WO2024181845A1 - Method and system for analyzing vaginal discharge of women of childbearing age and pregnant women - Google Patents
Method and system for analyzing vaginal discharge of women of childbearing age and pregnant women Download PDFInfo
- Publication number
- WO2024181845A1 WO2024181845A1 PCT/KR2024/095411 KR2024095411W WO2024181845A1 WO 2024181845 A1 WO2024181845 A1 WO 2024181845A1 KR 2024095411 W KR2024095411 W KR 2024095411W WO 2024181845 A1 WO2024181845 A1 WO 2024181845A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vaginal
- subject
- women
- vaginal discharge
- childbearing age
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/20—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for electronic clinical trials or questionnaires
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/60—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Definitions
- the present invention relates to a method and system for analyzing vaginal secretions of women of childbearing age and pregnant women, and more specifically, to a method and system for analyzing vaginal secretions of women of childbearing age and pregnant women, including adolescents, which can provide information for appropriate health management according to the pathological condition of the vaginal secretions by analyzing the color, viscosity, amount, etc. of the vaginal secretions of women of childbearing age and pregnant women.
- Vaginal discharge in women is a normal physiological phenomenon that plays an important role in preventing damage to the skin of the vagina and vulva due to external friction and maintaining an acidic environment inside the vagina to prevent the growth of external pathogens.
- vaginal discharge differs from normal vaginal discharge in terms of amount, color, viscosity, odor, etc., so the state of the subject's vaginal health can be determined based on the state of the vaginal discharge.
- vaginal discharge it is difficult to accurately determine the health of the vagina based on vaginal discharge because the normal vaginal discharge of a woman of childbearing age is different from that of a pregnant woman.
- a tool before visiting a hospital and receiving specialist treatment, a tool is needed that can help women of childbearing age, including adolescents, postpartum and postpartum women, and pregnant women to easily analyze the condition of vaginal discharge and screen their own vaginal health, thereby enabling appropriate early treatment.
- the purpose is to provide a method and system for analyzing vaginal secretions of women of childbearing age and pregnant women, including adolescents, which can provide information for appropriate vaginal health management according to the pathological state of the vaginal secretions through analysis of the color, viscosity, amount, etc. of the vaginal secretions of women of childbearing age and pregnant women.
- a system for analyzing vaginal secretions of women of childbearing age and pregnant women includes an input unit for receiving basic information, symptom information, and image data of vaginal secretions of a subject according to a preset order, a preprocessing unit for preprocessing the data input by the input unit, an analysis unit for analyzing the data preprocessed in the preprocessing unit using a pre-learned deep learning model to classify the color, amount, and viscosity of the vaginal secretions, and an output unit for outputting the analysis results of the vaginal secretions analyzed by the analysis unit.
- the method for analyzing vaginal discharge of women of childbearing age and pregnant women includes a step of receiving basic information, symptom information, and image data of vaginal discharge of the subject according to a preset order, a step of preprocessing the data input by the step of receiving the image data, a step of analyzing the preprocessed data by the step of preprocessing using a pre-trained deep learning model to classify the color, amount, and viscosity of the vaginal discharge, and a step of outputting the results analyzed by the step of analyzing the data.
- the present invention by providing feedback on mild vaginitis treatable through improvement of lifestyle habits and vaginitis requiring treatment to women of childbearing age and pregnant women who frequently have increased vaginal discharge and require improvement through management of vaginal discharge, it is possible to effectively manage the management of the subjects' vaginal discharge and thereby help promote women's health.
- FIG. 1 is a diagram illustrating the configuration of a system for analyzing vaginal secretions of women of childbearing age and pregnant women according to one embodiment of the present invention.
- Figure 2 is a flow chart of a method for analyzing vaginal secretions of women of childbearing age and pregnant women according to one embodiment of the present invention.
- Figure 3 is a flowchart of a process in which an input unit receives basic information of a subject according to one embodiment of the present invention.
- FIG. 1 is a diagram illustrating the configuration of a system for analyzing vaginal secretions of women of childbearing age and pregnant women according to one embodiment of the present invention.
- the vaginal secretion analysis system (100) of women of childbearing age and pregnant women includes an input unit (110), a preprocessing unit (120), an analysis unit (130), and an output unit (140).
- the input unit (110) receives the subject's basic information, symptom information, and image data of vaginal discharge according to a preset order.
- the basic information of the subject being entered includes the subject's identification information (name, ID, etc.), date of birth, and pregnancy status.
- the input unit (110) can additionally receive basic information of the subject depending on whether the subject is pregnant, and can classify the subject based on the received basic information.
- the input unit (110) additionally receives input from the subject regarding the number of weeks of pregnancy, whether or not she has undergone a cervical cancer test, and whether or not she has been vaccinated against cervical cancer.
- the subject can input the expected date of delivery or the subject's last menstruation, or the date of delivery if the subject has already given birth, instead of the number of weeks of pregnancy, and the input unit (110) can automatically calculate the expected date of delivery or the number of days elapsed after giving birth based on the input last menstrual date.
- the input unit (110) additionally receives input from the subject regarding menstrual history, whether or not sexual intercourse occurred immediately before the examination, whether or not a cervical cancer test was performed, whether or not a cervical cancer vaccination was administered, and whether or not bleeding other than menstrual bleeding occurred.
- menstrual history may include whether the subject has had menstruation, the menstrual cycle, and the regularity of the menstrual cycle.
- the subject's symptom information includes whether the subject's vaginal discharge has an odor and whether the subject experiences itching of the vulva.
- the type of odor can be classified into preset types (e.g., fishy odor, yeast odor, rotten meat odor), and the subject can input which category of odor the odor of the vaginal discharge is closest to.
- preset types e.g., fishy odor, yeast odor, rotten meat odor
- the image data of the vaginal discharge may be an image taken of the corresponding area of the panty liner stained with the subject's vaginal discharge, and at this time, a panty liner of a preset color (e.g., white) may be used to facilitate identification of the color, amount, and viscosity of the vaginal discharge through the image.
- a panty liner of a preset color e.g., white
- the preprocessing unit (120) preprocesses data received through the input unit (110).
- the preprocessing unit (120) performs preprocessing such as image resizing, image pixel normalization, and white balance correction (based on the color of the panty liner) on the image data of the input vaginal discharge.
- the analysis unit (130) analyzes the data preprocessed in the preprocessing unit (120) using a pre-learned deep learning model.
- the analysis unit (130) analyzes the image data of the vaginal discharge using a deep learning model to classify the color, amount, and viscosity of the vaginal discharge.
- the deep learning model is trained to classify the color of vaginal discharge into a predetermined number of colors (e.g., clear, white, yellow, green, pink, scarlet, and brown), the amount of vaginal discharge into a plurality of levels (e.g., levels 0 to 4), and the viscosity of vaginal discharge into a plurality of levels (e.g., levels 0 to 2).
- a predetermined number of colors e.g., clear, white, yellow, green, pink, scarlet, and brown
- the amount of vaginal discharge into a plurality of levels
- the viscosity of vaginal discharge into a plurality of levels
- the color of the vaginal discharge is classified as a color that includes red colors such as pink, scarlet, or brown, the subject is judged to be in a state where there is a possibility of bleeding.
- the analysis unit (130) can analyze the image classification result classified by the analysis unit (130) and the symptom information of the subject input by the input unit (110) according to the classification result of the subject classified by the input unit (110) to determine the quality of health of the subject.
- the output unit (140) outputs the analysis results of the vaginal secretions analyzed by the analysis unit (130).
- the output unit (140) outputs “the vaginal discharge is yellow, the amount is appropriate, and it has the appearance of a sticky runny nose.”
- the output unit (140) can output the subject's vaginal health status determined by the analysis unit (130) and an appropriate response based on the subject's vaginal health status.
- the subject's quality of health can be classified into a preset number of stages (e.g., stage 1 to stage 5) according to preset conditions.
- Figure 2 is a flow chart of a method for analyzing vaginal secretions of women of childbearing age and pregnant women according to one embodiment of the present invention.
- the input unit (110) receives the subject's basic information, symptom information, and image data of vaginal discharge according to a preset order (S210).
- the basic information of the subject being input may include the subject's identification information, date of birth, and pregnancy status, and depending on whether the subject is pregnant, additional basic information of the subject may be input, and the subject may be classified based on the input basic information.
- Figure 3 is a flowchart of a process in which an input unit receives basic information of a subject according to one embodiment of the present invention.
- the input unit (110) receives the subject's identification information and the subject's date of birth (S211).
- the subject's identification information may be the subject's real name or a nickname and ID arbitrarily set by the subject.
- the input unit (110) After entering the subject's identification information and date of birth, the input unit (110) receives input on whether the subject is pregnant (S212).
- the input unit (110) receives the subject's pregnancy weeks (S213).
- the input unit (110) can receive the expected date of birth or the date of the subject's last menstrual period instead of the number of weeks of pregnancy.
- the input unit (110) can receive the date of delivery in case of delivery.
- the input unit (110) can automatically calculate the predicted date of delivery or the number of days elapsed after delivery based on the input last menstrual date.
- the input unit (110) can enter whether a cervical cancer test has been performed and, if so, whether cervical cancer has been detected (S214).
- the input unit (110) After receiving input on whether or not to have a cervical cancer test and whether or not to have cervical cancer, the input unit (110) receives input on whether or not to have been vaccinated against cervical cancer (S215).
- the input unit (110) first receives input on whether the subject has had her first period, her menstrual cycle, and whether the menstrual cycle is regular (S216).
- the input unit (110) receives input on whether the subject has had sexual intercourse immediately before the test (S217).
- the input unit (110) can input whether or not you have had a cervical cancer test and, if so, whether or not you have had cervical cancer (S218).
- the input unit (110) After receiving input on whether or not to have a cervical cancer test and whether or not to have cervical cancer, the input unit (110) receives input on whether or not to have been vaccinated against cervical cancer (S219).
- the input unit (110) can classify the subject according to the result of the input.
- the input unit (110) receives the subject's symptom information and image data of vaginal discharge.
- symptom information includes whether the subject's vaginal discharge smells and whether the subject experiences itching of the vulva.
- the type of odor can be classified into preset types, and the subject can input which category of odor the odor of the vaginal discharge feels is closest to.
- the image data of the vaginal discharge may be an image taken of the corresponding area of the panty liner stained with the subject's vaginal discharge, and at this time, a panty liner of a preset color (e.g., white) may be used to facilitate identification of the color, amount, and viscosity of the vaginal discharge through the image, or an image may be used that has undergone preprocessing, such as white balance correction, based on the color of the panty liner.
- a panty liner of a preset color e.g., white
- the analysis unit (130) analyzes the data preprocessed in the preprocessing unit (120) using the pre-learned deep learning model (S230).
- the deep learning model can be trained in the following order.
- the data collected refers to a set of image data of vaginal discharge image data for a preset quantity and an image data set after a preset time has elapsed from the vaginal discharge image data.
- the image data is a file in which a rectangle is cropped on a panty liner and the color, amount, and viscosity of each image are labeled.
- EDA Exploratory Data Analysis
- the image data is resized to fit the system, the pixels of the image data are normalized, and the white balance is corrected based on the color of the panty liner.
- data can be increased by flipping the image data up/down, left/right, rotating it, etc., as needed.
- vaginal discharge data is trained through multi-classification and the model performance is evaluated through the F1 score.
- the analysis unit (130) analyzes image data of vaginal discharge to classify the color, amount, and viscosity of the vaginal discharge.
- the deep learning model is trained to classify the color of vaginal discharge into a predetermined number of colors (e.g., clear, white, yellow, green, pink, scarlet, and brown), the amount of vaginal discharge into a plurality of levels (e.g., levels 0 to 4), and the viscosity of vaginal discharge into a plurality of levels (e.g., levels 0 to 2).
- a predetermined number of colors e.g., clear, white, yellow, green, pink, scarlet, and brown
- the amount of vaginal discharge into a plurality of levels
- the viscosity of vaginal discharge into a plurality of levels
- the color of the vaginal discharge is classified as a color that includes red colors such as pink, scarlet, or brown, the subject is judged to be in a state where there is a possibility of bleeding.
- the analysis unit (130) can analyze the image classification result classified by the analysis unit (130) and the symptom information of the subject input by the input unit (110) according to the classification result of the subject classified by the input unit (110) to determine the quality of health of the subject.
- the output unit (140) outputs “the vaginal discharge is yellow, the amount is appropriate, and it has the appearance of a sticky runny nose.”
- the output unit (140) can output the subject's vaginal health status determined by the analysis unit (130) and an appropriate response based on the subject's vaginal health status.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Pathology (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Urology & Nephrology (AREA)
- Biochemistry (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Hematology (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
본 발명은 가임기 여성 및 산모의 질 분비물 분석 방법 및 시스템에 관한 것으로, 더욱 상세하게는 청소년을 포함한 가임기 여성 및 산모의 질 분비물의 색, 점도, 양 등에 대한 분석을 통해 질 분비물의 병적 상태에 따라 적절한 건강 관리를 위한 정보를 제공할 수 있는 가임기 여성 및 산모의 질 분비물 분석 방법 및 시스템에 관한 것이다.The present invention relates to a method and system for analyzing vaginal secretions of women of childbearing age and pregnant women, and more specifically, to a method and system for analyzing vaginal secretions of women of childbearing age and pregnant women, including adolescents, which can provide information for appropriate health management according to the pathological condition of the vaginal secretions by analyzing the color, viscosity, amount, etc. of the vaginal secretions of women of childbearing age and pregnant women.
여성의 질 분비물은 정상적인 생리현상 중의 하나로 질이나 외음부의 피부가 외부 마찰로 인해 손상되는 것을 방지하고, 질 내부 환경을 산성으로 유지하여 외부 병원균의 번식을 방지하는 중요한 역할을 한다.Vaginal discharge in women is a normal physiological phenomenon that plays an important role in preventing damage to the skin of the vagina and vulva due to external friction and maintaining an acidic environment inside the vagina to prevent the growth of external pathogens.
반면, 질염이 발생했을 때, 질 분비물은 양, 색, 점도, 냄새 등에서 정상적인 상태의 질 분비물과 차이가 발생하기에, 질 분비물의 상태에 따라 대상자의 질 건강의 상태를 파악할 수 있다.On the other hand, when vaginitis occurs, vaginal discharge differs from normal vaginal discharge in terms of amount, color, viscosity, odor, etc., so the state of the subject's vaginal health can be determined based on the state of the vaginal discharge.
이 중, 질분비물 중 붉은 색 계통의 경우 출혈 소견을 의심할 수 있는데 가임기 여성의 경우 생리주기에 따라 비정상적인 출혈인지 정상적인 생리인지 선별 가능할 것이며, 산모의 경우, 출산 전후 출혈의 양상에 따라 산모의 건강 상태를 선별 가능할 것이다. 출산 전의 경우 출혈이 소량이라도 진료의 필요성을 적극 권고하고, 출산 후에는 출혈양과 색에 따라 정상과 비정상 오로의 구분이 가능할 수 있다.Among these, in the case of red-colored vaginal discharge, bleeding findings can be suspected, and in the case of women of childbearing age, abnormal bleeding or normal menstruation can be determined based on the menstrual cycle, and in the case of pregnant women, the health status of the mother can be determined based on the pattern of bleeding before and after childbirth. Before childbirth, even if the bleeding is small, the need for treatment is strongly recommended, and after childbirth, it is possible to distinguish between normal and abnormal lochia based on the amount and color of bleeding.
하지만, 의학적 지식이 부족한 일반인의 경우 가임기 여성이나 의료 접근이 취약한 청소년의 경우 질 분비물의 상태를 제대로 파악하기 어려워 중증일 때 방치하거나 이상이 없는 상태임에도 병원에 가서 불필요한 지출이 발생하는 일도 빈번히 발생하고, 특히 분만 취약지 거주의 산모의 경우 질분비물 또는 출혈의 비정상적인 소견에 대한 선별이 제대로 이루어지지 않아 중증으로 진행되는 경우도 있다.However, in the case of the general public who lack medical knowledge, it is difficult to properly assess the condition of vaginal discharge in women of childbearing age or adolescents with poor access to medical care, so they often neglect it when it is severe or incur unnecessary expenses by going to the hospital even when there is no abnormality. In particular, in the case of mothers living in areas vulnerable to childbirth, there are cases where abnormal findings of vaginal discharge or bleeding are not properly screened, and the condition progresses to a severe state.
이 뿐 아니라, 일반적인 가임기 여성의 질 분비물과 임신한 여성의 질 분비물의 정상 상태가 달라 질 분비물에 따른 질 건강 상태를 정확히 판단하는 것이 어렵다.In addition, it is difficult to accurately determine the health of the vagina based on vaginal discharge because the normal vaginal discharge of a woman of childbearing age is different from that of a pregnant woman.
따라서, 병원 방문을 통한 전문의 진료 전에 청소년을 포함한 가임기 여성, 출산 전후 산모, 임신 여부에 따라 질 분비물의 상태를 간편하게 분석하여 대상자 스스로 질 건강 상태를 선별함으로써 적절한 조기 치료가 가능할 수 있게끔 보조해 줄 수 있는 도구가 필요하다.Therefore, before visiting a hospital and receiving specialist treatment, a tool is needed that can help women of childbearing age, including adolescents, postpartum and postpartum women, and pregnant women to easily analyze the condition of vaginal discharge and screen their own vaginal health, thereby enabling appropriate early treatment.
이와 같이 본 발명에 따르면, 청소년을 포함한 가임기 여성 및 산모의 질 분비물의 색, 점도, 양 등에 대한 분석을 통해 질 분비물의 병적 상태에 따라 적절한 질건강 관리를 위한 정보를 제공할 수 있는 가임기 여성 및 산모의 질 분비물 분석 방법 및 시스템을 제공하는데 목적이 있다.Thus, according to the present invention, the purpose is to provide a method and system for analyzing vaginal secretions of women of childbearing age and pregnant women, including adolescents, which can provide information for appropriate vaginal health management according to the pathological state of the vaginal secretions through analysis of the color, viscosity, amount, etc. of the vaginal secretions of women of childbearing age and pregnant women.
이러한 기술적 과제를 이루기 위한 본 발명의 실시예에 따르면, 가임기 여성 및 산모의 질 분비물 분석 시스템은, 기 설정된 순서에 따라 대상자의 기본정보, 증상정보 및 질 분비물의 이미지 데이터를 입력 받는 입력부, 상기 입력부에 의해 입력된 데이터를 전처리하는 전처리부, 기 학습된 딥러닝 모델을 이용하여 상기 전처리부에서 전처리된 데이터를 분석하여 질 분비물의 색깔, 양, 점도를 분류하는 분석부 및 상기 분석부에 의해 분석된 질 분비물의 분석 결과를 출력하는 출력부를 포함한다.According to an embodiment of the present invention for achieving such technical tasks, a system for analyzing vaginal secretions of women of childbearing age and pregnant women includes an input unit for receiving basic information, symptom information, and image data of vaginal secretions of a subject according to a preset order, a preprocessing unit for preprocessing the data input by the input unit, an analysis unit for analyzing the data preprocessed in the preprocessing unit using a pre-learned deep learning model to classify the color, amount, and viscosity of the vaginal secretions, and an output unit for outputting the analysis results of the vaginal secretions analyzed by the analysis unit.
또한, 가임기 여성 및 산모의 질 분비물 분석 방법은, 기 설정된 순서에 따라 대상자의 기본정보, 증상정보 및 질 분비물의 이미지 데이터를 입력 받는 단계, 상기 이미지 데이터를 입력 받는 단계에 의해 입력된 데이터를 전처리하는 단계, 기 학습된 딥러닝 모델을 이용하여 상기 전처리하는 단계에서 전처리된 데이터를 분석하여 질 분비물의 색깔, 양, 점도를 분류하는 단계 및 상기 데이터를 분석하는 단계에 의해 분석된 결과를 출력하는 단계를 포함한다.In addition, the method for analyzing vaginal discharge of women of childbearing age and pregnant women includes a step of receiving basic information, symptom information, and image data of vaginal discharge of the subject according to a preset order, a step of preprocessing the data input by the step of receiving the image data, a step of analyzing the preprocessed data by the step of preprocessing using a pre-trained deep learning model to classify the color, amount, and viscosity of the vaginal discharge, and a step of outputting the results analyzed by the step of analyzing the data.
본 발명에 따르면, 질 분비물이 흔하게 증가하는 가임기 여성과 산모의 질 분비물 관리를 통한 개선이 필요한 대상자에게 가벼운 생활 습관 개선을 통해 치료 가능한 경증의 질염과 치료가 필요한 질염에 대한 피드백을 제공함으로써, 대상자의 질 분비물 관리를 효율적으로 관리하여 여성의 건강증진에 도움을 줄 수 있다.According to the present invention, by providing feedback on mild vaginitis treatable through improvement of lifestyle habits and vaginitis requiring treatment to women of childbearing age and pregnant women who frequently have increased vaginal discharge and require improvement through management of vaginal discharge, it is possible to effectively manage the management of the subjects' vaginal discharge and thereby help promote women's health.
특히, 질분비물 중 산모의 산후오로의 경우 분만 날짜 등의 입력 정보를 통해 출산 후의 상태임을 판단할 수 있고, 이 때 발생하는 출산 후 출혈의 양상에 따라 출산 후 산모의 산후오로를 선별함으로써, 산모의 건강 상태의 추적이 가능하다.In particular, in the case of postpartum lochia of the mother among the vaginal discharge, it is possible to determine the condition after childbirth through input information such as the date of delivery, and by selecting the postpartum lochia of the mother after childbirth based on the pattern of postpartum bleeding that occurs at this time, it is possible to track the health condition of the mother.
즉, 출산 전의 경우 출혈이 소량이라도 진료의 필요성을 적극 권고하고, 출산 후에는 출혈양과 색에 따라 정상과 비정상 오로의 구분이 가능할 수 있다.That is, before childbirth, it is strongly recommended to seek medical attention even if the bleeding is small, and after childbirth, it is possible to distinguish between normal and abnormal lochia based on the amount and color of bleeding.
도 1은 본 발명의 일 실시예에 따른 가임기 여성 및 산모의 질 분비물 분석 시스템의 구성을 도시한 도면이다.FIG. 1 is a diagram illustrating the configuration of a system for analyzing vaginal secretions of women of childbearing age and pregnant women according to one embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 가임기 여성 및 산모의 질 분비물 분석 방법의 흐름도이다.Figure 2 is a flow chart of a method for analyzing vaginal secretions of women of childbearing age and pregnant women according to one embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따라 입력부가 대상자의 기본정보를 입력 받는 과정의 흐름도이다.Figure 3 is a flowchart of a process in which an input unit receives basic information of a subject according to one embodiment of the present invention.
이하 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the attached drawings. In this process, the thickness of lines and the size of components illustrated in the drawings may be exaggerated for the sake of clarity and convenience of explanation.
또한 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서, 이는 대상자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In addition, the terms described below are terms defined in consideration of their functions in the present invention, and may vary depending on the intent or custom of the subject or operator. Therefore, the definitions of these terms should be made based on the contents throughout this specification.
도 1은 본 발명의 일 실시예에 따른 가임기 여성 및 산모의 질 분비물 분석 시스템의 구성을 도시한 도면이다.FIG. 1 is a diagram illustrating the configuration of a system for analyzing vaginal secretions of women of childbearing age and pregnant women according to one embodiment of the present invention.
도 1에 도시된 바에 따르면, 가임기 여성 및 산모의 질 분비물 분석 시스템(100)은 입력부(110), 전처리부(120), 분석부(130), 출력부(140)를 포함한다.As illustrated in Figure 1, the vaginal secretion analysis system (100) of women of childbearing age and pregnant women includes an input unit (110), a preprocessing unit (120), an analysis unit (130), and an output unit (140).
입력부(110)는 기 설정된 순서에 따라 대상자의 기본정보, 증상정보 및 질 분비물의 이미지 데이터를 입력 받는다.The input unit (110) receives the subject's basic information, symptom information, and image data of vaginal discharge according to a preset order.
이 때, 입력 받는 대상자의 기본정보는 대상자의 식별정보(이름, ID 등), 생년월일, 임신여부를 포함한다.At this time, the basic information of the subject being entered includes the subject's identification information (name, ID, etc.), date of birth, and pregnancy status.
또한, 입력부(110)는 대상자의 임신여부에 따라, 대상자의 기본정보를 추가로 입력 받을 수 있고, 입력 받은 기본정보를 바탕으로 대상자를 분류할 수 있다.In addition, the input unit (110) can additionally receive basic information of the subject depending on whether the subject is pregnant, and can classify the subject based on the received basic information.
이 때, 대상자가 임신 상태일 경우, 입력부(110)는 대상자로부터 임신 주수, 자궁경부암 검사 여부 및 자궁경부암 백신 접종 여부를 추가로 입력 받는다.At this time, if the subject is pregnant, the input unit (110) additionally receives input from the subject regarding the number of weeks of pregnancy, whether or not she has undergone a cervical cancer test, and whether or not she has been vaccinated against cervical cancer.
또한, 대상자는 임신 주수 대신 출산 예정일 또는 대상자의 마지막 월경, 분만한 경우 분만 날짜를 입력할 수 있고, 입력부(110)는 입력된 마지막 월경 날짜를 바탕으로 분만 예측일 또는 출산 후 경과 일수를 자동으로 계산할 수 있다.In addition, the subject can input the expected date of delivery or the subject's last menstruation, or the date of delivery if the subject has already given birth, instead of the number of weeks of pregnancy, and the input unit (110) can automatically calculate the expected date of delivery or the number of days elapsed after giving birth based on the input last menstrual date.
반면, 대상자가 임신 상태가 아닐 경우, 입력부(110)는 대상자로부터 월경력, 검사 직전 성관계 여부, 자궁경부암 검사 여부, 자궁경부암 백신 접종 여부 및 월경 외 출혈 여부를 추가로 입력 받는다.On the other hand, if the subject is not pregnant, the input unit (110) additionally receives input from the subject regarding menstrual history, whether or not sexual intercourse occurred immediately before the examination, whether or not a cervical cancer test was performed, whether or not a cervical cancer vaccination was administered, and whether or not bleeding other than menstrual bleeding occurred.
이 때, 월경력은 대상자의 초경 여부, 월경주기 및 월경주기의 규칙성 여부를 포함할 수 있다.At this time, menstrual history may include whether the subject has had menstruation, the menstrual cycle, and the regularity of the menstrual cycle.
또한, 대상자의 증상정보는 대상자의 질 분비물의 냄새 여부 및 외음부의 가려움증 여부를 포함한다.Additionally, the subject's symptom information includes whether the subject's vaginal discharge has an odor and whether the subject experiences itching of the vulva.
이 때, 질 분비물의 냄새가 있을 경우, 냄새의 유형을 기 설정된 유형(예를 들어, 생선비린내, 효모 냄새, 고기 썩는 냄새) 별로 분류하여 질 분비물의 냄새가 대상자가 느끼기에 어떤 분류의 냄새에 가장 가까운 냄새인지를 입력 받을 수 있다.At this time, if there is an odor in the vaginal discharge, the type of odor can be classified into preset types (e.g., fishy odor, yeast odor, rotten meat odor), and the subject can input which category of odor the odor of the vaginal discharge is closest to.
또한, 질 분비물의 이미지 데이터는 대상자의 질 분비물이 묻은 팬티라이너의 해당 부위를 촬영한 이미지일 수 있으며, 이 때 이미지를 통한 질 분비물의 색, 양, 점도의 식별이 용이하도록 기 정해진 색상(예를 들어 흰색)의 팬티라이너가 사용될 수 있다.In addition, the image data of the vaginal discharge may be an image taken of the corresponding area of the panty liner stained with the subject's vaginal discharge, and at this time, a panty liner of a preset color (e.g., white) may be used to facilitate identification of the color, amount, and viscosity of the vaginal discharge through the image.
전처리부(120)는 입력부(110)를 통해 입력 받은 데이터를 전처리한다.The preprocessing unit (120) preprocesses data received through the input unit (110).
이 때, 전처리부(120)는 입력 받은 질 분비물의 이미지 데이터에 대해 이미지 리사이즈(resize), 이미지 픽셀 정규화, 화이트 밸런스 보정(팬티라이너의 색상 기준) 등의 전처리를 수행한다.At this time, the preprocessing unit (120) performs preprocessing such as image resizing, image pixel normalization, and white balance correction (based on the color of the panty liner) on the image data of the input vaginal discharge.
분석부(130)는 기 학습된 딥러닝 모델을 이용하여 전처리부(120)에서 전처리된 데이터를 분석한다.The analysis unit (130) analyzes the data preprocessed in the preprocessing unit (120) using a pre-learned deep learning model.
이 때, 분석부(130)는 딥러닝 모델을 통해질 분비물의 이미지 데이터를 분석하여 질 분비물의 색깔, 양, 점도를 분류한다.At this time, the analysis unit (130) analyzes the image data of the vaginal discharge using a deep learning model to classify the color, amount, and viscosity of the vaginal discharge.
예를 들어, 딥러닝 모델은 질 분비물의 색과 관련하여 기 정해진 복수의 색상(예를 들어, 투명색, 흰색, 노란색, 초록색, 분홍색, 선홍색 및 갈색)으로 분류하도록 학습되고, 질 분비물의 양과 관련하여 복수의 단계(예를 들어, 0단계 내지 4단계)로 분류하도록 학습되며, 질 분비물의 점도와 관련하여 복수의 단계(예를 들어, 0단계 내지 2단계)로 분류하도록 학습된다.For example, the deep learning model is trained to classify the color of vaginal discharge into a predetermined number of colors (e.g., clear, white, yellow, green, pink, scarlet, and brown), the amount of vaginal discharge into a plurality of levels (e.g., levels 0 to 4), and the viscosity of vaginal discharge into a plurality of levels (e.g., levels 0 to 2).
이 때, 질 분비물의 색이 분홍색, 선홍색, 갈색과 같이 붉은 계열의 색이 포함된 색으로 분류되면, 대상자가 출혈 가능성이 있는 상태로 판단한다.At this time, if the color of the vaginal discharge is classified as a color that includes red colors such as pink, scarlet, or brown, the subject is judged to be in a state where there is a possibility of bleeding.
또한, 분석부(130)는 입력부(110)에서 분류된 대상자의 분류 결과에 따라 분석부(130)에서 분류한 이미지 분류 결과 및 입력부(110)에서 입력한 대상자의 증상정보를 분석하여 대상자의 질 건강 상태를 판단할 수 있다.In addition, the analysis unit (130) can analyze the image classification result classified by the analysis unit (130) and the symptom information of the subject input by the input unit (110) according to the classification result of the subject classified by the input unit (110) to determine the quality of health of the subject.
출력부(140)는 분석부(130)에 의해 분석된 질 분비물의 분석 결과를 출력한다.The output unit (140) outputs the analysis results of the vaginal secretions analyzed by the analysis unit (130).
예를 들어, 출력부(140)는 분석부(130)에서의 분석 결과가 질 분비물의 색이 노란색이고, 양이 2단계이며, 점도가 1단계일 경우, 출력부(140)는 “질 분비물은 노란색이고 양은 적당하며 끈적이는 콧물 양상이다” 라고 출력한다.For example, if the analysis result from the analysis unit (130) is that the color of the vaginal discharge is yellow, the amount is at level 2, and the viscosity is at level 1, the output unit (140) outputs “the vaginal discharge is yellow, the amount is appropriate, and it has the appearance of a sticky runny nose.”
또한, 출력부(140)는 분석부(130)에서 판단된 대상자의 질 건강 상태와 대상자의 질 건강 상태에 따른 적절한 대응책을 출력할 수 있다.In addition, the output unit (140) can output the subject's vaginal health status determined by the analysis unit (130) and an appropriate response based on the subject's vaginal health status.
이 때, 대상자의 질 건강 상태는 기 설정된 조건에 따라 기 설정된 수의 단계(예를 들어, 1단계~5단계)로 분류될 수 있다.At this time, the subject's quality of health can be classified into a preset number of stages (e.g., stage 1 to stage 5) according to preset conditions.
아래에서는 도 2를 참조하여 가임기 여성 및 산모의 질 분비물 분석 방법을 설명한다.Below, a method for analyzing vaginal secretions of women of childbearing age and pregnant women is described with reference to Fig. 2.
도 2는 본 발명의 일 실시예에 따른 가임기 여성 및 산모의 질 분비물 분석 방법의 흐름도이다.Figure 2 is a flow chart of a method for analyzing vaginal secretions of women of childbearing age and pregnant women according to one embodiment of the present invention.
입력부(110)는 기 설정된 순서에 따라 대상자의 기본정보, 증상정보 및 질 분비물의 이미지 데이터를 입력 받는다(S210).The input unit (110) receives the subject's basic information, symptom information, and image data of vaginal discharge according to a preset order (S210).
이 때, 입력 받는 대상자의 기본정보는 대상자의 식별정보, 생년월일, 임신여부를 포함할 수 있고, 대상자의 임신여부에 따라, 대상자의 기본정보를 추가로 입력 받을 수 있고, 입력 받은 기본정보를 바탕으로 대상자를 분류할 수 있다.At this time, the basic information of the subject being input may include the subject's identification information, date of birth, and pregnancy status, and depending on whether the subject is pregnant, additional basic information of the subject may be input, and the subject may be classified based on the input basic information.
이 때, 대상자의 기본 정보를 입력 받는 순서는 도 3을 참조하여 구체적으로 설명한다.At this time, the order in which the subject's basic information is entered is specifically explained with reference to Figure 3.
도 3은 본 발명의 일 실시예에 따라 입력부가 대상자의 기본정보를 입력 받는 과정의 흐름도이다.Figure 3 is a flowchart of a process in which an input unit receives basic information of a subject according to one embodiment of the present invention.
가장 먼저, 입력부(110)는 대상자의 식별정보와 대상자의 생년월일을 입력 받는다(S211).First, the input unit (110) receives the subject's identification information and the subject's date of birth (S211).
이 때, 대상자의 식별정보는 대상자의 본명 또는 대상자가 임의로 설정한 닉네임 및 ID일 수 있다.At this time, the subject's identification information may be the subject's real name or a nickname and ID arbitrarily set by the subject.
대상자의 식별정보와 대상자의 생년월일을 입력 받은 후, 입력부(110)는 대상자의 임신여부를 입력 받는다(S212).After entering the subject's identification information and date of birth, the input unit (110) receives input on whether the subject is pregnant (S212).
이 때, 대상자가 임신 상태로 입력했을 경우, 입력부(110)는 대상자의 임신 주수를 입력 받는다(S213).At this time, if the subject has entered a pregnancy status, the input unit (110) receives the subject's pregnancy weeks (S213).
이 때, 입력부(110)는, 임신 주수 대신 출산 예정일 또는 대상자의 마지막 월경 날짜를 입력 받을 수 있다.At this time, the input unit (110) can receive the expected date of birth or the date of the subject's last menstrual period instead of the number of weeks of pregnancy.
또 한, 입력부(110)는, 분만한 경우 분만 날짜를 입력 받을 수 있다.Additionally, the input unit (110) can receive the date of delivery in case of delivery.
또한, 입력부(110)는 입력된 마지막 월경 날짜를 바탕으로 분만 예측일 또는 분만 후 경과 일수를 자동으로 계산할 수 있다.Additionally, the input unit (110) can automatically calculate the predicted date of delivery or the number of days elapsed after delivery based on the input last menstrual date.
임신 주수를 입력 받은 후, 입력부(110)는 자궁경부암 검사 여부 및 검사를 받은 경우 자궁경부암 여부를 입력 받을 수 있다(S214).After entering the number of weeks of pregnancy, the input unit (110) can enter whether a cervical cancer test has been performed and, if so, whether cervical cancer has been detected (S214).
자궁경부암 검사 여부 및 자궁경부암 여부를 입력 받은 후, 입력부(110)는 자궁경부암 백신 접종 여부를 입력 받는다(S215).After receiving input on whether or not to have a cervical cancer test and whether or not to have cervical cancer, the input unit (110) receives input on whether or not to have been vaccinated against cervical cancer (S215).
반면, 대상자가 임신 상태가 아니라고 입력했을 경우, 입력부(110)는 먼저 대상자의 초경 여부, 월경주기 및 월경주기의 규칙성 여부를 입력 받는다(S216).On the other hand, if the subject enters that she is not pregnant, the input unit (110) first receives input on whether the subject has had her first period, her menstrual cycle, and whether the menstrual cycle is regular (S216).
다음으로, 입력부(110)는 검사 직전 대상자의 성관계 여부를 입력 받는다(S217).Next, the input unit (110) receives input on whether the subject has had sexual intercourse immediately before the test (S217).
성관계 여부를 입력 받은 후, 입력부(110)는 자궁경부암 검사 여부 및 검사를 받은 경우 자궁경부암 여부를 입력 받을 수 있다(S218).After inputting whether or not you have had sexual intercourse, the input unit (110) can input whether or not you have had a cervical cancer test and, if so, whether or not you have had cervical cancer (S218).
자궁경부암 검사 여부 및 자궁경부암 여부를 입력 받은 후, 입력부(110)는 자궁경부암 백신 접종 여부를 입력 받는다(S219).After receiving input on whether or not to have a cervical cancer test and whether or not to have cervical cancer, the input unit (110) receives input on whether or not to have been vaccinated against cervical cancer (S219).
또한, 도 3에서의 과정에 따라 대상자의 기본정보를 입력 받은 후, 입력부(110)는 입력의 결과에 따라 대상자를 분류할 수 있다.In addition, after receiving basic information of the subject according to the process in Fig. 3, the input unit (110) can classify the subject according to the result of the input.
대상자의 기본정보를 입력 받은 후, 입력부(110)는 대상자의 증상정보 및 질 분비물의 이미지 데이터를 입력 받는다.After the subject's basic information is entered, the input unit (110) receives the subject's symptom information and image data of vaginal discharge.
이 때, 증상정보는 대상자의 질 분비물의 냄새 여부 및 외음부의 가려움증 여부를 포함한다.At this time, symptom information includes whether the subject's vaginal discharge smells and whether the subject experiences itching of the vulva.
이 때, 질 분비물의 냄새가 있을 경우, 냄새의 유형을 기 설정된 유형 별로 분류하여 질 분비물의 냄새가 대상자가 느끼기에 어떤 분류의 냄새에 가장 가까운 냄새인지를 입력 받을 수 있다.At this time, if there is an odor in the vaginal discharge, the type of odor can be classified into preset types, and the subject can input which category of odor the odor of the vaginal discharge feels is closest to.
또한, 질 분비물의 이미지 데이터는 대상자의 질 분비물이 묻은 팬티라이너의 해당 부위를 촬영한 이미지일 수 있으며, 이 때 이미지를 통한 질 분비물의 색, 양, 점도의 식별이 용이하도록 기 정해진 색상(예를 들어 흰색)의 팬티라이너가 사용되거나, 팬티라이너의 색상을 기준으로 화이트 밸런스 보정과 같은 전처리가 수행된 이미지가 사용될 수 있다.In addition, the image data of the vaginal discharge may be an image taken of the corresponding area of the panty liner stained with the subject's vaginal discharge, and at this time, a panty liner of a preset color (e.g., white) may be used to facilitate identification of the color, amount, and viscosity of the vaginal discharge through the image, or an image may be used that has undergone preprocessing, such as white balance correction, based on the color of the panty liner.
다음으로, 입력부(110)를 통해 입력 받은 데이터를 전처리부(120)를 통해 전처리한다(S220).Next, data input through the input unit (110) is preprocessed through the preprocessing unit (120) (S220).
전처리가 진행된 이후, 분석부(130)는 기 학습된 딥러닝 모델을 이용하여 전처리부(120)에서 전처리된 데이터를 분석한다(S230).After preprocessing is performed, the analysis unit (130) analyzes the data preprocessed in the preprocessing unit (120) using the pre-learned deep learning model (S230).
이 때, 딥러닝 모델은 다음과 같은 순서로 학습될 수 있다.At this time, the deep learning model can be trained in the following order.
먼저, 모델을 학습시키기 위한 데이터를 수집한다.First, collect data to train the model.
이 때, 수집하는 데이터는 기 설정된 수량만큼의 질 분비물 이미지 데이터 및 질 분비물 이미지 데이터에서 기 설정된 시간이 경과된 후의 이미지 데이터 세트를 의미한다.At this time, the data collected refers to a set of image data of vaginal discharge image data for a preset quantity and an image data set after a preset time has elapsed from the vaginal discharge image data.
또한, 이미지 데이터는 팬티라이너에 직사각형이 크롭된 데이터이며, 각 이미지의 색, 양, 점도가 라벨링 된 파일이다.Additionally, the image data is a file in which a rectangle is cropped on a panty liner and the color, amount, and viscosity of each image are labeled.
데이터를 수집한 후, 수집된 데이터에 원 데이터(Raw data)를 가지고 유연하게 데이터를 탐색하고, 데이터의 특징과 구조로부터 얻은 정보를 바탕으로 통계모형을 만드는 분석방법인 탐색적 자료 분석(Exploratory Data Analysis, EDA)기법으로 데이터 분석을 진행한다.After collecting data, data analysis is conducted using the Exploratory Data Analysis (EDA) technique, which is an analysis method that flexibly explores the raw data and creates a statistical model based on information obtained from the characteristics and structure of the data.
다음으로, 분석을 마친 데이터를 전처리한다.Next, the analyzed data is preprocessed.
더욱 구체적으로는 이미지 데이터를 시스템에 맞게 리사이즈한 후, 이미지 데이터의 픽셀을 정규화 시키고, 팬티라이너의 색상 기준으로 화이트 밸런스를 보정하는 등의 과정을 수행한다.More specifically, the image data is resized to fit the system, the pixels of the image data are normalized, and the white balance is corrected based on the color of the panty liner.
또한, 전처리 과정 중, 필요에 따라 이미지 데이터의 상하좌우 반전, 회전 등을 통해 데이터를 증식시킬 수 있다.Additionally, during the preprocessing process, data can be increased by flipping the image data up/down, left/right, rotating it, etc., as needed.
마지막으로, 다중분류(Multi Classification)를 통하여 질 분비물 데이터를 학습시키고 F1지표(F1-score)를 통하여 모델의 성능을 평가한다.Finally, the vaginal discharge data is trained through multi-classification and the model performance is evaluated through the F1 score.
또한, 분석부(130)는 질 분비물의 이미지 데이터를 분석하여 질 분비물의 색깔, 양, 점도를 분류한다.Additionally, the analysis unit (130) analyzes image data of vaginal discharge to classify the color, amount, and viscosity of the vaginal discharge.
예를 들어, 딥러닝 모델은 질 분비물의 색과 관련하여 기 정해진 복수의 색상(예를 들어, 투명색, 흰색, 노란색, 초록색, 분홍색, 선홍색 및 갈색)으로 분류하도록 학습되고, 질 분비물의 양과 관련하여 복수의 단계(예를 들어, 0단계 내지 4단계)로 분류하도록 학습되며, 질 분비물의 점도와 관련하여 복수의 단계(예를 들어, 0단계 내지 2단계)로 분류하도록 학습된다.For example, the deep learning model is trained to classify the color of vaginal discharge into a predetermined number of colors (e.g., clear, white, yellow, green, pink, scarlet, and brown), the amount of vaginal discharge into a plurality of levels (e.g., levels 0 to 4), and the viscosity of vaginal discharge into a plurality of levels (e.g., levels 0 to 2).
이 때, 질 분비물의 색이 분홍색, 선홍색, 갈색과 같이 붉은 계열의 색이 포함된 색으로 분류되면, 대상자가 출혈 가능성이 있는 상태로 판단한다.At this time, if the color of the vaginal discharge is classified as a color that includes red colors such as pink, scarlet, or brown, the subject is judged to be in a state where there is a possibility of bleeding.
또한, 분석부(130)는 입력부(110)에서 분류된 대상자의 분류 결과에 따라 분석부(130)에서 분류한 이미지 분류 결과 및 입력부(110)에서 입력한 대상자의 증상정보를 분석하여 대상자의 질 건강 상태를 판단할 수 있다.In addition, the analysis unit (130) can analyze the image classification result classified by the analysis unit (130) and the symptom information of the subject input by the input unit (110) according to the classification result of the subject classified by the input unit (110) to determine the quality of health of the subject.
기 학습된 딥러닝 모델을 이용하여 데이터 분석을 마친 후, 분석 결과를 출력한다(S240).After completing data analysis using the learned deep learning model, the analysis results are output (S240).
예를 들어, 출력부(140)는 분석부(130)에서의 분석 결과가 질 분비물의 색이 노란색이고, 양이 2단계이며, 점도가 1단계일 경우, 출력부(140)는 “질 분비물은 노란색이고 양은 적당하며 끈적이는 콧물 양상이다”라고 출력한다.For example, if the analysis result from the analysis unit (130) is that the color of the vaginal discharge is yellow, the amount is at level 2, and the viscosity is at level 1, the output unit (140) outputs “the vaginal discharge is yellow, the amount is appropriate, and it has the appearance of a sticky runny nose.”
또한, 출력부(140)는 분석부(130)에서 판단된 대상자의 질 건강 상태와 대상자의 질 건강 상태에 따른 적절한 대응책을 출력할 수 있다.In addition, the output unit (140) can output the subject's vaginal health status determined by the analysis unit (130) and an appropriate response based on the subject's vaginal health status.
이와 같이 본 발명에 따르면, 질 분비물이 흔하게 증가하는 가임기 여성과 산모의 질 분비물 관리를 통한 개선이 필요한 대상자에게 가벼운 생활 습관 개선을 통해 치료 가능한 경증의 질염과 치료가 필요한 질염에 대한 피드백을 제공함으로써, 대상자의 질 분비물 관리를 효율적으로 관리하여 여성의 건강증진에 도움을 줄 수 있다.In this way, according to the present invention, by providing feedback on mild vaginitis that can be treated through improvement of lifestyle habits and vaginitis that requires treatment to women of childbearing age and pregnant women who frequently have increased vaginal discharge and need improvement through vaginal discharge management, it is possible to effectively manage the vaginal discharge of the subjects and thereby help promote women's health.
또한 산모의 경우 출산 전후의 질분비물 중 하나인 산후오로의 감염 또는 출혈의 정도를 파악함으로써, 대상자의 산후오로 관리를 효율적으로 관리하여 여성의 산후 건강증진에 도움을 줄 수 있다.In addition, in the case of mothers, by identifying the degree of infection or bleeding in postpartum lochia, one of the vaginal discharges before and after childbirth, it is possible to effectively manage the subject's postpartum lochia, thereby helping to promote women's postpartum health.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 아래의 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, these are merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible from this. Therefore, the true technical protection scope of the present invention should be determined by the technical idea of the following patent claims.
Claims (8)
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR20230027345 | 2023-02-28 | ||
| KR10-2023-0027344 | 2023-02-28 | ||
| KR10-2023-0027345 | 2023-02-28 | ||
| KR20230027344 | 2023-02-28 | ||
| KR1020230070687A KR20240133500A (en) | 2023-02-28 | 2023-06-01 | Method and system of analyzing vaginal discharge for fertile women and pregnant women |
| KR10-2023-0070687 | 2023-06-01 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2024181845A1 true WO2024181845A1 (en) | 2024-09-06 |
Family
ID=92590769
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/KR2024/095411 Pending WO2024181845A1 (en) | 2023-02-28 | 2024-02-19 | Method and system for analyzing vaginal discharge of women of childbearing age and pregnant women |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2024181845A1 (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20140108417A (en) * | 2013-02-27 | 2014-09-11 | 김민준 | Health diagnosis system using image information |
| KR20170071273A (en) * | 2015-12-15 | 2017-06-23 | (주)종로의료기 | Body fluid state analysis system and analysis method using the same |
| US20180316781A1 (en) * | 2013-11-14 | 2018-11-01 | Mores, Inc. | System for remote noninvasive contactless assessment and prediction of body organ health |
| WO2021053135A1 (en) * | 2019-09-20 | 2021-03-25 | Oslo Universitetssykehus | Histological image analysis |
| KR20230002513A (en) * | 2020-03-27 | 2023-01-05 | 웨스트 버지니아 유니버시티 보드 오브 거버너스 온 비해프 오브 웨스트 버지니아 유니버시티 | User's health prediction by monitoring of portable monitoring device |
-
2024
- 2024-02-19 WO PCT/KR2024/095411 patent/WO2024181845A1/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20140108417A (en) * | 2013-02-27 | 2014-09-11 | 김민준 | Health diagnosis system using image information |
| US20180316781A1 (en) * | 2013-11-14 | 2018-11-01 | Mores, Inc. | System for remote noninvasive contactless assessment and prediction of body organ health |
| KR20170071273A (en) * | 2015-12-15 | 2017-06-23 | (주)종로의료기 | Body fluid state analysis system and analysis method using the same |
| WO2021053135A1 (en) * | 2019-09-20 | 2021-03-25 | Oslo Universitetssykehus | Histological image analysis |
| KR20230002513A (en) * | 2020-03-27 | 2023-01-05 | 웨스트 버지니아 유니버시티 보드 오브 거버너스 온 비해프 오브 웨스트 버지니아 유니버시티 | User's health prediction by monitoring of portable monitoring device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2018106005A1 (en) | System for diagnosing disease using neural network and method therefor | |
| Whitbeck | Causation in medicine: The disease entity model | |
| Ananth et al. | Blood Cancer Detection with Microscopic Images Using Machine Learning | |
| WO2019240567A1 (en) | Anterior eye disease diagnostic system and diagnostic method using same | |
| WO2022225199A1 (en) | System for remote health status measurement through camera-based vital signs data extraction and electronic medical examination, and method therefor | |
| Sherwin | Normalizing reproductive technologies and the implications for autonomy | |
| WO2020111378A1 (en) | Method and system for analyzing data in order to aid diagnosis of disease | |
| WO2020231007A2 (en) | Medical equipment learning system | |
| WO2017065358A1 (en) | Method and device for diagnosing infectious disease through image of reagent kit | |
| WO2019074172A1 (en) | Method and computer program for analyzing volume-based quantitative indicator for pet brain image amyloid measurement | |
| WO2023068732A1 (en) | Method for acquiring score for neuropsychological test, neuropsychological test apparatus performing same, and computer-readable recording medium | |
| CN113553991A (en) | Tongue picture recognition method based on deep learning | |
| WO2022034956A1 (en) | Random forest algorithm-based cataract grade diagnosis apparatus and method | |
| WO2024181845A1 (en) | Method and system for analyzing vaginal discharge of women of childbearing age and pregnant women | |
| WO2022086066A1 (en) | Deep-learning-based simple urine test result training and lower urinary tract symptom diagnosis method | |
| CN113408533A (en) | Construction method of chromosome abnormality prediction model based on fetal ultrasound image characteristic omics and diagnosis equipment | |
| WO2022139068A1 (en) | Deep learning-based lung disease diagnosis assistance system and deep learning-based lung disease diagnosis assistance method | |
| WO2022158843A1 (en) | Method for refining tissue specimen image, and computing system performing same | |
| WO2020246676A1 (en) | System for automatic diagnosis of uterine cervical cancer | |
| WO2017010612A1 (en) | System and method for predicting pathological diagnosis on basis of medical image analysis | |
| KR20240133500A (en) | Method and system of analyzing vaginal discharge for fertile women and pregnant women | |
| WO2019235827A1 (en) | Disease diagnosis system for supporting dual class, and method therefor | |
| WO2025165011A1 (en) | Electronic device for predicting degree of risk of cognitive decline, and operating method thereof | |
| WO2022119325A1 (en) | Sleep apnea diagnostic auxiliary system using simple skull x-ray image and method for providing diagnostic auxiliary information using same | |
| WO2021107306A1 (en) | Device for automatically recommending doctor's opinion on medical image |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24764244 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |