WO2024171759A1 - Information processing device and information processing method - Google Patents
Information processing device and information processing method Download PDFInfo
- Publication number
- WO2024171759A1 WO2024171759A1 PCT/JP2024/002333 JP2024002333W WO2024171759A1 WO 2024171759 A1 WO2024171759 A1 WO 2024171759A1 JP 2024002333 W JP2024002333 W JP 2024002333W WO 2024171759 A1 WO2024171759 A1 WO 2024171759A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- user
- information processing
- operation condition
- processing apparatus
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/22—Ergometry; Measuring muscular strength or the force of a muscular blow
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
Definitions
- This disclosure relates to an information processing device and an information processing method.
- Patent Document 1 discloses technology that can properly measure myoelectric potential, but does not disclose optimizing operations that use muscle activity as input. Therefore, even if muscle strength can be accurately measured, Patent Document 1 has the problem that it is not possible to achieve consistent operability or accurate, low-burden operation that is not affected by the characteristics and condition of the user's muscles.
- the present disclosure has been made in consideration of the above problems, and provides an information processing device and information processing method that can achieve consistent operability, accurate, and low-stress operation without being affected by the characteristics or condition of the user's muscles.
- the information processing device of the present disclosure includes: a measurement unit that measures a biosignal of a user;
- the device further includes an operation condition calculation unit that calculates an operation condition for performing an operation by the user based on the measured biological signal of the user.
- FIG. 1 is a diagram illustrating a configuration of an information processing device according to a first embodiment.
- 2 is a functional block diagram of a calculation unit in the information processing device according to the first embodiment.
- FIG. 1 is a functional block diagram of an information processing device according to a first embodiment, in which an input mechanism is provided for a calculation unit.
- FIG. 1 is a diagram illustrating a hardware configuration of an information processing device according to a first embodiment. 4 is a diagram for explaining the operation of an application program in the information processing device according to the first embodiment;
- FIG. 1 is a diagram illustrating a configuration of an information processing device according to a first embodiment.
- 2 is a functional block diagram of a calculation unit in the information processing device according to the first embodiment.
- FIG. 1 is a functional block diagram of
- 4 is a diagram showing operation contents of the information processing device according to the first embodiment.
- 1A and 1B are diagrams illustrating an example of a cue to start measurement, such as a countdown in the information processing device according to the first embodiment
- 11A and 11B are diagrams illustrating an example of a termination signal given after a certain period of time has elapsed by the information processing device according to the first embodiment
- 5A and 5B are diagrams illustrating an example of a display indicating the lapse of a remaining time in the information processing device according to the first embodiment
- 5A and 5B are diagrams illustrating measurement results of myoelectric potentials by the information processing device according to the first embodiment.
- 5 is a diagram showing the RMS of a myoelectric potential measured by the information processing device according to the first embodiment
- FIG. 11 is a functional block diagram of an information processing device according to a second embodiment.
- FIG. 13 is a functional block diagram of an information processing device according to a third embodiment.
- FIG. 1 is a hardware configuration diagram showing an example of a computer that realizes an arithmetic unit of an information processing device according to the first to fourth embodiments.
- First embodiment 1-1 Configuration of the information processing device 100 1-2. Outline of the flow of the calibration process 1-3. Functional block diagram of the arithmetic device 102 1-4. Description of the operation of the information processing device 100 1-5. Adjustment of threshold value 2. Second embodiment 3. Third embodiment 4. Fourth embodiment 5. Hardware configuration
- the system instructs the user to perform an appropriate action, or implicitly detects when the user has performed a pre-defined action.
- biometric information in association with the muscle activity caused by this action and estimating the individual muscle characteristics and physical condition, it is possible to calculate the optimal execution conditions for a specific operation.
- First embodiment ⁇ 1-1. Configuration of information processing device 100> 1 is a diagram showing a configuration of an information processing device 100 according to a first embodiment. As shown in FIG. 1, the information processing device 100 includes a sensor 101, a computing device 102, and an output mechanism 103.
- the sensor 101 is attached to the user's body and measures biosignals indicating the activity of the user's muscles.
- the sensor 101 can also measure muscle tension and muscle strength.
- the biosignals include biosignals indicating the user's skin surface myoelectric potential.
- the sensor 101 may also measure physical changes in the user. Measurements of physical changes may use ultrasound, magnetism, infrared rays, vibration (inertial sensor), blood flow, deformation of the skin surface (camera, distortion sensor), etc.
- the sensor 101 may also be of a type that measures the force applied by the user. In this case, a pressure sensor, force sensor, etc. is used.
- the sensor 101 may also measure factors that affect muscle activity as an auxiliary measure.
- the sensor 101 may measure joint flexibility and range of motion.
- an inertial sensor, a camera, etc. are used to measure joint flexibility and range of motion.
- the sensor 101 may also measure mental states such as excitement level.
- mental states such as excitement level.
- blood flow, heart rate, body temperature, etc. are measured to measure mental states such as excitement level.
- the computing device 102 calculates operation conditions for a user operation based on the measurement results from the sensor 101.
- the operation conditions are conditions for executing an operation in response to a user operation.
- the computing device 102 also has an application program that executes an operation when the operation conditions are satisfied.
- the computing device 102 may be a PC (personal computer), a smartphone, AR (Augmented Reality)/XR (Extended Reality) goggles, etc.
- the output mechanism 103 is a device that gives instructions to the user.
- the output mechanism 103 is, for example, a display, a speaker, a vibration device, etc.
- Operations that can be measured include maintaining or changing the user's posture, applying or releasing force, straining or relaxing, and complex movements.
- Examples of complex movements include walking, running, grasping, moving, transforming, and releasing objects.
- the sensor 101, the computing device 102, and the output mechanism 103 may be included in one device.
- the information processing device 100 is a wearable device such as a smart watch.
- the sensor and in some cases some output mechanisms such as vibration) may be independent as a measurement device.
- an armband-type wearable device, AR, VR (Virtual Reality) goggles, a PC, a smartphone, etc. All of the sensors 101, the computing device 102, and the output mechanism 103 may be independent.
- the information processing device 100 is an armband-type wearable device, a PC, a display, etc.
- FIG. 2 is a functional block diagram of the arithmetic unit 102 in the information processing device 100 according to the first embodiment.
- the computing device 102 has a muscle activity measuring unit 201, a muscle activity estimating unit 202, an operation condition calculating unit 203, an application control unit 204, and an instruction generating unit 205.
- the muscle activity measuring unit 201 acquires signals related to the user, including biosignals measured by the sensor 101.
- the muscle activity estimation unit 202 outputs an index of the signal related to the user acquired by the muscle activity measurement unit 201.
- the "index” is an index that indicates the state of muscle strength. For example, from voltage fluctuations in mV measured at periods of several to several tens of ms through an electromyography sensor, indexes such as RMS (Root Mean Square), maximum amplitude, average amplitude, and integral value are calculated and used as indexes of muscle strength.
- RMS Root Mean Square
- the operation condition calculation unit 203 calculates the operation conditions for the user's operation based on the indicators output from the muscle activity estimation unit 202. If necessary, the operation condition calculation unit 203 updates the operation conditions for the user's operation in the application control unit 204. In other words, the operation condition calculation unit 203 applies the calculated operation conditions to the application program that judges the operation.
- the application control unit 204 executes a specific operation within the application program when the user's muscle activity satisfies the operation conditions.
- the instruction generation unit 205 issues an instruction to the output mechanism 103 to cause the user to perform a calibration operation.
- the instruction generation unit 205 issues the instruction to the output mechanism 103 before the operation condition calculation unit 203 calculates the operation conditions.
- FIG. 3 is a functional block diagram of the information processing device 100 according to the first embodiment, in which an input mechanism 104 is provided for the arithmetic device 102. As shown in FIG. 3, the arithmetic device 102 according to the modified example has an input mechanism 104 in addition to the functional block diagram shown in FIG. 2.
- the input mechanism 104 is used when the user specifies the timing of calibration or performs auxiliary operations during calibration.
- Inputs to the input mechanism 104 include, for example, touch input from a smartwatch, smartphone, etc., mouse or keyboard input from a PC, controller input from AR/VR goggles, and hand tracking.
- the operation condition calculation unit 203 calculates the operation conditions when the timing of calibration is specified from the input mechanism 104.
- the hardware configuration of the information processing device 100 is such that a user wears a wristband 105 equipped with a sensor 101 on the arm and wears VR goggles 106. Then, the force from the fingertip to the arm is measured through the sensor 101.
- an application program of the information processing device 100 displays a menu on the VR goggles 106 when a specific position 108 on a desk is pressed with a finger 109 with a certain amount of force or more (when the input force exceeds a threshold).
- the calibration also adjusts the force applied to the operation to match the user's muscle strength and sense.
- the reason for this type of calibration is that if the force required for an operation is too great, more force than necessary is applied, and the operation must be repeated. Also, if the force required is too small, there will be frequent errors.
- FIG. 6 is a flowchart for explaining the operation of the information processing device 100 according to the first embodiment.
- an operation threshold is set based on the user's muscle strength when an application program is initialized.
- the timing for reading out the calibration process can be 1. when the application program is initialized, or 2. while the application program is running. "When the application program is initialized” is immediately after the application program starts and before the main processing of the application program starts. "While the application program is running” is when the main processing of the application program is running.
- Calibration processing is performed while the main processing of an application program is running, for example, when a calibration start signal is input by the user through the input mechanism 104, or when a specific condition for the operation content (such as the occurrence of an erroneous operation) is satisfied. In this case, the calibration processing goes into a standby state after the application program has finished starting up (step S0).
- the device (information processing device 100) starts an application program (step S0). Next, it is determined whether a calibration signal or the like has been input (step S1), and if a calibration start signal or the like has been input (Yes in step S1), the calibration process starts (step S2). On the other hand, if a calibration start signal or the like has not been input (No in step S1), the device goes into a standby state until a calibration start signal or the like is input.
- parameters to be calibrated include parameters that determine how much force is required to execute a process, and parameters that determine how long force must be applied before a process is executed.
- Factors that affect these parameters include differences in muscle strength, changes due to fatigue, changes due to practice, muscle development, weakness, range of motion of joints, flexibility, etc.
- step S3 the user is notified of the specific operation to be performed. This notification notifies the user of the content of the previously set calibration operation via the output mechanism 103.
- FIG. 7 a text and diagram explanation of the action of "pressing a specific position on the screen with maximum force with only the index finger extended” is displayed on the screen 110.
- the action at this time is selected and set so that the characteristics of the muscles used in the operation can be measured.
- elements such as posture, operation content (pressing, grasping, stretching, pinching, etc.), position, and operation target (when operating on a specific object) are specified.
- FIG. 8 is a diagram showing the operation content. In FIG. 8, examples of a pressing operation 111_1, a grasping operation 111_2, a pinching operation 111_3, and a stretching operation 111_4 are shown.
- the muscle strength of the entire arm can be measured by performing a gripping movement with maximum strength with the hand lowered, as shown in Figure 9.
- a relaxed state or an appropriate amount of force may also be specified. Explanations of the movements may be given in the form of text, audio, video, etc. Before starting measurement, the user may be asked to practice the posture that has been notified to them so that they can correctly perform the posture.
- the information processing device 100 waits until the user is ready (step S4). Specifically, the information processing device 100 waits until the user is in an appropriate posture to start the operation. As shown in FIG. 10, the information processing device 100 performs the following operations until the user is in an appropriate posture.
- the difference to the target position and posture is fed back via the output mechanism 103 to prompt the user to adjust the posture.
- sound can be played from the target position
- the direction to the target position can be displayed by an arrow
- the distance and angle deviation can be displayed in text ( Figure 10 (2)).
- Feedback and completion signals can be expressed visually, such as letters, symbols, or shapes, or audio, or tactilely, such as vibration.
- step S5 the start of the action is notified (step S5), and the user is prompted to perform the action.
- the biosignals during the action are measured by the sensor 101 (step S6). After that, the user is notified of the timing for the action to end (step S7).
- the user is instructed to continue the instructed action from the start signal to the end signal, and the biosignal during that time is measured by the sensor 101.
- the action of "pressing a specific position on the screen with maximum force with only the index finger extended” is continued for three seconds from start to end.
- a signal to start measurement is given (displaying START in (2) in FIG. 11).
- a signal to end is given (displaying END in FIG. 12).
- the signal may be presented visually, audibly, tactilely, etc.
- a display 114 may be given to show the remaining time, etc., as shown in FIG. 13.
- the criteria for termination can be other than the passage of time.
- the process can end automatically when the voltage value of the input myoelectric potential falls below a certain level.
- the system could notify the user that it has entered a standby state, and allow the user to start and end the action at any time.
- the system could notify the user that it has entered a standby state, and have the user perform the action of "pressing a specific position on the screen with maximum force with only the index finger extended, then releasing it.”
- the system could automatically set the measurement period based on changes in input, or the user could input start and end signals through the input mechanism.
- auxiliary sensors When measuring biosignals, auxiliary sensors may be used as necessary in addition to measuring muscle tension using an electromyography sensor or the like. For example, finger range of motion information using a camera or excitement level information using a heart rate sensor. To show whether the sensor is being operated correctly during measurement, the sensor may be equipped with its own output mechanism and information measured through visual, auditory or tactile stimulation may be presented. A separate device may be prepared that can measure the force applied by the user, and the force value measured by the prepared device may be combined with the obtained biosignal.
- step S8 it is checked whether there is a problem with the measurement of the biosignals (noise, incorrect signals, etc.) (step S8). If it is determined in step S8 that there is a problem (No in step S8), an instruction is given to repeat the operation (step S9) and the process returns to step S4. If it is determined in step S8 that there is no problem (Yes in step S8), muscle activity is estimated from the measurement results of the biosignals (step S10).
- the user may also be possible for the user to notify the system if a physical problem occurs, such as a misalignment of the measurement device. If a problem is detected during measurement, the measurement may be interrupted and immediately restarted.
- step S10 muscle activity is estimated from the measurement results of the biosignals, for example, by calculating indices such as RMS, maximum amplitude, average amplitude, and integral value from voltage fluctuations in mV measured at periods of several to several tens of ms through an electromyography sensor, and using these as indices of muscle strength.
- RMS is the square root of the arithmetic mean of the value obtained by squaring data over a certain period of time.
- These indices may or may not correspond linearly to muscle strength, and appropriate correction processing may be performed if there is strong nonlinearity due to the measurement conditions.
- Other signal processing methods such as frequency analysis, pattern matching, and machine learning may also be used.
- FIG. 14 is a diagram showing the measurement results of myoelectric potentials by the information processing device 100 according to the first embodiment.
- FIG. 15 is a diagram showing the RMS of the myoelectric potentials measured by the information processing device 100 according to the first embodiment. As shown in FIG. 15, it is shown that the RMS of the myoelectric potentials is correlated with the myoelectric potentials.
- a processing method appropriate for the biosignal is applied. Multiple sensors or multiple types of sensors may be used in combination. For example, eight myoelectric potential sensors may be worn wrapped around the arm and their average value may be used. The estimation method may be adjusted based on user attributes such as age and gender. The user may be able to input values such as the current level of fatigue to adjust the estimated state.
- step S11 a determination is made as to whether there is a problem with the estimated muscle activity.
- a problem would be, for example, if the user performs a movement different from the one instructed, or if it is determined that maximum muscle strength is not being obtained due to a difference in the timing of the start of measurement, etc.
- step S11 if a problem is determined (No in step S11), the process returns to step S9 and an instruction is given to repeat the movement.
- the judgment in step S11 is made by waveform pattern matching, peak detection, machine learning, and other methods of estimating movement. Personal information such as the user's age and gender may be confirmed in advance, and if an inappropriate result is obtained by comparing this information, the judgment may be redone.
- the measurement result may be notified to the user, and the measurement may be redone if a signal requesting redo is received from the user via the input mechanism 104.
- Information obtained from an auxiliary sensor may also be utilized. If measurement does not go well with a certain operation due to the range of motion of the joints, etc., another movement may be performed as a backup.
- step S11 If it is determined in step S11 that there is a problem (Yes in step S11), a determination is made as to whether there is any other action that should be performed (step S12). If it is determined in step S12 that there is any other action that should be performed (Yes in step S12), a specific notification is given to the user in step S3. For example, this may be the case when multiple actions have been set in advance and there are actions that have not yet been measured. It may be possible to automatically determine whether there is any other action that should be performed based on the measurement results up to this point.
- step S12 If it is determined in step S12 that there are no other movements to be performed (No in step S12), all movements are completed, and optimal execution conditions are calculated from the estimated muscle activity (step S13).
- the threshold value may be a value directly input by the user with an appropriate strength, or may be calculated using a nonlinear function (such as a model generated by deep learning). For example, the user may input a strength of their choice, and the peak value of muscle strength change at that time may be used as the threshold. It may also be calculated using a model of muscle strength and threshold value previously obtained by deep learning.
- the threshold value is a value based on the change in strength of the force input by the user.
- the threshold value may be the peak value of muscle strength change of the force input by the user, the average value of muscle strength change, a derivative value, etc.
- muscle strength during relaxation can also be measured, and a threshold can be determined at a certain internal division point between the relaxation and maximum muscle strength.
- parameters may be optimized depending on the conditions for executing the operation. For example, the duration (if the execution condition is a certain period of continuous input), the similarity threshold (for pattern matching, etc.), learning (for machine learning, etc.), estimation parameters, etc.
- auxiliary sensors Information obtained from auxiliary sensors can also be used. For example, if a measurement is taken during a state of high excitement, the threshold can be set lower according to that level. If the range of motion is narrow, more muscle strength is required to maintain posture, so the threshold can be set higher.
- the calculated execution conditions are applied to the control process of the application program (step S14).
- the threshold value calculated in step S13 is reflected as a judgment condition for an application control program that judges whether a specific process should be executed based on the strength of the pressing on the desk.
- the calculation process of the execution conditions and application to the control process may be performed after each action has been completed, rather than after all actions have been completed.
- step S15 the calibration process ends (step S15), and the application program and device are terminated (step S16).
- Threshold adjustment> The calibration process for adjusting the threshold may be started when a signal to start the calibration process is input by the user through the input mechanism 104 during the course of an application program.
- the calibration process may be started, for example, by selecting "Start Calibration" from the application menu, pressing a calibration button on the controller, etc.
- the system may detect problems during operation and automatically start a calibration process. For example, the system may detect frequent occurrences of operational errors and start a calibration process.
- the threshold can be optimized to match the individual's sense of force, which cannot be absorbed by the initial calibration process.
- the threshold can also be adjusted to the user's preferred level of force.
- the information processing device 200 of the second embodiment automatically detects an operation failure and adjusts the threshold value without explicitly performing a specific operation.
- the muscle activity detection unit 306 detects a specific operation from muscle activity without explicitly instructing the user, and calculates the operation conditions according to the contents of the detected operation.
- FIG. 16 is a functional block diagram of an information processing device 200 according to a second embodiment.
- the same parts as those in FIG. 2 are given the same reference numerals, and their description will be omitted.
- the calculation device 212' of the information processing device 200 has a muscle activity measurement unit 201, a muscle activity estimation unit 202, an operation condition calculation unit 303, an application control unit 204, and a muscle activity detection unit 306.
- the muscle activity detection unit 306 detects a specific motion registered in advance from the muscle activity estimation result. That is, the muscle activity detection unit 306 detects a specific motion of the user from the indicators output from the muscle activity estimation unit 202.
- the operation condition calculation unit 303 calculates optimal execution conditions from the muscle activity of the specific motion part. That is, the operation condition calculation unit 303 calculates operation conditions according to the specific motion detected by the muscle activity detection unit 306.
- the process of the information processing device 200 according to the second embodiment is outlined below. 1. Start of application program 2. Start of calibration process 3. Measure biological signals while operating the application program with a sensor 4. Estimate muscle activity from the measurement results 5. Detect specific movement parts registered in advance from the estimated muscle activity results 6. Calculate optimal execution conditions from muscle activity of specific movement parts 7. Apply the calculated execution conditions to the control process of the app 8. End of calibration process 9. End of application program
- Detecting specific movement parts registered in advance from the estimated muscle activity results may result in, for example, when pushing a desk, the threshold being too high and not enough force being used, resulting in repeated pushing of the desk, or the threshold being too low and frequent erroneous operations occurring.
- 6 Calculating optimal execution conditions from muscle activity of a specific motion part includes, for example, the following processes 6-1 to 6-4. 6-1. Identify a certain period before and after the moment of operation failure. 6-2. Calculate muscle strength within the identified period. 6-3. Detect the peak of muscle strength change within the period. 6-4. Adjust the threshold from the peak value (if the peak is higher than the threshold, raise the threshold to near the peak. If the peak is lower than the threshold, lower the threshold to near the peak.)
- the calibration process can be performed without performing any calibration operations, reducing the burden on the user.
- FIG. 17 is a functional block diagram of an information processing device 300 according to the third embodiment.
- a calculation device 312'' of the information processing device 300 has a muscle activity measurement unit 201, a muscle activity estimation unit 202, an operation condition calculation unit 303', an application control unit 204, and a muscle activity detection unit 406.
- the information processing device 300 has a storage device 107 in addition to the sensor 101.
- the muscle activity detection unit 406 detects the movement to be recorded from the muscle activity estimation result, and records the muscle activity during the detected movement in the storage device 107. That is, the muscle activity detection unit 406 detects the indicators of the movement to be recorded from the indicators output from the muscle activity estimation unit 202, and stores the detected indicators in the storage device 107.
- the operation condition calculation unit 403 calculates optimal execution conditions from past muscle activity recorded at appropriate times and current muscle activity. That is, the operation condition calculation unit 403 calculates the operation conditions based on the indicators stored in the storage device 107.
- the outline of the process of the information processing device 300 according to the third embodiment is as follows. 1. Start of application 2. Start of calibration process 3. Measure biological signals during application program operation with a sensor 4. Estimate muscle activity from the measurement results 5. Detect movements to be recorded from the estimated muscle activity results 6. Record muscle activity during the detected movements in storage device 107 7. Calculate optimal execution conditions from past muscle activity and current muscle activity recorded at appropriate times 8. Apply the calculated execution conditions to the control process of the app 9. End of calibration process 10. End of application program
- Detecting the movements to be recorded from the estimated muscle activity results involves, for example, calculating the peak value of muscle strength changes over a certain period of time before and after the user pushes a desk.
- the objects of detection are movements and timing at which muscle strength can be measured under certain conditions.
- Recording the muscle activity during the detected movement in the storage device 107 means, for example, storing the muscle strength values during the detected movement as time-series data in the storage memory in the VR goggles.
- the data may be stored at regular intervals while the app is running, or when the application is closed. Data that has been stored for a certain period of time may be deleted.
- the storage device 107 does not have to be physically built into the device, such as a cloud storage device connected via the Internet.
- the calibration process can be performed without performing any calibration operations, reducing the burden on the user.
- the effects of muscle strength increases or decreases, and changes in strength due to long-term practice can be reduced for users with large changes in muscle strength such as children and elderly people.
- the user may perform an arbitrary movement at a specific part of the user's body, and the biosignal at that time may be integrated with the movement information measured by another sensor to perform calibration.
- the user may perform a movement of appropriately stretching or bending a finger, and the myoelectric potential at that time and the movement may be measured by a camera or the like, and calibration may be performed based on the correspondence between the force exerted when a certain finger is bent.
- FIG. 18 is a hardware configuration diagram showing an example of a computer that realizes the arithmetic unit 102 of the information processing device 100 according to the first to fourth embodiments.
- a computer that realizes the arithmetic device 102 of the information processing device 100 according to each of the above-described embodiments is realized by a computer 1000 having a configuration as shown in Fig. 18, for example.
- Fig. 18 is a hardware configuration diagram showing an example of the computer 1000 that realizes the functions of the arithmetic device 102.
- the computer 1000 has a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, a HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input/output interface 1600.
- Each unit of the computer 1000 is connected by a bus 1050.
- the CPU 1100 operates based on the programs stored in the ROM 1300 or the HDD 1400 and controls each part. For example, the CPU 1100 loads the programs stored in the ROM 1300 or the HDD 1400 into the RAM 1200 and executes processes corresponding to the various programs.
- the ROM 1300 stores boot programs such as the BIOS (Basic Input Output System) that is executed by the CPU 1100 when the computer 1000 starts up, as well as programs that depend on the hardware of the computer 1000.
- BIOS Basic Input Output System
- HDD 1400 is a computer-readable recording medium that non-temporarily records programs executed by CPU 1100 and data used by such programs.
- HDD 1400 is a recording medium that records application programs related to the present disclosure, which are an example of program data 1450.
- the communication interface 1500 is an interface for connecting the computer 1000 to an external network 1550 (e.g., the Internet).
- the CPU 1100 receives data from other devices and transmits data generated by the CPU 1100 to other devices via the communication interface 1500.
- the input/output interface 1600 is an interface for connecting the input/output device 1650 and the computer 1000.
- the CPU 1100 receives data from an input device such as a keyboard or a mouse via the input/output interface 1600.
- the CPU 1100 also transmits data to an output device such as a display, a speaker, or a printer via the input/output interface 1600.
- the input/output interface 1600 may also function as a media interface that reads programs and the like recorded on a specific recording medium.
- Examples of media include optical recording media such as DVDs (Digital Versatile Discs) and PDs (Phase change rewritable Discs), magneto-optical recording media such as MOs (Magneto-Optical Disks), tape media, magnetic recording media, and semiconductor memories.
- optical recording media such as DVDs (Digital Versatile Discs) and PDs (Phase change rewritable Discs)
- magneto-optical recording media such as MOs (Magneto-Optical Disks)
- tape media magnetic recording media
- magnetic recording media and semiconductor memories.
- the CPU 1100 of the computer 1000 executes an image processing program loaded onto the RAM 1200 to realize functions such as the reissue request unit 43.
- the HDD 1400 also stores the SE management processing program according to the present disclosure and data in the content storage unit 121.
- the CPU 1100 reads and executes the program data 1450 from the HDD 1400, but as another example, it may also obtain these programs from other devices via the external network 1550.
- This technology can also be configured as follows:
- the biosignal of the user is an index based on an estimation result of muscle activity based on the biosignal of the user;
- the information processing device according to (1), wherein the operation condition is a threshold value of the index.
- the threshold value is calculated by multiplying the index by a coefficient.
- the information processing device according to (2), wherein the threshold value is based on a strength of force input by the user.
- the information processing device wherein the threshold is calculated by using a nonlinear function on the index, and the threshold is a strength of force input by the user.
- the threshold value is a value based on a change in strength of the force input by the user.
- the operation condition calculation unit applies the calculated operation condition to an application program that determines an operation.
- an instruction generating unit that outputs an instruction for causing the user to perform an operation for calibrating the operating condition;
- the information processing device according to any one of (1) to (7), further comprising: an output unit that outputs the instruction output by the instruction generating unit to the user.
- the information processing device calculates the operation condition when the application program is initialized.
- the information processing device calculates the operation condition while the application program is being executed.
- the information processing device (8), wherein the instruction generation unit issues the instruction to the output unit before the operation condition calculation unit calculates the operation condition.
- the biosignal is a voltage signal of the user, The information processing device according to any one of (2) to (11), wherein the index includes at least one of an RMS, a maximum amplitude, an average amplitude, and an integral value of the voltage signal.
- a detection unit that detects a specific action of the user from the indicator The information processing device according to any one of (2) to (12), wherein the operation condition calculation unit calculates the operation condition in response to the detected specific action.
- a detection unit that detects an indicator of an action to be recorded from the indicators and stores the detected indicator in a storage unit The information processing device according to any one of (2) to (13), wherein the operation condition calculation unit calculates the operation condition based on the index stored in the storage unit.
- REFERENCE SIGNS LIST 100, 200, 300 Information processing device 101 Sensor 102, 212, 312 Computing device 103 Output mechanism 104 Input mechanism 105 Wristband 106 VR goggles 107 Storage device 108 Position 109 Finger 110 Screen 111_1 Pressing operation 111_2 Grasping operation 111_3 Pinch operation 111_4 Stretching operation 114 Display showing remaining time and other progress 201 Muscle activity measuring unit 202 Muscle activity estimating unit 203, 303 Operation condition calculating unit 204 Application control unit 205 Instruction generating unit 206, 306, 406 Muscle activity detecting unit
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Human Computer Interaction (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
本開示は、情報処理装置及び情報処理方法に関する。 This disclosure relates to an information processing device and an information processing method.
筋力の計測や生体状態の推定が可能なシステムはいくつか提案されている。例えば、従来、筋電位計測装置の取り付けや皮膚の表面の形状等の条件や特性の影響を受けず、筋電位を適切に計測するための手段が開示されている。 Several systems have been proposed that can measure muscle strength and estimate biological conditions. For example, previously, means have been disclosed for appropriately measuring myoelectric potential without being affected by conditions or characteristics such as the attachment of the myoelectric potential measuring device or the shape of the skin surface.
しかし、ユーザが動作や力をかけることによって生じる筋活動を入力としてシステムを操作する時、筋力、筋感覚の個人差の影響や、操作による疲労、成長や加齢に伴う筋力変化の影響等を考慮する必要がある。これらの要因によって、ユーザの操作入力に対する操作の条件を満たさずに、操作の一貫性が損なわれ、誤操作の増加や操作負担の増加が誘発されるからである。特許文献1では、筋電位の計測を適切に行うことができる技術について開示されているが、筋肉活動を入力とする操作を最適化することについては開示されていない。従って、特許文献1では、筋力が正確に計測にできたとしても、ユーザの筋肉の特性や状態に影響されず、一貫した操作性や正確で低負担な操作を実現することができないという問題があった。
However, when operating a system using muscle activity generated by a user's movements or application of force as input, it is necessary to take into account the effects of individual differences in muscle strength and muscle sensation, fatigue due to operation, and changes in muscle strength due to growth and aging. These factors can lead to failure to meet the operating conditions for the user's operation input, resulting in a loss of consistency in operation and an increase in operational errors and an increase in the operating burden.
本開示は、上記問題に鑑みてなされたものであり、ユーザの筋肉の特性や状態に影響されず、一貫した操作性や正確、低負担な操作を実現することができる情報処理装置及び情報処理方法を提供する。 The present disclosure has been made in consideration of the above problems, and provides an information processing device and information processing method that can achieve consistent operability, accurate, and low-stress operation without being affected by the characteristics or condition of the user's muscles.
本開示の情報処理装置は、ユーザの生体信号を計測する計測部と、
前記計測された前記ユーザの生体信号に基づいて、前記ユーザの操作に対して実行を行うための操作条件を算出する操作条件算出部とを有する。
The information processing device of the present disclosure includes: a measurement unit that measures a biosignal of a user;
The device further includes an operation condition calculation unit that calculates an operation condition for performing an operation by the user based on the measured biological signal of the user.
以下、添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。なお、説明は以下の順序で行うものとする。 Below, a preferred embodiment of the present disclosure will be described in detail with reference to the attached drawings. Note that in this specification and drawings, components having substantially the same functional configuration will be denoted by the same reference numerals to avoid duplicated explanations. Note that the explanation will be given in the following order.
0. 実施形態の背景
1.第1の実施の形態
1-1.情報処理装置100の構成
1-2.較正処理の流れの概要
1-3.演算装置102の機能ブロック図
1-4.情報処理装置100の動作説明
1-5.閾値の調整
2.第2の実施の形態
3.第3の実施の形態
4.第4の実施の形態
5.ハードウェア構成
0. Background of the
<0.実施形態の背景>
筋肉活動による動作や力を操作のための入力に用いるとき、筋力や力の感覚に個人差がある。また、操作による疲労や成長・加齢に伴う筋力変化が発生する。これらの影響により誤操作や操作の失敗が発生し、操作性の低下や負担の増加が誘発される。
<0. Background of the embodiment>
When using muscle activity to input motion and force, there are individual differences in muscle strength and force sensation. In addition, muscle strength changes with fatigue, growth, and aging. These effects can lead to operational errors and failures, leading to reduced operability and increased strain on the user.
筋力の計測や生体状態推定が可能なシステムはいくつか提案されているが、筋肉活動による動作を入力とした操作の条件を最適化するためには、動作時に活動する筋肉の特性や状態を適切に推定する必要がある。そのためには操作の内容応じて、ユーザに特定の動作をさせるなどの適切な計測、推定方法を検討する必要がある。 Several systems have been proposed that can measure muscle strength and estimate biological states, but in order to optimize the conditions for operations that use movements resulting from muscle activity as input, it is necessary to properly estimate the characteristics and state of the muscles active during the movement. To do this, it is necessary to consider appropriate measurement and estimation methods, such as having the user perform specific movements depending on the content of the operation.
実施の形態では、システムがユーザに適切な動作を行うように指示したり、あらかじめ対象に設定した動作をユーザが行ったことを暗黙的に検出する。この動作によって生じる筋肉の活動と関連付けて生体情報を計測し、筋肉の個人的特性や身体状態を推定することで、特定の操作に対して最適な実行条件を算出することができる。 In an embodiment, the system instructs the user to perform an appropriate action, or implicitly detects when the user has performed a pre-defined action. By measuring biometric information in association with the muscle activity caused by this action and estimating the individual muscle characteristics and physical condition, it is possible to calculate the optimal execution conditions for a specific operation.
本実施の形態によれば、ユーザの筋肉の個人的特性や状態に影響されず、一貫した操作性や正確で負担が少ない操作を実現できる。
<1.第1の実施の形態>
<1-1.情報処理装置100の構成>
図1は、第1の実施の形態に係る情報処理装置100の構成を示す図である。図1に示すように、情報処理装置100は、センサー101、演算装置102及び出力機構103を有する。
According to this embodiment, it is possible to realize consistent operability and accurate operation with less strain, without being affected by the individual characteristics or state of the user's muscles.
1. First embodiment
<1-1. Configuration of
1 is a diagram showing a configuration of an
センサー101は、ユーザの身体に装着され、ユーザの筋肉の活動を示す生体信号を計測する。センサー101は、筋肉の緊張度、筋力の計測も可能である。生体信号は、ユーザの皮膚表面筋電位を示す生体信号を含む。また、センサー101は、ユーザの物理的変化を計測しても良い。物理的変化の計測は、超音波、磁気、赤外線、振動(慣性センサー)、血流量、皮膚表面の変形(カメラ、歪みセンサー)等が使用される。センサー101は、ユーザによって加えられた力を計測する形式でも良い。この場合、圧力センサー、力センサー等が使用される。
The
センサー101は、補助的に筋肉の活動に影響する要因を計測しても良い。センサー101は、関節の柔軟性、可動域を計測しても良い。関節の柔軟性、可動域の計測には、例えば、慣性センサー、カメラ等が使用される。センサー101は、興奮度等の精神状態を計測しても良い。興奮度等の精神状態の計測には、例えば、血流量、心拍、体温等が計測される。
The
演算装置102は、センサー101による計測結果に基づいて、ユーザの操作に対する操作条件を算出する。操作条件は、ユーザの操作に対して操作の実行を行うための条件である。また、操作条件を満たした場合に操作を実行するアプリケーションプログラムを有する。
The
演算装置102は、PC(personal computer)、スマートフォン、AR(拡張現実:Augmented Reality)/XR(Extended Reality)ゴーグル等である。
The
出力機構103は、ユーザに指示をおこなう装置である。出力機構103は、例えば、ディスプレイ、スピーカー、振動装置等である。
The
計測の対象となる操作としては、ユーザの姿勢の維持、変化、力を加える、抜く、力む、脱力する、複合的動作等がある。複合的動作としては、例えば、歩行、走行、物体の把持、移動、変形、開放等がある。 Operations that can be measured include maintaining or changing the user's posture, applying or releasing force, straining or relaxing, and complex movements. Examples of complex movements include walking, running, grasping, moving, transforming, and releasing objects.
情報処理装置100の構成の例として、センサー101、演算装置102及び出力機構103が1つのデバイスに含まれる場合がある。例えば、情報処理装置100は、スマートウォッチ等のウェアラブルデバイスである。センサー(場合によっては振動等一部の出力機構)が計測用デバイスとして独立している場合がある。例えば、アームバンド型ウェアラブルデバイスと、AR、VR(仮想現実:Virtual Reality)ゴーグル、PC、スマートフォン等である。すべてのセンサー101、演算装置102及び出力機構103が独立している場合がある。例えば、情報処理装置100は、アームバンド型ウェアラブルデバイスと、PCと、ディスプレイ等である。
As an example of the configuration of the
<1-2.較正(キャリブレーション)処理の流れの概要>
次に、筋活動入力における処理実行処理の較正の流れの概要について説明する。情報処理装置100の較正処理の流れの概要については、下記の1~5の通りである。
<1-2. Overview of calibration process flow>
Next, an overview of the flow of calibration of the processing execution process for muscle activity input will be described. The overview of the flow of the calibration process of the
1.デバイス(情報処理装置100)の起動
2.アプリケーションプログラムの起動
3.較正処理の呼び出し
3-1.出力機構103を通してユーザに所定の動作を行わせるように指示
3-2.センサー101を通して生体信号を計測
3-3.操作の処理実行
3-4.計測結果を操作の操作条件に反映
4.アプリケーションプログラムの終了
5.デバイス終了
1. Starting up the device (information processing device 100) 2. Starting up an
<1-3.演算装置102の機能ブロック図>
図2は、第1の実施の形態に係る情報処理装置100における演算装置102の機能ブロック図である。
<1-3. Functional block diagram of the
FIG. 2 is a functional block diagram of the
図2に示すように、演算装置102は、筋活動計測部201、筋活動推定部202、操作条件算出部203、アプリケーション制御部204及び指示生成部205を有する。
As shown in FIG. 2, the
筋活動計測部201は、センサー101において計測された生体信号を含むユーザに関する信号を取得する。
The muscle
筋活動推定部202は、筋活動計測部201で取得されたユーザに関する信号の指標を出力する。「指標」は、筋力の状態を示す指標である。例えば、筋電位センサーを通して数~数十msの周期で計測された、mV単位の電圧変動から、RMS(Root Mean Square)、最大振幅、振幅の平均、積分値等の指標を算出し筋力の指標として用いる。ここで、RMSは、一定期間のデータを二乗した値の算術平均の平方根である。
The muscle
操作条件算出部203は、筋活動推定部202から出力された指標に基づいて、ユーザの操作に対する操作条件を算出する。操作条件算出部203は、必要であれば、アプリケーション制御部204のユーザの操作に対する操作条件を更新する。つまり、操作条件算出部203は、算出された操作条件を操作の判断を行うアプリケーションプログラムに適用する。
The operation
アプリケーション制御部204は、ユーザの筋活動が操作条件を満たした場合に、アプリケーションプログラム内で特定の操作を実行する。
The
指示生成部205は、較正用の動作をユーザに行わせるための指示を出力機構103に行う。指示生成部205は、操作条件算出部203による操作条件を算出する前に指示を出力機構103に対して行う。
The
図3は、第1の実施の形態に係る情報処理装置100における演算装置102の入力機構104を設けた機能ブロック図である。図3に示すように、変形例に係る演算装置102は、図2に示した機能ブロック図に加えて、入力機構104を有する。
FIG. 3 is a functional block diagram of the
入力機構104は、ユーザが較正のタイミングの任意の指定、較正時の補助操作をする場合に使用される。入力機構104の入力は、例えば、スマートウォッチ、スマートフォン等のタッチ入力、PCのマウス、キーボード入力、AR/VRゴーグルのコントローラ入力、ハンドトラッキングである。操作条件算出部203は、入力機構104からの較正のタイミングの指定が行われた場合に、操作条件の算出を行う。
The
<1-4.情報処理装置100の動作説明>
情報処理装置100の動作について説明する。情報処理装置100のハードウェア構成は、図4に示すように、ユーザにセンサー101を搭載したリストバンド105を腕につけた状態で、VRゴーグル106を装着する。そして、手先から腕までの力をセンサー101を通して計測する。情報処理装置100のアプリケーションプログラムは、例えば、図5に示すように、机の特定の位置108を指109で一定以上の力で押すと(入力した力が閾値を超えた時)VRゴーグル106上でメニューが表示される。
<1-4. Operation of the
The operation of the
また、較正の内容は、ユーザの筋力や感覚に合わせて操作の力加減を調節する。このような較正を行うのは、操作に必要な力が大きすぎると操作に必要以上の力がかかり、操作を繰り返す必要が生じずるからである。また、必要な力が小さすぎると誤操作が多発するからである。 The calibration also adjusts the force applied to the operation to match the user's muscle strength and sense. The reason for this type of calibration is that if the force required for an operation is too great, more force than necessary is applied, and the operation must be repeated. Also, if the force required is too small, there will be frequent errors.
図6は、第1の実施の形態に係る情報処理装置100の動作を説明するためのフローチャートである。図6においては、アプリケーションプログラム初期化時にユーザの筋力から操作の閾値を設定する場合について説明する。
FIG. 6 is a flowchart for explaining the operation of the
較正処理の読み出しタイミングは、1.アプリケーションプログラム初期化時、2アプリケーションプログラムの実行中の場合がある。「アプリケーションプログラム初期化時」は、アプリケーションプログラムが開始した直後でアプリケーションプログラムのメイン処理が開始する前である。「アプリケーションプログラムの実行中」は、アプリケーションプログラムのメイン処理が実行中である。 The timing for reading out the calibration process can be 1. when the application program is initialized, or 2. while the application program is running. "When the application program is initialized" is immediately after the application program starts and before the main processing of the application program starts. "While the application program is running" is when the main processing of the application program is running.
アプリケーションプログラムのメイン処理が実行中に較正処理が行われる場合とは、例えば、入力機構104を通してユーザにより較正開始信号が入力された時、操作内容に対して特定の条件(誤操作の発生等)が満たされた時等である。この場合、較正処理は、アプリケーションプログラムの起動(ステップS0)終了後に待機状態になる。
Calibration processing is performed while the main processing of an application program is running, for example, when a calibration start signal is input by the user through the
図6において、デバイス(情報処理装置100)、アプリケーションプログラムの起動が行われる(ステップS0)。次に、較正信号等の入力があるかの判断が行われ(ステップS1)、較正開始信号の入力等が行われた場合(ステップS1のYes)、較正処理が開始する(ステップS2)。一方、較正開始信号の入力等が行われない場合(ステップS1のNo)、較正開始信号の入力等があるまで待機状態になる。 In FIG. 6, the device (information processing device 100) starts an application program (step S0). Next, it is determined whether a calibration signal or the like has been input (step S1), and if a calibration start signal or the like has been input (Yes in step S1), the calibration process starts (step S2). On the other hand, if a calibration start signal or the like has not been input (No in step S1), the device goes into a standby state until a calibration start signal or the like is input.
較正するパラメータの例として、どれほどの力加減で入力した場合に処理を実行するかのパラメータ、どれくらいの長さ力を入れ続けたら処理を実行するかのパラメータ等がある。 Examples of parameters to be calibrated include parameters that determine how much force is required to execute a process, and parameters that determine how long force must be applied before a process is executed.
また、これらパラメータに影響する要因としては、筋力差、疲労による変化、習熟による変化、筋肉の発達、衰弱、関節の可動域、柔軟性等がある。 Factors that affect these parameters include differences in muscle strength, changes due to fatigue, changes due to practice, muscle development, weakness, range of motion of joints, flexibility, etc.
次に、ユーザに行わせる特定の動作の通知が行われる(ステップS3)。この通知は、あらかじめ設定された較正のための動作の内容を出力機構103を介してユーザに通知する。
Next, the user is notified of the specific operation to be performed (step S3). This notification notifies the user of the content of the previously set calibration operation via the
例えば、図7に示すように、「画面上の特定位置を人差し指のみを伸ばした姿勢で最大限の力で押す」という動作について画面110上に文字と図で説明を表示する。この時の動作は、操作に使う筋肉の特性を計測できるような動作を選択し設定する。例えば、姿勢、操作内容(押す、握る、伸ばす、つまむ等)、位置、操作対象(特定の物体に対して操作する場合)等の要素を指定する。図8は、操作内容を示す図である。図8においては、押す操作111_1、握る操作111_2、つまむ操作111_3、伸ばす操作111_4の例を示している。
For example, as shown in FIG. 7, a text and diagram explanation of the action of "pressing a specific position on the screen with maximum force with only the index finger extended" is displayed on the
また、一つの動作で複数の操作を含む形で広範囲の筋肉について較正をしても良い。例えば、手腕を使う操作についてまとめて較正するために、図9に示すように、手を下げた状態で最大の力で握る動作を行うことで腕全体の筋力を計測する等である。 Also, it is possible to calibrate a wide range of muscles by including multiple operations in one movement. For example, to calibrate operations that use the arm all at once, the muscle strength of the entire arm can be measured by performing a gripping movement with maximum strength with the hand lowered, as shown in Figure 9.
最大発揮筋力だけでなく脱力した状態や適度な力加減などを指定する場合もある。また、動作内容の説明は文字や音声、動画等の形式が考えられる。計測を始める前に、ユーザが正しく通知された姿勢を行なえるように練習させても良い。 In addition to maximum muscle strength, a relaxed state or an appropriate amount of force may also be specified. Explanations of the movements may be given in the form of text, audio, video, etc. Before starting measurement, the user may be asked to practice the posture that has been notified to them so that they can correctly perform the posture.
その後、ユーザの準備完了まで待機が行われる(ステップS4)。具体的には、ユーザが動作を開始できる適切な姿勢になるまで待機する。情報処理装置100は、ユーザが適切な姿勢になるまで、図10に示すように、以下の動作を行う。
Then, the
1.目標位置や姿勢を表示し同じ姿勢になるように指示する。
例えば、画面上の特定位置に領域と目標姿勢を表示し、ユーザに同じ姿勢をするように指示する(図10(1))。
1. Display the target position and posture and instruct the robot to maintain the same posture.
For example, a region and a target posture are displayed at a specific position on the screen, and the user is instructed to assume the same posture (FIG. 10(1)).
2.目標位置、姿勢までの差分を出力機構103を介してフィードバックし、ユーザに姿勢を合わせることを促す。
例えば、目標位置からサウンドを再生、目標位置までの方向を矢印によって表示、距離や角度のズレを文字で表示する等(図10(2))。
2. The difference to the target position and posture is fed back via the
For example, sound can be played from the target position, the direction to the target position can be displayed by an arrow, and the distance and angle deviation can be displayed in text (Figure 10 (2)).
3.目標の位置、姿勢まで十分近づいたら出力機構を通じて合図を行う。
例えば、適切な姿勢になると、画面上に「OK」と表示され、完了の音声や振動が発生する(図10(3))。
3. When the robot is close enough to the target position and attitude, a signal is sent through the output mechanism.
For example, when the user assumes a suitable posture, the word "OK" is displayed on the screen, and a sound or vibration is generated to indicate completion (FIG. 10(3)).
なお、フィードバックや完了の合図は文字や記号、図形などの視覚表現や音声表現、振動などの触覚表現などが考えられる。 Feedback and completion signals can be expressed visually, such as letters, symbols, or shapes, or audio, or tactilely, such as vibration.
次に、動作の開始を通知し(ステップS5)、ユーザに動作を行わせる。動作中の生体信号をセンサー101で計測する(ステップS6)。その後、動作の終了のタイミングを通知する(ステップS7)。 Next, the start of the action is notified (step S5), and the user is prompted to perform the action. The biosignals during the action are measured by the sensor 101 (step S6). After that, the user is notified of the timing for the action to end (step S7).
第1の実施の形態においては、ユーザに開始の合図から終了の合図までの間、指示された動作を継続するように指示し、その間の生体信号をセンサー101で計測する。例えば、開始から終了までの3秒間「画面上の特定位置を人差し指のみを伸ばした姿勢で最大限の力で押す」動作を継続する。
In the first embodiment, the user is instructed to continue the instructed action from the start signal to the end signal, and the biosignal during that time is measured by the
この場合、例えば、図11に示すように、カウントダウン(図11の(1))をした後に、計測開始の合図(図11の(2)のSTARTの表示)を行う。次に、図12に示すように、一定時間経過後に終了の合図(図12のENDの表示)を行う。合図は視覚、聴覚、触覚表現等によって提示されても良い。計測中は、図13に示すように、残り時間等経過を示す表示114を行っても良い。
In this case, for example, as shown in FIG. 11, after a countdown ((1) in FIG. 11), a signal to start measurement is given (displaying START in (2) in FIG. 11). Then, as shown in FIG. 12, after a certain period of time has elapsed, a signal to end is given (displaying END in FIG. 12). The signal may be presented visually, audibly, tactilely, etc. During measurement, a
終了の基準は時間経過による判定以外の条件でも良い。例えば、入力された筋電位の電圧値が一定の大きさを下回った場合に自動で終了とする。 The criteria for termination can be other than the passage of time. For example, the process can end automatically when the voltage value of the input myoelectric potential falls below a certain level.
システムが待機状態になったことを通知し、ユーザが任意のタイミングで動作の開始と終了をする形式でも良い。例えば、システム側が待機状態になったことを通知し、「画面上の特定位置を人差し指のみを伸ばした姿勢で最大限の力で押して離す」動作を行わせる。この場合、システムは入力の変化から自動で計測期間を設定するか、ユーザに入力機構を通して開始、終了の合図を入力させる方法が考えられる。 It is also possible for the system to notify the user that it has entered a standby state, and allow the user to start and end the action at any time. For example, the system could notify the user that it has entered a standby state, and have the user perform the action of "pressing a specific position on the screen with maximum force with only the index finger extended, then releasing it." In this case, the system could automatically set the measurement period based on changes in input, or the user could input start and end signals through the input mechanism.
生体信号の計測時は筋電位センサーなどによる筋肉の緊張度の測定以外に必要に応じて補助的なセンサーを活用しても良い。例えば、カメラ等による指の可動域情報や心拍センサーによる興奮度情報等である。計測中にセンサーが正しく操作しているかを示すために、センサーに独自の出力機構を持たせ、視覚や聴覚、触覚刺激等によって計測された情報を提示しても良い。ユーザが加えた力を計測できるような装置を別に用意し、用意した装置によって計測された力の値を得られた生体信号と組み合わせても良い。 When measuring biosignals, auxiliary sensors may be used as necessary in addition to measuring muscle tension using an electromyography sensor or the like. For example, finger range of motion information using a camera or excitement level information using a heart rate sensor. To show whether the sensor is being operated correctly during measurement, the sensor may be equipped with its own output mechanism and information measured through visual, auditory or tactile stimulation may be presented. A separate device may be prepared that can measure the force applied by the user, and the force value measured by the prepared device may be combined with the obtained biosignal.
次に、生体信号の計測に問題(ノイズや不正信号など)がないか確認する(ステップS8)。ステップS8において、問題があると判断された場合(ステップS8のNo)、動作のやり直しを指示し(ステップS9)、ステップS4に戻る。ステップS8において、問題が無いと判断された場合(ステップS8のYes)、生体信号の計測結果から筋活動の推定を行う(ステップS10)。 Next, it is checked whether there is a problem with the measurement of the biosignals (noise, incorrect signals, etc.) (step S8). If it is determined in step S8 that there is a problem (No in step S8), an instruction is given to repeat the operation (step S9) and the process returns to step S4. If it is determined in step S8 that there is no problem (Yes in step S8), muscle activity is estimated from the measurement results of the biosignals (step S10).
例えば、筋電位計測時のノイズや値飛び等の不正信号の発生時間、頻度、割合が許容度を超えた場合などに再度計測をやり直すように画面上で指示する。補助的なセンサーを活用する場合はそれらの計測上の問題も含まれる。 For example, if the occurrence time, frequency, or proportion of abnormal signals such as noise or value jumps during EMG measurement exceeds the tolerance, an instruction will be displayed on the screen to repeat the measurement. If auxiliary sensors are used, these measurement problems will also be included.
計測デバイスの位置ずれなどの物理的問題が発生した場合にユーザがシステム側に通知する形式でも良い。計測中に問題を検出した場合は、計測を中断してすぐにやり直しを行っても良い。 It may also be possible for the user to notify the system if a physical problem occurs, such as a misalignment of the measurement device. If a problem is detected during measurement, the measurement may be interrupted and immediately restarted.
ステップS10における生体信号の計測結果からの筋活動の推定は、例えば、筋電位センサーを通して数~数十msの周期で計測された、mV単位の電圧変動から、RMS、最大振幅、振幅の平均、積分値等の指標を算出し筋力の指標として用いる。ここで、RMSは、一定期間のデータを二乗した値の算術平均の平方根である。これらの指標は筋力と線形に対応する場合としない場合があり、計測状況により非線形性が強い場合は適切な補正処理を行っても良い。また、周波数解析やパターンマッチング、機械学習等の他の信号処理手法を用いても良い。 In step S10, muscle activity is estimated from the measurement results of the biosignals, for example, by calculating indices such as RMS, maximum amplitude, average amplitude, and integral value from voltage fluctuations in mV measured at periods of several to several tens of ms through an electromyography sensor, and using these as indices of muscle strength. Here, RMS is the square root of the arithmetic mean of the value obtained by squaring data over a certain period of time. These indices may or may not correspond linearly to muscle strength, and appropriate correction processing may be performed if there is strong nonlinearity due to the measurement conditions. Other signal processing methods such as frequency analysis, pattern matching, and machine learning may also be used.
図14は、第1の実施の形態に係る情報処理装置100の筋電位の測定結果を示す図である。図15は、第1の実施の形態に係る情報処理装置100の計測された筋電位のRMSを示す図である。図15に示すように、筋電位のRMSは、筋電位と相関関係が有ることが示されている。
FIG. 14 is a diagram showing the measurement results of myoelectric potentials by the
他のセンサーを使用する場合、その生体信号に応じた処理方法を適用する。複数台のセンサーや複数の種類のセンサーを複合的に用いても良い。例えば、腕に巻き付けるように8つの筋電位センサーを装着しそれらの平均値を用いても良い。年齢や性別等のユーザの属性に基づいて推定方法を調整しても良い。ユーザがその時の疲労度等の値を入力し、推定状態を調整できるようにしても良い。 If other sensors are used, a processing method appropriate for the biosignal is applied. Multiple sensors or multiple types of sensors may be used in combination. For example, eight myoelectric potential sensors may be worn wrapped around the arm and their average value may be used. The estimation method may be adjusted based on user attributes such as age and gender. The user may be able to input values such as the current level of fatigue to adjust the estimated state.
次に、推定した筋活動に問題があるかの判断が行われる(ステップS11)。問題とは、例えば、ユーザが指示した動作と異なる動作を行なった場合、計測開始のタイミングのずれ等によって最大の筋力が得られていないと判断される場合である。ステップS11において、問題があると判断された場合(ステップS11のNo)、ステップS9に戻り、動作のやり直しを指示する。 Next, a determination is made as to whether there is a problem with the estimated muscle activity (step S11). A problem would be, for example, if the user performs a movement different from the one instructed, or if it is determined that maximum muscle strength is not being obtained due to a difference in the timing of the start of measurement, etc. In step S11, if a problem is determined (No in step S11), the process returns to step S9 and an instruction is given to repeat the movement.
ステップS11における判断は、波形によるパターンマッチング、ピーク検出、機械学習等による動作推定で判断する。ユーザの年齢や性別等の個人情報を事前に確認し、それらの情報と比較して不適応な結果が得られた場合にやり直しをしても良い。 The judgment in step S11 is made by waveform pattern matching, peak detection, machine learning, and other methods of estimating movement. Personal information such as the user's age and gender may be confirmed in advance, and if an inappropriate result is obtained by comparing this information, the judgment may be redone.
ユーザに計測結果を通知し、ユーザから入力機構104を通してやり直しを求める信号を受け取った場合にやり直しをする形式でも良い。補助的なセンサーから得られた情報を活用しても良い。関節の可動域等によってある操作で計測がうまくいかない場合、予備的に他の動作を行わせるようにしても良い。
The measurement result may be notified to the user, and the measurement may be redone if a signal requesting redo is received from the user via the
ステップS11において問題があると判断された場合(ステップS11のYes)、他に行わせるべき動作があるかの判断が行われる(ステップS12)。ステップS12において、他に行わせるべき動作があると判断された場合(ステップS12のYes)、ステップS3のユーザに行わせる特定の通知を行う。例えば、あらかじめ複数の動作を設定しており、まだ計測していない動作がある場合等である。ここまでの計測結果から他に行わせる動作が必要かを自動で決定しても良い。 If it is determined in step S11 that there is a problem (Yes in step S11), a determination is made as to whether there is any other action that should be performed (step S12). If it is determined in step S12 that there is any other action that should be performed (Yes in step S12), a specific notification is given to the user in step S3. For example, this may be the case when multiple actions have been set in advance and there are actions that have not yet been measured. It may be possible to automatically determine whether there is any other action that should be performed based on the measurement results up to this point.
ステップS12において、他に行わせるべき動作がないと判断された場合(ステップS12のNo)、全ての動作が完了し、筋活動の推定結果から最適な実行条件を算出する(ステップS13)。 If it is determined in step S12 that there are no other movements to be performed (No in step S12), all movements are completed, and optimal execution conditions are calculated from the estimated muscle activity (step S13).
実行条件の算出は、例えば、計測から推定された最大筋力発揮時の筋力またはそれに準ずる指標に対して、一定の割合を閾値に設定する。例えば、計測と筋活動の推定の結果、最大限の力で机を押した時の筋力指標が100である場合、あらかじめシステム内で登録された係数K=0.3をかけ、30を閾値として算出する。 The calculation of the execution conditions is done by, for example, setting a certain percentage as the threshold value for the muscle strength at maximum muscle exertion or an index equivalent thereto estimated from the measurement. For example, if the muscle strength index when pushing a desk with maximum force is 100 as a result of the measurement and estimation of muscle activity, then multiplying it by a coefficient K = 0.3 registered in the system beforehand, and calculating 30 as the threshold value.
閾値はユーザに適切な強さで入力された値を直接用いても良く、非線形関数(深層学習で生成されたモデルなど)によって求めても良い。例えば、ユーザに好みの強さで入力させその時の筋力変化のピーク値を閾値とする。あらかじめ深層学習で得られた筋力と閾値とのモデルによって算出しても良い。閾値は、ユーザにより入力された力の強さの変化に基づく値である。閾値は、ユーザにより入力された力の筋力変化のピーク値の他、筋力変化の平均値、微分値等であっても良い。 The threshold value may be a value directly input by the user with an appropriate strength, or may be calculated using a nonlinear function (such as a model generated by deep learning). For example, the user may input a strength of their choice, and the peak value of muscle strength change at that time may be used as the threshold. It may also be calculated using a model of muscle strength and threshold value previously obtained by deep learning. The threshold value is a value based on the change in strength of the force input by the user. The threshold value may be the peak value of muscle strength change of the force input by the user, the average value of muscle strength change, a derivative value, etc.
計測する動作を増やし、その計測結果及び筋活動の推定結果を複合的に活用しても良い。例えば、脱力時の筋力も計測し、脱力時と最大発揮筋力との間の一定比率の内分点で閾値を決定する。 It is also possible to increase the number of movements to be measured and to utilize the measurement results and the estimated muscle activity results in a composite manner. For example, muscle strength during relaxation can also be measured, and a threshold can be determined at a certain internal division point between the relaxation and maximum muscle strength.
操作の実行条件に応じて他のパラメータを最適化しても良い。例えば、(一定時間の入力継続が実行条件の場合)継続時間、(パターンマッチングなどの)類似度の閾値、(機械学習等の)学習、推定のパラメータ等である。 Other parameters may be optimized depending on the conditions for executing the operation. For example, the duration (if the execution condition is a certain period of continuous input), the similarity threshold (for pattern matching, etc.), learning (for machine learning, etc.), estimation parameters, etc.
補助的なセンサーから得られた情報を活用しても良い。例えば、興奮度が高い状態で計測された場合はそのレベルに応じて閾値を低めに設定する。可動域が狭い場合は姿勢の維持に多くの筋力を必要とするので閾値を高めに設定する等である。 Information obtained from auxiliary sensors can also be used. For example, if a measurement is taken during a state of high excitement, the threshold can be set lower according to that level. If the range of motion is narrow, more muscle strength is required to maintain posture, so the threshold can be set higher.
ステップS13において実行条件が算出された後、算出した実行条件がアプリケーションプログラムの制御処理に適用される(ステップS14)。例えば、机を押した強さに対して特定の処理の実行を判定するアプリケーション制御プログラムに対して、ステップS13で算出した閾値を判定条件として反映させる。複数の動作を計測する場合、実行条件の算出処理及び制御処理への適用はすべての動作終了後ではなく個々の動作の終了後に行っても良い。 After the execution conditions are calculated in step S13, the calculated execution conditions are applied to the control process of the application program (step S14). For example, the threshold value calculated in step S13 is reflected as a judgment condition for an application control program that judges whether a specific process should be executed based on the strength of the pressing on the desk. When measuring multiple actions, the calculation process of the execution conditions and application to the control process may be performed after each action has been completed, rather than after all actions have been completed.
そして、較正処理が終了し(ステップS15)、アプリケーションプログラム及びデバイスが終了する(ステップS16)。 Then, the calibration process ends (step S15), and the application program and device are terminated (step S16).
<1-5.閾値の調整>
閾値の調整は、アプリケーションプログラムの途中でユーザから入力機構104を通して較正処理の開始の信号が入力された場合に較正処理を開始しても良い。較正処理の開始は、例えば、アプリケーションのメニューから「キャリブレーションの開始」を選択する、コントローラのキャリブレーションボタンを押す等である。
<1-5. Threshold adjustment>
The calibration process for adjusting the threshold may be started when a signal to start the calibration process is input by the user through the
システムが操作中の問題を検出し自動で較正処理を開始しても良い。例えば、誤操作が多発したことを検出し較正処理を開始しても良い。 The system may detect problems during operation and automatically start a calibration process. For example, the system may detect frequent occurrences of operational errors and start a calibration process.
較正処理のタイミングを任意のタイミングとすることにより、開始時の較正処理で個人差を吸収できない個人の力の感覚に合わせて閾値を最適化できる。また、閾値をユーザの好みの力加減に合わせることができる。 By setting the timing of the calibration process to any timing, the threshold can be optimized to match the individual's sense of force, which cannot be absorbed by the initial calibration process. The threshold can also be adjusted to the user's preferred level of force.
<2.第2の実施の形態>
第2の実施の形態の情報処理装置200は、特定の動作を明示的に行わずに、操作の失敗を自動で検出して閾値を調節するものである。第2の実施の形態は、明示的にユーザに指示を行わず、筋活動検出部306が筋活動から特定の動作を検出し、その内容に応じて操作条件の算出を行うものである。
2. Second embodiment
The
図16は、第2の実施の形態に係る情報処理装置200の機能ブロック図である。図16において、図2と同一部分には同一符号を付し、その説明を省略する。図16に示すように、情報処理装置200の演算装置212’は、筋活動計測部201、筋活動推定部202、操作条件算出部303、アプリケーション制御部204及び筋活動検出部306を有する。
FIG. 16 is a functional block diagram of an
筋活動検出部306は、筋活動の推定結果からあらかじめ登録した特定の動作を検出する。つまり、筋活動検出部306は、筋活動推定部202から出力される指標からユーザの特定の動作を検出する。操作条件算出部303は、特定の動作部分の筋活動から最適な実行条件を算出する。つまり、操作条件算出部303は、筋活動検出部306により検出された特定の動作に応じて、操作条件を算出する。
The muscle
第2の実施の形態に係る情報処理装置200の処理の概要は下記の通りである。
1.アプリケーションプログラムの開始
2.較正処理の開始
3.アプリケーションプログラム操作中の生体信号をセンサーで計測する
4.計測結果から筋活動の推定を行う
5.筋活動の推定結果からあらかじめ登録した特定の動作部分を検出する
6.特定の動作部分の筋活動から最適な実行条件を算出する
7.算出した実行条件をアプリの制御処理に適用する
8.較正処理の終了
9.アプリケーションプログラムの終了
The process of the
1. Start of
「5.筋活動の推定結果からあらかじめ登録した特定の動作部分を検出する」ことは、例えば、机を押した時閾値が高すぎて力が足りず、机を押す操作を繰り返す又は閾値が低すぎて誤操作が高頻度で発生すること等がある。 "5. Detecting specific movement parts registered in advance from the estimated muscle activity results" may result in, for example, when pushing a desk, the threshold being too high and not enough force being used, resulting in repeated pushing of the desk, or the threshold being too low and frequent erroneous operations occurring.
「6.特定の動作部分の筋活動から最適な実行条件を算出する」ことは、例えば、以下の6-1~6-4の処理を含む。
6-1.操作に失敗した瞬間から前後一定期間を特定する
6-2.特定された期間内の筋力を算出する
6-3.期間内の筋力変化のピークを検出する
6-4.ピークの値から閾値を調節する(ピークが閾値より高い場合はピーク付近まで閾値を上げる。ピークが閾値より低い場合はピーク付近まで閾値を下げる。)
"6. Calculating optimal execution conditions from muscle activity of a specific motion part" includes, for example, the following processes 6-1 to 6-4.
6-1. Identify a certain period before and after the moment of operation failure. 6-2. Calculate muscle strength within the identified period. 6-3. Detect the peak of muscle strength change within the period. 6-4. Adjust the threshold from the peak value (if the peak is higher than the threshold, raise the threshold to near the peak. If the peak is lower than the threshold, lower the threshold to near the peak.)
第2の実施の形態に係る情報処理装置200によれば、較正用の動作をせずに校正処理を行うことができ、ユーザの負担を低減できる。
According to the
<3.第3の実施の形態>
図17は、第3の実施の形態に係る情報処理装置300の機能ブロック図である。図17において、図2と同一部分には同一符号を付し、その説明を省略する。図17に示すように、情報処理装置300の演算装置312’’は、筋活動計測部201、筋活動推定部202、操作条件算出部303’、アプリケーション制御部204及び筋活動検出部406を有する。また、情報処理装置300は、センサー101に加えて、記憶装置107を有する。
3. Third embodiment
Fig. 17 is a functional block diagram of an
筋活動検出部406は、筋活動の推定結果から記録の対象となる動作を検出し、検出された動作時の筋活動を記憶装置107に記録する。つまり、筋活動検出部406は、筋活動推定部202から出力される指標から記録の対象となる動作の指標を検出し、検出された指標を記憶装置107に記憶する。操作条件算出部403は、適切なタイミングで記録された過去の筋活動や現在の筋活動から最適な実行条件を算出する。つまり、操作条件算出部403は、記憶装置107に記憶された指標に基づいて、操作条件を算出する。
The muscle activity detection unit 406 detects the movement to be recorded from the muscle activity estimation result, and records the muscle activity during the detected movement in the
第3の実施の形態に係る情報処理装置300の処理の概要は下記の通りである。
1.アプリケーションの開始
2.較正処理の開始
3.アプリケーション往路グラム操作中の生体信号をセンサーで計測する
4.計測結果から筋活動の推定を行う
5.筋活動の推定結果から記録の対象となる動作を検出する
6.検出された動作時の筋活動を記憶装置107に記録する
7.適切なタイミングで記録された過去の筋活動や現在の筋活動から最適な実行条件を算出する
8.算出した実行条件をアプリの制御処理に適用する
9.較正処理の終了
10.アプリケーションプログラムの終了
The outline of the process of the
1. Start of
「5.筋活動の推定結果から記録の対象となる動作を検出する」ことは、例えば、ユーザが机を押した時の前後一定期間の筋力変化のピークの値を算出する。検出の対象は、一定の条件で筋力を計測できる動作やタイミングを対象にする。 "5. Detecting the movements to be recorded from the estimated muscle activity results" involves, for example, calculating the peak value of muscle strength changes over a certain period of time before and after the user pushes a desk. The objects of detection are movements and timing at which muscle strength can be measured under certain conditions.
「6.検出された動作時の筋活動を記憶装置107に記録する」ことは、例えば、検出された動作時の筋力値をVRゴーグル内のストレージメモリに時系列データとして保存する。データを保存するタイミングはアプリ実行中に一定間隔で保存したり、アプリケーション終了時に保存することが考えられる。一定の保存期間を過ぎたデータは消去しても良い。記憶装置107はインターネットで接続されたクラウドストレージのようにデバイスに物理的に内蔵されていなくても良い。
"6. Recording the muscle activity during the detected movement in the
「7.適切なタイミングで記録された過去の筋活動や現在の筋活動から最適な実行条件を算出する」ことは、例えば、過去の一定期間の筋力値の平均と現在の筋力値を比較し筋力の増加、減少を推定し、閾値を一定のレベルで調節する。筋活動の移動平均や筋力変化の微分値など他の指標に基づいても良い。補助的センサーの値を記録し判定に用いても良い。必要に応じて操作の成功率など操作の実行に関する指標を記録し判定に用いても良い。 "7. Calculating optimal execution conditions from past and current muscle activity recorded at appropriate times" involves, for example, comparing the average muscle strength value over a certain period of time in the past with the current muscle strength value to estimate increases or decreases in muscle strength and adjust the threshold to a certain level. This may be based on other indicators such as a moving average of muscle activity or a derivative value of muscle strength change. Values from auxiliary sensors may also be recorded and used for judgment. If necessary, indicators related to the execution of an operation, such as the success rate of the operation, may also be recorded and used for judgment.
第3の実施の形態に係る情報処理装置300によれば、較正用の動作をせずに校正処理を行うことができ、ユーザの負担を低減できる。また、筋力の増強、衰退、子供や高齢者など筋力変化が大きいユーザ、長期的な習熟による力加減の変化の影響を小さくできる。
According to the
<4.第4の実施の形態>
第4の実施の形態は、ユーザの特定部位において、ユーザが任意の動作を行い、その際の生体信号と、他のセンサーで計測した動きの情報を統合することで、較正を行っても良い。例えば、指を適当に伸ばしたり、曲げたりする動作を行わせ、その時の筋電位と、カメラ等で動きを計測し、ある指が曲げられたときに発揮された力等の対応から較正を行っても良い。
4. Fourth embodiment
In the fourth embodiment, the user may perform an arbitrary movement at a specific part of the user's body, and the biosignal at that time may be integrated with the movement information measured by another sensor to perform calibration. For example, the user may perform a movement of appropriately stretching or bending a finger, and the myoelectric potential at that time and the movement may be measured by a camera or the like, and calibration may be performed based on the correspondence between the force exerted when a certain finger is bent.
<5.ハードウェア構成>
図18は、第1の実施の形態~第4の実施の形態に係る情報処理装置100の演算装置102を実現するコンピュータの一例を示すハードウェア構成図である。
上述してきた各実施形態に係る情報処理装置100の演算装置102を実現するコンピュータは、例えば図18に示すような構成のコンピュータ1000によって実現される。図18は、演算装置102の機能を実現するコンピュータ1000の一例を示すハードウェア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インターフェイス1500、及び入出力インターフェイス1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
5. Hardware Configuration
FIG. 18 is a hardware configuration diagram showing an example of a computer that realizes the
A computer that realizes the
CPU1100は、ROM1300又はHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。例えば、CPU1100は、ROM1300又はHDD1400に格納されたプログラムをRAM1200に展開し、各種プログラムに対応した処理を実行する。
The CPU 1100 operates based on the programs stored in the
ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるBIOS(Basic Input Output System)等のブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。
The
HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を非一時的に記録する、コンピュータが読み取り可能な記録媒体である。具体的には、HDD1400は、プログラムデータ1450の一例である本開示に係るアプリケーションプログラムを記録する記録媒体である。
通信インターフェイス1500は、コンピュータ1000が外部ネットワーク1550(例えばインターネット)と接続するためのインターフェイスである。例えば、CPU1100は、通信インターフェイス1500を介して、他の機器からデータを受信したり、CPU1100が生成したデータを他の機器へ送信したりする。
The
入出力インターフェイス1600は、入出力デバイス1650とコンピュータ1000とを接続するためのインターフェイスである。例えば、CPU1100は、入出力インターフェイス1600を介して、キーボードやマウス等の入力デバイスからデータを受信する。また、CPU1100は、入出力インターフェイス1600を介して、ディスプレイやスピーカーやプリンタ等の出力デバイスにデータを送信する。また、入出力インターフェイス1600は、所定の記録媒体(メディア)に記録されたプログラム等を読み取るメディアインターフェイスとして機能してもよい。メディアとは、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、又は半導体メモリ等である。
The input/
例えば、コンピュータ1000が第1の実施形態に係る演算装置102として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされた画像処理プログラムを実行することにより、再発行依頼部43等の機能を実現する。また、HDD1400には、本開示に係るSE管理処理プログラムや、コンテンツ記憶部121内のデータが格納される。なお、CPU1100は、プログラムデータ1450をHDD1400から読み取って実行するが、他の例として、外部ネットワーク1550を介して、他の装置からこれらのプログラムを取得してもよい。
For example, when the
以上、添付図面を参照しながら本開示の好適な実施の形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The above describes in detail preferred embodiments of the present disclosure with reference to the attached drawings, but the technical scope of the present disclosure is not limited to such examples. It is clear that a person with ordinary knowledge in the technical field of the present disclosure can conceive of various modified or revised examples within the scope of the technical ideas described in the claims, and it is understood that these also naturally fall within the technical scope of the present disclosure.
また、本明細書に記載された効果は、あくまで説明的又は例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、又は上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Furthermore, the effects described in this specification are merely descriptive or exemplary and are not limiting. In other words, the technology disclosed herein may achieve other effects that are apparent to a person skilled in the art from the description in this specification, in addition to or in place of the above effects.
なお、本技術は以下のような構成も取ることができる。 This technology can also be configured as follows:
(1) ユーザの生体信号を計測する計測部と、
前記計測された前記ユーザの生体信号に基づいて、前記ユーザの操作に対して実行を行うための操作条件を算出する操作条件算出部と
を有する、情報処理装置。
(2) 前記ユーザの生体信号は、前記ユーザの生体信号に基づく筋活動の推定結果に基づく指標であり、
前記操作条件は、前記指標の閾値である
(1)に記載の情報処理装置。
(3) 前記閾値は、前記指標に係数を乗じて算出される(2)に記載の情報処理装置。
(4) 前記閾値は、前記ユーザにより入力された力の強さに基づく(2)に記載の情報処理装置。
(5) 前記閾値は、前記指標に非線形関数を使用して算出され、前記閾値は、前記ユーザにより入力された力の強さである(2)に記載の情報処理装置。
(6) 前記閾値は、前記ユーザにより入力された力の強さの変化に基づく値である(2)に記載の情報処理装置。
(7) 前記操作条件算出部は、算出された前記操作条件を操作の判断を行うアプリケーションプログラムに適用する(1)~(6)のいずれか1つに記載の情報処理装置。
(8) 前記操作条件の較正のための動作を前記ユーザに行わせるための指示を出力する指示生成部と、
前記指示生成部により出力された前記指示を前記ユーザに行う出力部と
を有する(1)~(7)のいずれか1つに記載の情報処理装置。
(9) 前記操作条件算出部による前記操作条件の算出のタイミングは、前記アプリケーションプログラムの初期化時に行われる(7)に記載の情報処理装置。
(10) 前記操作条件算出部による前記操作条件の算出のタイミングは、前記アプリケーションプログラムの実行中に行われる(7)に記載の情報処理装置。
(11) 前記指示生成部は、前記操作条件算出部による前記操作条件を算出する前に前記指示を前記出力部に対して行う(8)に記載の情報処理装置。
(12) 前記生体信号は、前記ユーザの電圧信号であり、
前記指標は、前記電圧信号のRMS、最大振幅、振幅の平均、積分値の少なくとも1つを含む、(2)~(11)のいずれか1つに記載の情報処理装置。
(13) 前記指標から前記ユーザの特定の動作を検出する検出部を有し、
前記操作条件算出部は、前記検出された特定の動作に応じて、前記操作条件を算出する
(2)~(12)のいずれか1つに記載の情報処理装置。
(14) 前記指標から記録の対象となる動作の指標を検出し、前記検出された指標を記憶部に記憶する検出部を有し、
前記操作条件算出部は、前記記憶部に記憶された前記指標に基づいて、前記操作条件を算出する(2)~(13)のいずれか1つに記載の情報処理装置。
(15) ユーザの生体信号を計測し、
前記計測された前記ユーザの生体信号に基づいて、前記ユーザの操作に対して実行を行うための操作条件を算出する
情報処理方法。
(1) a measurement unit that measures a biosignal of a user;
and an operation condition calculation unit that calculates an operation condition for performing an operation of the user based on the measured biological signal of the user.
(2) the biosignal of the user is an index based on an estimation result of muscle activity based on the biosignal of the user;
The information processing device according to (1), wherein the operation condition is a threshold value of the index.
(3) The information processing device according to (2), wherein the threshold value is calculated by multiplying the index by a coefficient.
(4) The information processing device according to (2), wherein the threshold value is based on a strength of force input by the user.
(5) The information processing device according to (2), wherein the threshold is calculated by using a nonlinear function on the index, and the threshold is a strength of force input by the user.
(6) The information processing device according to (2), wherein the threshold value is a value based on a change in strength of the force input by the user.
(7) The information processing device according to any one of (1) to (6), wherein the operation condition calculation unit applies the calculated operation condition to an application program that determines an operation.
(8) an instruction generating unit that outputs an instruction for causing the user to perform an operation for calibrating the operating condition;
The information processing device according to any one of (1) to (7), further comprising: an output unit that outputs the instruction output by the instruction generating unit to the user.
(9) The information processing device according to (7), wherein the operation condition calculation unit calculates the operation condition when the application program is initialized.
(10) The information processing device according to (7), wherein the operation condition calculation unit calculates the operation condition while the application program is being executed.
(11) The information processing device according to (8), wherein the instruction generation unit issues the instruction to the output unit before the operation condition calculation unit calculates the operation condition.
(12) The biosignal is a voltage signal of the user,
The information processing device according to any one of (2) to (11), wherein the index includes at least one of an RMS, a maximum amplitude, an average amplitude, and an integral value of the voltage signal.
(13) A detection unit that detects a specific action of the user from the indicator,
The information processing device according to any one of (2) to (12), wherein the operation condition calculation unit calculates the operation condition in response to the detected specific action.
(14) A detection unit that detects an indicator of an action to be recorded from the indicators and stores the detected indicator in a storage unit,
The information processing device according to any one of (2) to (13), wherein the operation condition calculation unit calculates the operation condition based on the index stored in the storage unit.
(15) measuring a biosignal of a user;
An information processing method for calculating, based on the measured biological signal of the user, an operation condition for performing an operation of the user.
100、200、300 情報処理装置
101 センサー
102、212、312 演算装置
103 出力機構
104 入力機構
105 リストバンド
106 VRゴーグル
107 記憶装置
108 位置
109 指
110 画面
111_1 押す操作
111_2 握る操作
111_3 つまむ操作
111_4 伸ばす操作
114 残り時間等経過を示す表示
201 筋活動計測部
202 筋活動推定部
203、303、 操作条件算出部
204 アプリケーション制御部
205 指示生成部
206、306、406 筋活動検出部
REFERENCE SIGNS
Claims (15)
前記計測された前記ユーザの生体信号に基づいて、前記ユーザの操作に対して実行を行うための操作条件を算出する操作条件算出部と
を有する情報処理装置。 A measurement unit that measures a biosignal of a user;
and an operation condition calculation unit that calculates an operation condition for performing an operation of the user based on the measured biological signal of the user.
前記操作条件は、前記指標の閾値である
請求項1に記載の情報処理装置。 the biosignal of the user is an index based on an estimation result of muscle activity based on the biosignal of the user;
The information processing apparatus according to claim 1 , wherein the operation condition is a threshold value of the index.
請求項2に記載の情報処理装置。 The information processing apparatus according to claim 2 , wherein the threshold value is calculated by multiplying the index by a coefficient.
請求項2に記載の情報処理装置。 The information processing apparatus according to claim 2 , wherein the threshold value is based on the strength of a force input by the user.
前記閾値は、前記ユーザにより入力された力の強さである
請求項2に記載の情報処理装置。 The threshold is calculated using a nonlinear function of the index;
The information processing apparatus according to claim 2 , wherein the threshold value is a strength of a force input by the user.
請求項2に記載の情報処理装置。 The information processing apparatus according to claim 2 , wherein the threshold value is a value based on a change in strength of the force input by the user.
請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1 , wherein the operation condition calculation unit applies the calculated operation condition to an application program that performs operation determination.
前記指示生成部により出力された前記指示を前記ユーザに行う出力部と
を有する請求項1に記載の情報処理装置。 an instruction generating unit that outputs an instruction for causing the user to perform an operation for calibrating the operating condition;
The information processing apparatus according to claim 1 , further comprising an output unit that outputs the instruction output by the instruction generating unit to the user.
請求項7に記載の情報処理装置。 The information processing apparatus according to claim 7 , wherein the operation condition calculation section calculates the operation condition when the application program is initialized.
請求項7に記載の情報処理装置。 The information processing apparatus according to claim 7 , wherein the operation condition calculation section calculates the operation condition during execution of the application program.
請求項8に記載の情報処理装置。 The information processing apparatus according to claim 8 , wherein the instruction generation unit issues the instruction to the output unit before the operation condition calculation unit calculates the operation condition.
前記指標は、前記電圧信号のRMS、最大振幅、振幅の平均、積分値の少なくとも1つを含む
請求項2に記載の情報処理装置。 the biosignal is a voltage signal of the user;
The information processing device according to claim 2 , wherein the index includes at least one of an RMS, a maximum amplitude, an average amplitude, and an integral value of the voltage signal.
前記操作条件算出部は、前記検出された特定の動作に応じて、前記操作条件を算出する
請求項2に記載の情報処理装置。 a detection unit that detects a specific action of the user from the indicator;
The information processing apparatus according to claim 2 , wherein the operation condition calculation unit calculates the operation condition in response to the detected specific action.
前記操作条件算出部は、前記記憶部に記憶された前記指標に基づいて、前記操作条件を算出する
請求項2に記載の情報処理装置。 a detection unit that detects an indicator of an action to be recorded from the indicators and stores the detected indicator in a storage unit;
The information processing apparatus according to claim 2 , wherein the operation condition calculation unit calculates the operation condition based on the index stored in the storage unit.
前記計測された前記ユーザの生体信号に基づいて、前記ユーザの操作に対して実行を行うための操作条件を算出する
情報処理方法。 Measure the user's biosignals,
An information processing method for calculating, based on the measured biological signal of the user, an operation condition for performing an operation by the user.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2023020247 | 2023-02-13 | ||
| JP2023-020247 | 2023-02-13 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2024171759A1 true WO2024171759A1 (en) | 2024-08-22 |
Family
ID=92421575
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2024/002333 Ceased WO2024171759A1 (en) | 2023-02-13 | 2024-01-26 | Information processing device and information processing method |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2024171759A1 (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015001978A (en) * | 2013-06-17 | 2015-01-05 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Motion recognition method and apparatus and system using gripped object |
| JP2022042362A (en) * | 2020-09-02 | 2022-03-14 | 富士フイルムビジネスイノベーション株式会社 | Information processing device and program |
| JP2022077127A (en) * | 2020-11-11 | 2022-05-23 | レノボ・シンガポール・プライベート・リミテッド | Information processor and information processing method |
-
2024
- 2024-01-26 WO PCT/JP2024/002333 patent/WO2024171759A1/en not_active Ceased
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015001978A (en) * | 2013-06-17 | 2015-01-05 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Motion recognition method and apparatus and system using gripped object |
| JP2022042362A (en) * | 2020-09-02 | 2022-03-14 | 富士フイルムビジネスイノベーション株式会社 | Information processing device and program |
| JP2022077127A (en) * | 2020-11-11 | 2022-05-23 | レノボ・シンガポール・プライベート・リミテッド | Information processor and information processing method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7183342B2 (en) | Wristwatch-type device and wrist-type wearable device | |
| US10475351B2 (en) | Systems, computer medium and methods for management training systems | |
| JP6879674B2 (en) | Blood pressure estimation method and equipment | |
| US10362998B2 (en) | Sensor-based detection of changes in health and ventilation threshold | |
| CN101821699B (en) | Improvements relating to brain computer interfaces | |
| US20190370650A1 (en) | Co-adaptation for learning and control of devices | |
| JP7776514B2 (en) | Method and system for measuring blood pressure | |
| CN106580292B (en) | Method for correcting measurement result of intelligent bracelet sensor | |
| JP2018064740A (en) | Rehabilitation system | |
| US10987014B2 (en) | Information processing apparatus, information processing system, and non-transitory computer readable medium | |
| KR102612049B1 (en) | Method and system for estimating arterial blood based on deep learning | |
| US20190374170A1 (en) | Information processing apparatus and information processing program | |
| WO2019244017A1 (en) | Virtual environment for physical therapy | |
| JP2024521607A (en) | Data Stream Bridging for Sensor Migration | |
| JP7586929B2 (en) | Method for monitoring a user's blood pressure using a cuffless monitoring device - Patent Application 20070123633 | |
| Landry et al. | A smartphone application toward detection of systolic hypertension in underserved populations | |
| WO2024171759A1 (en) | Information processing device and information processing method | |
| US10420514B2 (en) | Detection of chronotropic incompetence | |
| WO2023193711A1 (en) | Contactless physiological measurement device and method | |
| US9039628B2 (en) | Touch-sensitive display apparatus capable of measuring pulse rate and method thereof | |
| Anisimov et al. | Non-occlusion monitoring of arterial pressure dynamics from pulsation wave propagation time | |
| KR102390599B1 (en) | Method and apparatus for training inner concentration | |
| JP7594514B2 (en) | Classification system, classification method, and program | |
| WO2025238729A1 (en) | Brain-computer interface training device, training method, and program | |
| JP7572672B2 (en) | Simulation system and program for electroencephalography electrode placement training |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24756610 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |