WO2024195063A1 - Analysis device - Google Patents
Analysis device Download PDFInfo
- Publication number
- WO2024195063A1 WO2024195063A1 PCT/JP2023/011313 JP2023011313W WO2024195063A1 WO 2024195063 A1 WO2024195063 A1 WO 2024195063A1 JP 2023011313 W JP2023011313 W JP 2023011313W WO 2024195063 A1 WO2024195063 A1 WO 2024195063A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- movement
- lines
- flow
- purchase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
- G06Q30/0203—Market surveys; Market polls
Definitions
- the disclosed technology relates to analyzing customer behavior in retail stores and supporting policy planning.
- Changing customer movement patterns can change customer purchasing behavior, and it is known that the length of movement patterns in particular correlates with the number of purchases (for example, non-patent literature 1).
- Non-Patent Document 2 In a related-art initiative, efforts have been made to analyze information on customers' time spent in front of shelves and move the sales area for specific products to guide them to the back of the store and increase the flow of customers (Non-Patent Document 2).
- Figures 17A to 17C show examples of customer movement patterns for each unit price.
- Figure 11A shows the movement pattern of a low-price customer who purchases only one item, "coffee”
- Figure 17B shows the movement pattern of a medium-price customer who purchases two items, “coffee and sweets”
- Figure 17C shows the movement pattern of a high-price customer who purchases three items, "lunch box, tea, and sweets.”
- the disclosed technology has been developed in consideration of the above points, and aims to provide an analysis device that enables analysis that takes into account the characteristics of customer purchases and movement patterns.
- a first aspect of the present disclosure is an analysis device that includes a similarity calculation unit that receives purchase information and movement line information for each customer, and calculates the similarity between movement lines for each combination of movement lines based on the movement line shape obtained from the movement line information and the purchasing tendency obtained from the purchase information.
- the disclosed technology makes it possible to perform analysis that takes into account the characteristics of customer purchases and movement patterns.
- FIG. 1 is a block diagram showing the hardware configuration of the analysis device.
- FIG. 2 is a block diagram showing the configuration of the analysis device of the first embodiment.
- FIG. 3A is a diagram showing an example of purchase information for each customer.
- FIG. 3B is a diagram illustrating an example of flow line information for each customer.
- FIG. 4A is a diagram showing a sequence of customers passing through an area divided into an arbitrary shape.
- FIG. 4B is a diagram showing a user's trajectory as a series of areas.
- FIG. 5 is a diagram showing an example of a graph representing the space inside a store.
- FIG. 6 is a diagram showing an example of a two-dimensional map representing purchase information associated with flow lines and distances between the flow lines.
- FIG. 1 is a block diagram showing the hardware configuration of the analysis device.
- FIG. 2 is a block diagram showing the configuration of the analysis device of the first embodiment.
- FIG. 3A is a diagram showing an example of purchase information for each customer.
- FIG. 7 is a flowchart showing the flow of the analysis process by the analysis device 100 of the first embodiment.
- FIG. 8 is a block diagram showing the configuration of the analysis device of the second embodiment.
- FIG. 9 is a flowchart showing the flow of an analysis process performed by the analysis device of the second embodiment.
- FIG. 10 is a block diagram showing the configuration of an analysis device according to the third embodiment.
- FIG. 11 is a flowchart showing the flow of an analysis process performed by the analysis device of the third embodiment.
- FIG. 12 is a block diagram showing the configuration of the analysis device of the fourth embodiment.
- FIG. 13 is a diagram showing an example of an axis representing a flow line shape cluster and an axis representing a purchase cluster.
- FIG. 14 is a flowchart showing the flow of an analysis process performed by the analysis device of the fourth embodiment.
- FIG. 15 is a diagram showing the mutual information divided between grouping pattern A and grouping pattern B.
- FIG. 16 is a diagram comparing the histograms of grouping pattern A and grouping pattern B.
- FIG. 13 is a diagram showing an example of the flow of low-price customers.
- FIG. 13 is a diagram showing an example of the flow of customers with medium unit prices.
- FIG. 13 is a diagram showing an example of the flow of high-priced customers.
- the technology disclosed herein finds the degree of similarity between traffic lines based on differences in the traffic line shape, purchasing trends, etc., and after compressing the dimensions, links it to the purchase price and the number of orders linked to each traffic line, etc., and displays it to users such as store managers. This allows users to consider measures while taking into account the degree of similarity between traffic lines.
- the method of this embodiment can also solve the problem that it is not possible to grasp which measures are effective based on sales alone, and it is not possible to grasp which traffic flow should be guided based on the similarity between measures alone.
- FIG. 1 is a block diagram showing the hardware configuration of the analysis device 100.
- the analysis device 100 has a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, storage 14, an input interface (I/F) 15, a display interface (I/F) 16, and a communication interface (I/F) 17.
- CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- storage 14 an input interface (I/F) 15, a display interface (I/F) 16, and a communication interface (I/F) 17.
- I/F input interface
- I/F display interface
- I/F communication interface
- the CPU 11 is a central processing unit that executes various programs and controls each part. That is, the CPU 11 reads the programs from the ROM 12 or storage 14, and executes the programs using the RAM 13 as a working area. The CPU 11 controls each of the above components and performs various calculation processes according to the programs stored in the ROM 12 or storage 14. In this embodiment, an analysis program is stored in the ROM 12 or storage 14.
- ROM 12 stores various programs and data.
- RAM 13 temporarily stores programs or data as a working area.
- Storage 14 is composed of a storage device such as an HDD (Hard Disk Drive) or SSD (Solid State Drive), and stores various programs including an operating system, and various data.
- HDD Hard Disk Drive
- SSD Solid State Drive
- the input interface 15 includes a pointing device such as a mouse and a keyboard, and is used to perform various input operations.
- the analysis device 100 includes an information database (DB) 102, a similarity calculation unit 110, and a display unit 112.
- DB information database
- the analysis device 100 includes an information database (DB) 102, a similarity calculation unit 110, and a display unit 112.
- Information DB 102 holds two types of information: purchasing information and traffic flow information for each customer.
- Purchasing information for each customer consists of a customer ID, order ID, store entry and exit times, the customer's purchased items, the number of items, and the order of purchases.
- Traffic flow information for each customer consists of a customer ID, order ID, store entry and exit times, traffic flow ID, and traffic flow route information.
- FIG. 5 is a diagram showing an example of an in-store space represented in a graph.
- the dotted lines represent shelves, and the left side of Fig. 5 is a graph showing the in-store space, while the right side of Fig. 5 is a graph showing coordinates A and B. On the right side, the routes selected for coordinates A and B are indicated with arrows.
- the nodes closest to coordinates A and B are selected, respectively, and the route length of the shortest route connecting these two nodes is found, and this route length is regarded as the in-store distance.
- (b): Distance calculation by edit distance This method is used when each piece of flow line route information is made up of area series information. This method calculates the edit distance by inputting a pair of two pieces of flow line route information. For example, two pieces of flow line route information are input, and the edit distance between the two pieces of area series information is measured, and the edit distance of the measurement result may be used as the similarity. For example, when the areas that transition along a route are represented by numbers, the edit distance between the flow line route "0 ⁇ 1 ⁇ 0" and the flow line route "0 ⁇ 1 ⁇ 2 ⁇ 1 ⁇ 0" is equal to the cost of inserting area 2 into the route. The cost may be calculated using the Euclidean distance or the inverse of the transition probability between areas.
- the purchased items linked to each flow line are expressed as vectors, and the distance between the vectors can be calculated.
- the flow line and the purchased items can be linked by a method such as taking the average of the vectors of multiple purchases along a certain flow line.
- the purchased item of flow line A is coffee
- the purchased items of flow line B are tea and lunch boxes.
- the purchase vector of flow line A is [1,0,0]
- the purchase vector of flow line B is [0,1,1].
- Each component of the vector represents the purchase of coffee, tea, and lunch boxes.
- the distance between flow line A and flow line B can be measured as 3, for example, when calculated using the Manhattan distance.
- the similarity calculation unit 110 adds up the similarities calculated in (a) to (c) and defines the sum as the similarity. At this time, each value may be weighted or scaled before being added up.
- the display unit 112 arranges and displays each of the movement lines associated with purchasing information for each movement line in a two-dimensional space based on the similarity between the movement lines, so that the similarity between the movement lines is represented as a two-dimensional distance based on the similarity between the movement lines. For example, each movement line is arranged on a two-dimensional map based on the similarity between the movement lines.
- the display unit 112 combines the similarity between each movement line obtained from the similarity calculation unit 110 and the purchasing information for each movement line and displays it as a two-dimensional map.
- a method such as SNE (Stochastic Neighbor Embedding) is used to compress the relationship between each movement line into two dimensions while retaining information on the distance between the lines.
- FIG. 6 is a diagram showing an example of a two-dimensional map that represents purchase information associated with the flow lines and the distance between the flow lines.
- the similarity of the flow lines is represented by the distance in two dimensions
- the purchase information of each flow line such as the purchase price and the number of orders, is represented by the size and shade of the circle.
- the size of the circle for each flow line is represented by the number of orders (N).
- the purchase price is also represented by the shade of the color of the circle. The darker the circle, the higher the purchase price.
- the display unit 112 arranges each of the flow lines in two dimensions with a size according to a predetermined numerical value included in the purchase information.
- Flow line A has a purchase price of 120 yen and a number of orders (N) of 150.
- Flow line B has a purchase price of 300 yen and a number of orders (N) of 200.
- Flow line C has a purchase price of 200 yen and a number of orders (N) of 250.
- Flow line D has a purchase price of 500 yen and a number of orders (N) of 200.
- Flow line E has a purchase price of 100 yen and an order number (N) of 100. The higher the similarity between the flow lines, the closer the flow lines are located, and the lower the similarity between the flow lines, the farther the flow lines are located.
- the display unit 112 presents each of the flow lines arranged in two dimensions in association with the purchase price of the purchasing information for the flow line and the order number (N) for the flow line, by using a speech bubble or other representation of the flow line.
- the above-mentioned two-dimensional map representation displayed by the display unit 112 allows users such as store managers to easily find the target traffic flow (e.g., low unit purchase price) and the destination traffic flow (e.g., high unit purchase price), and enables them to consider measures while checking the similarity.
- target traffic flow e.g., low unit purchase price
- destination traffic flow e.g., high unit purchase price
- FIG. 7 is a flowchart showing the flow of analysis processing by the analysis device 100 of the first embodiment.
- the analysis processing is performed by the CPU 11 reading out an analysis program from the ROM 12 or storage 14, expanding it into the RAM 13, and executing it.
- the analysis device 100 performs the following processing using the purchasing information and movement line information for each customer that have been acquired in advance from the information DB 102 as input.
- step S100 the CPU 11, as the similarity calculation unit 110, receives purchasing information and movement line information for each customer from the information DB 102.
- step S102 the CPU 11, as the similarity calculation unit 110, calculates the similarity between the movement lines for each combination of movement lines based on the movement line shape obtained from the movement line information and the purchasing tendency obtained from the purchasing information.
- step S104 the CPU 11 causes the display unit 112 to display each of the flow lines associated with purchasing information for each flow line in a two-dimensional layout based on the similarity between the flow lines, so that the similarity between the flow lines is represented as a two-dimensional distance.
- the analysis device 100 of the first embodiment enables analysis that takes into account the characteristics of customer purchases and movement lines. Furthermore, by displaying a two-dimensional map that is based on an analysis that takes into account the characteristics of customer purchases and movement lines, the user can consider measures that take into account the characteristics of customer purchases and movement lines.
- the analysis device 100 of the second embodiment further includes a movement line shaping unit 210 as a preprocessing unit of the similarity calculation unit 110.
- the analysis device 100 of the second embodiment includes an information DB 102, the movement line shaping unit 210, the similarity calculation unit 110, and a display unit 112.
- the flow line shaping unit 210 accepts the flow line route information of the flow line information in the information DB 102, and adds the shaped information to the flow line information as shaped flow line information.
- the flow line shaping unit 210 divides the series in the flow line route information into several chunks and converts them into shorter route information. For example, in FIG. 4B, the series information of the area through which the customer passed is converted into location information in the store (a label indicating the area name). In the example shown in FIG. 4B, area 0 corresponds to the entrance, areas 1, 2, and 3 correspond to the left aisle, and area 4 corresponds to the upper left.
- the shaped flow line information is "entrance ⁇ left aisle ⁇ upper left ⁇ left aisle ⁇ entrance", and it can be seen that it has been converted into shorter route information compared to when the series is expressed by numbers. This improves the readability of the flow line route information and shortens the length of the series information, making it possible to speed up the similarity calculation process.
- the similarity calculation unit 110 described in the first embodiment uses reshaped flow line information instead of flow line route information as information representing the flow line shape in the process of calculating the similarity.
- the flow line reshaping unit 210 divides the series of flow line route information in the flow line information into area units and converts it into reshaped route information on the area.
- a pattern of a continuous/overlapping sequence of the same area may be converted into a single pattern by deleting the overlaps (for example, converting area ABABAB to area AB). This leads to further speeding up the calculation process.
- FIG. 9 is a flowchart showing the flow of analysis processing by the analysis device 100 of the second embodiment.
- steps S200 and S202 are executed before step S100.
- step S200 the CPU 11, as the movement line shaping unit 210, divides the sequence of movement line route information in the movement line information into area units and converts it into shaped route information on the area. After processing step S200, the process proceeds to step S202.
- step S202 the CPU 11, functioning as the traffic line shaping unit 210, adds the converted shaped route information to the traffic line information and stores it in the information DB 102.
- Step S100 and subsequent steps are the same as in the first embodiment, but differ from the first embodiment in that shaped path information is used to calculate the similarity.
- the analysis device 100 of the second embodiment makes it possible to speed up the similarity calculation process in an analysis that takes into account the characteristics of customer purchases and traffic patterns.
- the analysis device 100 of the third embodiment further includes an extraction unit 310 as a pre-processing unit of the similarity calculation unit 110.
- the analysis device 100 of the third embodiment is configured to include an information DB 102, a flow line shaping unit 210, an extraction unit 310, a similarity calculation unit 110, and a display unit 112.
- the extraction unit 310 is assumed to extract flow line route information or shaped route information, but the following description will be given taking the case of extracting flow line route information as an example.
- the similarity calculation unit 110 may perform similarity calculation using the narrowed down representative flow line route information and shaped route information, respectively.
- the flow line route information and shaped route information are examples of information related to the flow line route of the present disclosure.
- the extraction unit 310 extracts representative movement line route information from the movement line route information included in the movement line information, and outputs the representative movement line route information to the similarity calculation unit 110.
- the extraction unit 310 converts multiple pieces of movement line route information in the movement line information into representative movement line route information, and outputs the movement line information to the similarity calculation unit 110.
- One possible method for extracting the main traffic lines is to determine which routes appear frequently as the main traffic lines. Another possible method is to use a clustering method such as K-medoids to divide a large amount of traffic line route information and extract representative traffic lines (main traffic lines) for each divided group.
- FIG. 11 is a flowchart showing the flow of analysis processing by the analysis device 100 of the third embodiment.
- step S300 is executed after step S100.
- step S300 the CPU 11, functioning as the extraction unit 310, extracts representative movement line route information from the movement line route information included in the movement line information, and outputs the representative movement line route information to the similarity calculation unit 110, which processes the next step 102.
- the analysis device 100 of the third embodiment makes it possible to speed up the similarity calculation process by narrowing down the routes in an analysis that takes into account the characteristics of customer purchases and traffic lines.
- the analysis device 100 of the fourth embodiment further includes a clustering unit 410 and a cluster display unit 412 instead of the display unit 112.
- the processing of the clustering unit 410 is disposed between the similarity calculation unit 110 and the cluster display unit 412.
- the clustering unit 410 classifies multiple similar movement lines according to a predetermined clustering method based on the similarity between the movement lines received from the similarity calculation unit 110, and clusters the movement lines. Note that the clustering unit 410 receives both the similarity based on the movement line shapes related to (a) and (b) above, and the similarity based on the purchasing tendency related to (c). Unlike the above-mentioned embodiment, by grouping multiple similar movement lines, the number of objects that the user/administrator needs to check can be reduced, reducing the burden.
- the clustering method of the clustering unit 410 performs clustering based on the similarity of the movement line shape and the purchasing tendency.
- the clustering method uses non-hierarchical clustering such as K-medoids or hierarchical clustering such as Ward's method.
- each movement line belongs to a cluster based on the movement line shape (hereinafter, movement line shape clusters 1 to M) and a cluster based on the purchasing tendency (purchase clusters 1 to N).
- movement line shape cluster 1 will be a group of movement lines moving clockwise in the store
- 2 will be a group of movement lines moving counterclockwise, etc.
- purchasing cluster 1 is a group of movement lines that purchase tea-related products individually
- purchasing cluster 2 is a group of movement lines that purchase staple foods, etc.
- a movement line that is clockwise and purchases tea-related products individually will belong to movement line shape cluster 1 and purchasing cluster 1.
- clustering by number of items is possible.
- purchasing information linked to movement lines may be obtained from information DB 102, and clustering may be performed by number of items in the obtained purchasing information. This creates clusters by number of items purchased, such as a purchasing cluster for a single item purchase and a purchasing cluster for a two-item purchase, making it easier to grasp purchasing trends more clearly.
- the cluster display unit 412 arranges clusters in a two-dimensional space based on the clustering results of the clustering unit 410, and presents them in association with purchasing information. First, the cluster display unit 412 classifies the movement lines by combining each cluster based on the movement line shape cluster and purchase cluster to which each movement line belongs, obtained from the clustering unit 410. Then, the movement lines classified into clusters are displayed on a diagram consisting of two axes, an axis representing the movement line shape cluster and an axis representing the purchase cluster.
- FIG. 13 is a diagram showing an example of an axis representing a flow line shape cluster and an axis representing a purchase cluster.
- the horizontal axis in FIG. 13 indicates each purchase cluster, and the vertical axis indicates the flow line shape cluster. Since each flow line belongs to each purchase cluster and flow line cluster, it is possible to classify and display based on the combination of clusters to which it belongs.
- Each circle in FIG. 13 indicates the number of flow lines belonging to each flow line shape cluster (1 to M) and purchase cluster (1 to N). Purchase information for purchase cluster 1 (tea), purchase cluster 2 (staple foods), and purchase cluster 3 (carbonated drinks) is shown. Focusing on the circle in (a), it represents a group of flow lines belonging to flow line shape cluster 3 and purchase cluster 1.
- the number of orders and the purchase unit price linked to the flow lines belonging to the combination of clusters may be represented by the size and color of the circle, respectively.
- the clustering unit 410 and the cluster display unit 412 can group multiple similar flow lines together, and further, the tendency of the flow lines can be understood from both the flow line shape and the purchase tendency.
- FIG. 14 is a flowchart showing the flow of analysis processing by the analysis device 100 of the fourth embodiment.
- step S400 is executed after step S102.
- step S400 the CPU 11, as the clustering unit 410, classifies a plurality of similar movement paths based on the similarity between the received movement paths according to a predetermined clustering method, and clusters the movement paths.
- step S402 the CPU 11, as the cluster display unit 412, arranges clusters in a two-dimensional space based on the clustering results and presents them in association with purchasing information.
- the analysis device 100 of the fourth embodiment can present multiple similar movements together in an analysis that takes into account the characteristics of customer purchases and movements, making it easy for the user to confirm.
- the fifth embodiment is an aspect in which a purchasing tendency is calculated using a product vector.
- the configuration of the fifth embodiment can be the same as that of the first embodiment (or the second to fourth embodiments).
- the similarity calculation unit 110 of the fifth embodiment calculates the product vector based on the product's tendency to be sold together with other products obtained from the purchase information.
- the similarity calculation unit 110 calculates the purchasing tendency of each purchase by taking the sum of the product vectors of the products included in each purchase.
- product vectors are first generated based on the characteristics of other products that are likely to be sold together with each product, and purchase vectors are generated by combining the product vectors. For example, if "bread” has been sold together with “tea” once and with “milk” five times in the past, the bread vector will be "0, 1, 5". Each component of the vector represents the number of pieces of bread, tea, and milk that have been sold together with bread in the past. At this time, the vector may be normalized so that its norm is 1.
- the similarity calculation unit 110 uses the purchase vectors calculated as above to perform the above-mentioned (c): distance based on purchasing tendency calculation.
- the analysis device 100 of the fifth embodiment can calculate purchasing trends that reflect the tendency of products to be sold together, and can use this to calculate the similarity between traffic patterns.
- the sixth embodiment is an aspect in which the strength of the relationship between the flow line shape and the purchasing tendency is evaluated using the clustering result.
- the configuration of the sixth embodiment can be the same as that of the fourth embodiment.
- the clustering unit 410 uses the clustering results from the fourth embodiment to evaluate the strength of the relationship between the shape of traffic flow and purchasing tendency using mutual information as an index, and optimizes the classification of traffic flow into clusters and the clustering parameters (number of clusters) based on the evaluation value.
- Mutual information is a measure of the interdependence of two variables. By classifying traffic flow shapes and purchasing tendency as variables into clusters to maximize this index, and presenting the results of the cluster classification, it is expected that the relationship between the two can be shown more clearly.
- the movement line shape cluster to which a certain movement line belongs is a random variable X (x ⁇ 1, 2, ..., M), and the purchasing tendency cluster is Y (y ⁇ 1, 2, ..., N).
- the histogram obtained by dividing the Nd movement lines into M x N clusters is normalized and captured as a probability distribution.
- the probability distribution P(X) of the movement line shape X, the probability distribution P(Y) of the purchasing tendency Y, and their joint distribution P(X, Y) can be obtained, and further the mutual information I(X; Y) between X and Y can be obtained.
- the mutual information is calculated for each grouping pattern that classifies the Nd movement lines into M clusters, and the final classification is performed using the pattern with the highest mutual information.
- Figure 15 is a diagram showing the division of mutual information between grouping patterns A and B.
- Figure 16 is a diagram comparing the histograms of grouping patterns A and B. Note that the figures in parentheses in Figure 16 represent the joint probability when the histograms are viewed as a probability distribution. Since the mutual information of grouping pattern A is 0.53 and the mutual information of grouping pattern B is 0.17, grouping pattern A is selected. This method makes it possible to perform cluster classification that clearly reveals the relationship between traffic flow patterns and purchasing trends.
- the analysis device 100 of the sixth embodiment can reduce the number of clusters that the user needs to check.
- the analysis process that the CPU reads and executes the software (program) in each of the above embodiments may be executed by various processors other than the CPU.
- processors in this case include PLDs (Programmable Logic Devices) whose circuit configuration can be changed after manufacture, such as FPGAs (Field-Programmable Gate Arrays), GPUs (Graphics Processing Units), and dedicated electric circuits that are processors having a circuit configuration designed specifically to execute specific processes, such as ASICs (Application Specific Integrated Circuits).
- the analysis process may be executed by one of these various processors, or by a combination of two or more processors of the same or different types (for example, multiple FPGAs, and a combination of a CPU and an FPGA, etc.). More specifically, the hardware structure of these various processors is an electrical circuit that combines circuit elements such as semiconductor devices.
- the analysis program is described as being pre-stored (installed) in the storage 14, but this is not limiting.
- the program may be provided in a form stored in a non-transitory storage medium such as a CD-ROM (Compact Disk Read Only Memory), a DVD-ROM (Digital Versatile Disk Read Only Memory), or a USB (Universal Serial Bus) memory.
- the program may also be downloaded from an external device via a network.
- Memory at least one processor coupled to the memory; Including, The processor, receiving purchase information and flow line information for each customer, and calculating a similarity between flow lines for each combination of flow lines based on a flow line shape obtained from the flow line information and a purchasing tendency obtained from the purchase information;
- the analytical device is configured to:
- a non-transitory storage medium storing a program executable by a computer to perform an analysis process, receiving purchase information and flow line information for each customer, and calculating a similarity between flow lines for each combination of flow lines based on a flow line shape obtained from the flow line information and a purchasing tendency obtained from the purchase information;
- Non-transitory storage media Non-transitory storage media.
Landscapes
- Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Engineering & Computer Science (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Finance (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Data Mining & Analysis (AREA)
- Economics (AREA)
- Marketing (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
開示の技術は、小売店舗における顧客の行動の分析及び施策立案の支援に関する。 The disclosed technology relates to analyzing customer behavior in retail stores and supporting policy planning.
センサデバイスの低価格化及び認識技術の精度向上によって、店舗内での顧客動線を可視化し、売上向上を目指す動きが近年、活発化している。 As sensor devices become cheaper and recognition technology becomes more accurate, there has been a growing trend in recent years to visualize customer movements within stores and increase sales.
動線を変化させることで、顧客の購買行動を変化させることができ、特に動線の長さと購買数は相関することが知られている(例えば非特許文献1)。 Changing customer movement patterns can change customer purchasing behavior, and it is known that the length of movement patterns in particular correlates with the number of purchases (for example, non-patent literature 1).
従来技術に関する取り組みとして、顧客の棚前の滞在情報を分析し、特定の商品の売り場を移動させることで店舗の奥に誘導し、動線を伸ばす取り組みがなされている(非特許文献2)。 In a related-art initiative, efforts have been made to analyze information on customers' time spent in front of shelves and move the sales area for specific products to guide them to the back of the store and increase the flow of customers (Non-Patent Document 2).
しかしながら、従来技術では、顧客ごとの購買特性の違いや、動線ごとの特性が考慮されていないため、実際には誘導困難な動線に対して顧客を誘導してしまう可能性がある。 However, conventional technology does not take into account differences in purchasing characteristics of each customer or the characteristics of each customer's movement path, so there is a possibility that customers will be guided along a movement path that is difficult to actually follow.
例えば、図17A~図17Cに、単価ごとの顧客の動線の例を示す。図11Aは「コーヒー」1品のみを購入する低単価の顧客の動線、図17Bは「コーヒー、お菓子」の2品購入を行う中単価の顧客の動線、図17Cは「弁当、お茶、お菓子」の3品購入を行う高単価の顧客の動線を示す。 For example, Figures 17A to 17C show examples of customer movement patterns for each unit price. Figure 11A shows the movement pattern of a low-price customer who purchases only one item, "coffee," Figure 17B shows the movement pattern of a medium-price customer who purchases two items, "coffee and sweets," and Figure 17C shows the movement pattern of a high-price customer who purchases three items, "lunch box, tea, and sweets."
単価のみを考えると、コーヒー1品のみの低単価顧客に対して、店舗内全体を周遊する3品購入の高単価顧客の動線が推奨パターンとして生成される。 If we only consider the unit price, the recommended pattern will be the movement of a high-priced customer who buys three items and travels around the entire store compared to a low-priced customer who buys only one coffee item.
しかし、図17Aに示す低単価顧客の購買傾向(コーヒー単品)及び動線の傾向(店舗左側の短動線)と、図17Cに示す高単価顧客の購買傾向及び動線経路は大きく異なっている。よって、施策において前者の動線から後者の動線に移動する顧客は少数であるか、誘導する場合にも大きなコストがかかると予想される。それよりも、購買傾向と動線経路が類似している中単価顧客を推奨とする方がよりコストがかからず、現実的な提案であると考えられる。 However, the purchasing trends (single coffee) and movement patterns (short movement pattern on the left side of the store) of low-price customers shown in Figure 17A are significantly different from the purchasing trends and movement patterns of high-price customers shown in Figure 17C. Therefore, it is expected that the number of customers who will move from the former movement pattern to the latter movement pattern will be small, or that it will be very costly to induce them. Instead, it is thought that a more cost-effective and realistic proposal would be to recommend medium-price customers who have similar purchasing trends and movement patterns.
開示の技術は、上記の点に鑑みてなされたものであり、顧客の購買及び動線の特性を考慮した分析を可能とする分析装置を提供することを目的とする。 The disclosed technology has been developed in consideration of the above points, and aims to provide an analysis device that enables analysis that takes into account the characteristics of customer purchases and movement patterns.
本開示の第1態様は、分析装置であって、顧客ごとの購買情報及び動線情報を受け付け、前記動線情報から得られる動線形状と、前記購買情報から得られる購買傾向とに基づいて、動線の各々の組み合わせについて動線間の類似度を計算する類似度計算部、を含む。 A first aspect of the present disclosure is an analysis device that includes a similarity calculation unit that receives purchase information and movement line information for each customer, and calculates the similarity between movement lines for each combination of movement lines based on the movement line shape obtained from the movement line information and the purchasing tendency obtained from the purchase information.
開示の技術によれば、顧客の購買及び動線の特性を考慮した分析を可能とする。 The disclosed technology makes it possible to perform analysis that takes into account the characteristics of customer purchases and movement patterns.
以下、開示の技術の実施形態の一例を、図面を参照しつつ説明する。なお、各図面において同一又は等価な構成要素及び部分には同一の参照符号を付与している。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。なお、以下では各実施形態に共通する説明について本実施形態と記載している。 Below, an example of an embodiment of the disclosed technology will be described with reference to the drawings. Note that the same reference symbols are used for identical or equivalent components and parts in each drawing. Also, the dimensional ratios in the drawings have been exaggerated for the convenience of explanation and may differ from the actual ratios. Note that below, explanations common to each embodiment will be referred to as this embodiment.
本開示の技術では、各動線の動線形状、購買傾向等の違いから動線間の類似度を求め、次元を圧縮した上で購買単価や各動線に紐づいたオーダーの数等と紐づけて店舗運営者等のユーザに対して表示する。これにより、ユーザは動線間の類似度を考慮しながら施策検討が可能になる。 The technology disclosed herein finds the degree of similarity between traffic lines based on differences in the traffic line shape, purchasing trends, etc., and after compressing the dimensions, links it to the purchase price and the number of orders linked to each traffic line, etc., and displays it to users such as store managers. This allows users to consider measures while taking into account the degree of similarity between traffic lines.
併せて情報を提示することで、例えば、どの動線がもっとも売上の向上に貢献できるか等を把握することができる。売上のみでは、どのような施策が有効であるかが把握できず、施策間の類似度のみでは、どの動線を誘導すればよいかが把握できない、という課題の解決も本実施形態の手法により可能となる。 By presenting this information, it is possible to grasp, for example, which traffic flow will contribute most to increasing sales. The method of this embodiment can also solve the problem that it is not possible to grasp which measures are effective based on sales alone, and it is not possible to grasp which traffic flow should be guided based on the similarity between measures alone.
以下、本実施形態の構成について説明する。 The configuration of this embodiment is explained below.
図1は、分析装置100のハードウェア構成を示すブロック図である。 FIG. 1 is a block diagram showing the hardware configuration of the analysis device 100.
図1に示すように、分析装置100は、CPU(Central Processing Unit)11、ROM(Read Only Memory)12、RAM(Random Access Memory)13、ストレージ14、入力インタフェース(I/F)15、表示インタフェース(I/F)16及び通信インタフェース(I/F)17を有する。各構成は、バス19を介して相互に通信可能に接続されている。 As shown in FIG. 1, the analysis device 100 has a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, storage 14, an input interface (I/F) 15, a display interface (I/F) 16, and a communication interface (I/F) 17. Each component is connected to each other so as to be able to communicate with each other via a bus 19.
CPU11は、中央演算処理ユニットであり、各種プログラムを実行したり、各部を制御したりする。すなわち、CPU11は、ROM12又はストレージ14からプログラムを読み出し、RAM13を作業領域としてプログラムを実行する。CPU11は、ROM12又はストレージ14に記憶されているプログラムに従って、上記各構成の制御及び各種の演算処理を行う。本実施形態では、ROM12又はストレージ14には、分析プログラムが格納されている。 The CPU 11 is a central processing unit that executes various programs and controls each part. That is, the CPU 11 reads the programs from the ROM 12 or storage 14, and executes the programs using the RAM 13 as a working area. The CPU 11 controls each of the above components and performs various calculation processes according to the programs stored in the ROM 12 or storage 14. In this embodiment, an analysis program is stored in the ROM 12 or storage 14.
ROM12は、各種プログラム及び各種データを格納する。RAM13は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ14は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)等の記憶装置により構成され、オペレーティングシステムを含む各種プログラム、及び各種データを格納する。 ROM 12 stores various programs and data. RAM 13 temporarily stores programs or data as a working area. Storage 14 is composed of a storage device such as an HDD (Hard Disk Drive) or SSD (Solid State Drive), and stores various programs including an operating system, and various data.
入力インタフェース15は、マウス等のポインティングデバイス、及びキーボードを含み、各種の入力を行うために使用される。 The input interface 15 includes a pointing device such as a mouse and a keyboard, and is used to perform various input operations.
表示インタフェース16は、例えば、液晶ディスプレイであり、各種の情報を表示する。表示インタフェース16は、タッチパネル方式を採用して、入力インタフェース15として機能してもよい。 The display interface 16 is, for example, a liquid crystal display, and displays various information. The display interface 16 may also function as the input interface 15 by adopting a touch panel system.
通信インタフェース17は、端末等の他の機器と通信するためのインタフェースである。当該通信には、例えば、イーサネット(登録商標)若しくはFDDI等の有線通信の規格、又は、4G、5G、若しくはWi-Fi(登録商標)等の無線通信の規格が用いられる。 The communication interface 17 is an interface for communicating with other devices such as terminals. For this communication, for example, a wired communication standard such as Ethernet (registered trademark) or FDDI, or a wireless communication standard such as 4G, 5G, or Wi-Fi (registered trademark) is used.
[第1実施形態]
次に、第1実施形態の分析装置100の各機能構成について説明する。図2は、第1実施形態の分析装置の構成を示すブロック図である。各機能構成は、CPU11がROM12又はストレージ14に記憶された分析プログラムを読み出し、RAM13に展開して実行することにより実現される。
[First embodiment]
Next, each functional configuration of the analysis device 100 of the first embodiment will be described. Fig. 2 is a block diagram showing the configuration of the analysis device of the first embodiment. Each functional configuration is realized by the CPU 11 reading out an analysis program stored in the ROM 12 or the storage 14, expanding it in the RAM 13, and executing it.
図2に示すように、分析装置100は、情報データベース(DB)102と、類似度計算部110と、表示部112とを含んで構成されている。 As shown in FIG. 2, the analysis device 100 includes an information database (DB) 102, a similarity calculation unit 110, and a display unit 112.
情報DB102には、顧客ごとの購買情報及び動線情報の二種類の情報が保持される。顧客ごとの購買情報は、顧客ID、オーダーID、入退店時刻、顧客の購買品目、品数、及び購買順序等からなる。顧客ごとの動線情報は、顧客ID、オーダーID、入退店時刻、動線ID、及び動線経路情報等からなる。 Information DB 102 holds two types of information: purchasing information and traffic flow information for each customer. Purchasing information for each customer consists of a customer ID, order ID, store entry and exit times, the customer's purchased items, the number of items, and the order of purchases. Traffic flow information for each customer consists of a customer ID, order ID, store entry and exit times, traffic flow ID, and traffic flow route information.
顧客ごとの購買情報及び動線情報の2つは、顧客IDとオーダーIDなどを共通キーとして、単一のテーブルとして保持されていても、2つのテーブルとして保持されていてもよい。図3Aは、顧客ごとの購買情報の一例を示す図である。図3Aに示す例では、顧客ID、オーダーID、入退店時刻、購買品目、購買順序、及び購買単価が例示されている。図3Bは、顧客ごとの動線情報の一例を示す図である。図3Bに示す例では、顧客ID、オーダーID、動線ID、動線経路情報、及び整形動線情報が例示されている。動線情報に含まれる動線経路情報は、各顧客の店舗内において通った軌道を表す。なお、動線同士の動線経路情報又は整形動線情報が本開示の動線形状を表す情報の一例であり、購買品目、購買順序、及び購買単価の少なくとも何れかが本開示の購買傾向の一例である。以下に説明する類似度計算部110の処理では、第1実施形態では動線経路情報のペアを、動線形状を表す情報として用い、第2実施形態では整形動線情報のペアを、動線形状を表す情報として用いる。また、図3A及び図3Bは、一例であり、省略されている情報もある。 The purchasing information and the traffic flow information for each customer may be stored as a single table or as two tables, with the customer ID and order ID as common keys. FIG. 3A is a diagram showing an example of purchasing information for each customer. In the example shown in FIG. 3A, the customer ID, order ID, store entry and exit times, purchased items, purchase order, and purchase unit price are illustrated. FIG. 3B is a diagram showing an example of traffic flow information for each customer. In the example shown in FIG. 3B, the customer ID, order ID, traffic flow ID, traffic flow path information, and shaped traffic flow information are illustrated. The traffic flow path information included in the traffic flow information represents the trajectory taken by each customer within the store. Note that the traffic flow path information between traffic lines or the shaped traffic flow information is an example of information representing the traffic flow shape of the present disclosure, and at least one of the purchased items, purchase order, and purchase unit price is an example of the purchasing tendency of the present disclosure. In the processing of the similarity calculation unit 110 described below, in the first embodiment, a pair of flow line route information is used as information representing the flow line shape, and in the second embodiment, a pair of shaped flow line information is used as information representing the flow line shape. Also, Figures 3A and 3B are just examples, and some information is omitted.
動線経路情報は、顧客の軌道を表す座標の時系列データであってもよいし、図4Aに示すように任意の形状で区切ったエリアを顧客が通過した系列の情報であってもよい。図4Bにおいては、図4Aにおいて示したユーザの軌道をエリアの系列で表している。図4Bの詳細については第2実施形態で後述する。 The traffic line route information may be time-series coordinate data showing the trajectory of the customer, or may be information on the series of areas that the customer passed through, which are divided into areas of any shape, as shown in FIG. 4A. In FIG. 4B, the trajectory of the user shown in FIG. 4A is represented as a series of areas. Details of FIG. 4B will be described later in the second embodiment.
類似度計算部110では、情報DB102から顧客ごとの購買情報及び動線情報を受け付け、動線情報から得られる動線形状と、購買情報から得られる購買傾向とに基づいて、動線の各々の組み合わせについて動線間の類似度を計算する。各動線間は距離が小さいほど類似度が高い。2つの動線間の類似度の計算には、いくつかの手法が考えられるが、下記に(a)~(d)の手法を例示する。
なお、(a)、(b)が動線形状から動線間の類似度を求める場合の一例であり、(c)が購買傾向から動線間の類似度を求める場合の一例である。下記に、説明するように購買傾向も距離として計算される。
The similarity calculation unit 110 receives purchase information and movement line information for each customer from the information DB 102, and calculates the similarity between movement lines for each combination of movement lines based on the movement line shape obtained from the movement line information and the purchasing tendency obtained from the purchase information. The closer the distance between each movement line, the higher the similarity. There are several methods for calculating the similarity between two movement lines, and the following methods (a) to (d) are shown as examples.
Note that (a) and (b) are examples of cases where the similarity between traffic lines is calculated from the traffic line shapes, and (c) is an example of cases where the similarity between traffic lines is calculated from purchasing tendencies. As will be explained below, purchasing tendencies are also calculated as distances.
また、類似度計算部110の出力は、上記の手法のうち一つで計算した2つの動線間の距離の単一の値でもよいし、複数の手法で計算した動線形状から求めた類似度、購買傾向から計算した類似度を組み合わせた複数の値でもよい。 The output of the similarity calculation unit 110 may be a single value of the distance between two traffic lines calculated using one of the above methods, or multiple values that combine similarities calculated from traffic line shapes using multiple methods and similarities calculated from purchasing trends.
(a):DTWによる距離の計算
本手法では、2つの動線経路情報のペアを入力として、例えば動的時間伸縮法(DTW:Dynamic Time Warping)によって行うことができる。DTWでは、2つの時系列データの各点間の距離を総当たりで測定し、各点間の対応距離の総和の最小値を2つの時系列データの距離(=類似度)とする。本手法は、異なる長さの時系列でも距離を測定することが特徴であり、経路長が異なる場合においても距離を計算することができる。例えば、短動線と長動線を比較した場合、経路長が異なる。なお、各点間の距離を計算する際は、ユークリッド距離を使用してもよいし、店舗内の経路を考慮した店舗内距離を用いてもよい。店舗内距離を計算する際は、前処理として店舗内の空間を分割(例えば格子状で分割)した上で、店舗内で人が通行できる箇所にある格子をグラフのノード、隣接した格子間をリンクで結び、店舗内空間をグラフで表現しておく。図5は、店舗内空間をグラフで表現した一例を示す図である。点線は棚を表しており、図5の左側が店舗内空間をグラフで表現したものであり、図5の右側がグラフに座標A及び座標Bがある場合である。右側には座標A及び座標Bについて選択した経路を矢印で示している。座標Aと座標Bの間の店舗内距離を計算する際は、各座標AとBに最も近いノードをそれぞれ選択し、その2ノードを結ぶ最も短い経路の経路長を求め、経路長を店舗内距離とする。このような店舗内距離を用いることで、棚などの障害物の制約を含んだ店舗内の実態にあった距離計算が可能である。
(a): Calculation of distance by DTW In this method, a pair of two flow line route information is input, and it can be performed by, for example, dynamic time warping (DTW). In DTW, the distance between each point of two time series data is measured by exhaustive calculation, and the minimum value of the sum of the corresponding distances between each point is set as the distance (=similarity) between the two time series data. This method is characterized by measuring the distance even in time series of different lengths, and can calculate the distance even when the path length is different. For example, when comparing a short flow line and a long flow line, the path length is different. When calculating the distance between each point, Euclidean distance may be used, or an in-store distance considering the path in the store may be used. When calculating the in-store distance, the space in the store is divided (for example, divided into a grid) as a preprocessing, and the grids at the places where people can pass in the store are connected as nodes of a graph, and adjacent grids are connected by links, and the in-store space is represented in a graph. FIG. 5 is a diagram showing an example of an in-store space represented in a graph. The dotted lines represent shelves, and the left side of Fig. 5 is a graph showing the in-store space, while the right side of Fig. 5 is a graph showing coordinates A and B. On the right side, the routes selected for coordinates A and B are indicated with arrows. When calculating the in-store distance between coordinates A and B, the nodes closest to coordinates A and B are selected, respectively, and the route length of the shortest route connecting these two nodes is found, and this route length is regarded as the in-store distance. By using such in-store distances, it is possible to calculate distances that are appropriate to the actual conditions inside the store, including constraints such as shelves and other obstacles.
(b):編集距離による距離の計算
本手法では、各動線経路情報がエリア系列情報からなる場合に用いる。本手法は、2つの動線経路情報のペアを入力として、編集距離を計算する。例えば、2つの動線経路情報を入力として、2つのエリア系列情報内の編集距離を測定し、測定結果の編集距離を類似度として使用してよい。例えば、経路で遷移するエリアを番号で表した場合、動線経路「0→1→0」と動線経路「0→1→2→1→0」の編集距離は、エリア2を経路に挿入するためのコストと等しい。コストはユークリッド距離を用いてもよいし、エリア間の遷移確率の逆数を用いてもよい。
(b): Distance calculation by edit distance This method is used when each piece of flow line route information is made up of area series information. This method calculates the edit distance by inputting a pair of two pieces of flow line route information. For example, two pieces of flow line route information are input, and the edit distance between the two pieces of area series information is measured, and the edit distance of the measurement result may be used as the similarity. For example, when the areas that transition along a route are represented by numbers, the edit distance between the flow line route "0 → 1 → 0" and the flow line route "0 → 1 → 2 → 1 → 0" is equal to the cost of inserting area 2 into the route. The cost may be calculated using the Euclidean distance or the inverse of the transition probability between areas.
(c):購買傾向による距離の計算
本手法は、各動線における購買情報に基づいて、購買傾向の差によって動線間の類似度を測定する。各動線と紐づいた購買品目をベクトル表現し、ベクトル間距離が計算可能である。なお、動線と購買品目の紐付けは、ある動線をとる複数の購買のベクトルのうち、平均を取る方法などが考えられる。例えば、動線Aの購買品目はコーヒーであり、動線Bの購買品目はお茶と弁当であったとする。この場合、動線Aの購買ベクトルは[1,0,0]、動線Bの購買ベクトルは[0,1,1]となる。ベクトルの各成分は、コーヒー、お茶、弁当の購買有無を表す。動線A及び動線Bの距離は、例えばマンハッタン距離を用いて計算すると、距離を3と測定できる。
(c): Calculation of distance based on purchasing tendency This method measures the similarity between the flow lines according to the difference in purchasing tendency based on the purchasing information in each flow line. The purchased items linked to each flow line are expressed as vectors, and the distance between the vectors can be calculated. In addition, the flow line and the purchased items can be linked by a method such as taking the average of the vectors of multiple purchases along a certain flow line. For example, the purchased item of flow line A is coffee, and the purchased items of flow line B are tea and lunch boxes. In this case, the purchase vector of flow line A is [1,0,0], and the purchase vector of flow line B is [0,1,1]. Each component of the vector represents the purchase of coffee, tea, and lunch boxes. The distance between flow line A and flow line B can be measured as 3, for example, when calculated using the Manhattan distance.
(d):(a)-(c)の距離の合算
類似度計算部110は、(a)-(c)で計算した類似度を合算して類似度と定義する。この際、各値に重み付けやスケーリングして合算してもよい。
(d): Adding up the distances of (a) to (c) The similarity calculation unit 110 adds up the similarities calculated in (a) to (c) and defines the sum as the similarity. At this time, each value may be weighted or scaled before being added up.
表示部112は、動線間の類似度に基づいて、動線間の類似度を二次元上の距離として表すように、動線ごとの購買情報を対応付けた動線の各々を二次元上に配置して表示する。例えば、二次元マップに動線間の類似度に基づいて各動線が配置される。表示部112においては、類似度計算部110から取得した各動線間の類似度と、動線ごとの購買情報、を組み合わせて二次元マップとして表示する。二次元マップの生成には、例えばSNE(Stochastic Neighbor Embedding)等を使って、距離間の情報を保持しながら各動線の関係を二次元圧縮する手法を用いる。 The display unit 112 arranges and displays each of the movement lines associated with purchasing information for each movement line in a two-dimensional space based on the similarity between the movement lines, so that the similarity between the movement lines is represented as a two-dimensional distance based on the similarity between the movement lines. For example, each movement line is arranged on a two-dimensional map based on the similarity between the movement lines. The display unit 112 combines the similarity between each movement line obtained from the similarity calculation unit 110 and the purchasing information for each movement line and displays it as a two-dimensional map. To generate the two-dimensional map, a method such as SNE (Stochastic Neighbor Embedding) is used to compress the relationship between each movement line into two dimensions while retaining information on the distance between the lines.
図6は、動線に対応付けられた購買情報及び動線間の距離を表現した二次元マップの一例を示す図である。図5に示すように動線の類似度を二次元上の距離で表し、各動線の購買単価やオーダー数の購買情報を円の大きさ及び濃淡で表す。図6の例では、オーダー数(N)で各動線の円の大きさを表している。また、円の色の濃淡により購買単価を表している。円が濃いほど購買単価が高いことを示している。このように表示部112は、購買情報に含まれる所定の数値に応じた大きさで動線の各々を二次元上に配置する。動線Aは、購買単価が120円、オーダー数(N)が150である。動線Bは、購買単価が300円、オーダー数(N)が200である。動線Cは、購買単価が200円、オーダー数(N)が250である。動線Dは、購買単価が500円、オーダー数(N)が200である。動線Eは、購買単価が100円、オーダー数(N)が100である。各動線は、動線間の類似度が高いほど近い位置に配置され、動線間の類似度が低いほど遠い位置に配置される。また、表示部112は、動線の吹き出し等の表現により、二次元上に配置する動線の各々に、動線の購買情報の購買単価や動線のオーダー数(N)を対応付けて提示する。 6 is a diagram showing an example of a two-dimensional map that represents purchase information associated with the flow lines and the distance between the flow lines. As shown in FIG. 5, the similarity of the flow lines is represented by the distance in two dimensions, and the purchase information of each flow line, such as the purchase price and the number of orders, is represented by the size and shade of the circle. In the example of FIG. 6, the size of the circle for each flow line is represented by the number of orders (N). The purchase price is also represented by the shade of the color of the circle. The darker the circle, the higher the purchase price. In this way, the display unit 112 arranges each of the flow lines in two dimensions with a size according to a predetermined numerical value included in the purchase information. Flow line A has a purchase price of 120 yen and a number of orders (N) of 150. Flow line B has a purchase price of 300 yen and a number of orders (N) of 200. Flow line C has a purchase price of 200 yen and a number of orders (N) of 250. Flow line D has a purchase price of 500 yen and a number of orders (N) of 200. Flow line E has a purchase price of 100 yen and an order number (N) of 100. The higher the similarity between the flow lines, the closer the flow lines are located, and the lower the similarity between the flow lines, the farther the flow lines are located. In addition, the display unit 112 presents each of the flow lines arranged in two dimensions in association with the purchase price of the purchasing information for the flow line and the order number (N) for the flow line, by using a speech bubble or other representation of the flow line.
表示部112によって表示する上記のような二次元マップ上の表現によって、店舗運営者等のユーザは、(例えば購買単価が低い)誘導対象となる動線と、(例えば購買単価が高い)誘導先となる動線を容易に見つけることができ、類似度を見ながら、施策を検討することが可能となる。 The above-mentioned two-dimensional map representation displayed by the display unit 112 allows users such as store managers to easily find the target traffic flow (e.g., low unit purchase price) and the destination traffic flow (e.g., high unit purchase price), and enables them to consider measures while checking the similarity.
次に、第1実施形態の分析装置100の作用について説明する。図7は、第1実施形態の分析装置100による分析処理の流れを示すフローチャートである。CPU11がROM12又はストレージ14から分析プログラムを読み出して、RAM13に展開して実行することにより、分析処理が行なわれる。分析装置100には、予め取得しておいた、情報DB102の顧客ごとの購買情報及び動線情報を入力として以下の処理を行う。 Next, the operation of the analysis device 100 of the first embodiment will be described. FIG. 7 is a flowchart showing the flow of analysis processing by the analysis device 100 of the first embodiment. The analysis processing is performed by the CPU 11 reading out an analysis program from the ROM 12 or storage 14, expanding it into the RAM 13, and executing it. The analysis device 100 performs the following processing using the purchasing information and movement line information for each customer that have been acquired in advance from the information DB 102 as input.
ステップS100において、CPU11は、類似度計算部110として、情報DB102の顧客ごとの購買情報及び動線情報を受け付ける。 In step S100, the CPU 11, as the similarity calculation unit 110, receives purchasing information and movement line information for each customer from the information DB 102.
ステップS102において、CPU11は、類似度計算部110として、動線情報から得られる動線形状と、購買情報から得られる購買傾向とに基づいて、動線の各々の組み合わせについて動線間の類似度を計算する。 In step S102, the CPU 11, as the similarity calculation unit 110, calculates the similarity between the movement lines for each combination of movement lines based on the movement line shape obtained from the movement line information and the purchasing tendency obtained from the purchasing information.
ステップS104において、CPU11は、表示部112として、動線間の類似度に基づいて、動線間の類似度を二次元上の距離として表すように、動線ごとの購買情報を対応付けた動線の各々を二次元上に配置して表示する。 In step S104, the CPU 11 causes the display unit 112 to display each of the flow lines associated with purchasing information for each flow line in a two-dimensional layout based on the similarity between the flow lines, so that the similarity between the flow lines is represented as a two-dimensional distance.
以上説明したように第1実施形態の分析装置100によれば、顧客の購買及び動線の特性を考慮した分析を可能とする。また、顧客の購買及び動線の特性を考慮した分析を元に表現された二次元マップを表示することで、ユーザ側では、顧客の購買及び動線の特性を考慮した施策の検討が可能となる。 As described above, the analysis device 100 of the first embodiment enables analysis that takes into account the characteristics of customer purchases and movement lines. Furthermore, by displaying a two-dimensional map that is based on an analysis that takes into account the characteristics of customer purchases and movement lines, the user can consider measures that take into account the characteristics of customer purchases and movement lines.
[第2実施形態]
図8に示すように、第2実施形態の分析装置100には、類似度計算部110の前処理部として、動線整形部210を更に含む。第2実施形態の分析装置100は、情報DB102と、動線整形部210と、類似度計算部110と、表示部112とを含んで構成されている。
[Second embodiment]
8, the analysis device 100 of the second embodiment further includes a movement line shaping unit 210 as a preprocessing unit of the similarity calculation unit 110. The analysis device 100 of the second embodiment includes an information DB 102, the movement line shaping unit 210, the similarity calculation unit 110, and a display unit 112.
動線整形部210は、情報DB102における動線情報の動線経路情報を受け付け、整形した情報を整形動線情報として動線情報に付与する。動線整形部210は、動線経路情報内の系列をいくつかのまとまりに分割した上でより短い経路情報に変換する。例えば、図4Bにおいては、顧客が通過したエリアの系列情報を、店舗における位置情報(エリア名を示すラベル)に変換する。図4Bに示す例では、0のエリアが入口、1、2、3のエリアが左通路、4のエリアが左上に対応する。この場合、整形動線情報は「入口→左通路→左上→左通路→入口」となり、系列を番号で表す場合に比べて短い経路情報に変換されていることがわかる。これにより、動線経路情報の可読性を高め、系列情報の長さが短くなるため、類似度計算処理を高速化が可能である。第2実施形態では、第1実施形態で説明した類似度計算部110は、動線経路情報に代えて、整形動線情報を動線形状を表す情報として類似度を計算する処理に用いる。以上のように、動線整形部210は、動線情報における動線経路情報の系列をエリアの単位に分割し、エリア上の整形経路情報に変換する。なお、整形経路情報で連続・重複同一エリア列のパターンは重複を削除し、単一のパターンに変換してもよい(例えば、エリアABABAB→エリアABに変換)。このようにすることで、計算処理のさらなる高速化につながる。 The flow line shaping unit 210 accepts the flow line route information of the flow line information in the information DB 102, and adds the shaped information to the flow line information as shaped flow line information. The flow line shaping unit 210 divides the series in the flow line route information into several chunks and converts them into shorter route information. For example, in FIG. 4B, the series information of the area through which the customer passed is converted into location information in the store (a label indicating the area name). In the example shown in FIG. 4B, area 0 corresponds to the entrance, areas 1, 2, and 3 correspond to the left aisle, and area 4 corresponds to the upper left. In this case, the shaped flow line information is "entrance → left aisle → upper left → left aisle → entrance", and it can be seen that it has been converted into shorter route information compared to when the series is expressed by numbers. This improves the readability of the flow line route information and shortens the length of the series information, making it possible to speed up the similarity calculation process. In the second embodiment, the similarity calculation unit 110 described in the first embodiment uses reshaped flow line information instead of flow line route information as information representing the flow line shape in the process of calculating the similarity. As described above, the flow line reshaping unit 210 divides the series of flow line route information in the flow line information into area units and converts it into reshaped route information on the area. Note that in the reshaped route information, a pattern of a continuous/overlapping sequence of the same area may be converted into a single pattern by deleting the overlaps (for example, converting area ABABAB to area AB). This leads to further speeding up the calculation process.
図9は、第2実施形態の分析装置100による分析処理の流れを示すフローチャートである。第2実施形態では、ステップS100の前にステップS200及びステップS202を実行する。 FIG. 9 is a flowchart showing the flow of analysis processing by the analysis device 100 of the second embodiment. In the second embodiment, steps S200 and S202 are executed before step S100.
ステップS200において、CPU11は、動線整形部210として、動線情報における動線経路情報の系列をエリアの単位に分割し、エリア上の整形経路情報に変換する。ステップS200を処理後、ステップS202に遷移する。 In step S200, the CPU 11, as the movement line shaping unit 210, divides the sequence of movement line route information in the movement line information into area units and converts it into shaped route information on the area. After processing step S200, the process proceeds to step S202.
ステップS202において、CPU11は、動線整形部210として、変換した整形経路情報を動線情報に追加して、情報DB102に格納する。 In step S202, the CPU 11, functioning as the traffic line shaping unit 210, adds the converted shaped route information to the traffic line information and stores it in the information DB 102.
ステップS100以降は、第1実施形態と同様であるが、類似度計算に整形経路情報を用いる点が第1実施形態と異なる。 Step S100 and subsequent steps are the same as in the first embodiment, but differ from the first embodiment in that shaped path information is used to calculate the similarity.
以上説明したように第2実施形態の分析装置100によれば、顧客の購買及び動線の特性を考慮した分析において、類似度計算処理の高速化を可能とする。 As described above, the analysis device 100 of the second embodiment makes it possible to speed up the similarity calculation process in an analysis that takes into account the characteristics of customer purchases and traffic patterns.
[第3実施形態]
図10に示すように、第3実施形態の分析装置100には、類似度計算部110の前処理部として、抽出部310を更に含む。第3実施形態の分析装置100は、情報DB102と、動線整形部210と、抽出部310と、類似度計算部110と、表示部112とを含んで構成されている。抽出部310では、動線経路情報又は整形経路情報を抽出する場合が想定されるが、以下では動線経路情報を抽出する場合を例に説明する。また、類似度計算部110では、絞り込んだ代表的な動線経路情報と整形経路情報とをそれぞれ用いて類似度計算を行ってもよい。動線経路情報及び整形経路情報が本開示の動線の経路に関する情報の一例である。
[Third embodiment]
As shown in FIG. 10, the analysis device 100 of the third embodiment further includes an extraction unit 310 as a pre-processing unit of the similarity calculation unit 110. The analysis device 100 of the third embodiment is configured to include an information DB 102, a flow line shaping unit 210, an extraction unit 310, a similarity calculation unit 110, and a display unit 112. The extraction unit 310 is assumed to extract flow line route information or shaped route information, but the following description will be given taking the case of extracting flow line route information as an example. In addition, the similarity calculation unit 110 may perform similarity calculation using the narrowed down representative flow line route information and shaped route information, respectively. The flow line route information and shaped route information are examples of information related to the flow line route of the present disclosure.
抽出部310は、動線情報に含まれる動線経路情報から、代表的な動線経路情報を抽出して、類似度計算部110に出力する。又は、抽出部310は、動線情報の複数の動線経路情報を代表的な動線経路情報に変換した上で、動線情報を類似度計算部110に出力する。 The extraction unit 310 extracts representative movement line route information from the movement line route information included in the movement line information, and outputs the representative movement line route information to the similarity calculation unit 110. Alternatively, the extraction unit 310 converts multiple pieces of movement line route information in the movement line information into representative movement line route information, and outputs the movement line information to the similarity calculation unit 110.
主要動線の抽出方法としては、例えば頻出する経路を主要な動線と判断する方法が考えられる。また、K-medoidsなどのクラスタリング手法によって、多数の動線経路情報を分割し、代表的な動線(主要動線)を分割群ごとに抽出する方法が考えられる。 One possible method for extracting the main traffic lines is to determine which routes appear frequently as the main traffic lines. Another possible method is to use a clustering method such as K-medoids to divide a large amount of traffic line route information and extract representative traffic lines (main traffic lines) for each divided group.
図11は、第3実施形態の分析装置100による分析処理の流れを示すフローチャートである。第3実施形態では、ステップS100の後にステップS300を実行する。 FIG. 11 is a flowchart showing the flow of analysis processing by the analysis device 100 of the third embodiment. In the third embodiment, step S300 is executed after step S100.
ステップS300において、CPU11は、抽出部310として、動線情報に含まれる動線経路情報から、代表的な動線経路情報を抽出して、次のステップ102を処理する類似度計算部110に出力する。 In step S300, the CPU 11, functioning as the extraction unit 310, extracts representative movement line route information from the movement line route information included in the movement line information, and outputs the representative movement line route information to the similarity calculation unit 110, which processes the next step 102.
以上説明したように第3実施形態の分析装置100によれば、顧客の購買及び動線の特性を考慮した分析において、経路の絞り込みによる類似度計算処理の高速化を可能とする。 As described above, the analysis device 100 of the third embodiment makes it possible to speed up the similarity calculation process by narrowing down the routes in an analysis that takes into account the characteristics of customer purchases and traffic lines.
[第4実施形態]
図12に示すように、第4実施形態の分析装置100には、クラスタリング部410と、表示部112に代えてクラスタ表示部412を更に含む。第4実施形態は、類似度計算部110とクラスタ表示部412の間にクラスタリング部410の処理が配される。
[Fourth embodiment]
12 , the analysis device 100 of the fourth embodiment further includes a clustering unit 410 and a cluster display unit 412 instead of the display unit 112. In the fourth embodiment, the processing of the clustering unit 410 is disposed between the similarity calculation unit 110 and the cluster display unit 412.
クラスタリング部410は、類似度計算部110から受け付けた動線間の類似度に基づいて、所定のクラスタリング手法に従って、複数の類似動線を分類し、動線をクラスタリングする。なお、クラスタリング部410が受け付けるのは、上述した(a)、(b)に関する動線形状による類似度と、(c)に関する購買傾向による類似度の両方である。上述した実施形態と異なり、複数類似動線をまとめることで、ユーザである運営者が確認すべき対象を減らし、負担を低減できる。 The clustering unit 410 classifies multiple similar movement lines according to a predetermined clustering method based on the similarity between the movement lines received from the similarity calculation unit 110, and clusters the movement lines. Note that the clustering unit 410 receives both the similarity based on the movement line shapes related to (a) and (b) above, and the similarity based on the purchasing tendency related to (c). Unlike the above-mentioned embodiment, by grouping multiple similar movement lines, the number of objects that the user/administrator needs to check can be reduced, reducing the burden.
クラスタリング部410のクラスタリング手法について説明する。クラスタリング部410は、動線形状と購買傾向それぞれで、類似度に基づきクラスタリングを行う。例えばクラスタリング手法は、K-medoidsなどの非階層型クラスタリングや、Ward法などの階層型クラスタリングを用いる。これにより、各動線は動線形状に基づくクラスタ(以下、動線形状クラスタ1~M)と、購買傾向に基づくクラスタ(購買クラスタ1~N)とのそれぞれに属することになる。例えば動線形状クラスタ1は店舗内時計回りの動線がまとまった群、2は反時計回りの動線がまとまった群・・・、というような分類となることが期待できる。また購買クラスタに関しては、購買クラスタ1がお茶関連商品を単品購入している動線がまとまった群、購買クラスタ2が主食類を購入している動線・・・、というような分類となることが期待できる。時計回りで、かつお茶関連商品を単品購入している動線は、動線形状クラスタ1かつ購買クラスタ1に所属することとなる。 The clustering method of the clustering unit 410 will be explained. The clustering unit 410 performs clustering based on the similarity of the movement line shape and the purchasing tendency. For example, the clustering method uses non-hierarchical clustering such as K-medoids or hierarchical clustering such as Ward's method. As a result, each movement line belongs to a cluster based on the movement line shape (hereinafter, movement line shape clusters 1 to M) and a cluster based on the purchasing tendency (purchase clusters 1 to N). For example, it is expected that movement line shape cluster 1 will be a group of movement lines moving clockwise in the store, 2 will be a group of movement lines moving counterclockwise, etc. Regarding the purchasing clusters, it is expected that the classification will be such that purchasing cluster 1 is a group of movement lines that purchase tea-related products individually, purchasing cluster 2 is a group of movement lines that purchase staple foods, etc. A movement line that is clockwise and purchases tea-related products individually will belong to movement line shape cluster 1 and purchasing cluster 1.
また、購買傾向のクラスタリングでは、品数ごとにクラスタリングが可能である。購買のクラスタリングを行う際は、情報DB102から動線に紐づいた購買情報を取得し、取得した購買情報の品数ごとにクラスタリングを行なってもよい。これによって、単品購買での購買クラスタ、二品購買での購買クラスタ、といったように、購買品数ごとのクラスタが生成され、購買傾向がより明確に把握しやすくなる。 In addition, when clustering purchasing trends, clustering by number of items is possible. When clustering purchases, purchasing information linked to movement lines may be obtained from information DB 102, and clustering may be performed by number of items in the obtained purchasing information. This creates clusters by number of items purchased, such as a purchasing cluster for a single item purchase and a purchasing cluster for a two-item purchase, making it easier to grasp purchasing trends more clearly.
クラスタ表示部412は、クラスタリング部410のクラスタリング結果に基づいて二次元上にクラスタを配置し、購買情報を対応づけて提示する。まず、クラスタ表示部412は、クラスタリング部410から取得した各動線が属する動線形状クラスタと購買クラスタとに基づき、それぞれのクラスタを組み合わせて動線を分類する。そしてさらに、クラスタに分類した動線を、動線形状クラスタを表す軸と購買クラスタを表す軸との二軸からなる図上に表示する。 The cluster display unit 412 arranges clusters in a two-dimensional space based on the clustering results of the clustering unit 410, and presents them in association with purchasing information. First, the cluster display unit 412 classifies the movement lines by combining each cluster based on the movement line shape cluster and purchase cluster to which each movement line belongs, obtained from the clustering unit 410. Then, the movement lines classified into clusters are displayed on a diagram consisting of two axes, an axis representing the movement line shape cluster and an axis representing the purchase cluster.
図13は、動線形状クラスタを表す軸と購買クラスタを表す軸の一例を示す図である。図13における横軸は各購買クラスタを示し、縦軸は動線形状クラスタを示す。各動線は、購買クラスタと動線クラスタのそれぞれに属するので、属するクラスタの組み合わせに基づいて分類し、表示することが可能である。図13における各円は、各動線形状クラスタ(1~M)と購買クラスタ(1~N)に属する動線の数を表している。購買クラスタ1は(お茶類)、購買クラスタ2は(主食類)、購買クラスタ3は(炭酸類)の購買情報が示される。(a)の円に着目すると、動線形状クラスタ3に属し、かつ購買クラスタ1に属する動線の群を表している。また、第1実施形態と同じく、クラスタの組み合わせに属する動線に紐づいたオーダー数、及び購買単価をそれぞれ円の大きさと色で表してもよい。このように、クラスタリング部410とクラスタ表示部412によって、複数の類似した動線をまとめることができ、さらに、動線形状と購買傾向の両方から動線の傾向を把握することができる。 13 is a diagram showing an example of an axis representing a flow line shape cluster and an axis representing a purchase cluster. The horizontal axis in FIG. 13 indicates each purchase cluster, and the vertical axis indicates the flow line shape cluster. Since each flow line belongs to each purchase cluster and flow line cluster, it is possible to classify and display based on the combination of clusters to which it belongs. Each circle in FIG. 13 indicates the number of flow lines belonging to each flow line shape cluster (1 to M) and purchase cluster (1 to N). Purchase information for purchase cluster 1 (tea), purchase cluster 2 (staple foods), and purchase cluster 3 (carbonated drinks) is shown. Focusing on the circle in (a), it represents a group of flow lines belonging to flow line shape cluster 3 and purchase cluster 1. Also, as in the first embodiment, the number of orders and the purchase unit price linked to the flow lines belonging to the combination of clusters may be represented by the size and color of the circle, respectively. In this way, the clustering unit 410 and the cluster display unit 412 can group multiple similar flow lines together, and further, the tendency of the flow lines can be understood from both the flow line shape and the purchase tendency.
図14は、第4実施形態の分析装置100による分析処理の流れを示すフローチャートである。第4実施形態では、ステップS102の後にステップS400を実行する。 FIG. 14 is a flowchart showing the flow of analysis processing by the analysis device 100 of the fourth embodiment. In the fourth embodiment, step S400 is executed after step S102.
ステップS400において、CPU11は、クラスタリング部410として、受け付けた動線間の類似度に基づいて、所定のクラスタリング手法に従って、複数の類似動線を分類し、動線をクラスタリングする。 In step S400, the CPU 11, as the clustering unit 410, classifies a plurality of similar movement paths based on the similarity between the received movement paths according to a predetermined clustering method, and clusters the movement paths.
ステップS402において、CPU11は、クラスタ表示部412として、クラスタリング結果に基づいて二次元上にクラスタを配置し、購買情報を対応づけて提示する。 In step S402, the CPU 11, as the cluster display unit 412, arranges clusters in a two-dimensional space based on the clustering results and presents them in association with purchasing information.
以上説明したように第4実施形態の分析装置100によれば、顧客の購買及び動線の特性を考慮した分析において、複数類似動線をまとめて提示し、ユーザの確認を容易にできる。 As described above, the analysis device 100 of the fourth embodiment can present multiple similar movements together in an analysis that takes into account the characteristics of customer purchases and movements, making it easy for the user to confirm.
[第5実施形態]
第5実施形態は、商品ベクトルを用いて購買傾向を計算する態様である。第5実施形態の構成は第1実施形態(又は第2~第4実施形態)と同様の構成とすることができる。
[Fifth embodiment]
The fifth embodiment is an aspect in which a purchasing tendency is calculated using a product vector. The configuration of the fifth embodiment can be the same as that of the first embodiment (or the second to fourth embodiments).
第5実施形態の類似度計算部110は、商品ベクトルを、購買情報から得られる商品と当該商品の他商品との併売傾向に基づいて計算する。類似度計算部110は、各購買に含まれる商品の商品ベクトルの和をとることで各購買の購買傾向を計算する。 The similarity calculation unit 110 of the fifth embodiment calculates the product vector based on the product's tendency to be sold together with other products obtained from the purchase information. The similarity calculation unit 110 calculates the purchasing tendency of each purchase by taking the sum of the product vectors of the products included in each purchase.
本実施形態で示す方法でベクトルを生成すれば、商品の買い方に基づいた購買傾向を捉えることができる。本実施形態では、各商品が併売されやすい他商品の特徴を元にして、まず商品ベクトルを生成し、商品ベクトルの組み合わせによって購買ベクトルの生成を行う。例えば、「パン」が、過去に「お茶」とは1回、「ミルク」とは5回併売されていた場合、パンのベクトルを「0,1,5」とする。ベクトルの各成分は、過去にパンと同時されたパン、お茶、ミルクの個数を表す。この際、ベクトルのノルムが1となるように正規化してもよい。 By generating vectors using the method shown in this embodiment, it is possible to capture purchasing trends based on how products are purchased. In this embodiment, product vectors are first generated based on the characteristics of other products that are likely to be sold together with each product, and purchase vectors are generated by combining the product vectors. For example, if "bread" has been sold together with "tea" once and with "milk" five times in the past, the bread vector will be "0, 1, 5". Each component of the vector represents the number of pieces of bread, tea, and milk that have been sold together with bread in the past. At this time, the vector may be normalized so that its norm is 1.
また小売店舗では、単品購入される商品も多く、そのような商品特徴を表すため、ベクトルの中に「単品購入された回数」という成分を含んでも良い。このようなやり方にでは、似たような商品と併売される商品は、類似したベクトルで表されるため、既存の商品カテゴリより上位の「主食」「副菜」といった意味付けが可能である。こうして商品ごとに生成した商品ベクトルに基づいて、ある購買に含まれる商品の商品ベクトルを合算することで、購買ベクトルを生成する。第5実施形態では、類似度計算部110は、以上のように計算した購買ベクトルを用いて、上述した(c):購買傾向による距離の計算を行えばよい。 Furthermore, in retail stores, many products are purchased individually, and in order to represent such product features, a component of "number of times purchased individually" may be included in the vector. In this way, products that are sold alongside similar products are represented by similar vectors, making it possible to give them a higher meaning than existing product categories, such as "staple food" or "side dish." Based on the product vectors generated for each product in this way, a purchase vector is generated by adding up the product vectors of products included in a purchase. In the fifth embodiment, the similarity calculation unit 110 uses the purchase vectors calculated as above to perform the above-mentioned (c): distance based on purchasing tendency calculation.
以上説明したように第5実施形態の分析装置100によれば、商品の併売傾向を反映した購買傾向を計算し、動線間の類似度の計算に用いることができる。 As described above, the analysis device 100 of the fifth embodiment can calculate purchasing trends that reflect the tendency of products to be sold together, and can use this to calculate the similarity between traffic patterns.
[第6実施形態]
第6実施形態は、クラスタリング結果を用いて動線形状と購買傾向の関係の強さを評価する態様である。第6実施形態の構成は第4実施形態と同様の構成とすることができる。
Sixth Embodiment
The sixth embodiment is an aspect in which the strength of the relationship between the flow line shape and the purchasing tendency is evaluated using the clustering result. The configuration of the sixth embodiment can be the same as that of the fourth embodiment.
第6実施形態では、クラスタリング部410は、第4実施形態でのクラスタリング結果を用いて、動線形状と購買傾向の関係の強さを、相互情報量を指標として評価し、当該評価値に基づいて動線の各クラスタへの分類、及びクラスタリングのパラメータ(クラスタ数)を最適化する。相互情報量は、2つの変数の相互依存の尺度である。動線形状と購買傾向を変数として、この指標を最大にするようにクラスタ分類し、クラスタ分類の結果を提示すれば、この二つの関係をより明確に示せる期待できる。 In the sixth embodiment, the clustering unit 410 uses the clustering results from the fourth embodiment to evaluate the strength of the relationship between the shape of traffic flow and purchasing tendency using mutual information as an index, and optimizes the classification of traffic flow into clusters and the clustering parameters (number of clusters) based on the evaluation value. Mutual information is a measure of the interdependence of two variables. By classifying traffic flow shapes and purchasing tendency as variables into clusters to maximize this index, and presenting the results of the cluster classification, it is expected that the relationship between the two can be shown more clearly.
例えば、動線の各クラスタへの分類の仕方を最適化する方法を説明する。動線の数をNdとして、Nd個の動線を動線形状に基づきM個のクラスタに分類するケースを考える。なお、購買傾向については既にN個のクラスタに分類されているとする。ある動線が属する動線形状クラスタを確率変数X(x∈{1,2,…,M)、購買傾向クラスタをY(y∈{1,2,…,N)とし、Nd個の動線をM×Nのクラスタで分割したヒストグラムを正規化し、確率分布として捉える。こうすることで、動線形状Xの確率分布P(X)、購買傾向Yの確率分布P(Y)、それらの同時分布P(X,Y)が求められ、さらにXとYの間の相互情報量I(X;Y)を求めることができる。Nd個の動線をM個のクラスタに分類する組み分けパターンそれぞれで上記相互情報量を計算し、最も相互情報量が高いパターンで最終的な分類を行う。 For example, a method for optimizing the classification of movement lines into each cluster will be described. Consider a case where the number of movement lines is Nd, and the Nd movement lines are classified into M clusters based on the movement line shape. It is assumed that the purchasing tendency has already been classified into N clusters. The movement line shape cluster to which a certain movement line belongs is a random variable X (x∈{1, 2, ..., M), and the purchasing tendency cluster is Y (y∈{1, 2, ..., N). The histogram obtained by dividing the Nd movement lines into M x N clusters is normalized and captured as a probability distribution. In this way, the probability distribution P(X) of the movement line shape X, the probability distribution P(Y) of the purchasing tendency Y, and their joint distribution P(X, Y) can be obtained, and further the mutual information I(X; Y) between X and Y can be obtained. The mutual information is calculated for each grouping pattern that classifies the Nd movement lines into M clusters, and the final classification is performed using the pattern with the highest mutual information.
図15は、組み分けパターンAと組み分けパターンBで相互情報量を分割した図である。図16は、組み分けパターンAと組み分けパターンBのそれぞれのヒストグラムを比較した図である。なお、図16の括弧内はヒストグラムを確率分布として捉えた時の同時確率を表す。組み分けパターンAの相互情報量は0.53、組み分けパターンBの相互情報量は0.17となるため、組み分けパターンAを選択する。この方法により、動線形状と購買傾向の関係が明確になるようなクラスタ分類が可能になる。 Figure 15 is a diagram showing the division of mutual information between grouping patterns A and B. Figure 16 is a diagram comparing the histograms of grouping patterns A and B. Note that the figures in parentheses in Figure 16 represent the joint probability when the histograms are viewed as a probability distribution. Since the mutual information of grouping pattern A is 0.53 and the mutual information of grouping pattern B is 0.17, grouping pattern A is selected. This method makes it possible to perform cluster classification that clearly reveals the relationship between traffic flow patterns and purchasing trends.
上記の例では、購買傾向については既にクラスタ分類が行われており、動線傾向の分類について最適化を行う例を示したが、これは逆であってもよい。または両方が決まっておらず、MとNの全パターンについて相互情報量の値に基づいて最適な分類パターンを探索してもよい。 In the above example, purchasing trends have already been classified into clusters, and optimization is performed on the classification of movement line trends, but this can be reversed. Alternatively, both may not be determined, and the optimal classification pattern may be searched for based on the mutual information value for all patterns of M and N.
続いて、クラスタ数MとNを最適化する例を説明する。MとNの値を変えて既存のクラスタリングを行い、そのクラスタリング結果に基づいて、上記の方法で相互情報量を計算する。その中で、MとNを増やしても大きく相互情報量が増えなくなる箇所を探し、探索した点におけるMとNの値をそれらのパラメータの最終的な値として設定する。以上のようにすることで、動線傾向と購買傾向の関係を明確化しながらも、運営者が確認すべきクスタの数の増加を抑制することができ、運営者の負担を低減できる。 Next, an example of optimizing the number of clusters M and N will be explained. Existing clustering is performed by changing the values of M and N, and the mutual information is calculated using the above method based on the clustering results. Within that, a point is found where increasing M and N does not significantly increase the mutual information, and the values of M and N at this point are set as the final values of those parameters. By doing the above, it is possible to clarify the relationship between movement patterns and purchasing trends while suppressing an increase in the number of clusters that the operator must check, reducing the burden on the operator.
以上説明したように第6実施形態の分析装置100によれば、ユーザが確認すべきクラスタ数を抑制することができる。 As described above, the analysis device 100 of the sixth embodiment can reduce the number of clusters that the user needs to check.
なお、上記各実施形態でCPUがソフトウェア(プログラム)を読み込んで実行した分析処理を、CPU以外の各種のプロセッサが実行してもよい。この場合のプロセッサとしては、FPGA(Field-Programmable Gate Array)等の製造後に回路構成を変更可能なPLD(Programmable Logic Device)、GPU(Graphics Processing Unit)、及びASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が例示される。また、分析処理を、これらの各種のプロセッサのうちの1つで実行してもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGA、及びCPUとFPGAとの組み合わせ等)で実行してもよい。また、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。 In addition, the analysis process that the CPU reads and executes the software (program) in each of the above embodiments may be executed by various processors other than the CPU. Examples of processors in this case include PLDs (Programmable Logic Devices) whose circuit configuration can be changed after manufacture, such as FPGAs (Field-Programmable Gate Arrays), GPUs (Graphics Processing Units), and dedicated electric circuits that are processors having a circuit configuration designed specifically to execute specific processes, such as ASICs (Application Specific Integrated Circuits). In addition, the analysis process may be executed by one of these various processors, or by a combination of two or more processors of the same or different types (for example, multiple FPGAs, and a combination of a CPU and an FPGA, etc.). More specifically, the hardware structure of these various processors is an electrical circuit that combines circuit elements such as semiconductor devices.
また、上記各実施形態では、分析プログラムがストレージ14に予め記憶(インストール)されている態様を説明したが、これに限定されない。プログラムは、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の非一時的(non-transitory)記憶媒体に記憶された形態で提供されてもよい。また、プログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。 In addition, in each of the above embodiments, the analysis program is described as being pre-stored (installed) in the storage 14, but this is not limiting. The program may be provided in a form stored in a non-transitory storage medium such as a CD-ROM (Compact Disk Read Only Memory), a DVD-ROM (Digital Versatile Disk Read Only Memory), or a USB (Universal Serial Bus) memory. The program may also be downloaded from an external device via a network.
以上の実施形態に関し、更に以下の付記を開示する。 The following notes are further provided with respect to the above embodiment.
(付記項1)
メモリと、
前記メモリに接続された少なくとも1つのプロセッサと、
を含み、
前記プロセッサは、
顧客ごとの購買情報及び動線情報を受け付け、前記動線情報から得られる動線形状と、前記購買情報から得られる購買傾向とに基づいて、動線の各々の組み合わせについて動線間の類似度を計算する、
ように構成されている分析装置。
(Additional Note 1)
Memory,
at least one processor coupled to the memory;
Including,
The processor,
receiving purchase information and flow line information for each customer, and calculating a similarity between flow lines for each combination of flow lines based on a flow line shape obtained from the flow line information and a purchasing tendency obtained from the purchase information;
The analytical device is configured to:
(付記項2)
分析処理を実行するようにコンピュータによって実行可能なプログラムを記憶した非一時的記憶媒体であって、
顧客ごとの購買情報及び動線情報を受け付け、前記動線情報から得られる動線形状と、前記購買情報から得られる購買傾向とに基づいて、動線の各々の組み合わせについて動線間の類似度を計算する、
非一時的記憶媒体。
(Additional Note 2)
A non-transitory storage medium storing a program executable by a computer to perform an analysis process,
receiving purchase information and flow line information for each customer, and calculating a similarity between flow lines for each combination of flow lines based on a flow line shape obtained from the flow line information and a purchasing tendency obtained from the purchase information;
Non-transitory storage media.
100 分析装置
102 情報DB
110 類似度計算部
112 表示部
210 動線整形部
310 抽出部
410 クラスタリング部
412 クラスタ表示部
100 Analyzer 102 Information DB
110 Similarity calculation unit 112 Display unit 210 Flow line shaping unit 310 Extraction unit 410 Clustering unit 412 Cluster display unit
Claims (8)
を含む分析装置。 a similarity calculation unit that receives purchase information and flow line information for each customer, and calculates a similarity between flow lines for each combination of flow lines based on a flow line shape obtained from the flow line information and a purchase tendency obtained from the purchase information;
An analytical device comprising:
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/011313 WO2024195063A1 (en) | 2023-03-22 | 2023-03-22 | Analysis device |
| JP2025508030A JPWO2024195063A1 (en) | 2023-03-22 | 2023-03-22 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/011313 WO2024195063A1 (en) | 2023-03-22 | 2023-03-22 | Analysis device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2024195063A1 true WO2024195063A1 (en) | 2024-09-26 |
Family
ID=92841468
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2023/011313 Pending WO2024195063A1 (en) | 2023-03-22 | 2023-03-22 | Analysis device |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JPWO2024195063A1 (en) |
| WO (1) | WO2024195063A1 (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030055707A1 (en) * | 1999-09-22 | 2003-03-20 | Frederick D. Busche | Method and system for integrating spatial analysis and data mining analysis to ascertain favorable positioning of products in a retail environment |
| JP2015166983A (en) * | 2014-03-04 | 2015-09-24 | 日本電信電話株式会社 | Moving locus analysis apparatus and method |
| WO2018061623A1 (en) * | 2016-09-30 | 2018-04-05 | パナソニックIpマネジメント株式会社 | Evaluation device and evaluation method |
| WO2018131214A1 (en) * | 2017-01-13 | 2018-07-19 | パナソニックIpマネジメント株式会社 | Prediction device and prediction method |
-
2023
- 2023-03-22 WO PCT/JP2023/011313 patent/WO2024195063A1/en active Pending
- 2023-03-22 JP JP2025508030A patent/JPWO2024195063A1/ja active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030055707A1 (en) * | 1999-09-22 | 2003-03-20 | Frederick D. Busche | Method and system for integrating spatial analysis and data mining analysis to ascertain favorable positioning of products in a retail environment |
| JP2015166983A (en) * | 2014-03-04 | 2015-09-24 | 日本電信電話株式会社 | Moving locus analysis apparatus and method |
| WO2018061623A1 (en) * | 2016-09-30 | 2018-04-05 | パナソニックIpマネジメント株式会社 | Evaluation device and evaluation method |
| WO2018131214A1 (en) * | 2017-01-13 | 2018-07-19 | パナソニックIpマネジメント株式会社 | Prediction device and prediction method |
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2024195063A1 (en) | 2024-09-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10860634B2 (en) | Artificial intelligence system and method for generating a hierarchical data structure | |
| JP2015041121A (en) | Sales forecast system and sales forecast method | |
| Nassibi et al. | Demand forecasting models for food industry by utilizing machine learning approaches | |
| HK1209867A1 (en) | Customer data analysis system | |
| CN102254338B (en) | Automatic obtaining method of three-dimensional scene optimal view angle based on maximized visual information | |
| US20160019626A1 (en) | Clothing Fitting System | |
| Hong et al. | Development of a new knowledge-based fabric recommendation system by integrating the collaborative design process and multi-criteria decision support | |
| KR20160010756A (en) | Online Shopping system having a shopping-analyzing function and method for shopping-analyzing | |
| JP5391637B2 (en) | Data similarity calculation system, data similarity calculation method, and data similarity calculation program | |
| Wikamulia et al. | Predictive business intelligence dashboard for food and beverage business | |
| JP6161180B1 (en) | Information processing system, information processing apparatus, information processing method, and information processing program | |
| WO2024195063A1 (en) | Analysis device | |
| JP6676993B2 (en) | Information providing apparatus, information providing method, and program | |
| CN112308666A (en) | Method and system for recommending online shopping mall commodities | |
| Cho et al. | Clustering method using weighted preference based on RFM score for personalized recommendation system in u-commerce | |
| JP5092106B1 (en) | Trading judgment program, trading judgment system and trading judgment method | |
| JP7189277B1 (en) | Provision device, provision method, and provision program | |
| Robo et al. | The Application of Customers Segmentation Using RFM Analysis Method and K-Means Clustering to Improve Marketing Strategy | |
| Desmet | Buying behavior study with basket analysis: pre-clustering with a Kohonen map | |
| JP6449578B2 (en) | Purchase forecast analysis system and program thereof | |
| Cho et al. | Effective purchase pattern mining with weight based on FRAT analysis for recommender in e-commerce | |
| KR20220076392A (en) | A System and Method for Visualizing Analysing Result of Time Serise Data | |
| Carrega et al. | Data Streams for Unsupervised Analysis of Company Data | |
| JP6274471B1 (en) | Information processing system, information processing apparatus, information processing method, and information processing program | |
| CN117952654B (en) | Commercial big data analysis system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23928643 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2025508030 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2025508030 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |