[go: up one dir, main page]

WO2024180948A1 - Respiration determination system, respiration determination method, and program - Google Patents

Respiration determination system, respiration determination method, and program Download PDF

Info

Publication number
WO2024180948A1
WO2024180948A1 PCT/JP2024/001805 JP2024001805W WO2024180948A1 WO 2024180948 A1 WO2024180948 A1 WO 2024180948A1 JP 2024001805 W JP2024001805 W JP 2024001805W WO 2024180948 A1 WO2024180948 A1 WO 2024180948A1
Authority
WO
WIPO (PCT)
Prior art keywords
breathing
waveform
person
unit
determination system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2024/001805
Other languages
French (fr)
Japanese (ja)
Inventor
泰子 山本
達男 増田
謙一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of WO2024180948A1 publication Critical patent/WO2024180948A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb occurring during breathing

Definitions

  • the present disclosure generally relates to a breathing determination system, a breathing determination method, and a program. More specifically, the present disclosure relates to a breathing determination system, a breathing determination method, and a program that estimate a human breathing waveform.
  • the signal processing system described in Patent Document 1 includes a complementation unit and a determination unit.
  • the complementation unit estimates the person's second respiratory waveform.
  • the determination unit determines the state of the person based on the time variation of the second respiratory waveform.
  • the time variation of the second respiratory waveform is the amount of variation, variance, or standard deviation of a parameter such as the peak value or period of the second respiratory waveform.
  • the determination unit in Patent Document 1 is thus configured to determine a person's condition from simple information such as respiratory rate. However, it is desirable to be able to make more detailed determinations.
  • the present disclosure aims to provide a breathing assessment system, breathing assessment method, and program that can assess a person's condition in more detail.
  • the breathing determination system includes an acquisition unit, a waveform estimation unit, and a determination unit.
  • the acquisition unit acquires a Doppler signal based on the output of a radio wave sensor.
  • the radio wave sensor includes a transmitter that transmits radio waves as detection waves, and a receiver that receives reflected waves generated when the detection waves are reflected by a person.
  • the Doppler signal is a signal that indicates the difference between the detection wave and the reflected wave.
  • the waveform estimation unit estimates the person's breathing waveform based on the Doppler signal acquired by the acquisition unit.
  • the determination unit compares the feature amount of the breathing waveform estimated by the waveform estimation unit with a predetermined value to determine whether the person is in an abnormal state.
  • the breathing determination method includes an acquisition step, a waveform estimation step, and a determination step.
  • a Doppler signal is acquired based on the output of a radio wave sensor.
  • the radio wave sensor includes a wave transmitter that transmits radio waves as detection waves, and a wave receiver that receives reflected waves generated when the detection waves are reflected by a person.
  • the Doppler signal is a signal that indicates the difference between the detection wave and the reflected wave.
  • the person's breathing waveform is estimated based on the Doppler signal acquired in the acquisition step.
  • a feature of the breathing waveform estimated in the waveform estimation step is compared with a predetermined value to determine whether the person is in an abnormal state.
  • a program according to one aspect of the present disclosure is a program for causing one or more processors of a computer system to execute the breathing determination method.
  • FIG. 1 is a block diagram of a breathing determination system according to an embodiment.
  • FIG. 2 is a block diagram of a signal processing circuit used with the above-mentioned breathing determination system.
  • FIG. 3 is a waveform diagram of a Doppler signal detected by the above-mentioned breathing determination system.
  • FIG. 4 is a waveform diagram showing a respiration waveform measured by a sensor and a respiration waveform estimated by the above-mentioned respiration determination system.
  • FIG. 5 is a waveform diagram of a Doppler signal used for estimating a respiratory waveform in the above-mentioned breathing determination system.
  • FIG. 6 is a waveform diagram showing a respiration waveform estimated by the above-mentioned respiration determination system.
  • FIG. 7 is a waveform diagram showing a respiration waveform estimated by the above-mentioned respiration determination system.
  • FIG. 8 is a flowchart showing an example of the operation of the breathing determination system.
  • a breathing determination system 1 according to an embodiment will be described below with reference to the drawings.
  • the embodiment described below is merely one of various embodiments of the present disclosure.
  • the embodiment described below can be modified in various ways depending on the design, etc., as long as the object of the present disclosure can be achieved.
  • each figure described in the embodiment described below is a schematic diagram, and the ratio of the size of each component in the figure does not necessarily reflect the actual dimensional ratio.
  • the breathing determination system 1 determines whether the person H1 is in an abnormal state based on the breathing of the person H1. For example, the breathing determination system 1 determines that the person H1 is in an abnormal state when the breathing of the person H1 is different from that of a healthy person, when the breathing of the person H1 is different from the average breathing of a plurality of (a large number of) people, and when the breathing of the person H1 is different from normal. In addition, the breathing determination system 1 determines that the person H1 is in an abnormal state when the breathing of the person H1 is similar to that of a patient with a specific disease (a disease related to breathing or a disease unrelated to breathing) and when the breathing of the person H1 is similar to a breathing that requires attention. Examples of the breathing that requires attention include the breathing of a person who is under a lot of stress and the breathing of a person who shows signs of illness.
  • the breathing judgment system 1 of this embodiment includes an acquisition unit 131, a waveform estimation unit 133, and a judgment unit 134.
  • the acquisition unit 131 acquires a Doppler signal based on the output of the radio wave sensor 3.
  • the radio wave sensor 3 includes a wave transmitter 31 that transmits radio waves as detection waves W1, and a wave receiver 32 that receives reflected waves W2 generated when the detection waves W1 are reflected by the person H1.
  • the Doppler signal is a signal that indicates the difference between the detection waves W1 and the reflected waves W2.
  • the waveform estimation unit 133 estimates the breathing waveform of the person H1 based on the Doppler signal acquired by the acquisition unit 131.
  • the judgment unit 134 judges whether or not the person H1 is in an abnormal state by comparing the feature amount of the breathing waveform estimated by the waveform estimation unit 133 with a predetermined value.
  • the breathing determination system 1 estimates a breathing waveform and determines whether or not person H1 is in an abnormal state from the breathing waveform. Therefore, the state of person H1 can be determined in more detail compared to determining the state of person H1 simply from the breathing rate. Furthermore, in this embodiment, the breathing waveform can be estimated without contact, and therefore, unlike measuring the breathing waveform with a contact sensor, it is possible to eliminate the hassle of wearing a contact sensor, as well as the sense of restraint and discomfort caused by wearing it.
  • the breathing determination method of this embodiment has an acquisition step, a waveform estimation step, and a determination step.
  • a Doppler signal is acquired based on the output of the radio wave sensor 3.
  • the radio wave sensor 3 includes a wave transmitter 31 that transmits radio waves as detection waves W1, and a wave receiver 32 that receives reflected waves W2 generated when the detection waves W1 are reflected by the person H1.
  • the Doppler signal is a signal that indicates the difference between the detection waves W1 and the reflected waves W2.
  • the waveform estimation step the breathing waveform of the person H1 is estimated based on the Doppler signal acquired in the acquisition step.
  • the determination step the feature amount of the breathing waveform estimated in the waveform estimation step is compared with a predetermined value to determine whether or not the person H1 is in an abnormal state.
  • the breathing determination method can also be embodied as a program.
  • the program of this embodiment is a program for causing one or more processors of a computer system to execute the breathing determination method.
  • the program may be recorded on a non-transitory recording medium that can be read by the computer system.
  • the breathing detection system 100 includes a breathing determination system 1, an input device 2, a radio wave sensor 3, a signal processing circuit 4, an output device 5, and an equipment control device 6.
  • the respiration detection system 100 is used, for example, in a facility, which may be, for example, a building or a mobile object.
  • a facility which may be, for example, a building or a mobile object.
  • buildings as facilities are houses, office buildings, factories, commercial complexes, libraries, art galleries, museums, amusement facilities, airports, train stations, hotels, nursing homes, hospitals, etc.
  • mobile objects as facilities are ships, railroad cars, aircraft, etc.
  • facilities are not limited to indoor facilities, and may be outdoor facilities.
  • the breath detection system 100 is not limited to being used in a specific facility. At least a portion of the configuration of the breath detection system 100 may be portable.
  • the breathing detection system 100 targets a sleeping person H1 or a person H1 at rest, performs measurements using a radio wave sensor 3, estimates a breathing waveform, and determines whether the person H1 is in an abnormal state.
  • the breath detection system 100 controls the spatial equipment 7.
  • the spatial equipment 7 is, for example, an air conditioning device or a lighting device.
  • the air conditioning device is, for example, an air conditioner, a heater, a refrigerator, an air conditioning duct, a humidifier, a dehumidifier, an air purifier, a blower, or a ventilation system.
  • the spatial device 7 adjusts the environment of the space. For example, the spatial device 7 adjusts at least one of the temperature, humidity, air volume, air speed, air direction, brightness, color temperature, and color deviation of the space.
  • the input device 2 receives operations from a user.
  • the user in the present disclosure may be the same person as the person H1 whose respiratory waveform is to be estimated, or may be a different person.
  • the input device 2 outputs information input by the user's operations to the breathing determination system 1.
  • the input device 2 includes, for example, at least one of a mouse, a keyboard, a button, a touch panel, a touch pad, and a track pad.
  • the input device 2 may also be, for example, a smartphone equipped with a touch panel or the like, or a remote controller equipped with multiple buttons or the like.
  • the input device 2 may also include a microphone for the user to input voice. In this case, the voice input corresponds to the user's operation.
  • the user operates the input device 2 to input, for example, information regarding the control conditions of the spatial device 7.
  • the user also operates the input device 2 to control the breathing determination system 1.
  • the radio wave sensor 3 is installed, for example, on a ceiling or a wall.
  • the radio wave sensor 3 includes a wave transmitter 31 and a wave receiver 32.
  • the wave transmitter 31 includes a transmission antenna. When an oscillation signal S1 having a predetermined frequency is input, the wave transmitter 31 transmits a detection wave W1 having the predetermined frequency to the detection area.
  • the oscillation signal S1 is an electrical signal.
  • the detection wave W1 is a radio wave.
  • the wave transmitter 31 may include an amplifier that amplifies the oscillation signal S1.
  • the receiver 32 includes a receiving antenna.
  • the receiver 32 receives a reflected wave W2 that occurs when the detection wave W1 is reflected by a person H1 present in the detection area, and generates a received signal S2.
  • the receiver 32 converts the received radio wave (reflected wave W2) into a received signal S2, which is an electrical signal.
  • the receiver 32 may also be equipped with an amplifier that amplifies the received signal S2.
  • the radio wave sensor 3 receives an oscillation signal S1 from the signal processing circuit 4.
  • the radio wave sensor 3 also transmits a received signal S2 to the signal processing circuit 4.
  • the signal processing circuit 4 is a circuit that generates a Doppler signal corresponding to the movement of the person H1 based on the output of the radio wave sensor 3.
  • the signal processing circuit 4 generates the Doppler signal intermittently (for example, every unit time).
  • the signal processing circuit 4 may be, for example, a known circuit. As shown in FIG. 2, for example, the signal processing circuit 4 has an oscillator circuit 41, a phase shift circuit 42, and a phase detection unit 43.
  • the oscillator circuit 41 is, for example, an oscillator circuit using a quartz crystal oscillator or a ceramic oscillator, an LC oscillator circuit, or a clock IC (Integrated Circuit) that generates a clock signal.
  • the oscillator circuit 41 generates an oscillation signal (sine wave signal) S1 of a reference frequency, and outputs the oscillation signal S1 to the phase shift circuit 42 and the phase detection unit 43.
  • the oscillator circuit 41 also outputs the oscillation signal S1 to the transmitter 31.
  • the phase-shift circuit 42 generates a signal S3 (called a phase-shift signal) by shifting the phase of the oscillation signal S1 by ( ⁇ /2), and outputs the phase-shift signal S3 to the phase detection unit 43.
  • a phase-shift signal a signal S3 (called a phase-shift signal) by shifting the phase of the oscillation signal S1 by ( ⁇ /2), and outputs the phase-shift signal S3 to the phase detection unit 43.
  • the phase detection unit 43 has two detection units (a first detection unit 43A and a second detection unit 43B).
  • the first detection unit 43A includes a first mixer 44A, a first filter 45A, and a first amplifier 48A.
  • the first mixer 44A mixes (multiplies or adds) the received signal S2 and the oscillation signal S1 (reference signal) to output the difference and sum of the frequencies of the two signals as signals. If the frequency (reference frequency) of the oscillation signal S1 is f1 and the frequency of the received signal S2 is f2, a signal that is the sum of frequencies f1 and f2 and a signal that is the difference between frequencies f1 and f2 are output.
  • the first mixer 44A is a passive mixer that uses, for example, diodes, but it may also be an active mixer that uses transistors.
  • the first filter 45A includes a first LPF (Low Pass Filter) 46A and a first HPF (High Pass Filter) 47A.
  • the first LPF 46A passes frequency components below a predetermined first cutoff frequency from the output signal of the first mixer 44A.
  • the first LPF 46A attenuates the sum of the frequency of the received signal S2 and the frequency of the oscillation signal S1, and passes the difference between the frequency of the received signal S2 and the frequency of the oscillation signal S1.
  • the received signal S2 output from the receiver 32 contains a signal (Doppler signal) that has been frequency-shifted by hitting and reflecting off a moving object, and a signal (DC component signal) that has not been frequency-shifted by hitting and reflecting off a stationary object. Therefore, the output signal of the first mixer 44A contains not only a Doppler signal, but also a DC component signal, and the output of the first LPF 46A contains a Doppler signal and a DC component signal.
  • the first HPF 47A passes frequency components higher than a predetermined second cutoff frequency from the output signal of the first LPF 46A, and attenuates the DC component signal. In other words, the first HPF 47A attenuates the DC component signal contained in the output signal of the first LPF 46A and passes the Doppler signal.
  • the first amplifier 48A amplifies the output of the first HPF 47A and outputs it to the breathing determination system 1.
  • the second detection unit 43B includes a second mixer 44B, a second filter 45B, and a second amplifier 48B.
  • the second mixer 44B mixes (multiplies or adds) the received signal S2 and the phase-shifted signal S3 to output the difference and sum of the frequencies of the two signals as signals.
  • the frequency of the phase-shifted signal S3 is the same as the frequency (reference frequency) of the oscillation signal S1.
  • the second mixer 44B is a passive mixer using, for example, a diode, but it may also be an active mixer using a transistor.
  • the second filter 45B includes a second LPF 46B and a second HPF 47B.
  • the second LPF 46B passes frequency components below a predetermined third cutoff frequency from the output signal of the second mixer 44B.
  • the second LPF 46B attenuates the sum of the frequency of the received signal S2 and the frequency of the phase-shift signal S3, and passes the difference between the frequency of the received signal S2 and the frequency of the phase-shift signal S3.
  • the output signal of the second mixer 44B contains not only a Doppler signal but also a DC component signal, so the output of the second LPF 46B contains a Doppler signal and a DC component signal.
  • the third cutoff frequency of the second LPF 46B only needs to be set to the same value as the first cutoff frequency of the first LPF 46A.
  • the second HPF 47B passes frequency components higher than a predetermined fourth cutoff frequency from the output signal of the second LPF 46B, and attenuates the DC component signal.
  • the second HPF 47B attenuates the DC component signal contained in the output signal of the second LPF 46B and passes the Doppler signal.
  • the fourth cutoff frequency of the second HPF 47B only needs to be set to the same value as the second cutoff frequency of the first HPF 47A.
  • the second amplifier 48B amplifies the output of the second HPF 47B and outputs it to the breathing determination system 1.
  • the breathing determination system 1 estimates the breathing waveform of person H1 based on at least one of the Doppler signals amplified by the first amplifier 48A and the second amplifier 48B.
  • the breathing determination system 1 includes a communication unit 11, a storage unit 12, and a processing unit 13.
  • the breathing determination system 1 includes a computer system having one or more processors and a memory. At least some of the functions of the breathing determination system 1 are realized by the processor of the computer system executing a program recorded in the memory of the computer system.
  • the program may be recorded in the memory, or may be provided via a telecommunications line such as the Internet, or may be recorded on a non-transitory recording medium such as a memory card and provided.
  • the storage unit 12 includes the memory of the computer system.
  • the processing unit 13 includes one or more processors of the computer system.
  • the processing unit 13 executes a program to realize a predetermined function.
  • the communication unit 11 includes a communication interface device.
  • the breathing determination system 1 is capable of communicating with the input device 2, the signal processing circuit 4, the output device 5, and the equipment control device 6 via the communication interface device.
  • “capable of communication” means that signals can be sent and received directly or indirectly via a network or a repeater, etc., using an appropriate communication method such as wired communication or wireless communication.
  • the memory unit 12 is a storage device configured with a hard disk drive (HDD) or a solid state drive (SSD) or the like.
  • the memory unit 12 stores information.
  • the memory unit 12 stores a program executed by the processing unit 13.
  • the memory unit 12 also stores, for example, information acquired from the input device 2, a Doppler signal output from the signal processing circuit 4, a respiratory waveform estimated by the processing unit 13, the state of the person H1 determined by the processing unit 13, and the control conditions of the spatial device 7 determined by the processing unit 13.
  • the processing unit 13 has, for example, an acquisition unit 131, a preprocessing unit 132, a waveform estimation unit 133, a determination unit 134, and an environment control unit 135. Note that these merely indicate the functions realized by the processing unit 13, and do not necessarily indicate a concrete configuration.
  • the acquisition unit 131 acquires a Doppler signal based on the output of the radio wave sensor 3. More specifically, the signal processing circuit 4 generates a Doppler signal based on the output of the radio wave sensor 3. The acquisition unit 131 acquires the Doppler signal from the signal processing circuit 4 via the communication unit 11.
  • the pre-processing unit 132 performs pre-processing on the Doppler signal acquired by the acquisition unit 131. For example, the pre-processing unit 132 performs processing to reduce noise in the Doppler signal, and processing to convert the data format of the Doppler signal.
  • the waveform estimation unit 133 estimates the respiratory waveform of person H1 based on the Doppler signal input to the waveform estimation unit 133. More specifically, the waveform estimation unit 133 is a trained model generated by machine learning, and the trained model estimates the respiratory waveform of person H1 from the Doppler signal. The trained model takes the Doppler signal as input data and the respiratory waveform of person H1 as output data. In other words, the trained model receives the input of the Doppler signal and outputs the respiratory waveform of person H1. The trained model is generated in advance by a learner.
  • the learning device generates, by machine learning, a trained model that constitutes the waveform estimation unit 133.
  • a "trained model” refers to a model for which machine learning using a learning dataset has been completed.
  • the learning device generates a trained model by deep learning.
  • the trained model referred to here is assumed to include, for example, a trained model using a neural network, or a trained model generated by deep learning using a multi-layer neural network.
  • the neural network may include, for example, a CNN (Convolutional Neural Network).
  • the neural network may also include a recurrent neural network.
  • a neural network is composed of, for example, an input layer, a CNN layer, an RNN (Recurrent Neural Network) layer, a fully connected layer, and an output layer.
  • RNN Recurrent Neural Network
  • the training data set is a collection of multiple training data.
  • the training data is data that combines Doppler signals with the respiratory waveforms that correspond to the Doppler signals, and is so-called teacher data.
  • the training data is data that associates Doppler signals with the respiratory waveforms that correspond to the Doppler signals.
  • the Doppler signal data and respiratory waveform data included in the teacher data are obtained by measurement using sensors.
  • a Doppler signal can be obtained for one or more subjects using a radio wave sensor 3 and a signal processing circuit 4.
  • a respiratory waveform can be measured for one or more subjects using a respiratory sensor.
  • the respiratory sensor is preferably a contact type sensor. The respiratory sensor measures the respiratory waveform based on, for example, the movement of the subject's chest or abdomen.
  • the Doppler signal is obtained and the respiratory waveform is measured simultaneously.
  • the time axis of the Doppler signal data and the respiratory waveform data contained in one learning data set is the same.
  • the subject to whom the radio waves (detection wave W1) are applied to obtain the Doppler signal and the subject to whom the respiratory waveform is measured are the same person.
  • the one or more subjects may or may not include a person H1 whose condition is to be determined by the breathing determination system 1.
  • the Doppler signal input to the waveform estimation unit 133 may contain components due to the breathing of person H1, components due to the body movement of person H1, components due to the heart rate of person H1, noise, etc.
  • Body movement refers to bodily movement in general.
  • the waveform estimation unit 133 (trained model) estimates the respiratory waveform of person H1 based on the input Doppler signal. Therefore, the learning device learns to distinguish the components of the Doppler signal caused by person H1's breathing from other components (i.e., components caused by the body movement of person H1, components caused by person H1's heart rate, noise, etc.).
  • FIG. 3 shows an example of Doppler signals D1 and D2 that are measured on a specific subject and included in the learning data.
  • Doppler signals D1 and D2 are signals (I signal and Q signal) output from the first detection unit 43A and the second detection unit 43B (see FIG. 2), respectively.
  • FIG. 4 shows an example of a respiratory waveform B1 measured by a respiratory sensor for the above-mentioned specified subject.
  • the learning device performs machine learning to estimate the respiratory waveform using the Doppler signals D1 and D2 and the respiratory waveform B1 as training data.
  • the respiratory waveform B2 in FIG. 4 is an example of a respiratory waveform estimated by the trained model (waveform estimation unit 133) generated by machine learning.
  • FIG. 5 also shows an example of Doppler signals D3 and D4 measured for person H1.
  • Doppler signals D3 and D4 are signals (I signal and Q signal) output from the first detection unit 43A and the second detection unit 43B (see FIG. 2), respectively.
  • the respiratory waveform B3 in FIG. 6 is obtained by inputting the Doppler signals D3 and D4 in FIG. 5 to the waveform estimation unit 133.
  • Figure 7 also shows an example of a respiratory waveform.
  • the horizontal axis represents time
  • the vertical axis represents the strength of the output signal from the respiratory sensor.
  • the respiratory sensor is a pressure sensor that detects the movement of the subject's chest or abdomen accompanying breathing as a change in pressure
  • the vertical axis in Figure 4 corresponds to the pressure that changes with breathing.
  • the horizontal axis represents time
  • the vertical axis corresponds to the pressure that changes with breathing.
  • An increase in pressure represents inhalation
  • a decrease in pressure represents exhalation.
  • the determination unit 134 compares the feature amount of the respiratory waveform estimated by the waveform estimation unit 133 with a predetermined value to determine whether or not the person H1 is in an abnormal state.
  • the features of the respiratory waveform include, for example, at least one of the following: breath time BT, inspiratory time IT, expiratory time ET, postexpiration pause time PT, an amount equivalent to inspiratory volume IV, an amount equivalent to expiratory volume EV, an amount equivalent to minute ventilation volume, and respiratory rate.
  • the respiratory waveform has repeated peaks and valleys.
  • the respiratory time BT is the time from when the respiratory volume reaches the minimum value VIST at the valley of the respiratory waveform to when the respiratory volume reaches the minimum value VIST +1 at the next valley and then begins to increase.
  • the respiratory time BT is the sum of the inhalation time IT, the exhalation time ET, and the pause time PT.
  • the inspiration time IT is the time from the point at which the respiratory volume reaches a minimum value VIST at the trough of the respiratory waveform to the point at which the respiratory volume reaches a maximum value VIEO at the next peak.
  • the expiratory time ET is the time from the point at which the respiratory volume reaches a maximum value V IEO at the peak of the respiratory waveform to the point at which the respiratory volume reaches a minimum value V IST +1 at the next valley.
  • the pause time PT is the time when the variation in respiratory volume is below a certain value at the trough of the respiratory waveform. When the pause time PT ends, the respiratory volume begins to increase.
  • the inhalation volume IV is the difference between the minimum value V IST of the respiratory volume at the trough of the respiratory waveform and the maximum value V IEO of the respiratory volume at the next peak.
  • the expiratory volume EV is the difference between the maximum value V IEO of the respiratory volume at the peak of the respiratory waveform and the minimum value V IST+1 of the respiratory volume at the following valley.
  • Minute ventilation is the total amount of gas ventilated in one minute. Minute ventilation is the product of the tidal volume (inspiratory volume IV or expiratory volume EV) and the respiratory rate (number of breaths) per minute.
  • the determination unit 134 determines whether or not person H1 is in an abnormal state based on, for example, the similarity between the feature amount of the respiratory waveform estimated by the waveform estimation unit 133 and a predetermined value corresponding to an abnormal respiratory pattern. That is, the feature amount of the abnormal respiratory pattern is stored in advance in the storage unit 12 as the above-mentioned predetermined value. Then, the determination unit 134 determines whether or not person H1 is in an abnormal state based on the magnitude relationship between the feature amount of the respiratory waveform estimated by the waveform estimation unit 133 and the above-mentioned predetermined value stored in the storage unit 12.
  • the determination unit 134 determines that person H1 is in an abnormal state when, for example, the difference between the feature amount of the respiratory waveform estimated by the waveform estimation unit 133 and the above-mentioned predetermined value stored in the storage unit 12 is equal to or smaller than a first threshold value.
  • the determination unit 134 also determines whether or not the person H1 is in an abnormal state based on, for example, the similarity between the feature amount of the respiratory waveform estimated by the waveform estimation unit 133 and a predetermined value corresponding to the breathing pattern of the person H1 measured in advance. That is, the normal respiratory waveform of the person H1 is measured in advance using a respiratory sensor, and the feature amount is stored in the storage unit 12 as the above-mentioned predetermined value.
  • the determination unit 134 determines whether or not the person H1 is in an abnormal state based on the magnitude relationship between the feature amount of the respiratory waveform estimated by the waveform estimation unit 133 and the above-mentioned predetermined value stored in the storage unit 12.
  • the determination unit 134 determines that the person H1 is in an abnormal state when, for example, the difference between the feature amount of the respiratory waveform estimated by the waveform estimation unit 133 and the above-mentioned predetermined value stored in the storage unit 12 is greater than a second threshold value.
  • the feature quantity of the respiratory waveform may include respiratory interval variation.
  • the respiratory interval variation is expressed as the respiratory rate moving standard deviation or the respiratory irregularity index.
  • the respiratory irregularity index is the absolute value of the difference between the respiratory peak frequency PF and the respiratory center of gravity frequency GF (
  • the waveform shown in FIG. 6 has a shape similar to a breathing abnormality called Cheyne-Stokes breathing.
  • a breathing abnormality called Cheyne-Stokes breathing.
  • Biot breathing and Kussmaul breathing are also known as medically abnormal breathing (breathing abnormalities).
  • buccal breathing, hyperpnea, hypopnea, bradypnea (slow breathing), tachypnea, and breathlessness are also known as breathing abnormalities.
  • the determination unit 134 can determine whether or not person H1 is in an abnormal state based on the similarity between the features of such abnormal breathing patterns and the features of the breathing waveform estimated by the waveform estimation unit 133.
  • the environmental control unit 135 controls the spatial environment based on the determination result of the determination unit 134. More specifically, the environmental control unit 135 controls the spatial equipment 7 via the equipment control device 6, thereby controlling the spatial environment.
  • the environmental control unit 135 determines the control conditions for the spatial device 7. Furthermore, the environmental control unit 135 outputs a control signal to the device control device 6 via the communication unit 11.
  • the control signal is a signal indicating the control conditions determined by the environmental control unit 135.
  • the device control device 6 controls the spatial device 7 based on the control signal.
  • the control signal generated by the environmental control unit 135 specifies, for example, the set temperature, set humidity, set air volume, set air speed, and set air direction of the spatial device 7.
  • the control signal generated by the environmental control unit 135 specifies, for example, the brightness (dimming rate), color temperature, and color deviation of the spatial device 7.
  • the device control device 6 matches the settings of the spatial device 7 with the settings specified by the control signal.
  • the judgment result of the judgment unit 134 includes information regarding the type of abnormality.
  • the information regarding the type of abnormality includes, for example, information regarding what kind of illness or disease the person H1 is suspected to have and the degree of suspicion.
  • the memory unit 12 stores, for example, a correspondence between the information regarding the type of abnormality and the control conditions of the spatial device 7.
  • the correspondence input by the user operating the input device 2 may be stored in the memory unit 12, or the correspondence may be stored in advance in the memory unit 12.
  • the environmental control unit 135 When the environmental control unit 135 acquires information regarding the type of abnormality, it determines the control conditions for the spatial equipment 7, for example, based on the correspondence stored in the storage unit 12. For example, if the person H1 is suspected of having heat stroke, the environmental control unit 135 lowers the set temperature of the air conditioning equipment, which is the spatial equipment 7.
  • the output device 5 is a device for transmitting information to the user.
  • the output device 5 includes, for example, a display device such as a display.
  • the output device 5 displays information.
  • the output device 5 acquires information about the respiratory waveform estimated by the waveform estimation unit 133 from the breathing determination system 1. The information is transmitted to the output device 5 as an image signal. The output device 5 displays the information. In other words, the output device 5 displays the respiratory waveform.
  • the output device 5 also displays, for example, the determination result of the determination unit 134 output from the breathing determination system 1.
  • the output device 5 also displays, for example, the control conditions of the spatial device 7 determined by the environment control unit 135 and output from the breathing determination system 1.
  • the output device 5 may be, for example, a smartphone equipped with a display, etc.
  • the output device 5 may also include a speaker for transmitting information by audio output.
  • the output device 5 may also include a printer for transmitting information by printing.
  • the equipment control device 6 controls the spatial equipment 7 based on the control signal generated by the environment control unit 135.
  • the equipment control device 6 causes the settings of the spatial equipment 7 to match the settings specified by the control signal.
  • the breathing determination system 1 acquires a Doppler signal from the signal processing circuit 4 (step ST1). Next, the breathing determination system 1 estimates the breathing waveform of person H1 using a trained model that has been generated in advance by a learning device (step ST2). More specifically, the breathing determination system 1 inputs the Doppler signal to the trained model. Then, the trained model outputs an estimated breathing waveform.
  • the breathing determination system 1 extracts features of the breathing waveform from the breathing waveform (step ST3).
  • the features of the breathing waveform include, for example, the breathing time BT (see FIG. 7) and the inhalation time IT (see FIG. 7).
  • the breathing determination system 1 determines whether the extracted feature amount is within the abnormal range (step ST4). For example, if the difference between the feature amount and the predetermined value exceeds a threshold, the breathing determination system 1 determines that the feature amount is within the abnormal range, and if the difference between the feature amount and the predetermined value is equal to or less than the threshold, the breathing determination system 1 determines that the feature amount is not within the abnormal range.
  • step ST4 determines that person H1 is in an abnormal state (step ST5). If the feature amount is not within the abnormal range (step ST4: No), the breathing determination system 1 determines that person H1 is in a normal state (not in an abnormal state) (step ST6).
  • the breathing determination system 1 outputs the determination result as to whether or not the person H1 is in an abnormal state (step ST7).
  • the output device 5 displays the determination result.
  • the breathing determination system 1 also determines the control conditions for the spatial device 7 based on the determination result.
  • the breathing determination system 1 controls the spatial device 7 via the device control device 6 based on the determined control conditions (step ST8).
  • the computational model (trained model) used in the waveform estimation unit 133 is generated by machine learning.
  • the waveform estimation unit 133 may be implemented as any type of artificial intelligence or system.
  • the machine learning algorithm is, for example, a neural network.
  • the machine learning algorithm is not limited to a neural network, and may be, for example, eXtreme Gradient Boosting (XGB) regression, Random Forest, decision tree, Logistic Regression, Support vector machine (SVM), Naive Bayes classifier, k-nearest neighbors, etc.
  • the machine learning algorithm may be, for example, a Gaussian Mixture Model (GMM), k-means clustering, etc.
  • GMM Gaussian Mixture Model
  • the learning method is, as an example, supervised learning.
  • the learning method is not limited to supervised learning, and may be unsupervised learning or reinforcement learning.
  • the determination unit 134 may determine whether the person H1 is in an abnormal state, and generate advice for the person H1 based on the determination result.
  • the advice may be, for example, a suggestion to improve lifestyle habits, or advice to visit a medical institution.
  • the determination unit 134 may generate a predetermined advice for each type of abnormality, for example.
  • the determination unit 134 outputs the generated advice.
  • the determination unit 134 causes the output device 5 to display the advice in the form of characters, drawings, etc.
  • the Doppler signal may contain components resulting from the breathing of multiple people.
  • the learning device may learn to distinguish the components of the Doppler signal resulting from the breathing of one person from the components resulting from the breathing of another person.
  • a plurality of radio wave sensors 3 may be provided.
  • a plurality of radio wave sensors 3 may be provided in one-to-one correspondence with the plurality of people.
  • the phase detection unit 43 may include only one of the first detection unit 43A and the second detection unit 43B.
  • the executing entity of the breathing determination system 1 or the breathing determination method in the present disclosure includes a computer system.
  • the computer system is mainly composed of a processor and a memory as hardware. At least a part of the functions of the executing entity of the breathing determination system 1 or the breathing determination method in the present disclosure is realized by the processor executing a program recorded in the memory of the computer system.
  • the program may be pre-recorded in the memory of the computer system, may be provided through an electric communication line, or may be recorded and provided on a non-transitory recording medium such as a memory card, an optical disk, or a hard disk drive that can be read by the computer system.
  • the processor of the computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI).
  • the integrated circuits such as ICs or LSIs referred to here are called different names depending on the degree of integration, and include integrated circuits called system LSIs, VLSIs (Very Large Scale Integration), or ULSIs (Ultra Large Scale Integration).
  • a field-programmable gate array (FPGA) that is programmed after the LSI is manufactured, or a logic device that allows reconfiguration of the connection relationships within the LSI or reconfiguration of the circuit partitions within the LSI, can also be used as a processor.
  • Multiple electronic circuits may be integrated into one chip, or may be distributed across multiple chips.
  • the computer system referred to here includes a microcontroller having one or more processors and one or more memories.
  • the microcontroller is also composed of one or more electronic circuits including a semiconductor integrated circuit or a large-scale integrated circuit.
  • the breathing determination system 1 it is not essential for the breathing determination system 1 that multiple functions are concentrated in one device, and multiple components of the breathing determination system 1 may be distributed across multiple devices. Furthermore, at least some of the functions of the breathing determination system 1, for example, some of the functions of the determination unit 134, may be realized by a server or a cloud (cloud computing), etc.
  • multiple functions distributed among multiple devices may be consolidated into one device.
  • multiple functions distributed between the signal processing circuit 4 and the breathing determination system 1 may be consolidated into one device.
  • the breathing determination system (1) includes an acquisition unit (131), a waveform estimation unit (133), and a determination unit (134).
  • the acquisition unit (131) acquires a Doppler signal based on the output of the radio wave sensor (3).
  • the radio wave sensor (3) includes a wave transmitter (31) that transmits radio waves as a detection wave (W1), and a wave receiver (32) that receives a reflected wave (W2) generated when the detection wave (W1) is reflected by the person (H1).
  • the Doppler signal is a signal that indicates the difference between the detection wave (W1) and the reflected wave (W2).
  • the waveform estimation unit (133) estimates the breathing waveform of the person (H1) based on the Doppler signal acquired by the acquisition unit (131).
  • the determination unit (134) compares the feature amount of the breathing waveform estimated by the waveform estimation unit (133) with a predetermined value to determine whether the person (H1) is in an abnormal state.
  • the breathing determination system (1) estimates a breathing waveform and determines whether or not the person (H1) is in an abnormal state from the breathing waveform. Therefore, the condition of the person (H1) can be determined in more detail than when the condition of the person (H1) is determined simply from the breathing rate.
  • the waveform estimation unit (133) estimates the breathing waveform of the person (H1) from the Doppler signal using a trained model generated by machine learning.
  • the waveform estimation unit (133) can estimate the respiratory waveform in various situations.
  • the determination unit (134) determines whether or not the person (H1) is in an abnormal state based on the similarity between the feature amount of the breathing waveform estimated by the waveform estimation unit (133) and a predetermined value corresponding to an abnormal breathing pattern.
  • the determination unit (134) determines whether or not the person (H1) is in an abnormal state based on the similarity between the feature amount of the breathing waveform estimated by the waveform estimation unit (133) and a predetermined value corresponding to the breathing pattern of the person (H1) measured in advance.
  • the determination unit (134) can determine whether the condition of the person (H1) is different from usual.
  • the breathing determination system (1) is any one of the first to fourth aspects and further includes an environmental control unit (135).
  • the environmental control unit (135) controls the spatial environment based on the determination result of the determination unit (134).
  • the above configuration can improve the condition of the person (H1).
  • the feature amount includes breathing time.
  • the characteristic amount includes the inhalation time.
  • the feature value includes an exhalation time.
  • the feature amount includes a pause time.
  • the characteristic amount includes an amount corresponding to the amount of inhaled air.
  • the feature amount includes an amount equivalent to the exhaled air volume.
  • the characteristic amount includes an amount equivalent to minute ventilation.
  • Configurations other than the first aspect are not essential to the breathing determination system (1) and may be omitted as appropriate.
  • the breathing determination method includes an acquisition step, a waveform estimation step, and a determination step.
  • a Doppler signal is acquired based on the output of the radio wave sensor (3).
  • the radio wave sensor (3) includes a wave transmitter (31) that transmits radio waves as a detection wave (W1), and a wave receiver (32) that receives a reflected wave (W2) generated when the detection wave (W1) is reflected by the person (H1).
  • the Doppler signal is a signal that indicates the difference between the detection wave (W1) and the reflected wave (W2).
  • the waveform estimation step the breathing waveform of the person (H1) is estimated based on the Doppler signal acquired in the acquisition step.
  • the determination step the feature amount of the breathing waveform estimated in the waveform estimation step is compared with a predetermined value to determine whether the person (H1) is in an abnormal state.
  • the program according to the fourteenth aspect is a program for causing one or more processors of a computer system to execute the breathing determination method according to the thirteenth aspect.
  • various configurations (including modified examples) of the breathing determination system (1) according to the embodiment can be embodied in a breathing determination method, a (computer) program, or a non-transitory recording medium on which a program is recorded.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The present disclosure addresses the problem of determining the condition of a human in more detail. This respiration determination system (1) is provided with an acquisition unit (131), a waveform estimation unit (133), and a determination unit (134). The acquisition unit (131) acquires a Doppler signal on the basis of an output from a radio wave sensor (3). The waveform estimation unit (133) estimates the respiratory waveform of a human (H1) on the basis of the Doppler signal acquired by the acquisition unit (131). The determination unit (134) determines whether or not the human (H1) is in an anomalous condition by comparing a feature amount of the respiratory waveform estimated by the waveform estimation unit (133) with a predetermined value.

Description

呼吸判定システム、呼吸判定方法及びプログラムBreathing determination system, breathing determination method, and program

 本開示は一般に呼吸判定システム、呼吸判定方法及びプログラムに関する。本開示は、より詳細には、人の呼吸波形を推定する呼吸判定システム、呼吸判定方法及びプログラムに関する。 The present disclosure generally relates to a breathing determination system, a breathing determination method, and a program. More specifically, the present disclosure relates to a breathing determination system, a breathing determination method, and a program that estimate a human breathing waveform.

 特許文献1に記載の信号処理システムは、補完部と、判定部と、を備える。補完部は、人の第2呼吸波形を推定する。判定部は、第2呼吸波形の時間変動に基づいて人の状態を判定する。第2呼吸波形の時間変動は、第2呼吸波形のピーク値又は周期などのパラメータの変動量、分散、又は標準偏差等である。 The signal processing system described in Patent Document 1 includes a complementation unit and a determination unit. The complementation unit estimates the person's second respiratory waveform. The determination unit determines the state of the person based on the time variation of the second respiratory waveform. The time variation of the second respiratory waveform is the amount of variation, variance, or standard deviation of a parameter such as the peak value or period of the second respiratory waveform.

 特許文献1の判定部は、このように、単なる呼吸数等の情報から、人の状態を判定するように構成されている。しかしながら、より詳細な判定を可能にすることが望まれる。 The determination unit in Patent Document 1 is thus configured to determine a person's condition from simple information such as respiratory rate. However, it is desirable to be able to make more detailed determinations.

特開2021-171271号公報JP 2021-171271 A

 本開示は、人の状態をより詳細に判定できる呼吸判定システム、呼吸判定方法及びプログラムを提供することを目的とする。 The present disclosure aims to provide a breathing assessment system, breathing assessment method, and program that can assess a person's condition in more detail.

 本開示の一態様に係る呼吸判定システムは、取得部と、波形推定部と、判定部と、を備える。前記取得部は、電波センサの出力に基づいて、ドップラー信号を取得する。前記電波センサは、電波を検知波として送波する送波器と、前記検知波が人に反射して生じる反射波を受波する受波器と、を備える。前記ドップラー信号は、前記検知波と前記反射波との差分を示す信号である。前記波形推定部は、前記取得部で取得された前記ドップラー信号に基づいて、前記人の呼吸波形を推定する。前記判定部は、前記波形推定部で推定された前記呼吸波形の特徴量を、所定値と比較することにより、前記人が異常な状態か否かを判定する。 The breathing determination system according to one aspect of the present disclosure includes an acquisition unit, a waveform estimation unit, and a determination unit. The acquisition unit acquires a Doppler signal based on the output of a radio wave sensor. The radio wave sensor includes a transmitter that transmits radio waves as detection waves, and a receiver that receives reflected waves generated when the detection waves are reflected by a person. The Doppler signal is a signal that indicates the difference between the detection wave and the reflected wave. The waveform estimation unit estimates the person's breathing waveform based on the Doppler signal acquired by the acquisition unit. The determination unit compares the feature amount of the breathing waveform estimated by the waveform estimation unit with a predetermined value to determine whether the person is in an abnormal state.

 本開示の一態様に係る呼吸判定方法は、取得ステップと、波形推定ステップと、判定ステップと、を有する。前記取得ステップでは、電波センサの出力に基づいて、ドップラー信号を取得する。前記電波センサは、電波を検知波として送波する送波器と、前記検知波が人に反射して生じる反射波を受波する受波器と、を備える。前記ドップラー信号は、前記検知波と前記反射波との差分を示す信号である。前記波形推定ステップでは、前記取得ステップで取得された前記ドップラー信号に基づいて、前記人の呼吸波形を推定する。前記判定ステップでは、前記波形推定ステップで推定された前記呼吸波形の特徴量を、所定値と比較することにより、前記人が異常な状態か否かを判定する。 The breathing determination method according to one aspect of the present disclosure includes an acquisition step, a waveform estimation step, and a determination step. In the acquisition step, a Doppler signal is acquired based on the output of a radio wave sensor. The radio wave sensor includes a wave transmitter that transmits radio waves as detection waves, and a wave receiver that receives reflected waves generated when the detection waves are reflected by a person. The Doppler signal is a signal that indicates the difference between the detection wave and the reflected wave. In the waveform estimation step, the person's breathing waveform is estimated based on the Doppler signal acquired in the acquisition step. In the determination step, a feature of the breathing waveform estimated in the waveform estimation step is compared with a predetermined value to determine whether the person is in an abnormal state.

 本開示の一態様に係るプログラムは、前記呼吸判定方法を、コンピュータシステムの1以上のプロセッサに実行させるためのプログラムである。 A program according to one aspect of the present disclosure is a program for causing one or more processors of a computer system to execute the breathing determination method.

図1は、一実施形態に係る呼吸判定システムのブロック図である。FIG. 1 is a block diagram of a breathing determination system according to an embodiment. 図2は、同上の呼吸判定システムと共に使用される信号処理回路のブロック図である。FIG. 2 is a block diagram of a signal processing circuit used with the above-mentioned breathing determination system. 図3は、同上の呼吸判定システムで検出されるドップラー信号の波形図である。FIG. 3 is a waveform diagram of a Doppler signal detected by the above-mentioned breathing determination system. 図4は、センサにより測定された呼吸波形、及び、同上の呼吸判定システムで推定される呼吸波形を表す波形図である。FIG. 4 is a waveform diagram showing a respiration waveform measured by a sensor and a respiration waveform estimated by the above-mentioned respiration determination system. 図5は、同上の呼吸判定システムで呼吸波形の推定に用いられるドップラー信号の波形図である。FIG. 5 is a waveform diagram of a Doppler signal used for estimating a respiratory waveform in the above-mentioned breathing determination system. 図6は、同上の呼吸判定システムで推定される呼吸波形を表す波形図である。FIG. 6 is a waveform diagram showing a respiration waveform estimated by the above-mentioned respiration determination system. 図7は、同上の呼吸判定システムで推定される呼吸波形を表す波形図である。FIG. 7 is a waveform diagram showing a respiration waveform estimated by the above-mentioned respiration determination system. 図8は、同上の呼吸判定システムの動作例を示すフローチャートである。FIG. 8 is a flowchart showing an example of the operation of the breathing determination system.

 (実施形態)
 以下、実施形態に係る呼吸判定システム1について、図面を用いて説明する。ただし、下記の実施形態は、本開示の様々な実施形態の1つに過ぎない。下記の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。また、下記の実施形態において説明する各図は、模式的な図であり、図中の各構成要素の大きさ等の比が必ずしも実際の寸法比を反映しているとは限らない。
(Embodiment)
A breathing determination system 1 according to an embodiment will be described below with reference to the drawings. However, the embodiment described below is merely one of various embodiments of the present disclosure. The embodiment described below can be modified in various ways depending on the design, etc., as long as the object of the present disclosure can be achieved. Furthermore, each figure described in the embodiment described below is a schematic diagram, and the ratio of the size of each component in the figure does not necessarily reflect the actual dimensional ratio.

 (概要)
 呼吸判定システム1は、人H1の呼吸に基づいて、人H1が異常な状態か否かを判定する。呼吸判定システム1は、例えば、人H1の呼吸の様子が健康な者の呼吸の様子と異なる場合、人H1の呼吸の様子が複数(多数)の人の平均的な呼吸の様子と異なる場合、及び、人H1の呼吸の様子が普段と異なる場合に、人H1が異常な状態であると判定する。また、呼吸判定システム1は、例えば、人H1の呼吸の様子が特定の病気(呼吸に関する病気又は呼吸に関しない病気)の患者の呼吸の様子と類似している場合、及び、人H1の呼吸の様子が、注意を要する呼吸の様子と類似している場合に、人H1が異常な状態であると判定する。注意を要する呼吸の様子とは、例えば、ストレスが多い人の呼吸の様子、及び、病気の予兆が見られる人の呼吸の様子等である。
(overview)
The breathing determination system 1 determines whether the person H1 is in an abnormal state based on the breathing of the person H1. For example, the breathing determination system 1 determines that the person H1 is in an abnormal state when the breathing of the person H1 is different from that of a healthy person, when the breathing of the person H1 is different from the average breathing of a plurality of (a large number of) people, and when the breathing of the person H1 is different from normal. In addition, the breathing determination system 1 determines that the person H1 is in an abnormal state when the breathing of the person H1 is similar to that of a patient with a specific disease (a disease related to breathing or a disease unrelated to breathing) and when the breathing of the person H1 is similar to a breathing that requires attention. Examples of the breathing that requires attention include the breathing of a person who is under a lot of stress and the breathing of a person who shows signs of illness.

 図1に示すように、本実施形態の呼吸判定システム1は、取得部131と、波形推定部133と、判定部134と、を備える。取得部131は、電波センサ3の出力に基づいて、ドップラー信号を取得する。電波センサ3は、電波を検知波W1として送波する送波器31と、検知波W1が人H1に反射して生じる反射波W2を受波する受波器32と、を備える。ドップラー信号は、検知波W1と反射波W2との差分を示す信号である。波形推定部133は、取得部131で取得されたドップラー信号に基づいて、人H1の呼吸波形を推定する。判定部134は、波形推定部133で推定された呼吸波形の特徴量を、所定値と比較することにより、人H1が異常な状態か否かを判定する。 As shown in FIG. 1, the breathing judgment system 1 of this embodiment includes an acquisition unit 131, a waveform estimation unit 133, and a judgment unit 134. The acquisition unit 131 acquires a Doppler signal based on the output of the radio wave sensor 3. The radio wave sensor 3 includes a wave transmitter 31 that transmits radio waves as detection waves W1, and a wave receiver 32 that receives reflected waves W2 generated when the detection waves W1 are reflected by the person H1. The Doppler signal is a signal that indicates the difference between the detection waves W1 and the reflected waves W2. The waveform estimation unit 133 estimates the breathing waveform of the person H1 based on the Doppler signal acquired by the acquisition unit 131. The judgment unit 134 judges whether or not the person H1 is in an abnormal state by comparing the feature amount of the breathing waveform estimated by the waveform estimation unit 133 with a predetermined value.

 本実施形態によれば、呼吸判定システム1は、呼吸波形を推定して、呼吸波形から人H1が異常な状態か否かを判定する。そのため、単なる呼吸数から人H1の状態を判定する場合と比較して、人H1の状態をより詳細に判定できる。また、本実施形態では、非接触で呼吸波形を推定することができるので、接触型センサで呼吸波形を測定する場合と異なり、接触型センサを装着する煩わしさ、並びに、装着による拘束感、及び不快感等を解消することができる。 According to this embodiment, the breathing determination system 1 estimates a breathing waveform and determines whether or not person H1 is in an abnormal state from the breathing waveform. Therefore, the state of person H1 can be determined in more detail compared to determining the state of person H1 simply from the breathing rate. Furthermore, in this embodiment, the breathing waveform can be estimated without contact, and therefore, unlike measuring the breathing waveform with a contact sensor, it is possible to eliminate the hassle of wearing a contact sensor, as well as the sense of restraint and discomfort caused by wearing it.

 また、呼吸判定システム1と同様の機能は、呼吸判定方法にて具現化可能である。本実施形態の呼吸判定方法は、取得ステップと、波形推定ステップと、判定ステップと、を有する。取得ステップでは、電波センサ3の出力に基づいて、ドップラー信号を取得する。電波センサ3は、電波を検知波W1として送波する送波器31と、検知波W1が人H1に反射して生じる反射波W2を受波する受波器32と、を備える。ドップラー信号は、検知波W1と反射波W2との差分を示す信号である。波形推定ステップでは、取得ステップで取得されたドップラー信号に基づいて、人H1の呼吸波形を推定する。判定ステップでは、波形推定ステップで推定された呼吸波形の特徴量を、所定値と比較することにより、人H1が異常な状態か否かを判定する。 Furthermore, functions similar to those of the breathing determination system 1 can be embodied in a breathing determination method. The breathing determination method of this embodiment has an acquisition step, a waveform estimation step, and a determination step. In the acquisition step, a Doppler signal is acquired based on the output of the radio wave sensor 3. The radio wave sensor 3 includes a wave transmitter 31 that transmits radio waves as detection waves W1, and a wave receiver 32 that receives reflected waves W2 generated when the detection waves W1 are reflected by the person H1. The Doppler signal is a signal that indicates the difference between the detection waves W1 and the reflected waves W2. In the waveform estimation step, the breathing waveform of the person H1 is estimated based on the Doppler signal acquired in the acquisition step. In the determination step, the feature amount of the breathing waveform estimated in the waveform estimation step is compared with a predetermined value to determine whether or not the person H1 is in an abnormal state.

 また、呼吸判定方法は、プログラムにて具現化可能である。本実施形態のプログラムは、呼吸判定方法を、コンピュータシステムの1以上のプロセッサに実行させるためのプログラムである。プログラムは、コンピュータシステムで読み取り可能な非一時的記録媒体に記録されていてもよい。 The breathing determination method can also be embodied as a program. The program of this embodiment is a program for causing one or more processors of a computer system to execute the breathing determination method. The program may be recorded on a non-transitory recording medium that can be read by the computer system.

 (詳細)
 (1)全体構成
 図1は、呼吸検出システム100のブロック図である。呼吸検出システム100は、呼吸判定システム1と、入力デバイス2と、電波センサ3と、信号処理回路4と、出力デバイス5と、機器制御装置6と、を備える。
(detail)
1 is a block diagram of a breathing detection system 100. The breathing detection system 100 includes a breathing determination system 1, an input device 2, a radio wave sensor 3, a signal processing circuit 4, an output device 5, and an equipment control device 6.

 呼吸検出システム100は、例えば、施設で使用される、施設は、例えば、建物又は移動体である。施設としての建物の一例は、住宅、オフィスビル、工場、複合商業施設、図書館、美術館、博物館、遊戯施設、空港、鉄道駅、ホテル、介護施設及び病院等である。施設としての移動体の一例は、船舶、鉄道車両及び航空機等である。また、施設は、屋内施設に限定されず、屋外施設であってもよい。 The respiration detection system 100 is used, for example, in a facility, which may be, for example, a building or a mobile object. Examples of buildings as facilities are houses, office buildings, factories, commercial complexes, libraries, art galleries, museums, amusement facilities, airports, train stations, hotels, nursing homes, hospitals, etc. Examples of mobile objects as facilities are ships, railroad cars, aircraft, etc. Furthermore, facilities are not limited to indoor facilities, and may be outdoor facilities.

 また、呼吸検出システム100は、特定の施設で使用されることに限定されない。呼吸検出システム100の少なくとも一部の構成が、持ち運び可能であってもよい。 Furthermore, the breath detection system 100 is not limited to being used in a specific facility. At least a portion of the configuration of the breath detection system 100 may be portable.

 呼吸検出システム100は、例えば、寝ている人H1や安静にしている人H1を対象として、電波センサ3により測定を行い、呼吸波形を推定し、人H1が異常な状態か否かを判定する。呼吸検出システム100を用いることで、例えば、人H1が寝苦しいと感じている状態や、睡眠時無呼吸症候群、熱中症、及び、病気の容態の悪化(例えば、COVID-19感染症の重症化)等を発見できる。 The breathing detection system 100, for example, targets a sleeping person H1 or a person H1 at rest, performs measurements using a radio wave sensor 3, estimates a breathing waveform, and determines whether the person H1 is in an abnormal state. By using the breathing detection system 100, for example, it is possible to detect a state in which the person H1 feels uncomfortable sleeping, sleep apnea syndrome, heat stroke, and a worsening condition of an illness (for example, aggravation of COVID-19 infection), etc.

 呼吸検出システム100は、空間機器7を制御する。空間機器7は、例えば、空調機器又は照明装置である。空調機器は、例えば、エアーコンディショナー、ヒーター、冷凍機、空調ダクト、加湿器、除湿器、空気清浄器、送風機又は換気設備である。 The breath detection system 100 controls the spatial equipment 7. The spatial equipment 7 is, for example, an air conditioning device or a lighting device. The air conditioning device is, for example, an air conditioner, a heater, a refrigerator, an air conditioning duct, a humidifier, a dehumidifier, an air purifier, a blower, or a ventilation system.

 空間機器7は、空間の環境を調整する。例えば、空間機器7は、空間の温度、湿度、風量、風速、風向き、明るさ、色温度、及び色偏差等のうち、少なくとも1つを調整する。 The spatial device 7 adjusts the environment of the space. For example, the spatial device 7 adjusts at least one of the temperature, humidity, air volume, air speed, air direction, brightness, color temperature, and color deviation of the space.

 (2)入力デバイス
 入力デバイス2は、ユーザの操作を受け付ける。本開示で言うユーザは、呼吸波形を推定される対象の人H1と同じ人物であってもよいし、異なる人物であってもよい。入力デバイス2は、ユーザの操作により入力された情報を、呼吸判定システム1へ出力する。
(2) Input Device The input device 2 receives operations from a user. The user in the present disclosure may be the same person as the person H1 whose respiratory waveform is to be estimated, or may be a different person. The input device 2 outputs information input by the user's operations to the breathing determination system 1.

 入力デバイス2は、例えば、マウス、キーボード、釦、タッチパネル、タッチパッド、及びトラックパッドのうち、少なくとも1つを含む。また、入力デバイス2は、例えば、タッチパネル等を備えたスマートフォン、又は、複数の釦等を備えたリモートコントローラであってもよい。また、入力デバイス2は、ユーザが音声入力をするためのマイクロフォンを含んでいてもよい。この場合は、音声入力がユーザの操作に相当する。 The input device 2 includes, for example, at least one of a mouse, a keyboard, a button, a touch panel, a touch pad, and a track pad. The input device 2 may also be, for example, a smartphone equipped with a touch panel or the like, or a remote controller equipped with multiple buttons or the like. The input device 2 may also include a microphone for the user to input voice. In this case, the voice input corresponds to the user's operation.

 ユーザは、入力デバイス2を操作することにより、例えば、空間機器7の制御条件に関する情報を入力する。また、ユーザは、入力デバイス2を操作することにより、呼吸判定システム1を制御する。 The user operates the input device 2 to input, for example, information regarding the control conditions of the spatial device 7. The user also operates the input device 2 to control the breathing determination system 1.

 (3)電波センサ
 電波センサ3は、例えば、天井又は壁に設置される。電波センサ3は、送波器31と、受波器32と、を備える。
(3) Radio Wave Sensor The radio wave sensor 3 is installed, for example, on a ceiling or a wall. The radio wave sensor 3 includes a wave transmitter 31 and a wave receiver 32.

 送波器31は、送信用のアンテナを含む。送波器31は、所定周波数を有する発振信号S1が入力されると、上記所定周波数を有する検知波W1を検知領域に送波する。発振信号S1は、電気信号である。検知波W1は、電波である。送波器31は、発振信号S1を増幅する増幅器を備えていてもよい。 The wave transmitter 31 includes a transmission antenna. When an oscillation signal S1 having a predetermined frequency is input, the wave transmitter 31 transmits a detection wave W1 having the predetermined frequency to the detection area. The oscillation signal S1 is an electrical signal. The detection wave W1 is a radio wave. The wave transmitter 31 may include an amplifier that amplifies the oscillation signal S1.

 受波器32は、受信用のアンテナを含む。受波器32は、検知波W1が検知領域に存在する人H1に反射して生じる反射波W2を受波して受波信号S2を生成する。すなわち、受波器32は、受波した電波(反射波W2)を、電気信号である受波信号S2に変換する。受波器32は、受波信号S2を増幅する増幅器を備えていてもよい。 The receiver 32 includes a receiving antenna. The receiver 32 receives a reflected wave W2 that occurs when the detection wave W1 is reflected by a person H1 present in the detection area, and generates a received signal S2. In other words, the receiver 32 converts the received radio wave (reflected wave W2) into a received signal S2, which is an electrical signal. The receiver 32 may also be equipped with an amplifier that amplifies the received signal S2.

 電波センサ3は、信号処理回路4から、発振信号S1を受信する。また、電波センサ3は、信号処理回路4へ、受波信号S2を送信する。 The radio wave sensor 3 receives an oscillation signal S1 from the signal processing circuit 4. The radio wave sensor 3 also transmits a received signal S2 to the signal processing circuit 4.

 (4)信号処理回路
 信号処理回路4は、電波センサ3の出力に基づいて、人H1の動きに対応するドップラー信号を生成する回路である。信号処理回路4は、間欠的に(例えば、単位時間ごとに)、ドップラー信号を生成する。
(4) Signal Processing Circuit The signal processing circuit 4 is a circuit that generates a Doppler signal corresponding to the movement of the person H1 based on the output of the radio wave sensor 3. The signal processing circuit 4 generates the Doppler signal intermittently (for example, every unit time).

 信号処理回路4としては、例えば、周知の回路を使用することができる。図2に示すように、一例として、信号処理回路4は、発振回路41と、移相回路42と、位相検波部43と、を有する。 The signal processing circuit 4 may be, for example, a known circuit. As shown in FIG. 2, for example, the signal processing circuit 4 has an oscillator circuit 41, a phase shift circuit 42, and a phase detection unit 43.

 発振回路41は、例えば水晶発振子若しくはセラミック振動子を用いた発振回路、LC発振回路、又はクロック信号を発生するクロックIC(Integrated Circuit)である。発振回路41は、基準周波数の発振信号(正弦波信号)S1を発生し、発振信号S1を移相回路42と位相検波部43とに出力する。また、発振回路41は発振信号S1を送波器31にも出力する。 The oscillator circuit 41 is, for example, an oscillator circuit using a quartz crystal oscillator or a ceramic oscillator, an LC oscillator circuit, or a clock IC (Integrated Circuit) that generates a clock signal. The oscillator circuit 41 generates an oscillation signal (sine wave signal) S1 of a reference frequency, and outputs the oscillation signal S1 to the phase shift circuit 42 and the phase detection unit 43. The oscillator circuit 41 also outputs the oscillation signal S1 to the transmitter 31.

 移相回路42は、発振信号S1の位相を(π/2)だけシフト(移相)させた信号(この信号を移相信号という)S3を発生し、移相信号S3を位相検波部43に出力する。 The phase-shift circuit 42 generates a signal S3 (called a phase-shift signal) by shifting the phase of the oscillation signal S1 by (π/2), and outputs the phase-shift signal S3 to the phase detection unit 43.

 位相検波部43は2つの検波部(第1検波部43A及び第2検波部43B)を備えている。 The phase detection unit 43 has two detection units (a first detection unit 43A and a second detection unit 43B).

 第1検波部43Aは、第1ミキサ(Mixer)44Aと、第1フィルタ45Aと、第1増幅器48Aとを備える。 The first detection unit 43A includes a first mixer 44A, a first filter 45A, and a first amplifier 48A.

 第1ミキサ44Aは、受波信号S2と発振信号S1(基準信号)とを混合(乗算又は加算)することによって、2つの信号の周波数の差の成分と和の成分とをそれぞれ、信号として出力する。発振信号S1の周波数(基準周波数)をf1、受波信号S2の周波数をf2とすると、周波数f1,f2の和の周波数である信号と、周波数f1,f2の差の周波数である信号とが出力される。ここにおいて、第1ミキサ44Aは、例えばダイオードを用いた受動型のミキサであるが、トランジスタを用いた能動型のミキサでもよい。 The first mixer 44A mixes (multiplies or adds) the received signal S2 and the oscillation signal S1 (reference signal) to output the difference and sum of the frequencies of the two signals as signals. If the frequency (reference frequency) of the oscillation signal S1 is f1 and the frequency of the received signal S2 is f2, a signal that is the sum of frequencies f1 and f2 and a signal that is the difference between frequencies f1 and f2 are output. Here, the first mixer 44A is a passive mixer that uses, for example, diodes, but it may also be an active mixer that uses transistors.

 第1フィルタ45Aは、第1LPF(Low Pass Filter)46Aと、第1HPF(High Pass Filter)47Aと、を備える。 The first filter 45A includes a first LPF (Low Pass Filter) 46A and a first HPF (High Pass Filter) 47A.

 第1LPF46Aは、第1ミキサ44Aの出力信号から、所定の第1カットオフ周波数以下の周波数成分を通過させる。言い換えれば、第1LPF46Aは、受波信号S2の周波数と発振信号S1の周波数との和の成分を減衰させ、受波信号S2の周波数と発振信号S1の周波数との差の成分を通過させる。なお、受波器32から出力される受波信号S2には、移動物体に当たって反射することで周波数シフトした信号(ドップラー信号)と、静止物体に当たって反射することで周波数シフトしていない信号(直流成分の信号)とが含まれている。そのため、第1ミキサ44Aの出力信号には、ドップラー信号だけではなく、直流成分の信号も含まれており、第1LPF46Aの出力には、ドップラー信号と、直流成分の信号とが含まれる。 The first LPF 46A passes frequency components below a predetermined first cutoff frequency from the output signal of the first mixer 44A. In other words, the first LPF 46A attenuates the sum of the frequency of the received signal S2 and the frequency of the oscillation signal S1, and passes the difference between the frequency of the received signal S2 and the frequency of the oscillation signal S1. The received signal S2 output from the receiver 32 contains a signal (Doppler signal) that has been frequency-shifted by hitting and reflecting off a moving object, and a signal (DC component signal) that has not been frequency-shifted by hitting and reflecting off a stationary object. Therefore, the output signal of the first mixer 44A contains not only a Doppler signal, but also a DC component signal, and the output of the first LPF 46A contains a Doppler signal and a DC component signal.

 第1HPF47Aは、第1LPF46Aの出力信号から、所定の第2カットオフ周波数よりも高い周波数成分を通過させており、直流成分の信号を減衰させる。つまり、第1HPF47Aは、第1LPF46Aの出力信号に含まれる直流成分の信号を減衰させて、ドップラー信号を通過させる。 The first HPF 47A passes frequency components higher than a predetermined second cutoff frequency from the output signal of the first LPF 46A, and attenuates the DC component signal. In other words, the first HPF 47A attenuates the DC component signal contained in the output signal of the first LPF 46A and passes the Doppler signal.

 第1増幅器48Aは、第1HPF47Aの出力を増幅して、呼吸判定システム1に出力する。 The first amplifier 48A amplifies the output of the first HPF 47A and outputs it to the breathing determination system 1.

 第2検波部43Bは、第2ミキサ44Bと、第2フィルタ45Bと、第2増幅器48Bとを備える。 The second detection unit 43B includes a second mixer 44B, a second filter 45B, and a second amplifier 48B.

 第2ミキサ44Bは、受波信号S2と移相信号S3とを混合(乗算又は加算)することによって、2つの信号の周波数の差の成分と和の成分とをそれぞれ、信号として出力する。移相信号S3の周波数は発振信号S1の周波数(基準周波数)と同じである。ここにおいて、第2ミキサ44Bは、例えばダイオードを用いた受動型のミキサであるが、トランジスタを用いた能動型のミキサでもよい。 The second mixer 44B mixes (multiplies or adds) the received signal S2 and the phase-shifted signal S3 to output the difference and sum of the frequencies of the two signals as signals. The frequency of the phase-shifted signal S3 is the same as the frequency (reference frequency) of the oscillation signal S1. Here, the second mixer 44B is a passive mixer using, for example, a diode, but it may also be an active mixer using a transistor.

 第2フィルタ45Bは、第2LPF46Bと、第2HPF47Bと、を備える。 The second filter 45B includes a second LPF 46B and a second HPF 47B.

 第2LPF46Bは、第2ミキサ44Bの出力信号から、所定の第3カットオフ周波数以下の周波数成分を通過させる。言い換えれば、第2LPF46Bは、受波信号S2の周波数と移相信号S3の周波数との和の成分を減衰させ、受波信号S2の周波数と移相信号S3の周波数との差の成分を通過させる。なお、第2ミキサ44Bの出力信号には、ドップラー信号だけではなく、直流成分の信号も含まれているので、第2LPF46Bの出力には、ドップラー信号と、直流成分の信号とが含まれる。ここで、第2LPF46Bの第3カットオフ周波数は、第1LPF46Aの第1カットオフ周波数と同じ値に設定されていればよい。 The second LPF 46B passes frequency components below a predetermined third cutoff frequency from the output signal of the second mixer 44B. In other words, the second LPF 46B attenuates the sum of the frequency of the received signal S2 and the frequency of the phase-shift signal S3, and passes the difference between the frequency of the received signal S2 and the frequency of the phase-shift signal S3. Note that the output signal of the second mixer 44B contains not only a Doppler signal but also a DC component signal, so the output of the second LPF 46B contains a Doppler signal and a DC component signal. Here, the third cutoff frequency of the second LPF 46B only needs to be set to the same value as the first cutoff frequency of the first LPF 46A.

 第2HPF47Bは、第2LPF46Bの出力信号から、所定の第4カットオフ周波数よりも高い周波数成分を通過させており、直流成分の信号を減衰させる。つまり、第2HPF47Bは、第2LPF46Bの出力信号に含まれる直流成分の信号を減衰させて、ドップラー信号を通過させる。ここで、第2HPF47Bの第4カットオフ周波数は、第1HPF47Aの第2カットオフ周波数と同じ値に設定されていればよい。 The second HPF 47B passes frequency components higher than a predetermined fourth cutoff frequency from the output signal of the second LPF 46B, and attenuates the DC component signal. In other words, the second HPF 47B attenuates the DC component signal contained in the output signal of the second LPF 46B and passes the Doppler signal. Here, the fourth cutoff frequency of the second HPF 47B only needs to be set to the same value as the second cutoff frequency of the first HPF 47A.

 第2増幅器48Bは、第2HPF47Bの出力を増幅して、呼吸判定システム1に出力する。 The second amplifier 48B amplifies the output of the second HPF 47B and outputs it to the breathing determination system 1.

 呼吸判定システム1は、第1増幅器48A及び第2増幅器48Bでそれぞれ増幅されたドップラー信号のうち少なくとも一方の信号に基づいて、人H1の呼吸波形を推定する。 The breathing determination system 1 estimates the breathing waveform of person H1 based on at least one of the Doppler signals amplified by the first amplifier 48A and the second amplifier 48B.

 (5)呼吸判定システム
 図1に示すように、呼吸判定システム1は、通信部11と、記憶部12と、処理部13と、を備える。
(5) Breathing Determination System As shown in FIG. 1 , the breathing determination system 1 includes a communication unit 11, a storage unit 12, and a processing unit 13.

 呼吸判定システム1は、1以上のプロセッサ及びメモリを有するコンピュータシステムを含んでいる。コンピュータシステムのメモリに記録されたプログラムを、コンピュータシステムのプロセッサが実行することにより、呼吸判定システム1の少なくとも一部の機能が実現される。プログラムは、メモリに記録されていてもよいし、インターネット等の電気通信回線を通して提供されてもよく、メモリカード等の非一時的記録媒体に記録されて提供されてもよい。 The breathing determination system 1 includes a computer system having one or more processors and a memory. At least some of the functions of the breathing determination system 1 are realized by the processor of the computer system executing a program recorded in the memory of the computer system. The program may be recorded in the memory, or may be provided via a telecommunications line such as the Internet, or may be recorded on a non-transitory recording medium such as a memory card and provided.

 記憶部12は、コンピュータシステムのメモリを含む。処理部13は、コンピュータシステムの1以上のプロセッサを含む。処理部13は、プログラムを実行することで、所定の機能を実現する。 The storage unit 12 includes the memory of the computer system. The processing unit 13 includes one or more processors of the computer system. The processing unit 13 executes a program to realize a predetermined function.

 通信部11は、通信インタフェース装置を含んでいる。呼吸判定システム1は、通信インタフェース装置を介して、入力デバイス2、信号処理回路4、出力デバイス5、及び機器制御装置6と通信可能である。本開示でいう「通信可能」とは、有線通信又は無線通信の適宜の通信方式により、直接的、又はネットワーク若しくは中継器等を介して間接的に、信号を授受できることを意味する。 The communication unit 11 includes a communication interface device. The breathing determination system 1 is capable of communicating with the input device 2, the signal processing circuit 4, the output device 5, and the equipment control device 6 via the communication interface device. In this disclosure, "capable of communication" means that signals can be sent and received directly or indirectly via a network or a repeater, etc., using an appropriate communication method such as wired communication or wireless communication.

 記憶部12は、ハードディスクドライブ(HDD)又はソリッドステートドライブ(SSD)等によって構成される記憶装置である。記憶部12は、情報を記憶する。例えば、記憶部12は、処理部13で実行されるプログラムを記憶する。また、記憶部12は、例えば、入力デバイス2から取得した情報、信号処理回路4から出力されるドップラー信号、処理部13で推定された呼吸波形、処理部13で判定された人H1の状態、及び処理部13で決定された空間機器7の制御条件を記憶する。 The memory unit 12 is a storage device configured with a hard disk drive (HDD) or a solid state drive (SSD) or the like. The memory unit 12 stores information. For example, the memory unit 12 stores a program executed by the processing unit 13. The memory unit 12 also stores, for example, information acquired from the input device 2, a Doppler signal output from the signal processing circuit 4, a respiratory waveform estimated by the processing unit 13, the state of the person H1 determined by the processing unit 13, and the control conditions of the spatial device 7 determined by the processing unit 13.

 処理部13は、例えば、取得部131と、前処理部132と、波形推定部133と、判定部134と、環境制御部135と、を有する。なお、これらは、処理部13によって実現される機能を示しているに過ぎず、必ずしも実体のある構成を示しているわけではない。 The processing unit 13 has, for example, an acquisition unit 131, a preprocessing unit 132, a waveform estimation unit 133, a determination unit 134, and an environment control unit 135. Note that these merely indicate the functions realized by the processing unit 13, and do not necessarily indicate a concrete configuration.

 (5.1)取得部
 取得部131は、電波センサ3の出力に基づくドップラー信号を取得する。より詳細には、電波センサ3の出力に基づいて、信号処理回路4がドップラー信号を生成する。取得部131は、通信部11を介して、信号処理回路4からドップラー信号を取得する。
(5.1) Acquisition Unit The acquisition unit 131 acquires a Doppler signal based on the output of the radio wave sensor 3. More specifically, the signal processing circuit 4 generates a Doppler signal based on the output of the radio wave sensor 3. The acquisition unit 131 acquires the Doppler signal from the signal processing circuit 4 via the communication unit 11.

 (5.2)前処理部
 前処理部132は、取得部131で取得されたドップラー信号に対して、前処理を行う。例えば、前処理部132は、ドップラー信号のノイズを低減させる処理、及び、ドップラー信号のデータ形式を変換する処理等を行う。
(5.2) Pre-Processing Unit The pre-processing unit 132 performs pre-processing on the Doppler signal acquired by the acquisition unit 131. For example, the pre-processing unit 132 performs processing to reduce noise in the Doppler signal, and processing to convert the data format of the Doppler signal.

 (5.3)波形推定部
 ドップラー信号は、前処理部132で前処理が行われてから、波形推定部133に入力される。
(5.3) Waveform Estimation Unit The Doppler signal is pre-processed in the pre-processing unit 132 and then input to the waveform estimation unit 133 .

 波形推定部133は、波形推定部133に入力されたドップラー信号に基づいて、人H1の呼吸波形を推定する。より詳細には、波形推定部133は、機械学習により生成された学習済みモデルであり、学習済みモデルは、ドップラー信号から人H1の呼吸波形を推定する。学習済みモデルは、ドップラー信号を入力データとし、人H1の呼吸波形を出力データとする。すなわち、学習済みモデルは、ドップラー信号の入力を受けて、人H1の呼吸波形を出力する。学習済みモデルは、学習器により事前に生成される。 The waveform estimation unit 133 estimates the respiratory waveform of person H1 based on the Doppler signal input to the waveform estimation unit 133. More specifically, the waveform estimation unit 133 is a trained model generated by machine learning, and the trained model estimates the respiratory waveform of person H1 from the Doppler signal. The trained model takes the Doppler signal as input data and the respiratory waveform of person H1 as output data. In other words, the trained model receives the input of the Doppler signal and outputs the respiratory waveform of person H1. The trained model is generated in advance by a learner.

 (5.4)学習器
 学習器は、機械学習により、波形推定部133を構成する学習済みモデルを生成する。「学習済みモデル」とは、学習用データセットを用いた機械学習が完了したモデルをいう。一例として、学習器は、深層学習(ディープラーニング)により学習済みモデルを生成する。
(5.4) Learning Device The learning device generates, by machine learning, a trained model that constitutes the waveform estimation unit 133. A "trained model" refers to a model for which machine learning using a learning dataset has been completed. As an example, the learning device generates a trained model by deep learning.

 ここでいう学習済みモデルは、例えばニューラルネットワークを用いた学習済みモデル、又は多層ニューラルネットワークを用いた深層学習(ディープラーニング)により生成される学習済みモデルを含むことを想定する。ニューラルネットワークは、例えばCNN(Convolutional Neural Network:畳み込みニューラルネットワーク)を含み得る。また、ニューラルネットワークは、再帰型ニューラルネットワークを含み得る。 The trained model referred to here is assumed to include, for example, a trained model using a neural network, or a trained model generated by deep learning using a multi-layer neural network. The neural network may include, for example, a CNN (Convolutional Neural Network). The neural network may also include a recurrent neural network.

 ニューラルネットワークは、例えば、入力層と、CNN層と、RNN(Recurrent Neural Network)層と、全結合層と、出力層と、を組み合わせて構成される。 A neural network is composed of, for example, an input layer, a CNN layer, an RNN (Recurrent Neural Network) layer, a fully connected layer, and an output layer.

 学習用データセットは、複数の学習用データの集合である。学習用データは、ドップラー信号と、ドップラー信号に対応する呼吸波形と、を組み合わせたデータであり、いわゆる教師データである。つまり、学習用データは、ドップラー信号と、ドップラー信号に対応する呼吸波形と、を対応付けたデータである。 The training data set is a collection of multiple training data. The training data is data that combines Doppler signals with the respiratory waveforms that correspond to the Doppler signals, and is so-called teacher data. In other words, the training data is data that associates Doppler signals with the respiratory waveforms that correspond to the Doppler signals.

 教師データに含まれる、ドップラー信号のデータ及び呼吸波形のデータは、センサを用いて計測することで得られる。例えば、1又は複数の被験者に対して、電波センサ3と信号処理回路4とを用いて、ドップラー信号を得ることができる。また、例えば、1又は複数の被験者に対して、呼吸センサを用いて、呼吸波形を計測することができる。呼吸センサは、接触型センサが好ましい。呼吸センサは、例えば、被験者の胸部又は腹部の動きに基づいて呼吸波形を計測する。 The Doppler signal data and respiratory waveform data included in the teacher data are obtained by measurement using sensors. For example, a Doppler signal can be obtained for one or more subjects using a radio wave sensor 3 and a signal processing circuit 4. Also, for example, a respiratory waveform can be measured for one or more subjects using a respiratory sensor. The respiratory sensor is preferably a contact type sensor. The respiratory sensor measures the respiratory waveform based on, for example, the movement of the subject's chest or abdomen.

 ドップラー信号を得ることと、呼吸波形を計測することとは、同時に行われる。1つの学習用データに含まれる、ドップラー信号のデータと呼吸波形のデータとは、時間軸が一致している。  The Doppler signal is obtained and the respiratory waveform is measured simultaneously. The time axis of the Doppler signal data and the respiratory waveform data contained in one learning data set is the same.

 また、1つの学習用データに含まれるドップラー信号のデータと呼吸波形のデータとに関して、ドップラー信号を得るために電波(検知波W1)が当てられる被験者と、呼吸波形が計測される被験者とは、同じ人物である。 Furthermore, with regard to the Doppler signal data and respiratory waveform data contained in one learning data set, the subject to whom the radio waves (detection wave W1) are applied to obtain the Doppler signal and the subject to whom the respiratory waveform is measured are the same person.

 1又は複数の被験者は、呼吸判定システム1により状態が判定される人H1を含んでいてもよいし、含んでいなくてもよい。 The one or more subjects may or may not include a person H1 whose condition is to be determined by the breathing determination system 1.

 波形推定部133に入力されたドップラー信号は、人H1の呼吸に起因する成分のほかに、人H1の体動に起因する成分、人H1の心拍に起因する成分、及び、ノイズ等を含み得る。体動とは、体の動き全般を指す。 The Doppler signal input to the waveform estimation unit 133 may contain components due to the breathing of person H1, components due to the body movement of person H1, components due to the heart rate of person H1, noise, etc. Body movement refers to bodily movement in general.

 波形推定部133(学習済みモデル)は、入力されたドップラー信号に基づいて、人H1の呼吸波形を推定する。そのため、学習器は、ドップラー信号のうち、人H1の呼吸に起因する成分を、他の成分(すなわち、人H1の体動に起因する成分、人H1の心拍に起因する成分、及び、ノイズ等)と区別するように学習を行う。 The waveform estimation unit 133 (trained model) estimates the respiratory waveform of person H1 based on the input Doppler signal. Therefore, the learning device learns to distinguish the components of the Doppler signal caused by person H1's breathing from other components (i.e., components caused by the body movement of person H1, components caused by person H1's heart rate, noise, etc.).

 図3には、所定の被験者を対象に測定され学習用データに含まれたドップラー信号D1、D2の一例を示す。ドップラー信号D1、D2はそれぞれ、第1検波部43A及び第2検波部43B(図2参照)から出力された信号(I信号と、Q信号)である。 FIG. 3 shows an example of Doppler signals D1 and D2 that are measured on a specific subject and included in the learning data. Doppler signals D1 and D2 are signals (I signal and Q signal) output from the first detection unit 43A and the second detection unit 43B (see FIG. 2), respectively.

 図4には、上記所定の被験者を対象に呼吸センサにより測定された呼吸波形B1の一例を示す。学習器は、ドップラー信号D1、D2と、呼吸波形B1と、を教師データとして、呼吸波形を推定するように機械学習を行う。図4の呼吸波形B2は、機械学習により生成された学習済みモデル(波形推定部133)により推定された呼吸波形の一例である。 FIG. 4 shows an example of a respiratory waveform B1 measured by a respiratory sensor for the above-mentioned specified subject. The learning device performs machine learning to estimate the respiratory waveform using the Doppler signals D1 and D2 and the respiratory waveform B1 as training data. The respiratory waveform B2 in FIG. 4 is an example of a respiratory waveform estimated by the trained model (waveform estimation unit 133) generated by machine learning.

 また、図5には、人H1を対象に測定されたドップラー信号D3、D4の一例を示す。ドップラー信号D3、D4はそれぞれ、第1検波部43A及び第2検波部43B(図2参照)から出力された信号(I信号と、Q信号)である。 FIG. 5 also shows an example of Doppler signals D3 and D4 measured for person H1. Doppler signals D3 and D4 are signals (I signal and Q signal) output from the first detection unit 43A and the second detection unit 43B (see FIG. 2), respectively.

 図6の呼吸波形B3は、図5のドップラー信号D3、D4を波形推定部133に入力することで求められる。 The respiratory waveform B3 in FIG. 6 is obtained by inputting the Doppler signals D3 and D4 in FIG. 5 to the waveform estimation unit 133.

 また、図7には、呼吸波形の一例を示す。 Figure 7 also shows an example of a respiratory waveform.

 図3、図5のドップラー信号の波形図において、横軸は時間を表す。 In the Doppler signal waveform diagrams in Figures 3 and 5, the horizontal axis represents time.

 図4の呼吸波形図において、横軸は時間を表し、縦軸は、呼吸センサの出力信号の強度を表す。ここでは、呼吸センサは、呼吸に伴う被験者の胸部又は腹部の動きを圧力の変化として検出する圧力センサであり、図4の縦軸は、呼吸に伴い変化する圧力に相当する。図6、図7においても同様に、横軸は時間を表し、縦軸は、呼吸に伴い変化する圧力に相当する。圧力の増加は吸気を表し、圧力の減少は呼気を表す。 In the respiratory waveform diagram of Figure 4, the horizontal axis represents time, and the vertical axis represents the strength of the output signal from the respiratory sensor. Here, the respiratory sensor is a pressure sensor that detects the movement of the subject's chest or abdomen accompanying breathing as a change in pressure, and the vertical axis in Figure 4 corresponds to the pressure that changes with breathing. Similarly in Figures 6 and 7, the horizontal axis represents time, and the vertical axis corresponds to the pressure that changes with breathing. An increase in pressure represents inhalation, and a decrease in pressure represents exhalation.

 (5.5)判定部
 判定部134は、波形推定部133で推定された呼吸波形の特徴量を、所定値と比較することにより、人H1が異常な状態か否かを判定する。
(5.5) Determination Unit The determination unit 134 compares the feature amount of the respiratory waveform estimated by the waveform estimation unit 133 with a predetermined value to determine whether or not the person H1 is in an abnormal state.

 呼吸波形の特徴量の一例について、図7を参照して説明する。呼吸波形の特徴量は、例えば、呼吸時間(breath time)BT、吸気時間(inspiratory time)IT、呼気時間(expiratory time)ET、ポーズ時間(postexpiration pausetime)PT、吸気量(inspiratory volume)IVに相当する量、呼気量(expiratory volume)EVに相当する量、分時換気量(minuteventilatory volume)に相当する量、及び呼吸数のうち、少なくとも1つを含む。 An example of the features of the respiratory waveform will be described with reference to FIG. 7. The features of the respiratory waveform include, for example, at least one of the following: breath time BT, inspiratory time IT, expiratory time ET, postexpiration pause time PT, an amount equivalent to inspiratory volume IV, an amount equivalent to expiratory volume EV, an amount equivalent to minute ventilation volume, and respiratory rate.

 図7に示すように、呼吸波形は、山と谷とを繰り返す。呼吸時間BTは、呼吸波形の谷において呼吸量が極小値VISTとなる時点から、次の谷において呼吸量が極小値VIST+1となり、その後、呼吸量が増加し始める時点までの時間である。呼吸時間BTは、吸気時間ITと、呼気時間ETと、ポーズ時間PTと、の和である。 As shown in Fig. 7, the respiratory waveform has repeated peaks and valleys. The respiratory time BT is the time from when the respiratory volume reaches the minimum value VIST at the valley of the respiratory waveform to when the respiratory volume reaches the minimum value VIST +1 at the next valley and then begins to increase. The respiratory time BT is the sum of the inhalation time IT, the exhalation time ET, and the pause time PT.

 吸気時間ITは、呼吸波形の谷において呼吸量が極小値VISTとなる時点から、次の山において呼吸量が極大値VIEOとなる時点までの時間である。 The inspiration time IT is the time from the point at which the respiratory volume reaches a minimum value VIST at the trough of the respiratory waveform to the point at which the respiratory volume reaches a maximum value VIEO at the next peak.

 呼気時間ETは、呼吸波形の山において呼吸量が極大値VIEOとなる時点から、次の谷において呼吸量が極小値VIST+1となる時点までの時間である。 The expiratory time ET is the time from the point at which the respiratory volume reaches a maximum value V IEO at the peak of the respiratory waveform to the point at which the respiratory volume reaches a minimum value V IST +1 at the next valley.

 ポーズ時間PTは、呼吸波形の谷において呼吸量の変動が或る値以下となる時間である。ポーズ時間PTが終わると、呼吸量が増加し始める。 The pause time PT is the time when the variation in respiratory volume is below a certain value at the trough of the respiratory waveform. When the pause time PT ends, the respiratory volume begins to increase.

 吸気量IVは、呼吸波形の谷における呼吸量の極小値VISTと、次の山における呼吸量の極大値VIEOと、の差である。 The inhalation volume IV is the difference between the minimum value V IST of the respiratory volume at the trough of the respiratory waveform and the maximum value V IEO of the respiratory volume at the next peak.

 呼気量EVは、呼吸波形の山における呼吸量の極大値VIEOと、次の谷における呼吸量の極小値VIST+1と、の差である。 The expiratory volume EV is the difference between the maximum value V IEO of the respiratory volume at the peak of the respiratory waveform and the minimum value V IST+1 of the respiratory volume at the following valley.

 分時換気量は、1分間に換気されたガスの総量である。分時換気量は、一回換気量(吸気量IV又は呼気量EV)と、1分あたりの呼吸数(山の個数)と、の積である。 Minute ventilation is the total amount of gas ventilated in one minute. Minute ventilation is the product of the tidal volume (inspiratory volume IV or expiratory volume EV) and the respiratory rate (number of breaths) per minute.

 判定部134は、例えば、波形推定部133で推定された呼吸波形の特徴量と、異常な呼吸パターンに対応する所定値と、の類似度に基づいて、人H1が異常な状態か否かを判定する。つまり、予め、異常な呼吸パターンの特徴量が、上記所定値として記憶部12に記憶されている。そして、判定部134は、波形推定部133で推定された呼吸波形の特徴量と、記憶部12に記憶された上記所定値との大小関係に基づいて、人H1が異常な状態か否かを判定する。判定部134は、例えば、波形推定部133で推定された呼吸波形の特徴量と、記憶部12に記憶された上記所定値との差が第1閾値以下のとき、人H1が異常な状態であると判定する。 The determination unit 134 determines whether or not person H1 is in an abnormal state based on, for example, the similarity between the feature amount of the respiratory waveform estimated by the waveform estimation unit 133 and a predetermined value corresponding to an abnormal respiratory pattern. That is, the feature amount of the abnormal respiratory pattern is stored in advance in the storage unit 12 as the above-mentioned predetermined value. Then, the determination unit 134 determines whether or not person H1 is in an abnormal state based on the magnitude relationship between the feature amount of the respiratory waveform estimated by the waveform estimation unit 133 and the above-mentioned predetermined value stored in the storage unit 12. The determination unit 134 determines that person H1 is in an abnormal state when, for example, the difference between the feature amount of the respiratory waveform estimated by the waveform estimation unit 133 and the above-mentioned predetermined value stored in the storage unit 12 is equal to or smaller than a first threshold value.

 また、判定部134は、例えば、波形推定部133で推定された呼吸波形の特徴量と、事前に測定された人H1の呼吸パターンに対応する所定値と、の類似度に基づいて、人H1が異常な状態か否かを判定する。つまり、予め、人H1の普段の呼吸波形が、呼吸センサを用いて計測され、その特徴量が、上記所定値として記憶部12に記憶されている。判定部134は、波形推定部133で推定された呼吸波形の特徴量と、記憶部12に記憶された上記所定値との大小関係に基づいて、人H1が異常な状態か否かを判定する。判定部134は、例えば、波形推定部133で推定された呼吸波形の特徴量と、記憶部12に記憶された上記所定値との差が第2閾値より大きいとき、人H1が異常な状態であると判定する。 The determination unit 134 also determines whether or not the person H1 is in an abnormal state based on, for example, the similarity between the feature amount of the respiratory waveform estimated by the waveform estimation unit 133 and a predetermined value corresponding to the breathing pattern of the person H1 measured in advance. That is, the normal respiratory waveform of the person H1 is measured in advance using a respiratory sensor, and the feature amount is stored in the storage unit 12 as the above-mentioned predetermined value. The determination unit 134 determines whether or not the person H1 is in an abnormal state based on the magnitude relationship between the feature amount of the respiratory waveform estimated by the waveform estimation unit 133 and the above-mentioned predetermined value stored in the storage unit 12. The determination unit 134 determines that the person H1 is in an abnormal state when, for example, the difference between the feature amount of the respiratory waveform estimated by the waveform estimation unit 133 and the above-mentioned predetermined value stored in the storage unit 12 is greater than a second threshold value.

 人H1がストレスの多い状況におかれることで呼吸数及び分時換気量が増加し、ポーズ時間PTが減少する傾向がある。こうした知見に基づいて、判定部134が異常を判定するためのアルゴリズムが予め決定される。 When person H1 is placed in a stressful situation, there is a tendency for the respiratory rate and minute ventilation to increase, and for the pause time PT to decrease. Based on this knowledge, an algorithm is determined in advance for the determination unit 134 to determine an abnormality.

 呼吸波形の特徴量は、呼吸間隔変動を含んでいてもよい。呼吸間隔変動は、呼吸数移動標準偏差、又は、呼吸の不規則性指標で表される。呼吸の不規則性指標は、呼吸ピーク周波数PFと、呼吸重心周波数GFとの差の絶対値(|PF-GF|)である。人H1がストレスの多い状況におかれることで、呼吸間隔変動に変化が生じる傾向がある。こうした知見に基づいて、判定部134が異常を判定するためのアルゴリズムが予め決定される。 The feature quantity of the respiratory waveform may include respiratory interval variation. The respiratory interval variation is expressed as the respiratory rate moving standard deviation or the respiratory irregularity index. The respiratory irregularity index is the absolute value of the difference between the respiratory peak frequency PF and the respiratory center of gravity frequency GF (|PF-GF|). When person H1 is placed in a stressful situation, there is a tendency for changes to occur in the respiratory interval variation. Based on this knowledge, an algorithm is determined in advance for the determination unit 134 to determine an abnormality.

 また、図6に示す波形は、チェーン・ストークス型呼吸という呼吸異常に類似した形状である。また、チェーン・ストークス型呼吸以外に、例えば、ビオー型呼吸、及びクスマウル型呼吸等が、医学的に異常な呼吸(呼吸異常)として知られている。さらに、例えば、頬呼吸、過呼吸、減呼吸、徐呼吸(遅呼吸)、多呼吸、及び息が止まっている状態等が、呼吸異常として知られている。判定部134は、こうした異常な呼吸パターンの特徴量と、波形推定部133で推定された呼吸波形の特徴量と、の類似度に基づいて、人H1が異常な状態か否かを判定することができる。 The waveform shown in FIG. 6 has a shape similar to a breathing abnormality called Cheyne-Stokes breathing. In addition to Cheyne-Stokes breathing, Biot breathing and Kussmaul breathing are also known as medically abnormal breathing (breathing abnormalities). Furthermore, buccal breathing, hyperpnea, hypopnea, bradypnea (slow breathing), tachypnea, and breathlessness are also known as breathing abnormalities. The determination unit 134 can determine whether or not person H1 is in an abnormal state based on the similarity between the features of such abnormal breathing patterns and the features of the breathing waveform estimated by the waveform estimation unit 133.

 (5.6)環境制御部
 環境制御部135は、判定部134の判定結果に基づいて空間の環境を制御する。より詳細には、環境制御部135は、機器制御装置6を介して空間機器7を制御することで、空間の環境を制御する。
(5.6) Environmental Control Unit The environmental control unit 135 controls the spatial environment based on the determination result of the determination unit 134. More specifically, the environmental control unit 135 controls the spatial equipment 7 via the equipment control device 6, thereby controlling the spatial environment.

 まず、環境制御部135は、空間機器7の制御条件を決定する。さらに、環境制御部135は、通信部11を介して、機器制御装置6に制御信号を出力する。制御信号は、環境制御部135で決定された制御条件を示す信号である。機器制御装置6は、制御信号に基づいて空間機器7を制御する。 First, the environmental control unit 135 determines the control conditions for the spatial device 7. Furthermore, the environmental control unit 135 outputs a control signal to the device control device 6 via the communication unit 11. The control signal is a signal indicating the control conditions determined by the environmental control unit 135. The device control device 6 controls the spatial device 7 based on the control signal.

 空間機器7が空調機器である場合に、環境制御部135で生成される制御信号は、例えば、空間機器7の設定温度、設定湿度、設定風量、設定風速及び設定風向き等を指定する。また、空間機器7が照明装置である場合に、環境制御部135で生成される制御信号は、例えば、空間機器7の明るさ(調光率)、色温度、及び色偏差等を指定する。機器制御装置6は、空間機器7の設定を、制御信号で指定された設定と一致させる。 When the spatial device 7 is an air conditioning device, the control signal generated by the environmental control unit 135 specifies, for example, the set temperature, set humidity, set air volume, set air speed, and set air direction of the spatial device 7. When the spatial device 7 is a lighting device, the control signal generated by the environmental control unit 135 specifies, for example, the brightness (dimming rate), color temperature, and color deviation of the spatial device 7. The device control device 6 matches the settings of the spatial device 7 with the settings specified by the control signal.

 判定部134の判定結果は、異常の種類に関する情報を含んでいる。異常の種類に関する情報は、例えば、人H1がどのような不調又は病気の疑いがあるのか、及び、疑いの度合い等の情報を含む。さらに、記憶部12には、例えば、異常の種類に関する情報と、空間機器7の制御条件との対応関係が記憶されている。例えば、ユーザが入力デバイス2を操作することで入力された対応関係が、記憶部12に記憶されてもよいし、対応関係が記憶部12に予め記憶されていてもよい。 The judgment result of the judgment unit 134 includes information regarding the type of abnormality. The information regarding the type of abnormality includes, for example, information regarding what kind of illness or disease the person H1 is suspected to have and the degree of suspicion. Furthermore, the memory unit 12 stores, for example, a correspondence between the information regarding the type of abnormality and the control conditions of the spatial device 7. For example, the correspondence input by the user operating the input device 2 may be stored in the memory unit 12, or the correspondence may be stored in advance in the memory unit 12.

 環境制御部135は、異常の種類に関する情報を取得すると、例えば、記憶部12に記憶された対応関係に基づいて、空間機器7の制御条件を決定する。例えば、人H1について熱中症の疑いがある場合は、環境制御部135は、空間機器7としての空調機器の設定温度を下げる。 When the environmental control unit 135 acquires information regarding the type of abnormality, it determines the control conditions for the spatial equipment 7, for example, based on the correspondence stored in the storage unit 12. For example, if the person H1 is suspected of having heat stroke, the environmental control unit 135 lowers the set temperature of the air conditioning equipment, which is the spatial equipment 7.

 (6)出力デバイス
 出力デバイス5は、ユーザに対して情報を発信するための装置である。
(6) Output Device The output device 5 is a device for transmitting information to the user.

 出力デバイス5は、例えば、ディスプレイ等の表示装置を含む。出力デバイス5は、情報を表示する。 The output device 5 includes, for example, a display device such as a display. The output device 5 displays information.

 例えば、出力デバイス5は、波形推定部133で推定された呼吸波形に関する情報を、呼吸判定システム1から取得する。当該情報は、画像信号として出力デバイス5へ送信される。出力デバイス5は、当該情報を表示する。つまり、出力デバイス5は、呼吸波形を表示する。 For example, the output device 5 acquires information about the respiratory waveform estimated by the waveform estimation unit 133 from the breathing determination system 1. The information is transmitted to the output device 5 as an image signal. The output device 5 displays the information. In other words, the output device 5 displays the respiratory waveform.

 また、出力デバイス5は、例えば、呼吸判定システム1から出力された、判定部134の判定結果を表示する。 The output device 5 also displays, for example, the determination result of the determination unit 134 output from the breathing determination system 1.

 また、出力デバイス5は、例えば、環境制御部135で決定され呼吸判定システム1から出力された、空間機器7の制御条件を表示する。 The output device 5 also displays, for example, the control conditions of the spatial device 7 determined by the environment control unit 135 and output from the breathing determination system 1.

 なお、出力デバイス5は、例えば、ディスプレイ等を備えたスマートフォン等であってもよい。 The output device 5 may be, for example, a smartphone equipped with a display, etc.

 また、出力デバイス5は、音声出力により情報を発信するためのスピーカを含んでいてもよい。 The output device 5 may also include a speaker for transmitting information by audio output.

 また、出力デバイス5は、印刷により情報を発信するためのプリンタを含んでいてもよい。 The output device 5 may also include a printer for transmitting information by printing.

 (7)機器制御装置
 機器制御装置6は、環境制御部135で生成された制御信号に基づいて空間機器7を制御する。機器制御装置6は、空間機器7の設定を、制御信号で指定された設定と一致させる。
(7) Equipment Control Device The equipment control device 6 controls the spatial equipment 7 based on the control signal generated by the environment control unit 135. The equipment control device 6 causes the settings of the spatial equipment 7 to match the settings specified by the control signal.

 (8)動作フロー
 次に、呼吸判定システム1の動作フローの一例について、図8を参照して説明する。ただし、図8に示すフローチャートは、一例に過ぎず、処理の順序が適宜変更されてもよいし、処理が適宜追加又は省略されてもよい。
(8) Operation Flow Next, an example of the operation flow of the breathing determination system 1 will be described with reference to Fig. 8. However, the flowchart shown in Fig. 8 is merely an example, and the order of processes may be changed as appropriate, and processes may be added or omitted as appropriate.

 呼吸判定システム1は、信号処理回路4からドップラー信号を取得する(ステップST1)。次に、呼吸判定システム1は、学習器で予め生成された学習済みモデルを用いて、人H1の呼吸波形を推定する(ステップST2)。より詳細には、呼吸判定システム1は、学習済みモデルにドップラー信号を入力する。すると、学習済みモデルは、推定した呼吸波形を出力する。 The breathing determination system 1 acquires a Doppler signal from the signal processing circuit 4 (step ST1). Next, the breathing determination system 1 estimates the breathing waveform of person H1 using a trained model that has been generated in advance by a learning device (step ST2). More specifically, the breathing determination system 1 inputs the Doppler signal to the trained model. Then, the trained model outputs an estimated breathing waveform.

 次に、呼吸判定システム1は、呼吸波形から、呼吸波形の特徴量を抽出する(ステップST3)。呼吸波形の特徴量は、例えば、呼吸時間BT(図7参照)、及び、吸気時間IT(図7参照)等である。 Next, the breathing determination system 1 extracts features of the breathing waveform from the breathing waveform (step ST3). The features of the breathing waveform include, for example, the breathing time BT (see FIG. 7) and the inhalation time IT (see FIG. 7).

 呼吸判定システム1は、抽出した特徴量が異常範囲内か否かを判定する(ステップST4)。例えば、呼吸判定システム1は、特徴量と所定値との差が閾値を超える場合に、異常範囲内であると判定し、特徴量と所定値との差が閾値以下の場合に、異常範囲内ではないと判定する。 The breathing determination system 1 determines whether the extracted feature amount is within the abnormal range (step ST4). For example, if the difference between the feature amount and the predetermined value exceeds a threshold, the breathing determination system 1 determines that the feature amount is within the abnormal range, and if the difference between the feature amount and the predetermined value is equal to or less than the threshold, the breathing determination system 1 determines that the feature amount is not within the abnormal range.

 特徴量が異常範囲内である場合(ステップST4:Yes)、呼吸判定システム1は、人H1が異常な状態であると判定する(ステップST5)。特徴量が異常範囲内ではない場合(ステップST4:No)、呼吸判定システム1は、人H1が正常な状態である(異常な状態ではない)と判定する(ステップST6)。 If the feature amount is within the abnormal range (step ST4: Yes), the breathing determination system 1 determines that person H1 is in an abnormal state (step ST5). If the feature amount is not within the abnormal range (step ST4: No), the breathing determination system 1 determines that person H1 is in a normal state (not in an abnormal state) (step ST6).

 呼吸判定システム1は、人H1が異常な状態であるか否かの判定結果を出力する(ステップST7)。出力デバイス5は、判定結果を表示する。 The breathing determination system 1 outputs the determination result as to whether or not the person H1 is in an abnormal state (step ST7). The output device 5 displays the determination result.

 また、呼吸判定システム1は、判定結果に基づいて、空間機器7の制御条件を決定する。呼吸判定システム1は、決定した制御条件に基づいて、機器制御装置6を介して空間機器7を制御する(ステップST8)。 The breathing determination system 1 also determines the control conditions for the spatial device 7 based on the determination result. The breathing determination system 1 controls the spatial device 7 via the device control device 6 based on the determined control conditions (step ST8).

 (実施形態の変形例)
 以下、実施形態の変形例を列挙する。以下の変形例は、適宜組み合わせて実現されてもよい。また、上述した実施形態の態様を、以下では「基本例」と呼ぶ。
(Modification of the embodiment)
Modifications of the embodiment are listed below. The following modifications may be implemented in appropriate combination. The above-described aspects of the embodiment are hereinafter referred to as "basic examples."

 基本例では、上述したように、波形推定部133にて用いられる演算モデル(学習済みモデル)は、機械学習により生成される。波形推定部133は、いかなるタイプの人工知能又はシステムとして実装されてもよい。ここで、機械学習のアルゴリズムは、一例として、ニューラルネットワークである。ただし、機械学習のアルゴリズムは、ニューラルネットワークに限定されず、例えば、XGB(eXtreme Gradient Boosting)回帰、ランダムフォレスト(Random Forest)、決定木(decision tree)、ロジスティック回帰(Logistic Regression)、サポートベクターマシン(SVM:Support vector machine)、単純ベイズ(Naive Bayes)分類器、又はk近傍法(k-nearest neighbors)等であってもよい。さらに、機械学習のアルゴリズムは、例えば、混合ガウスモデル(GMM:Gaussian Mixture Model)、又はk平均法(k-means clustering)等であってもよい。 In a basic example, as described above, the computational model (trained model) used in the waveform estimation unit 133 is generated by machine learning. The waveform estimation unit 133 may be implemented as any type of artificial intelligence or system. Here, the machine learning algorithm is, for example, a neural network. However, the machine learning algorithm is not limited to a neural network, and may be, for example, eXtreme Gradient Boosting (XGB) regression, Random Forest, decision tree, Logistic Regression, Support vector machine (SVM), Naive Bayes classifier, k-nearest neighbors, etc. Furthermore, the machine learning algorithm may be, for example, a Gaussian Mixture Model (GMM), k-means clustering, etc.

 また、学習方法は、基本例では一例として、教師あり学習である。ただし、学習方法は、教師あり学習に限らず、教師なし学習又は強化学習であってもよい。 In addition, in the basic example, the learning method is, as an example, supervised learning. However, the learning method is not limited to supervised learning, and may be unsupervised learning or reinforcement learning.

 判定部134は、人H1が異常な状態か否かを判定し、判定結果に基づいて、人H1に対するアドバイスを生成してもよい。アドバイスは、例えば、生活習慣の改善の提案、又は医療機関への受診を勧めるアドバイス等である。判定部134は、例えば、異常の種類ごとに、決まったアドバイスを生成してもよい。判定部134は、生成したアドバイスを出力する。例えば、判定部134は、アドバイスを、文字及び図面等の形式で出力デバイス5に表示させる。 The determination unit 134 may determine whether the person H1 is in an abnormal state, and generate advice for the person H1 based on the determination result. The advice may be, for example, a suggestion to improve lifestyle habits, or advice to visit a medical institution. The determination unit 134 may generate a predetermined advice for each type of abnormality, for example. The determination unit 134 outputs the generated advice. For example, the determination unit 134 causes the output device 5 to display the advice in the form of characters, drawings, etc.

 ドップラー信号は、複数の人の呼吸に起因する成分を含んでいる可能性がある。そこで、学習器は、ドップラー信号のうち、或る人の呼吸に起因する成分を、別の人の呼吸に起因する成分と区別するように学習を行ってもよい。 The Doppler signal may contain components resulting from the breathing of multiple people. Thus, the learning device may learn to distinguish the components of the Doppler signal resulting from the breathing of one person from the components resulting from the breathing of another person.

 電波センサ3は、複数設けられていてもよい。例えば、呼吸判定システム1が寝室で寝ている複数の人の各々の呼吸波形を推定する場合に、複数の人と一対一で対応する複数の電波センサ3が設けられていてもよい。 A plurality of radio wave sensors 3 may be provided. For example, when the breathing determination system 1 estimates the breathing waveforms of each of a plurality of people sleeping in a bedroom, a plurality of radio wave sensors 3 may be provided in one-to-one correspondence with the plurality of people.

 位相検波部43は、第1検波部43A及び第2検波部43Bのうち一方のみを備えていてもよい。 The phase detection unit 43 may include only one of the first detection unit 43A and the second detection unit 43B.

 本開示における呼吸判定システム1又は呼吸判定方法の実行主体は、コンピュータシステムを含んでいる。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本開示における呼吸判定システム1又は呼吸判定方法の実行主体としての機能の少なくとも一部が実現される。プログラムは、コンピュータシステムのメモリに予め記録されてもよく、電気通信回線を通じて提供されてもよく、コンピュータシステムで読み取り可能なメモリカード、光学ディスク、ハードディスクドライブ等の非一時的記録媒体に記録されて提供されてもよい。コンピュータシステムのプロセッサは、半導体集積回路(IC)又は大規模集積回路(LSI)を含む1ないし複数の電子回路で構成される。ここでいうIC又はLSI等の集積回路は、集積の度合いによって呼び方が異なっており、システムLSI、VLSI(Very Large Scale Integration)、又はULSI(Ultra Large Scale Integration)と呼ばれる集積回路を含む。さらに、LSIの製造後にプログラムされる、FPGA(Field-Programmable Gate Array)、又はLSI内部の接合関係の再構成若しくはLSI内部の回路区画の再構成が可能な論理デバイスについても、プロセッサとして採用することができる。複数の電子回路は、1つのチップに集約されていてもよいし、複数のチップに分散して設けられていてもよい。複数のチップは、1つの装置に集約されていてもよいし、複数の装置に分散して設けられていてもよい。ここでいうコンピュータシステムは、1以上のプロセッサ及び1以上のメモリを有するマイクロコントローラを含む。したがって、マイクロコントローラについても、半導体集積回路又は大規模集積回路を含む1ないし複数の電子回路で構成される。 The executing entity of the breathing determination system 1 or the breathing determination method in the present disclosure includes a computer system. The computer system is mainly composed of a processor and a memory as hardware. At least a part of the functions of the executing entity of the breathing determination system 1 or the breathing determination method in the present disclosure is realized by the processor executing a program recorded in the memory of the computer system. The program may be pre-recorded in the memory of the computer system, may be provided through an electric communication line, or may be recorded and provided on a non-transitory recording medium such as a memory card, an optical disk, or a hard disk drive that can be read by the computer system. The processor of the computer system is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integrated circuit (LSI). The integrated circuits such as ICs or LSIs referred to here are called different names depending on the degree of integration, and include integrated circuits called system LSIs, VLSIs (Very Large Scale Integration), or ULSIs (Ultra Large Scale Integration). Furthermore, a field-programmable gate array (FPGA) that is programmed after the LSI is manufactured, or a logic device that allows reconfiguration of the connection relationships within the LSI or reconfiguration of the circuit partitions within the LSI, can also be used as a processor. Multiple electronic circuits may be integrated into one chip, or may be distributed across multiple chips. Multiple chips may be integrated into one device, or may be distributed across multiple devices. The computer system referred to here includes a microcontroller having one or more processors and one or more memories. Thus, the microcontroller is also composed of one or more electronic circuits including a semiconductor integrated circuit or a large-scale integrated circuit.

 また、呼吸判定システム1における複数の機能が、1つの装置に集約されていることは呼吸判定システム1に必須の構成ではなく、呼吸判定システム1の複数の構成要素は、複数の装置に分散して設けられていてもよい。さらに、呼吸判定システム1の少なくとも一部の機能、例えば、判定部134の一部の機能がサーバ又はクラウド(クラウドコンピューティング)等によって実現されてもよい。 Furthermore, it is not essential for the breathing determination system 1 that multiple functions are concentrated in one device, and multiple components of the breathing determination system 1 may be distributed across multiple devices. Furthermore, at least some of the functions of the breathing determination system 1, for example, some of the functions of the determination unit 134, may be realized by a server or a cloud (cloud computing), etc.

 反対に、実施形態において、複数の装置に分散されている複数の機能が、1つの装置に集約されていてもよい。例えば、信号処理回路4と呼吸判定システム1とに分散されている複数の機能が、1つの装置に集約されていてもよい。 On the other hand, in the embodiment, multiple functions distributed among multiple devices may be consolidated into one device. For example, multiple functions distributed between the signal processing circuit 4 and the breathing determination system 1 may be consolidated into one device.

 (まとめ)
 以上説明した実施形態等から、以下の態様が開示されている。
(summary)
The above-described embodiments and the like disclose the following aspects.

 第1の態様に係る呼吸判定システム(1)は、取得部(131)と、波形推定部(133)と、判定部(134)と、を備える。取得部(131)は、電波センサ(3)の出力に基づいて、ドップラー信号を取得する。電波センサ(3)は、電波を検知波(W1)として送波する送波器(31)と、検知波(W1)が人(H1)に反射して生じる反射波(W2)を受波する受波器(32)と、を備える。ドップラー信号は、検知波(W1)と反射波(W2)との差分を示す信号である。波形推定部(133)は、取得部(131)で取得されたドップラー信号に基づいて、人(H1)の呼吸波形を推定する。判定部(134)は、波形推定部(133)で推定された呼吸波形の特徴量を、所定値と比較することにより、人(H1)が異常な状態か否かを判定する。 The breathing determination system (1) according to the first aspect includes an acquisition unit (131), a waveform estimation unit (133), and a determination unit (134). The acquisition unit (131) acquires a Doppler signal based on the output of the radio wave sensor (3). The radio wave sensor (3) includes a wave transmitter (31) that transmits radio waves as a detection wave (W1), and a wave receiver (32) that receives a reflected wave (W2) generated when the detection wave (W1) is reflected by the person (H1). The Doppler signal is a signal that indicates the difference between the detection wave (W1) and the reflected wave (W2). The waveform estimation unit (133) estimates the breathing waveform of the person (H1) based on the Doppler signal acquired by the acquisition unit (131). The determination unit (134) compares the feature amount of the breathing waveform estimated by the waveform estimation unit (133) with a predetermined value to determine whether the person (H1) is in an abnormal state.

 上記の構成によれば、呼吸判定システム(1)は、呼吸波形を推定して、呼吸波形から人(H1)が異常な状態か否かを判定する。そのため、単なる呼吸数から人(H1)の状態を判定する場合と比較して、人(H1)の状態をより詳細に判定できる。 With the above configuration, the breathing determination system (1) estimates a breathing waveform and determines whether or not the person (H1) is in an abnormal state from the breathing waveform. Therefore, the condition of the person (H1) can be determined in more detail than when the condition of the person (H1) is determined simply from the breathing rate.

 また、第2の態様に係る呼吸判定システム(1)では、第1の態様において、波形推定部(133)は、機械学習により生成された学習済みモデルを用いて、ドップラー信号から人(H1)の呼吸波形を推定する。 In addition, in the breathing determination system (1) according to the second aspect, in the first aspect, the waveform estimation unit (133) estimates the breathing waveform of the person (H1) from the Doppler signal using a trained model generated by machine learning.

 上記の構成によれば、波形推定部(133)は、様々な状況において、呼吸波形を推定することができる。 With the above configuration, the waveform estimation unit (133) can estimate the respiratory waveform in various situations.

 また、第3の態様に係る呼吸判定システム(1)では、第1又は2の態様において、判定部(134)は、波形推定部(133)で推定された呼吸波形の特徴量と、異常な呼吸パターンに対応する所定値と、の類似度に基づいて、人(H1)が異常な状態か否かを判定する。 In addition, in the breathing determination system (1) according to the third aspect, in the first or second aspect, the determination unit (134) determines whether or not the person (H1) is in an abnormal state based on the similarity between the feature amount of the breathing waveform estimated by the waveform estimation unit (133) and a predetermined value corresponding to an abnormal breathing pattern.

 上記の構成によれば、判定部(134)が人(H1)の異常を判定しやすい。 The above configuration makes it easier for the judgment unit (134) to judge abnormalities in the person (H1).

 また、第4の態様に係る呼吸判定システム(1)では、第1~3の態様のいずれか1つにおいて、判定部(134)は、波形推定部(133)で推定された呼吸波形の特徴量と、事前に測定された人(H1)の呼吸パターンに対応する所定値と、の類似度に基づいて、人(H1)が異常な状態か否かを判定する。 In addition, in the breathing determination system (1) according to the fourth aspect, in any one of the first to third aspects, the determination unit (134) determines whether or not the person (H1) is in an abnormal state based on the similarity between the feature amount of the breathing waveform estimated by the waveform estimation unit (133) and a predetermined value corresponding to the breathing pattern of the person (H1) measured in advance.

 上記の構成によれば、人(H1)の状態が普段と異なるかどうかを、判定部(134)が判定することができる。 With the above configuration, the determination unit (134) can determine whether the condition of the person (H1) is different from usual.

 また、第5の態様に係る呼吸判定システム(1)は、第1~4の態様のいずれか1つにおいて、環境制御部(135)を更に備える。環境制御部(135)は、判定部(134)の判定結果に基づいて空間の環境を制御する。 The breathing determination system (1) according to the fifth aspect is any one of the first to fourth aspects and further includes an environmental control unit (135). The environmental control unit (135) controls the spatial environment based on the determination result of the determination unit (134).

 上記の構成によれば、人(H1)の状態を改善させることができる。 The above configuration can improve the condition of the person (H1).

 また、第6の態様に係る呼吸判定システム(1)では、第1~5の態様のいずれか1つにおいて、特徴量は、呼吸時間を含む。 In addition, in the breathing determination system (1) according to the sixth aspect, in any one of the first to fifth aspects, the feature amount includes breathing time.

 また、第7の態様に係る呼吸判定システム(1)では、第1~6の態様のいずれか1つにおいて、特徴量は、吸気時間を含む。 In addition, in the breathing determination system (1) according to the seventh aspect, in any one of the first to sixth aspects, the characteristic amount includes the inhalation time.

 また、第8の態様に係る呼吸判定システム(1)では、第1~7の態様のいずれか1つにおいて、特徴量は、呼気時間を含む。 In addition, in the breathing determination system (1) according to the eighth aspect, in any one of the first to seventh aspects, the feature value includes an exhalation time.

 また、第9の態様に係る呼吸判定システム(1)では、第1~8の態様のいずれか1つにおいて、特徴量は、ポーズ時間を含む。 In addition, in the breathing determination system (1) according to the ninth aspect, in any one of the first to eighth aspects, the feature amount includes a pause time.

 また、第10の態様に係る呼吸判定システム(1)では、第1~9の態様のいずれか1つにおいて、特徴量は、吸気量に相当する量を含む。 In addition, in the breathing determination system (1) according to the tenth aspect, in any one of the first to ninth aspects, the characteristic amount includes an amount corresponding to the amount of inhaled air.

 また、第11の態様に係る呼吸判定システム(1)では、第1~10の態様のいずれか1つにおいて、特徴量は、呼気量に相当する量を含む。 In addition, in the breathing determination system (1) according to the eleventh aspect, in any one of the first to tenth aspects, the feature amount includes an amount equivalent to the exhaled air volume.

 また、第12の態様に係る呼吸判定システム(1)では、第1~11の態様のいずれか1つにおいて、特徴量は、分時換気量に相当する量を含む。 In addition, in the breathing determination system (1) according to the twelfth aspect, in any one of the first to eleventh aspects, the characteristic amount includes an amount equivalent to minute ventilation.

 第1の態様以外の構成については、呼吸判定システム(1)に必須の構成ではなく、適宜省略可能である。 Configurations other than the first aspect are not essential to the breathing determination system (1) and may be omitted as appropriate.

 また、第13の態様に係る呼吸判定方法は、取得ステップと、波形推定ステップと、判定ステップと、を有する。取得ステップでは、電波センサ(3)の出力に基づいて、ドップラー信号を取得する。電波センサ(3)は、電波を検知波(W1)として送波する送波器(31)と、検知波(W1)が人(H1)に反射して生じる反射波(W2)を受波する受波器(32)と、を備える。ドップラー信号は、検知波(W1)と反射波(W2)との差分を示す信号である。波形推定ステップでは、取得ステップで取得されたドップラー信号に基づいて、人(H1)の呼吸波形を推定する。判定ステップでは、波形推定ステップで推定された呼吸波形の特徴量を、所定値と比較することにより、人(H1)が異常な状態か否かを判定する。 The breathing determination method according to the thirteenth aspect includes an acquisition step, a waveform estimation step, and a determination step. In the acquisition step, a Doppler signal is acquired based on the output of the radio wave sensor (3). The radio wave sensor (3) includes a wave transmitter (31) that transmits radio waves as a detection wave (W1), and a wave receiver (32) that receives a reflected wave (W2) generated when the detection wave (W1) is reflected by the person (H1). The Doppler signal is a signal that indicates the difference between the detection wave (W1) and the reflected wave (W2). In the waveform estimation step, the breathing waveform of the person (H1) is estimated based on the Doppler signal acquired in the acquisition step. In the determination step, the feature amount of the breathing waveform estimated in the waveform estimation step is compared with a predetermined value to determine whether the person (H1) is in an abnormal state.

 上記の構成によれば、人(H1)の状態をより詳細に判定できる。 The above configuration allows the condition of the person (H1) to be determined in more detail.

 また、第14の態様に係るプログラムは、第13の態様に係る呼吸判定方法を、コンピュータシステムの1以上のプロセッサに実行させるためのプログラムである。 The program according to the fourteenth aspect is a program for causing one or more processors of a computer system to execute the breathing determination method according to the thirteenth aspect.

 上記の構成によれば、人(H1)の状態をより詳細に判定できる。 The above configuration allows the condition of the person (H1) to be determined in more detail.

 上記態様に限らず、実施形態に係る呼吸判定システム(1)の種々の構成(変形例を含む)は、呼吸判定方法、(コンピュータ)プログラム、又はプログラムを記録した非一時的記録媒体にて具現化可能である。 In addition to the above aspects, various configurations (including modified examples) of the breathing determination system (1) according to the embodiment can be embodied in a breathing determination method, a (computer) program, or a non-transitory recording medium on which a program is recorded.

1 呼吸判定システム
3 電波センサ
31 送波器
32 受波器
131 取得部
133 波形推定部
134 判定部
135 環境制御部
H1 人
W1 検知波
W2 反射波
1 Breathing determination system 3 Radio wave sensor 31 Transmitter 32 Receiver 131 Acquisition unit 133 Waveform estimation unit 134 Determination unit 135 Environment control unit H1 Person W1 Detection wave W2 Reflected wave

Claims (14)

 電波を検知波として送波する送波器と、前記検知波が人に反射して生じる反射波を受波する受波器と、を備える電波センサの出力に基づいて、前記検知波と前記反射波との差分を示すドップラー信号を取得する取得部と、
 前記取得部で取得された前記ドップラー信号に基づいて、前記人の呼吸波形を推定する波形推定部と、
 前記波形推定部で推定された前記呼吸波形の特徴量を、所定値と比較することにより、前記人が異常な状態か否かを判定する判定部と、を備える、
 呼吸判定システム。
an acquisition unit that acquires a Doppler signal indicating a difference between the detection wave and the reflected wave based on an output of a radio wave sensor including a transmitter that transmits radio waves as detection waves and a receiver that receives reflected waves generated when the detection wave is reflected by a person;
A waveform estimation unit that estimates a respiratory waveform of the person based on the Doppler signal acquired by the acquisition unit;
and a determination unit that determines whether or not the person is in an abnormal state by comparing the feature amount of the respiratory waveform estimated by the waveform estimation unit with a predetermined value.
Breath detection system.
 前記波形推定部は、機械学習により生成された学習済みモデルを用いて、前記ドップラー信号から前記人の前記呼吸波形を推定する、
 請求項1に記載の呼吸判定システム。
The waveform estimation unit estimates the respiratory waveform of the person from the Doppler signal using a trained model generated by machine learning.
The breathing determination system according to claim 1 .
 前記判定部は、前記波形推定部で推定された前記呼吸波形の前記特徴量と、異常な呼吸パターンに対応する前記所定値と、の類似度に基づいて、前記人が異常な状態か否かを判定する、
 請求項1又は2に記載の呼吸判定システム。
The determination unit determines whether or not the person is in an abnormal state based on a similarity between the feature amount of the respiratory waveform estimated by the waveform estimation unit and the predetermined value corresponding to an abnormal respiratory pattern.
The breathing determination system according to claim 1 or 2.
 前記判定部は、前記波形推定部で推定された前記呼吸波形の前記特徴量と、事前に測定された前記人の呼吸パターンに対応する前記所定値と、の類似度に基づいて、前記人が異常な状態か否かを判定する、
 請求項1~3のいずれか一項に記載の呼吸判定システム。
The determination unit determines whether or not the person is in an abnormal state based on a degree of similarity between the feature amount of the respiratory waveform estimated by the waveform estimation unit and the predetermined value corresponding to a respiratory pattern of the person measured in advance.
The breathing determination system according to any one of claims 1 to 3.
 前記判定部の判定結果に基づいて空間の環境を制御する環境制御部を更に備える、
 請求項1~4のいずれか一項に記載の呼吸判定システム。
An environment control unit that controls an environment of the space based on a determination result of the determination unit.
The breathing determination system according to any one of claims 1 to 4.
 前記特徴量は、呼吸時間を含む、
 請求項1~5のいずれか一項に記載の呼吸判定システム。
The feature amount includes a breathing time.
The breathing determination system according to any one of claims 1 to 5.
 前記特徴量は、吸気時間を含む、
 請求項1~6のいずれか一項に記載の呼吸判定システム。
The feature amount includes an inhalation time.
The breathing determination system according to any one of claims 1 to 6.
 前記特徴量は、呼気時間を含む、
 請求項1~7のいずれか一項に記載の呼吸判定システム。
The feature amount includes an exhalation time.
The breathing determination system according to any one of claims 1 to 7.
 前記特徴量は、ポーズ時間を含む、
 請求項1~8のいずれか一項に記載の呼吸判定システム。
The feature amount includes a pause time.
The breathing determination system according to any one of claims 1 to 8.
 前記特徴量は、吸気量に相当する量を含む、
 請求項1~9のいずれか一項に記載の呼吸判定システム。
The characteristic amount includes an amount corresponding to an intake amount.
The breathing determination system according to any one of claims 1 to 9.
 前記特徴量は、呼気量に相当する量を含む、
 請求項1~10のいずれか一項に記載の呼吸判定システム。
The feature amount includes an amount corresponding to an exhaled air volume.
The breathing determination system according to any one of claims 1 to 10.
 前記特徴量は、分時換気量に相当する量を含む、
 請求項1~11のいずれか一項に記載の呼吸判定システム。
The feature amount includes an amount corresponding to minute ventilation.
The breathing determination system according to any one of claims 1 to 11.
 電波を検知波として送波する送波器と、前記検知波が人に反射して生じる反射波を受波する受波器と、を備える電波センサの出力に基づいて、前記検知波と前記反射波との差分を示すドップラー信号を取得する取得ステップと、
 前記取得ステップで取得された前記ドップラー信号に基づいて、前記人の呼吸波形を推定する波形推定ステップと、
 前記波形推定ステップで推定された前記呼吸波形の特徴量を、所定値と比較することにより、前記人が異常な状態か否かを判定する判定ステップと、を有する、
 呼吸判定方法。
an acquisition step of acquiring a Doppler signal indicating a difference between the detection wave and the reflected wave based on an output of a radio wave sensor including a transmitter that transmits radio waves as detection waves and a receiver that receives reflected waves generated when the detection wave is reflected by a person;
a waveform estimation step of estimating a respiratory waveform of the person based on the Doppler signal acquired in the acquisition step;
and a determination step of determining whether or not the person is in an abnormal state by comparing the feature amount of the respiratory waveform estimated in the waveform estimation step with a predetermined value.
Breathing determination method.
 請求項13に記載の呼吸判定方法を、コンピュータシステムの1以上のプロセッサに実行させるための、
 プログラム。
The method for determining respiration according to claim 13 is executed by one or more processors of a computer system,
program.
PCT/JP2024/001805 2023-02-28 2024-01-23 Respiration determination system, respiration determination method, and program Ceased WO2024180948A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-030497 2023-02-28
JP2023030497 2023-02-28

Publications (1)

Publication Number Publication Date
WO2024180948A1 true WO2024180948A1 (en) 2024-09-06

Family

ID=92590351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/001805 Ceased WO2024180948A1 (en) 2023-02-28 2024-01-23 Respiration determination system, respiration determination method, and program

Country Status (1)

Country Link
WO (1) WO2024180948A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212995A1 (en) * 2016-06-09 2017-12-14 コニカミノルタ株式会社 Device, method, and system for monitoring monitored person
WO2018003752A1 (en) * 2016-06-29 2018-01-04 コニカミノルタ株式会社 Breathing abnormality detection device and breathing abnormality detection method
CN108518813A (en) * 2018-03-30 2018-09-11 广东美的制冷设备有限公司 Control method, air conditioner and the computer readable storage medium of air conditioner
JP2021171271A (en) * 2020-04-23 2021-11-01 パナソニックIpマネジメント株式会社 Signal processing system and sensor system
CN114777309A (en) * 2022-03-16 2022-07-22 青岛海尔空调器有限总公司 Air conditioner control method and device, electronic equipment and air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212995A1 (en) * 2016-06-09 2017-12-14 コニカミノルタ株式会社 Device, method, and system for monitoring monitored person
WO2018003752A1 (en) * 2016-06-29 2018-01-04 コニカミノルタ株式会社 Breathing abnormality detection device and breathing abnormality detection method
CN108518813A (en) * 2018-03-30 2018-09-11 广东美的制冷设备有限公司 Control method, air conditioner and the computer readable storage medium of air conditioner
JP2021171271A (en) * 2020-04-23 2021-11-01 パナソニックIpマネジメント株式会社 Signal processing system and sensor system
CN114777309A (en) * 2022-03-16 2022-07-22 青岛海尔空调器有限总公司 Air conditioner control method and device, electronic equipment and air conditioner

Similar Documents

Publication Publication Date Title
JP7577785B2 (en) SYSTEM, METHOD AND STORAGE MEDIUM FOR MONITORING PHYSIOLOGICAL PARAMETERS - Patent application
JP7284782B2 (en) Systems and methods for chronic disease monitoring and management
CN111629658B (en) Apparatus, system, and method for motion sensing
JP7785005B2 (en) Sleep state detection for apnea-hypopnea index calculation
Chen et al. Apneadetector: Detecting sleep apnea with smartwatches
US11516625B2 (en) Systems and methods for mapping a given environment
WO2021257898A1 (en) Systems, apparatus and methods for acquisition, storage, and analysis of health and environmental data
CN113710151A (en) Method and apparatus for detecting breathing disorders
JP2018531055A6 (en) Systems and methods for monitoring and managing chronic diseases
JP2023159208A (en) Systems, methods and devices for smart humidification
Miller et al. Smart homes that detect sneeze, cough, and face touching
JP2018161462A (en) Information processing method, information processing device, and program
WO2024180948A1 (en) Respiration determination system, respiration determination method, and program
Kumar et al. Design of a Smart Cloud Controlled based Artificial Ventilator Device Controller using Patients Vital Information in a Cloud Data Logs
WO2023286677A1 (en) Information processing device, information processing method, and program
Čuljak Method for analysis of sleep parameters based on ultra-wideband communication channel impulse response measurement
Yuan et al. Cheyne-Stokes Respiration Perception via Machine Learning Algorithms. Electronics 2022, 11, 958
WO2024252535A1 (en) Information processing system, information processing method, and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24763433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE