WO2024130777A1 - Visual respiratory therapy instrument, visual processing method, and use method - Google Patents
Visual respiratory therapy instrument, visual processing method, and use method Download PDFInfo
- Publication number
- WO2024130777A1 WO2024130777A1 PCT/CN2022/143379 CN2022143379W WO2024130777A1 WO 2024130777 A1 WO2024130777 A1 WO 2024130777A1 CN 2022143379 W CN2022143379 W CN 2022143379W WO 2024130777 A1 WO2024130777 A1 WO 2024130777A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow
- patient
- oxygen
- pipeline
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/12—Preparation of respiratory gases or vapours by mixing different gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/14—Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
- A61M16/16—Devices to humidify the respiration air
Definitions
- the present application relates to the technical field of medical data visualization, and in particular to a visualization respiratory therapy device, a visualization processing method, and a use method.
- High-flow nasal cannula oxygen therapy is a new respiratory support technology that has been widely used in clinical practice. Compared with traditional low-flow oxygen therapy, high-flow oxygen therapy can provide patients with high-flow gas with relatively constant oxygen concentration, temperature and humidity, and perform oxygen therapy through nasal congestion. Compared with non-invasive ventilation through a mask for respiratory support, this treatment method is more comfortable.
- medical staff generally set the operating parameters to make the high-flow output device output a fixed high-flow airflow. Since it is difficult to monitor the patient's own respiratory parameters during the operation of the high-flow output device, it is difficult to control the user experience during the patient's use. At the same time, medical staff cannot understand the patient's treatment status in a timely manner, making the current use of high-flow output devices not smart enough.
- the embodiments of the present application provide a visualized respiratory therapy device, a visualized processing method, and a method of use, which are used to solve the problem that the current high-flow output device cannot flexibly meet the usage needs of patients and medical staff during the use of the HFNC therapy device, and is not flexible and intelligent enough.
- an embodiment of the present application provides a visual respiratory therapy device, the therapy device comprising a host and a patient interface, and a patient status display screen;
- the main unit is provided with an air channel, an oxygen channel, an air-oxygen mixing portion and a mixed gas channel, and includes a flow sensor for monitoring the flow of the mixed gas and a pressure sensor for monitoring the pressure of the mixed gas;
- the inlet of the air-oxygen mixing part is connected to the air channel and the oxygen channel respectively, and the outlet of the air-oxygen mixing part is connected to the mixed gas channel;
- the patient interface is connected to the mixed gas channel through a pipeline; wherein the patient interface is a non-sealed patient interface;
- the host is used to receive and process the monitoring data of the flow sensor and the pressure sensor to output high-flow oxygen therapy display information to the patient status display screen;
- the patient status display screen includes a patient-end pressure dynamic display area and/or a patient inhalation flow dynamic display area, which are used to display the high-flow oxygen therapy display information.
- the therapeutic apparatus further comprises a humidifier
- the humidifier inlet is in gas communication with the mixed gas channel, and the humidifier outlet is in gas communication with the patient interface.
- the patient interface is a nasal cannula
- the pipeline and the patient interface are an integral or separate structure; the pipeline and the humidifier are detachably connected.
- the patient status display screen also includes a patient capacity dynamic display area.
- the patient-end pressure dynamic display area, the patient inhalation flow dynamic display area, and the patient capacity dynamic display area are located on the same display interface.
- the oxygen channel further includes an oxygen source interface, an oxygen valve and an oxygen flow sensor for monitoring the oxygen flow.
- the therapeutic apparatus further comprises: an airflow controller;
- the airflow controller is connected to the oxygen valve and the air-oxygen mixing unit, and is used to generate an airflow control signal according to an adjustment instruction from a user interface, so as to control the oxygen valve and/or the air-oxygen mixing unit to adjust the output oxygen flow, oxygen concentration or mixed gas flow of the therapeutic device.
- the air-oxygen mixing section comprises a turbine.
- an embodiment of the present application further provides a visualization processing method of a visualization respiratory therapy device, the method comprising:
- the patient interface pressure value of the current patient is determined through a preset pipeline pressure drop model; wherein the pipeline verification operation is that the patient interface is under atmospheric pressure, and multiple levels of step flow gas flow are output in sequence at intervals within a preset time; the collected data at least includes: the step flow values corresponding to the multiple levels of step flow, and the pressure values corresponding to each level of step flow;
- the respiratory flow value of the current patient is determined in real time
- high-flow oxygen therapy display information of the current patient is determined, and the high-flow oxygen therapy display information is sent to a patient status display screen to display the high-flow oxygen therapy display information.
- a flow output control instruction is generated according to the multi-level step flow, and the flow output control instruction is sent to the flow control device, so that the flow control device sequentially outputs the airflow of the multi-level step flow at intervals within the preset time; wherein the sequentially interval output is the airflow of each level of step flow continuously output within each consecutive predetermined sub-time of the preset time; the predetermined sub-time corresponds to each level of step flow one by one;
- the patient interface pressure value of the current patient is determined according to the pipeline pressure drop model and the delivery pressure value and the delivery flow value from the pressure sensor.
- a linear equation group is established according to the pressure values corresponding to the stepped flow rates at each level, the multiple stepped flow values corresponding to the pressure values corresponding to the stepped flow rates at each level, and a preset formula;
- the least square solution of the linear equation group is calculated, and the least square solution is used as the pipeline resistance coefficient.
- the patient interface pressure value of the current patient within a predetermined number of breaths is subjected to absolute value square root processing and sign function operation to obtain an intermediate pressure value;
- the respiratory flow value of the current patient is determined in real time.
- a respiratory trigger signal of the current patient is identified, and the number of triggering times of the respiratory trigger signal is accumulated;
- the respiratory flow value of the current patient is determined in real time.
- a plurality of intermediate pressure values corresponding to the predetermined number of patient interface pressure values are determined.
- the respiratory flow value of the current patient is determined in real time.
- a cumulative starting point breath of the triggering number is determined
- the accumulated starting breath of the triggering number is updated to the Nth breath after the accumulated starting breath; N is a natural number; N is the difference between the number of interval breaths and the predetermined number.
- the high-flow oxygen therapy display information includes at least one or more of the following: patient interface pressure curve, respiratory flow curve, patient capacity curve, respiratory rate, tidal volume, minute ventilation, end-tidal pressure, peak inspiratory flow, and actual inspired oxygen concentration.
- the first airflow capacity and the second airflow capacity corresponding to each breath are determined according to the respiratory flow value of each breath of the current patient and the corresponding delivery flow value; the first airflow capacity is the airflow capacity inhaled from the patient interface for each breath of the current patient; the second airflow capacity is the airflow capacity inhaled from the atmosphere for each breath of the current patient;
- the output oxygen concentration, the first airflow capacity, the second airflow capacity, the preset atmospheric oxygen ratio and the total inhalation capacity are input into a preset inhaled oxygen concentration formula to calculate the actual inhaled oxygen concentration.
- the embodiment of the present application further provides a method for using a visualized respiratory therapeutic apparatus, which is applied to the above-mentioned visualized respiratory therapeutic apparatus.
- the method for using the therapeutic apparatus includes:
- the patient interface is directly connected to the atmosphere.
- the pipeline verification operation includes the step of testing a multi-level step flow, specifically including: generating a flow output control instruction according to the multi-level step flow, and sending the flow output control instruction to the flow control device, so that the flow control device sequentially outputs the airflow of the multi-level step flow at intervals within the preset time; wherein the sequentially interval output is the airflow of each level of step flow continuously output within each consecutive predetermined sub-time of the preset time; the predetermined sub-time corresponds to each level of step flow one by one;
- the pipeline resistance coefficient of the pipeline pressure drop model is determined.
- the visual respiratory therapy instrument and the pipeline pressure drop model are used to calibrate the pipeline resistance coefficient of the therapeutic instrument, and then the pipeline output leakage model is used to determine the user's respiratory flow in real time and obtain the patient interface pressure value, and further analyze and obtain respiratory related parameters.
- Providing visual respiratory related waveforms and parameters can facilitate medical staff to timely grasp the pipeline wearing status and patient treatment effect during the treatment process based on these data.
- FIG1 is a schematic diagram of the structure of a visual respiratory therapy device according to an embodiment of the present application.
- FIG2 is a flow chart of a visualization processing method of a visualization respiratory therapy apparatus in an embodiment of the present application
- FIG3 is a schematic diagram of the contents displayed on a patient status display screen of a visual respiratory therapy apparatus according to an embodiment of the present application
- FIG. 4 is another flow chart of a visualization processing method of a visualization respiratory therapy device in an embodiment of the present application.
- HFNC high-flow humidified nasal oxygen therapy
- the therapeutic equipment to implement this technology mainly includes an air-oxygen mixing device, a heated humidifier, a high-flow nasal cannula, and a connected breathing circuit.
- high-flow oxygen therapy can provide patients with high-flow gas with relatively constant oxygen concentration, temperature and humidity, and oxygen therapy is performed through nasal congestion. Compared with non-invasive ventilation through masks for respiratory support, this treatment method is more comfortable.
- high-flow humidified oxygen therapy has clinical value in improving oxygenation, reducing respiratory dead space, improving alveolar ventilation, and facilitating secretion clearance. Therefore, it can be used as a pre- or post-invasive respiratory treatment for invasive or non-invasive ventilation.
- the embodiments of the present application provide a visual respiratory therapy device, a visual processing method and a usage method, which are used to solve the problem that the current high-flow output device cannot flexibly meet the usage needs of patients and medical staff during the HFNC therapy process, and is not flexible and intelligent enough.
- FIG1 is a schematic diagram of the structure of a visualized respiratory therapy device according to an embodiment of the present application.
- the therapy device includes a host 100 , a patient interface 200 , and a patient status display screen 300 .
- the host 100 is provided with an air channel 101, an oxygen channel 102, an air-oxygen mixing section 103 and a mixed gas channel 104, and includes a flow sensor 105 for monitoring the flow of the mixed gas and a pressure sensor 106 for monitoring the pressure of the mixed gas.
- the inlet of the air-oxygen mixing section 103 is connected to the air path of the air channel 101 and the oxygen channel 102, respectively, and the outlet of the air-oxygen mixing section 103 is connected to the air path of the mixed gas channel 104.
- the patient interface 200 is connected to the air path of the mixed gas channel 104 via a pipeline 107. Among them, the patient interface 200 is a non-sealed patient interface.
- the host 100 is used to receive and process the monitoring data of the flow sensor 105 and the pressure sensor 106 to output high-flow oxygen therapy display information to the patient status display screen 300.
- the patient status display screen 300 includes a patient-end pressure dynamic display area and/or a patient inhalation flow dynamic display area, which are used to display high-flow oxygen therapy display information.
- the patient status display screen 300 provided in the embodiment of the present application can be a touch screen or a high-definition display screen, and the host 100 can be connected to an external input device. The user can interact with the host through the input device and the patient status display screen.
- the therapeutic apparatus further includes a humidifier 108 .
- the inlet of the humidifier 108 is in gas communication with the mixed gas channel 104
- the outlet of the humidifier 108 is in gas communication with the patient interface 200 through the pipeline 107 .
- the patient interface 200 is a nasal cannula
- the tube 107 and the patient interface 200 are an integral or separate structure.
- the tube 107 and the humidifier 108 are detachably connected.
- the patient interface may not be limited to the nasal cannula.
- This application takes the insertion of the patient interface into the patient's nasal cavity as an exemplary existence.
- the patient status display screen 300 further includes a patient volume dynamic display area.
- the patient-side pressure dynamic display area, the patient inhalation flow dynamic display area, and the patient capacity dynamic display area are located on the same display interface.
- the oxygen channel 102 further includes an oxygen source interface 1, an oxygen valve 2, and an oxygen flow sensor 3 for monitoring the oxygen flow.
- the therapeutic apparatus further includes an air flow controller 109 .
- the airflow controller 109 is connected to the oxygen valve 2 and the air-oxygen mixing unit 103, and is used to generate an airflow control signal according to the adjustment instructions from the user interface (or user terminal) so as to control the oxygen valve 2 and/or the air-oxygen mixing unit 103 to adjust the output oxygen flow, oxygen concentration or mixed gas flow of the therapeutic apparatus.
- the user interface can be a user interface composed of the above-mentioned input device and display screen, or a user interface displayed on the user terminal interface after the host establishes a wireless or wired connection with a user terminal, such as a mobile phone, a laptop, etc.
- the user interface can trigger the generation of an adjustment instruction for adjusting the host.
- the air-oxygen mixing section 103 includes a turbine.
- the above-mentioned visualized respiratory therapy device can display relevant information of the patient's breathing in real time.
- the air channel 101, oxygen channel 102, air-oxygen mixing part 103, mixed gas channel 104, flow sensor 105, and pressure sensor 106 constitute the gas path structure of the therapy device.
- the patient status display screen 300 can be set to be integrated with the host.
- the therapeutic apparatus of the present application after oxygen from a high-pressure oxygen source enters the therapeutic apparatus, passes through the oxygen source interface 1 of the oxygen channel 102, enters the oxygen valve 2, and after being adjusted by the oxygen valve 2, passes through the oxygen flow sensor 3 to enter the air-oxygen mixing part 103, i.e., the turbine. After air enters the therapeutic apparatus from the atmosphere, it is mixed with oxygen. After the mixed gas is pressurized by the turbine, it passes through the flow sensor 105 and the pressure sensor 106, and then output to the ventilation pipeline, in which there is a humidifier 108 for heating and humidifying the mixed gas. The heated and humidified mixed gas enters the patient's body through the patient interface (nasal catheter).
- the air flow controller 109 can control the oxygen valve 2 to adjust the oxygen flow rate and oxygen concentration, and can also control the air-oxygen mixing part to control the total flow rate of the mixed gas.
- the total flow rate is equal to the sum of the oxygen flow rate and the air flow rate. If the input oxygen flow rate exceeds the total flow rate, the excess oxygen will be output to the atmosphere through the air inlet.
- the total flow target and oxygen concentration target controlled by the airflow controller are set by the user, such as through a human-machine interface composed of an input device and a display screen, or through a human-machine interface of a touch-operated patient status display screen.
- the user sends the control target to the airflow controller through the human-machine interface and also receives feedback information returned by the airflow controller.
- FIG. 2 is a flow chart of a visualization processing method of a visualization respiratory therapeutic device provided by an embodiment of the present application.
- the visualization processing method is implemented with a software module in the host of the therapeutic device as the execution subject.
- the software module can be located on the processor of the host and its storage medium. As shown in Figure 2, the method includes steps S201-S203:
- the patient interface pressure value of the current patient is determined through a preset pipeline pressure drop model.
- the pipeline verification operation is that the patient interface is under atmospheric pressure, and multiple step flow airflows are output in sequence at intervals within a preset time.
- the collected data at least includes: the step flow values corresponding to the multiple step flow rates, and the pressure values corresponding to each step flow rate.
- the pipeline verification operation is a verification operation that needs to be performed when changing patients or replacing certain parts of the treatment device or when using it for the first time.
- the patient interface is not connected to the patient's nasal cavity and is in the atmosphere to verify the air resistance of the pipeline.
- a nasal cannula for ventilation Before the patient wears a nasal cannula for ventilation, first connect the machine to all the pipeline components to be ventilated, including but not limited to bacterial filters, ventilation pipelines, humidifiers, and nasal cannulas, to ensure that the nasal cannula (patient interface) is exposed to the atmosphere and that there are no leaks or blockages at the connections of the pipeline.
- the patient interface pressure value of the current patient is determined by a preset pipeline pressure drop model, specifically including:
- a flow output control instruction is generated, and the flow output control instruction is sent to the flow control device, so that the flow control device outputs the airflow of the multi-level step flow in sequence and at intervals within a preset time.
- the airflows of each level of step flow are outputted in sequence and at intervals and are continuously outputted within each consecutive predetermined sub-time of the preset time.
- the predetermined sub-time corresponds to each level of step flow.
- the storage medium of the therapeutic apparatus pre-stores multiple step flow rates such as Qvent1_ca, Qvent2_ca, ..., Qventn_ca, and the flow value of each level of the multiple step flow rates is different.
- the software can generate a flow output control instruction, and the flow control device sequentially outputs the airflow of the multiple step flow rates at intervals within a preset time.
- the flow control device can be a partial device composed of an airflow controller and an air-oxygen mixing unit.
- the preset time is 2 seconds
- each level of step flow lasts for 2 seconds
- the pressure value corresponding to each level of step flow in 2 seconds is recorded until the corresponding pressures Pvent1_ca, Pvent2_ca,..., Pventn_ca of n step flow points are recorded; where n is a natural number.
- the pipeline resistance coefficient of the pipeline pressure drop model is determined.
- a linear equation system is established according to the pressure values corresponding to each level of step flow, multiple step flow values corresponding to the pressure values corresponding to each level of step flow, and a preset formula, and the least squares solution of the linear equation system is calculated, and the least squares solution is used as the pipeline resistance coefficient.
- the preset formula is as follows:
- Pventi_ca is the pressure value corresponding to the i-th step flow.
- Rtube represents the pipeline resistance coefficient.
- Qventi_ca is the i-th step flow value, and each step flow corresponds to a unique pressure value.
- the patient interface pressure value of the current patient is determined according to the pipeline pressure drop model and the delivery pressure value and delivery flow value from the pressure sensor.
- the pipeline pressure drop model is as follows:
- Pnose is the patient interface pressure value
- Pvent is the delivery pressure value
- Qvent is the delivery flow value.
- Step S201 is a step for the therapeutic device to measure the pipeline resistance coefficient in an offline state, and to perform online nasal pressure Pnose according to the pipeline resistance coefficient. Since the patient's interface is not blocked during the high-flow gas delivery process when the patient actually uses the therapeutic device of this application, gas leakage will occur. In order to ensure the accuracy of the patient's respiratory flow value obtained during high-flow oxygen therapy, this application provides the following embodiment step S202.
- the current patient's respiratory flow value is determined in real time.
- the predetermined number of times is pre-set, such as 3 times, 5 times, etc.
- the predetermined number of breaths is used to determine the leakage model parameters of the pipeline output leakage model.
- the current patient's respiratory flow value is determined in real time, specifically including:
- the absolute value square root processing and sign function operation are performed on the patient interface pressure value of the current patient within a predetermined number of breaths to obtain the intermediate value of the pressure value.
- the flow rate Qleak leaking to the atmosphere through the unblocked part of the nasal catheter is proportional to the nasal pressure Pnose.
- the pipeline output leakage model is as follows:
- Qleak is the flow value leaked into the atmosphere
- Kleak is the leakage model parameter
- Sgn is a positive and negative function, and in the embodiment of the present application, the Sgn function is negative when Pnose is lower than the atmospheric pressure, and vice versa.
- the intermediate pressure value and the delivery flow rate value are integrated at the start and end times of breathing, respectively.
- the quotient of the intermediate amount of the pressure value after the integral operation and the delivery flow value after the integral operation is calculated, and the quotient is used as a leakage model parameter of the pipeline output leakage model.
- N is a natural number.
- N can be 1, which refers to the preset number of times, that is, the quotient of the intermediate amount of the pressure value after the integral operation and the delivery flow value after the integral operation; t0 is the breathing start time, and te is the breathing end time.
- the formula also contains the integral amount of the patient's respiratory flow Qpatient. Since the patient's inhaled air volume is approximately equal to the exhaled air volume per breath, in one breath, the integral amount of the patient's respiratory flow is 0 and is not considered in the above formula.
- the current patient's respiratory flow value is determined in real time.
- the leakage model parameters obtained by the preset number of breaths and the real-time measured patient interface pressure value are input into the pipeline output leakage model to obtain the flow value leaked to the atmosphere by the patient for each breath.
- the current patient's respiratory flow value is determined in real time, specifically including:
- the software module of the therapeutic device can identify the patient's breathing.
- the identification can be based on the instantaneous change of pressure Pnose or Qpatient exceeding a certain threshold (the falling mutation point of Pnose or the rising mutation point of Qpatient marks the beginning of the patient's inhalation), or it can be combined with the turbine speed or control current change, etc.
- the present application does not specifically limit the specific method of identification.
- leakage model parameters are determined, specifically including:
- N in the above formula for calculating the leakage model parameters of the present application is a preset number, wherein N is more appropriately 3-5 during actual use.
- the method further includes:
- a respiratory trigger signal of the current patient When a respiratory trigger signal of the current patient is identified, a cumulative starting point breath of the trigger times is determined.
- the accumulated starting breath of the triggering number is updated to be the Nth breath after the accumulated starting breath.
- N is a natural number.
- N is the difference between the interval breath number and the predetermined number.
- N refers to the difference between the number of interval breaths and the predetermined number.
- the predetermined number is 3, and the Ath breath is taken as the cumulative starting breath.
- the B and C breaths after the Ath breath reach the predetermined number.
- the software should calculate the leakage model parameters with the A, B, and C breaths, and calculate the respiratory flow value of the Dth breath.
- the cumulative starting breath of the updated trigger number is the Nth breath after the cumulative starting breath, that is, the cumulative starting breath of the updated trigger number is the first breath B after the A breath. That is, B is taken as the cumulative starting breath.
- the leakage model parameters can be updated in a rolling manner, and each update is based on the delivery pressure value and delivery flow value of the previous predetermined number of breaths. In this way, when the position of the nasal cannula worn by the patient changes, it can also adapt to the change in time.
- the software can generate a corresponding patient interface pressure value curve and a respiratory flow curve based on the patient interface pressure value and respiratory flow value obtained in real time.
- the patient capacity curve can also be obtained by integrating the respiratory flow curve.
- the high-flow oxygen therapy display information includes at least one or more of the following: patient interface pressure curve (nasal pressure), respiratory flow curve (patient flow), patient capacity curve, respiratory rate (respiration rate, RR), tidal volume (Tidal volume, VT), minute ventilation volume (minute ventilation volume, MV), Positive End Expiratory Pressure (Positive End Expiratory Pressure, PEEP), peak inspiratory flow (peak inspiratory flow, represented by Fpeak in the figure), and actual inspired oxygen concentration (represented by FiO2_real in the figure).
- HFT stands for high-flow oxygen therapy.
- the actual inspired oxygen concentration can be determined according to the following examples, as follows.
- the first airflow capacity and the second airflow capacity corresponding to each breath are determined.
- the first airflow capacity is the airflow capacity inhaled from the patient interface for each breath of the current patient.
- the second airflow capacity is the airflow capacity inhaled from the atmosphere for each breath of the current patient.
- the total inhaled volume is determined based on the respiratory flow value of each breath of the current patient.
- the oxygen flow rate data from the oxygen flow rate sensor is obtained, and the output oxygen concentration is determined based on the oxygen flow rate data.
- the output oxygen concentration, the first airflow capacity, the second airflow capacity, the preset atmospheric oxygen percentage and the total inhalation capacity are input into the preset inhaled oxygen concentration formula to calculate the actual inhaled oxygen concentration.
- the preset inspired oxygen concentration formula is as follows:
- FiO2_real (V1 ⁇ FiO2_vent+V2 ⁇ 21%)/V3
- FiO2_vent is the output oxygen concentration
- V1 is the first airflow capacity
- V2 is the second airflow capacity
- V3 is the total inhalation capacity
- V1 refers to the cumulative capacity of the patient flow in one inhalation where the inhalation flow is lower than the therapeutic device air flow
- V2 refers to the cumulative capacity of the patient flow in one inhalation where the inhalation flow exceeds the therapeutic device air flow
- V3 refers to the cumulative capacity of the total patient flow in one inhalation.
- the oxygen concentration of the inhaled air is 21%.
- the moving average of the previous multiple breathing frequencies can be used as the respiratory frequency RR.
- the tidal volume VT is reset to zero, and Qpatient is accumulated again to calculate the patient volume Vpatient.
- the moving average of the tidal volumes of the previous multiple breaths can be used as the tidal volume VT.
- the end-expiratory pressure PEEP is calculated at the beginning of each inhalation, and the average value of the patient interface pressure value Pnose in the period before this moment (50 milliseconds ⁇ 100 milliseconds) is used as the monitoring value of PEEP.
- the inspiratory peak flow rate Fpeak may be the highest point value of the Qpatient waveform detected in each breath, which serves as the inspiratory peak monitoring value Fpeak.
- This application can obtain the offline pipeline resistance coefficient through the pipeline pressure drop model constructed above, and then calculate the online patient interface pressure value Pnose, and calculate the leakage model parameters online through the pipeline output leakage model. Based on the two models and their parameter calculation results, the patient interface pressure waveform and patient respiratory flow waveform of the patient treated by the therapeutic device can be monitored in real time, which is convenient for medical staff to timely grasp the pipeline wearing status and patient treatment effect during the treatment process according to the waveform.
- the present application can also analyze the patient interface pressure waveform and the patient respiratory flow waveform to obtain several relevant parameters of breathing. Medical staff can accurately titrate high-flow treatment setting parameters, such as flow targets, based on the monitored respiratory parameters.
- the visual respiratory therapy device provided by the present application provides a more comprehensive decision-making support tool for medical staff to set treatment parameters when using the high-flow mode, avoiding blind settings and enabling users to better control the trend of sequential treatment. This ensures that the use needs of patients and medical staff can be flexibly met during the use of the HFNC therapy device, making the HFNC therapy device more flexible and intelligent, and improving the user experience.
- the visualization processing method implemented by the software model of the present application includes the following steps, as shown in FIG4 , specifically including:
- the software module can send the obtained waveforms and parameters to the display screen for display, and prompt abnormal information during the patient's breathing process or the operation of the therapeutic device.
- the present application also provides a method for using a visualized respiratory therapy apparatus, which is applied to the above-mentioned visualized respiratory therapy apparatus.
- the method for using the visualized respiratory therapy apparatus includes:
- a circuit calibration procedure to measure the circuit resistance coefficient between the patient interface and the circuit after replacing the patient interface and/or the circuit.
- the patient interface is directly connected to the atmosphere.
- the pipeline verification operation also includes the step of test driving a multi-level step flow, specifically including: generating a flow output control instruction according to the multi-level step flow, and sending the flow output control instruction to the flow control device, so that the flow control device sequentially outputs the airflow of the multi-level step flow at intervals within the preset time.
- the airflow of each level of step flow output sequentially and at intervals is continuously output within each consecutive predetermined sub-time of the preset time.
- the predetermined sub-time corresponds to each level of step flow one by one.
- the patient interface can be inserted into the patient's nasal cavity to perform normal use of the therapeutic device.
- the specific embodiment of the above-mentioned visualization processing method can be referred to, and no further description is given here.
- the embodiments of this specification may be provided as methods, systems, or computer program products. Therefore, the embodiments of this specification may be in the form of complete hardware embodiments, complete software embodiments, or embodiments in combination with software and hardware. Moreover, the embodiments of this specification may be in the form of a computer program product implemented in one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) that contain computer-usable program code.
- computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
- These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
- These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
- a computing device includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
- processors CPU
- input/output interfaces network interfaces
- memory volatile and non-volatile memory
- Memory may include non-permanent storage in a computer-readable medium, in the form of random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
- RAM random access memory
- ROM read-only memory
- flash RAM flash memory
- Computer readable media include permanent and non-permanent, removable and non-removable media that can be implemented by any method or technology to store information.
- Information can be computer readable instructions, data structures, program modules or other data.
- Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disk read-only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by a computing device.
- computer readable media does not include temporary computer readable media (transitory media), such as modulated data signals and carrier waves.
- program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
- This specification may also be practiced in distributed computing environments where tasks are performed by remote processing devices connected through a communication network.
- program modules may be located in local and remote computer storage media, including storage devices.
Landscapes
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Pulmonology (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
本申请要求于2022年12月23日提交中国专利局、申请号为202211668073.9、发明名称为"一种可视化呼吸治疗仪、可视化处理方法及使用方法"的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims the priority of the Chinese patent application filed with the China Patent Office on December 23, 2022, with application number 202211668073.9 and invention name "A visual respiratory therapy device, a visual processing method and a use method", the entire contents of which are incorporated by reference in this application.
本申请涉及医疗数据可视化技术领域,尤其涉及一种可视化呼吸治疗仪、可视化处理方法及使用方法。The present application relates to the technical field of medical data visualization, and in particular to a visualization respiratory therapy device, a visualization processing method, and a use method.
经鼻高流量湿化氧疗(High-flow nasal cannula oxygen therapy,HFNC)作为一种新的呼吸支持技术在临床中得到广泛应用,与传统的低流量氧疗相比,高流量氧疗能够给患者提供相对恒定的吸氧浓度、温度和湿度的高流量气体,并且通过鼻塞进行氧疗,与通过面罩进行呼吸支持的无创通气相比,此治疗方式更舒适。High-flow nasal cannula oxygen therapy (HFNC) is a new respiratory support technology that has been widely used in clinical practice. Compared with traditional low-flow oxygen therapy, high-flow oxygen therapy can provide patients with high-flow gas with relatively constant oxygen concentration, temperature and humidity, and perform oxygen therapy through nasal congestion. Compared with non-invasive ventilation through a mask for respiratory support, this treatment method is more comfortable.
目前,HFNC的使用过程中,一般由医护人员设定运行参数后,使高流量输出设备输出固定的高流量气流。由于高流量输出设备运行过程中,难以监测患者自身的呼吸参数,对于患者使用过程中的使用体验难以把控,同时医护人员也不能及时了解患者的被治疗情况,使目前高流量输出设备的使用不够智能。At present, during the use of HFNC, medical staff generally set the operating parameters to make the high-flow output device output a fixed high-flow airflow. Since it is difficult to monitor the patient's own respiratory parameters during the operation of the high-flow output device, it is difficult to control the user experience during the patient's use. At the same time, medical staff cannot understand the patient's treatment status in a timely manner, making the current use of high-flow output devices not smart enough.
发明内容Summary of the invention
本申请实施例提供了一种可视化呼吸治疗仪、可视化处理方法及使用方法,用于解决HFNC治疗仪使用过程中,目前的高流量输出设备无法灵活满足患者及医护人员的使用需求,不够灵活且智能的问题。The embodiments of the present application provide a visualized respiratory therapy device, a visualized processing method, and a method of use, which are used to solve the problem that the current high-flow output device cannot flexibly meet the usage needs of patients and medical staff during the use of the HFNC therapy device, and is not flexible and intelligent enough.
一方面,本申请实施例提供了一种可视化呼吸治疗仪,所述治疗仪包括主机和患者接口、患者状态显示屏;On the one hand, an embodiment of the present application provides a visual respiratory therapy device, the therapy device comprising a host and a patient interface, and a patient status display screen;
所述主机设有空气通道、氧气通道、空氧混合部以及混合气体通道,并包括用于监测混合气体流量的流量传感器和用于监测混合气体压力的压力传感器;The main unit is provided with an air channel, an oxygen channel, an air-oxygen mixing portion and a mixed gas channel, and includes a flow sensor for monitoring the flow of the mixed gas and a pressure sensor for monitoring the pressure of the mixed gas;
所述空氧混合部入口分别与所述空气通道、所述氧气通道气路联通,所述空氧混合部出口与所述混合气体通道气路联通;The inlet of the air-oxygen mixing part is connected to the air channel and the oxygen channel respectively, and the outlet of the air-oxygen mixing part is connected to the mixed gas channel;
所述患者接口经管路与所述混合气体通道气路联通;其中,所述患者接口为非密封式患者接口;The patient interface is connected to the mixed gas channel through a pipeline; wherein the patient interface is a non-sealed patient interface;
所述主机用于接收并处理所述流量传感器以及所述压力传感器的监测数据,以输出高流量氧疗展示信息至所述患者状态显示屏;The host is used to receive and process the monitoring data of the flow sensor and the pressure sensor to output high-flow oxygen therapy display information to the patient status display screen;
所述患者状态显示屏包括患者端压力动态显示区和/或患者吸入流量动态显示区,用于展示所述高流量氧疗展示信息。The patient status display screen includes a patient-end pressure dynamic display area and/or a patient inhalation flow dynamic display area, which are used to display the high-flow oxygen therapy display information.
优选地,所述治疗仪还包括湿化器;Preferably, the therapeutic apparatus further comprises a humidifier;
所述湿化器入口与所述混合气体通道气路联通,所述湿化器出口与所述患者接口气路联通。The humidifier inlet is in gas communication with the mixed gas channel, and the humidifier outlet is in gas communication with the patient interface.
优选地,所述患者接口为鼻插管,所述管路与所述患者接口为一体或分体结构;所述管路与所述湿化器可拆卸连接。Preferably, the patient interface is a nasal cannula, and the pipeline and the patient interface are an integral or separate structure; the pipeline and the humidifier are detachably connected.
优选地,所述患者状态显示屏还包括患者容量动态显示区。Preferably, the patient status display screen also includes a patient capacity dynamic display area.
优选地,所述患者端压力动态显示区、患者吸入流量动态显示区、患者容量动态显示 区位于同一显示界面。Preferably, the patient-end pressure dynamic display area, the patient inhalation flow dynamic display area, and the patient capacity dynamic display area are located on the same display interface.
优选地,所述氧气通道还包括氧气源接口、氧气阀及用于监测氧流量的氧流量传感器。Preferably, the oxygen channel further includes an oxygen source interface, an oxygen valve and an oxygen flow sensor for monitoring the oxygen flow.
优选地,所述治疗仪还包括:气流控制器;Preferably, the therapeutic apparatus further comprises: an airflow controller;
所述气流控制器连接所述氧气阀及所述空氧混合部,用于根据来自用户界面的调节指令,生成气流控制信号,以便控制所述氧气阀和/或所述空氧混合部,调节所述治疗仪的输出氧流量、氧浓度或混合气体流量。The airflow controller is connected to the oxygen valve and the air-oxygen mixing unit, and is used to generate an airflow control signal according to an adjustment instruction from a user interface, so as to control the oxygen valve and/or the air-oxygen mixing unit to adjust the output oxygen flow, oxygen concentration or mixed gas flow of the therapeutic device.
优选地,所述空氧混合部包括涡轮。Preferably, the air-oxygen mixing section comprises a turbine.
另一方面,本申请实施例还提供了一种可视化呼吸治疗仪的可视化处理方法,所述方法包括:On the other hand, an embodiment of the present application further provides a visualization processing method of a visualization respiratory therapy device, the method comprising:
基于管路校验操作对应的采集数据及来自流量传感器的混合气体的输送流量值,通过预设管路压降模型,确定当前患者的患者接口压力值;其中,所述管路校验操作为患者接口处于大气压下,预设时间内依次间隔输出多级阶梯流量的气流;所述采集数据至少包括:所述多级阶梯流量分别对应的阶梯流量值、各级阶梯流量对应的压力值;Based on the collected data corresponding to the pipeline verification operation and the delivery flow value of the mixed gas from the flow sensor, the patient interface pressure value of the current patient is determined through a preset pipeline pressure drop model; wherein the pipeline verification operation is that the patient interface is under atmospheric pressure, and multiple levels of step flow gas flow are output in sequence at intervals within a preset time; the collected data at least includes: the step flow values corresponding to the multiple levels of step flow, and the pressure values corresponding to each level of step flow;
基于所述当前患者预定次数呼吸内,所述患者接口压力值及相应的所述输送流量值、预设的管路输出泄漏模型,实时确定所述当前患者的呼吸流量值;Based on the patient interface pressure value and the corresponding delivery flow value within a predetermined number of breaths of the current patient, and a preset pipeline output leakage model, the respiratory flow value of the current patient is determined in real time;
基于所述患者接口压力值、所述呼吸流量值,确定所述当前患者的高流量氧疗展示信息,并将所述高流量氧疗展示信息发送至患者状态显示屏,以展示所述高流量氧疗展示信息。Based on the patient interface pressure value and the respiratory flow value, high-flow oxygen therapy display information of the current patient is determined, and the high-flow oxygen therapy display information is sent to a patient status display screen to display the high-flow oxygen therapy display information.
在本申请的一种实现方式中,根据所述多级阶梯流量,生成流量输出控制指令,并将所述流量输出控制指令发送至流量控制设备,以使所述流量控制设备在所述预设时间内,依次间隔输出多级阶梯流量的气流;其中,所述依次间隔输出为各级阶梯流量的气流在所述预设时间的连续的各预定子时间内持续输出;所述预定子时间与各级阶梯流量一一对应;In one implementation of the present application, a flow output control instruction is generated according to the multi-level step flow, and the flow output control instruction is sent to the flow control device, so that the flow control device sequentially outputs the airflow of the multi-level step flow at intervals within the preset time; wherein the sequentially interval output is the airflow of each level of step flow continuously output within each consecutive predetermined sub-time of the preset time; the predetermined sub-time corresponds to each level of step flow one by one;
获取来自压力传感器的各级阶梯流量对应的压力值;Obtain the pressure values corresponding to each level of step flow from the pressure sensor;
基于所述各级阶梯流量对应的压力值及与其对应的所述阶梯流量值,确定所述管路压降模型的管路阻力系数;Determining the pipeline resistance coefficient of the pipeline pressure drop model based on the pressure values corresponding to the various levels of step flow and the corresponding step flow values;
在所述患者接口接通所述当前患者的通气端的情况下,根据所述管路压降模型及来自所述压力传感器的输送压力值、所述输送流量值,确定所述当前患者的所述患者接口压力值。When the patient interface is connected to the ventilation end of the current patient, the patient interface pressure value of the current patient is determined according to the pipeline pressure drop model and the delivery pressure value and the delivery flow value from the pressure sensor.
在本申请的一种实现方式中,根据所述各级阶梯流量对应的压力值、所述各级阶梯流量对应的压力值对应的多个所述阶梯流量值以及预设公式,建立线性方程组;In one implementation of the present application, a linear equation group is established according to the pressure values corresponding to the stepped flow rates at each level, the multiple stepped flow values corresponding to the pressure values corresponding to the stepped flow rates at each level, and a preset formula;
计算所述线性方程组的最小二乘解,并将所述最小二乘解作为所述管路阻力系数。The least square solution of the linear equation group is calculated, and the least square solution is used as the pipeline resistance coefficient.
在本申请的一种实现方式中,根据所述管路输出泄露模型,对所述当前患者在预定次数呼吸内所述患者接口压力值进行绝对值开方处理及符号函数运算,得到压力值中间量;In one implementation of the present application, according to the pipeline output leakage model, the patient interface pressure value of the current patient within a predetermined number of breaths is subjected to absolute value square root processing and sign function operation to obtain an intermediate pressure value;
分别对所述压力值中间量、所述输送流量值进行积分运算;Performing integration operations on the intermediate amount of the pressure value and the delivery flow value respectively;
计算积分运算后的所述压力值中间量与积分运算后的所述输送流量值的除商值,并将所述除商值作为所述管路输出泄漏模型的泄漏模型参数;Calculate the quotient of the intermediate amount of the pressure value after the integral operation and the delivery flow value after the integral operation, and use the quotient as a leakage model parameter of the pipeline output leakage model;
基于所述泄漏模型参数、所述患者接口压力值、所述管路输出泄漏模型及所述输送流量值,实时确定所述当前患者的呼吸流量值。Based on the leakage model parameters, the patient interface pressure value, the pipeline output leakage model and the delivery flow value, the respiratory flow value of the current patient is determined in real time.
在本申请的一种实现方式中,识别所述当前患者的呼吸触发信号,并累加所述呼吸触发信号的触发次数;In one implementation of the present application, a respiratory trigger signal of the current patient is identified, and the number of triggering times of the respiratory trigger signal is accumulated;
在所述触发次数大于或等于所述预定次数的情况下,确定各次呼吸内的所述患者接口压力值及相应的所述输送流量值;When the triggering number is greater than or equal to the predetermined number, determining the patient interface pressure value and the corresponding delivery flow value in each breath;
基于所述预定次数个所述患者接口压力值及相应的所述输送流量值,确定所述泄漏模型参数;Determining the leakage model parameters based on the predetermined number of patient interface pressure values and the corresponding delivery flow values;
基于所述泄漏模型参数、所述患者接口压力值、所述管路输出泄漏模型及所述输送流量值,实时确定所述当前患者的呼吸流量值。Based on the leakage model parameters, the patient interface pressure value, the pipeline output leakage model and the delivery flow value, the respiratory flow value of the current patient is determined in real time.
在本申请的一种实现方式中,确定所述预定次数个所述患者接口压力值相应的多个所述压力值中间量;以及In one implementation of the present application, a plurality of intermediate pressure values corresponding to the predetermined number of patient interface pressure values are determined; and
确定与多个所述压力中间量相对应的多个所述输送流量值;determining a plurality of said delivery flow values corresponding to a plurality of said intermediate pressure quantities;
分别对多个所述压力值中间量、多个所述输送流量值进行积分求和运算;Performing integral summation operations on a plurality of intermediate pressure values and a plurality of delivery flow values respectively;
计算积分求和运算后的多个所述压力值中间量与积分求和运算后的多个所述输送流量值的除商值,并将所述除商值作为所述管路输出泄漏模型的泄漏模型参数;Calculate the quotient of the intermediate quantities of the plurality of pressure values after integral summation and the plurality of delivery flow values after integral summation, and use the quotient as a leakage model parameter of the pipeline output leakage model;
基于所述泄漏模型参数、所述患者接口压力值、所述管路输出泄漏模型及所述输送流量值,实时确定所述当前患者的呼吸流量值。Based on the leakage model parameters, the patient interface pressure value, the pipeline output leakage model and the delivery flow value, the respiratory flow value of the current patient is determined in real time.
在本申请的一种实现方式中,在识别到所述当前患者的呼吸触发信号的情况下,确定所述触发次数的累加起点呼吸;In one implementation of the present application, when a breathing trigger signal of the current patient is identified, a cumulative starting point breath of the triggering number is determined;
根据所述累加起点呼吸与当前呼吸的间隔呼吸次数及所述预定次数,更新所述触发次数的累加起点呼吸为所述累加起点呼吸后的第N次呼吸;所述N为自然数;所述N为间隔呼吸次数与所述预定次数的差值。According to the number of interval breaths between the accumulated starting breath and the current breath and the predetermined number, the accumulated starting breath of the triggering number is updated to the Nth breath after the accumulated starting breath; N is a natural number; N is the difference between the number of interval breaths and the predetermined number.
在本申请的一种实现方式中,所述高流量氧疗展示信息至少包括以下一项或多项:患者接口压力曲线、呼吸流量曲线、患者容量曲线、呼吸频率、潮气量、分钟通气量、呼吸终末压力、吸气峰流量、实际吸入氧浓度。In one implementation of the present application, the high-flow oxygen therapy display information includes at least one or more of the following: patient interface pressure curve, respiratory flow curve, patient capacity curve, respiratory rate, tidal volume, minute ventilation, end-tidal pressure, peak inspiratory flow, and actual inspired oxygen concentration.
在本申请的一种实现方式中,根据所述当前患者各次呼吸的所述呼吸流量值及相应的所述输送流量值,确定所述各次呼吸对应的第一气流容量及第二气流容量;所述第一气流容量为所述当前患者的各次呼吸从所述患者接口吸入气流容量;所述第二气流容量为所述当前患者的各次呼吸从大气中吸入气流容量;In one implementation of the present application, the first airflow capacity and the second airflow capacity corresponding to each breath are determined according to the respiratory flow value of each breath of the current patient and the corresponding delivery flow value; the first airflow capacity is the airflow capacity inhaled from the patient interface for each breath of the current patient; the second airflow capacity is the airflow capacity inhaled from the atmosphere for each breath of the current patient;
根据所述当前患者的各次呼吸的呼吸流量值,确定吸入总容量;Determining the total inhaled capacity according to the respiratory flow value of each breath of the current patient;
获取来自氧流量传感器的氧流量数据,并根据所述氧流量数据,确定输出氧浓度;Acquire oxygen flow data from an oxygen flow sensor, and determine output oxygen concentration based on the oxygen flow data;
将所述输出氧浓度、所述第一气流容量、所述第二气流容量、预设大气氧占比及所述吸入总容量,输入预设吸入氧浓度公式,计算所述实际吸入氧浓度。The output oxygen concentration, the first airflow capacity, the second airflow capacity, the preset atmospheric oxygen ratio and the total inhalation capacity are input into a preset inhaled oxygen concentration formula to calculate the actual inhaled oxygen concentration.
再一方面,本申请实施例还提供了一种可视化呼吸治疗仪的使用方法,应用于上述可视化呼吸治疗仪,所述治疗仪的使用方法包括:On the other hand, the embodiment of the present application further provides a method for using a visualized respiratory therapeutic apparatus, which is applied to the above-mentioned visualized respiratory therapeutic apparatus. The method for using the therapeutic apparatus includes:
在更换患者接口和/或管路后测量所述患者接口与所述管路之间的管路阻力系数的管路校验操作步骤。A pipeline verification operation step of measuring the pipeline resistance coefficient between the patient interface and the pipeline after replacing the patient interface and/or the pipeline.
优选地,测定所述管路阻力系数时所述患者接口直接与大气接通。Preferably, when measuring the pipeline resistance coefficient, the patient interface is directly connected to the atmosphere.
优选地,所述管路校验操作包括试驾多级阶梯流量的步骤,具体包括:根据所述多级阶梯流量,生成流量输出控制指令,并将所述流量输出控制指令发送至流量控制设备,以使所述流量控制设备在所述预设时间内,依次间隔输出多级阶梯流量的气流;其中,所述依次间隔输出为各级阶梯流量的气流在所述预设时间的连续的各预定子时间内持续输出;所述预定子时间与各级阶梯流量一一对应;Preferably, the pipeline verification operation includes the step of testing a multi-level step flow, specifically including: generating a flow output control instruction according to the multi-level step flow, and sending the flow output control instruction to the flow control device, so that the flow control device sequentially outputs the airflow of the multi-level step flow at intervals within the preset time; wherein the sequentially interval output is the airflow of each level of step flow continuously output within each consecutive predetermined sub-time of the preset time; the predetermined sub-time corresponds to each level of step flow one by one;
获取来自压力传感器的各级阶梯流量对应的压力值;Obtain the pressure values corresponding to each level of step flow from the pressure sensor;
基于所述各级阶梯流量对应的压力值及与其对应的所述阶梯流量值,确定所述管路压降模型的管路阻力系数。Based on the pressure values corresponding to the various levels of step flow and the corresponding step flow values, the pipeline resistance coefficient of the pipeline pressure drop model is determined.
通过上述方案,利用可视化呼吸治疗仪及管路压降模型,对治疗仪进行管路阻力系数的校验,然后利用管路输出泄露模型,实时地确定使用者的呼吸流量并得到患者接口压力值,进一步分析得到呼吸相关参数。提供可视的呼吸相关波形及参数,可以便于医护人员根据这些数据,及时掌握治疗过程中,管路佩戴状态和患者治疗效果。Through the above scheme, the visual respiratory therapy instrument and the pipeline pressure drop model are used to calibrate the pipeline resistance coefficient of the therapeutic instrument, and then the pipeline output leakage model is used to determine the user's respiratory flow in real time and obtain the patient interface pressure value, and further analyze and obtain respiratory related parameters. Providing visual respiratory related waveforms and parameters can facilitate medical staff to timely grasp the pipeline wearing status and patient treatment effect during the treatment process based on these data.
同时,为医护人员使用高流量模式时设定治疗参数提供了更全面的决策支持工具,避 免了盲目的设置,并使用户能更好的把控序贯治疗的趋势。实现了HFNC治疗仪使用过程中,能够灵活满足患者及医护人员的使用需求,使HFNC治疗仪更加灵活且智能,提高用户的使用体验。At the same time, it provides a more comprehensive decision-making support tool for medical staff to set treatment parameters when using high-flow mode, avoiding blind settings and enabling users to better control the trend of sequential treatment. It realizes that the use needs of patients and medical staff can be flexibly met during the use of HFNC therapeutic device, making HFNC therapeutic device more flexible and intelligent, and improving the user experience.
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:The drawings described herein are used to provide a further understanding of the present application and constitute a part of the present application. The illustrative embodiments of the present application and their descriptions are used to explain the present application and do not constitute an improper limitation on the present application. In the drawings:
图1为本申请实施例中一种可视化呼吸治疗仪的结构示意图;FIG1 is a schematic diagram of the structure of a visual respiratory therapy device according to an embodiment of the present application;
图2为本申请实施例中一种可视化呼吸治疗仪的可视化处理方法的一种流程示意图;FIG2 is a flow chart of a visualization processing method of a visualization respiratory therapy apparatus in an embodiment of the present application;
图3为本申请实施例中一种可视化呼吸治疗仪的患者状态显示屏所展示内容的一种示意图;FIG3 is a schematic diagram of the contents displayed on a patient status display screen of a visual respiratory therapy apparatus according to an embodiment of the present application;
图4为本申请实施例中一种可视化呼吸治疗仪的可视化处理方法的的另一种流程示意图。FIG. 4 is another flow chart of a visualization processing method of a visualization respiratory therapy device in an embodiment of the present application.
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purpose, technical solution and advantages of the present application clearer, the technical solution of the present application will be clearly and completely described below in combination with the specific embodiments of the present application and the corresponding drawings. Obviously, the described embodiments are only part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in this field without making creative work are within the scope of protection of the present application.
近年来,经鼻高流量湿化氧疗(HFNC)作为一种新的呼吸支持技术在临床中得到广泛应用,实现该技术的治疗设备主要包括空氧混合装置、加热湿化器、高流量鼻导管以及连接的呼吸管路。In recent years, high-flow humidified nasal oxygen therapy (HFNC) has been widely used in clinical practice as a new respiratory support technology. The therapeutic equipment to implement this technology mainly includes an air-oxygen mixing device, a heated humidifier, a high-flow nasal cannula, and a connected breathing circuit.
与传统的低流量氧疗相比,高流量氧疗能够给患者提供相对恒定的吸氧浓度、温度和湿度的高流量气体,并且通过鼻塞进行氧疗,与通过面罩进行呼吸支持的无创通气相比,此治疗方式更舒适。大量的临床试验已经表明,高流量湿化氧疗具有改善氧合、降低呼吸死腔、改善肺泡通气、利于分泌物清除的临床价值,因此可以作为有创或无创通气的前序或是后续呼吸治疗方式。Compared with traditional low-flow oxygen therapy, high-flow oxygen therapy can provide patients with high-flow gas with relatively constant oxygen concentration, temperature and humidity, and oxygen therapy is performed through nasal congestion. Compared with non-invasive ventilation through masks for respiratory support, this treatment method is more comfortable. A large number of clinical trials have shown that high-flow humidified oxygen therapy has clinical value in improving oxygenation, reducing respiratory dead space, improving alveolar ventilation, and facilitating secretion clearance. Therefore, it can be used as a pre- or post-invasive respiratory treatment for invasive or non-invasive ventilation.
随着高流量疗法被临床认可,市场上也出现了越来越多的专用高流量治疗设备,除了这些专用高流量治疗设备以外,几乎所有新上市的呼吸机也开始集成此种治疗模式。然而,目前的高流量设备或是集成呼吸机的高流量模式,只是输出固定设定流量(1~100L/min)的混氧(氧浓度21%~100%)气流,对于呼吸相关参数无法进行监测和控制。患者的呼吸相关参数,对于医护人员而言十分重要,不仅能够了解高流量氧疗的治疗效果,还能够及时关注到患者是否出现异常状态。无法监测和控制呼吸相关参数,使得目前的设备无法灵活满足患者及医护人员的使用需求,不够灵活且智能。As high-flow therapy is clinically recognized, more and more dedicated high-flow treatment devices have appeared on the market. In addition to these dedicated high-flow treatment devices, almost all newly launched ventilators have begun to integrate this treatment mode. However, the current high-flow devices or high-flow modes of integrated ventilators only output a fixed set flow rate (1 to 100L/min) of mixed oxygen (oxygen concentration 21% to 100%) airflow, and cannot monitor and control respiratory-related parameters. The patient's respiratory-related parameters are very important for medical staff. Not only can they understand the treatment effect of high-flow oxygen therapy, but they can also pay attention to whether the patient has abnormal conditions in a timely manner. The inability to monitor and control respiratory-related parameters makes the current equipment unable to flexibly meet the needs of patients and medical staff, and is not flexible and intelligent enough.
基于此,本申请实施例提供了一种可视化呼吸治疗仪、可视化处理方法及使用方法,用于解决HFNC治疗仪过程中,目前的高流量输出设备无法灵活满足患者及医护人员的使用需求,不够灵活且智能的问题。Based on this, the embodiments of the present application provide a visual respiratory therapy device, a visual processing method and a usage method, which are used to solve the problem that the current high-flow output device cannot flexibly meet the usage needs of patients and medical staff during the HFNC therapy process, and is not flexible and intelligent enough.
以下结合附图,详细说明本申请的各个实施例。The following describes in detail various embodiments of the present application in conjunction with the accompanying drawings.
图1为本申请实施例提供一种可视化呼吸治疗仪的结构示意图,该治疗仪包括主机100和患者接口200、患者状态显示屏300。FIG1 is a schematic diagram of the structure of a visualized respiratory therapy device according to an embodiment of the present application. The therapy device includes a
主机100设有空气通道101、氧气通道102、空氧混合部103以及混合气体通道104,并包括用于监测混合气体流量的流量传感器105和用于监测混合气体压力的压力传感器106。空氧混合部103入口分别与空气通道101、氧气通道102气路联通,空氧混合部103出口与混合气体通道104气路联通。患者接口200经管路107与混合气体通道104气路联通。其 中,患者接口200为非密封式患者接口。主机100用于接收并处理流量传感器105以及压力传感器106的监测数据,以输出高流量氧疗展示信息至患者状态显示屏300。患者状态显示屏300包括患者端压力动态显示区和/或患者吸入流量动态显示区,用于展示高流量氧疗展示信息。The
本申请实施例提供的患者状态显示屏300,可以是触摸屏、也可以是高清显示屏,主机100可以与外接输入设备连接。用户可以通过输入设备及患者状态显示屏,与主机进行人机交互。The patient status display screen 300 provided in the embodiment of the present application can be a touch screen or a high-definition display screen, and the
在一个示例中,治疗仪还包括湿化器108。湿化器108入口与混合气体通道104气路联通,湿化器108出口通过管路107与患者接口200气路联通。In one example, the therapeutic apparatus further includes a
在一个示例中,患者接口200为鼻插管,管路107与患者接口200为一体或分体结构。管路107与湿化器108可拆卸连接。In one example, the
在实际使用过程中,随着技术的发展及进步,患者接口可不在局限于鼻插管,本申请将患者接口从患者鼻腔插入作为一个示例性存在。In actual use, with the development and advancement of technology, the patient interface may not be limited to the nasal cannula. This application takes the insertion of the patient interface into the patient's nasal cavity as an exemplary existence.
在一个示例中,患者状态显示屏300还包括患者容量动态显示区。In one example, the patient status display screen 300 further includes a patient volume dynamic display area.
在一个示例中,患者端压力动态显示区、患者吸入流量动态显示区、患者容量动态显示区位于同一显示界面。In one example, the patient-side pressure dynamic display area, the patient inhalation flow dynamic display area, and the patient capacity dynamic display area are located on the same display interface.
在一个示例中,氧气通道102还包括氧气源接口1、氧气阀2及用于监测氧流量的氧流量传感器3。In one example, the
在一个示例中,治疗仪还包括:气流控制器109。In one example, the therapeutic apparatus further includes an air flow controller 109 .
气流控制器109连接氧气阀2及空氧混合部103,用于根据来自用户界面(或用户终端)的调节指令,生成气流控制信号,以便控制氧气阀2和/或空氧混合部103,调节治疗仪的输出氧流量、氧浓度或混合气体流量。The airflow controller 109 is connected to the oxygen valve 2 and the air-
用户界面可以是上述的输入设备与显示屏组成的用户界面,也可以是主机与用户终端,如手机、笔记本电脑等建立无线或有线连接后,展示在用户终端界面的用户界面。该用户界面能够触发产生调节主机的调节指令。The user interface can be a user interface composed of the above-mentioned input device and display screen, or a user interface displayed on the user terminal interface after the host establishes a wireless or wired connection with a user terminal, such as a mobile phone, a laptop, etc. The user interface can trigger the generation of an adjustment instruction for adjusting the host.
在一个示例中,空氧混合部103包括涡轮。In one example, the air-
通过上述可视化呼吸治疗仪,可以实时展示患者呼吸的相关信息,空气通道101、氧气通道102、空氧混合部103、混合气体通道104、流量传感器105、压力传感器106,组成了治疗仪的气路结构。患者状态显示屏300可以设置为与主机一体的。The above-mentioned visualized respiratory therapy device can display relevant information of the patient's breathing in real time. The
本申请的治疗仪,在来自高压氧气源氧气进入治疗仪,经过氧气通道102的氧气源接口1,进入氧气阀2,在被氧气阀2调节后,经过氧流量传感器3进入空氧混合部103即涡轮。空气从大气进入治疗仪后,与氧气混合。混合气体被涡轮加压后,经过流量传感器105、压力传感器106,然后输出到通气管路,通气管路中有湿化器108,用于对混合气体进行加温、加湿。加温加湿后的混合其他通过患者接口(鼻导管)进入患者体内。The therapeutic apparatus of the present application, after oxygen from a high-pressure oxygen source enters the therapeutic apparatus, passes through the
此外,气流控制器109可以控制氧气阀2,实现氧流量和氧浓度的调节,也可以控制空氧混合部,实现对混合气体总流量的控制。其中,总流量等于氧气流流量和空气流量之和,如果输入的氧流量超过总流量,则超出的氧气会通过空气的入口输出到大气中。In addition, the air flow controller 109 can control the oxygen valve 2 to adjust the oxygen flow rate and oxygen concentration, and can also control the air-oxygen mixing part to control the total flow rate of the mixed gas. The total flow rate is equal to the sum of the oxygen flow rate and the air flow rate. If the input oxygen flow rate exceeds the total flow rate, the excess oxygen will be output to the atmosphere through the air inlet.
气流控制器控制的总流量目标和氧浓度目标,是用户设定的,如通过输入设备与显示屏组成的人机交互界面设定,或者通过可触摸操作的患者状态显示屏的人机交互界面设定。用户通过人机交互界面向气流控制器发送控制目标,也接收气流控制器返回的反馈信息。The total flow target and oxygen concentration target controlled by the airflow controller are set by the user, such as through a human-machine interface composed of an input device and a display screen, or through a human-machine interface of a touch-operated patient status display screen. The user sends the control target to the airflow controller through the human-machine interface and also receives feedback information returned by the airflow controller.
目前的高流量输出设备无法灵活满足患者及医护人员的使用需求,不够灵活且智能,主要原因为治疗仪不能够监测患者呼吸相关参数,同时也不能进行参数数据的可视化展示。图2为本申请实施例提供的一种可视化呼吸治疗仪的可视化处理方法的流程示意图,可视化处理方法以治疗仪的主机中的软件模块为执行主体实现,软件模块可处于主机的处理器 及其存储介质上,如图2所示,该方法包括步骤S201-S203,:The current high-flow output device cannot flexibly meet the needs of patients and medical staff, and is not flexible and intelligent enough. The main reason is that the therapeutic device cannot monitor the patient's breathing-related parameters, and it cannot visualize the parameter data. Figure 2 is a flow chart of a visualization processing method of a visualization respiratory therapeutic device provided by an embodiment of the present application. The visualization processing method is implemented with a software module in the host of the therapeutic device as the execution subject. The software module can be located on the processor of the host and its storage medium. As shown in Figure 2, the method includes steps S201-S203:
S201,基于管路校验操作对应的采集数据及来自流量传感器的混合气体的输送流量值,通过预设管路压降模型,确定当前患者的患者接口压力值。S201, based on the collected data corresponding to the pipeline verification operation and the delivery flow value of the mixed gas from the flow sensor, the patient interface pressure value of the current patient is determined through a preset pipeline pressure drop model.
其中,管路校验操作为患者接口处于大气压下,预设时间内依次间隔输出多级阶梯流量的气流。采集数据至少包括:多级阶梯流量分别对应的阶梯流量值、各级阶梯流量对应的压力值。The pipeline verification operation is that the patient interface is under atmospheric pressure, and multiple step flow airflows are output in sequence at intervals within a preset time. The collected data at least includes: the step flow values corresponding to the multiple step flow rates, and the pressure values corresponding to each step flow rate.
管路校验操作为更换患者或者更换治疗仪的某些部分或初次使用时,需要进行的校验操作。管路校验操作下,患者接口不连接患者鼻腔,处于大气中,对管路的气阻进行校验。在给患者佩戴鼻导管通气前,先将机器与所有的要通气的管路器件连接好,这些器件包括但不限于细菌过滤器、通气管路、湿化器、鼻导管,保证鼻导管(患者接口)对大气,并且保证管路没有连接处泄漏和阻塞处。The pipeline verification operation is a verification operation that needs to be performed when changing patients or replacing certain parts of the treatment device or when using it for the first time. During the pipeline verification operation, the patient interface is not connected to the patient's nasal cavity and is in the atmosphere to verify the air resistance of the pipeline. Before the patient wears a nasal cannula for ventilation, first connect the machine to all the pipeline components to be ventilated, including but not limited to bacterial filters, ventilation pipelines, humidifiers, and nasal cannulas, to ensure that the nasal cannula (patient interface) is exposed to the atmosphere and that there are no leaks or blockages at the connections of the pipeline.
在本申请实施例中,基于管路校验操作对应的采集数据及来自流量传感器的混合气体的输送流量值,通过预设管路压降模型,确定当前患者的患者接口压力值,具体包括:In the embodiment of the present application, based on the collected data corresponding to the pipeline verification operation and the delivery flow value of the mixed gas from the flow sensor, the patient interface pressure value of the current patient is determined by a preset pipeline pressure drop model, specifically including:
根据多级阶梯流量,生成流量输出控制指令,并将流量输出控制指令发送至流量控制设备,以使流量控制设备在预设时间内,依次间隔输出多级阶梯流量的气流。According to the multi-level step flow, a flow output control instruction is generated, and the flow output control instruction is sent to the flow control device, so that the flow control device outputs the airflow of the multi-level step flow in sequence and at intervals within a preset time.
其中,依次间隔输出为各级阶梯流量的气流在预设时间的连续的各预定子时间内持续输出。预定子时间与各级阶梯流量一一对应。The airflows of each level of step flow are outputted in sequence and at intervals and are continuously outputted within each consecutive predetermined sub-time of the preset time. The predetermined sub-time corresponds to each level of step flow.
换言之,在进行管路校验操作之前,治疗仪的存储介质中预先存储有多级阶梯流量如Qvent1_ca,Qvent2_ca,......,Qventn_ca,多级阶梯流量每一级的流量值不同。软件可以生成流量输出控制指令,并由流量控制设备在预设时间内,依次间隔输出多级阶梯流量的气流。流量控制设备可以是包含气流控制器、空氧混合部在内所组成的部分设备。In other words, before the pipeline verification operation is performed, the storage medium of the therapeutic apparatus pre-stores multiple step flow rates such as Qvent1_ca, Qvent2_ca, ..., Qventn_ca, and the flow value of each level of the multiple step flow rates is different. The software can generate a flow output control instruction, and the flow control device sequentially outputs the airflow of the multiple step flow rates at intervals within a preset time. The flow control device can be a partial device composed of an airflow controller and an air-oxygen mixing unit.
接着,获取来自压力传感器的各级阶梯流量对应的压力值。Next, the pressure values corresponding to each level of step flow from the pressure sensor are obtained.
例如,预设时间为2秒,每一级阶梯流量持续2秒,记录2秒下,每一级阶梯流量对应的压力值,直到记录下n个阶梯流量点的对应压力Pvent1_ca,Pvent2_ca,......,Pventn_ca;其中,n为自然数。For example, the preset time is 2 seconds, each level of step flow lasts for 2 seconds, and the pressure value corresponding to each level of step flow in 2 seconds is recorded until the corresponding pressures Pvent1_ca, Pvent2_ca,..., Pventn_ca of n step flow points are recorded; where n is a natural number.
然后,基于各级阶梯流量对应的压力值及与其对应的阶梯流量值,确定管路压降模型的管路阻力系数。Then, based on the pressure values corresponding to each level of step flow and the step flow values corresponding thereto, the pipeline resistance coefficient of the pipeline pressure drop model is determined.
具体地,根据各级阶梯流量对应的压力值、各级阶梯流量对应的压力值对应的多个阶梯流量值以及预设公式,建立线性方程组。并计算线性方程组的最小二乘解,并将最小二乘解作为管路阻力系数。Specifically, a linear equation system is established according to the pressure values corresponding to each level of step flow, multiple step flow values corresponding to the pressure values corresponding to each level of step flow, and a preset formula, and the least squares solution of the linear equation system is calculated, and the least squares solution is used as the pipeline resistance coefficient.
预设公式如下:The preset formula is as follows:
Pventi_ca=Rtube×Qventi_ca 2 Pventi_ca=Rtube×Qventi_ca 2
其中,Pventi_ca为第i级阶梯流量对应的压力值。Rtube表示管路阻力系数。Qventi_ca为第i级阶梯流量值,每一级阶梯流量对应唯一的压力值。Among them, Pventi_ca is the pressure value corresponding to the i-th step flow. Rtube represents the pipeline resistance coefficient. Qventi_ca is the i-th step flow value, and each step flow corresponds to a unique pressure value.
线性方程组如下:The linear equations are as follows:
根据上述线性方程组,可以得到下述公式,计算得出的最小二乘解,即为管路阻力系数Rtube。According to the above linear equations, the following formula can be obtained, and the least squares solution calculated is the pipeline resistance coefficient Rtube.
至此,完成了管路阻力系数即气阻的确定,需要说明的是,每次新换患者或是管路后, 都应重新执行一番管路校验操作。At this point, the determination of the pipeline resistance coefficient, i.e., air resistance, has been completed. It should be noted that each time a new patient or pipeline is changed, the pipeline calibration operation should be performed again.
在患者接口接通当前患者的通气端,也就是患者开始使用治疗仪的情况下,根据管路压降模型及来自压力传感器的输送压力值、输送流量值,确定当前患者的患者接口压力值。When the patient interface is connected to the ventilation end of the current patient, that is, when the patient starts to use the therapeutic device, the patient interface pressure value of the current patient is determined according to the pipeline pressure drop model and the delivery pressure value and delivery flow value from the pressure sensor.
管路压降模型如下:The pipeline pressure drop model is as follows:
Pnose=Pvent-Rtube×Qvent 2 Pnose=Pvent-Rtube×Qvent 2
其中,Pnose为患者接口压力值,Pvent为输送压力值,Qvent为输送流量值。Among them, Pnose is the patient interface pressure value, Pvent is the delivery pressure value, and Qvent is the delivery flow value.
步骤S201,为治疗仪在离线状态下测定管路阻力系数,并根据管路阻力系数进行在线鼻端压力Pnose的步骤。由于患者在实际使用本申请治疗仪的过程中,高流量送气过程中,患者接口并非鼻塞,将出现气体泄露的情况发生。为保证高流量氧疗时,得到的患者呼吸流量值的准确度,本申请提供了以下实施例步骤S202。Step S201 is a step for the therapeutic device to measure the pipeline resistance coefficient in an offline state, and to perform online nasal pressure Pnose according to the pipeline resistance coefficient. Since the patient's interface is not blocked during the high-flow gas delivery process when the patient actually uses the therapeutic device of this application, gas leakage will occur. In order to ensure the accuracy of the patient's respiratory flow value obtained during high-flow oxygen therapy, this application provides the following embodiment step S202.
S202,基于当前患者预定次数呼吸内,患者接口压力值及相应的输送流量值、预设的管路输出泄漏模型,实时确定当前患者的呼吸流量值。S202, based on the patient interface pressure value and the corresponding delivery flow value within a predetermined number of breaths of the current patient, and a preset pipeline output leakage model, the current patient's respiratory flow value is determined in real time.
预定次数为预先设定的,例如3次、5次等,该预定次数呼吸用于测定管路输出泄露模型的泄漏模型参数。The predetermined number of times is pre-set, such as 3 times, 5 times, etc. The predetermined number of breaths is used to determine the leakage model parameters of the pipeline output leakage model.
在本申请实施例中,基于当前患者预定次数呼吸内,患者接口压力值及相应的输送流量值、预设的管路输出泄漏模型,实时确定当前患者的呼吸流量值,具体包括:In the embodiment of the present application, based on the patient interface pressure value and the corresponding delivery flow value within the current patient's predetermined number of breaths, and the preset pipeline output leakage model, the current patient's respiratory flow value is determined in real time, specifically including:
首先,根据管路输出泄露模型,对当前患者在预定次数呼吸内患者接口压力值进行绝对值开方处理及符号函数运算,得到压力值中间量。Firstly, according to the pipeline output leakage model, the absolute value square root processing and sign function operation are performed on the patient interface pressure value of the current patient within a predetermined number of breaths to obtain the intermediate value of the pressure value.
经鼻导管未堵处泄漏到大气的流量Qleak与鼻端压力Pnose成正比,管路输出泄露模型如下:The flow rate Qleak leaking to the atmosphere through the unblocked part of the nasal catheter is proportional to the nasal pressure Pnose. The pipeline output leakage model is as follows:
其中,Qleak为泄露到大气中的流量值,Kleak为泄漏模型参数,Sgn为取正负函数,在本申请实施例中,Sgn函数在Pnose低于大气压,则为负,反之则为正。Among them, Qleak is the flow value leaked into the atmosphere, Kleak is the leakage model parameter, Sgn is a positive and negative function, and in the embodiment of the present application, the Sgn function is negative when Pnose is lower than the atmospheric pressure, and vice versa.
也就是说,根据上述管路输出泄露模型,以及当前患者在预定次数呼吸内每次呼吸患者接口压力值,求解 得到压力值中间量。 That is to say, according to the above pipeline output leakage model and the patient interface pressure value of each breath of the current patient within the predetermined number of breaths, solve Get the intermediate pressure value.
接着,分别对压力值中间量、输送流量值进行积分运算。Next, the intermediate pressure value and the delivery flow value are integrated.
即,以呼吸起始时刻、终止时刻,分别对压力值中间量、输送流量值进行积分运算。That is, the intermediate pressure value and the delivery flow rate value are integrated at the start and end times of breathing, respectively.
随后,计算积分运算后的压力值中间量与积分运算后的输送流量值的除商值,并将除商值作为管路输出泄漏模型的泄漏模型参数。Subsequently, the quotient of the intermediate amount of the pressure value after the integral operation and the delivery flow value after the integral operation is calculated, and the quotient is used as a leakage model parameter of the pipeline output leakage model.
即, Right now,
其中,N为自然数,在上述实施例对应的公式中N可以为1,指代预设次数,即计算积分运算后的压力值中间量与积分运算后的输送流量值的除商值;t0为呼吸起始时刻,te为呼吸终止时刻。在实际使用过程中,公式还存在患者呼吸流量Qpatient的积分量,由于患者每次呼吸吸入气量近似等于呼出气量,在一次呼吸中吗,患者呼吸流量的积分量为0,不考虑进上述公式。Wherein, N is a natural number. In the formula corresponding to the above embodiment, N can be 1, which refers to the preset number of times, that is, the quotient of the intermediate amount of the pressure value after the integral operation and the delivery flow value after the integral operation; t0 is the breathing start time, and te is the breathing end time. In actual use, the formula also contains the integral amount of the patient's respiratory flow Qpatient. Since the patient's inhaled air volume is approximately equal to the exhaled air volume per breath, in one breath, the integral amount of the patient's respiratory flow is 0 and is not considered in the above formula.
紧接着,基于泄漏模型参数、患者接口压力值、管路输出泄漏模型及输送流量值,实时确定当前患者的呼吸流量值。Next, based on the leakage model parameters, the patient interface pressure value, the pipeline output leakage model and the delivery flow value, the current patient's respiratory flow value is determined in real time.
将预设次数呼吸得到的泄露模型参数,实时测得的患者接口压力值,输入管路输出泄露模型,得到患者每次呼吸泄露到大气中的流量值。根据输送流量值与该流量值的差值,即Qpatient=Qvent-Qleak,计算当前患者的呼吸流量值。The leakage model parameters obtained by the preset number of breaths and the real-time measured patient interface pressure value are input into the pipeline output leakage model to obtain the flow value leaked to the atmosphere by the patient for each breath. The current patient's respiratory flow value is calculated based on the difference between the delivered flow value and the flow value, i.e., Qpatient = Qvent - Qleak.
在本申请实施例中,基于当前患者预定次数呼吸内,患者接口压力值及相应的输送流量值、预设的管路输出泄漏模型,实时确定当前患者的呼吸流量值,具体还包括:In the embodiment of the present application, based on the patient interface pressure value and the corresponding delivery flow value within the current patient's predetermined number of breaths, and the preset pipeline output leakage model, the current patient's respiratory flow value is determined in real time, specifically including:
识别当前患者的呼吸触发信号,并累加呼吸触发信号的触发次数。在触发次数大于或 等于预定次数的情况下,确定各次呼吸内的患者接口压力值及相应的输送流量值。基于预定次数个患者接口压力值及相应的输送流量值,确定泄漏模型参数。基于泄漏模型参数、患者接口压力值、管路输出泄漏模型及输送流量值,实时确定当前患者的呼吸流量值。Identify the respiratory trigger signal of the current patient and accumulate the number of triggers of the respiratory trigger signal. When the number of triggers is greater than or equal to the predetermined number, determine the patient interface pressure value and the corresponding delivery flow value in each breath. Determine the leakage model parameters based on the predetermined number of patient interface pressure values and the corresponding delivery flow values. Determine the respiratory flow value of the current patient in real time based on the leakage model parameters, the patient interface pressure value, the pipeline output leakage model and the delivery flow value.
换言之,治疗仪的软件模块,可以对患者呼吸进行识别,识别可以以压力Pnose或是Qpatient的瞬间改变超出某一阈值来识别(Pnose的下降突变点或是Qpatient的上升突变点标志患者吸气开始),也可以结合涡轮的转速或是控制电流改变等进行识别,本申请对于识别的具体方式不作具体限定。In other words, the software module of the therapeutic device can identify the patient's breathing. The identification can be based on the instantaneous change of pressure Pnose or Qpatient exceeding a certain threshold (the falling mutation point of Pnose or the rising mutation point of Qpatient marks the beginning of the patient's inhalation), or it can be combined with the turbine speed or control current change, etc. The present application does not specifically limit the specific method of identification.
泄露模型参数及呼吸流量值的计算参考上述实施例,在此不再赘述。The calculation of the leakage model parameters and the respiratory flow value refers to the above embodiment and will not be repeated here.
其中,基于预定次数个患者接口压力值及相应的输送流量值,确定泄漏模型参数,具体包括:Wherein, based on a predetermined number of patient interface pressure values and corresponding delivery flow values, leakage model parameters are determined, specifically including:
确定预定次数个患者接口压力值相应的多个压力值中间量。以及确定与多个压力中间量相对应的多个输送流量值。分别对多个压力值中间量、多个输送流量值进行积分求和运算。计算积分求和运算后的多个压力值中间量与积分求和运算后的多个输送流量值的除商值,并将除商值作为管路输出泄漏模型的泄漏模型参数。基于泄漏模型参数、患者接口压力值、管路输出泄漏模型及输送流量值,实时确定当前患者的呼吸流量值。Determine a plurality of intermediate pressure values corresponding to a predetermined number of patient interface pressure values. And determine a plurality of delivery flow values corresponding to the plurality of intermediate pressure values. Perform integral summation operations on the plurality of intermediate pressure values and the plurality of delivery flow values, respectively. Calculate the quotient of the plurality of intermediate pressure values after the integral summation operation and the plurality of delivery flow values after the integral summation operation, and use the quotient as a leakage model parameter of the pipeline output leakage model. Based on the leakage model parameters, the patient interface pressure value, the pipeline output leakage model and the delivery flow value, determine the respiratory flow value of the current patient in real time.
换言之,本申请上述用于计算泄漏模型参数的公式中的N为预设次数个,其中,N在实际使用过程中,取3-5较合适。In other words, N in the above formula for calculating the leakage model parameters of the present application is a preset number, wherein N is more appropriately 3-5 during actual use.
在本申请的一个实施例中,基于预定次数个患者接口压力值及相应的输送流量值,确定泄漏模型参数之后,还包括:In one embodiment of the present application, after determining the leakage model parameters based on a predetermined number of patient interface pressure values and corresponding delivery flow values, the method further includes:
在识别到当前患者的呼吸触发信号的情况下,确定触发次数的累加起点呼吸。When a respiratory trigger signal of the current patient is identified, a cumulative starting point breath of the trigger times is determined.
根据累加起点呼吸与当前呼吸的间隔呼吸次数及预定次数,更新触发次数的累加起点呼吸为累加起点呼吸后的第N次呼吸。N为自然数。N为间隔呼吸次数与预定次数的差值。According to the accumulated number of interval breaths between the starting breath and the current breath and the predetermined number, the accumulated starting breath of the triggering number is updated to be the Nth breath after the accumulated starting breath. N is a natural number. N is the difference between the interval breath number and the predetermined number.
此处的N指的是间隔呼吸次数与预定次数的差值。例如,预定次数为3,以第A次呼吸为累加起点呼吸,A次呼吸后的B、C次呼吸达到了预定次数,在第D次呼吸时,软件应以A、B、C次呼吸,计算出了泄漏模型参数,并计算第D次呼吸的呼吸流量值。累加起点呼吸为A,其至当前呼吸D的间隔呼吸次数为4,大于预定次数,且N=1。更新触发次数的累加起点呼吸为累加起点呼吸后的第N次呼吸,即更新触发次数的累加起点呼吸为A呼吸后的第1次呼吸B。即以B为累加起点呼吸。Here, N refers to the difference between the number of interval breaths and the predetermined number. For example, the predetermined number is 3, and the Ath breath is taken as the cumulative starting breath. The B and C breaths after the Ath breath reach the predetermined number. At the Dth breath, the software should calculate the leakage model parameters with the A, B, and C breaths, and calculate the respiratory flow value of the Dth breath. The cumulative starting breath is A, and the number of interval breaths from it to the current breath D is 4, which is greater than the predetermined number, and N = 1. The cumulative starting breath of the updated trigger number is the Nth breath after the cumulative starting breath, that is, the cumulative starting breath of the updated trigger number is the first breath B after the A breath. That is, B is taken as the cumulative starting breath.
通过上述累加起点呼吸的更新,可以对泄露模型参数进行滚动更新,每次更新都基于前预定次数次呼吸的输送压力值及输送流量值。这样当患者佩戴的鼻导管位置发生改变时,也能够及时适应其改变。By updating the accumulated starting breath, the leakage model parameters can be updated in a rolling manner, and each update is based on the delivery pressure value and delivery flow value of the previous predetermined number of breaths. In this way, when the position of the nasal cannula worn by the patient changes, it can also adapt to the change in time.
S203,基于患者接口压力值、呼吸流量值,确定当前患者的高流量氧疗展示信息,并将高流量氧疗展示信息发送至患者状态显示屏,以展示高流量氧疗展示信息。S203, based on the patient interface pressure value and the respiratory flow value, determine the high-flow oxygen therapy display information of the current patient, and send the high-flow oxygen therapy display information to the patient status display screen to display the high-flow oxygen therapy display information.
在本申请实施例中,软件根据实时得到的患者接口压力值及呼吸流量值,可以产生相应的患者接口压力值曲线及呼吸流量曲线。对呼吸流量曲线积分计算,也可以得到患者容量曲线。如图3所示,高流量氧疗展示信息至少包括以下一项或多项:患者接口压力曲线(鼻端压力)、呼吸流量曲线(患者流量)、患者容量曲线、呼吸频率(respiration rate,RR)、潮气量(Tidal volume,VT)、分钟通气量(minute ventilation volume,MV)、呼吸终末压力(Positive End Expiratory Pressure,PEEP)、吸气峰流量(peak inspiratory flow,图中用Fpeak表示)、实际吸入氧浓度(图中用FiO2_real表示)。HFT表示高流量氧疗。In an embodiment of the present application, the software can generate a corresponding patient interface pressure value curve and a respiratory flow curve based on the patient interface pressure value and respiratory flow value obtained in real time. The patient capacity curve can also be obtained by integrating the respiratory flow curve. As shown in Figure 3, the high-flow oxygen therapy display information includes at least one or more of the following: patient interface pressure curve (nasal pressure), respiratory flow curve (patient flow), patient capacity curve, respiratory rate (respiration rate, RR), tidal volume (Tidal volume, VT), minute ventilation volume (minute ventilation volume, MV), Positive End Expiratory Pressure (Positive End Expiratory Pressure, PEEP), peak inspiratory flow (peak inspiratory flow, represented by Fpeak in the figure), and actual inspired oxygen concentration (represented by FiO2_real in the figure). HFT stands for high-flow oxygen therapy.
实际吸入氧浓度可以根据以下实施例确定,具体如下。The actual inspired oxygen concentration can be determined according to the following examples, as follows.
首先,根据当前患者各次呼吸的呼吸流量值及相应的输送流量值,确定各次呼吸对应的第一气流容量及第二气流容量。第一气流容量为当前患者的各次呼吸从患者接口吸入气流容量。第二气流容量为当前患者的各次呼吸从大气中吸入气流容量。First, according to the respiratory flow value of each breath of the current patient and the corresponding delivery flow value, the first airflow capacity and the second airflow capacity corresponding to each breath are determined. The first airflow capacity is the airflow capacity inhaled from the patient interface for each breath of the current patient. The second airflow capacity is the airflow capacity inhaled from the atmosphere for each breath of the current patient.
接着,根据当前患者的各次呼吸的呼吸流量值,确定吸入总容量。Next, the total inhaled volume is determined based on the respiratory flow value of each breath of the current patient.
然后,获取来自氧流量传感器的氧流量数据,并根据氧流量数据,确定输出氧浓度。Then, the oxygen flow rate data from the oxygen flow rate sensor is obtained, and the output oxygen concentration is determined based on the oxygen flow rate data.
最后,将输出氧浓度、第一气流容量、第二气流容量、预设大气氧占比及吸入总容量,输入预设吸入氧浓度公式,计算实际吸入氧浓度。Finally, the output oxygen concentration, the first airflow capacity, the second airflow capacity, the preset atmospheric oxygen percentage and the total inhalation capacity are input into the preset inhaled oxygen concentration formula to calculate the actual inhaled oxygen concentration.
预设吸入氧浓度公式如下:The preset inspired oxygen concentration formula is as follows:
FiO2_real=(V1×FiO2_vent+V2×21%)/V3FiO2_real = (V1×FiO2_vent+V2×21%)/V3
其中,FiO2_vent为输出氧浓度,V1为第一气流容量,V2第二气流容量,V3为吸入总容量,V1指一次吸气中吸气流量低于治疗仪送气流量的那部分患者流量的累计容量,V2指一次吸气中吸气流量超出治疗仪送气流量的那部分患者流量的累计容量,V3指一次吸气中总的患者流量的累计容量。其中,吸气空气的氧浓度为21%。Among them, FiO2_vent is the output oxygen concentration, V1 is the first airflow capacity, V2 is the second airflow capacity, V3 is the total inhalation capacity, V1 refers to the cumulative capacity of the patient flow in one inhalation where the inhalation flow is lower than the therapeutic device air flow, V2 refers to the cumulative capacity of the patient flow in one inhalation where the inhalation flow exceeds the therapeutic device air flow, and V3 refers to the cumulative capacity of the total patient flow in one inhalation. Among them, the oxygen concentration of the inhaled air is 21%.
在本申请的一个实施例中,呼吸频率RR在每次吸气开始的时刻t0(也就是前次呼吸的结束时刻te),计算前一次呼吸的时长Tie=te-t0,再将一次呼吸时长Tie(单位秒)的倒数乘以60,即为本次呼吸算得的当前频率RRi,前多次呼吸频率取移动平均,可作为呼吸频率RR。In one embodiment of the present application, the respiratory frequency RR is calculated at the time t0 when each inhalation begins (that is, the end time te of the previous breath), and the duration of the previous breath Tie = te-t0, and then the inverse of the duration Tie (in seconds) of a breath is multiplied by 60, which is the current frequency RRi calculated for this breath. The moving average of the previous multiple breathing frequencies can be used as the respiratory frequency RR.
在本申请的一个实施例中,潮气量VT每次吸气开始,对容量清零,并重新开始对Qpatient进行累加,以计算患者容量Vpatient,在下一次吸气开始时,算得本次吸气的最大容量Vmax和最小容量Vmin,则本次呼吸的潮气量即为VTi=(2×Vmax-Vmin)/2。前多次呼吸的潮气量取移动平均可作为潮气量VT。In one embodiment of the present application, at the beginning of each inhalation, the tidal volume VT is reset to zero, and Qpatient is accumulated again to calculate the patient volume Vpatient. At the beginning of the next inhalation, the maximum volume Vmax and the minimum volume Vmin of this inhalation are calculated, and the tidal volume of this breath is VTi = (2×Vmax-Vmin)/2. The moving average of the tidal volumes of the previous multiple breaths can be used as the tidal volume VT.
在本申请的一个实施例中,分钟通气量MV可以在每次呼吸更新一次,MV=VT×RR。In one embodiment of the present application, the minute ventilation MV may be updated once in each breath, MV=VT×RR.
在本申请的一个实施例中,呼气末压力PEEP为在每次吸气开始时刻,计算此时刻之前(50毫秒—>100毫秒)时段的患者接口压力值Pnose平均值,作为PEEP的监测值。In one embodiment of the present application, the end-expiratory pressure PEEP is calculated at the beginning of each inhalation, and the average value of the patient interface pressure value Pnose in the period before this moment (50 milliseconds→100 milliseconds) is used as the monitoring value of PEEP.
在本申请的一个实施例中,吸气峰值流量Fpeak可以是每次呼吸中,检测Qpatient波形的最高点数值,作为吸气峰值监测值Fpeak。In one embodiment of the present application, the inspiratory peak flow rate Fpeak may be the highest point value of the Qpatient waveform detected in each breath, which serves as the inspiratory peak monitoring value Fpeak.
本申请通过上述构建的管路压降模型,能够得到离线的管路阻力系数,然后在线患者接口压力值计算Pnose,以及通过管路输出泄露模型,进行在线计算泄露模型参数的计算。基于该两个模型及其参数计算结果,可以实时监测治疗仪所治疗患者的患者接口压力波形、患者呼吸流量波形,便于医护人员根据波形,及时掌握治疗过程中,管路佩戴状态和患者治疗效果。This application can obtain the offline pipeline resistance coefficient through the pipeline pressure drop model constructed above, and then calculate the online patient interface pressure value Pnose, and calculate the leakage model parameters online through the pipeline output leakage model. Based on the two models and their parameter calculation results, the patient interface pressure waveform and patient respiratory flow waveform of the patient treated by the therapeutic device can be monitored in real time, which is convenient for medical staff to timely grasp the pipeline wearing status and patient treatment effect during the treatment process according to the waveform.
本申请还能够对患者接口压力波形、患者呼吸流量波形进行分析,得到呼吸的若干相关参数,医护人员可以根据监测的呼吸参数精确地滴定高流量治疗设置参数,如流量目标。本申请提供的可视化呼吸治疗仪,为医护人员使用高流量模式时设定治疗参数提供了更全面的决策支持工具,避免了盲目的设置,并使用户能更好的把控序贯治疗的趋势。从而实现了HFNC治疗仪使用过程中,能够灵活满足患者及医护人员的使用需求,使HFNC治疗仪更加灵活且智能,提高用户的使用体验。The present application can also analyze the patient interface pressure waveform and the patient respiratory flow waveform to obtain several relevant parameters of breathing. Medical staff can accurately titrate high-flow treatment setting parameters, such as flow targets, based on the monitored respiratory parameters. The visual respiratory therapy device provided by the present application provides a more comprehensive decision-making support tool for medical staff to set treatment parameters when using the high-flow mode, avoiding blind settings and enabling users to better control the trend of sequential treatment. This ensures that the use needs of patients and medical staff can be flexibly met during the use of the HFNC therapy device, making the HFNC therapy device more flexible and intelligent, and improving the user experience.
本申请的软件模型所实现的可视化处理方法,包括如下步骤,如图4所示,具体包括:The visualization processing method implemented by the software model of the present application includes the following steps, as shown in FIG4 , specifically including:
S401,离线管道阻力系数计算Rtube;S401, calculation of offline pipeline resistance coefficient Rtube;
S402,在线鼻端压力计算Pnose;S402, online nose tip pressure calculation Pnose;
S403,在线鼻导管泄露系数计算Kleak;S403, online nasal cannula leakage coefficient calculation Kleak;
S404,患者流量计算Qpatient;S404, patient flow calculation Qpatient;
S405,呼吸参数计算RR、VT、MV、PEEP、Fpeak、FiO2_real;S405, respiratory parameter calculation RR, VT, MV, PEEP, Fpeak, FiO2_real;
S406,波形和参数信息显示以及异常信息提示。S406, waveform and parameter information display and abnormal information prompt.
软件模块可以将得到的波形及参数,发送至显示屏上进行显示,并对患者呼吸过程中或治疗仪运行过程中的异常信息进行提示。The software module can send the obtained waveforms and parameters to the display screen for display, and prompt abnormal information during the patient's breathing process or the operation of the therapeutic device.
本申请实施例还提供了一种可视化呼吸治疗仪的使用方法,应用于上述可视化呼吸治疗仪,可视化呼吸治疗仪的使用方法包括:The present application also provides a method for using a visualized respiratory therapy apparatus, which is applied to the above-mentioned visualized respiratory therapy apparatus. The method for using the visualized respiratory therapy apparatus includes:
在更换患者接口和/或管路后测量患者接口与管路之间的管路阻力系数的管路校验操作步骤。A circuit calibration procedure to measure the circuit resistance coefficient between the patient interface and the circuit after replacing the patient interface and/or the circuit.
其中,管路校验操作在测定管路阻力系数时患者接口直接与大气接通。Among them, during the pipeline verification operation, when measuring the pipeline resistance coefficient, the patient interface is directly connected to the atmosphere.
管路校验操作还包括试驾多级阶梯流量的步骤,具体包括:根据多级阶梯流量,生成流量输出控制指令,并将流量输出控制指令发送至流量控制设备,以使流量控制设备在预设时间内,依次间隔输出多级阶梯流量的气流。其中,依次间隔输出为各级阶梯流量的气流在预设时间的连续的各预定子时间内持续输出。预定子时间与各级阶梯流量一一对应。获取来自压力传感器的各级阶梯流量对应的压力值。基于各级阶梯流量对应的压力值及与其对应的阶梯流量值,确定管路压降模型的管路阻力系数。The pipeline verification operation also includes the step of test driving a multi-level step flow, specifically including: generating a flow output control instruction according to the multi-level step flow, and sending the flow output control instruction to the flow control device, so that the flow control device sequentially outputs the airflow of the multi-level step flow at intervals within the preset time. Among them, the airflow of each level of step flow output sequentially and at intervals is continuously output within each consecutive predetermined sub-time of the preset time. The predetermined sub-time corresponds to each level of step flow one by one. Obtain the pressure value corresponding to each level of step flow from the pressure sensor. Based on the pressure value corresponding to each level of step flow and the corresponding step flow value, determine the pipeline resistance coefficient of the pipeline pressure drop model.
在结束管路校验操作后,即可将患者接口插入患者鼻腔,进行治疗仪的正常使用。可以参考上述可视化处理方法的具体实施例,在此不再赘述。After the pipeline verification operation is completed, the patient interface can be inserted into the patient's nasal cavity to perform normal use of the therapeutic device. The specific embodiment of the above-mentioned visualization processing method can be referred to, and no further description is given here.
本领域内的技术人员应明白,本说明书实施例可提供为方法、系统、或计算机程序产品。因此,本说明书实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本说明书实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will appreciate that the embodiments of this specification may be provided as methods, systems, or computer program products. Therefore, the embodiments of this specification may be in the form of complete hardware embodiments, complete software embodiments, or embodiments in combination with software and hardware. Moreover, the embodiments of this specification may be in the form of a computer program product implemented in one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) that contain computer-usable program code.
本说明书是参照根据本说明书实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。This specification is described with reference to the flowchart and/or block diagram of the method, device (system), and computer program product according to the embodiment of this specification. It should be understood that each process and/or box in the flowchart and/or block diagram, as well as the combination of the process and/or box in the flowchart and/or block diagram can be implemented by computer program instructions. These computer program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, an embedded processor or other programmable data processing device to produce a machine, so that the instructions executed by the processor of the computer or other programmable data processing device produce a device for implementing the functions specified in one process or multiple processes in the flowchart and/or one box or multiple boxes in the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。In a typical configuration, a computing device includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。Memory may include non-permanent storage in a computer-readable medium, in the form of random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。Computer readable media include permanent and non-permanent, removable and non-removable media that can be implemented by any method or technology to store information. Information can be computer readable instructions, data structures, program modules or other data. Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disk read-only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by a computing device. As defined in this article, computer readable media does not include temporary computer readable media (transitory media), such as modulated data signals and carrier waves.
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。It should also be noted that the terms "include", "comprises" or any other variations thereof are intended to cover non-exclusive inclusion, so that a process, method, commodity or device including a series of elements includes not only those elements, but also other elements not explicitly listed, or also includes elements inherent to such process, method, commodity or device. In the absence of more restrictions, the elements defined by the sentence "comprises a ..." do not exclude the existence of other identical elements in the process, method, commodity or device including the elements.
本说明书可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本说明书,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。This specification may be described in the general context of computer-executable instructions executed by a computer, such as program modules. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types. This specification may also be practiced in distributed computing environments where tasks are performed by remote processing devices connected through a communication network. In a distributed computing environment, program modules may be located in local and remote computer storage media, including storage devices.
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于治疗仪、使用方法实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。Each embodiment in this specification is described in a progressive manner, and the same or similar parts between the embodiments can be referred to each other, and each embodiment focuses on the differences from other embodiments. In particular, for the therapeutic device and the use method embodiments, since they are basically similar to the method embodiments, the description is relatively simple, and the relevant parts can be referred to the partial description of the method embodiments.
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。The above is a description of a specific embodiment of the present specification. Other embodiments are within the scope of the appended claims. In some cases, the actions or steps recorded in the claims can be performed in an order different from that in the embodiments and still achieve the desired results. In addition, the processes depicted in the accompanying drawings do not necessarily require the specific order or continuous order shown to achieve the desired results. In some embodiments, multitasking and parallel processing are also possible or may be advantageous.
以上所述仅为本说明书的一个或多个实施例而已,并不用于限制本说明书。对于本领域技术人员来说,本说明书的一个或多个实施例可以有各种更改和变化。凡在本说明书的一个或多个实施例的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本说明书的权利要求范围之内。The above description is only one or more embodiments of this specification and is not intended to limit this specification. For those skilled in the art, one or more embodiments of this specification may have various changes and variations. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of one or more embodiments of this specification shall be included in the scope of the claims of this specification.
Claims (20)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211668073.9 | 2022-12-23 | ||
| CN202211668073 | 2022-12-23 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2024130777A1 true WO2024130777A1 (en) | 2024-06-27 |
Family
ID=91587606
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2022/143379 Ceased WO2024130777A1 (en) | 2022-12-23 | 2022-12-29 | Visual respiratory therapy instrument, visual processing method, and use method |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2024130777A1 (en) |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010099373A1 (en) * | 2009-02-27 | 2010-09-02 | Nellcor Puritan Bennett Llc | Leak-compensated respiratory mechanics estimation in medical ventilators |
| US20150107584A1 (en) * | 2013-10-18 | 2015-04-23 | Covidien Lp | Methods and systems for leak estimation |
| CN107735133A (en) * | 2015-07-07 | 2018-02-23 | 皇家飞利浦有限公司 | The method and system that patient airway and leakage flow for invasive ventilation are estimated |
| CN109303959A (en) * | 2018-10-26 | 2019-02-05 | 北京怡和嘉业医疗科技股份有限公司 | Ventilation therapy equipment and control method of ventilation therapy equipment |
| US20190344032A1 (en) * | 2018-05-14 | 2019-11-14 | General Electric Company | Method and systems for executing nasal high flow therapy with settings determined from flow outputs during a previous ventilation mode |
| CN111603641A (en) * | 2020-03-31 | 2020-09-01 | 湖南万脉医疗科技有限公司 | Noninvasive ventilator-based alveolar ventilation monitoring system and control method |
| CN111821552A (en) * | 2020-08-14 | 2020-10-27 | 华氧医疗科技(大连)有限公司 | A multifunctional respiratory therapy system and method for use in hospital and home environments |
-
2022
- 2022-12-29 WO PCT/CN2022/143379 patent/WO2024130777A1/en not_active Ceased
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010099373A1 (en) * | 2009-02-27 | 2010-09-02 | Nellcor Puritan Bennett Llc | Leak-compensated respiratory mechanics estimation in medical ventilators |
| US20150107584A1 (en) * | 2013-10-18 | 2015-04-23 | Covidien Lp | Methods and systems for leak estimation |
| CN107735133A (en) * | 2015-07-07 | 2018-02-23 | 皇家飞利浦有限公司 | The method and system that patient airway and leakage flow for invasive ventilation are estimated |
| US20190344032A1 (en) * | 2018-05-14 | 2019-11-14 | General Electric Company | Method and systems for executing nasal high flow therapy with settings determined from flow outputs during a previous ventilation mode |
| CN109303959A (en) * | 2018-10-26 | 2019-02-05 | 北京怡和嘉业医疗科技股份有限公司 | Ventilation therapy equipment and control method of ventilation therapy equipment |
| CN111603641A (en) * | 2020-03-31 | 2020-09-01 | 湖南万脉医疗科技有限公司 | Noninvasive ventilator-based alveolar ventilation monitoring system and control method |
| CN111821552A (en) * | 2020-08-14 | 2020-10-27 | 华氧医疗科技(大连)有限公司 | A multifunctional respiratory therapy system and method for use in hospital and home environments |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11033700B2 (en) | Leak determination in a breathing assistance system | |
| US20230240555A1 (en) | Systems and methods for missed breath detection and indication | |
| US11235114B2 (en) | Methods and systems for leak estimation | |
| US11027080B2 (en) | System and method for determining ventilator leakage during stable periods within a breath | |
| US8881724B2 (en) | Device and method for graphical mechanical ventilator setup and control | |
| AU2011218803B2 (en) | A method for estimating at least one parameter at a patient circuit wye in a medical ventilator providing ventilation to a patient | |
| US20210146086A1 (en) | Device for supplying therapeutic gas, particularly no or n2o, to a patient | |
| US20140000606A1 (en) | Methods and systems for mimicking fluctuations in delivered flow and/or pressure during ventilation | |
| US10335566B2 (en) | Systems and methods for providing ventilation | |
| US20210052839A1 (en) | Anterior interface pressure monitoring during ventilation | |
| US11202875B2 (en) | Cough assistance and measurement system and method | |
| US20220096764A1 (en) | Synchronized high-flow system | |
| WO2024130777A1 (en) | Visual respiratory therapy instrument, visual processing method, and use method | |
| CN116407718A (en) | Visual respiration therapeutic apparatus, visual processing method and using method | |
| EP4480521A1 (en) | Ventilation device | |
| WO2016103145A1 (en) | Systems and methods for ventilator control including determination of patient fatigue and pressure support ventilation (psv) level | |
| CN116600843A (en) | Respiratory ventilation apparatus and method for indicating wear status of patient interface accessory |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22969064 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 22969064 Country of ref document: EP Kind code of ref document: A1 |