recommendation model according to the present embodiment.
  • the application scenario of FIG. 4 first, in the target domain A, according to the interaction data 403 between the common users in the common user set 401 corresponding to the dual target domains A and B and the items in the item set 402, the user representation data 404 of the common users in the target domain A and the item representation data 405 of the items are determined; in the target domain B, according to the interaction data 407 between the common users in the common user set 401 corresponding to the dual target domains A and B and the items in the item set 406, the user representation data 408 of the common users in the target domain B and the item representation data 409 of the items are determined.
  • the user representation data 404 in the target domain A is converted to the target domain B to obtain the converted user representation data 410 corresponding to the target domain A; the user representation data 408 in the target domain B is converted to the target domain A to obtain the converted user representation data 411 corresponding to the target domain B.
  • the user representation data 404 representing the same common user is fused with the converted user representation data 411 corresponding to the target domain B to obtain the fused user representation data 412; in the target domain B, the user representation data 408 representing the same common user is fused with the converted user representation data 410 corresponding to the target domain A to obtain the fused user representation data 413.
  • the method provided by the above embodiment of the present disclosure performs bidirectional data migration between two target domains.
  • the data sparsity problem in each target domain is solved, so that the enterprise users of both target domains can benefit from the data migration process; moreover, it is more in line with the actual situation under the dual target domain situation, which is conducive to the active participation of enterprise users of both sides of the dual target domains; in addition, based on the data migration process between the dual target domains, the accuracy of the recommendation results is improved.
  • FIG. 5 a schematic process 500 of another embodiment of a training method for a dual-target domain recommendation model according to the present disclosure is shown. For each target domain in the dual-target domain, a training operation including the following steps is performed:
  • Step 501 through a trainable embedding representation module, according to the interaction data between the common users in the common user set corresponding to the dual target domains and the projects in the project set, determine the user representation data of the common users in the target domain and the project representation data of the projects.
  • Step 502 transform the user representation data in the target domain into another target domain through a trainable orthogonal mapping matrix to obtain the initial transformed user representation data corresponding to the target domain.
  • Step 503 Use local differential privacy technology to process the initial converted user representation data to obtain converted user representation data.
  • Step 504 determining a gated selection vector through a trainable embedding fusion module according to the similarity between the user representation data in the target domain and the converted user representation data corresponding to another target domain that represent the same common user.
  • Step 506 predicting the interaction probability between the common users corresponding to the fused user representation data and the items corresponding to the item representation data based on the fused user representation data and the item representation data.
  • Step 507 determining the loss between the interaction probability and the label through the objective function according to the interaction probability, the label and the preset normalization parameter.
  • a process 600 of an embodiment of a dual-target domain recommendation method is shown. For each target domain in the dual-target domain, a recommendation operation including the following steps is performed:
  • Step 601 determining user representation data of the target common users and item representation data of the items according to interaction data between the target common users and the items in the item set corresponding to the dual target domains.
  • the executing entity of the dual-target domain recommendation method can determine the user representation data of the target common users and the project representation data of the projects based on the interaction data between the target common users corresponding to the dual target domains and the projects in the project set.
  • the execution subject may perform step 601 in the following manner: determine the user representation data of the target common users and the project representation data of the projects in the target domain based on the interaction matrix by matrix decomposition, wherein the interaction matrix represents the interaction between the common users in the common user set and the projects in the project set corresponding to the dual target domains. data.
  • Step 602 convert the user representation data in the target domain into another target domain to obtain converted user representation data corresponding to the target domain.
  • the execution subject may refer to the implementation method in step 202 in embodiment 200 to convert the user representation data in the target domain into another target domain to obtain the converted user representation data corresponding to the target domain.
  • the above-mentioned execution subject can be implemented in the following ways: Execute the second step: perform weighted summation of the user representation data in the target domain and the converted user representation data corresponding to another target domain according to the gated selection vector to obtain fused user representation data.
  • Step 604 using the trained dual-target domain recommendation model, according to the fused user representation data and item representation data, determine the items to be recommended for the target common user.
  • Step 702 transform the user representation data in the target domain into another target domain through an orthogonal mapping matrix to obtain the initial transformed user representation data corresponding to the target domain.
  • the process 700 of the dual-target domain recommendation method in this embodiment specifically illustrates the conversion process, hiding process, and fusion process of the user representation data. While ensuring the bidirectional migration of the dual target domains and the accuracy of the recommendation results, the security of the data in the dual target domains is further improved.
  • the first obtaining unit 802 is further configured to: convert the user representation data in the target domain to another target domain through a trainable orthogonal mapping matrix to obtain the converted user representation data corresponding to the target domain.
  • the first obtaining unit 802 is further configured to: convert the user representation data in the target domain to another target domain through a trainable orthogonal mapping matrix to obtain the initial converted user representation data corresponding to the target domain; and use local differential privacy technology to process the initial converted user representation data to obtain converted user representation data.
  • a dual-target domain recommendation device which performs bidirectional data migration between the dual target domains, solves the data sparsity problem in each target domain, and achieves the purpose that both enterprise users of the dual target domains benefit from the data migration process; moreover, it is more in line with the actual situation under the dual target domain situation, and facilitates the active participation of enterprise users of both parties corresponding to the dual target domains; in addition, based on the data migration process between the dual target domains, the accuracy of the recommendation results is improved.
  • the present disclosure further provides a computer-readable medium, which may be included in the device described in the above embodiment; or may exist independently without being assembled into the device.
  • the above computer-readable medium carries one or more programs, and when the above one or more programs are executed by the device, the computer device: for each of the dual target domains In the target domain, the following training operations are performed: according to the interaction data between the common users in the common user set and the items in the item set corresponding to the dual target domains, the user representation data of the common users and the item representation data of the items in the target domain are determined; the user representation data in the target domain is converted to another target domain to obtain the converted user representation data corresponding to the target domain; the user representation data in the target domain representing the same common user is fused with the converted user representation data corresponding to another target domain to obtain the fused user representation data; a machine learning method is adopted, with the fused user representation data and the item representation data as input, and the label representing whether there is interaction between the common users corresponding to the input fused user representation data and

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Machine Translation (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

A training method and apparatus for a dual-target domain recommendation model. The method comprises: for each target domain, executing the following training operations: determining user representation data and item representation data according to data of interaction between a common user in a common user set corresponding to a dual-target domain and an item in an item set (201); converting the user representation data into another target domain to obtain converted user representation data (202); fusing the user representation data representing the same common user and the converted user representation data corresponding to another target domain to obtain fused user representation data (203); and performing training by using a machine learning method and by taking the fused user representation data and the item representation data as inputs and taking a tag indicating whether a common user and an item that are represented by the input data interact as an expected output, so as to obtain a dual-target domain recommendation model (204). The method achieves bidirectional data migration between dual-target domains, and improves the accuracy of the dual-target domain recommendation model.

Description

双目标域推荐模型的训练方法及装置Training method and device for dual-target domain recommendation model

本公开要求于2022年12月26日提交的申请号为202211686837.7、发明名称为“双目标域推荐模型的训练方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。This disclosure claims priority to Chinese patent application No. 202211686837.7, filed on December 26, 2022, and entitled “Training method and device for dual-target domain recommendation model”, the entire contents of which are incorporated by reference in this disclosure.

技术领域Technical Field

本公开实施例涉及人工智能技术领域,具体涉及深度学习技术,尤其涉及一种双目标域推荐模型的训练方法装置、双目标域推荐方法及装置。The embodiments of the present disclosure relate to the field of artificial intelligence technology, specifically to deep learning technology, and more particularly to a training method and device for a dual-target domain recommendation model, and a dual-target domain recommendation method and device.

背景技术Background technique

推荐系统有助于缓解信息过载的难题。协同过滤方法是现代推荐系统中广泛使用的技术,它可以有效地学习用户和项目的嵌入表示,基于这些嵌入表示进行推荐。然而,这些方法在一定程度上受到数据稀疏问题的困扰,使得准确、有效地对用户偏好进行建模变得困难,导致推荐质量急剧下降。CDR(Cross Domain Recommendation,跨域推荐)技术最近被广泛研究以缓解数据稀疏的问题,它利用辅助域中的数据来提高目标域的推荐性能。但是,现有的跨域推荐方法只关注于借助辅助域数据来提高目标域性能的单向迁移,存在只有目标域一方受益的问题。Recommendation systems help alleviate the problem of information overload. Collaborative filtering methods are widely used techniques in modern recommendation systems. They can effectively learn embedded representations of users and items and make recommendations based on these embedded representations. However, these methods are plagued by the problem of data sparsity to a certain extent, making it difficult to accurately and effectively model user preferences, resulting in a sharp decline in the quality of recommendations. CDR (Cross Domain Recommendation) technology has recently been widely studied to alleviate the problem of data sparsity. It uses data in the auxiliary domain to improve the recommendation performance of the target domain. However, existing cross-domain recommendation methods only focus on one-way migration to improve the performance of the target domain with the help of auxiliary domain data, and there is a problem that only the target domain benefits.

发明内容Summary of the invention

本公开实施例提出了一种双目标域推荐模型的训练方法装置、双目标域推荐方法及装置、计算机可读介质及电子设备。The embodiments of the present disclosure provide a dual-target domain recommendation model training method and device, a dual-target domain recommendation method and device, a computer-readable medium, and an electronic device.

第一方面,本公开实施例提供了一种双目标域推荐模型的训练方法,对于双目标域中的每个目标域,执行如下训练操作:根据双目标域对应的共有用户集合中的共有用户与项目集合中的项目之间的交互数据,确定该目标域中的共有用户的用户表示数据和项目的项目表示数据;将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据; 将表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据;采用机器学习方法,以融合后用户表示数据和项目表示数据为输入,以表征所输入的融合后用户表示数据对应的共有用户和所输入的项目表示数据对应的项目之间是否交互的标签为期望输出,训练得到双目标域推荐模型。In a first aspect, an embodiment of the present disclosure provides a training method for a dual-target domain recommendation model, wherein for each target domain in the dual-target domains, the following training operations are performed: user representation data of the common users in the target domain and item representation data of the items in the item set are determined based on interaction data between the common users in the common user set corresponding to the dual-target domains and the items in the item set; the user representation data in the target domain is converted to another target domain to obtain converted user representation data corresponding to the target domain; The user representation data in the target domain representing the same shared user is fused with the converted user representation data corresponding to another target domain to obtain fused user representation data; a machine learning method is adopted, with the fused user representation data and item representation data as input, and a label representing whether there is interaction between the shared user corresponding to the input fused user representation data and the item corresponding to the input item representation data as the expected output, to train a dual-target domain recommendation model.

在一些示例中,上述将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据,包括:通过可训练的正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据。In some examples, the above-mentioned converting the user representation data in the target domain to another target domain to obtain the converted user representation data corresponding to the target domain includes: converting the user representation data in the target domain to another target domain through a trainable orthogonal mapping matrix to obtain the converted user representation data corresponding to the target domain.

在一些示例中,上述方法还包括:在双目标域推荐模型的训练过程中的每次迭代操作后,根据该目标域中的正交映射矩阵和另一目标域中的正交映射矩阵,得到双目标域下一次迭代操作对应的正交映射矩阵。In some examples, the above method also includes: after each iterative operation in the training process of the dual-target domain recommendation model, obtaining the orthogonal mapping matrix corresponding to the next iterative operation of the dual-target domain according to the orthogonal mapping matrix in the target domain and the orthogonal mapping matrix in another target domain.

在一些示例中,上述通过可训练的正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据,包括:通过可训练的正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的初始转换后用户表示数据;采用本地差分隐私技术,处理初始转换后用户表示数据,得到转换后用户表示数据。In some examples, the above-mentioned converting the user representation data in the target domain to another target domain through a trainable orthogonal mapping matrix to obtain the converted user representation data corresponding to the target domain includes: converting the user representation data in the target domain to another target domain through a trainable orthogonal mapping matrix to obtain the initial converted user representation data corresponding to the target domain; using local differential privacy technology to process the initial converted user representation data to obtain the converted user representation data.

在一些示例中,上述将表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据,包括:通过可训练的嵌入融合模块,根据表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据之间的相似度,确定门控选择向量;根据门控选择向量,融合表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据,得到融合后用户表示数据。In some examples, the above-mentioned fusing the user representation data in the target domain representing the same shared user with the converted user representation data corresponding to another target domain to obtain the fused user representation data includes: determining a gated selection vector according to the similarity between the user representation data in the target domain representing the same shared user and the converted user representation data corresponding to another target domain through a trainable embedding fusion module; and fusing the user representation data in the target domain representing the same shared user with the converted user representation data corresponding to another target domain according to the gated selection vector to obtain the fused user representation data.

在一些示例中,上述根据门控选择向量,融合表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据,得到融 合后用户表示数据,包括:根据门控选择向量,对表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行加权求和,得到融合后用户表示数据。In some examples, the above gated selection vector is used to fuse the user representation data in the target domain and the converted user representation data corresponding to another target domain, thereby obtaining a fusion. The combined user representation data includes: performing weighted summation of the user representation data in the target domain representing the same common user and the converted user representation data corresponding to another target domain according to the gated selection vector to obtain the fused user representation data.

在一些示例中,上述采用机器学习方法,以融合后用户表示数据和项目表示数据为输入,以表征所输入的融合后用户表示数据对应的共有用户和所输入的项目表示数据对应的项目之间是否交互的标签为期望输出,训练得到双目标域推荐模型,包括:根据融合后用户表示数据和项目表示数据,预测融合后用户表示数据对应的共有用户与项目表示数据对应的项目之间的交互概率;通过目标函数,根据交互概率、标签和预设的归一化参数,确定交互概率和标签之间的损失;根据损失,训练得到双目标域推荐模型。In some examples, the above-mentioned machine learning method uses fused user representation data and item representation data as input, and takes labels representing whether there is interaction between common users corresponding to the input fused user representation data and items corresponding to the input item representation data as expected output, to train a dual-target domain recommendation model, including: predicting the interaction probability between common users corresponding to the fused user representation data and items corresponding to the item representation data based on the fused user representation data and the item representation data; determining the loss between the interaction probability and the label through the objective function according to the interaction probability, the label and a preset normalization parameter; and training the dual-target domain recommendation model based on the loss.

在一些示例中,上述交互数据为表征共有用户集合中的共有用户和项目集合中的项目之间的交互情况的交互矩阵;以及上述根据双目标域对应的共有用户集合中的共有用户与项目集合中的项目之间的交互数据,确定该目标域中的共有用户的用户表示数据和项目的项目表示数据,包括:采用矩阵分解的方式,基于交互矩阵,确定该目标域中的共有用户的用户表示数据和项目的项目表示数据。In some examples, the above-mentioned interaction data is an interaction matrix that characterizes the interaction between common users in the common user set and projects in the project set; and the above-mentioned interaction data between common users in the common user set corresponding to the dual target domains and projects in the project set is used to determine the user representation data of common users and the project representation data of projects in the target domain, including: using matrix decomposition to determine the user representation data of common users and the project representation data of projects in the target domain based on the interaction matrix.

第二方面,本公开实施例提供了一种双目标域推荐方法,对于双目标域中的每个目标域,执行如下推荐操作:根据双目标域对应的目标共有用户与项目集合中的项目之间的交互数据,确定目标共有用户的用户表示数据和项目的项目表示数据;将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据;将该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据;通过训练后的双目标域推荐模型,根据融合后用户表示数据和项目表示数据,确定目标共有用户的待推荐项目。In a second aspect, an embodiment of the present disclosure provides a dual-target domain recommendation method, which performs the following recommendation operations for each target domain in the dual target domains: determining user representation data of the target common users and item representation data of the items in the item set based on the interaction data between the target common users corresponding to the dual target domains and the items in the item set; converting the user representation data in the target domain to another target domain to obtain converted user representation data corresponding to the target domain; fusing the user representation data in the target domain with the converted user representation data corresponding to another target domain to obtain fused user representation data; and determining the items to be recommended for the target common users based on the fused user representation data and item representation data through the trained dual-target domain recommendation model.

在一些示例中,上述将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据,包括:通过双目标域推荐模型中 训练后的正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据。In some examples, the above-mentioned converting the user representation data in the target domain to another target domain to obtain the converted user representation data corresponding to the target domain includes: The trained orthogonal mapping matrix transforms the user representation data in the target domain into another target domain to obtain the transformed user representation data corresponding to the target domain.

在一些示例中,上述通过双目标域推荐模型中训练后的正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据,包括:通过正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的初始转换后用户表示数据;采用本地差分隐私技术,处理初始转换后用户表示数据,得到转换后用户表示数据。In some examples, the above-mentioned orthogonal mapping matrix trained in the dual-target domain recommendation model is used to convert the user representation data in the target domain to another target domain to obtain the converted user representation data corresponding to the target domain, including: converting the user representation data in the target domain to another target domain through an orthogonal mapping matrix to obtain the initial converted user representation data corresponding to the target domain; using local differential privacy technology to process the initial converted user representation data to obtain the converted user representation data.

在一些示例中,上述将该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据,包括:通过双目标域推荐模型中训练后的嵌入融合模块,根据该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据,确定门控选择向量;根据门控选择向量,融合该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据,得到融合后用户表示数据。In some examples, the above-mentioned fusing the user representation data in the target domain with the converted user representation data corresponding to another target domain to obtain the fused user representation data includes: determining a gating selection vector according to the user representation data in the target domain and the converted user representation data corresponding to another target domain through an embedded fusion module trained in a dual-target domain recommendation model; and fusing the user representation data in the target domain with the converted user representation data corresponding to another target domain according to the gating selection vector to obtain the fused user representation data.

在一些示例中,上述根据门控选择向量,融合该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据,得到融合后用户表示数据,包括:根据门控选择向量,对该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行加权求和,得到融合后用户表示数据。In some examples, the above-mentioned fusing the user representation data in the target domain with the converted user representation data corresponding to another target domain according to the gated selection vector to obtain the fused user representation data includes: performing weighted summation of the user representation data in the target domain and the converted user representation data corresponding to another target domain according to the gated selection vector to obtain the fused user representation data.

在一些示例中,上述通过训练后的双目标域推荐模型,根据融合后用户表示数据和项目表示数据,确定目标共有用户的待推荐项目,包括:根据融合后用户表示数据和项目表示数据,预测目标共有用户与项目表示数据表征的项目之间的交互概率;根据交互概率,确定目标共有用户的待推荐项目。In some examples, the above-mentioned trained dual-target domain recommendation model determines the items to be recommended for the target common user based on the fused user representation data and item representation data, including: predicting the interaction probability between the target common user and the items represented by the item representation data based on the fused user representation data and item representation data; determining the items to be recommended for the target common user based on the interaction probability.

在一些示例中,上述根据双目标域对应的目标共有用户与项目集合中的项目之间的交互数据,确定目标共有用户的用户表示数据和项目的项目表示数据,包括:采用矩阵分解的方式,基于交互矩阵,确定该目标域中的目标共有用户的用户表示数据和项目的项目表示数据,其中,交互矩阵表征双目 标域对应的共有用户集合中的共有用户和项目集合中的项目之间的交互数据。In some examples, the above-mentioned determining the user representation data of the target common users and the item representation data of the items in the item set according to the interaction data between the target common users corresponding to the dual target domains and the items in the item set includes: using a matrix decomposition method to determine the user representation data of the target common users and the item representation data of the items in the target domain based on the interaction matrix, wherein the interaction matrix represents the user representation data of the target common users and the item representation data of the items in the dual target domains. The interaction data between the common users in the common user set and the items in the item set corresponding to the domain.

第三方面,本公开实施例提供了一种双目标域推荐模型的训练装置,对于双目标域中的每个目标域,通过如下单元执行训练操作:第一确定单元,被配置成根据双目标域对应的共有用户集合中的共有用户与项目集合中的项目之间的交互数据,确定该目标域中的共有用户的用户表示数据和项目的项目表示数据;第一得到单元,被配置成将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据;第二得到单元,被配置成将表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据;训练单元,被配置成采用机器学习方法,以融合后用户表示数据和项目表示数据为输入,以表征所输入的融合后用户表示数据对应的共有用户和所输入的项目表示数据对应的项目之间是否交互的标签为期望输出,训练得到双目标域推荐模型。In a third aspect, an embodiment of the present disclosure provides a training device for a dual-target domain recommendation model. For each target domain in the dual target domains, a training operation is performed by the following units: a first determination unit is configured to determine user representation data of common users and item representation data of items in the target domain based on interaction data between common users in a common user set corresponding to the dual target domains and items in an item set; a first obtaining unit is configured to convert the user representation data in the target domain to another target domain to obtain converted user representation data corresponding to the target domain; a second obtaining unit is configured to fuse the user representation data in the target domain representing the same common user with the converted user representation data corresponding to another target domain to obtain fused user representation data; a training unit is configured to adopt a machine learning method, with the fused user representation data and item representation data as input, and a label representing whether there is interaction between the common users corresponding to the input fused user representation data and the items corresponding to the input item representation data as the expected output, to train and obtain the dual-target domain recommendation model.

在一些示例中,上述第一得到单元,进一步被配置成:通过可训练的正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据。In some examples, the first obtaining unit is further configured to: convert the user representation data in the target domain to another target domain through a trainable orthogonal mapping matrix to obtain converted user representation data corresponding to the target domain.

在一些示例中,上述装置还包括:矩阵更新单元,被配置成在双目标域推荐模型的训练过程中的每次迭代操作后,根据该目标域中的正交映射矩阵和另一目标域中的正交映射矩阵,得到双目标域下一次迭代操作对应的正交映射矩阵。In some examples, the above-mentioned device also includes: a matrix update unit, which is configured to obtain an orthogonal mapping matrix corresponding to the next iterative operation of the dual target domains according to the orthogonal mapping matrix in the target domain and the orthogonal mapping matrix in another target domain after each iterative operation in the training process of the dual target domain recommendation model.

在一些示例中,上述第一得到单元,进一步被配置成:通过可训练的正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的初始转换后用户表示数据;采用本地差分隐私技术,处理初始转换后用户表示数据,得到转换后用户表示数据。In some examples, the first obtaining unit is further configured to: convert the user representation data in the target domain to another target domain through a trainable orthogonal mapping matrix to obtain the initial converted user representation data corresponding to the target domain; and use local differential privacy technology to process the initial converted user representation data to obtain converted user representation data.

在一些示例中,上述第二得到单元,进一步被配置成:通过可训练的嵌入融合模块,根据表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据之间的相似度,确定门控选择向量;根据 门控选择向量,融合表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据,得到融合后用户表示数据。In some examples, the second obtaining unit is further configured to: determine the gate selection vector according to the similarity between the user representation data in the target domain and the converted user representation data corresponding to another target domain that represent the same common user through a trainable embedding fusion module; The gated selection vector is used to fuse the user representation data in the target domain and the converted user representation data corresponding to another target domain, representing the same common user, to obtain fused user representation data.

在一些示例中,上述第二得到单元,进一步被配置成:根据门控选择向量,对表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行加权求和,得到融合后用户表示数据。In some examples, the second obtaining unit is further configured to: perform weighted summation of the user representation data in the target domain representing the same common user and the converted user representation data corresponding to another target domain according to the gated selection vector to obtain fused user representation data.

在一些示例中,上述训练单元,进一步被配置成:根据融合后用户表示数据和项目表示数据,预测融合后用户表示数据对应的共有用户与项目表示数据对应的项目之间的交互概率;通过目标函数,根据交互概率、标签和预设的归一化参数,确定交互概率和标签之间的损失;根据损失,训练得到双目标域推荐模型。In some examples, the training unit is further configured to: predict the interaction probability between the common users corresponding to the fused user representation data and the items corresponding to the item representation data based on the fused user representation data and the item representation data; determine the loss between the interaction probability and the label based on the objective function, the interaction probability, the label and a preset normalization parameter; and train a dual-target domain recommendation model based on the loss.

在一些示例中,上述交互数据为表征共有用户集合中的共有用户和项目集合中的项目之间的交互情况的交互矩阵;以及上述第一确定单元,进一步被配置成:采用矩阵分解的方式,基于交互矩阵,确定该目标域中的共有用户的用户表示数据和项目的项目表示数据。In some examples, the interaction data is an interaction matrix that characterizes the interaction between common users in a common user set and projects in a project set; and the first determination unit is further configured to: determine the user representation data of common users and the project representation data of projects in the target domain based on the interaction matrix by matrix decomposition.

第四方面,本公开实施例提供了一种双目标域推荐装置,对于双目标域中的每个目标域,通过如下单元执行推荐操作:第二确定单元,被配置成根据双目标域对应的目标共有用户与项目集合中的项目之间的交互数据,确定目标共有用户的用户表示数据和项目的项目表示数据;第三得到单元,被配置成将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据;第四得到单元,被配置成将该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据;推荐单元,被配置成通过训练后的双目标域推荐模型,根据融合后用户表示数据和项目表示数据,确定目标共有用户的待推荐项目。In a fourth aspect, an embodiment of the present disclosure provides a dual-target domain recommendation device, which performs a recommendation operation for each target domain in the dual target domains through the following units: a second determination unit is configured to determine the user representation data of the target common user and the item representation data of the item according to the interaction data between the target common user corresponding to the dual target domains and the items in the item set; a third obtaining unit is configured to convert the user representation data in the target domain to another target domain to obtain the converted user representation data corresponding to the target domain; a fourth obtaining unit is configured to fuse the user representation data in the target domain with the converted user representation data corresponding to another target domain to obtain the fused user representation data; a recommendation unit is configured to determine the items to be recommended of the target common user according to the fused user representation data and the item representation data through the trained dual-target domain recommendation model.

在一些示例中,上述第三得到单元,进一步被配置成:通过双目标域推荐模型中训练后的正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据。 In some examples, the third obtaining unit is further configured to: convert the user representation data in the target domain to another target domain through the orthogonal mapping matrix trained in the dual-target domain recommendation model, and obtain the converted user representation data corresponding to the target domain.

在一些示例中,上述第三得到单元,进一步被配置成:通过正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的初始转换后用户表示数据;采用本地差分隐私技术,处理初始转换后用户表示数据,得到转换后用户表示数据。In some examples, the third obtaining unit is further configured to: convert the user representation data in the target domain to another target domain through an orthogonal mapping matrix to obtain the initial converted user representation data corresponding to the target domain; and use local differential privacy technology to process the initial converted user representation data to obtain converted user representation data.

在一些示例中,上述第四得到单元,进一步被配置成:通过双目标域推荐模型中训练后的嵌入融合模块,根据该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据,确定门控选择向量;根据门控选择向量,融合该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据,得到融合后用户表示数据。In some examples, the fourth obtaining unit is further configured to: determine a gating selection vector according to the user representation data in the target domain and the converted user representation data corresponding to another target domain through an embedded fusion module trained in the dual-target domain recommendation model; and fuse the user representation data in the target domain with the converted user representation data corresponding to another target domain according to the gating selection vector to obtain fused user representation data.

在一些示例中,上述第四得到单元,进一步被配置成:根据门控选择向量,对该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行加权求和,得到融合后用户表示数据。In some examples, the fourth obtaining unit is further configured to: perform weighted summation of the user representation data in the target domain and the converted user representation data corresponding to another target domain according to the gated selection vector to obtain fused user representation data.

在一些示例中,上述推荐单元,进一步被配置成:根据融合后用户表示数据和项目表示数据,预测目标共有用户与项目表示数据表征的项目之间的交互概率;根据交互概率,确定目标共有用户的待推荐项目。In some examples, the recommendation unit is further configured to: predict the interaction probability between the target common user and the items represented by the item representation data based on the fused user representation data and item representation data; and determine the items to be recommended for the target common user based on the interaction probability.

在一些示例中,上述第二确定单元,进一步被配置成:采用矩阵分解的方式,基于交互矩阵,确定该目标域中的目标共有用户的用户表示数据和项目的项目表示数据,其中,交互矩阵表征双目标域对应的共有用户集合中的共有用户和项目集合中的项目之间的交互数据。In some examples, the second determination unit is further configured to: determine the user representation data of the target common users and the project representation data of the projects in the target domain based on the interaction matrix by matrix decomposition, wherein the interaction matrix represents the interaction data between the common users in the common user set and the projects in the project set corresponding to the dual target domains.

第五方面,本公开实施例提供了一种计算机可读介质,其上存储有计算机程序,其中,程序被处理器执行时实现如第一方面和第二方面任一实现方式描述的方法。In a fifth aspect, an embodiment of the present disclosure provides a computer-readable medium having a computer program stored thereon, wherein when the program is executed by a processor, the method described in any one of the implementation modes of the first aspect and the second aspect is implemented.

第六方面,本公开实施例提供了一种电子设备,包括:一个或多个处理器;存储装置,其上存储有一个或多个程序,当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现如第一方面和第二方面任一实现方式描述的方法。 In a sixth aspect, an embodiment of the present disclosure provides an electronic device, comprising: one or more processors; a storage device on which one or more programs are stored, and when the one or more programs are executed by the one or more processors, the one or more processors implement the method described in any implementation manner of the first aspect and the second aspect.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本公开的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present disclosure will become more apparent from the detailed description of non-limiting embodiments made with reference to the following drawings:

图1是本公开的一个实施例可以应用于其中的示例性系统架构图;FIG1 is an exemplary system architecture diagram in which an embodiment of the present disclosure may be applied;

图2是根据本公开的双目标域推荐模型的训练方法的一个实施例的流程图;FIG2 is a flow chart of an embodiment of a training method for a dual-target domain recommendation model according to the present disclosure;

图3是根据本实施例的双目标域推荐模型的结构示意图;FIG3 is a schematic diagram of the structure of a dual-target domain recommendation model according to this embodiment;

图4是根据本实施例的双目标域推荐模型的训练方法的应用场景的示意图;FIG4 is a schematic diagram of an application scenario of the training method of the dual-target domain recommendation model according to this embodiment;

图5是根据本公开的双目标域推荐模型的训练方法的又一个实施例的流程图;FIG5 is a flow chart of another embodiment of a training method for a dual-target domain recommendation model according to the present disclosure;

图6是根据本公开的双目标域推荐方法的一个实施例的流程图;FIG6 is a flow chart of an embodiment of a dual-target domain recommendation method according to the present disclosure;

图7是根据本公开的双目标域推荐方法的又一个实施例的流程图;FIG7 is a flow chart of another embodiment of a dual-target domain recommendation method according to the present disclosure;

图8是根据本公开的双目标域推荐模型的训练装置的一个实施例的结构图;FIG8 is a structural diagram of an embodiment of a training device for a dual-target domain recommendation model according to the present disclosure;

图9是根据本公开的双目标域推荐装置的一个实施例的结构图;FIG9 is a structural diagram of an embodiment of a dual-target domain recommendation device according to the present disclosure;

图10是适于用来实现本公开实施例的计算机系统的结构示意图。FIG. 10 is a schematic diagram of the structure of a computer system suitable for implementing the embodiments of the present disclosure.

具体实施方式Detailed ways

下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。The present disclosure is further described in detail below in conjunction with the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are only used to explain the relevant invention, rather than to limit the invention. It is also necessary to explain that, for ease of description, only the parts related to the relevant invention are shown in the accompanying drawings.

需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。It should be noted that, in the absence of conflict, the embodiments and features in the embodiments of the present disclosure may be combined with each other. The present disclosure will be described in detail below with reference to the accompanying drawings and in combination with the embodiments.

还需要说明的是,本公开的技术方案中,所涉及的用户个人信息的采集、 收集、更新、分析、处理、使用、传输、存储等方面,均符合相关法律法规的规定,被用于合法的用途,且不违背公序良俗。对用户个人信息采取必要措施,防止对用户个人信息数据的非法访问,维护用户个人信息安全、网络安全和国家安全。It should also be noted that in the technical solution of this disclosure, the collection and The collection, updating, analysis, processing, use, transmission, storage and other aspects are in compliance with the relevant laws and regulations, are used for legitimate purposes, and do not violate public order and good customs. Necessary measures are taken for user personal information to prevent illegal access to user personal information data and maintain the security of user personal information, network security and national security.

图1示出了可以应用本公开的双目标域推荐模型的训练方法及装置、双目标域推荐方法及装置的示例性架构100。FIG. 1 shows an exemplary architecture 100 to which the dual-target domain recommendation model training method and apparatus, and the dual-target domain recommendation method and apparatus of the present disclosure can be applied.

如图1所示,系统架构100可以包括终端设备101、102、103,网络104和服务器105。终端设备101、102、103之间通信连接构成拓扑网络,网络104用以在终端设备101、102、103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。As shown in FIG1 , the system architecture 100 may include terminal devices 101, 102, 103, a network 104, and a server 105. The communication connection between the terminal devices 101, 102, 103 constitutes a topological network, and the network 104 is used to provide a medium for a communication link between the terminal devices 101, 102, 103 and the server 105. The network 104 may include various connection types, such as wired, wireless communication links, or optical fiber cables, etc.

用户可以使用终端设备101、102、103通过网络104与服务器105交互,以接收或发送消息等。终端设备101、102、103可以是支持网络连接从而进行数据交互和数据处理的硬件设备或软件。当终端设备101、102、103为硬件时,其可以是支持网络连接,信息获取、交互、显示、处理等功能的各种电子设备,包括但不限于智能手机、平板电脑、电子书阅读器、膝上型便携计算机和台式计算机等等。当终端设备101、102、103为软件时,可以安装在上述所列举的电子设备中。其可以实现成例如用来提供分布式服务的多个软件或软件模块,也可以实现成单个软件或软件模块。在此不做具体限定。Users can use terminal devices 101, 102, 103 to interact with server 105 through network 104 to receive or send messages, etc. Terminal devices 101, 102, 103 can be hardware devices or software that support network connection for data interaction and data processing. When terminal devices 101, 102, 103 are hardware, they can be various electronic devices that support network connection, information acquisition, interaction, display, processing and other functions, including but not limited to smart phones, tablet computers, e-book readers, laptop portable computers and desktop computers, etc. When terminal devices 101, 102, 103 are software, they can be installed in the electronic devices listed above. It can be implemented as multiple software or software modules for providing distributed services, for example, or it can be implemented as a single software or software module. No specific limitation is made here.

服务器105可以是提供各种服务的服务器,例如,响应于接收到终端设备101、102、103发出的模型训练请求,训练得到双目标域对应的双方企业用户的双目标域推荐模型的后台处理服务器。又例如,通过双目标域各自对应的双目标域推荐模型,向双方企业用户的服务用户进行信息推荐的后台处理服务器。作为示例,服务器105可以是云端服务器。The server 105 may be a server that provides various services, for example, a background processing server that trains a dual-target domain recommendation model for both enterprise users corresponding to the dual target domains in response to receiving a model training request from the terminal devices 101, 102, and 103. For another example, a background processing server that recommends information to service users of both enterprise users through the dual-target domain recommendation models corresponding to the dual target domains. As an example, the server 105 may be a cloud server.

需要说明的是,服务器可以是硬件,也可以是软件。当服务器为硬件时,可以实现成多个服务器组成的分布式服务器集群,也可以实现成单个服务器。 当服务器为软件时,可以实现成多个软件或软件模块(例如用来提供分布式服务的软件或软件模块),也可以实现成单个软件或软件模块。在此不做具体限定。It should be noted that the server can be hardware or software. When the server is hardware, it can be implemented as a distributed server cluster consisting of multiple servers or as a single server. When the server is software, it can be implemented as multiple software or software modules (such as software or software modules for providing distributed services), or it can be implemented as a single software or software module, which is not specifically limited here.

还需要说明的是,本公开的实施例所提供的双目标域推荐模型的训练方法、双目标域推荐方法可以由服务器执行,也可以由终端设备执行,还可以由服务器和终端设备彼此配合执行。相应地,双目标域推荐模型的训练装置、双目标域推荐装置包括的各个部分(例如各个单元)可以全部设置于服务器中,也可以全部设置于终端设备中,还可以分别设置于服务器和终端设备中。It should also be noted that the training method of the dual-target domain recommendation model and the dual-target domain recommendation method provided in the embodiments of the present disclosure can be executed by a server, or by a terminal device, or by a server and a terminal device in cooperation with each other. Accordingly, the various parts (e.g., various units) included in the training device of the dual-target domain recommendation model and the dual-target domain recommendation device can be all set in the server, or all set in the terminal device, or can be set in the server and the terminal device respectively.

应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。当双目标域推荐模型的训练方法、双目标域推荐方法运行于其上的电子设备不需要与其他电子设备进行数据传输时,该系统架构可以仅包括双目标域推荐模型的训练方法、双目标域推荐方法运行于其上的电子设备(例如服务器或终端设备)。It should be understood that the number of terminal devices, networks, and servers in FIG1 is merely illustrative. Depending on the implementation requirements, there may be any number of terminal devices, networks, and servers. When the training method of the dual-target domain recommendation model and the electronic device on which the dual-target domain recommendation method runs do not need to transmit data with other electronic devices, the system architecture may only include the training method of the dual-target domain recommendation model and the electronic device (e.g., server or terminal device) on which the dual-target domain recommendation method runs.

继续参考图2,示出了双目标域推荐模型的训练方法的一个实施例的流程200,对于双目标域中的每个目标域,执行以下步骤所表征的训练操作:2, a flow chart 200 of an embodiment of a training method for a dual-target domain recommendation model is shown. For each target domain in the dual-target domain, a training operation represented by the following steps is performed:

步骤201,根据双目标域对应的共有用户集合中的共有用户与项目集合中的项目之间的交互数据,确定该目标域中的共有用户的用户表示数据和项目的项目表示数据。Step 201 : determining user representation data of common users and item representation data of items in the target domain according to interaction data between common users in a common user set corresponding to dual target domains and items in an item set.

本实施例中,双目标域推荐模型的训练方法的执行主体(例如图1中的终端设备或服务器)可以采用有线网络连接方式或无线网络连接方式从远程,或从本地获取双目标域对应的共有用户集合中的共有用户与项目集合中的项目之间的交互数据;并根据交互数据,确定该目标域中的共有用户的用户表示数据和项目的项目表示数据。In this embodiment, the executing entity of the training method of the dual-target domain recommendation model (for example, the terminal device or server in Figure 1) can use a wired network connection method or a wireless network connection method to obtain the interaction data between the common users in the common user set corresponding to the dual target domains and the items in the item set remotely or locally; and determine the user representation data of the common users and the item representation data of the items in the target domain based on the interaction data.

双目标域可以是存在一定相关性的两个域。作为示例,双目标域为电商平台对应的第一目标域和短视频平台对应的第二目标域。可以理解,用户在 电商平台浏览的物品信息与用户在短视频平台浏览的视频信息存在一定的相关性,电商平台和短视频平台双方可以借助于对方的数据来解决自身的数据稀疏问题。The dual target domains may be two domains with a certain correlation. As an example, the dual target domains are the first target domain corresponding to the e-commerce platform and the second target domain corresponding to the short video platform. There is a certain correlation between the item information browsed on the e-commerce platform and the video information browsed by users on the short video platform. Both the e-commerce platform and the short video platform can use each other's data to solve their own data sparsity problems.

共有用户集合中包括双目标域中的共有用户,每个目标域对应有一个项目集合,项目集合中包括所对应的目标域中的项目。项目表征所属的目标域中的用户交互的信息类型。以电商平台为例,项目可以是各种各样的物品;以短视频平台,项目可以是包含给种类型的信息的短视频。The common user set includes common users in the two target domains. Each target domain corresponds to a project set, and the project set includes projects in the corresponding target domain. Projects represent the type of information that users interact with in the target domain. Taking e-commerce platforms as an example, projects can be various items; taking short video platforms, projects can be short videos containing information of a given type.

对于双目标域中的每个目标域,可以采用相同的编码方式确定自身服务用户的唯一标识符;然后,比对双目标域的用户的唯一标识符,确定出双目标域中的所有共有用户,得到共有用户集合;最后,对于每个目标域,根据共有用户集合,确定共有用户在该目标域中与项目集合中的项目之间的交互数据。需要说明的是,交互数据中即包括用户与交互过的项目之间的关系数据,也包括用户与未交互的项目之间的关系数据。For each target domain in the dual target domain, the same encoding method can be used to determine the unique identifier of the user it serves; then, by comparing the unique identifiers of the users in the dual target domains, all common users in the dual target domains are determined to obtain a common user set; finally, for each target domain, based on the common user set, the interaction data between the common users in the target domain and the items in the item set is determined. It should be noted that the interaction data includes both the relationship data between the user and the items that have interacted, and the relationship data between the user and the items that have not interacted.

在确定交互数据后,上述执行主体可以采用编码模型对交互数据进行编码,得到每一目标域中的共有用户的用户表示数据,也即用户的嵌入表示信息,和项目的项目表示数据,也即项目的嵌入表示信息。作为示例,上述执行主体可以采用目标已有的嵌入表示模型(例如,采用协同过滤方法得到的推荐模型)对交互数据进行编码,得到用户表示数据和项目表示数据。After determining the interaction data, the execution subject may encode the interaction data using the encoding model to obtain user representation data of common users in each target domain, that is, the user's embedded representation information, and project representation data of projects, that is, the project's embedded representation information. As an example, the execution subject may encode the interaction data using an existing embedded representation model of the target (for example, a recommendation model obtained using a collaborative filtering method) to obtain user representation data and project representation data.

继续参考图3,示出了双目标域推荐模型的结构图。双目标域推荐模型300的训练过程包括嵌入表示、嵌入转换、嵌入融合和参数更新与同步四个阶段。3, a structural diagram of the dual-target domain recommendation model is shown. The training process of the dual-target domain recommendation model 300 includes four stages: embedding representation, embedding conversion, embedding fusion, and parameter update and synchronization.

在本实施例的一些可选的实现方式中,交互数据为表征共有用户集合中的共有用户和项目集合中的项目之间的交互情况的交互矩阵。In some optional implementations of this embodiment, the interaction data is an interaction matrix that characterizes the interaction between the common users in the common user set and the items in the item set.

作为示例,双目标域包括域A和域B,它们具有同一共有用户集合U,但具有不同的项目集合。域A和域B中的项目集合分别表示为VA和VB。RA表示域A中的共有用户与项目之间的交互矩阵;对应的,RB表示域B中共有 用户与项目之间的交互矩阵。As an example, the dual target domains include domain A and domain B, which have the same common user set U but different item sets. The item sets in domain A and domain B are denoted as VA and VB , respectively. RA represents the interaction matrix between common users and items in domain A; correspondingly, RB represents the interaction matrix between common users and items in domain B. Interaction matrix between users and items.

在域A中,每个共有用户i可以表示为交互矩阵RA的第i行,即类似地,每个项目j可以表示为交互矩阵RA的第j列,即 In domain A, each common user i can be represented as the i-th row of the interaction matrix RA , i.e. Similarly, each item j can be represented as the jth column of the interaction matrix RA , i.e.

本实现方式中,上述执行主体可以通过如下方式执行上述步骤201:采用矩阵分解的方式,基于交互矩阵,确定该目标域中的共有用户的用户表示数据和项目的项目表示数据。In this implementation, the execution subject may perform step 201 in the following manner: determine the user representation data of common users and the project representation data of projects in the target domain based on the interaction matrix by matrix decomposition.

作为示例,通过深度矩阵分解(DMF)、神经矩阵分解(NeuMF),可以在每个目标域中生成用户表示数据和项目表示数据。以深度矩阵分解方式为例,在域A中,采用两个多层网络将用户i和项目j分别映射到潜在空间中,得到低维嵌入向量:

As an example, through deep matrix factorization (DMF) and neural matrix factorization (NeuMF), user representation data and item representation data can be generated in each target domain. Taking the deep matrix factorization method as an example, in domain A, two multi-layer networks are used to map user i and item j to the latent space respectively, and a low-dimensional embedding vector is obtained:

其中,σ表示非线性激活函数ReLU,k表示用户表示数据和项目表示数据的维度,分别表示共有用户对应的多层网络中不同层的权重和项目对应的多层网络中不同层的权重。Among them, σ represents the nonlinear activation function ReLU, k represents the dimension of user representation data and item representation data, and They respectively represent the weights of different layers in the multi-layer network corresponding to the shared users and the weights of different layers in the multi-layer network corresponding to the projects.

类似地,参照域A中的上述嵌入表示过程,可以确定出域B中共有用户i的用户表示数据和项目z的项目表示数据和其中,z∈VBSimilarly, referring to the above embedding representation process in domain A, it can be determined that there are user representation data of user i in domain B: and items z represent data and Among them, z∈V B .

本实现方式中,采用矩阵分解的方式确定每个目标域中的用户表示数据和项目表示数据,提高了嵌入表示过程的效率和准确度。In this implementation, matrix decomposition is used to determine user representation data and item representation data in each target domain, thereby improving the efficiency and accuracy of the embedding representation process.

步骤202,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据。Step 202: convert the user representation data in the target domain into another target domain to obtain converted user representation data corresponding to the target domain.

本实施例中,上述执行主体可以将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据。In this embodiment, the execution subject may convert the user representation data in the target domain into another target domain to obtain converted user representation data corresponding to the target domain.

为了更好地理解一个目标域中共有用户的用户偏好,利用来自另一目标域中用户的外部用户表示数据,反之亦然。本实施例中,需要将一个目标域中的共同用户的用户表示数据进行域适应的转换后,发送至另一个目标域。 In order to better understand the user preferences of common users in one target domain, external user representation data from users in another target domain is used, and vice versa. In this embodiment, the user representation data of common users in one target domain needs to be converted for domain adaptation before being sent to another target domain.

作为示例,上述执行主体通过可训练的转换网络,对用户表示数据进行域适应的转换。其中,转换网络中的参数可以在训练过程进行更新。As an example, the execution subject performs domain adaptation conversion on the user representation data through a trainable conversion network, wherein the parameters in the conversion network can be updated during the training process.

作为又一示例,在上述执行主体将转换后的用户表示数据向另一目标域发送之前,可以采用加密方式进行数据加密,以提高数据传输过程的安全性。As another example, before the execution subject sends the converted user representation data to another target domain, the data may be encrypted in an encryption manner to improve the security of the data transmission process.

在本实施例的一些可选的实现方式中,上述执行主体可以通过如下方式执行上述步骤202:通过可训练的正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据。In some optional implementations of the present embodiment, the execution entity may perform step 202 as follows: convert the user representation data in the target domain to another target domain through a trainable orthogonal mapping matrix to obtain the converted user representation data corresponding to the target domain.

正交映射矩阵具有以下两个优势:首先,由于正交变换保留了向量的内积,因此,正交映射矩阵保留了用户表示数据在转换前后的相似性;其次,正交矩阵的逆矩阵等价于它的转置。如此,双目标域之间关于用户表示数据的转换,可以直接使用其转置来简化学习过程并降低计算复杂度。The orthogonal mapping matrix has the following two advantages: first, since the orthogonal transformation preserves the inner product of the vector, the orthogonal mapping matrix preserves the similarity of the user representation data before and after the transformation; second, the inverse matrix of the orthogonal matrix is equivalent to its transpose. In this way, the transformation of the user representation data between the two target domains can directly use its transpose to simplify the learning process and reduce the computational complexity.

在本实施例的一些可选的实现方式中,上述执行主体可以通过如下方式执行上述数据转换过程:首先,通过可训练的正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的初始转换后用户表示数据;然后,采用本地差分隐私技术,处理初始转换后用户表示数据,得到转换后用户表示数据。In some optional implementations of the present embodiment, the above-mentioned execution entity may perform the above-mentioned data conversion process in the following manner: first, through a trainable orthogonal mapping matrix, the user representation data in the target domain is converted to another target domain to obtain the initial converted user representation data corresponding to the target domain; then, the local differential privacy technology is used to process the initial converted user representation data to obtain the converted user representation data.

本实现方式中,首先采用本地差分隐私技术来进一步隐藏转换后用户表示数据的真实分布,然后再将隐藏的转换后用户表示数据迁移到另一个目标域。In this implementation, local differential privacy technology is first used to further hide the true distribution of the transformed user representation data, and then the hidden transformed user representation data is migrated to another target domain.

本地差分隐私技术如下:任意本地差分隐私函数f,定义域为Dom(f),值域为Ran(f),对任意输入t,t′∈Dom(f),输出t*∈Ran(f),都有:
P[f(t)=t*]≤eεP[f(t′)=t*]
The local differential privacy technology is as follows: For any local differential privacy function f, with domain Dom(f) and range Ran(f), for any input t, t′∈Dom(f), the output t*∈Ran(f) has:
P[f(t)=t * ] ≤eεP [f(t′)=t * ]

本地差分隐私技术通过控制任意两条记录的输出结果的相似性,从而确保算法f满足本地化差分隐私,即输出同为t*,使得窃密者无法确认输入为t还是t*Local differential privacy technology ensures that algorithm f satisfies local differential privacy by controlling the similarity of the output results of any two records, that is, the output is always t * , so that the eavesdropper cannot confirm whether the input is t or t * .

采用本地差分隐私技术,不仅可以防止外部攻击者进行推断攻击,还可 以防止另一个目标域对应的企业合作伙伴基于正交映射矩阵推断出真实的用户表示数据,从而侵犯商业隐私。The use of local differential privacy technology can not only prevent external attackers from inference attacks, but also This is to prevent corporate partners corresponding to another target domain from inferring the real user representation data based on the orthogonal mapping matrix, thereby infringing on business privacy.

作为示例,域A中共有用户i的用户表示数据迁移至域B中可以表示为同理,域B中共有用户i的用户表示数据迁移至域A中可以表示为其中:

As an example, there are user representation data of user i in domain A: Migration to domain B can be expressed as Similarly, there are user representation data of user i in domain B Migration to domain A can be expressed as in:

分别表示域A和域B中的正交映射矩阵,并且两个正交映射矩阵始终保持同步和相等。[·]T表示矩阵的转置。La(0,λ)表示均值为0的拉普拉斯噪声,λ控制拉普拉斯噪声的强度。λ越大,噪声越大,本地差分隐私保护就越好。 denote the orthogonal mapping matrices in domain A and domain B respectively, and the two orthogonal mapping matrices always remain synchronized and equal. [·] T denotes the transpose of the matrix. La(0,λ) denotes Laplace noise with mean 0, and λ controls the strength of the Laplace noise. The larger λ is, the larger the noise is, and the better the local differential privacy protection is.

步骤203,将表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据。Step 203 , the user representation data in the target domain representing the same common user is fused with the converted user representation data corresponding to another target domain to obtain fused user representation data.

本实施例中,上述执行主体可以将表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据。In this embodiment, the execution entity may fuse the user representation data in the target domain representing the same shared user with the converted user representation data corresponding to another target domain to obtain fused user representation data.

作为示例,对于每个目标域中的每个共有用户,上述执行主体可以将该目标域中该共有用户对应的用户表示数据与另一目标域中该共有用户对应的转换后用户表示数据直接相加,得到融合后用户表示数据。As an example, for each common user in each target domain, the execution entity may directly add the user representation data corresponding to the common user in the target domain and the converted user representation data corresponding to the common user in another target domain to obtain fused user representation data.

作为又一示例,对于每个目标域中的每个共有用户,上述执行主体可以将该目标域中该共有用户对应的用户表示数据与另一目标域中该共有用户对应的转换后用户表示数据进行加权求和,得到融合后用户表示数据。As another example, for each shared user in each target domain, the execution entity may perform weighted summation of the user representation data corresponding to the shared user in the target domain and the converted user representation data corresponding to the shared user in another target domain to obtain fused user representation data.

在本实施例的一些可选的实现方式中,上述执行主体可以通过如下方式执行上述步骤203:In some optional implementations of this embodiment, the execution subject may perform step 203 in the following manner:

第一,通过可训练的嵌入融合模块,根据表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据之间的相似度, 确定门控选择向量;第二,根据门控选择向量,融合表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据,得到融合后用户表示数据。First, through a trainable embedding fusion module, based on the similarity between the user representation data in the target domain and the converted user representation data corresponding to another target domain that represent the same common user, Determine a gate selection vector; second, according to the gate selection vector, fuse the user representation data in the target domain representing the same common user with the converted user representation data corresponding to another target domain to obtain fused user representation data.

以域A为例,用L1距离来表示域A中的用户表示数据和域B对应的转换后用户表示数据之间的相似度:
Taking domain A as an example, using L1 distance To represent the user data in domain A The transformed user representation data corresponding to domain B The similarity between:

可以理解,域B中的用户表示数据和域A对应的转换后用户表示数据之间的相似度表示为:
It can be understood that the user in domain B represents data The transformed user representation data corresponding to domain A The similarity between them is expressed as:

理想情况下,中的一个特征维度表示在特征层面的相似度,该特征维度的参数值越小,说明双目标域之间在该特定维度越相似。同时,每个特征维度上,域内的用户表示数据和外域相应的转换后用户表示数据之间的距离对目标域的贡献不同。因此,利用采用两层全连接神经网络的嵌入融合模块自动学习和推导出域A中的门控选择向量以用于控制每个特征维度的信息流;同理,也可学习和推导出域B中的门控选择向量其中:

Ideally, A feature dimension in and In terms of similarity at the feature level, the smaller the parameter value of the feature dimension, the more similar the two target domains are in this specific dimension. At the same time, in each feature dimension, the distance between the user representation data in the domain and the corresponding transformed user representation data in the external domain contributes differently to the target domain. Therefore, the embedding fusion module using a two-layer fully connected neural network is used to automatically learn and derive the distance between the user representation data in domain A and the corresponding transformed user representation data in domain A. The gate selection vector to control the information flow of each feature dimension; similarly, the information in domain B can also be learned and derived The gate selection vector in:

其中,分别表示域A中的嵌入融合模块中可训练的权重和偏置,分别表示域B中的嵌入融合模块中可训练的权重和偏置,σ表示非线性激活函数ReLU。in, and denote the trainable weights and biases in the embedding fusion module in domain A, respectively. and They represent the trainable weights and biases in the embedding fusion module in domain B, respectively, and σ represents the nonlinear activation function ReLU.

现有的跨域推荐方法,通常基于整个域内嵌入表示和跨域嵌入表示进行特征对齐和融合,融合的方式包括拼接、最大池化、平均池化等操作。然而,并非辅助域中包含的所有特征都对目标域有利。如果辅助域中也存在数据稀疏问题,迁移的嵌入表示不够充分,或者目标域中的嵌入表示质量已经足够,不需要额外补充的情况下,就会出现负迁移,也即,在迁移学习的过程,在 辅助域上学习到的知识,对于目标域上的学习产生负面作用。Existing cross-domain recommendation methods usually align and fuse features based on the embedding representation within the entire domain and the cross-domain embedding representation. The fusion methods include splicing, maximum pooling, average pooling and other operations. However, not all features contained in the auxiliary domain are beneficial to the target domain. If there is also data sparsity in the auxiliary domain, the migrated embedding representation is not sufficient, or the quality of the embedding representation in the target domain is sufficient and no additional supplement is needed, negative transfer will occur. That is, in the process of transfer learning, The knowledge learned in the auxiliary domain has a negative impact on the learning in the target domain.

本实现方式中,显式地考虑跨域推荐中的信息融合,并推导出一个门控选择向量,在特征级别提取与目标域高度相关的细粒度信号,可以有效避免负迁移问题,从而提高融合后用户表示数据的准确度。In this implementation, information fusion in cross-domain recommendation is explicitly considered, and a gated selection vector is derived to extract fine-grained signals that are highly correlated with the target domain at the feature level, which can effectively avoid the negative transfer problem and thus improve the accuracy of the fused user representation data.

在本实施例的一些可选的实现方式中,上述执行主体可以通过如下方式执行上述第二步骤:根据门控选择向量,对表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行加权求和,得到融合后用户表示数据。In some optional implementations of this embodiment, the above-mentioned execution entity can perform the above-mentioned second step in the following manner: according to the gated selection vector, weighted summation is performed on the user representation data in the target domain representing the same shared user and the converted user representation data corresponding to another target domain to obtain fused user representation data.

作为示例,上述执行主体可以通过如下公式进行数据融合:

As an example, the above execution entity can perform data fusion through the following formula:

其中,表示域A中的融合后用户表示数据,表示域B中的融合后用户表示数据。in, represents the fused user representation data in domain A, Represents the fused user representation data in domain B.

本实现方式中,基于门控选择向量,对该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行加权求和,进一步提高了所得到的融合后用户表示数据的准确度。In this implementation, based on the gated selection vector, a weighted sum is performed on the user representation data in the target domain and the converted user representation data corresponding to another target domain, thereby further improving the accuracy of the obtained fused user representation data.

步骤204,采用机器学习方法,以融合后用户表示数据和项目表示数据为输入,以表征所输入的融合后用户表示数据对应的共有用户和所输入的项目表示数据对应的项目之间是否交互的标签为期望输出,训练得到双目标域推荐模型。Step 204, adopting a machine learning method, taking the fused user representation data and the item representation data as input, and taking a label representing whether there is interaction between the common users corresponding to the input fused user representation data and the items corresponding to the input item representation data as the expected output, to train a dual-target domain recommendation model.

本实施例中,上述执行主体可以采用机器学习方法,以融合后用户表示数据和项目表示数据为输入,以表征所输入的融合后用户表示数据对应的共有用户和所输入的项目表示数据对应的项目之间是否交互的标签为期望输出,训练得到双目标域推荐模型。In this embodiment, the above-mentioned execution entity can adopt a machine learning method, with the fused user representation data and the project representation data as input, and a label representing whether there is interaction between the common users corresponding to the input fused user representation data and the projects corresponding to the input project representation data as the expected output, to train a dual-target domain recommendation model.

作为示例,上述执行主体可以迭代执行如下更新操作:首先,将融合后用户表示数据和项目表示数据输入初始双目标域推荐模型,预测融合后用户 表示数据表征的共有用户与项目表示数据表征的项目之间的交互概率;然后,根据目标函数,计算交互概率和标签之间的损失,其中,标签表征所输入的融合后用户表示数据对应的共有用户和所输入的项目表示数据对应的项目之间是否存在交互;然后,根据损失计算更新梯度;最后,采用随机梯度下降方式更新初始双目标域推荐模型。其中,初始双目标域推荐模型可以采用深度学习模型。As an example, the above execution subject can iteratively perform the following update operations: first, the fused user representation data and item representation data are input into the initial dual-target domain recommendation model to predict the fused user The interaction probability between the common users represented by the representation data and the items represented by the item representation data is calculated; then, according to the objective function, the loss between the interaction probability and the label is calculated, where the label represents whether there is an interaction between the common users corresponding to the input fused user representation data and the items corresponding to the input item representation data; then, the update gradient is calculated according to the loss; finally, the initial dual-target domain recommendation model is updated by using the stochastic gradient descent method. The initial dual-target domain recommendation model can adopt a deep learning model.

响应于达到预设结束条件,得到训练后的双目标域推荐模型。其中,预设结束条件例如是训练时间超过预设时间阈值、训练次数超过预设次数阈值、训练损失趋于收敛。In response to reaching a preset end condition, a trained dual-target domain recommendation model is obtained, wherein the preset end condition is, for example, that the training time exceeds a preset time threshold, the number of training times exceeds a preset number threshold, and the training loss tends to converge.

在本实施例的一些可选的实现方式中,上述执行主体可以通过如下方式执行上述步骤204:In some optional implementations of this embodiment, the execution subject may perform step 204 in the following manner:

第一,根据融合后用户表示数据和项目表示数据,预测融合后用户表示数据对应的共有用户与项目表示数据对应的项目之间的交互概率。First, based on the fused user representation data and item representation data, the interaction probability between the common users corresponding to the fused user representation data and the items corresponding to the item representation data is predicted.

以域A为例,采用一个简单且广泛使用的内积模型来估计共有用户i和项目j之间的交互概率
Taking domain A as an example, a simple and widely used inner product model is used to estimate the interaction probability between common user i and item j

第二,通过目标函数,根据交互概率、标签和预设的归一化参数,确定交互概率和标签之间的损失。Second, through the objective function, the loss between the interaction probability and the label is determined according to the interaction probability, label and preset normalization parameters.

作为示例,在两个目标域中使用以下的目标函数训练模型:
As an example, the model is trained in two target domains using the following objective functions:

其中,yij表示标签,Y+表示可观察到用户和项目交互的正样本集合,Y-表示从未观察到用户和项目交互的负样本集合,max(R)表示归一化参数,这是整个数据集中的最大评分。对于显式反馈,在5星系统中,max(R)为5,不同的yij对损失函数的影响不同;对于隐式反馈,max(R)是1,yij是0或1。Among them, yij represents the label, Y + represents the set of positive samples where the user and item interaction can be observed, Y- represents the set of negative samples where the user and item interaction has never been observed, and max(R) represents the normalization parameter, which is the maximum rating in the entire dataset. For explicit feedback, in a 5-star system, max(R) is 5, and different yij has different effects on the loss function; for implicit feedback, max(R) is 1, and yij is 0 or 1.

第三,根据损失,训练得到双目标域推荐模型。 Third, based on the loss, a dual-target domain recommendation model is trained.

双目标域推荐模型中可被更新的参数包括确定用户表示数据和项目表示数据的嵌入表示网络的参数、正交映射矩阵中的参数、嵌入融合模型的参数。The parameters that can be updated in the dual-target domain recommendation model include parameters of the embedding representation network that determines the user representation data and the item representation data, parameters in the orthogonal mapping matrix, and parameters of the embedding fusion model.

本实现方式中,提供了双目标域推荐模型的具体训练方式,进一步提高了训练得到的双目标域推荐模型的准确度。In this implementation, a specific training method for the dual-target domain recommendation model is provided, which further improves the accuracy of the trained dual-target domain recommendation model.

在本实施例的一些可选的实现方式中,上述执行主体还可以执行如下操作:在双目标域推荐模型的训练过程中的每次迭代操作后,根据该目标域中的正交映射矩阵和另一目标域中的正交映射矩阵,得到双目标域下一次迭代操作对应的正交映射矩阵。In some optional implementations of this embodiment, the above-mentioned execution entity may also perform the following operations: after each iterative operation in the training process of the dual-target domain recommendation model, the orthogonal mapping matrix corresponding to the next iterative operation of the dual-target domain is obtained according to the orthogonal mapping matrix in the target domain and the orthogonal mapping matrix in the other target domain.

以域A为例,域B直接将其更新后的正交映射矩阵XB′以明文形式发送给域A,域A基于XB′和域内更新的正交映射矩阵XA′进行平均,得到新的正交映射矩阵XA。域B也是如此,得到新的正交映射矩阵XB。这样就保证了两个域中的正交映射矩阵在每次迭代中始终相同。Taking domain A as an example, domain B directly sends its updated orthogonal mapping matrix X B ′ to domain A in plain text. Domain A averages X B ′ and the updated orthogonal mapping matrix X A ′ in the domain to obtain a new orthogonal mapping matrix X A . The same is true for domain B, which obtains a new orthogonal mapping matrix X B . This ensures that the orthogonal mapping matrices in the two domains are always the same in each iteration.

本实施例中,将联邦学习引入跨域推荐情景,在本实施例的联邦学习框架中,每个目标域对应的企业机构的服务用户数据永远不会离开本地,而是始终存储在本地相应的设备上,例如,本地数据库。将联邦学习架构设计为对等网络结构,以进一步降低隐私泄露的风险,即不存在好奇或恶意的第三方。两个目标域在一次迭代中只通信两次,以交换与模型相关的信息。In this embodiment, federated learning is introduced into the cross-domain recommendation scenario. In the federated learning framework of this embodiment, the service user data of the enterprise organization corresponding to each target domain will never leave the local area, but will always be stored on the corresponding local device, such as a local database. The federated learning architecture is designed as a peer-to-peer network structure to further reduce the risk of privacy leakage, that is, there is no curious or malicious third party. The two target domains only communicate twice in one iteration to exchange information related to the model.

在第一次通信中,迁移的转换后用户表示数据在两个域之间交换,若直接迁移转换后用户表示数据,可能会使得另一目标域推断出本目标域中的用户的真实数据(推断攻击)。为此,采用本地差分隐私技术,在将转换后用户表示数据转移到另一个域之前,添加服从拉普拉斯分布的噪声来隐藏用户的真实表示数据,这进一步增强了用户数据的隐私保护。因为这不仅可以防止外部攻击者截获传输的信息,而且另一方企业伙伴无法通过正交映射矩阵恢复出原始的用户表示数据。在本地差分隐私中,较高的噪声强度λ会导致数据可用性下降,从而降低推荐性能。因此,需要在推荐性能和隐私保护之间 进行权衡。In the first communication, the migrated transformed user representation data is exchanged between the two domains. If the transformed user representation data is directly migrated, the other target domain may infer the real data of the user in the target domain (inference attack). To this end, local differential privacy technology is used to add noise that follows the Laplace distribution to hide the user's real representation data before transferring the transformed user representation data to another domain, which further enhances the privacy protection of user data. Because this not only prevents external attackers from intercepting the transmitted information, but also the other party's corporate partners cannot restore the original user representation data through the orthogonal mapping matrix. In local differential privacy, a higher noise intensity λ will lead to a decrease in data availability, thereby reducing recommendation performance. Therefore, there needs to be a balance between recommendation performance and privacy protection. Make trade-offs.

在第二次通信中,每个域中相互交换更新的正交映射矩阵。本实施例中,不为此通信过程使用隐私保护的方法。因为正交映射矩阵表示两个域之间的迁移对应关系,不涉及敏感数据。此外,即使外部攻击者截获更新的正交映射矩阵和经过差分隐私后的用户表示数据,也很难推断出有效信息。In the second communication, each domain exchanges updated orthogonal mapping matrices. In this embodiment, no privacy protection method is used for this communication process. Because the orthogonal mapping matrix represents the migration correspondence between the two domains and does not involve sensitive data. In addition, even if an external attacker intercepts the updated orthogonal mapping matrix and the user representation data after differential privacy, it is difficult to infer valid information.

继续参见图4,图4是根据本实施例的双目标域推荐模型的训练方法的应用场景的一个示意图400。在图4的应用场景中,首先,在目标域A中,根据双目标域A和B对应的共有用户集合401中的共有用户与项目集合402中的项目之间的交互数据403,确定目标域A中的共有用户的用户表示数据404和项目的项目表示数据405;在目标域B中,根据双目标域A和B对应的共有用户集合401中的共有用户与项目集合406中的项目之间的交互数据407,确定目标域B中的共有用户的用户表示数据408和项目的项目表示数据409。Continuing to refer to FIG. 4 , FIG. 4 is a schematic diagram 400 of an application scenario of the training method of the dual-target domain recommendation model according to the present embodiment. In the application scenario of FIG. 4 , first, in the target domain A, according to the interaction data 403 between the common users in the common user set 401 corresponding to the dual target domains A and B and the items in the item set 402, the user representation data 404 of the common users in the target domain A and the item representation data 405 of the items are determined; in the target domain B, according to the interaction data 407 between the common users in the common user set 401 corresponding to the dual target domains A and B and the items in the item set 406, the user representation data 408 of the common users in the target domain B and the item representation data 409 of the items are determined.

然后,目标域A中的用户表示数据404转换至目标域B中,得到目标域A对应的转换后用户表示数据410;目标域B中的用户表示数据408转换至目标域A中,得到目标域B对应的转换后用户表示数据411。然后,在目标域A中,将表征同一共有用户的用户表示数据404与目标域B对应的转换后用户表示数据411进行融合,得到融合后用户表示数据412;在目标域B中,将表征同一共有用户的用户表示数据408与目标域A对应的转换后用户表示数据410进行融合,得到融合后用户表示数据413。Then, the user representation data 404 in the target domain A is converted to the target domain B to obtain the converted user representation data 410 corresponding to the target domain A; the user representation data 408 in the target domain B is converted to the target domain A to obtain the converted user representation data 411 corresponding to the target domain B. Then, in the target domain A, the user representation data 404 representing the same common user is fused with the converted user representation data 411 corresponding to the target domain B to obtain the fused user representation data 412; in the target domain B, the user representation data 408 representing the same common user is fused with the converted user representation data 410 corresponding to the target domain A to obtain the fused user representation data 413.

最后,对于双目标域A、B,均采用机器学习方法,以融合后用户表示数据和项目表示数据为输入,以表征所输入的融合后用户表示数据对应的共有用户和所输入的项目表示数据对应的项目之间是否交互的标签为期望输出,训练得到域A、B中各自对应的双目标域推荐模型414、415。Finally, for the dual target domains A and B, machine learning methods are used, with the fused user representation data and item representation data as input, and the labels representing whether there is interaction between the common users corresponding to the input fused user representation data and the items corresponding to the input item representation data as the expected output, to train and obtain the dual target domain recommendation models 414 and 415 corresponding to the domains A and B respectively.

本公开的上述实施例提供的方法,双目标域之间进行数据的双向迁移, 解决了每个目标域中的数据稀疏问题,达到双目标域的企业用户均从数据迁移过程中的受益的目的;并且,更加贴合双目标域情形下的实际情况,有助于双目标域对应的双方企业用户的积极参与;此外,基于双目标域之间的数据迁移过程,提高了推荐结果的准确度。The method provided by the above embodiment of the present disclosure performs bidirectional data migration between two target domains. The data sparsity problem in each target domain is solved, so that the enterprise users of both target domains can benefit from the data migration process; moreover, it is more in line with the actual situation under the dual target domain situation, which is conducive to the active participation of enterprise users of both sides of the dual target domains; in addition, based on the data migration process between the dual target domains, the accuracy of the recommendation results is improved.

继续参考图5,示出了根据本公开的双目标域推荐模型的训练方法的又一个实施例的示意性流程500,对于双目标域中的每个目标域,执行包括如下步骤的训练操作:Continuing to refer to FIG. 5 , a schematic process 500 of another embodiment of a training method for a dual-target domain recommendation model according to the present disclosure is shown. For each target domain in the dual-target domain, a training operation including the following steps is performed:

步骤501,通过可训练的嵌入表示模块,根据双目标域对应的共有用户集合中的共有用户与项目集合中的项目之间的交互数据,确定该目标域中的共有用户的用户表示数据和项目的项目表示数据。Step 501, through a trainable embedding representation module, according to the interaction data between the common users in the common user set corresponding to the dual target domains and the projects in the project set, determine the user representation data of the common users in the target domain and the project representation data of the projects.

步骤502,通过可训练的正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的初始转换后用户表示数据。Step 502: transform the user representation data in the target domain into another target domain through a trainable orthogonal mapping matrix to obtain the initial transformed user representation data corresponding to the target domain.

步骤503,采用本地差分隐私技术,处理初始转换后用户表示数据,得到转换后用户表示数据。Step 503: Use local differential privacy technology to process the initial converted user representation data to obtain converted user representation data.

步骤504,通过可训练的嵌入融合模块,根据表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据之间的相似度,确定门控选择向量。Step 504 , determining a gated selection vector through a trainable embedding fusion module according to the similarity between the user representation data in the target domain and the converted user representation data corresponding to another target domain that represent the same common user.

步骤505,根据门控选择向量,对表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行加权求和,得到融合后用户表示数据。Step 505 , according to the gated selection vector, weighted sum is performed on the user representation data in the target domain and the converted user representation data corresponding to another target domain that represent the same shared user, to obtain fused user representation data.

步骤506,根据融合后用户表示数据和项目表示数据,预测融合后用户表示数据对应的共有用户与项目表示数据对应的项目之间的交互概率。Step 506 , predicting the interaction probability between the common users corresponding to the fused user representation data and the items corresponding to the item representation data based on the fused user representation data and the item representation data.

步骤507,通过目标函数,根据交互概率、标签和预设的归一化参数,确定交互概率和标签之间的损失。Step 507, determining the loss between the interaction probability and the label through the objective function according to the interaction probability, the label and the preset normalization parameter.

步骤508,根据损失,更新嵌入表示模块、正交映射矩阵、嵌入融合模 块,训练得到双目标域推荐模型。Step 508: Update the embedding representation module, orthogonal mapping matrix, and embedding fusion module according to the loss. The dual-target domain recommendation model is trained.

从本实施例中可以看出,与图2对应的实施例相比,本实施例中的双目标域推荐模型的训练方法的流程500具体说明了用户表示数据的转换过程、隐藏过程、融合过程,在保证双目标域的双向迁移、推荐结果的准确度的基础上,进一步提高了双目标域中的数据的安全性。It can be seen from this embodiment that, compared with the embodiment corresponding to Figure 2, the process 500 of the training method of the dual-target domain recommendation model in this embodiment specifically illustrates the conversion process, hiding process, and fusion process of the user representation data. While ensuring the bidirectional migration of the dual target domains and the accuracy of the recommendation results, the security of the data in the dual target domains is further improved.

继续参考图6,示出了双目标域推荐方法的一个实施例的流程600,对于双目标域中的每个目标域,执行包括以下步骤的推荐操作:Continuing to refer to FIG. 6 , a process 600 of an embodiment of a dual-target domain recommendation method is shown. For each target domain in the dual-target domain, a recommendation operation including the following steps is performed:

步骤601,根据双目标域对应的目标共有用户与项目集合中的项目之间的交互数据,确定目标共有用户的用户表示数据和项目的项目表示数据。Step 601 : determining user representation data of the target common users and item representation data of the items according to interaction data between the target common users and the items in the item set corresponding to the dual target domains.

本实施例中,双目标域推荐方法的执行主体(例如图1中的终端设备或服务器)可以根据双目标域对应的目标共有用户与项目集合中的项目之间的交互数据,确定目标共有用户的用户表示数据和项目的项目表示数据。In this embodiment, the executing entity of the dual-target domain recommendation method (for example, the terminal device or server in Figure 1) can determine the user representation data of the target common users and the project representation data of the projects based on the interaction data between the target common users corresponding to the dual target domains and the projects in the project set.

双目标域可以存在一定相关性的两个领域。作为示例,双目标域为电商平台对应的第一目标域和短视频平台对应的第二目标域。项目表征所属的目标域中的用户涉及的信息类型。以电商平台为例,项目可以是各种各样的物品;以短视频平台,项目可以是包含给种类型的信息的短视频。The dual target domains can be two fields with certain correlation. As an example, the dual target domains are the first target domain corresponding to the e-commerce platform and the second target domain corresponding to the short video platform. The project represents the type of information involved by the user in the target domain. Taking the e-commerce platform as an example, the project can be a variety of items; taking the short video platform, the project can be a short video containing a given type of information.

本实施例中,在确定目标共有用户之后,上述执行主体可以确定目标共有用户的唯一标识符;然后,根据唯一标识符,确定目标共有用户与项目集合中的项目的交互数据;最后,通过采用深度神经网络的、目前已有的嵌入表示模块,处理交互数据,得到目标共有用户的用户表示数据和项目的项目表示数据。In this embodiment, after determining the target shared user, the above-mentioned execution entity can determine the unique identifier of the target shared user; then, based on the unique identifier, determine the interaction data between the target shared user and the projects in the project set; finally, by using the currently existing embedding representation module of the deep neural network, the interaction data is processed to obtain the user representation data of the target shared user and the project representation data of the project.

在本实施例的一些可选的实现方式中,上述执行主体可以通过如下方式执行上述步骤601:用矩阵分解的方式,基于交互矩阵,确定该目标域中的目标共有用户的用户表示数据和项目的项目表示数据,其中,交互矩阵表征双目标域对应的共有用户集合中的共有用户和项目集合中的项目之间的交互 数据。In some optional implementations of this embodiment, the execution subject may perform step 601 in the following manner: determine the user representation data of the target common users and the project representation data of the projects in the target domain based on the interaction matrix by matrix decomposition, wherein the interaction matrix represents the interaction between the common users in the common user set and the projects in the project set corresponding to the dual target domains. data.

步骤602,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据。Step 602: convert the user representation data in the target domain into another target domain to obtain converted user representation data corresponding to the target domain.

本实施例中,上述执行主体可以参照实施例200中的步骤202中的实现方式,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据。In this embodiment, the execution subject may refer to the implementation method in step 202 in embodiment 200 to convert the user representation data in the target domain into another target domain to obtain the converted user representation data corresponding to the target domain.

在本实施例的一些可选的实现方式中,上述执行主体可以通过如下方式执行上述步骤602:通过双目标域推荐模型中训练后的正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据。In some optional implementations of the present embodiment, the execution entity may perform step 602 as follows: convert the user representation data in the target domain to another target domain through the orthogonal mapping matrix trained in the dual-target domain recommendation model, and obtain the converted user representation data corresponding to the target domain.

在本实施例的一些可选的实现方式中,上述执行主体可以通过如下方式执行上述数据转换过程:首先,通过正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的初始转换后用户表示数据;然后,采用本地差分隐私技术,处理初始转换后用户表示数据,得到转换后用户表示数据。In some optional implementations of the present embodiment, the above-mentioned execution entity may perform the above-mentioned data conversion process in the following manner: first, the user representation data in the target domain is converted to another target domain through an orthogonal mapping matrix to obtain the initial converted user representation data corresponding to the target domain; then, the local differential privacy technology is used to process the initial converted user representation data to obtain the converted user representation data.

步骤603,将该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据。Step 603: Fusing the user representation data in the target domain with the converted user representation data corresponding to another target domain to obtain fused user representation data.

本实施例中,上述执行主体可以参照实施例200中的步骤203中的实现方式,将该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据。In this embodiment, the execution subject may refer to the implementation method in step 203 in embodiment 200 to fuse the user representation data in the target domain with the converted user representation data corresponding to another target domain to obtain fused user representation data.

在本实施例的一些可选的实现方式中,上述执行主体可以通过如下方式执行上述步骤603:第一,所述双目标域推荐模型中训练后的嵌入融合模块,根据该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据,确定门控选择向量;第二,根据门控选择向量,融合该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据,得到融合后用户表示数据。In some optional implementations of the present embodiment, the execution subject may perform step 603 in the following manner: first, the trained embedding fusion module in the dual-target domain recommendation model determines a gating selection vector based on the user representation data in the target domain and the converted user representation data corresponding to the other target domain; second, based on the gating selection vector, the user representation data in the target domain and the converted user representation data corresponding to the other target domain are fused to obtain fused user representation data.

在本实施例的一些可选的实现方式中,上述执行主体可以通过如下方式 执行上述第二步骤:根据门控选择向量,对该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行加权求和,得到融合后用户表示数据。In some optional implementations of this embodiment, the above-mentioned execution subject can be implemented in the following ways: Execute the second step: perform weighted summation of the user representation data in the target domain and the converted user representation data corresponding to another target domain according to the gated selection vector to obtain fused user representation data.

步骤604,通过训练后的双目标域推荐模型,根据融合后用户表示数据和项目表示数据,确定目标共有用户的待推荐项目。Step 604 , using the trained dual-target domain recommendation model, according to the fused user representation data and item representation data, determine the items to be recommended for the target common user.

本实施例中,上述执行主体可以通过训练后的双目标域推荐模型,根据融合后用户表示数据和项目表示数据,确定目标共有用户的待推荐项目。其中,双目标域推荐模型可以通过上述实施例200、500训练得到。In this embodiment, the execution subject can determine the recommended items for the target common user according to the fused user representation data and item representation data through the trained dual-target domain recommendation model. The dual-target domain recommendation model can be obtained through training in the above embodiments 200 and 500.

在本实施例的一些可选的实现方式中,上述执行主体可以通过如下方式执行上述步骤604:首先,根据融合后用户表示数据和项目表示数据,预测目标共有用户与项目表示数据表征的项目之间的交互概率;然后,根据交互概率,确定目标共有用户的待推荐项目。In some optional implementations of the present embodiment, the execution entity may perform step 604 in the following manner: first, predicting the interaction probability between the target common user and the items represented by the item representation data based on the fused user representation data and item representation data; and then, determining the items to be recommended for the target common user based on the interaction probability.

作为示例,上述执行主体可以确定目标共有用户与项目集合中的每个项目之间的交互概率;按照交互概率从大到小的顺序对项目进行排序,从而将排序在前的、预设数量的项目作为目标共有用户的待推荐项目,向目标共有用户推荐。As an example, the above-mentioned execution entity can determine the interaction probability between the target shared user and each item in the item set; sort the items in descending order according to the interaction probability, so as to recommend a preset number of items in the front order as the target shared user's to-be-recommended items to the target shared user.

需要说明的是,本实施例中的各种实现方式,可以参照上述实施例200中对应的实现方式实施,在此不再赘述。It should be noted that the various implementation methods in this embodiment can be implemented with reference to the corresponding implementation methods in the above-mentioned embodiment 200, and will not be described in detail here.

本实施例中,提供了一种双目标域推荐方法,双目标域之间进行数据的双向迁移,解决了每个目标域中的数据稀疏问题,达到双目标域的企业用户均从数据迁移过程中的受益的目的;并且,更加贴合双目标域情形下的实际情况,有助于双目标域对应的双方企业用户的积极参与;此外,基于双目标域之间的数据迁移过程,提高了推荐结果的准确度。In this embodiment, a dual-target domain recommendation method is provided, in which bidirectional data migration is performed between the dual target domains, which solves the data sparsity problem in each target domain and achieves the purpose of benefiting enterprise users of the dual target domains from the data migration process; moreover, it is more in line with the actual situation under the dual target domain situation, and is conducive to the active participation of enterprise users of both parties corresponding to the dual target domains; in addition, based on the data migration process between the dual target domains, the accuracy of the recommendation results is improved.

继续参考图7,示出了双目标域推荐方法的又一个实施例的流程700,包括以下步骤: Continuing to refer to FIG. 7 , a process 700 of another embodiment of a dual-target domain recommendation method is shown, including the following steps:

步骤701,根据双目标域对应的目标共有用户与项目集合中的项目之间的交互数据,确定目标共有用户的用户表示数据和项目的项目表示数据。Step 701 : determining user representation data of the target common users and item representation data of the items according to interaction data between the target common users and the items in the item set corresponding to the dual target domains.

步骤702,通过正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的初始转换后用户表示数据。Step 702: transform the user representation data in the target domain into another target domain through an orthogonal mapping matrix to obtain the initial transformed user representation data corresponding to the target domain.

步骤703,采用本地差分隐私技术,处理初始转换后用户表示数据,得到转换后用户表示数据。Step 703: Use local differential privacy technology to process the initial converted user representation data to obtain converted user representation data.

步骤704,通过双目标域推荐模型中训练后的嵌入融合模块,根据该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据,确定门控选择向量。Step 704 , determining a gated selection vector according to the user representation data in the target domain and the converted user representation data corresponding to the other target domain through the trained embedding fusion module in the dual-target domain recommendation model.

步骤705,根据门控选择向量,对该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行加权求和,得到融合后用户表示数据。Step 705 : performing weighted summation on the user representation data in the target domain and the converted user representation data corresponding to another target domain according to the gated selection vector to obtain fused user representation data.

步骤706,通过训练后的双目标域推荐模型,根据融合后用户表示数据和项目表示数据,确定目标共有用户的待推荐项目。Step 706 , using the trained dual-target domain recommendation model, according to the fused user representation data and item representation data, determine the items to be recommended for the target common user.

从本实施例中可以看出,与图6对应的实施例相比,本实施例中的双目标域推荐方法的流程700具体说明了用户表示数据的转换过程、隐藏过程、融合过程,在保证双目标域的双向迁移、推荐结果的准确度的基础上,进一步提高了双目标域中的数据的安全性。It can be seen from this embodiment that, compared with the embodiment corresponding to Figure 6, the process 700 of the dual-target domain recommendation method in this embodiment specifically illustrates the conversion process, hiding process, and fusion process of the user representation data. While ensuring the bidirectional migration of the dual target domains and the accuracy of the recommendation results, the security of the data in the dual target domains is further improved.

继续参考图8,作为对上述各图所示方法的实现,本公开提供了一种双目标域推荐模型的训练装置的一个实施例,该装置实施例与图2所示的方法实施例相对应,该装置具体可以应用于各种电子设备中。Continuing to refer to FIG8 , as an implementation of the methods shown in the above figures, the present disclosure provides an embodiment of a training device for a dual-target domain recommendation model. The device embodiment corresponds to the method embodiment shown in FIG2 , and the device can be specifically applied to various electronic devices.

如图8所示,双目标域推荐模型的训练装置,对于双目标域中的每个目标域,通过如下单元执行训练操作:第一确定单元801,被配置成根据双目标域对应的共有用户集合中的共有用户与项目集合中的项目之间的交互数据,确定该目标域中的共有用户的用户表示数据和项目的项目表示数据;第一得到单元802,被配置成将该目标域中的用户表示数据转换至另一目标域中, 得到该目标域对应的转换后用户表示数据;第二得到单元803,被配置成将表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据;训练单元804,被配置成采用机器学习方法,以融合后用户表示数据和项目表示数据为输入,以表征所输入的融合后用户表示数据对应的共有用户和所输入的项目表示数据对应的项目之间是否交互的标签为期望输出,训练得到双目标域推荐模型。As shown in FIG8 , the training device of the dual-target domain recommendation model performs a training operation for each target domain in the dual-target domains through the following units: a first determining unit 801 is configured to determine the user representation data of the common users and the item representation data of the items in the target domain according to the interaction data between the common users in the common user set corresponding to the dual-target domains and the items in the item set; a first obtaining unit 802 is configured to convert the user representation data in the target domain to another target domain, The converted user representation data corresponding to the target domain is obtained; the second obtaining unit 803 is configured to fuse the user representation data in the target domain representing the same shared user with the converted user representation data corresponding to another target domain to obtain the fused user representation data; the training unit 804 is configured to adopt a machine learning method, with the fused user representation data and the item representation data as input, and with the label representing whether the shared user corresponding to the input fused user representation data and the item corresponding to the input item representation data interact as the expected output, to train and obtain a dual-target domain recommendation model.

在本实施例的一些可选的实现方式中,上述第一得到单元802,进一步被配置成:通过可训练的正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据。In some optional implementations of the present embodiment, the first obtaining unit 802 is further configured to: convert the user representation data in the target domain to another target domain through a trainable orthogonal mapping matrix to obtain the converted user representation data corresponding to the target domain.

在本实施例的一些可选的实现方式中,上述装置还包括:矩阵更新单元(图中未示出),被配置成在双目标域推荐模型的训练过程中的每次迭代操作后,根据该目标域中的正交映射矩阵和另一目标域中的正交映射矩阵,得到双目标域下一次迭代操作对应的正交映射矩阵。In some optional implementations of the present embodiment, the above-mentioned device also includes: a matrix updating unit (not shown in the figure), which is configured to obtain, after each iterative operation in the training process of the dual-target domain recommendation model, an orthogonal mapping matrix corresponding to the next iterative operation of the dual-target domain according to the orthogonal mapping matrix in the target domain and the orthogonal mapping matrix in the other target domain.

在本实施例的一些可选的实现方式中,上述第一得到单元802,进一步被配置成:通过可训练的正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的初始转换后用户表示数据;采用本地差分隐私技术,处理初始转换后用户表示数据,得到转换后用户表示数据。In some optional implementations of the present embodiment, the first obtaining unit 802 is further configured to: convert the user representation data in the target domain to another target domain through a trainable orthogonal mapping matrix to obtain the initial converted user representation data corresponding to the target domain; and use local differential privacy technology to process the initial converted user representation data to obtain converted user representation data.

在本实施例的一些可选的实现方式中,上述第二得到单元803,进一步被配置成:通过可训练的嵌入融合模块,根据表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据之间的相似度,确定门控选择向量;根据门控选择向量,融合表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据,得到融合后用户表示数据。In some optional implementations of the present embodiment, the second obtaining unit 803 is further configured to: determine a gated selection vector according to the similarity between the user representation data in the target domain representing the same shared user and the converted user representation data corresponding to another target domain through a trainable embedding fusion module; and fuse the user representation data in the target domain representing the same shared user with the converted user representation data corresponding to another target domain according to the gated selection vector to obtain fused user representation data.

在本实施例的一些可选的实现方式中,上述第二得到单元803,进一步被配置成:根据门控选择向量,对表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行加权求和,得到融合 后用户表示数据。In some optional implementations of this embodiment, the second obtaining unit 803 is further configured to: perform weighted summation of the user representation data in the target domain and the converted user representation data corresponding to another target domain that represent the same common user according to the gated selection vector to obtain the fusion Post-user representation data.

在本实施例的一些可选的实现方式中,上述训练单元804,进一步被配置成:根据融合后用户表示数据和项目表示数据,预测融合后用户表示数据对应的共有用户与项目表示数据对应的项目之间的交互概率;通过目标函数,根据交互概率、标签和预设的归一化参数,确定交互概率和标签之间的损失;根据损失,训练得到双目标域推荐模型。In some optional implementations of the present embodiment, the training unit 804 is further configured to: predict the interaction probability between the common users corresponding to the fused user representation data and the items corresponding to the item representation data based on the fused user representation data and the item representation data; determine the loss between the interaction probability and the label based on the objective function, the interaction probability, the label and a preset normalization parameter; and train a dual-target domain recommendation model based on the loss.

在本实施例的一些可选的实现方式中,上述交互数据为表征共有用户集合中的共有用户和项目集合中的项目之间的交互情况的交互矩阵;以及上述第一确定单元801,进一步被配置成:采用矩阵分解的方式,基于交互矩阵,确定该目标域中的共有用户的用户表示数据和项目的项目表示数据。In some optional implementations of this embodiment, the above-mentioned interaction data is an interaction matrix that characterizes the interaction between common users in the common user set and projects in the project set; and the above-mentioned first determination unit 801 is further configured to: determine the user representation data of the common users and the project representation data of the projects in the target domain based on the interaction matrix by matrix decomposition.

本实施例中,提供了一种双目标域推荐模型的训练装置,双目标域之间进行数据的双向迁移,解决了每个目标域中的数据稀疏问题,达到双目标域的企业用户均从数据迁移过程中的受益的目的;并且,更加贴合双目标域情形下的实际情况,有助于双目标域对应的双方企业用户的积极参与;此外,基于双目标域之间的数据迁移过程,提高了推荐结果的准确度。In the present embodiment, a training device for a dual-target domain recommendation model is provided, in which bidirectional data migration is performed between the dual target domains, which solves the data sparsity problem in each target domain and achieves the purpose that both corporate users of the dual target domains benefit from the data migration process; moreover, it is more in line with the actual situation under the dual target domain situation, which facilitates the active participation of corporate users of both parties corresponding to the dual target domains; in addition, based on the data migration process between the dual target domains, the accuracy of the recommendation results is improved.

继续参考图9,作为对上述各图所示方法的实现,本公开提供了一种双目标域推荐装置的一个实施例,该装置实施例与图6所示的方法实施例相对应,该装置具体可以应用于各种电子设备中。Continuing to refer to FIG9 , as an implementation of the methods shown in the above figures, the present disclosure provides an embodiment of a dual-target domain recommendation device, which corresponds to the method embodiment shown in FIG6 , and can be specifically applied to various electronic devices.

如图9所示,双目标域推荐装置对于双目标域中的每个目标域,通过如下单元执行推荐操作:第二确定单元901,被配置成根据双目标域对应的目标共有用户与项目集合中的项目之间的交互数据,确定目标共有用户的用户表示数据和项目的项目表示数据;第三得到单元902,被配置成将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据;第四得到单元903,被配置成将该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据;推 荐单元904,被配置成通过训练后的双目标域推荐模型,根据融合后用户表示数据和项目表示数据,确定目标共有用户的待推荐项目。As shown in FIG9 , the dual-target domain recommendation device performs a recommendation operation for each target domain in the dual-target domain through the following units: a second determining unit 901 is configured to determine the user representation data of the target common users and the item representation data of the items in the item set according to the interaction data between the target common users corresponding to the dual-target domains and the items in the item set; a third obtaining unit 902 is configured to convert the user representation data in the target domain to another target domain to obtain the converted user representation data corresponding to the target domain; a fourth obtaining unit 903 is configured to fuse the user representation data in the target domain with the converted user representation data corresponding to another target domain to obtain the fused user representation data; and a recommendation operation is performed on each target domain in the dual-target domain by the following units: The recommendation unit 904 is configured to determine the to-be-recommended items of the target common user according to the fused user representation data and item representation data through the trained dual-target domain recommendation model.

在本实施例的一些可选的实现方式中,上述第三得到单元902,进一步被配置成:通过双目标域推荐模型中训练后的正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据。In some optional implementations of the present embodiment, the third obtaining unit 902 is further configured to: convert the user representation data in the target domain to another target domain through the orthogonal mapping matrix trained in the dual-target domain recommendation model, and obtain the converted user representation data corresponding to the target domain.

在本实施例的一些可选的实现方式中,上述第三得到单元902,进一步被配置成:通过正交映射矩阵,将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的初始转换后用户表示数据;采用本地差分隐私技术,处理初始转换后用户表示数据,得到转换后用户表示数据。In some optional implementations of the present embodiment, the third obtaining unit 902 is further configured to: convert the user representation data in the target domain to another target domain through an orthogonal mapping matrix to obtain the initial converted user representation data corresponding to the target domain; and use local differential privacy technology to process the initial converted user representation data to obtain converted user representation data.

在本实施例的一些可选的实现方式中,上述第四得到单元903,进一步被配置成:通过双目标域推荐模型中训练后的嵌入融合模块,根据该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据,确定门控选择向量;根据门控选择向量,融合该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据,得到融合后用户表示数据。In some optional implementations of the present embodiment, the fourth obtaining unit 903 is further configured to: determine a gating selection vector according to the user representation data in the target domain and the converted user representation data corresponding to another target domain through an embedded fusion module trained in the dual-target domain recommendation model; and fuse the user representation data in the target domain with the converted user representation data corresponding to another target domain according to the gating selection vector to obtain fused user representation data.

在本实施例的一些可选的实现方式中,上述第四得到单元903,进一步被配置成:根据门控选择向量,对该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行加权求和,得到融合后用户表示数据。In some optional implementations of this embodiment, the fourth obtaining unit 903 is further configured to: perform weighted summation of the user representation data in the target domain and the converted user representation data corresponding to another target domain according to the gated selection vector to obtain fused user representation data.

在本实施例的一些可选的实现方式中,上述推荐单元904,进一步被配置成:根据融合后用户表示数据和项目表示数据,预测目标共有用户与项目表示数据表征的项目之间的交互概率;根据交互概率,确定目标共有用户的待推荐项目。In some optional implementations of this embodiment, the recommendation unit 904 is further configured to: predict the interaction probability between the target common user and the items represented by the item representation data based on the fused user representation data and item representation data; and determine the items to be recommended for the target common user based on the interaction probability.

在本实施例的一些可选的实现方式中,上述第二确定单元901,进一步被配置成:采用矩阵分解的方式,基于交互矩阵,确定该目标域中的目标共有用户的用户表示数据和项目的项目表示数据,其中,交互矩阵表征双目标域对应的共有用户集合中的共有用户和项目集合中的项目之间的交互数据。 In some optional implementations of the present embodiment, the second determination unit 901 is further configured to: determine the user representation data of the target common users and the project representation data of the projects in the target domain based on the interaction matrix by means of matrix decomposition, wherein the interaction matrix represents the interaction data between the common users in the common user set and the projects in the project set corresponding to the dual target domains.

本实施例中,提供了一种双目标域推荐装置,双目标域之间进行数据的双向迁移,解决了每个目标域中的数据稀疏问题,达到双目标域的企业用户均从数据迁移过程中的受益的目的;并且,更加贴合双目标域情形下的实际情况,有助于双目标域对应的双方企业用户的积极参与;此外,基于双目标域之间的数据迁移过程,提高了推荐结果的准确度。In the present embodiment, a dual-target domain recommendation device is provided, which performs bidirectional data migration between the dual target domains, solves the data sparsity problem in each target domain, and achieves the purpose that both enterprise users of the dual target domains benefit from the data migration process; moreover, it is more in line with the actual situation under the dual target domain situation, and facilitates the active participation of enterprise users of both parties corresponding to the dual target domains; in addition, based on the data migration process between the dual target domains, the accuracy of the recommendation results is improved.

下面参考图10,其示出了适于用来实现本公开实施例的设备(例如图1所示的设备101、102、103、105)的计算机系统1000的结构示意图。图10示出的设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。Referring to FIG10, a schematic diagram of the structure of a computer system 1000 suitable for implementing the device (e.g., the devices 101, 102, 103, 105 shown in FIG1) of the embodiment of the present disclosure is shown below. The device shown in FIG10 is only an example and should not bring any limitation to the functions and scope of use of the embodiment of the present disclosure.

如图10所示,计算机系统1000包括处理器(例如CPU,中央处理器)1001,其可以根据存储在只读存储器(ROM)1002中的程序或者从存储部分1008加载到随机访问存储器(RAM)1003中的程序而执行各种适当的动作和处理。在RAM1003中,还存储有系统1000操作所需的各种程序和数据。处理器1001、ROM1002以及RAM1003通过总线1004彼此相连。输入/输出(I/O)接口1005也连接至总线1004。As shown in FIG10 , the computer system 1000 includes a processor (e.g., a CPU, a central processing unit) 1001, which can perform various appropriate actions and processes according to a program stored in a read-only memory (ROM) 1002 or a program loaded from a storage portion 1008 into a random access memory (RAM) 1003. Various programs and data required for the operation of the system 1000 are also stored in the RAM 1003. The processor 1001, the ROM 1002, and the RAM 1003 are connected to each other via a bus 1004. An input/output (I/O) interface 1005 is also connected to the bus 1004.

以下部件连接至I/O接口1005:包括键盘、鼠标等的输入部分1006;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分1007;包括硬盘等的存储部分1008;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分1009。通信部分1009经由诸如因特网的网络执行通信处理。驱动器1010也根据需要连接至I/O接口1005。可拆卸介质1011,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器1010上,以便于从其上读出的计算机程序根据需要被安装入存储部分1008。The following components are connected to the I/O interface 1005: an input section 1006 including a keyboard, a mouse, etc.; an output section 1007 including a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; a storage section 1008 including a hard disk, etc.; and a communication section 1009 including a network interface card such as a LAN card, a modem, etc. The communication section 1009 performs communication processing via a network such as the Internet. A drive 1010 is also connected to the I/O interface 1005 as needed. A removable medium 1011, such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc., is installed on the drive 1010 as needed, so that a computer program read therefrom is installed into the storage section 1008 as needed.

特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程 图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分1009从网络上被下载和安装,和/或从可拆卸介质1011被安装。在该计算机程序被处理器1001执行时,执行本公开的方法中限定的上述功能。In particular, according to an embodiment of the present disclosure, the process described above with reference to the flowchart can be implemented as a computer software program. For example, an embodiment of the present disclosure includes a computer program product, which includes a computer program carried on a computer readable medium, the computer program including a computer program for executing the process. In such an embodiment, the computer program can be downloaded and installed from a network through the communication part 1009, and/or installed from the removable medium 1011. When the computer program is executed by the processor 1001, the above functions defined in the method of the present disclosure are performed.

需要说明的是,本公开的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、RF等等,或者上述的任意合适的组合。It should be noted that the computer-readable medium of the present disclosure may be a computer-readable signal medium or a computer-readable storage medium or any combination of the above two. The computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination of the above. More specific examples of computer-readable storage media may include, but are not limited to: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above. In the present disclosure, a computer-readable storage medium may be any tangible medium containing or storing a program that can be used by or in combination with an instruction execution system, device or device. In the present disclosure, a computer-readable signal medium may include a data signal propagated in a baseband or as part of a carrier wave, in which a computer-readable program code is carried. This propagated data signal may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above. Computer-readable signal media may also be any computer-readable medium other than computer-readable storage media, which may send, propagate or transmit a program for use by or in conjunction with an instruction execution system, apparatus or device. The program code contained on the computer-readable medium may be transmitted using any appropriate medium, including but not limited to: wireless, wire, optical cable, RF, etc., or any suitable combination of the above.

可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,程序设计语言包括面向目标的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如”C”语言或类似的程序设计语言。程序代码可以完全地在客户计算机上执行、部分地在客户计算机上执行、作为一个独立的软件包执行、部分在客户计算机上部 分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到客户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for performing operations of the present disclosure may be written in one or more programming languages, or a combination thereof, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional procedural programming languages such as "C" or similar programming languages. The program code may be executed entirely on the client computer, partially on the client computer, as a stand-alone software package, or partially on the client computer. The client computer may be connected to the remote computer or the server. ...

附图中的流程图和框图,图示了按照本公开各种实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flow chart and block diagram in the accompanying drawings illustrate the possible architecture, function and operation of the device, method and computer program product according to various embodiments of the present disclosure. In this regard, each box in the flow chart or block diagram can represent a module, a program segment or a part of a code, and the module, the program segment or a part of the code contains one or more executable instructions for realizing the specified logical function. It should also be noted that in some alternative implementations, the functions marked in the box can also occur in a different order from the order marked in the accompanying drawings. For example, two boxes represented in succession can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved. It should also be noted that each box in the block diagram and/or flow chart, and the combination of the boxes in the block diagram and/or flow chart can be implemented with a dedicated hardware-based system that performs the specified function or operation, or can be implemented with a combination of dedicated hardware and computer instructions.

描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元也可以设置在处理器中,例如,可以描述为:一种处理器,包括第一确定单元、第一得到单元、第二得到单元和训练单元;又例如,可以描述为:一种处理器,包括第二确定单元、第三得到单元、第四得到单元和推荐单元。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定,例如,第一得到单元还可以被描述为“将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据的单元”。The units involved in the embodiments described in the present disclosure may be implemented by software or by hardware. The described units may also be arranged in a processor. For example, they may be described as: a processor including a first determination unit, a first obtaining unit, a second obtaining unit, and a training unit; for another example, they may be described as: a processor including a second determination unit, a third obtaining unit, a fourth obtaining unit, and a recommendation unit. Among them, the names of these units do not constitute a limitation on the units themselves under certain circumstances. For example, the first obtaining unit may also be described as "a unit that converts the user representation data in the target domain into another target domain and obtains the converted user representation data corresponding to the target domain".

作为另一方面,本公开还提供了一种计算机可读介质,该计算机可读介质可以是上述实施例中描述的设备中所包含的;也可以是单独存在,而未装配入该设备中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该装置执行时,使得该计算机设备:对于双目标域中的每个 目标域,执行如下训练操作:根据双目标域对应的共有用户集合中的共有用户与项目集合中的项目之间的交互数据,确定该目标域中的共有用户的用户表示数据和项目的项目表示数据;将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据;将表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据;采用机器学习方法,以融合后用户表示数据和项目表示数据为输入,以表征所输入的融合后用户表示数据对应的共有用户和所输入的项目表示数据对应的项目之间是否交互的标签为期望输出,训练得到双目标域推荐模型。还可以使得该计算机设备:对于双目标域中的每个目标域,执行如下推荐操作:根据双目标域对应的目标共有用户与项目集合中的项目之间的交互数据,确定目标共有用户的用户表示数据和项目的项目表示数据;将该目标域中的用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据;将该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据;通过训练后的双目标域推荐模型,根据融合后用户表示数据,确定目标共有用户的待推荐项目。As another aspect, the present disclosure further provides a computer-readable medium, which may be included in the device described in the above embodiment; or may exist independently without being assembled into the device. The above computer-readable medium carries one or more programs, and when the above one or more programs are executed by the device, the computer device: for each of the dual target domains In the target domain, the following training operations are performed: according to the interaction data between the common users in the common user set and the items in the item set corresponding to the dual target domains, the user representation data of the common users and the item representation data of the items in the target domain are determined; the user representation data in the target domain is converted to another target domain to obtain the converted user representation data corresponding to the target domain; the user representation data in the target domain representing the same common user is fused with the converted user representation data corresponding to another target domain to obtain the fused user representation data; a machine learning method is adopted, with the fused user representation data and the item representation data as input, and the label representing whether there is interaction between the common users corresponding to the input fused user representation data and the items corresponding to the input item representation data as the expected output, to train a dual target domain recommendation model. The computer device can also be made to: perform the following recommendation operations for each target domain in the dual target domains: determine the user representation data of the target common users and the project representation data of the projects based on the interaction data between the target common users corresponding to the dual target domains and the projects in the project set; convert the user representation data in the target domain to another target domain to obtain the converted user representation data corresponding to the target domain; fuse the user representation data in the target domain with the converted user representation data corresponding to another target domain to obtain the fused user representation data; and determine the projects to be recommended for the target common users based on the fused user representation data through the trained dual target domain recommendation model.

以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。 The above description is only a preferred embodiment of the present disclosure and an explanation of the technical principles used. Those skilled in the art should understand that the scope of the invention involved in the present disclosure is not limited to the technical solution formed by a specific combination of the above technical features, but should also cover other technical solutions formed by any combination of the above technical features or their equivalent features without departing from the above invention concept. For example, the above features are replaced with the technical features with similar functions disclosed in the present disclosure (but not limited to) by each other.

Claims (19)

一种双目标域推荐模型的训练方法,对于双目标域中的每个目标域,执行如下训练操作:A training method for a dual-target domain recommendation model, for each target domain in the dual-target domain, performing the following training operations: 根据双目标域对应的共有用户集合中的共有用户与项目集合中的项目之间的交互数据,确定该目标域中的共有用户的用户表示数据和项目的项目表示数据;Determine user representation data of the common users and item representation data of the items in the target domain according to interaction data between the common users in the common user set and the items in the item set corresponding to the dual target domains; 将该目标域中的所述用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据;Converting the user representation data in the target domain to another target domain to obtain converted user representation data corresponding to the target domain; 将表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据;以及fusing the user representation data in the target domain representing the same common user with the converted user representation data corresponding to another target domain to obtain fused user representation data; and 采用机器学习方法,以融合后用户表示数据和项目表示数据为输入,以表征所输入的融合后用户表示数据对应的共有用户和所输入的项目表示数据对应的项目之间是否交互的标签为期望输出,训练得到双目标域推荐模型。A machine learning method is adopted, with the fused user representation data and item representation data as input, and the label representing whether there is interaction between the common users corresponding to the input fused user representation data and the items corresponding to the input item representation data as the expected output, to train a dual-target domain recommendation model. 根据权利要求1所述的方法,其中,所述将该目标域中的所述用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据,包括:The method according to claim 1, wherein converting the user representation data in the target domain to another target domain to obtain converted user representation data corresponding to the target domain comprises: 通过可训练的正交映射矩阵,将该目标域中的所述用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据。The user representation data in the target domain is converted to another target domain through a trainable orthogonal mapping matrix to obtain converted user representation data corresponding to the target domain. 根据权利要求2所述的方法,其中,还包括:The method according to claim 2, further comprising: 在所述双目标域推荐模型的训练过程中的每次迭代操作后,根据该目标域中的正交映射矩阵和另一目标域中的正交映射矩阵,得到所述双目标域下一次迭代操作对应的正交映射矩阵。After each iterative operation in the training process of the dual-target domain recommendation model, an orthogonal mapping matrix corresponding to the next iterative operation of the dual-target domain is obtained according to the orthogonal mapping matrix in the target domain and the orthogonal mapping matrix in another target domain. 根据权利要求2所述的方法,其中,所述通过可训练的正交映射矩阵,将该目标域中的所述用户表示数据转换至另一目标域中,得到该目标域 对应的转换后用户表示数据,包括:The method according to claim 2, wherein the user representation data in the target domain is converted to another target domain by a trainable orthogonal mapping matrix to obtain the target domain The corresponding converted user representation data includes: 通过可训练的正交映射矩阵,将该目标域中的所述用户表示数据转换至另一目标域中,得到该目标域对应的初始转换后用户表示数据;以及The user representation data in the target domain is converted to another target domain through a trainable orthogonal mapping matrix to obtain initial converted user representation data corresponding to the target domain; and 采用本地差分隐私技术,处理所述初始转换后用户表示数据,得到所述转换后用户表示数据。The initial converted user representation data is processed using a local differential privacy technology to obtain the converted user representation data. 根据权利要求1所述的方法,其中,所述将表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据,包括:The method according to claim 1, wherein fusing the user representation data in the target domain representing the same common user with the converted user representation data corresponding to another target domain to obtain the fused user representation data comprises: 通过可训练的嵌入融合模块,根据表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据之间的相似度,确定门控选择向量;以及determining, by a trainable embedding fusion module, a gated selection vector according to a similarity between user representation data in the target domain and converted user representation data corresponding to another target domain representing the same common user; and 根据所述门控选择向量,融合表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据,得到所述融合后用户表示数据。According to the gated selection vector, the user representation data in the target domain representing the same common user is fused with the converted user representation data corresponding to another target domain to obtain the fused user representation data. 根据权利要求5所述的方法,其中,所述根据所述门控选择向量,融合表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据,得到所述融合后用户表示数据,包括:The method according to claim 5, wherein the fusing, according to the gated selection vector, the user representation data in the target domain representing the same common user with the converted user representation data corresponding to another target domain to obtain the fused user representation data comprises: 根据所述门控选择向量,对表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行加权求和,得到所述融合后用户表示数据。According to the gated selection vector, a weighted sum is performed on the user representation data in the target domain representing the same shared user and the converted user representation data corresponding to another target domain to obtain the fused user representation data. 根据权利要求1-6中任一项所述的方法,其中,所述采用机器学习方法,以融合后用户表示数据和项目表示数据为输入,以表征所输入的融合后用户表示数据对应的共有用户和所输入的项目表示数据对应的项目之间是否交互的标签为期望输出,训练得到双目标域推荐模型,包括: The method according to any one of claims 1 to 6, wherein the dual-target domain recommendation model is obtained by training using a machine learning method, taking the fused user representation data and the item representation data as input, and taking a label representing whether there is interaction between the common users corresponding to the input fused user representation data and the items corresponding to the input item representation data as the expected output, comprising: 根据所述融合后用户表示数据和所述项目表示数据,预测所述融合后用户表示数据对应的共有用户与所述项目表示数据对应的项目之间的交互概率;Predicting, based on the fused user representation data and the item representation data, an interaction probability between a common user corresponding to the fused user representation data and an item corresponding to the item representation data; 通过目标函数,根据所述交互概率、所述标签和预设的归一化参数,确定所述交互概率和所述标签之间的损失;以及Determining the loss between the interaction probability and the label according to the interaction probability, the label and a preset normalization parameter through an objective function; and 根据所述损失,训练得到所述双目标域推荐模型。The dual-target domain recommendation model is trained based on the loss. 根据权利要求1所述的方法,其中,所述交互数据为表征所述共有用户集合中的共有用户和所述项目集合中的项目之间的交互情况的交互矩阵;以及The method according to claim 1, wherein the interaction data is an interaction matrix characterizing the interaction between the common users in the common user set and the items in the item set; and 所述根据双目标域对应的共有用户集合中的共有用户与项目集合中的项目之间的交互数据,确定该目标域中的共有用户的用户表示数据和项目的项目表示数据,包括:The step of determining the user representation data of the common users and the project representation data of the projects in the target domain according to the interaction data between the common users in the common user set and the projects in the project set corresponding to the dual target domains includes: 采用矩阵分解的方式,基于所述交互矩阵,确定该目标域中的所述共有用户的用户表示数据和所述项目的项目表示数据。By adopting a matrix decomposition method, based on the interaction matrix, the user representation data of the common users and the project representation data of the projects in the target domain are determined. 一种双目标域推荐方法,对于双目标域中的每个目标域,执行如下推荐操作:A dual-target domain recommendation method performs the following recommendation operations for each target domain in the dual-target domain: 根据双目标域对应的目标共有用户与项目集合中的项目之间的交互数据,确定所述目标共有用户的用户表示数据和所述项目的项目表示数据;Determine user representation data of the target common users and item representation data of the items in the item set according to interaction data between the target common users corresponding to the dual target domains; 将该目标域中的所述用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据;Converting the user representation data in the target domain to another target domain to obtain converted user representation data corresponding to the target domain; 将该目标域中的所述用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据;以及fusing the user representation data in the target domain with the converted user representation data corresponding to another target domain to obtain fused user representation data; and 通过训练后的双目标域推荐模型,根据所述融合后用户表示数据和所述项目表示数据,确定所述目标共有用户的待推荐项目。The trained dual-target domain recommendation model is used to determine the to-be-recommended items of the target common user according to the fused user representation data and the item representation data. 根据权利要求9所述的方法,其中,所述将该目标域中的所述用户 表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据,包括:The method according to claim 9, wherein the user in the target domain The representation data is converted into another target domain to obtain the converted user representation data corresponding to the target domain, including: 通过所述双目标域推荐模型中训练后的正交映射矩阵,将该目标域中的所述用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据。The user representation data in the target domain is converted to another target domain through the orthogonal mapping matrix trained in the dual-target domain recommendation model to obtain the converted user representation data corresponding to the target domain. 根据权利要求10所述的方法,其中,所述通过所述双目标域推荐模型中训练后的正交映射矩阵,将该目标域中的所述用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据,包括:The method according to claim 10, wherein the converting the user representation data in the target domain to another target domain through the orthogonal mapping matrix trained in the dual-target domain recommendation model to obtain the converted user representation data corresponding to the target domain comprises: 通过所述正交映射矩阵,将该目标域中的所述用户表示数据转换至另一目标域中,得到该目标域对应的初始转换后用户表示数据;以及Converting the user representation data in the target domain to another target domain through the orthogonal mapping matrix to obtain initial converted user representation data corresponding to the target domain; and 采用本地差分隐私技术,处理所述初始转换后用户表示数据,得到所述转换后用户表示数据。The initial converted user representation data is processed using a local differential privacy technology to obtain the converted user representation data. 根据权利要求9所述的方法,其中,所述将该目标域中的所述用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据,包括:The method according to claim 9, wherein fusing the user representation data in the target domain with the converted user representation data corresponding to another target domain to obtain fused user representation data comprises: 通过所述双目标域推荐模型中训练后的嵌入融合模块,根据该目标域中的所述用户表示数据与另一目标域对应的转换后用户表示数据,确定门控选择向量;以及Determining a gated selection vector according to the user representation data in the target domain and the converted user representation data corresponding to another target domain through the trained embedding fusion module in the dual-target domain recommendation model; and 根据所述门控选择向量,融合该目标域中的所述用户表示数据与另一目标域对应的转换后用户表示数据,得到所述融合后用户表示数据。According to the gated selection vector, the user representation data in the target domain is fused with the converted user representation data corresponding to another target domain to obtain the fused user representation data. 根据权利要求12所述的方法,其中,所述根据所述门控选择向量,融合该目标域中的所述用户表示数据与另一目标域对应的转换后用户表示数据,得到所述融合后用户表示数据,包括:The method according to claim 12, wherein the fusing, according to the gated selection vector, the user representation data in the target domain with the converted user representation data corresponding to another target domain to obtain the fused user representation data comprises: 根据所述门控选择向量,对该目标域中的所述用户表示数据与另一目标 域对应的转换后用户表示数据进行加权求和,得到所述融合后用户表示数据。According to the gated selection vector, the user representation data in the target domain is compared with another target domain. The converted user representation data corresponding to the domain are weighted summed to obtain the fused user representation data. 根据权利要求9所述的方法,其中,所述通过训练后的双目标域推荐模型,根据所述融合后用户表示数据和所述项目表示数据,确定所述目标共有用户的待推荐项目,包括:The method according to claim 9, wherein the trained dual-target domain recommendation model determines the to-be-recommended items of the target common user according to the fused user representation data and the item representation data, comprising: 根据所述融合后用户表示数据和所述项目表示数据,预测所述目标共有用户与所述项目表示数据表征的项目之间的交互概率;以及Predicting the interaction probability between the target common user and the item represented by the item representation data according to the fused user representation data and the item representation data; and 根据所述交互概率,确定所述目标共有用户的待推荐项目。According to the interaction probability, the to-be-recommended items of the target common user are determined. 根据权利要求9所述的方法,其中,所述根据双目标域对应的目标共有用户与项目集合中的项目之间的交互数据,确定所述目标共有用户的用户表示数据和所述项目的项目表示数据,包括:The method according to claim 9, wherein determining the user representation data of the target common users and the item representation data of the items in the item set according to the interaction data between the target common users corresponding to the dual target domains and the items in the item set comprises: 采用矩阵分解的方式,基于交互矩阵,确定该目标域中的所述目标共有用户的用户表示数据和所述项目的项目表示数据,其中,所述交互矩阵表征双目标域对应的共有用户集合中的共有用户和所述项目集合中的项目之间的交互数据。By adopting the matrix decomposition method, based on the interaction matrix, the user representation data of the target common users and the project representation data of the projects in the target domain are determined, wherein the interaction matrix represents the interaction data between the common users in the common user set corresponding to the dual target domains and the projects in the project set. 一种双目标域推荐模型的训练装置,对于双目标域中的每个目标域,通过如下单元执行训练操作:A training device for a dual-target domain recommendation model performs a training operation for each target domain in the dual-target domain through the following units: 第一确定单元,被配置成根据双目标域对应的共有用户集合中的共有用户与项目集合中的项目之间的交互数据,确定该目标域中的共有用户的用户表示数据和项目的项目表示数据;A first determining unit is configured to determine user representation data of common users and item representation data of items in the target domain according to interaction data between common users in the common user set corresponding to the dual target domains and items in the item set; 第一得到单元,被配置成将该目标域中的所述用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据;A first obtaining unit is configured to convert the user representation data in the target domain into another target domain to obtain converted user representation data corresponding to the target domain; 第二得到单元,被配置成将表征同一共有用户的、该目标域中的用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据;以及 A second obtaining unit is configured to fuse the user representation data in the target domain and representing the same common user with the converted user representation data corresponding to another target domain to obtain fused user representation data; and 训练单元,被配置成采用机器学习方法,以融合后用户表示数据和项目表示数据为输入,以表征所输入的融合后用户表示数据对应的共有用户和所输入的项目表示数据对应的项目之间是否交互的标签为期望输出,训练得到双目标域推荐模型。The training unit is configured to adopt a machine learning method, with the fused user representation data and the item representation data as input, and a label representing whether there is interaction between the common users corresponding to the input fused user representation data and the items corresponding to the input item representation data as the expected output, to train a dual-target domain recommendation model. 一种双目标域推荐装置,对于双目标域中的每个目标域,通过如下单元执行推荐操作:A dual-target domain recommendation device performs a recommendation operation for each target domain in the dual-target domain through the following units: 第二确定单元,被配置成根据双目标域对应的目标共有用户与项目集合中的项目之间的交互数据,确定所述目标共有用户的用户表示数据和所述项目的项目表示数据;A second determining unit is configured to determine user representation data of the target common users and item representation data of the items according to interaction data between the target common users corresponding to the dual target domains and the items in the item set; 第三得到单元,被配置成将该目标域中的所述用户表示数据转换至另一目标域中,得到该目标域对应的转换后用户表示数据;A third obtaining unit is configured to convert the user representation data in the target domain into another target domain to obtain converted user representation data corresponding to the target domain; 第四得到单元,被配置成将该目标域中的所述用户表示数据与另一目标域对应的转换后用户表示数据进行融合,得到融合后用户表示数据;以及a fourth obtaining unit, configured to fuse the user representation data in the target domain with the converted user representation data corresponding to another target domain to obtain fused user representation data; and 推荐单元,被配置成通过训练后的双目标域推荐模型,根据所述融合后用户表示数据,确定所述目标共有用户的待推荐项目。The recommendation unit is configured to determine the to-be-recommended items of the target common user according to the fused user representation data through the trained dual-target domain recommendation model. 一种计算机可读介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现如权利要求1-15中任一所述的方法。A computer readable medium having a computer program stored thereon, wherein when the program is executed by a processor, the method according to any one of claims 1 to 15 is implemented. 一种电子设备,包括:An electronic device, comprising: 一个或多个处理器;one or more processors; 存储装置,其上存储有一个或多个程序,a storage device having one or more programs stored thereon, 当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-15中任一所述的方法。 When the one or more programs are executed by the one or more processors, the one or more processors implement the method according to any one of claims 1 to 15.
PCT/CN2023/128407 2022-12-26 2023-10-31 Training method and apparatus for dual-target domain recommendation model Ceased WO2024139666A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211686837.7A CN116415064B (en) 2022-12-26 2022-12-26 Training method and device for dual-target domain recommendation model
CN202211686837.7 2022-12-26

Publications (1)

Publication Number Publication Date
WO2024139666A1 true WO2024139666A1 (en) 2024-07-04

Family

ID=87052160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128407 Ceased WO2024139666A1 (en) 2022-12-26 2023-10-31 Training method and apparatus for dual-target domain recommendation model

Country Status (2)

Country Link
CN (1) CN116415064B (en)
WO (1) WO2024139666A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116415064B (en) * 2022-12-26 2025-03-18 京东城市(北京)数字科技有限公司 Training method and device for dual-target domain recommendation model

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190251435A1 (en) * 2018-02-09 2019-08-15 Daniel Shiebler Matching cross domain user affinity with co-embeddings
US20210149671A1 (en) * 2019-11-19 2021-05-20 Intuit Inc. Data structures and methods for enabling cross domain recommendations by a machine learning model
CN113312644A (en) * 2021-06-15 2021-08-27 杭州金智塔科技有限公司 Cross-domain recommendation model training method and system based on privacy protection
CN113420166A (en) * 2021-03-26 2021-09-21 阿里巴巴新加坡控股有限公司 Commodity mounting, retrieving, recommending and training processing method and device and electronic equipment
CN113806630A (en) * 2021-08-05 2021-12-17 中国科学院信息工程研究所 Attention-based multi-view feature fusion cross-domain recommendation method and device
CN114821250A (en) * 2022-03-23 2022-07-29 支付宝(杭州)信息技术有限公司 Cross-domain model training method, device and equipment
CN115098692A (en) * 2022-05-30 2022-09-23 清华大学 Cross-domain recommendation method and device, electronic equipment and storage medium
CN116415064A (en) * 2022-12-26 2023-07-11 京东城市(北京)数字科技有限公司 Training method and device for dual-target domain recommendation model

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114398538B (en) * 2021-12-08 2024-02-06 西安电子科技大学 Cross-domain recommendation method and system for privacy protection, storage medium and computer equipment
CN115168653A (en) * 2022-05-18 2022-10-11 上海交通大学 Cross-domain recommendation method and system based on inter-domain and intra-domain relationships

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190251435A1 (en) * 2018-02-09 2019-08-15 Daniel Shiebler Matching cross domain user affinity with co-embeddings
US20210149671A1 (en) * 2019-11-19 2021-05-20 Intuit Inc. Data structures and methods for enabling cross domain recommendations by a machine learning model
CN113420166A (en) * 2021-03-26 2021-09-21 阿里巴巴新加坡控股有限公司 Commodity mounting, retrieving, recommending and training processing method and device and electronic equipment
CN113312644A (en) * 2021-06-15 2021-08-27 杭州金智塔科技有限公司 Cross-domain recommendation model training method and system based on privacy protection
CN113806630A (en) * 2021-08-05 2021-12-17 中国科学院信息工程研究所 Attention-based multi-view feature fusion cross-domain recommendation method and device
CN114821250A (en) * 2022-03-23 2022-07-29 支付宝(杭州)信息技术有限公司 Cross-domain model training method, device and equipment
CN115098692A (en) * 2022-05-30 2022-09-23 清华大学 Cross-domain recommendation method and device, electronic equipment and storage medium
CN116415064A (en) * 2022-12-26 2023-07-11 京东城市(北京)数字科技有限公司 Training method and device for dual-target domain recommendation model

Also Published As

Publication number Publication date
CN116415064B (en) 2025-03-18
CN116415064A (en) 2023-07-11

Similar Documents

Publication Publication Date Title
Zhang et al. A survey on federated learning
Bao et al. Federated learning in cloud-edge collaborative architecture: key technologies, applications and challenges
Hu et al. Federated learning: a distributed shared machine learning method
WO2020173228A1 (en) Joint training method and apparatus for machine learning model, device, and storage medium
CN113505882B (en) Data processing method based on federal neural network model, related equipment and medium
CN110245510A (en) Method and device for forecasting information
CN111241567A (en) Secret sharing-based vertical federated learning method, system and storage medium
WO2021114911A1 (en) User risk assessment method and apparatus, electronic device, and storage medium
CN111401558A (en) Data processing model training method, data processing device and electronic equipment
CN105763547B (en) Third party's authorization method and third party's authoring system
Huang et al. [Retracted] AFLPC: An Asynchronous Federated Learning Privacy‐Preserving Computing Model Applied to 5G‐V2X
US20240111891A1 (en) Systems and methods for sanitizing sensitive data and preventing data leakage using on-demand artificial intelligence models
KR102660745B1 (en) Method for privacy-preserving image translation based on federated learning and unsupervised learning and apparatus therefor
WO2023071105A1 (en) Method and apparatus for analyzing feature variable, computer device, and storage medium
CN111259446A (en) Parameter processing method, device and storage medium based on federated transfer learning
CN113609397B (en) Method and device for pushing information
WO2022237175A1 (en) Graph data processing method and apparatus, device, storage medium, and program product
CN113761350B (en) Data recommendation method, related device and data recommendation system
CN118036651A (en) Longitudinal federal learning method and system based on graph neural network
Cai et al. Towards effective federated graph anomaly detection via self-boosted knowledge distillation
Jiang et al. Personalized federated learning based on multi-head attention algorithm
WO2024139666A1 (en) Training method and apparatus for dual-target domain recommendation model
CN116432039A (en) Collaborative training method and device, service prediction method and device
Chen et al. A multidimensional data utility evaluation and pricing scheme in the big data market
CN111786937B (en) Method, apparatus, electronic device and readable medium for identifying malicious request

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23909599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE