WO2024154571A1 - Machining system and machinability determination system - Google Patents
Machining system and machinability determination system Download PDFInfo
- Publication number
- WO2024154571A1 WO2024154571A1 PCT/JP2023/047042 JP2023047042W WO2024154571A1 WO 2024154571 A1 WO2024154571 A1 WO 2024154571A1 JP 2023047042 W JP2023047042 W JP 2023047042W WO 2024154571 A1 WO2024154571 A1 WO 2024154571A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- workpiece
- judgment
- laser
- processing
- workability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
Definitions
- the present invention relates to a processing system and a processability assessment system.
- processing conditions are generally preset according to the material and thickness of the workpiece. Therefore, the operator of the laser processing device selects processing conditions that match the material and thickness of the workpiece, or performs laser processing under processing conditions instructed by the processing program.
- the processing conditions selected according to the material and thickness of the workpiece can be modified based on the actually measured material and thickness, but it is not envisaged that the device will be able to determine the level of processing quality that can be obtained if the selected processing conditions are not modified.
- the above-mentioned conventional technology does not determine the workability (degree of suitability for cutting) of the workpiece based on the selected processing conditions before the actual cutting process, taking into account the individual differences (quality variations) of the actual workpiece that differ, for example, between manufacturers, between production lots, or between storage conditions.
- One aspect of the present invention is a processing system and a processability judgment system that judges the processability based on the processing conditions of the workpiece before cutting, and makes it easy to make a decision based on the judgment results as to whether cutting should be performed under preset processing conditions or whether the processing conditions should be changed to those suitable for the workpiece, thereby reducing processing defects.
- a processing system includes a laser processing device capable of executing a processing step of irradiating a workpiece with laser light under processing irradiation conditions to cut the workpiece, and a machinability judgment step of irradiating the workpiece with the laser light under judgment irradiation conditions that melt but do not penetrate the workpiece to judge the machinability of the workpiece, a measurement device that measures an emission spectrum generated when the workpiece is irradiated with the laser light under the judgment irradiation conditions, and a judgment device that judges the machinability of the workpiece based on time series data of the emission spectrum measured by the measurement device, and the judgment device judges the machinability of the workpiece based on a first judgment model and a second judgment model.
- the measuring device has a function to extract first waveform information in a first time domain and second waveform information in a second time domain from the time series data of the emission spectrum measured by the measuring device, input the extracted first waveform information as estimation data to the first judgment model to obtain a surface quality evaluation of the workpiece, input the extracted second waveform information as estimation data to the second judgment model to obtain an internal quality evaluation of the workpiece, and output a judgment result of the workability of the workpiece when cut and processed under preset processing conditions in the processing step based on a combination of the obtained surface quality evaluation and internal quality evaluation of the workpiece.
- a machinability judgment system has a first judgment model and a second judgment model, and in a machinability judgment process for judging the machinability of a workpiece, first waveform information and second waveform information calculated from time series data of an emission spectrum generated when a laser beam is irradiated to the workpiece under judgment irradiation conditions that melt but do not penetrate the workpiece are input into the first judgment model and the second judgment model, respectively, and the system judges the machinability of the workpiece based on the first waveform information and the second waveform information, and a learning device that creates the first judgment model and the second judgment model, and the judgment device extracts first waveform information in a first time domain and second waveform information in a second time domain from the time series data of the emission spectrum, and uses the extracted first waveform information as estimation data to input the first waveform information and the second waveform information to the first judgment model and the second judgment model, respectively.
- the first waveform information and the surface quality evaluation result indicating the surface quality of the workpiece are input to the second judgment model as estimation data to obtain an internal quality evaluation of the workpiece, and based on the combination of the obtained surface quality evaluation and internal quality evaluation of the workpiece, a judgment result of the workability of the workpiece when cut and processed under preset processing conditions in a processing step in which the workpiece is cut by irradiating the workpiece with the laser light under processing irradiation conditions is output.
- the learning device inputs the first waveform information and the surface quality evaluation result indicating the surface quality of the workpiece as first teacher data to perform machine learning to create the first judgment model, and inputs the second waveform information and the internal quality evaluation result indicating the internal quality of the workpiece as second teacher data to perform machine learning to create the second judgment model.
- the processing system and machinability judgment system output a judgment result of the machinability of the workpiece when it is cut under preset processing conditions in the processing step based on a combination of the surface quality evaluation and internal quality evaluation of the workpiece obtained by inputting the first waveform information in the first time domain and the second waveform information in the second time domain extracted from the time series data of the emission spectrum measured by the measuring device when the workpiece is irradiated with laser light under judgment irradiation conditions that melt but do not penetrate the workpiece, into the first judgment model and the second judgment model as estimation data.
- a processing system includes a laser processing device capable of executing a processing step of irradiating a workpiece with laser light under processing irradiation conditions to cut the workpiece, and a workability judgment step of irradiating the workpiece with the laser light under first judgment irradiation conditions under which the laser light melts but does not penetrate the workpiece, and under second judgment irradiation conditions under which the laser light does not exceed the melting point of the material of the workpiece, to judge the workability of the workpiece; a first measurement unit that measures the emission spectrum generated when the laser light is irradiated to the workpiece under the first judgment irradiation conditions; and a second measurement unit that irradiates the workpiece with the laser light under the second judgment irradiation conditions.
- a measuring device including a second measuring unit that measures an infrared intensity of radiated light generated when light is irradiated; a first determining unit that determines the workability of the workpiece based on time series data of the emission spectrum measured by the first measuring unit of the measuring device; a second determining unit that determines the workability of the workpiece based on time series data of the infrared intensity measured by the second measuring unit of the measuring device; and a cutting process under preset processing conditions in the processing step based on a combination of a first determination result determined by the first determining unit and a second determination result determined by the second determining unit.
- the judgment device having a first judgment model and a second judgment model, the first judgment unit of the judgment device extracts first waveform information in a first time domain and second waveform information in a second time domain from time series data of the emission spectrum measured by the first measurement unit of the measurement device, inputs the extracted first waveform information as estimation data into the first judgment model to obtain a surface quality evaluation of the workpiece, and outputs the extracted second waveform information as estimation data to obtain a surface quality evaluation of the workpiece.
- the surface quality evaluation and internal quality evaluation of the workpiece are input into a fixed model to obtain an internal quality evaluation of the workpiece, and the first judgment result that judges the workability of the workpiece is output based on the combination of the obtained surface quality evaluation and internal quality evaluation of the workpiece, and the second judgment unit of the judgment device extracts feature information that indicates a temporal or positional change in the temperature of the workpiece based on the time series data of the infrared intensity measured by the second measurement unit of the measurement device, and outputs the second judgment result that judges the workability of the workpiece based on the extracted feature information and preregistered reference information for judging the workability of the workpiece.
- a machinability judgment system has a first judgment model and a second judgment model, and in a machinability judgment step for judging the machinability of a workpiece, a first judgment unit inputs first waveform information and second waveform information extracted from time series data of an emission spectrum generated when a laser beam is irradiated to the workpiece under a first judgment irradiation condition that melts but does not penetrate the workpiece, into the first judgment model and the second judgment model, respectively, and judges the machinability of the workpiece based on the first waveform information and the second waveform information; a second judgment unit that judges the workability of the workpiece based on feature amount information extracted from time-series data of infrared intensity of radiated light generated when the workpiece is irradiated under second judgment irradiation conditions not exceeding the melting point of the material, and pre-registered reference information for judging the workability of the workpiece; and a third judgment unit that judges the workability of the workpiece when cut under prese
- the second judgment unit extracts feature information indicating the temporal or positional change in temperature of the workpiece based on the time series data of the infrared intensity, and outputs the second judgment result that judges the workability of the workpiece based on the extracted feature information and the reference information.
- the learning device inputs the first waveform information and the surface quality evaluation result indicating the surface quality of the workpiece as first teacher data to perform machine learning to create the first judgment model, and inputs the second waveform information and the internal quality evaluation result indicating the internal quality of the workpiece as second teacher data to perform machine learning to create the second judgment model.
- the processing system and the workability judgment system judge the workability of the workpiece when cut under preset processing conditions in the processing step based on a combination of the surface quality evaluation and internal quality evaluation of the workpiece obtained by inputting the first waveform information and the second waveform information extracted from the time series data of the emission spectrum generated when the workpiece is irradiated with laser light under the first judgment irradiation condition, which melts but does not penetrate the workpiece, into the first judgment model and the second judgment model, and the second judgment result of the workability of the workpiece judged based on the feature information extracted from the time series data of the infrared intensity of the radiated light generated when the workpiece is irradiated with laser light under the second judgment irradiation condition, which does not exceed the melting point of the material of the workpiece, and the previously registered standard information for judging the workability of the workpiece, and a third judgment result is output.
- the workability of the workpiece is judged based on the processing conditions before cutting, and a decision can be made based on the judgment results as to whether cutting should be performed under preset processing conditions or whether the processing conditions should be changed to those suitable for the workpiece, thereby reducing processing defects.
- FIG. 1 is an explanatory diagram illustrating a basic configuration of a machining system according to a first embodiment of the present invention.
- FIG. 2 is a diagram showing an example of time-series data based on the measurement results obtained by measuring, with a spectroscope, the emission spectrum generated when the laser beam under the judgment irradiation conditions is irradiated onto a workpiece.
- FIG. 3 is a diagram showing an example of a first irradiation condition and a second irradiation condition of the laser beam.
- FIG. 4 is a diagram showing extraction points in the wavelength axis direction and the time axis direction for extracting the first wavelength information and the second waveform information from the time series data of the first emission spectrum and the time series data of the second emission spectrum.
- FIG. 1 is an explanatory diagram illustrating a basic configuration of a machining system according to a first embodiment of the present invention.
- FIG. 2 is a diagram showing an example of time-series data based on the measurement results obtained
- FIG. 5 is a diagram showing an example of a surface quality evaluation result that displays, in a comparative manner, the time waveform of the time-series data of region a, in which the surface state differs for each material of the processed material, and a surface image.
- FIG. 6 is a diagram showing an example of an internal quality evaluation result that represents, in a comparable manner, the time waveform of the time-series data of region b, in which the internal state differs for each material of the processed material.
- FIG. 7 is a schematic functional block diagram of the processing system.
- FIG. 8 is a diagram showing examples of standard conditions and difficult-to-work conditions as processing conditions according to the plate thickness of a workpiece of mild steel.
- FIG. 9 is a block diagram showing a schematic configuration of a workability determination system used in the machining system.
- FIG. 10 is an explanatory diagram showing a basic hardware configuration of the manufacturability determination unit, the learning device and/or the manufacturability determination system.
- FIG. 11 is a diagram illustrating an example of the decision matrix information.
- FIG. 12 is a flowchart showing an example of a processing flow of the machining system.
- FIG. 13 is a diagram showing a result table including the prediction results of the material state according to the first and second judgment models, the judgment results of the workability, and the results of the actual processing verification.
- FIG. 14 is an explanatory diagram showing the quality evaluation criteria for processing quality.
- FIG. 14 is an explanatory diagram showing the quality evaluation criteria for processing quality.
- FIG. 15 is a diagram showing the results of classifying the actual machining results in the determination matrix information.
- FIG. 16 is a diagram showing an example of details of the verification result of actual machining of a workpiece determined to be a standard material.
- FIG. 17 is a diagram showing an example of details of a verification result of actual machining of a workpiece determined to be a difficult-to-machine material.
- FIG. 18 is a diagram showing an example of details of the verification result of actual machining of a workpiece determined to be a difficult-to-machine material (recommended material for test cutting).
- FIG. 19 is an explanatory diagram illustrating a basic configuration of a processing system according to the second embodiment of the present invention.
- FIG. 20 is a schematic functional block diagram of the processing system.
- FIG. 20 is a schematic functional block diagram of the processing system.
- FIG. 21 is a result table showing the results of investigation of the thermal conductivity, laser cut surface, and cut surface roughness for each material of the processed material.
- FIG. 22 is a graph showing the relationship between the average roughness of the cut surface and the thermal conductivity.
- FIG. 23 is a graph showing the relationship between temperature and time when repeatedly heating and cooling a workpiece, and the relationship between the temperature reached by cooling and time.
- FIG. 24 is a graph showing the relationship between temperature and time when repeatedly heating and cooling a workpiece, and the relationship between the temperature reached by cooling and time.
- FIG. 25 is a diagram for explaining the results of the investigation into the surface condition of the type A workpiece.
- FIG. 26 is a diagram showing a cut surface image and surface roughness when the workpiece shown in FIG. 25 is cut.
- FIG. 26 is a diagram showing a cut surface image and surface roughness when the workpiece shown in FIG. 25 is cut.
- FIG. 27 is a diagram for explaining the results of the investigation into the surface condition of the type B workpiece.
- FIG. 28 is a diagram showing a cut surface image and surface roughness when the workpiece shown in FIG. 27 is cut.
- FIG. 29 is a diagram for explaining the results of investigating the surface condition of the type C workpiece.
- FIG. 30 is a diagram showing a cut surface image and surface roughness when the workpiece shown in FIG. 29 is cut.
- FIG. 31 is a flowchart showing an example of a process flow for determining workability using a radiation thermometer.
- FIG. 32 is a flowchart showing an example of a process flow for determining workability using a radiation thermometer.
- FIG. 31 is a flowchart showing an example of a process flow for determining workability using a radiation thermometer.
- FIG. 33 is a diagram showing a result of classifying the judgment results using the spectroscope and the radiation thermometer and the cut quality evaluation results in the overall judgment matrix information.
- FIG. 34 is a table showing the results of the determination of the material state (material characteristics) of Samples 1 to 4 by the spectroscope and the radiation thermometer, and the evaluation results of the cut surfaces.
- FIG. 35 is a diagram showing the chemical components (mass %) other than iron contained in the materials of Samples 1 to 4.
- FIG. 36 is a graph showing the relationship between temperature and time when sample 1 was repeatedly heated and cooled.
- FIG. 37 is a graph showing the relationship between temperature and time when sample 3 was repeatedly heated and cooled.
- FIG. 38 is a graph showing the relationship between temperature and time when laser scanning was performed on Samples 1 and 2.
- FIG. 39 is a diagram showing a cut surface image and surface roughness when sample 1 is cut.
- FIG. 40 is a diagram showing a cut surface image and surface roughness when sample 2 is cut.
- FIG. 41 is a graph showing the relationship between temperature and time when laser scanning was performed on Samples 3 and 4.
- FIG. 42 is a diagram showing a cut surface image and surface roughness when sample 3 is cut.
- FIG. 43 is a diagram showing a cut surface image and surface roughness when sample 4 is cut.
- FIG. 44 is a flowchart showing an example of a process flow based on a comprehensive judgment of a machining system.
- FIG. 1 is an explanatory diagram illustrating a basic configuration of a machining system according to a first embodiment of the present invention.
- the processing system 100 includes a laser processing device 10 capable of executing a processing step of irradiating a workpiece W with a laser beam LB under processing irradiation conditions to cut the workpiece W, and a workability judgment step of irradiating the workpiece W with the laser beam LB under judgment irradiation conditions to melt but not penetrate the workpiece W and judge the workability of the workpiece W, a spectrometer (measuring device) 30 that measures an emission spectrum generated when the workpiece W is irradiated with the laser beam LB under the judgment irradiation conditions, and a workability judgment unit (judgment device) 50 that judges the workability of the workpiece W based on time series data of the emission spectrum measured by the spectrometer (measuring device)
- the workability judgment unit (judgment device) 50 has a first judgment model 5 (FIG. 9) and a second judgment model 6 (FIG. 9), and extracts the first waveform information 3 (FIG. 9) in the first time domain and the second waveform information 4 (FIG. 9) in the second time domain from the time series data of the emission spectrum measured by the spectrometer (measurement device) 30.
- the workability judgment unit (judgment device) 50 inputs the extracted first waveform information 3 as estimation data into the first judgment model 5 to obtain a surface quality evaluation of the workpiece W.
- the workability judgment unit (judgment device) 50 also inputs the extracted second waveform information 4 as estimation data into the second judgment model 6 to obtain an internal quality evaluation of the workpiece W.
- the workability judgment unit (judgment device) 50 outputs a judgment result 9 (FIG. 9) of the workability of the workpiece W when cut and processed under preset processing conditions in the processing step based on a combination of the obtained surface quality evaluation and internal quality evaluation of the workpiece W.
- melting means, for example, generating a molten pool
- not penetrating means, for example, not drilling a hole.
- the first judgment model 5 is created by inputting the first waveform information 1 (Fig. 9) and the surface quality evaluation result 109a (Fig. 9) indicating the surface quality of the workpiece W as first teacher data and performing machine learning.
- the second judgment model 6 is created by inputting the second waveform information 2 (Fig. 9) and the internal quality evaluation result 109b (Fig. 9) indicating the internal quality of the workpiece W as second teacher data and performing machine learning.
- the processing system 100 also includes an NC (Numerical Control) device 60 that controls the laser processing device 10, the spectrometer 30, and the machinability judgment unit 50, and a display 70 that can display various information.
- NC Genetic Control
- the machinability judgment unit 50 and the NC device 60 may be mounted so as to be included in the laser processing device 10.
- the workpiece W is steel, for example, it contains iron (Fe) as its main component, and if it is non-ferrous aluminum alloy steel, it contains aluminum (Al) as its main component.
- the workpiece W contains elements intentionally added by the manufacturer and elements mixed in as impurities. Note that impurities here refer to inclusions that are not the main inclusions of the material, and also include substances that induce physical phenomena such as bubbles when the workpiece W is melted.
- the laser processing device 10 performs processing such as laser cutting and laser drilling of the material of the workpiece W (hereinafter, "cutting” and “drilling” are collectively referred to as “cutting processing”).
- the laser processing device 10 has a processing table 11 on which the workpiece W such as sheet metal is placed, an X-axis carriage 12 that moves in the X-axis direction of the processing table 11 in the figure relative to the processing table 11, a Y-axis carriage 13 that moves in the Y-axis direction on the X-axis carriage 12 in the figure, and a laser processing unit 20 that irradiates the workpiece W with laser light LB to perform cutting processing.
- the laser processing unit 20 includes a laser oscillator 21 that generates and emits laser light LB, a laser processing head 22 that is mounted on a Y-axis carriage 13 and configured to be movable in the X-axis and Y-axis directions by the X-axis carriage 12 and the Y-axis carriage 13, and a process fiber 23 that transmits the laser light LB generated by the laser oscillator 21 to the laser processing head 22.
- the laser processing device 10 also includes an assist gas supply device (not shown) that supplies assist gas. Note that the laser processing device 10 is not limited to a configuration in which the laser processing head 22 moves relative to the workpiece W, and a configuration in which the workpiece W moves relative to the laser processing head 22 may also be adopted.
- the laser oscillator 21 may be of a type in which seed light emitted from a laser diode excites and amplifies Yb (ytterbium) or the like in a resonator to emit laser light LB of a specified wavelength, or a type that directly utilizes the laser light LB emitted from a laser diode.
- the laser oscillator 21 emits laser light LB in the 1 ⁇ m band with a wavelength of 900 nm to 1100 nm.
- a DDL (Direct Diode Laser) oscillator emits laser light LB with a wavelength of 910 nm to 950 nm
- a fiber laser oscillator emits laser light LB with a wavelength of 1060 nm to 1080 nm.
- the blue semiconductor laser emits laser light LB with a wavelength of 400 nm to 460 nm.
- the green laser may be a fiber laser oscillator or a DDL oscillator that emits laser light LB with a wavelength of 500 nm to 540 nm, or may be a multi-wavelength resonator that combines the green laser with laser light LB in the 1 ⁇ m band.
- a guide light GB (e.g., wavelength 650 nm) that confirms the position on the workpiece W where the laser light LB is to be emitted.
- the laser oscillator 21 emits laser light LB under processing irradiation conditions in the processing step, and emits laser light LB under judgment irradiation conditions in the workability judgment step for judging the workability of the workpiece W.
- the laser light LB emitted based on the judgment irradiation conditions melts the workpiece W but does not penetrate it, and is therefore not used for cutting the workpiece W by the laser processing device 10.
- the laser light LB under such judgment irradiation conditions may be irradiated by pulse oscillation.
- the laser processing head 22 has a beam control unit 24.
- the beam control unit 24 has a function of controlling the laser light LB to a focusing diameter and divergence angle suitable for the material of the workpiece W.
- the beam control unit 24 has a collimator lens 24a that receives the laser light LB emitted from the output end of the process fiber 23 and converts it into a parallel beam, a folding mirror 24b that reflects the almost parallel beam of laser light LB emitted from the collimator lens 24a downward in the Z-axis direction perpendicular to the X-axis and Y-axis, and transmits light of a predetermined wavelength, and a processing condenser lens 24c that focuses the laser light LB reflected by the folding mirror 24b and irradiates it on the workpiece W.
- the folding mirror 24b is coated with a coating that reflects at least the wavelengths of the laser light LB and the guide light GB (e.g., 1080 nm, 650 nm
- the laser processing head 22 is provided with a nozzle 25 at its tip, which has a circular opening 25a for irradiating the workpiece W with the laser light LB.
- the nozzle 25 has a nozzle function of injecting a gas flow of a predetermined assist gas pressure supplied from an assist gas supply device onto the workpiece W together with the laser light LB in order to remove the molten workpiece W.
- the nozzle 25 is provided detachably on the laser processing head 22.
- the collimator lens 24a, the folding mirror 24b, the condenser lens 24c, and the nozzle 25 are fixed in the laser processing head 22 with the optical axis adjusted in advance.
- a lens drive unit (not shown) is provided in the beam control unit 24 to drive the collimator lens 24a in a direction parallel to the optical axis (X-axis direction) to adjust the focusing position.
- the laser processing head 22 itself may be configured to be movable in the Z-axis direction perpendicular to the X-axis and Y-axis directions by a drive mechanism (not shown).
- the spectroscope 30 is mounted, for example, on the upper housing of the laser processing head 22.
- the spectroscope 30 receives the light of the measurement object transmitted through the return mirror 24b from the processing side of the workpiece W toward the return mirror 24b at the transmission side of the return mirror 24b at the upper housing, and receives it at the light receiving unit 31.
- the spectroscope 30 disperses the light of the measurement object received at the light receiving unit 31 using a diffraction grating or the like, and detects the light intensity (spectrum) for each wavelength.
- the spectroscope 30 is configured to be able to measure the emission spectrum generated when the workpiece W is irradiated with the laser light LB.
- the spectroscope 30 outputs the detected light intensity (spectrum) for each wavelength as time series data.
- the spectroscope 30 may be provided on the side of the housing of the laser processing head 22.
- the spectrometer 30 outputs time series data of the spectrum of the light to be measured (first emission spectrum) generated in the workpiece W by the laser light LB irradiated to the workpiece W under the first irradiation condition to the machinability judgment unit 50.
- the spectrometer 30 also outputs time series data of the spectrum of the light to be measured (second emission spectrum) generated in the workpiece W by the laser light LB irradiated to the workpiece W under the second irradiation condition to the machinability judgment unit 50.
- a photodetector having a bandpass filter can be used as a measurement device.
- Fig. 2 is a diagram showing an example of time series data based on the measurement result of the emission spectrum generated when the laser light under the judgment irradiation condition is irradiated to the workpiece by a spectroscope.
- Fig. 3 is a diagram showing an example of the first irradiation condition and the second irradiation condition of the laser light.
- Fig. 4 is a diagram showing extraction points in the wavelength axis direction and the time axis direction for extracting the first waveform information and the second waveform information from the time series data of the first emission spectrum and the time series data of the second emission spectrum. Note that Fig.
- FIG. 2 shows the time series data of the 800 nm band in particular among the time series data of each wavelength, with the horizontal axis representing time (Time: milliseconds) and the vertical axis representing the amplitude (Amplitude) of the emission intensity in arbitrary units.
- the laser processing device 10 irradiates the workpiece W with the laser light LB according to the judgment irradiation conditions.
- the judgment irradiation conditions may be constant during the period in which the laser light LB is irradiated, but in this embodiment, as shown in FIG. 2, the time from the start of irradiation of the laser light LB to the end of irradiation is divided into a first stage and a second stage, and as the judgment irradiation conditions, in the first stage, the laser light LB is irradiated to the workpiece W under the first irradiation condition 101 (FIG.
- the laser processing device 10 may spot irradiate the laser light LB under the judgment irradiation conditions (irradiate without moving the laser light LB) in the machinability judgment process.
- the first irradiation condition 101 is a condition suitable for evaluating the surface quality of the workpiece W
- the second irradiation condition is a condition suitable for evaluating the internal quality (e.g., the proportion of impurities, etc.) of the workpiece W.
- the second irradiation condition 102 may be a condition for shortening the measurement time more than the first irradiation condition 101.
- the laser output of the first irradiation condition 101 and the second irradiation condition 102 of the laser light LB is smaller than the laser output of the processing irradiation condition in the processing step. Also, the laser output of the first irradiation condition 101 is smaller than the laser output of the second irradiation condition 102. Specifically, the laser output of the processing irradiation condition is 7000W to 8000W, whereas the laser output of the first irradiation condition 101 is 1000W and the laser output of the second irradiation condition 102 is 1200W to 1600W.
- the laser irradiation time (first stage) of the first irradiation condition 101 of the laser light LB irradiated to the workpiece W is shorter than the laser irradiation time (second stage) of the second irradiation condition 102.
- the nozzle gap of the laser processing device 10 when irradiating the laser light LB under the judgment irradiation conditions is set to be larger than the nozzle gap of the laser processing device 10 when irradiating the laser light LB under the processing irradiation conditions.
- the first irradiation condition 101 of the laser light LB in the first stage is a laser output of 1000 W and a laser irradiation time of 0.5 seconds (500 ms) from the start of the laser (Laser ON).
- the second irradiation condition 102 of the laser light LB in the second stage is a laser output of 1400 W and a laser irradiation time of 2.0 seconds (2000 ms) from 500 ms to 2500 ms when the laser is ended (Laser OFF).
- the output frequency of the laser light LB common to the first and second irradiation conditions 101, 102 is 1000 Hz, the duty is 100%, the gas type of the assist gas is air, the gas pressure is 0.1 MPa, and the nozzle gap is 50 mm.
- the material of the workpiece W irradiated with the laser light LB is, for example, mild steel (SS400) with a plate thickness of 19 mm (t19).
- time series data of the emission spectrum measured by the spectrometer 30 is time series data having the time series data shown in FIG. 2 for the wavelengths constituting the emission spectrum.
- the time series data is dimensionally compressed to extract first waveform information and second waveform information representing features suitable for machine learning.
- Various methods of dimensional compression are possible, but in this embodiment, data of a specific wavelength band at the start and end parts of the time series data is compressed.
- First waveform information 1 and 3 representing features of the surface state of the workpiece W are generated based on the time series data of the first time domain in the first stage.
- second waveform information 2 and 4 representing features of the internal state of the workpiece W are generated based on the time series data of the second time domain in the second stage.
- the time series data of region a from the start of the laser to approximately 0.2 seconds (0 seconds to 0.23 seconds) mainly includes surface condition features that indicate the reaction between the laser light LB and the surface (material surface) of the workpiece W.
- the time series data from approximately 0.2 seconds onwards indicates the reaction between the laser light LB and the inside of the workpiece W (material interior).
- the time series data of region b between about 1.8 seconds and about 2.3 seconds (1.83 seconds to 2.35 seconds) contains a feature of the internal state that indicates the reaction between the laser light LB and the inside of the workpiece W.
- a feature of the internal state that indicates the reaction between the laser light LB and the inside of the workpiece W.
- Such a feature varies depending on the material of the workpiece W (differences in material quality and individual differences, etc.).
- the first and second irradiation conditions 101, 102 of the laser light LB are significantly different from the processing irradiation conditions used in actual product processing.
- the nozzle gap is about 0.3 mm to 1.5 mm, whereas in the first and second irradiation conditions 101, 102, a very wide gap of 50 mm is set.
- the oxide film on the material surface of the workpiece W is very thin, about 10 ⁇ m to 50 ⁇ m, and if the energy density of the laser light LB is too high, the physical phenomenon caused by the reaction accompanied by light emission upon irradiation will be fast, making it very difficult to capture this reaction with the spectroscope 30. Therefore, by irradiating the workpiece W with defocused laser light LB and ensuring a suppressed energy density and the size of the molten pool formed, the surface condition of the workpiece W can be captured.
- the nozzle gap is 10 mm or less, the reaction cannot be detected by the spectroscope 30, the reaction can be seen from about 20 mm, and if the distance is too far, such as about 100 mm, it is not possible to obtain a sufficient amount of light due to emission. For this reason, it is considered that the appropriate nozzle gap range for the first and second irradiation conditions 101, 102 is about 30 mm to 70 mm. Since the energy density at this time is about 5 kW/ cm2 to 29 kW/ cm2 , it was set to 50 mm, which is in the middle of this appropriate range.
- the laser output is set higher in the second irradiation condition 102 than in the first irradiation condition 101.
- the appropriate laser output range is preferably 1200 W to 1600 W. Therefore, the laser output in the second irradiation condition 102 is set to 1400 W, which is in the middle of this laser output range.
- time series data of four wavelength components 105-108 set in the wavelength direction and time direction is extracted from the time series data of the first and second emission spectra obtained from the spectrometer 30.
- these four wavelength components 105-108 are wavelength components 105, 106 in a first time region of 0 seconds to 0.23 seconds and wavelength components 107, 108 in a second time region of 1.83 seconds to 2.35 seconds, which are extracted from a first wavelength band (first wavelength band) 103 with a wavelength of 450 nm to 570 nm and a second wavelength band (second wavelength band) 104 with a wavelength of 720 nm to 850 nm, respectively.
- Wavelength components 105 and 106 are each composed of spectral data in which samples are extracted from, for example, 66 rows and 100 rows in the wavelength direction and 200 columns in the time direction.
- Wavelength components 107 and 108 are each composed of spectral data in which samples are extracted from, for example, 66 rows and 100 rows in the wavelength direction and 450 columns in the time direction.
- the first waveform information 1, 3 and the second waveform information 2, 4 are obtained from the above wavelength components 105 to 108 as follows. That is, first, four time waveforms are calculated by averaging each of the wavelength components 105 to 108 in the wavelength direction. Next, the ratio between the time waveform of the central wavelength (e.g., 514 nm) of the first wavelength band 103 and the time waveform of the central wavelength (e.g., 811 nm) of the second wavelength band 104 is calculated. The ratio between these averaged time waveforms and the time waveform of the central wavelength contains the bandwidth information and time change information of the time series data.
- the central wavelength e.g., 514 nm
- the time waveform of the central wavelength e.g. 811 nm
- first waveform information 1 the time waveform obtained by averaging the time series data (wavelength components 105, 106) in the a region of the first emission spectrum is used as first waveform information 1, 3.
- second waveform information 2 the ratio of the time waveform obtained by averaging the time series data (wavelength components 107, 108) in the b region of the second emission spectrum to the time waveform of the central wavelength is used as second waveform information 2, 4.
- first waveform information 1, 3 and second waveform information 2, 4 can be used in machine learning, which will be described later, as data that accurately represent the surface condition and internal condition of the workpiece W, respectively.
- the first and second wavelength bands 103, 104 of the emission spectrum extracted as described above are preferably wavelength bands from the visible light range to the near infrared range excluding the wavelength (emission wavelength band) that is the reference for laser processing and the wavelength of the guide light GB, and more preferably, are wavelength bands from 450 nm to 850 nm excluding the wavelength of the guide light GB.
- FIG. 5 is a diagram showing an example of a surface quality evaluation result that comparatively represents the time waveform of the time series data of region a, where the surface state differs for each material of the workpiece, and the surface image.
- FIG. 6 is a diagram showing an example of an internal quality evaluation result that comparatively represents the time waveform of the time series data of region b, where the internal state differs for each material of the workpiece.
- the surface quality evaluation result 109a and the internal quality evaluation result 109b include quality scores (point evaluations) that score the surface quality evaluation and internal quality evaluation of the workpiece W into multiple different numerical values.
- the quality evaluations of the surface quality are defined by, for example, actually checking and evaluating the material surface of the workpiece W from the viewpoint of workability, and in this order represent "good”, “poor” and “unacceptable”, and are assigned quality scores (point evaluations) of "2", "1" and "0", respectively.
- the material (material A) of the workpiece W made by manufacturer A for example, the adhesion of the oxide film is good and the surface roughness is low, so the quality evaluation is " ⁇ " and the quality score is "2".
- the time waveform of the time series data of region a has a peak at the rising edge and then stabilizes.
- the oxide film peels off easily and the surface is rough, so the quality evaluation is " ⁇ " and the quality score is "1.”
- the time waveform of the time series data of region a for example, compared to material A with a quality evaluation of " ⁇ ," the rising peak occurs at a lower level like material B or a higher level like material C, and then the waveform becomes unstable.
- the time waveform of the time series data of region a is a waveform that does not have a peak at the rising edge. In this way, according to the surface quality evaluation result 109a, it can be seen that the time waveform of the time series data of region a differs depending on the surface condition of the material.
- the internal quality evaluations of " ⁇ ", " ⁇ ” and “ ⁇ ” are defined by actually checking and evaluating the quality from the viewpoints of, for example, the intensity and magnitude of fluctuation of the obtained time waveform and the degree of removal of impurities during laser irradiation, and in this order represent "good”, “poor” and “unacceptable”, and are assigned quality scores (score evaluations) of "2", "1" and "0", respectively.
- the intensity of the time waveform in the time series data of region b is lower and the fluctuation is smaller. Also, the amount of impurities extracted from the molten pool during laser irradiation is small. For this reason, the quality evaluation is " ⁇ " and the quality score is "2".
- the intensity of the time waveform of the time series data in region b is high and the fluctuation is large compared to materials E and F. Also, a large amount of impurities were removed from the molten pool during laser irradiation. For this reason, the quality rating is "X" and the quality score is "0".
- the intensity and fluctuation of the time waveform of the time series data in region b is somewhere between those of materials E and G, and it was observed that impurities were removed from the molten pool during laser irradiation to a certain extent more than material E and to a certain extent less than material G. For this reason, the quality rating is " ⁇ " and the quality score is "1".
- the surface condition and internal condition of the workpiece W indicated by the above quality evaluation and quality score may be divided to allow for more detailed understanding.
- a quality evaluation of surface quality " ⁇ ” may be changed to " ⁇ ⁇ " for those with high peaks in the time waveform and to " ⁇ " for those with low peaks, or may be subdivided based on the frequency components of the time waveform.
- both the surface condition and internal condition of the workpiece W are important factors.
- the applicant has discovered that it is possible to appropriately grasp both the surface condition and internal condition of the material based on the time waveform of the time series data in region a and the time waveform of the time series data in region b obtained from the spectroscope 30 shown in surface quality evaluation result 109a and internal quality evaluation result 109b in Figures 5 and 6.
- the processing system 100 is configured to determine the workability of the workpiece W based on a judgment model created by machine learning using the first waveform information 1 and the second waveform information 2 calculated from the time series data of the emission spectrum including these time waveforms as explanatory variables and the quality score as the objective variable. Note that, because different physical phenomena occur on the surface side and the interior side when the workpiece W is irradiated with the laser light LB under the first and second irradiation conditions 101 and 102, it was decided to create separate judgment models for each side.
- Fig. 7 is a schematic functional block diagram of the machining system.
- the machinability judgment unit 50 includes a judgment model storage unit 51 , a machinability calculation unit 52 , and a machinability judgment unit 53 .
- the judgment model storage unit 51 readably stores a first judgment model 5 (FIG. 9) for evaluating machining conditions according to the surface state of the workpiece W, and a second judgment model 6 (FIG. 9) for evaluating machining conditions according to the internal state of the workpiece W.
- the first judgment model 5 and the second judgment model 6 are created for each thickness of the workpiece W.
- the machining conditions to be evaluated are stored in advance, for example, in the machining condition storage unit 62 of the NC device 60, which will be described later.
- the first judgment model 5 and the second judgment model 6 may be stored in an external server or the like, rather than being stored inside the judgment model storage unit 51 of the machinability judgment unit 50.
- the workability calculation unit 52 assigns a quality score to the surface condition and a quality score to the internal condition as a workability evaluation of the workpiece W based on, for example, the plate thickness information of the workpiece W, the first and second judgment models 5, 6 read from the judgment model storage unit 51, and the first waveform information and the second waveform information acquired by the spectrometer 30, and generates judgment matrix information as a combination of the surface quality evaluation and the internal quality evaluation.
- the judgment matrix information can be stored in the judgment model storage unit 51.
- the judgment matrix information is used, for example, to predict the workability of the workpiece W based on a combination of the quality of the surface and internal conditions before cutting the workpiece W to be processed, and is information that makes it possible to determine the recommended processing conditions according to the predicted workability. This judgment matrix information will be described later.
- the machinability determination unit 53 determines and decides the machinability of the workpiece W (standard material that can be cut well, difficult-to-cut material) and the recommended machining conditions (standard conditions, difficult-to-cut material conditions) based on the judgment matrix information generated by the machinability calculation unit 52.
- the machining conditions include, for example, various machining conditions for laser cutting according to the material (mild steel, stainless steel, blast furnace material, electric furnace material, etc.) and plate thickness (19 mm, 22 mm, etc.) of the workpiece W (laser output (peak power, repetition frequency, pulse width), machining velocity, focus position, etc.).
- the energy density per unit time applied to the workpiece can be determined by parameters such as the above-mentioned processing conditions (laser output (average laser output), focal position (focus diameter), and processing speed).
- the NC device 60 is equipped with a control unit 61 that outputs control instructions for various operations to the laser processing device 10, the spectrometer 30, and the machinability judgment unit 50, and can output display instructions for various information showing the judgment result on the display 70 based on the judgment result of the machinability judgment unit 53, and a processing condition storage unit 62 that stores various processing conditions for the workpiece W in a storage device or the like.
- the machining conditions may be prepared in advance in the NC device 60 as standard conditions for standard specifications and machining conditions for difficult-to-machine materials (hereinafter referred to as "difficult-to-machine material conditions") according to the material and thickness of the workpiece W, for example, and may be stored in the machining condition storage unit 62.
- the control unit 61 can also output various information notification commands, such as audio output and lighting, to a speaker or lamp via an output I/F (Interface) described later.
- FIG. 8 is a diagram illustrating standard conditions and difficult-to-machine conditions as machining conditions according to the thickness of the workpiece of mild steel. Machining conditions 110a shown in FIG. 8(a) show the standard conditions and difficult-to-machine conditions when the workpiece W has a thickness of 19 mm (t 19 mm), and machining conditions 110b shown in FIG. 8(b) show the standard conditions and difficult-to-machine conditions when the workpiece W has a thickness of 22 mm (t 22 mm).
- the standard conditions and difficult-to-machine material conditions for machining conditions 110a for a plate thickness of 19 mm and machining conditions 110b for a plate thickness of 22 mm each include the following parameters: nozzle, machining speed (mm/min), laser output (peak output) (W), (pulse) frequency (Hz), (pulse) duty (pulse width) (%), gas type, gas pressure (MPa), nozzle gap (mm), and ACL (function to change the focused diameter).
- ACL is a parameter related to the beam diameter when the laser light LB is collimated, and the larger the value, the larger the beam diameter of the collimated light, and the larger the beam diameter of the collimated light, the smaller the beam spot diameter.
- the above-mentioned parameters are set to type-A, 1000, 7000, 1000, 75, O 2 , 0.06, 1, and 70.
- the above-mentioned parameters are set to the same items except for the nozzle and ACL, but the nozzle is type-B and the ACL is set to 80.
- the above-mentioned parameters are set to type-A, 900, 8000, 1000, 75, O2 , 0.06, 1, and 70.
- the above-mentioned parameters are set to the same except for the nozzle, gas pressure, and ACL, but the nozzle is type-B, the gas pressure is set to 0.07, and the ACL is set to 80.
- FIG. 9 is a block diagram showing a schematic configuration of a workability determination system used in the machining system.
- a workability judgment system 90 has a first judgment model 5 and a second judgment model 6, and in a workability judgment process for judging the workability of a workpiece W, first waveform information 3 and second waveform information 4 calculated from time series data of the emission spectrum generated when laser light LB is irradiated onto the workpiece W under judgment irradiation conditions that melt but do not penetrate the workpiece W are input into the first judgment model 5 and the second judgment model 6, respectively, and the workability judgment unit (judgment device) 50 judges the workability of the workpiece W based on the first waveform information 3 and the second waveform information 4, and a learning device 80 creates the first judgment model 5 and the second judgment model 6.
- the machinability judgment unit 50 extracts the first waveform information 3 in the first time domain and the second waveform information 4 in the second time domain from the time series data of the emission spectrum, inputs the extracted first waveform information 3 as estimation data to a first judgment model 5 to obtain a surface quality evaluation of the workpiece W, and inputs the extracted second waveform information 4 as estimation data to a second judgment model 6 to obtain an internal quality evaluation of the workpiece W.
- the machinability judgment unit 50 outputs a judgment result of the machinability of the workpiece W when cut under preset processing conditions in a processing step in which the workpiece W is cut by irradiating the workpiece W with a laser beam LB under processing irradiation conditions.
- the learning device 80 inputs the first waveform information 1 and the surface quality evaluation result 109a indicating the surface quality of the workpiece W as first teacher data and performs machine learning to create a first judgment model 5, and inputs the second waveform information 2 and the internal quality evaluation result 109b indicating the internal quality of the workpiece W as second teacher data and performs machine learning to create a second judgment model 6.
- the machinability judgment system 90 is configured to include the learning device 80 described above and the machinability judgment unit 50 included in the processing system 100.
- the learning device 80 may be provided inside the processing system 100 or outside the processing system 100.
- the learning device 80 has a first judgment model learning unit 81 and a second judgment model learning unit 82.
- Two pieces of teacher data are input to the first judgment model learning unit 81 during the learning process.
- the first piece of data is the first waveform information 1 as an explanatory variable based on the time series data of the a region of the first emission spectrum measured by the spectrometer 30.
- the second piece of data is the quality score of the surface quality as a target variable included in the surface quality evaluation result 109a.
- the first judgment model learning unit 81 inputs the first waveform information 1 and the surface quality evaluation result 109a as first teacher data, performs machine learning based on the first teacher data, and creates and outputs a first judgment model 5 for predicting the surface condition of the workpiece W.
- the second judgment model learning unit 82 Two pieces of training data are input to the second judgment model learning unit 82 during the learning process.
- the first is the second waveform information 2 as an explanatory variable based on the time series data of the b region of the second emission spectrum measured by the spectrometer 30.
- the second is the quality score of the internal quality as a target variable included in the internal quality evaluation result 109b.
- the second judgment model learning unit 82 inputs the second waveform information 2 and the internal quality evaluation result 109b as second training data, performs machine learning based on the second training data, and creates and outputs a second judgment model 6 for predicting the internal state of the workpiece W.
- the first is first waveform information 3 based on time series data in the a region of the first emission spectrum measured by the spectrometer 30 before cutting the workpiece W to be newly cut.
- the second is second waveform information 4 based on time series data in the b region of the second emission spectrum measured by the spectrometer 30 before cutting the workpiece W to be newly cut.
- the machinability calculation unit 52 inputs the first and second waveform information 3, 4 as estimation data, and generates judgment matrix information based on the first and second judgment models 5, 6 created by the learning device 80.
- the machinability judgment unit 53 outputs a judgment result 9 that can notify the machinability of the workpiece W in the cutting process that will be performed by the laser processing device 10 and the recommended processing conditions based on the judgment matrix information.
- the explanatory variables and objective variables used in the machinability judgment system 90 are not limited to those exemplified above.
- the machinability judgment unit (judgment device) 50 may include a display (notification section) 70 that notifies the judgment result 9 in a confirmable manner, and the judgment result 9 may include a machinability evaluation that can express the adaptability to the workpiece W according to the processing conditions in the combination of the surface quality evaluation and the internal quality evaluation.
- the display (notification section) 70 may be configured to notify at least one of information informing the processing conditions set in the laser processing device 10 according to the material of the workpiece W based on the machinability evaluation, information encouraging test processing by the laser processing device 10, and information encouraging the execution of any one of adjustment, change, and setting of the processing conditions.
- the machinability judgment unit (judgment device) 50 may also include a setting section that accepts input information selected and input by the operator based on the information notified by the display (notification section) 70, and sets the processing conditions in the laser processing device 10 according to the accepted input information.
- Random Forest for machine learning and judgment in the learning device 80 and the machinability judgment unit 50, Random Forest (RF), Regression Analysis (RA), Principal Component Analysis (PCA), Singular Value Decomposition (SVD), Linear Discriminant Analysis (LDA), Independent Component Analysis (ICA), Gaussian Process Latent Variable Model (Gaussian Process Latent Variable Model (GPV)), and other methods are used.
- Various algorithms can be used, including, but not limited to, GPLVM, Logistic Regression (LR), Support Vector Machine (SVM), Discriminant Analysis (DA), Ranking Support Vector Machine (RSVM), Gradient Boosting (GB), Naive Bayes (NB), K-Nearest Neighbor Algorithm (K-NN), and Neural Network (NN).
- FIG. 10 is an explanatory diagram showing a basic hardware configuration of the manufacturability determination unit, the learning device and/or the manufacturability determination system.
- the processability judgment unit 50, the learning device 80 and/or the processability judgment system 90 are realized by hardware including, for example, a GPU (Graphics Processing Unit) 212, a CPU (Central Processing Unit) 201, a RAM (Random Access Memory) 202, a ROM (Read Only Memory) 203, a HDD (Hard Disk Drive) 204, a SSD (Solid State Drive) 205, and a memory card 206.
- a GPU Graphics Processing Unit
- CPU Central Processing Unit
- RAM Random Access Memory
- ROM Read Only Memory
- HDD Hard Disk Drive
- SSD Solid State Drive
- the machinability determination unit 50, the learning device 80 and/or the machinability determination system 90 further include, for example, an input I/F (interface) 207, an output I/F (interface) 208 and a communication I/F (interface) 209.
- an input I/F (interface) 207 an input I/F (interface) 207
- an output I/F (interface) 208 an output I/F (interface) 208
- a communication I/F (interface) 209 Each of the hardware components 201 to 209 is connected to each other by a bus 200.
- the input I/F 207 is connected to input equipment 211 including various input devices such as a keyboard, trackball, joystick, mouse, and touch panel, a measuring device such as a spectrometer 30, and various sensors such as a temperature sensor, an optical sensor, an acoustic sensor, an image sensor, and a spectroscopic sensor.
- the output I/F 208 is connected to output equipment 210 including a display 70 that functions as an alarm unit, and a speaker and a lamp (not shown).
- the communication I/F 209 communicates with an external device 214 such as a server via a network 213 such as the Internet.
- a network 213 such as the Internet.
- Each component of the above-mentioned machinability judgment unit 50, learning device 80, and/or machinability judgment system 90 may be configured by such hardware.
- FIG. 11 is a diagram illustrating an example of the decision matrix information.
- the judgment matrix information 110 is composed of data in which, for example, the vertical axis represents the quality score of the quality evaluation of the surface condition of the workpiece W and the horizontal axis represents the quality score of the quality evaluation of the internal condition of the workpiece W, and these are combined in a matrix table.
- S_score represents the quality score of the surface state
- B_score represents the quality score of the internal state.
- These quality scores are classified according to quality evaluations of " ⁇ ", " ⁇ ", and “ ⁇ ” based on, for example, a predetermined threshold value.
- the quality evaluation of " ⁇ ” is a surface state quality score of 1.4 or more (S_score ⁇ 1.4) and an internal state quality score of 1.4 or more (B_score ⁇ 1.4).
- the quality evaluation of " ⁇ ” is a surface state quality score of 0.6 or more and less than 1.4 (0.6 ⁇ S_score ⁇ 1.4) and an internal state quality score of 0.6 or more and less than 1.4 (0.6 ⁇ B_score ⁇ 1.4).
- the quality evaluation of " ⁇ ” is a surface state quality score less than 0.6 (S_score ⁇ 0.6) and an internal state quality score less than 0.6 (B_score ⁇ 0.6).
- difficult-to-process materials include test cut recommended materials that cannot be cut well under either standard conditions or difficult-to-process material conditions.
- the machinability determination unit 53 uses such determination matrix information 110 to determine the machinability of the workpiece W, and outputs a determination result 9 that can be notified on the display 70, etc., including the machining conditions recommended under the first to third recommended conditions.
- test processing including surface treatment processing, including material surface modification processing, is recommended for the workpiece material W (including the fact that adjustment, change, or resetting of processing conditions is required due to the material being recommended for test cut).
- FIG. 12 is a flowchart showing an example of a processing flow of the machining system.
- the NC device 60 acquires, for example, thickness information of the workpiece W on the machining table 11 (step S100) and transmits it to the judgment model storage section 51 of the workability judgment unit 50.
- the judgment model storage unit 51 selects first and second judgment models 5, 6 corresponding to the plate thickness of the workpiece W (step S101) and transmits them to the machinability calculation unit 52.
- the workpiece W is irradiated with laser light LB under first and second irradiation conditions (step S102), and the emission spectrum is measured by the spectrometer 30 (step S103).
- first waveform information 3 calculated from the time series data of the first emission spectrum
- second waveform information 4 calculated from the time series data of the second emission spectrum are transmitted to the machinability calculation unit 52.
- the machinability calculation unit 52 inputs the transmitted first waveform information 3 and second waveform information 4 into the selected first judgment model 5 and second judgment model 6, respectively, calculates a quality score indicating the quality evaluation (surface quality evaluation and internal quality evaluation) of the surface condition and internal condition of the workpiece W (step S104), and generates judgment matrix information 110 (step S105).
- the machinability determination unit 53 determines the machinability of the workpiece W based on the quality score and the determination matrix information 110 calculated and generated by the machinability calculation unit 52. In determining the machinability, it first determines whether the quality score of the surface condition of the workpiece W is 1.4 or more (S_score ⁇ 1.4) and the quality score of the internal condition is 1.4 or more (B_score ⁇ 1.4), i.e., whether the quality evaluations of both the surface condition and the internal condition are " ⁇ " (step S106).
- the control unit 61 of the NC device 60 notifies the operator based on the transmitted judgment result 9, for example, by displaying on the display 70, etc., information about the judgment result 9 including machinability evaluation such as the numerical value of the quality score of the surface condition (S_score) and the numerical value of the quality score of the internal condition (B-score) (step S108).
- the standard conditions may be called up from the processing condition storage unit 62 in the background.
- step S106 if the quality score does not satisfy the judgment condition in step S106 (F: False in step S106), it is judged whether the quality score of the surface condition of the workpiece W is less than 1.4 (S_score ⁇ 1.4) and the quality score of the internal condition is less than 0.6 (B_score ⁇ 0.6), i.e., whether the quality evaluation of the surface condition is " ⁇ " or "X" and the quality evaluation of the internal condition is "X" (step S109).
- the control unit 61 of the NC device 60 notifies the operator based on the transmitted judgment result 9, for example, by displaying on the display 70, etc., information about the judgment result 9 including a machinability evaluation such as the numerical value of the quality score of the surface condition (S_score) and the numerical value of the quality score of the internal condition (B-score) and the like (step S112), that the workpiece W can be machined under machining conditions suitable for difficult-to-machine materials (difficult-to-machine material conditions), a recommendation to change to the difficult-to-machine material conditions, etc.
- the difficult-to-machine material conditions may be called up from the machining condition storage unit 62 in the background.
- the control unit 61 of the NC device 60 notifies the operator based on the transmitted judgment result 9, for example, by displaying on the display 70 or the like information about the judgment result 9 including a machinability evaluation such as the numerical value of the quality score of the surface condition (S_score) and the numerical value of the quality score of the internal condition (B-score) and the like, that the workpiece W is a difficult-to-machine material (recommended test cut material) that is difficult to machine even due to the difficult-to-machine material conditions, that the implementation of the above-mentioned test machining is recommended, and so on (step S114).
- the difficult-to-machine material conditions may be called up from the machining condition storage unit 62 in the background.
- control unit 61 may adjust the parameters of each adjustable item included in the difficult-to-cut material conditions, such as the laser output, processing speed, and focal position (focus position), to improve the processing quality or even make cutting possible. For this reason, after step S114, the control unit 61 performs test processing based on the difficult-to-cut material conditions, based on the input information received by the operator via the input device 211, such as a touch panel (step S115).
- step S116 the condition of the cut surface of the workpiece W from the test machining is checked, and it is determined whether the machining quality is OK (step S116). If it is determined that the machining quality is not OK (F: False in step S116), the operator inputs, for example, to adjust each parameter item of the machining conditions, focusing on the conditions for difficult-to-machine materials (step S117), and the test machining is carried out again (step S115), and the subsequent processes are repeated.
- F False in step S116
- processing quality is OK (T: True in step S116) and information on the judgment result 9 is displayed (steps S108, S112)
- processing conditions that match the material state (surface state and internal state) of the workpiece W whose workability has been judged are set in the laser processing device 10, for example, based on an operation input by an operator (step S118), product processing of the workpiece W is performed based on the set processing conditions (step S119), and the series of processes according to this flowchart is terminated.
- the processing system 100 can determine the processability based on the processing conditions of the workpiece W before cutting, so that the processing conditions can be set according to the material state of the workpiece W, and the operator can easily grasp the judgment result 9 of whether cutting should be performed under the processing conditions set in advance or whether the processing conditions should be changed to those suitable for the workpiece.
- the setting process of the above step S118 can be manually set by the operator through input operation, or the control unit 61 can automatically set according to the judgment result 9.
- Fig. 13 is a diagram showing a result table including the prediction results of the material state by the first and second judgment models, the judgment results of the workability, and the actual processing verification results.
- Fig. 14 is an explanatory diagram showing the quality evaluation criteria of the processing quality.
- the applicant prepared multiple samples for each of 27 types of processed materials W, each having a plate thickness of, for example, 19 mm, and differing in material quality, production lot, and production process (electric furnace/blast furnace). Then, for each sample, a first judgment model 5 was created by machine learning based on the first waveform information 1 and the surface quality evaluation result 109a, and a second judgment model 6 was created by machine learning based on the second waveform information 2 and the internal quality evaluation result 109b.
- the machinability judgment unit 50 having the first and second judgment models 5, 6 created in this way, 17 types of workpieces W (t19 mm: 12 types, t22 mm: 5 types) that were not used for machine learning were irradiated with laser light LB under the first and second irradiation conditions, the first and second waveform information 3, 4 were measured to predict the material state, judgment matrix information 110 was created, and machinability was judged. Note that the first and second waveform information 3, 4 were measured at five different points for one workpiece W, and quality evaluations were performed on the surface state and internal state at each measurement point, and quality scores were calculated and the average value was calculated and used as the representative value.
- the prediction results 121 show the predicted results of the quality evaluation (" ⁇ ", “ ⁇ ” and “ ⁇ ") of the surface condition and internal condition of each workpiece W of material No. (No: Number) 1 to 17, and the judgment results 122 show the judgment results of the workability (good cutting (standard material), difficult-to-cut material, difficult-to-cut material for which test cutting is recommended (test cut recommended material)) for each workpiece W based on the prediction results 121.
- the actual processing verification results 123 show the verification results (" ⁇ ", " ⁇ ” and " ⁇ ") of the standard conditions and difficult-to-cut material conditions when each workpiece W was actually processed under each of the processing conditions 110a and 110b shown in FIG. 9.
- the verification results shown by " ⁇ ", " ⁇ ” and “ ⁇ ” for the standard conditions and the difficult-to-machine material conditions in the actual machining verification results 123 are the results of evaluations compiled based on the quality evaluations performed by the operator at the various focal positions based on the quality evaluation criteria 114 for machining quality as shown in FIG. 14, in order to take into account the margin of focus position.
- the quality evaluation criteria 114 are used to evaluate the cutting quality at each focal position by changing the focal position several times.
- the quality evaluation criteria 114 are used to evaluate the cutting quality at each focal position.
- the quality evaluation criteria include, for example, the height of the dross, which is the molten metal adhering to the back surface of the machining part, the depth of the notches, which is the roughness that suddenly increases on the cutting surface, and the number of notches.
- the margin of focus position refers to the margin of deviation of the focal position in the machining conditions with respect to the cutting quality when the cutting focus is changed from the standard value to a value away from the condenser lens 24c and/or the opposite side, and also includes the margin of adaptability of the machining conditions to the material.
- a quality rating of " ⁇ ” indicates a high-quality cut, and a quality rating of " ⁇ ” indicates a good cut.
- a quality rating of " ⁇ ⁇ ” indicates a cut of slightly poor quality, and a quality rating of " ⁇ ” indicates a cut of poor quality.
- a quality rating of " ⁇ ” indicates a cut that is capable of being severed, and a quality rating of " ⁇ ” indicates that cutting is not possible. Note that the classification of quality ratings is not limited to these six evaluation ranges, and may be classified to allow for more detailed evaluation.
- the quality evaluation has two or more " ⁇ "s or three or more " ⁇ ”s, it is judged as “Good cuttable: ⁇ ". If the condition for "Good cuttable: ⁇ " is not met and there are two or more " ⁇ ⁇ "s or higher in the quality evaluation, it is judged as “Cuttable: ⁇ ". Furthermore, if there are less than two " ⁇ ⁇ "s or higher in the quality evaluation, it is judged as "Difficult to cut: ⁇ ".
- FIG. 15 is a diagram showing the results of classifying the actual machining results in the determination matrix information.
- the workpieces W material No.: No. 3, No. 8, No. 10, No. 13, No. 14
- the quality evaluations of both the surface condition and the internal condition of the material were judged to be " ⁇ ”
- These workpieces W were actually verified to have a " ⁇ " verification result, which indicates that good cutting can be obtained under the standard condition, and it was confirmed that the machinability was correctly judged.
- the workpieces W with material numbers No2, No4, No7, and No16 were actually evaluated as " ⁇ " for difficulty in cutting under standard conditions, but were verified as " ⁇ ” for satisfactory cutting under difficult-to-cut conditions.
- the workpieces W (materials No. 9, No. 12, and No. 17) other than material No. 2, No. 4, No. 7, and No.
- Fig. 16 is a diagram showing an example of details of an actual machining verification result of a workpiece determined to be a standard material.
- Fig. 17 is a diagram showing an example of details of an actual machining verification result of a workpiece determined to be a difficult-to-machine material.
- Fig. 18 is a diagram showing an example of details of an actual machining verification result of a workpiece determined to be a difficult-to-machine material (recommended material for test cut).
- the workpiece W material number 13, whose workability has been determined to be the standard material, has a cut surface quality evaluation of " ⁇ " in the five-level range of focal positions from 2.5 mm to 6.5 mm under standard conditions of machining conditions 110b with a plate thickness of 22 mm. Therefore, it was confirmed that the workability determination result 9 using the first and second determination models 5 and 6 and the determination matrix information 110 was accurate.
- the processing system 100 and the machinability judgment system 90 of the first embodiment judge the machinability based on the processing conditions of the workpiece W before cutting, and easily determine the measures to be taken in accordance with the contents of the judgment result 9 (the material state of the workpiece W and the recommended processing conditions) (for example, whether cutting should be performed under the recommended processing conditions, whether the processing conditions should be changed to those suitable for the workpiece W, whether the recommended processing conditions should be adjusted, whether test processing should be performed, etc.), and the processing quality can be quickly improved, making it possible to reduce processing defects.
- the judgment result 9 the material state of the workpiece W and the recommended processing conditions
- the processing system and the machinability judgment system according to the second embodiment are configured to add a configuration for measuring the infrared intensity of the radiation light generated when the laser light LB is irradiated by a radiation thermometer (infrared sensor) to the processing system and the machinability judgment system according to the first embodiment, which measures the emission spectrum generated when the laser light LB is irradiated by the spectrometer 30 described above, and to combine the judgment result of the machinability of the workpiece W by the spectrometer 30 (first judgment result) and the judgment result of the machinability of the workpiece W by the radiation thermometer (second judgment result) to output a judgment result of the machinability of the workpiece W when it is cut under preset processing conditions in the processing step (third judgment result).
- a radiation thermometer infrared sensor
- oxygen cutting of a workpiece W of mild steel is affected by the surface condition (state of the oxide film) and internal condition of the workpiece W. Even with the same steel type and plate thickness, the cutting quality differs under the same laser cutting processing conditions due to individual differences such as differences in manufacturer and production lot.
- the inventors have constructed the processing system and machinability assessment system of the first embodiment in order to find the material property factors that have a strong influence on the cutting quality and to measure and analyze them.
- the oxide film on the material surface (raw material surface) of the workpiece W affects the laser absorption rate and oxidation reaction at the surface.
- the laser absorption rate differs depending on the type of oxide film; for example, black magnetite has a high laser absorption rate and oxide film adhesion, and the cutting quality is stable.
- hematite has a low laser absorption rate and poor oxide film adhesion. For this reason, the oxide film is easily peeled off during laser cutting, and notches are easily created starting from the peeled part.
- the inventors have discovered that the adhesion of the oxide film can be determined by the emission spectrum generated immediately after laser irradiation when the surface of the workpiece W is melted with laser light LB.
- the difference between a workpiece W having a highly adhesive oxide film and a workpiece W having a poorly adhesive oxide film, or a thin or peeled oxide film can be determined by the change over time in the emission spectrum that occurs until the oxide film on the surface (material surface) of the workpiece W disappears.
- the oxide film it is possible to irradiate the material surface with laser light LB without melting it, and evaluate the adhesion of the oxide film from the thermal stress generated on the material surface.
- the oxide film peels off due to thermal stress, a flash is generated, which can be detected by infrared spectroscopy.
- the type and roughness (unevenness) of the oxide film on the material surface cause temperature fluctuations due to differences in laser absorption rate, which can be captured as fluctuations in the infrared spectrum.
- the internal characteristics of the workpiece W are affected by the stability of the melting behavior due to the internal components of elements other than iron contained in the material, and the ease of heat transfer (thermal conductivity).
- elements other than iron those with a particularly high carbon content are prone to component segregation, resulting in an uneven carbon concentration distribution and an uneven melting temperature, which makes the cut surface prone to becoming rough due to uneven melting.
- manganese is also an element that increases component segregation, and uneven melting can easily make the melting behavior unstable.
- the stability of the melting behavior affects the time-dependent change in the emission spectrum that occurs during melting.
- a high carbon content leads to greater component segregation within the steel sheet, resulting in non-uniformity between the low-melting point and high-melting point areas, and greater fluctuation in the time-dependent change in the emission spectrum.
- the material contains more elements other than iron, its thermal conductivity decreases, so it is more likely to become hot at the point of laser cutting, which in turn makes it more likely to melt excessively and results in rough cut surfaces.
- the processing system and workability judgment system of the first embodiment have been configured.
- the processing system and workability judgment system of the second embodiment have the following configuration.
- the thermal conductivity of the internal components can be evaluated as the ease of heat transfer from the magnitude of the temperature rise by repeatedly heating and cooling under laser irradiation conditions that do not melt the material. Note that, since it is not possible to measure temperatures below about 600°C in the visible light region, the infrared intensity in the wavelength band above 1600 nm was measured to measure the temperature on the low-temperature side of the temperature rise.
- the judgment of the machinability of the workpiece W with visible light is performed using a judgment model that utilizes machine learning as described above, and the judgment of the machinability of the workpiece W with infrared light is performed by comparing information (feature information) in which the temporal or positional change in infrared intensity is used as a feature value with a threshold value.
- FIG. 19 is an explanatory diagram illustrating a basic configuration of a processing system according to the second embodiment of the present invention.
- the processing system 100A according to the second embodiment includes a laser processing device 10A capable of executing a processing step of cutting the workpiece W by irradiating the workpiece W with the laser light LB under processing irradiation conditions, and a processability judgment step of irradiating the workpiece W with the laser light LB under a first judgment irradiation condition (the "judgment irradiation condition" in the first embodiment) under which the workpiece W is melted but not penetrated, and under a second judgment irradiation condition under which the melting point of the material of the workpiece W is not exceeded, to judge the processability of the workpiece W.
- a first judgment irradiation condition the "judgment irradiation condition" in the first embodiment
- the processing system 100A also includes a laser processing unit 20A (measurement device) including a spectrometer 30 (first measurement unit) that measures an emission spectrum generated when the workpiece W is irradiated with the laser light LB under the first judgment irradiation condition, and a radiation thermometer 30A (second measurement unit) that measures the infrared intensity of the radiation generated when the workpiece W is irradiated with the laser light LB under the second judgment irradiation condition.
- a laser processing unit 20A measurement device
- a spectrometer 30 first measurement unit
- second measurement unit measures the infrared intensity of the radiation generated when the workpiece W is irradiated with the laser light LB under the second judgment irradiation condition.
- the processing system 100A is provided with a judgment device (PC 50A and NC device 60) including a PC (Personal Computer) 50A (first judgment unit) that judges the workability of the workpiece W based on time series data of the emission spectrum measured by the spectroscope 30 of the laser processing unit 20A, an NC device 60 (second judgment unit) that judges the workability of the workpiece W based on time series data of the infrared intensity measured by the radiation thermometer 30A of the laser processing unit 20A, and an NC device 60 (third judgment unit) that judges the workability of the workpiece W when cut and processed under preset processing conditions in the processing step based on a combination of the first judgment result judged by the PC 50A and the second judgment result judged by the NC device 60 and outputs a third judgment result.
- PC Personal Computer
- the judgment device has a first judgment model 5 (FIG. 9) and a second judgment model 6 (FIG. 9).
- the PC 50A of the judgment device extracts the first waveform information 3 (FIG. 9) in the first time domain and the second waveform information 4 (FIG. 9) in the second time domain from the time series data of the emission spectrum measured by the spectroscope 30 of the laser processing unit 20A.
- the PC 50A of the judgment device inputs the extracted first waveform information 3 as estimation data into the first judgment model 5 to obtain a surface quality evaluation of the workpiece W.
- the PC 50A of the judgment device also inputs the extracted second waveform information 4 as estimation data into the second judgment model 6 to obtain an internal quality evaluation of the workpiece W.
- the PC 50A of the judgment device then outputs the first judgment result that judges the workability of the workpiece W based on a combination of the obtained surface quality evaluation and internal quality evaluation of the workpiece W.
- the NC device 60 of the judgment device extracts feature information indicating temporal or positional changes in the temperature of the workpiece W based on the time series data of infrared intensity measured by the radiation thermometer 30A of the laser processing unit 20A, and outputs a second judgment result in which the workability of the workpiece W is judged based on the extracted feature information and reference information for judging the workability of the workpiece W that has been registered in advance in a storage device or the like not shown.
- the laser processing unit 20A of the laser processing device 10A differs from the laser processing unit 20 of the first embodiment in that it includes a radiation thermometer 30A and a dichroic mirror 24d.
- the radiation thermometer 30A is provided, for example, on the upper part of the laser processing head 22.
- the PC 50A may be included in the NC device 60, and the NC device 60 may be mounted so as to be included in the laser processing device 10A.
- the radiation thermometer 30A captures the infrared radiation, including the infrared radiation emitted by thermal radiation, from the electromagnetic waves with a wide band of wavelengths emitted from the workpiece W heated by the laser light LB, and converts it into an electrical signal.
- the radiation thermometer 30A measures the infrared intensity in the wavelength band of 1600 nm or more. That is, the radiation thermometer 30A has, for example, a wavelength filter in the front stage that transmits only wavelengths in a specific band (1600 nm or more and 2500 nm or less), and uses, for example, a photodiode using InGaAs (indium gallium arsenide) as a photoelectric conversion element in the rear stage.
- InGaAs indium gallium arsenide
- Dichroic mirror 24d is provided above folding mirror 24b. Dichroic mirror 24d transmits infrared light (infrared rays) of a specific wavelength that is transmitted through folding mirror 24b, out of the radiated light contained in the light traveling from the processing side of workpiece W toward folding mirror 24b, to radiation thermometer 30A, and reflects visible light to light receiving section 31 of spectrometer 30.
- infrared light infrared rays
- FIG. 20 is a schematic functional block diagram of the processing system. 20, like the machinability judgment unit 50 of the first embodiment, the PC 50A includes a judgment model storage unit 51, a machinability calculation unit 52, and a machinability judgment unit 53.
- the PC 50A includes a hardware configuration (CPU, RAM, ROM, etc.) similar to that of a general PC.
- the machinability determination unit 53 of the PC 50A can output to the NC device 60 a first determination result that determines the machinability of the workpiece W (standard material that can be cut well, difficult-to-machine material) based on the determination matrix information generated by the machinability calculation unit 52.
- the functions and actions of the other units 51 to 53 are the same as those described in the first embodiment, so a description thereof will be omitted here.
- the NC device 60 functionally comprises a calculation processing unit 63, a workability judgment unit 66, a comprehensive judgment unit 65, a control unit 61, and a processing condition storage unit 62.
- the calculation processing unit 63 is made up of a hardware or middleware calculation processing device that can perform specific calculation processes at high speed.
- the calculation processing unit 63 converts the instantaneous voltage value of the output signal of the radiation thermometer 30A into infrared light intensity and can obtain time series data of this light intensity.
- the calculation processing unit 63 extracts feature information that represents the temporal transition of the temperature characteristics based on the obtained time series data of the light intensity.
- the calculation processing unit 63 also functions as, for example, a signal processing unit.
- the output signal of the current output captured by the radiation thermometer 30A and photoelectrically converted is transmitted to the calculation processing unit 63.
- the output signal transferred as a current is converted into a voltage signal by a current-voltage conversion circuit (not shown).
- the output signal that has been converted into a voltage signal is then converted into a digital signal by the A/D converter 40, and this digital signal is input to the calculation processing unit 63.
- the machinability determination unit 66 outputs a second determination result that determines the machinability of the workpiece W based on the processing conditions of the upcoming processing (the machinability of the workpiece W when cut under processing conditions previously set in the laser processing device 10A) based on the feature information extracted by the calculation processing unit 63 and reference information stored in a storage device (not shown), for example.
- the reference information is information that is selected and determined, for example, through experiments, and is registered in advance.
- the overall judgment unit 65 uses the information obtained by the visible light measurement using the spectrometer 30 (such as a quality score of material characteristics) and the information obtained by the infrared measurement using the radiation thermometer 30A (such as a quality evaluation of material characteristics) based on a combination of the first judgment result from the workability judgment unit 53 of the PC 50A and the second judgment result from the workability judgment unit 66 to judge the workability of the workpiece W when it is cut and processed under the preset processing conditions in the processing step, and outputs an overall judgment result (third judgment result).
- the control unit 61 controls the operation of the laser processing unit 20A (laser processing head 22, beam control unit 24, etc.) via various I/Fs (interfaces).
- the control unit 61 also outputs control instructions for various operations to the laser processing device 10A and the spectrometer 30, etc., and outputs display instructions for various information representing the judgment result, for example, to the display 70, based on the judgment result (third judgment result) of the overall judgment unit 65.
- control unit 61 controls the operation of the laser processing unit 20A (laser processing head 22, beam control unit 24, etc.) via various I/Fs (interfaces).
- the control unit 61 also outputs control instructions for various operations to the laser processing device 10A and the spectrometer 30, etc., and outputs display instructions for various information representing the judgment result, for example, to the display 70, based on the judgment result (third judgment result) of the overall judgment unit 65.
- the display 70 can display a setting input screen for inputting various information such as the cutting conditions, a display screen for displaying various information such as the judgment results so that the operator can confirm them, and the like.
- the display 70 also functions as a notification unit that notifies the operator of the third judgment result determined by the overall judgment unit 65 of the NC device 60 so that the third judgment result can be confirmed.
- the display 70 can be configured with, for example, a touch panel that functions as an input unit. When the display 70 is equipped with a touch panel, the operator can input various information related to the workpiece W to the control unit 61 of the NC device 60, for example, by operating the display 70.
- the machinability judgment system (PC 50A and NC device 60) according to the second embodiment has a first judgment model 5 and a second judgment model 6, and in a machinability judgment process for judging the machinability of the workpiece W, first waveform information 3 and second waveform information 4 extracted (calculated) from time series data of the emission spectrum generated when the laser light LB is irradiated to the workpiece W under first judgment irradiation conditions (first irradiation condition, second irradiation condition) that melt the workpiece W but do not penetrate the workpiece W are input into the first judgment model 5 and the second judgment model 6, respectively, and the machinability of the workpiece W is judged based on the first waveform information 3 and the second waveform information 4.
- first judgment irradiation conditions first irradiation condition, second irradiation condition
- the machinability judgment system (PC 50A and NC device 60) includes a PC 50A (first judgment unit) including a learning device 80, and in the machinability judgment process, the laser light LB is irradiated to the workpiece W under second judgment irradiation conditions (third irradiation condition, fourth irradiation condition) that do not exceed the melting point of the material of the workpiece W.
- the NC device 60 (second judgment unit) that judges the machinability of the workpiece W based on feature amount information extracted from time-series data on the infrared intensity of radiated light generated when the workpiece W is irradiated with infrared light under preset processing conditions in the processing step, and pre-registered reference information for judging the machinability of the workpiece W; the NC device 60 (third judgment unit) that judges the machinability of the workpiece W when cut under preset processing conditions in the processing step, based on a combination of the judgment results (first judgment result) of the surface condition and internal condition of the workpiece W judged by the PC 50A (first judgment unit) and the judgment results (second judgment result) of the surface texture and internal characteristics of the workpiece W judged by the NC device 60 (second judgment unit); and the PC 50A (learning device) that creates a first judgment model 5 and a second judgment model 6.
- the PC 50A (first judgment unit) extracts the first waveform information 3 in the first time domain and the second waveform information 4 in the second time domain from the time series data of the emission spectrum, inputs the extracted first waveform information 3 as estimation data to a first judgment model 5 to obtain a surface quality evaluation of the workpiece W, inputs the extracted second waveform information 4 as estimation data to a second judgment model 6 to obtain an internal quality evaluation of the workpiece W, and outputs a first judgment result that judges the workability of the workpiece W based on a combination of the obtained surface quality evaluation and internal quality evaluation of the workpiece W.
- the NC device 60 extracts feature amount information (first feature amount information, second feature amount information) indicating a temporal or positional change in temperature of the workpiece W based on the time series data of the infrared intensity, and outputs a second judgment result that judges the workability of the workpiece W based on the extracted feature amount information and reference information (first judgment criterion, second judgment criterion).
- the PC 50A (learning device 80) inputs the first waveform information 1 and the surface quality evaluation result 109a indicating the surface quality of the workpiece W as first teacher data, performs machine learning to create a first judgment model 5, and inputs the second waveform information 2 and the internal quality evaluation result 109b indicating the internal quality of the workpiece W as second teacher data, performs machine learning to create a second judgment model 6.
- the machinability determination system of the second embodiment can be configured by the above-mentioned machining system 100A equipped with a PC 50A including the machinability determination system 90 (machinability determination unit 50 and learning device 80) of the first embodiment shown in FIG. 9, and an NC device 60.
- the description will first focus on measuring the infrared spectrum (infrared intensity) by the radiation thermometer 30A to judge the material properties of the surface condition and internal characteristics of the workpiece W.
- the laser processing device 10A spot-irradiates the workpiece W with the laser light LB under the first determination irradiation condition, and under the second determination irradiation condition, irradiates the surface of the workpiece W with the laser light LB while moving the irradiation position, and repeatedly irradiates the interior of the workpiece W with the laser light LB.
- the first judgment irradiation condition includes the first irradiation condition and the second irradiation condition.
- the time from the start of irradiation of the laser light LB to the end of irradiation is divided into a first stage and a second stage, and as the first judgment irradiation condition, the laser light LB is irradiated to the workpiece W under the first irradiation condition 101 (FIG. 3) in the first stage, and the laser light LB is irradiated to the workpiece W under the second irradiation condition 102 (FIG.
- the spectroscope 30 of the laser processing unit 20A measures a first emission spectrum generated when the laser light LB is irradiated to the workpiece W under the first irradiation condition, and a second emission spectrum generated when the laser light LB is irradiated to the workpiece W under the second irradiation condition.
- the PC 50A of the judgment device extracts first waveform information 1, 3 ( Figure 9) in the first time domain from the time series data of the first emission spectrum measured by the spectrometer 30 of the laser processing unit 20A, and extracts second waveform information 2, 4 ( Figure 9) in the second time domain from the time series data of the second emission spectrum measured by the spectrometer 30 of the laser processing unit 20A.
- the laser light LB is irradiated under a second judgment irradiation condition that does not exceed the melting point of the material of the workpiece W.
- the laser is irradiated within a range that does not melt the material of the workpiece W, and the material characteristics are judged from the temporal or positional changes in the infrared spectrum.
- the inventors cut (laser cut) various workpieces W with different internal components (internal components) and surface properties (surface properties) under standard processing conditions of the NC device 60, and observed the cut surfaces of the workpieces W. As a result, it was found that the workability (cuttability) of the workpieces W is greatly affected by the surface properties and internal component properties (internal properties) of the workpieces W.
- the surface quality of the workpiece W specifically refers to the state of the oxide film on the surface layer of the workpiece W and its adhesion to the material surface (hereinafter referred to as "state and adhesion of the oxide film”).
- the surface layer refers to the part corresponding to the oxide film layer formed on the material surface, and if there is no oxide film on the material surface, this surface layer part will also not exist.
- the workability of the workpiece W is primarily affected by the state and adhesion of the oxide film on the material surface of the workpiece W.
- this factor will be referred to as "surface-related".
- the cut surface has large irregularities in the striations on the laser incident surface side. In particular, in the parts where the oxide film has peeled off, the striations are irregular and notches are likely to occur.
- the internal characteristics of the workpiece W specifically refer to the magnitude of the thermal conductivity due to the internal components of the workpiece W.
- the workability of the workpiece W is greatly affected by the magnitude of the thermal conductivity due to the internal components of the workpiece W.
- this factor will be referred to as "internal causes.”
- oxygen is used as the assist gas
- melt cutting is performed using the heat of the laser light and the heat of the oxidation reaction as the heat source.
- the cut surface is likely to be rough. This is thought to be due to the fact that if there are many elements with low thermal conductivity, heat is difficult to diffuse, which tends to promote a rise in temperature on the cut surface, and low thermal conductivity makes it easier for excessive combustion to occur.
- the thermal conductivity in the solid state and the distribution of the oxide film on the surface of the workpiece W as the material properties.
- the judgment irradiation condition (second judgment irradiation condition) for the laser light LB we decided to measure the wavelength spectrum intensity (infrared intensity) in the infrared region of wavelengths above 1600 nm, because the visible light region is weak on the low temperature side of 600°C or less, which is the temperature range that does not melt the material (does not exceed the melting point).
- the first study was conducted to investigate the influence of internal factors.
- the oxide film on the surface of the workpiece W was removed to make the surface condition uniform, and the laser cutting was performed in that state.
- the oxide film was removed by polishing the surface so that the average surface roughness was 0.8 or less.
- the laser cutting was performed under the following processing conditions: laser output 3 (kW), processing speed 630 (mm/min), and assist gas oxygen ( O2 ).
- Thermal conductivity was measured using the laser flash method. For example, rectangular test pieces 10 mm square and 4 mm thick were prepared for samples a to c, graphite was applied to the surface of the material, and laser light LB was flash-irradiated from one side (the surface side of the material). The thermal diffusivity was measured from the temperature rise on the opposite side (the back side of the material) to determine the thermal conductivity.
- Figure 21 is a result table showing the results of investigations into the thermal conductivity of each material of the processed material, the laser cut surface, and the roughness of the cut surface.
- Figure 22 is a graph showing the relationship between the average roughness of the cut surface and the thermal conductivity. Note that the quality evaluations of each item in the result table 300, " ⁇ ", “ ⁇ ”, and “ ⁇ ”, are defined by actually observing and evaluating the obtained numerical values and the cut surfaces, etc., from the viewpoint of quality, and correspond to "good”, “fair (poor)", and "unacceptable”, respectively.
- a result table 300 shows results 301, 302, and 303 of samples a, b, and c.
- Sample a had a thermal conductivity of 56.7 W/(m ⁇ K), and the cut surface was rated as " ⁇ " because the streaks were partially deep, the pitch was large, and the cut surface was somewhat rough. It can be seen that the roughness of the cut surface (streaking) when the laser beam LB was incident to a depth of 1 mm showed some variation in depth.
- Sample b had a thermal conductivity of 60.3 W/(m ⁇ K), few notches on the cut surface, and the shallowest streak depth, so it was rated as " ⁇ ".
- the cut surface roughness (streak change) when the laser light LB was incident to a depth of 1 mm showed little variation in depth and was the shallowest of all the samples, so it can be confirmed that the results were generally in line with the cut surface evaluation.
- Sample c had a thermal conductivity of 49.5 W/(m ⁇ K) and the cut surface had the most notches of all the samples, so it was rated as "X".
- the cut surface roughness (streak change) when the laser light LB was incident to a depth of 1 mm was deep with a lot of variation in depth, so it can be confirmed that the results were generally in line with the cut surface evaluation.
- FIG. 23 is a graph showing the relationship between temperature and time when repeatedly heating and cooling a workpiece, and the relationship between the temperature reached by cooling and time.
- Fig. 23(a) shows a temperature waveform 310 obtained by measuring sample b with radiation thermometer 30A and converting the time series data of infrared intensity output from radiation thermometer 30A into time series data of temperature.
- the vertical axis represents temperature (°C) and the horizontal axis represents time (milliseconds: ms).
- FIG. 23(b) shows a temperature waveform 311 in which two periods of the temperature waveform 310 in Figure 23(a) are shown enlarged on the time axis in ms units.
- the temperature waveforms 310, 311 of the workpiece W fluctuate finely between approximately 300°C and approximately 750°C (repeated generation and release of heat) over time due to multiple cycles of laser irradiation.
- 23(c) is a waveform diagram showing the lower envelope of the temperature waveform 310 by repeated heating and cooling shown in FIG. 23(a).
- This waveform diagram is obtained by extracting the temporal transition of the cooling temperature for each cycle of the waveform diagram in FIG. 23(a) as feature information (second feature information) 312.
- This feature information 312 indicates the degree of temperature rise caused by thermal conduction of the workpiece W, and can be used for subsequent judgment evaluations.
- the cooling temperature reached 5 seconds after the start of laser irradiation was set as the judgment criterion (second judgment criterion) for judging the internal characteristics of the material of the workpiece W.
- the thermal conduction is evaluated as "x”, if it is 470°C or higher but less than 550°C, the thermal conduction is evaluated as " ⁇ ", and if it is less than 470°C, the thermal conduction is evaluated as " ⁇ ".
- FIG. 24 is a graph showing the relationship between temperature and time when repeatedly heating and cooling a workpiece, and the relationship between the temperature reached by cooling and time.
- 24A shows a temperature waveform 315 obtained by measuring sample c with the radiation thermometer 30A and converting the time series data of infrared intensity output from the radiation thermometer 30A into time series data of temperature.
- the processing conditions and the second judgment irradiation conditions are the same as those of sample b.
- the temperature waveform 316 and feature amount information (second feature amount information) 317 are also the same as those of FIG. 23.
- the type A workpiece W shown in FIG. 25 corresponds to a type in which the oxide film is peeled off (in a spotted form) in the raw material state, and the peeling rate of the oxide film is relatively large.
- the type B workpiece W shown in FIG. 27 corresponds to a type in which the oxide film is not peeled off (the oxide film is attached) in the raw material state, but the oxide film is peeled off by laser irradiation.
- the workpiece W can be classified into three types in terms of surface properties: Type A and Type B, as well as Type C, shown in Figure 29, in which the oxide film on the material surface does not peel off at all even when irradiated with a laser.
- the laser output of the laser light LB irradiated on the material surface of the workpiece W with a plate thickness of 19 mm was set to 125 W, the speed to 240 mm/min, the frequency to 100 Hz, and the duty to 100%, and laser irradiation (laser scanning) was performed with a scanning distance of 80 mm.
- laser irradiation laser scanning
- Fig. 25 is a diagram for explaining the results of an investigation into the surface condition of the workpiece of type A.
- Fig. 26 is a diagram showing a cut surface image and surface roughness when the workpiece of Fig. 25 is cut.
- the type A workpiece W has some areas where the oxide film is peeled off in the raw state, as can be seen from the surface image 330 and the enlarged image 330a of the material surface.
- Fig. 25(c) includes a waveform diagram showing the positional change in the detected temperature when the type A workpiece W is subjected to laser scanning. This waveform diagram is obtained by extracting the positional change in temperature as feature amount information (first feature amount information) 331.
- the feature amount information (first feature amount information) 331 showing the positional change in temperature (°C) shown on the vertical axis at the distance (mm) shown on the horizontal axis of the waveform diagram is expressed as shown.
- the feature amount information (first feature amount information) 331 represents a temperature pattern measured by the radiation thermometer 30A with the infrared intensity of 1.95 ⁇ m to 2.5 ⁇ m as emissivity 1 (the same applies below).
- a surface image 332 below the waveform diagram represents the surface condition after the laser scan corresponding to the waveform diagram.
- the temperature is low in areas on the material surface where the oxide film has peeled off before the laser light LB is irradiated.
- the oxide film peels off when irradiated with the laser light LB.
- the oxide film emits light and generates heat, causing the temperature to rise.
- the feature information (first feature information) 331 shows many peaks on the high temperature side, and there is a lot of waveform distortion on both the high temperature and low temperature sides.
- the cut surface image of type A workpiece W was as shown in image 333 in Figure 26(a), and the surface roughness at a depth of 1 mm from the surface (line indicated by I) and at a depth of 2 mm (line indicated by II) was as shown in graph 334 in Figure 26(b).
- the surface roughness was unstable and varied overall at both a depth of 1 mm and a depth of 2 mm from the surface, with many irregularities in the striations on the cut surface.
- Fig. 27 is a diagram for explaining the results of investigating the surface condition of the workpiece of type B.
- Fig. 28 is a diagram showing a cut surface image and surface roughness when the workpiece of Fig. 27 is cut.
- the type B workpiece W has no peeling of the oxide film in the raw state (the oxide film is attached) as can be seen from the surface image 340 and the enlarged image 340a of the material surface.
- Fig. 27(c) includes a waveform diagram showing the positional change in the detected temperature when the type B workpiece W is subjected to laser scanning. This waveform diagram is obtained by extracting the positional change in temperature as feature amount information (first feature amount information) 341.
- the feature amount information (first feature amount information) 341 showing the positional change in temperature (°C) shown on the vertical axis at the distance (mm) shown on the horizontal axis of the waveform diagram is shown as shown, and the surface state after laser scanning becomes as shown in the surface image 342 below the waveform diagram.
- the feature amount information (first feature amount information) 341 is more stable on the low temperature side compared to that of type A, but there are still many peaks on the high temperature side, and some distortion of the waveform can be seen on both the high temperature side and the low temperature side.
- the cut surface image of type B workpiece W was as shown in image 343 in FIG. 28(a), and the surface roughness at a depth of 1 mm from the surface (line indicated by I) and at a depth of 2 mm (line indicated by II) was as shown in graph 344 in FIG. 28(b).
- the surface roughness at a depth of 2 mm from the surface was more stable than the surface roughness at a depth of 1 mm from the surface, and there was less overall variation than with type A, but some irregular streaks appeared on the cut surface.
- Fig. 29 is a diagram for explaining the results of an investigation into the surface condition of the workpiece of type C.
- Fig. 30 is a diagram showing a cut surface image and surface roughness when the workpiece of Fig. 29 is cut.
- Fig. 29(a) and Fig. 29(b) as can be seen from the surface image 350 and the enlarged image 350a of the material surface of the type C workpiece W, the oxide film on the material surface is not peeled off at all in the raw state (the oxide film is firmly attached).
- Fig. 29(c) includes a waveform diagram showing the positional change in the detected temperature when the type C workpiece W is subjected to laser scanning.
- This waveform diagram is obtained by extracting the positional change in temperature as feature amount information (first feature amount information) 351. Since the oxide film is not peeled off at all in the raw state, when the type C workpiece W is subjected to laser scanning as shown in Fig. 29(c), the feature amount information (first feature amount information) 351 showing the positional change in temperature (°C) shown on the vertical axis at the distance (mm) shown on the horizontal axis of the waveform diagram is shown as shown.
- the surface image 352 below the waveform diagram shows the surface state after the laser scanning corresponding to the waveform diagram.
- the feature information (first feature information) 351 shows a slight peak on the high temperature side, but there is almost no distortion of the waveform on the low temperature side, resulting in a stable result.
- the cut surface image of type C workpiece W is shown in image 353 in Figure 30(a), and the surface roughness at a depth of 1 mm from the surface (line indicated by I) and at a depth of 2 mm (line indicated by II) is shown in graph 354 in Figure 30(b).
- the surface roughness at a depth of 1 mm from the surface is more stable than the surface roughness at a depth of 2 mm from the surface, but there is less overall variation than types A and B, and no irregular streaks appear on the cut surface.
- the reference information includes a first judgment criterion (threshold value) for judging the surface properties of the workpiece W and a second judgment criterion (threshold value) for judging the internal properties of the workpiece W.
- the first judgment criterion includes information on at least one of the reference temperature range and temperature variation of the workpiece W
- the second judgment criterion includes information indicating the degree of temperature rise of the workpiece W.
- the laser processing device 10A irradiates the material surface of the workpiece W with the laser light LB under the second judgment irradiation condition while moving the irradiation position in the workability judgment process.
- the calculation processing unit 63 extracts the positional change in the temperature of the workpiece W as feature information based on the time series data of the infrared intensity measured by the radiation thermometer 30A.
- the reference information stored in a storage device or the like includes a judgment criterion based on at least one of the reference temperature range and the temperature variation of the workpiece W.
- the workability judgment unit 66 judges the workability of the workpiece W depending on whether the positional change in the temperature of the workpiece W included in the feature information stored in a storage device or the like meets the judgment criterion.
- the laser processing device 10A repeatedly irradiates the laser light LB into the inside of the material of the workpiece W under the second judgment irradiation condition in the workability judgment process.
- the calculation processing unit 63 extracts the temporal change in temperature of the workpiece W as feature information based on the time series data of the infrared intensity measured by the radiation thermometer 30A.
- the reference information stored in a storage device or the like includes a judgment criterion that indicates the degree of temperature rise of the workpiece W.
- the workability judgment unit 66 judges the workability of the workpiece W based on whether the temporal change in temperature of the workpiece W included in the feature information stored in a storage device or the like is in a state of temperature rise that falls outside the judgment criterion.
- the second judgment irradiation condition includes a third irradiation condition and a fourth irradiation condition
- the laser processing apparatus 10A irradiates the laser light LB onto the material surface of the workpiece W while moving the irradiation position under the third irradiation condition in the process of judging the workability, and repeatedly irradiates the laser light LB into the material interior of the workpiece W under the fourth irradiation condition.
- the radiation thermometer 30A (second measurement unit) measures a first infrared intensity of the infrared light (radiated light) generated when the laser light LB is irradiated onto the workpiece W under the third irradiation condition, and a second infrared intensity of the infrared light (radiated light) generated when the laser light LB is irradiated onto the workpiece W under the fourth irradiation condition.
- the calculation processing unit 63 extracts first feature information indicating a positional change in temperature of the workpiece W based on the time series data of the first infrared intensity measured by the radiation thermometer 30A, and extracts second feature information indicating a time change in temperature of the workpiece W based on the time series data of the second infrared intensity measured by the radiation thermometer 30A.
- the workability judgment unit 66 compares the first feature information with a first judgment criterion (threshold) included in the reference information to judge whether the positional change in temperature of the workpiece W included in the first feature information satisfies the first judgment criterion (threshold) based on at least one of the reference temperature range and the temperature variation of the workpiece W included in the reference information.
- the workability judgment unit 66 compares the second feature information with a second judgment criterion (threshold) included in the reference information to judge whether the time change in temperature of the workpiece W included in the second feature information is a temperature rise state that falls outside the second judgment criterion (threshold) indicating the degree of temperature rise of the workpiece W included in the reference information, and judges the workability of the workpiece W based on the combination of the results.
- the storage device etc. stores, for example, the first feature amount information and the second feature amount information extracted by the calculation processing unit 63 in a readable and writable manner.
- the laser processing device 10A preferably irradiates the surface of the workpiece W with the laser beam LB under the fifth irradiation condition before irradiating the interior of the workpiece W with the laser beam LB under the fourth irradiation condition, thereby removing the oxide film (surface modification) on the surface of the workpiece W.
- the oxide film on the surface of the workpiece W is removed by, for example, increasing the gap with a high laser output of 2500 W and a nozzle gap of 70 mm under the fifth irradiation condition, thereby securing an area in which to peel off the oxide film.
- a crater with a depth of about 1.0 mm to about 1.5 mm and a depression diameter of about 6 mm is generated on the surface of the workpiece W.
- the laser output of the laser light LB irradiated by the laser processing device 10A under the third, fourth, and fifth irradiation conditions is set to be smaller than the laser output included in the cutting processing conditions, and the laser output under the third irradiation condition is set to be smaller than the laser output under the fourth irradiation condition.
- the standard processing conditions (standard conditions) for laser cutting are, for example, set as parameters according to the thickness of the workpiece W, such as a laser output of 3000 (W), a processing speed of 630 (mm/min), a (pulse) frequency of 2000 (Hz), a (pulse) duty (pulse width) of 100 (%), a gas type of O2 , a gas pressure of 0.06 (MPa), a nozzle gap of 1 (mm), and an ACL of 62.
- the third irradiation condition of the laser light LB is, for example, a laser output of 125 (W), a processing speed of 500 (mm/min), a (pulse) frequency of 100 (Hz), a (pulse) duty (pulse width) of 100 (%), a gas pressure of 0.04 (MPa), a nozzle gap of 50 (mm), a nozzle of D2.5W, a gas type of O2 , a lens focal length of 190 (mm), an ACL of 120, a B-axis of 25 (mm), and a laser irradiation diameter of 5.9 ( ⁇ ), and is a condition for performing laser scanning over a distance of, for example, 80 mm at the above processing speed and determining the surface condition of the material of the workpiece W (adhesion or peeling state of the oxide film) based on the temperature characteristics.
- the fourth irradiation condition of the laser light LB is, for example, a laser output of 425 (W), a processing speed of 0 (mm/min), a (pulse) frequency of 10 (Hz), a (pulse) duty (pulse width) of 50 (%), a gas pressure of 0.01 (MPa), a nozzle gap of 35 (mm), a nozzle of D7.0AL, a gas type of air (Air), a lens focal length of 190 (mm), an ACL of 140, a B-axis of 25 (mm), and a laser irradiation diameter of 4.5 ( ⁇ ), and these are conditions for, for example, performing laser scanning by spot (fixed point) irradiation and determining the internal state (thermal conductivity) of the material of the workpiece W based on its temperature characteristics.
- the fifth irradiation condition of the laser light LB is, for example, a condition in which the focal position is located on the material surface, the parameters are set as follows: laser output 2500 (W), processing speed 0 (mm/min), (pulse) frequency 100 (Hz), (pulse) duty (pulse width) 100 (%), gas pressure 0.4 (MPa), nozzle gap 70 (mm), nozzle D7.0AL, gas type air, and lens focal length 190 (mm), and is a condition for performing surface modification (removal of oxide film) of the material of the workpiece W under a laser output higher than those under the third and fourth irradiation conditions.
- the energy density of the laser beam LB irradiated under the third irradiation condition is 1 W/mm 2 or more and less than 5 W/mm 2
- the energy density of the laser beam LB irradiated under the fourth irradiation condition is 5 W/mm 2 or more and 10 W/mm 2 or less.
- the energy density of the irradiated laser light LB is too strong, the influence of the internal components of the material also appears, so it was assumed that an energy density of 1 W/mm2 or more and less than 5 W/ mm2 is sufficient for the purpose of loading thermal stress.
- the oxide film peels off due to laser irradiation, it becomes sputtered, emits light, and becomes hot, so conversely, the part of the material surface where the oxide film has already peeled off in the raw state has a low laser absorption rate and therefore a low temperature. According to the knowledge of the present applicant, it has been found that if the oxide film has good adhesion to the material surface, the temperature is stable within a certain temperature range.
- the laser output is set to 125 (W) and the irradiation area (laser irradiation diameter) is set to about 5.9 ( ⁇ ).
- the reason why the internal characteristics of the workpiece W are determined by setting the fourth irradiation condition as described above is as follows. That is, the first and second investigations have revealed that the quality of the material workability (cuttability) of the workpiece W can be determined by evaluating the thermal conductivity of the material from the behavior of temperature change.
- iron (Fe) is a material that undergoes magnetic transformation at a temperature of about 800°C, phase transformation at a temperature of about 900°C, and melts at a temperature of about 1500°C, so that the thermal conductivity and specific heat change at these temperatures. Therefore, in order to analyze the thermal conductivity inside the material of the workpiece W, it is evaluated by the change in temperature over time until the material melts.
- the energy density of the laser irradiation is set to be 5 W/mm 2 or more and 10 W/mm 2 or less.
- this energy density is sufficiently weak compared to the energy density of the laser irradiation required for laser cutting, so the laser output (power) is likely to become unstable. Therefore, the irradiation area (laser irradiation diameter) is set to be large and the laser output (power) is adjusted.
- the (pulse) frequency was set to 10 (Hz) and the (pulse) duty (pulse width) was set to 50 (%).
- the gas pressure of the assist gas was set to 0.01 (MPa) for the purpose of preventing spatter scattering on the protective glass. Since the heating temperature itself by laser irradiation is low and therefore the amount of oxidation heat generated is small, the type of assist gas may be either oxygen (O 2 ) or nitrogen (N 2 ).
- the applicant has set the first judgment criterion (threshold) for judging the surface quality of the workpiece W to, for example, whether the data components in the temperature range of 450°C to 800°C are 40% or less in the feature amount information 331, 341, 351 acquired by laser scanning at a predetermined distance, or whether the standard deviation in the temperature pattern is 100°C or more. If the surface quality is 40% or less in the temperature range, or if the standard deviation is 100°C or more, the condition of the oxide film is poor and the quality is poor.
- the second judgment criterion (threshold) for judging the internal characteristics of the workpiece W is set to, for example, whether the cooling temperature reached 5 seconds after the start of laser irradiation by repeated heating and cooling is less than 470°C. If the cooling temperature reached 5 seconds after the start of laser irradiation is less than 470°C, the internal characteristics are considered to have a high thermal conductivity and good quality. Note that the first and second judgment criteria are not limited to these.
- the first criterion may be a comparison of the total accumulated time during which the measured temperature is in the range of 450°C to 800°C with an accumulation time of 1 ms when laser scanning is performed for 10 seconds with a laser output of 150 (W), an irradiation area (laser irradiation diameter) of 6.5 ( ⁇ ), and a processing speed of 100 (mm/s). If this total accumulated time is shorter than the first criterion, it can be determined that the condition of the oxide film is poor, and if it is longer, the adhesion of the oxide film is good. Also, for example, the standard deviation of the measured temperature data with an accumulation time of 1 ms may be compared. If this standard deviation is larger than the first criterion, it can be determined that the condition of the oxide film is poor, and if it is smaller, the adhesion of the oxide film is good.
- the second criterion may be a comparison of the time taken from the start of cooling to reach 300°C after spot heating by irradiating the laser up to a temperature of 800°C and then turning off the laser irradiation and starting cooling. If this time is shorter than the second criterion, it can be determined that the internal characteristics are good, and if it is longer, the cut surface will be rough. Also, the cooling temperature 50 ms after turning off the laser irradiation can be compared. If this cooling temperature is lower than the second criterion, it can be determined that the internal characteristics are good, and if it is higher, the cutting quality will be poor.
- the criterion information is information that can be changed or set as appropriate, for example, by the operator.
- FIG. 31 and 32 are flowcharts showing an example of a process flow for determining workability using a radiation thermometer.
- a processing program required for the control unit 61 is selected and read from a processing program DB (Database) 390 such as a storage device (step S120).
- processing conditions selected by the processing program are read from a processing condition DB (Database) 391 such as a storage device (step S121), and the internal characteristic judgment threshold value (second judgment criterion) and the surface quality judgment threshold value (first judgment criterion) of the workpiece W to which the processing conditions are applied are loaded from an internal characteristic judgment threshold value DB (Database) 392 and a surface quality judgment threshold value DB (Database) 393 such as a storage device, and set in the control unit 61 and the arithmetic processing unit 63, respectively.
- a processing condition DB Database 391 such as a storage device
- the calculation processing unit 63 determines the threshold value for each judgment (step S122).
- the laser light LB is irradiated to the workpiece W under the fifth irradiation condition to perform the surface modification as described above, and then the laser light LB is irradiated to the workpiece W under the fourth irradiation condition to the surface modification section (step S123), and the temperature based on the infrared light emitted during laser irradiation is measured by the radiation thermometer 30A (step S124).
- the laser light LB is irradiated to the workpiece W under the third irradiation condition (step S125), and the temperature based on the infrared light emitted during laser irradiation is measured by the radiation thermometer 30A (step S126).
- the internal judgment process and the surface judgment process may be performed in parallel, or one may be performed first and the other may be performed later.
- the calculation processing unit 63 inputs the time series data of the temperature measured in step S124 and extracts feature amount information (second feature amount information) indicating the temporal change in temperature of the workpiece W.
- the workability judgment unit 66 compares the extracted feature amount information (second feature amount information) with a set threshold value for internal property judgment to, for example, judge whether the internal property of the material is equal to or lower than the threshold value (step S127).
- the calculation processing unit 63 also inputs the time series data of the temperature measured in step S126 and extracts feature amount information (first feature amount information) indicating the positional change in temperature of the workpiece W.
- the workability judgment unit 66 compares the extracted feature amount information (second feature amount information) with a set threshold value for surface property judgment to, for example, judge whether the surface property of the material is equal to or lower than the threshold value (step S130).
- step S127 If it is determined in step S127 that the internal characteristic is equal to or less than the threshold (YES in step S127), it is determined that the internal characteristic of the material of the workpiece W is good (step S128). On the other hand, if it is determined in step S127 that the internal characteristic is not equal to or less than the threshold (NO in step S127), it is determined that the internal characteristic of the material of the workpiece W is poor (step S129).
- step S130 If it is determined in step S130 that the surface texture is equal to or less than the threshold (YES in step S130), the surface texture of the material of the workpiece W is determined to be good (step S131). On the other hand, if it is determined in step S130 that the surface texture is not equal to or less than the threshold (NO in step S130), the surface texture of the material of the workpiece W is determined to be poor (step S132).
- the machinability determination unit 66 performs a determination result process of the machinability of the workpiece W based on the results of either of the steps S128 and S129 and either of the steps S131 and S132 (step S133). That is, in the case of the combination of the steps S128 and S131, the internal characteristics (magnitude of thermal conductivity due to internal components) are good and the surface properties (state and adhesion of the oxide film) are good, so for example, a determination result (second determination result) is obtained that the machinability of the workpiece W is good.
- the judgment result of the workability of the workpiece W thus obtained (second judgment result) is output from the workability judgment unit 66 to the overall judgment unit 65, and is also notified to the operator as the judgment result of the workability by the radiation thermometer 30A, for example, by being displayed on the display 70 (step S134), and the series of processes according to this flowchart is terminated. In this manner, the workability judgment process by the radiation thermometer 30A in the NC device 60 can be performed.
- FIG. 33 is a diagram showing the result of classifying the judgment results using the spectroscope and the radiation thermometer and the cutting quality (cuttability) evaluation results obtained by actual cutting in the comprehensive judgment matrix information.
- the overall judgment matrix information 400 is made up of data in which the vertical axis represents the quality evaluations " ⁇ ", “ ⁇ ”, and “ ⁇ ” as the judgment results of the surface judgment of the surface condition and surface properties of the workpiece W by the spectroscope 30 and the radiation thermometer 30A, and the horizontal axis represents the quality evaluations " ⁇ ", “ ⁇ ”, and “ ⁇ ” as the judgment results of the internal judgment of the internal condition and internal properties of the workpiece W by the spectroscope 30 and the radiation thermometer 30A, and these are combined in a matrix table.
- the matrix area 404 of the overall judgment matrix information 400 is divided into a category 1 area 401 surrounded by a solid line in the figure, a category 2 area 402 surrounded by a dashed line in the figure, and a category 3 area 403 surrounded by a two-dot chain line in the figure.
- the category 1 area 401 corresponds to all combinations where the quality evaluations of the surface judgment and the interior judgment by the radiation thermometer 30A are both " ⁇ " and the quality evaluations of the surface judgment and the interior judgment by the spectroscope 30 are " ⁇ " to " ⁇ ".
- the area 401 in category 1 corresponds to a combination in which the quality evaluations of the surface judgment and the internal judgment by the radiation thermometer 30A are both " ⁇ ", or the quality evaluations of the surface judgment and the internal judgment by the spectroscope 30 are both " ⁇ ".
- area 402 in category 2 corresponds to combinations that do not belong to category 1, where the surface quality assessment by radiation thermometer 30A is “ ⁇ " or “X” and the interior quality assessment is “ ⁇ ”, or the surface quality assessment by spectrometer 30 is " ⁇ " or "X” and the interior quality assessment is " ⁇ ".
- area 403 of category 3 is a combination that does not belong to categories 1 and 2, and corresponds to a combination in which the radiation thermometer 30A gives a surface quality evaluation of " ⁇ ” to " ⁇ ” and the interior quality evaluation of " ⁇ ” or “ ⁇ ", or the spectrometer 30 gives a surface quality evaluation of " ⁇ ” and the interior quality evaluation of " ⁇ ” or " ⁇ ".
- the above categories 1 to 3 do not simply indicate the quality of the workability (cuttability) of the workpiece W, but are classified to more accurately predict the workability based on a combination of the surface and internal judgment results of the spectrometer 30 and the radiation thermometer 30A before cutting the workpiece W. Therefore, by using the overall judgment matrix information 400, the processing conditions to be recommended according to the predicted workability can be more appropriately determined.
- the overall judgment unit 65 judges the workability (cuttability) of the workpiece W classified into the area 401 of category 1 as a workpiece (standard material) that can be laser cut (cutting) well under standard conditions as the processing conditions recommended in the overall judgment matrix information 400.
- the overall judgment unit 65 judges the workability of the workpiece W classified into the area 402 of category 2 as a workpiece (material that requires test cutting) that can be laser cut (cut) under standard conditions as the processing conditions recommended in the overall judgment matrix information 400, but that the standard conditions need to be adjusted. Furthermore, the overall judgment unit 65 judges that the workpiece W classified in the area 403 of category 3 is a workpiece (test cut recommended material) that is difficult to cut with a laser (cutting process) using the standard conditions as the recommended processing conditions in the overall judgment matrix information 400. In other words, the workpiece W includes standard materials, materials requiring test cuts that can be cut under standard conditions but cannot be cut well, and test cut recommended materials that are difficult to cut under standard conditions.
- the cutting conditions (processing conditions) for laser cutting were set to a laser output of 9000 (W), processing speed of 850 (mm/min), (pulse) frequency of 2000 (Hz), (pulse) duty (pulse width) of 65 (%), gas pressure of 0.09 (MPa), nozzle gap of 0.5 (mm), nozzle DG of 2.5, gas type of oxygen ( O2 ), lens focal length of 190 (mm), and ACL of 70, and cutting processing was performed at multiple focal positions, and the cutting quality was evaluated by observation evaluation.
- the cutting quality was evaluated as follows: good cutting quality (good cuttability) was assigned a quality score of "2", and slightly poor cutting quality (poor cuttability) was assigned a quality score of "1". Also, poor cutting quality or cutting impossible (uncuttable) was assigned a quality score of "0".
- the type of each workpiece W (samples 1-4, No. 1-21) was classified and displayed in the matrix area 404 of the overall judgment matrix information 400 along with the cut quality evaluation.
- the judgment results (quality evaluation) of the material state (material characteristics) of each workpiece W may differ between the judgment results (first judgment result) by the spectroscope 30 and the judgment results (second judgment result) by the radiation thermometer 30A.
- the surface judgment (surface condition and surface properties) judgment results are both rated as “ ⁇ ” and “good” by the spectrometer 30 and the radiation thermometer 30A, but the internal judgment (internal condition and internal characteristics) judgment results are different. That is, the internal characteristic judgment result by the radiation thermometer 30A is rated as “ ⁇ ” and “fair”, indicating slightly poor thermal conductivity. On the other hand, the internal condition judgment result by the spectrometer 30 is rated as " ⁇ " and "good”, indicating that the internal condition is good. Also, according to the cutting processing results of the workpiece W with No. 13 and No. 14, the cutting quality is scored as "2”, indicating good cuttability.
- the spectrometer 30 captures physical phenomena that cannot be captured by, for example, the radiation thermometer 30A, and makes an internal judgment.
- the spectrometer 30 may not be able to capture the material state (surface state and internal state) and may make an erroneous judgment on cuttability
- the radiation thermometer 30A may capture the material state (surface properties and internal characteristics) and be able to accurately judge cuttability. In order to investigate this, the fourth study was conducted.
- FIG. 34 is a table showing the results of the determination of the material state (material characteristics) of Samples 1 to 4 by the spectroscope and the radiation thermometer, and the evaluation results of the cut surfaces.
- Samples 1, 2 and samples 3, 4 shown in the results table 405 of Figure 34 are processed materials W made of two types of steel material with different internal components that are manufactured in the same lot, with samples 1 and 3 being in their raw material state and samples 2 and 4 being in a surface-modified state.
- the surface modification was performed, for example, by removing the oxide film on the material surface by polishing to reduce the average surface roughness to 0.8 or less, and then heating and holding the material in a water vapor atmosphere at 500°C for 2 hours to generate an oxide (magnetite) with high adhesion on the material surface.
- the cutting conditions for the laser cutting were set to a laser output of 3 (kW), a processing speed of 630 (mm/min), and oxygen ( O2 ) as the assist gas, and the cutting process was performed, and the cut surface was evaluated by observation.
- Fig. 35 is a diagram showing chemical components (mass%) other than iron contained in the materials of Samples 1 to 4.
- the component table 406 in Fig. 35 shows the contents (mass percentages (mass%)) of carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulfur (S), chromium (Cr), nickel (Ni), molybdenum (Mo), and copper (Cu).
- samples 1 and 2 are materials characterized by a high carbon (C) content
- samples 3 and 4 are materials characterized by a low carbon content and a high manganese (Mn) content.
- Carbon is an element that tends to concentrate in the final solidification part of the material, and the parts with concentrated carbon melt easily, while parts with less carbon melt less easily. If there is a lot of carbon, uneven melting is more likely to occur inside the material. Manganese also shows a similar tendency, although it is not as pronounced as carbon. Samples 1 and 2 have a large amount of carbon, while samples 3 and 4 have a small amount of carbon but a large amount of manganese. Therefore, it is thought that samples 1 and 2 and samples 3 and 4 have almost the same results in terms of the temporal fluctuations of the emission spectra measured by the spectrometer 30 in the molten state.
- the evaluation using radiation thermometer 30A which evaluates thermal conductivity in a solid state, is strongly influenced by silicon and manganese in addition to carbon, so it is believed that samples 3 and 4, which contain large amounts of alloy elements other than iron such as manganese, were judged to have low thermal conductivity when evaluated internally.
- the thermal conductivity was actually measured using the laser flash method, and the thermal conductivity of samples 3 and 4 was 48.9 W/(m ⁇ K), which was lower than the thermal conductivity of samples 1 and 2, which was 57.7 W/(m ⁇ K), and this is believed to reflect the accuracy of the internal evaluation using radiation thermometer 30A.
- Fig. 36 is a graph showing the relationship between temperature and time when repeated heating and cooling were performed on sample 1.
- Fig. 36 shows a temperature waveform 410 obtained by measuring sample 1 with radiation thermometer 30A and converting the time series data of infrared intensity output from radiation thermometer 30A into time series data of temperature.
- the cooling temperature reached 5 seconds after the start of laser irradiation was 420° C., as indicated by the arrow in the figure, which was less than the second judgment criterion (threshold value) of 470° C., and therefore the quality was evaluated as “ ⁇ ”.
- Fig. 37 is a graph showing the relationship between temperature and time when repeated heating and cooling were performed on sample 3.
- Fig. 37 shows a temperature waveform 411 obtained by measuring sample 3 with radiation thermometer 30A and converting the time series data of infrared intensity output from radiation thermometer 30A into time series data of temperature.
- the cooling temperature reached 5 seconds after the start of laser irradiation was 558° C., as indicated by the arrow in the figure, which was higher than the second judgment criterion (threshold value) of 470° C., and therefore the quality evaluation was “x.” In this way, it was confirmed that the internal judgment using the radiation thermometer 30A made it possible to judge the difference between Samples 1 and 2 and Samples 3 and 4.
- Figure 38 is a graph showing the relationship between temperature and time when laser scanning was performed on samples 1 and 2.
- Figure 38(a) shows a temperature waveform 412 obtained by radiation thermometer 30A by performing laser scanning on the material surface of sample 1
- Figure 38(b) shows a temperature waveform 413 obtained by radiation thermometer 30A by performing laser scanning on the material surface after surface modification for sample 2.
- Figure 39 shows a cut surface image and surface roughness when sample 1 is cut.
- Figure 40 shows a cut surface image and surface roughness when sample 2 is cut.
- sample 1 As shown in the temperature waveform 412 in FIG. 38(a), sample 1 has large and frequent temperature fluctuations during laser irradiation, and is therefore judged to have poor adhesion of the oxide film and significant peeling.
- the cut surface image of sample 1 is shown in image 414 in FIG. 39(a), and the surface roughness at a depth of 1 mm (line indicated by I) from the laser irradiation surface and at a depth of 15 mm (line indicated by II) are shown in graphs 415a in FIG. 39(b) and 415b in FIG. 39(c), respectively.
- the surface roughness at a depth of 1 mm from the laser irradiation surface is stable with little variation, but the surface roughness at a depth of 15 mm from the laser irradiation surface is unstable with a lot of variation, resulting in some irregular streaks appearing on the cut surface.
- sample 2 has a small temperature fluctuation during laser irradiation, and therefore it is determined that the oxide film is uniformly adhered.
- the cut surface image of sample 2 is as shown in image 416 in FIG. 40(a), and the surface roughness at a depth of 1 mm (line indicated by I) from the laser irradiation surface and at a depth of 15 mm (line indicated by II) are as shown in graphs 417a in FIG. 40(b) and 417b in FIG. 40(c), respectively.
- the surface roughness at a depth of 1 mm from the laser irradiation surface is more stable than the surface roughness at a depth of 15 mm from the laser irradiation surface, but overall there is little variation and it is stable, resulting in no irregular streaks appearing on the cut surface.
- Figure 41 is a graph showing the relationship between temperature and time when laser scanning was performed on samples 3 and 4.
- Figure 41(a) shows a temperature waveform 418 obtained by radiation thermometer 30A by performing laser scanning on the material surface of sample 3
- Figure 41(b) shows a temperature waveform 419 obtained by radiation thermometer 30A by performing laser scanning on the material surface after surface modification for sample 4.
- Figure 42 shows a cut surface image and surface roughness when sample 3 is cut.
- Figure 43 shows a cut surface image and surface roughness when sample 4 is cut.
- samples 3 and 4 were judged by the spectrometer 30 to have the same surface and internal quality (surface quality: “x” and internal quality: “ ⁇ ”), but the surface quality was different when judged by the radiation thermometer 30A (surface quality: "x” and “o”).
- the internal quality was judged by the radiation thermometer 30A to have the same quality (internal quality: "x").
- sample 3 As shown in the temperature waveform 418 in FIG. 41(a), sample 3 has large and frequent temperature fluctuations during laser irradiation, and is therefore judged to have poor adhesion of the oxide film and significant peeling.
- the cut surface image of sample 3 is shown in image 420 in FIG. 42(a), and the surface roughness at a depth of 1 mm (line indicated by I) from the laser irradiation surface and at a depth of 15 mm (line indicated by II) are shown in graphs 421a in FIG. 42(b) and 421b in FIG. 42(c), respectively.
- the surface roughness at a depth of 1 mm from the laser irradiation surface is stable with little variation, but the surface roughness at a depth of 15 mm from the laser irradiation surface is quite unstable with a lot of variation, resulting in many irregular streaks being seen on the cut surface.
- sample 4 has less temperature fluctuation during laser irradiation, and therefore it is judged that the uniformity of the oxide film is improved compared to sample 3.
- the cut surface image of sample 4 is as shown in image 422 in FIG. 43(a), and the surface roughness at a depth of 1 mm (line indicated by I) from the laser irradiation surface and at a depth of 15 mm (line indicated by II) are as shown by graphs 423a in FIG. 43(b) and 423b in FIG. 43(c), respectively.
- the surface roughness of sample 4 is stable at a depth of 1 mm from the laser irradiation surface, the surface roughness at a depth of 15 mm from the laser irradiation surface is unstable and varies, and many irregular striations are observed on the cut surface.
- the cutting ability (machinability) of the mild steel workpiece W is strongly correlated with the state of the oxide film on the surface of the workpiece W and the internal characteristics, and that the type and adhesion of the oxide film, as well as the stability of the melting behavior inside the material, can be analyzed based on the temporal change (time series data) in the emission spectrum intensity generated when the material surface is melted, and that the oxide film distribution state and the magnitude of heat conduction inside the material can be analyzed based on the temporal or positional change (time series data) in temperature at a laser output that does not melt the material.
- the judgment result of the workability of the workpiece W by the spectrometer 30 (first judgment result) and the judgment result of the workability of the workpiece W by the radiation thermometer 30A (second judgment result) are used (combined) to comprehensively judge the workability of the workpiece W.
- first judgment result the judgment result of the workability of the workpiece W by the spectrometer 30
- second judgment result the judgment result of the workability of the workpiece W by the radiation thermometer 30A
- the radiation thermometer 30A judges the surface of the workpiece W to have a large temperature variation
- the result of the judgment is combined with the result of the spectrometer 30 to determine the type and thickness of the oxide film by combining the judgment results, and it is possible to set optimal processing conditions (cutting conditions).
- the oxide film is mainly composed of hematite (Fe 2 O 3 )
- the adhesion of the oxide film is weak (small) and it is easy to peel off, so it is effective to adjust the parameters of the processing conditions, such as narrowing the focus diameter of the laser light LB on the material surface.
- part of the oxide film is composed of magnetite (Fe 3 O 4 )
- the adhesion of the oxide film is somewhat high, but for those that peel off during laser cutting, it is considered effective to take measures such as marking the cutting path before laser cutting or performing a pre-burning process to make the surface condition uniform.
- Such a processed material W can be classified into the category 2 area 402 in the matrix area 404 of the overall judgment matrix information 400 in FIG. 23.
- FIG. 44 is a flowchart showing an example of a process flow based on a comprehensive judgment of a machining system.
- the NC device 60 acquires, for example, thickness information of the workpiece W on the processing table 11 (step S150) and transmits it to the judgment model storage unit 51 of the PC 50A.
- the first and second judgment models 5, 6 corresponding to the plate thickness are selected in the judgment model storage unit 51 as described above and transmitted to the machinability calculation unit 52.
- the probe light (laser light LB) for the spectrometer 30 is irradiated to the workpiece W under the first judgment irradiation conditions (first irradiation conditions, second irradiation conditions) (step S151), the spectrometer 30 acquires spectral data based on the time series data of the emission spectrum (step S152), and the first waveform information 3 and the second waveform information 4 are calculated and transmitted as described above.
- the machinability calculation unit 52 calculates a quality score indicating a quality evaluation of the surface condition and internal condition of the workpiece W based on the first waveform information 3 and second waveform information 4 and the first judgment model 5 and second judgment model 6 transmitted as described above, and generates judgment matrix information 110 (step S153).
- the machinability determination unit 53 determines the quality of the surface condition and internal condition of the workpiece W (surface determination and internal determination) based on the calculated quality score and the generated determination matrix information 110 (step S154), and transmits the first determination result of the machinability of the workpiece W to the overall determination unit 65.
- the probe light (laser light LB) for the radiation thermometer 30A is irradiated to the workpiece W under the second judgment irradiation conditions (third irradiation condition to fifth irradiation condition) (step S155), the radiation thermometer 30A acquires temperature data based on the time series data of the infrared intensity (step S156), and the calculation processing unit 63 extracts feature information (first feature information, second feature information).
- the machinability judgment unit 66 judges the quality of the surface texture and internal characteristics of the workpiece W (surface judgment and internal judgment) based on the extracted feature information and judgment criteria (first judgment criterion, second judgment criterion) (step S157), and outputs the second judgment result of the machinability of the workpiece W to the overall judgment unit 65.
- the overall judgment unit 65 judges the overall quality of the material state of the workpiece W from the first judgment result by the spectrometer 30 and the second judgment result by the radiation thermometer 30A using the overall judgment matrix information 400 (step S158), and obtains an overall judgment result (third judgment result) that comprehensively judges the workability of the workpiece W.
- condition A includes, for example, information regarding the third judgment result indicating that the workpiece W is a standard material, information notifying that the workpiece W can be processed under standard conditions, etc.
- processing conditions that correspond to the material state of the workpiece W whose workability has been determined by the overall determination unit 65 are set in the laser processing device 10A based on, for example, an input from an operator (step S165), and product processing of the workpiece W is carried out based on the set processing conditions (step S166), thus completing the series of processes according to this flowchart.
- Condition B includes, for example, information on the third judgment result indicating that the workpiece W is a material requiring test cutting, and information informing the user that the processing conditions for the workpiece W need to be changed or adjusted from the standard conditions, for example, by narrowing the focusing diameter as described above.
- Condition C includes, for example, information on the third judgment result indicating the workability of the workpiece W as a material recommended for test cutting, information notifying that the processing conditions of the workpiece W need to be changed or adjusted from the standard conditions or the difficult-to-process material conditions, for example, by reducing the flow rate of the assist gas to suppress the combustion reaction as described above, and the like.
- condition B is displayed in step S160 or condition C is displayed in step S161
- the processing conditions are changed or adjusted based on, for example, an operator's input, and then test processing is performed (step S162).
- the quality (processing quality) of the state of the cut surface of the workpiece W obtained by the test processing is checked, and it is determined whether the processing quality is OK (step S163).
- step S163 If it is determined that the processing quality is not OK (F: False in step S163), the parameters of the processing conditions at the time of the test cut are adjusted, for example, by the operator's input (step S164), test processing is performed again (step S162), and the subsequent processes are repeated.
- step S165 processing conditions suited to the material state of the workpiece W are set in the laser processing device 10A (step S165), product processing is carried out based on this (step S166), and the series of processes according to this flowchart ends. Note that the order of operations may be reversed between the processes on the spectrometer 30 side in steps S150 to S154 and the processes on the radiation thermometer 30A side in steps S155 to S157.
- the processing system (machinability judgment system) 100A of the second embodiment judges the processability based on the processing conditions of the workpiece W before cutting based on the measurement by the spectrometer 30 and based on the measurement by the radiation thermometer 30A, and makes a comprehensive judgment based on a combination of these judgment results, which can further improve the judgment accuracy, and the presentation of the measures to be taken according to the contents of the judgment results (the material state of the workpiece W and the recommended processing conditions) (for example, various measures such as whether cutting should be performed under the recommended processing conditions, whether the processing conditions should be changed or adjusted to be suitable for the workpiece W, whether the recommended processing conditions should be further adjusted, and whether test processing should be performed) becomes more accurate and easier to judge.
- the processing system 100A of the second embodiment judges the processability based on the processing conditions of the workpiece W before cutting based on the measurement by the spectrometer 30 and based on the measurement by the radiation thermometer 30A, and makes a comprehensive judgment based on a combination of these judgment results, which can further improve the
- First waveform information (teaching data of explanatory variables) 2.
- Second waveform information (teaching data of explanatory variables) 3.
- First waveform information (data for estimating explanatory variables) 4.
- Second waveform information (data for estimating explanatory variables) 5
- First judgment model 6 Second judgment model 9 Judgment result 10, 10A Laser processing device 20, 20A Laser processing unit 30
- Spectrometer 50 Machinability judgment unit 51
- Judgment model storage unit 52 Machinability calculation unit 53, 66 Machinability judgment unit 60 NC device 61
- Control unit 62 Machining condition storage unit 63
- Calculation processing unit 65
- Overall judgment unit 70 Display 80 Learning device 81 First judgment model learning unit 82
- Second judgment model learning unit 90 Machinability judgment system 100, 100A Machining system 109a Surface quality evaluation result (teaching data of objective variable) 109b Internal quality evaluation result (teaching data of objective variable)
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
本発明は、加工システム及び加工性判定システムに関する。 The present invention relates to a processing system and a processability assessment system.
従来より、レーザ加工機等のレーザ加工装置においては、一般的に被加工材の材質及び板厚に応じた加工条件が予め設定されている。従って、レーザ加工装置のオペレータは、被加工材の材質及び板厚に合致した加工条件を選択して、もしくは加工プログラムの指示する加工条件にてレーザ加工を実施する。 Conventionally, in laser processing devices such as laser processing machines, processing conditions are generally preset according to the material and thickness of the workpiece. Therefore, the operator of the laser processing device selects processing conditions that match the material and thickness of the workpiece, or performs laser processing under processing conditions instructed by the processing program.
しかし、同じ名称の材質及び板厚の被加工材であっても、製造国、製造メーカ、製造ロット及び保管状況等の個体差、並びに高炉材か電炉材かの相違等によって、レーザ加工装置に事前に用意されている加工条件のままでは、良好な加工品質が得られないことがある。一方、被加工材の材質及び板厚に適した加工条件を選択した上で、被加工材の実際の材質及び板厚を測定し、選択した加工条件を、測定結果に応じて修正する技術も知られている(特許文献1参照)。 However, even when the workpiece has the same material and thickness, good processing quality may not be obtained using the processing conditions pre-prepared in the laser processing device due to individual differences in the country of manufacture, manufacturer, production lot, storage conditions, etc., as well as differences between blast furnace and electric furnace materials. On the other hand, there is also a known technology in which processing conditions suitable for the material and thickness of the workpiece are selected, the actual material and thickness of the workpiece are measured, and the selected processing conditions are modified based on the measurement results (see Patent Document 1).
しかしながら、上記特許文献1に開示された装置では、被加工材の材質及び板厚に応じて選択される加工条件を、実際に測定された材質及び板厚に基づいて修正することはできるが、選択された加工条件を修正しない場合、どの程度の加工品質が得られるのかを判定することは想定されていない。
However, in the device disclosed in
すなわち、上記従来技術は、選択された加工条件に基づく被加工材の加工性(切断加工に適しているかどうかの程度)そのものを、例えば製造メーカ毎、製造ロット毎、または保管状況毎に異なる実際の被加工材の個体差(品質のバラつき)に対応させて、実際の切断加工前に判定するものではなかった。 In other words, the above-mentioned conventional technology does not determine the workability (degree of suitability for cutting) of the workpiece based on the selected processing conditions before the actual cutting process, taking into account the individual differences (quality variations) of the actual workpiece that differ, for example, between manufacturers, between production lots, or between storage conditions.
このため、切断加工前に被加工材の加工条件に基づく加工性を判定して、その判定結果に基づいて、予め設定された加工条件での切断加工を行うか、被加工材に適した加工条件に変更するか等の判断を、テスト加工(試し加工)することなくオペレータがすることはできないという問題がある。 As a result, there is a problem in that the operator cannot judge the workability based on the processing conditions of the workpiece before cutting, and then, based on the judgment result, decide whether to cut under the pre-set processing conditions or change the processing conditions to be more suitable for the workpiece without performing test processing (trial processing).
本発明の一態様は、切断加工前に被加工材の加工条件に基づく加工性を判定して、予め設定された加工条件で切断加工を行うべきか、被加工材に適した加工条件に変更等すべきかの判定結果に基づく判断が容易で、加工不良を低減可能な加工システム及び加工性判定システムである。 One aspect of the present invention is a processing system and a processability judgment system that judges the processability based on the processing conditions of the workpiece before cutting, and makes it easy to make a decision based on the judgment results as to whether cutting should be performed under preset processing conditions or whether the processing conditions should be changed to those suitable for the workpiece, thereby reducing processing defects.
本発明の一態様に係る加工システムは、レーザ光を加工照射条件で被加工材に照射して前記被加工材を切断加工する加工工程と、前記レーザ光を前記被加工材を溶融させるが貫通はしない判定照射条件で前記被加工材に照射して前記被加工材の加工性を判定する加工性判定工程と、を実行可能なレーザ加工装置と、前記被加工材に前記判定照射条件で前記レーザ光を照射したときに発生する発光スペクトルを測定する測定装置と、前記測定装置で測定された前記発光スペクトルの時系列データに基づいて前記被加工材の加工性を判定する判定装置と、を備え、前記判定装置は、第1の判定モデル及び第2の判定モデルを有し、前記測定装置によって測定された前記発光スペクトルの時系列データから第1の時間領域の第1の波形情報と第2の時間領域の第2の波形情報とを抽出し、前記抽出された第1の波形情報を推定用データとして前記第1の判定モデルに入力して前記被加工材の表面品質評価を得、前記抽出された第2の波形情報を推定用データとして前記第2の判定モデルに入力して前記被加工材の内部品質評価を得、前記得られた前記被加工材の表面品質評価及び内部品質評価の組み合わせに基づいて、前記加工工程における予め設定された加工条件で切断加工された場合の前記被加工材の加工性の判定結果を出力する。 A processing system according to one aspect of the present invention includes a laser processing device capable of executing a processing step of irradiating a workpiece with laser light under processing irradiation conditions to cut the workpiece, and a machinability judgment step of irradiating the workpiece with the laser light under judgment irradiation conditions that melt but do not penetrate the workpiece to judge the machinability of the workpiece, a measurement device that measures an emission spectrum generated when the workpiece is irradiated with the laser light under the judgment irradiation conditions, and a judgment device that judges the machinability of the workpiece based on time series data of the emission spectrum measured by the measurement device, and the judgment device judges the machinability of the workpiece based on a first judgment model and a second judgment model. The measuring device has a function to extract first waveform information in a first time domain and second waveform information in a second time domain from the time series data of the emission spectrum measured by the measuring device, input the extracted first waveform information as estimation data to the first judgment model to obtain a surface quality evaluation of the workpiece, input the extracted second waveform information as estimation data to the second judgment model to obtain an internal quality evaluation of the workpiece, and output a judgment result of the workability of the workpiece when cut and processed under preset processing conditions in the processing step based on a combination of the obtained surface quality evaluation and internal quality evaluation of the workpiece.
本発明の一態様に係る加工性判定システムは、第1の判定モデル及び第2の判定モデルを有し、被加工材の加工性を判定する加工性判定工程において、レーザ光を前記被加工材を溶融させるが貫通はしない判定照射条件で、前記被加工材に照射したときに発生する発光スペクトルの時系列データから算出された第1の波形情報及び第2の波形情報をそれぞれ前記第1の判定モデル及び前記第2の判定モデルに入力し、前記第1の波形情報及び前記第2の波形情報に基づいて前記被加工材の加工性を判定する判定装置と、前記第1の判定モデル及び前記第2の判定モデルを作成する学習装置と、を備え、前記判定装置は、前記発光スペクトルの時系列データから第1の時間領域の第1の波形情報と第2の時間領域の第2の波形情報とを抽出し、前記抽出された第1の波形情報を推定用データとして前記第1の判定モデルに入力して前記被加工材の表面品質評価を得、前記抽出された第2の波形情報を推定用データとして前記第2の判定モデルに入力して前記被加工材の内部品質評価を得、前記得られた前記被加工材の表面品質評価及び内部品質評価の組み合わせに基づいて、前記レーザ光を加工照射条件で前記被加工材に照射して前記被加工材を切断加工する加工工程における予め設定された加工条件で切断加工された場合の前記被加工材の加工性の判定結果を出力し、前記学習装置は、前記第1の波形情報及び前記被加工材の表面品質を示す表面品質評価結果を第1の教師データとして入力して機械学習を行って前記第1の判定モデルを作成し、前記第2の波形情報及び前記被加工材の内部品質を示す内部品質評価結果を第2の教師データとして入力して機械学習を行って前記第2の判定モデルを作成する。 A machinability judgment system according to one embodiment of the present invention has a first judgment model and a second judgment model, and in a machinability judgment process for judging the machinability of a workpiece, first waveform information and second waveform information calculated from time series data of an emission spectrum generated when a laser beam is irradiated to the workpiece under judgment irradiation conditions that melt but do not penetrate the workpiece are input into the first judgment model and the second judgment model, respectively, and the system judges the machinability of the workpiece based on the first waveform information and the second waveform information, and a learning device that creates the first judgment model and the second judgment model, and the judgment device extracts first waveform information in a first time domain and second waveform information in a second time domain from the time series data of the emission spectrum, and uses the extracted first waveform information as estimation data to input the first waveform information and the second waveform information to the first judgment model and the second judgment model, respectively. The first waveform information and the surface quality evaluation result indicating the surface quality of the workpiece are input to the second judgment model as estimation data to obtain an internal quality evaluation of the workpiece, and based on the combination of the obtained surface quality evaluation and internal quality evaluation of the workpiece, a judgment result of the workability of the workpiece when cut and processed under preset processing conditions in a processing step in which the workpiece is cut by irradiating the workpiece with the laser light under processing irradiation conditions is output. The learning device inputs the first waveform information and the surface quality evaluation result indicating the surface quality of the workpiece as first teacher data to perform machine learning to create the first judgment model, and inputs the second waveform information and the internal quality evaluation result indicating the internal quality of the workpiece as second teacher data to perform machine learning to create the second judgment model.
本発明の一態様に係る加工システム及び加工性判定システムによれば、レーザ光を被加工材を溶融させるが貫通はしない判定照射条件で被加工材に照射したときに測定装置によって測定された発光スペクトルの時系列データから抽出された第1の時間領域の第1の波形情報と第2の時間領域の第2の波形情報とを第1の判定モデル及び第2の判定モデルに推定用データとして入力して得られた被加工材の表面品質評価及び内部品質評価の組み合わせに基づいて、加工工程における予め設定された加工条件で切断加工された場合の被加工材の加工性の判定結果が出力される。これにより、切断加工前に被加工材の加工条件に基づく加工性を判定することができるので、実際の切断加工に際して予め設定された加工条件での切断加工を行うべきか、被加工材に適した加工条件に変更すべきか等の判定結果に基づく判断が容易になり、加工不良を低減することが可能となる。 In accordance with one aspect of the present invention, the processing system and machinability judgment system output a judgment result of the machinability of the workpiece when it is cut under preset processing conditions in the processing step based on a combination of the surface quality evaluation and internal quality evaluation of the workpiece obtained by inputting the first waveform information in the first time domain and the second waveform information in the second time domain extracted from the time series data of the emission spectrum measured by the measuring device when the workpiece is irradiated with laser light under judgment irradiation conditions that melt but do not penetrate the workpiece, into the first judgment model and the second judgment model as estimation data. This makes it possible to judge the machinability based on the processing conditions of the workpiece before cutting, making it easier to make a judgment based on the judgment result as to whether the cutting should be performed under the preset processing conditions during actual cutting, or whether the processing conditions should be changed to those suitable for the workpiece, and thus making it possible to reduce processing defects.
本発明の他の態様に係る加工システムは、レーザ光を加工照射条件で被加工材に照射して前記被加工材を切断加工する加工工程と、前記レーザ光を前記被加工材を溶融させるが貫通はしない第1の判定照射条件、及び前記レーザ光を前記被加工材の素材の融点を超えない第2の判定照射条件で前記被加工材に照射して、前記被加工材の加工性を判定する加工性判定工程と、を実行可能なレーザ加工装置と、前記被加工材に前記第1の判定照射条件で前記レーザ光を照射したときに発生する発光スペクトルを測定する第1の測定部と、前記被加工材に前記第2の判定照射条件で前記レーザ光を照射したときに発生する放射光の赤外線強度を測定する第2の測定部と、を含む測定装置と、前記測定装置の前記第1の測定部によって測定された前記発光スペクトルの時系列データに基づいて、前記被加工材の加工性を判定する第1の判定部と、前記測定装置の前記第2の測定部によって測定された前記赤外線強度の時系列データに基づいて、前記被加工材の加工性を判定する第2の判定部と、前記第1の判定部により判定された第1の判定結果及び前記第2の判定部により判定された第2の判定結果の組み合わせに基づいて、前記加工工程における予め設定された加工条件で切断加工された場合の前記被加工材の加工性を判定し第3の判定結果を出力する第3の判定部と、を含む判定装置と、を備え、前記判定装置は、第1の判定モデル及び第2の判定モデルを有し、前記判定装置の前記第1の判定部は、前記測定装置の前記第1の測定部によって測定された前記発光スペクトルの時系列データから第1の時間領域の第1の波形情報と第2の時間領域の第2の波形情報とを抽出し、前記抽出された第1の波形情報を推定用データとして前記第1の判定モデルに入力し前記被加工材の表面品質評価を得て、前記抽出された第2の波形情報を推定用データとして前記第2の判定モデルに入力し前記被加工材の内部品質評価を得て、前記得られた前記被加工材の表面品質評価及び内部品質評価の組み合わせに基づいて、前記被加工材の加工性を判定した前記第1の判定結果を出力し、前記判定装置の前記第2の判定部は、前記測定装置の前記第2の測定部によって測定された前記赤外線強度の時系列データに基づいて、前記被加工材の温度の時間的又は位置的変化を示す特徴量情報を抽出し、前記抽出された特徴量情報と、予め登録済みの前記被加工材の加工性の判定用の基準情報と、に基づいて、前記被加工材の加工性を判定した前記第2の判定結果を出力する。 A processing system according to another aspect of the present invention includes a laser processing device capable of executing a processing step of irradiating a workpiece with laser light under processing irradiation conditions to cut the workpiece, and a workability judgment step of irradiating the workpiece with the laser light under first judgment irradiation conditions under which the laser light melts but does not penetrate the workpiece, and under second judgment irradiation conditions under which the laser light does not exceed the melting point of the material of the workpiece, to judge the workability of the workpiece; a first measurement unit that measures the emission spectrum generated when the laser light is irradiated to the workpiece under the first judgment irradiation conditions; and a second measurement unit that irradiates the workpiece with the laser light under the second judgment irradiation conditions. a measuring device including a second measuring unit that measures an infrared intensity of radiated light generated when light is irradiated; a first determining unit that determines the workability of the workpiece based on time series data of the emission spectrum measured by the first measuring unit of the measuring device; a second determining unit that determines the workability of the workpiece based on time series data of the infrared intensity measured by the second measuring unit of the measuring device; and a cutting process under preset processing conditions in the processing step based on a combination of a first determination result determined by the first determining unit and a second determination result determined by the second determining unit. and a third judgment unit that judges the workability of the workpiece when the workpiece is processed and outputs a third judgment result, the judgment device having a first judgment model and a second judgment model, the first judgment unit of the judgment device extracts first waveform information in a first time domain and second waveform information in a second time domain from time series data of the emission spectrum measured by the first measurement unit of the measurement device, inputs the extracted first waveform information as estimation data into the first judgment model to obtain a surface quality evaluation of the workpiece, and outputs the extracted second waveform information as estimation data to obtain a surface quality evaluation of the workpiece. The surface quality evaluation and internal quality evaluation of the workpiece are input into a fixed model to obtain an internal quality evaluation of the workpiece, and the first judgment result that judges the workability of the workpiece is output based on the combination of the obtained surface quality evaluation and internal quality evaluation of the workpiece, and the second judgment unit of the judgment device extracts feature information that indicates a temporal or positional change in the temperature of the workpiece based on the time series data of the infrared intensity measured by the second measurement unit of the measurement device, and outputs the second judgment result that judges the workability of the workpiece based on the extracted feature information and preregistered reference information for judging the workability of the workpiece.
本発明の他の態様に係る加工性判定システムは、第1の判定モデル及び第2の判定モデルを有し、被加工材の加工性を判定する加工性判定工程において、レーザ光を、前記被加工材を溶融させるが貫通はしない第1の判定照射条件で、前記被加工材に照射したときに発生する発光スペクトルの時系列データから抽出された第1の波形情報及び第2の波形情報を、それぞれ前記第1の判定モデル及び前記第2の判定モデルに入力し、前記第1の波形情報及び前記第2の波形情報に基づいて前記被加工材の加工性を判定する第1の判定部と、前記加工性判定工程において、前記レーザ光を、前記被加工材の素材の融点を超えない第2の判定照射条件で、前記被加工材に照射したときに発生する放射光の赤外線強度の時系列データから抽出された特徴量情報と、予め登録済みの前記被加工材の加工性の判定用の基準情報と、に基づいて前記被加工材の加工性を判定する第2の判定部と、前記第1の判定部により判定された第1の判定結果及び前記第2の判定部により判定された第2の判定結果の組み合わせに基づいて、前記加工工程における予め設定された加工条件で切断加工された場合の前記被加工材の加工性を判定し第3の判定結果を出力する第3の判定部と、を含む判定装置と、前記第1の判定モデル及び前記第2の判定モデルを作成する学習装置と、を備え、前記判定装置は、前記第1の判定部が、前記発光スペクトルの時系列データから第1の時間領域の第1の波形情報と第2の時間領域の第2の波形情報とを抽出し、前記抽出された第1の波形情報を推定用データとして前記第1の判定モデルに入力し前記被加工材の表面品質評価を得て、前記抽出された第2の波形情報を推定用データとして前記第2の判定モデルに入力し前記被加工材の内部品質評価を得て、前記得られた前記被加工材の表面品質評価及び内部品質評価の組み合わせに基づいて、前記被加工材の加工性を判定した前記第1の判定結果を出力し、前記第2の判定部が、前記赤外線強度の時系列データに基づいて、前記被加工材の温度の時間的又は位置的変化を示す特徴量情報を抽出し、前記抽出された特徴量情報と前記基準情報とに基づいて、前記被加工材の加工性を判定した前記第2の判定結果を出力し、前記学習装置は、前記第1の波形情報及び前記被加工材の表面品質を示す表面品質評価結果を第1の教師データとして入力して機械学習を行って前記第1の判定モデルを作成し、前記第2の波形情報及び前記被加工材の内部品質を示す内部品質評価結果を第2の教師データとして入力して機械学習を行って前記第2の判定モデルを作成する。 A machinability judgment system according to another aspect of the present invention has a first judgment model and a second judgment model, and in a machinability judgment step for judging the machinability of a workpiece, a first judgment unit inputs first waveform information and second waveform information extracted from time series data of an emission spectrum generated when a laser beam is irradiated to the workpiece under a first judgment irradiation condition that melts but does not penetrate the workpiece, into the first judgment model and the second judgment model, respectively, and judges the machinability of the workpiece based on the first waveform information and the second waveform information; a second judgment unit that judges the workability of the workpiece based on feature amount information extracted from time-series data of infrared intensity of radiated light generated when the workpiece is irradiated under second judgment irradiation conditions not exceeding the melting point of the material, and pre-registered reference information for judging the workability of the workpiece; and a third judgment unit that judges the workability of the workpiece when cut under preset processing conditions in the processing step based on a combination of a first judgment result judged by the first judgment unit and a second judgment result judged by the second judgment unit, and outputs a third judgment result; and a learning device that creates a second judgment model, wherein the judgment device has a first judgment unit that extracts first waveform information in a first time domain and second waveform information in a second time domain from the time series data of the emission spectrum, inputs the extracted first waveform information as estimation data into the first judgment model to obtain a surface quality evaluation of the workpiece, inputs the extracted second waveform information as estimation data into the second judgment model to obtain an internal quality evaluation of the workpiece, and outputs the first judgment result that judges the workability of the workpiece based on a combination of the obtained surface quality evaluation and internal quality evaluation of the workpiece. The second judgment unit extracts feature information indicating the temporal or positional change in temperature of the workpiece based on the time series data of the infrared intensity, and outputs the second judgment result that judges the workability of the workpiece based on the extracted feature information and the reference information. The learning device inputs the first waveform information and the surface quality evaluation result indicating the surface quality of the workpiece as first teacher data to perform machine learning to create the first judgment model, and inputs the second waveform information and the internal quality evaluation result indicating the internal quality of the workpiece as second teacher data to perform machine learning to create the second judgment model.
本発明の他の態様に係る加工システム及び加工性判定システムによれば、レーザ光を被加工材を溶融させるが貫通はしない第1の判定照射条件で被加工材に照射したときに発生する発光スペクトルの時系列データから抽出された第1の波形情報及び第2の波形情報を第1の判定モデル及び第2の判定モデルに入力して得られた被加工材の表面品質評価及び内部品質評価の組み合わせに基づき判定された被加工材の加工性の第1の判定結果と、レーザ光を被加工材の素材の融点を超えない第2の判定照射条件で被加工材に照射したときに発生する放射光の赤外線強度の時系列データから抽出された特徴量情報及び予め登録済みの被加工材の加工性の判定用の基準情報に基づき判定された被加工材の加工性の第2の判定結果との組み合わせに基づいて、加工工程における予め設定された加工条件で切断加工された場合の被加工材の加工性を判定し第3の判定結果が出力される。これにより、切断加工前に被加工材の加工条件に基づく加工性を判定することができるので、実際の切断加工に際して予め設定された加工条件での切断加工を行うべきか、被加工材に適した加工条件に変更すべきか等の判定結果に基づく判断が容易になり、加工不良を低減することが可能となる。 According to another aspect of the present invention, the processing system and the workability judgment system judge the workability of the workpiece when cut under preset processing conditions in the processing step based on a combination of the surface quality evaluation and internal quality evaluation of the workpiece obtained by inputting the first waveform information and the second waveform information extracted from the time series data of the emission spectrum generated when the workpiece is irradiated with laser light under the first judgment irradiation condition, which melts but does not penetrate the workpiece, into the first judgment model and the second judgment model, and the second judgment result of the workability of the workpiece judged based on the feature information extracted from the time series data of the infrared intensity of the radiated light generated when the workpiece is irradiated with laser light under the second judgment irradiation condition, which does not exceed the melting point of the material of the workpiece, and the previously registered standard information for judging the workability of the workpiece, and a third judgment result is output. This allows the workability of the workpiece to be judged based on the processing conditions before cutting, making it easier to make decisions based on the judgment results, such as whether to perform the actual cutting process using preset processing conditions or to change to processing conditions suitable for the workpiece, thereby reducing processing defects.
本発明の一態様によれば、切断加工前に被加工材の加工条件に基づく加工性を判定して、予め設定された加工条件で切断加工を行うべきか、被加工材に適した加工条件に変更等すべきかの判定結果に基づく判断が容易で、加工不良を低減可能となる。 According to one aspect of the present invention, the workability of the workpiece is judged based on the processing conditions before cutting, and a decision can be made based on the judgment results as to whether cutting should be performed under preset processing conditions or whether the processing conditions should be changed to those suitable for the workpiece, thereby reducing processing defects.
以下、添付の図面を参照して、本発明の実施の形態に係る加工システム及び加工性判定システムを詳細に説明する。ただし、以下の実施の形態は、各請求項に係る発明を限定するものではなく、また、実施の形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。また、以下の実施の形態においては、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。また、実施の形態においては、各構成要素の配置、縮尺及び寸法等が誇張あるいは矮小化されて実際のものとは一致しない状態で示されている場合、並びに一部の構成要素につき記載が省略されて示されている場合があるとする。 Below, a processing system and a machinability assessment system according to an embodiment of the present invention will be described in detail with reference to the attached drawings. However, the following embodiments do not limit the invention according to each claim, and not all of the combinations of features described in the embodiments are necessarily essential to the solution of the invention. Furthermore, in the following embodiments, identical or corresponding components are given the same reference numerals and duplicated explanations are omitted. Furthermore, in the embodiments, the arrangement, scale, dimensions, etc. of each component may be exaggerated or minimized and shown in a state that does not match the actual ones, and descriptions of some components may be omitted.
[第1の実施形態]
[加工システムの基本的構成]
図1は、本発明の第1の実施形態に係る加工システムの基本的構成を概略的に示す説明図である。
図1に示すように、第1の実施形態に係る加工システム100は、レーザ光LBを加工照射条件で被加工材Wに照射して被加工材Wを切断加工する加工工程と、レーザ光LBを被加工材Wを溶融させるが貫通はしない判定照射条件で被加工材Wに照射して被加工材Wの加工性を判定する加工性判定工程と、を実行可能なレーザ加工装置10と、被加工材Wに判定照射条件でレーザ光LBを照射したときに発生する発光スペクトルを測定する分光器(測定装置)30と、分光器(測定装置)30で測定された発光スペクトルの時系列データに基づいて被加工材Wの加工性を判定する加工性判定ユニット(判定装置)50と、を備える。加工性判定ユニット(判定装置)50は、第1の判定モデル5(図9)及び第2の判定モデル6(図9)を有し、分光器(測定装置)30によって測定された発光スペクトルの時系列データから第1の時間領域の第1の波形情報3(図9)と第2の時間領域の第2の波形情報4(図9)とを抽出する。加工性判定ユニット(判定装置)50は、抽出された第1の波形情報3を推定用データとして第1の判定モデル5に入力して被加工材Wの表面品質評価を得る。また、加工性判定ユニット(判定装置)50は、抽出された第2の波形情報4を推定用データとして第2の判定モデル6に入力して被加工材Wの内部品質評価を得る。そして、加工性判定ユニット(判定装置)50は、得られた被加工材Wの表面品質評価及び内部品質評価の組み合わせに基づいて、加工工程における予め設定された加工条件で切断加工された場合の被加工材Wの加工性の判定結果9(図9)を出力する。なお、上記「溶融させる」とは、例えば、溶融プール(溶融池)を発生させること等を意味し、「貫通はしない」とは、例えば、穴を開けないこと等を意味するものである。
[First embodiment]
[Basic configuration of the machining system]
FIG. 1 is an explanatory diagram illustrating a basic configuration of a machining system according to a first embodiment of the present invention.
As shown in FIG. 1, the
第1の判定モデル5は、第1の波形情報1(図9)及び被加工材Wの表面品質を示す表面品質評価結果109a(図9)を第1の教師データとして入力して機械学習を行って作成される。第2の判定モデル6は、第2の波形情報2(図9)及び被加工材Wの内部品質を示す内部品質評価結果109b(図9)を第2の教師データとして入力して機械学習を行って作成される。
The
また、加工システム100は、レーザ加工装置10、分光器30及び加工性判定ユニット50を制御するNC(Numerical Control)装置60と、各種の情報を表示可能なディスプレイ70と、を備えている。なお、加工性判定ユニット50及びNC装置60は、レーザ加工装置10に含まれるように搭載されていてもよい。
The
被加工材Wは、例えば、鉄鋼である場合、主成分として鉄(Fe)を含み、非鉄金属のアルミニウム合金鋼である場合、主成分としてアルミニウム(Al)を含む。被加工材Wは、これらの主成分の他にメーカが意図的に添加した元素、及び不純物として混入している元素を含む。なお、不純物は、ここでは、材質の主たる含有物ではない含有物のことを指し、被加工材Wの溶融時に気泡のような物理現象を誘発する物質も含むものとする。 If the workpiece W is steel, for example, it contains iron (Fe) as its main component, and if it is non-ferrous aluminum alloy steel, it contains aluminum (Al) as its main component. In addition to these main components, the workpiece W contains elements intentionally added by the manufacturer and elements mixed in as impurities. Note that impurities here refer to inclusions that are not the main inclusions of the material, and also include substances that induce physical phenomena such as bubbles when the workpiece W is melted.
レーザ加工装置10は、被加工材Wの材料のレーザ切断、レーザ穴あけ等の加工(以下、「切断」及び「穴あけ」を含めて「切断加工」という。)を行う。レーザ加工装置10は、板金等の被加工材Wを載置する加工テーブル11と、加工テーブル11に対して、加工テーブル11の図中X軸方向に移動するX軸キャリッジ12と、このX軸キャリッジ12上を図中Y軸方向に移動するY軸キャリッジ13と、レーザ光LBを被加工材Wに照射して切断加工を行うレーザ加工ユニット20と、を有する。
The
レーザ加工ユニット20は、レーザ光LBを生成して射出するレーザ発振器21と、Y軸キャリッジ13に搭載されX軸キャリッジ12及びY軸キャリッジ13によってX軸方向及びY軸方向に移動可能に構成されたレーザ加工ヘッド22と、レーザ発振器21で生成されたレーザ光LBをレーザ加工ヘッド22へと伝送するプロセスファイバ23と、を備える。
The
また、レーザ加工装置10は、アシストガスを供給するアシストガス供給装置(図示せず)を備えている。なお、レーザ加工装置10は、レーザ加工ヘッド22が被加工材Wに対して移動する構成に限定されるものではなく、被加工材Wがレーザ加工ヘッド22に対して移動する構成も採用し得る。
The
レーザ発振器21は、例えば、レーザダイオードから発せられる種光が共振器でYb(イッテルビウム:Ytterbium)などを励起させ増幅させて所定の波長のレーザ光LBを射出するタイプ、又はレーザダイオードより発せられるレーザ光LBを直接利用するタイプのレーザ発振器等が用いられる。
The
レーザ発振器21は、波長900nm~1100nmの1μm帯のレーザ光LBを射出する。例えば、DDL(Direct Diode Laser)発振器は、波長910nm~950nmのレーザ光LBを射出し、ファイバレーザ発振器は、波長1060nm~1080nmのレーザ光LBを射出する。
The
また、青色半導体レーザは、波長400nm~460nmのレーザ光LBを射出する。グリーンレーザは、波長500nm~540nmのレーザ光LBを射出するファイバレーザ発振器またはDDL発振器でもよく、1μm帯のレーザ光LBと光合成した多波長共振器であってもよい。 The blue semiconductor laser emits laser light LB with a wavelength of 400 nm to 460 nm. The green laser may be a fiber laser oscillator or a DDL oscillator that emits laser light LB with a wavelength of 500 nm to 540 nm, or may be a multi-wavelength resonator that combines the green laser with laser light LB in the 1 μm band.
また、この他、図示はしないが、レーザ光LBを被加工材Wのどの位置に出射するかを確認するガイド光GB(例えば、波長650nm)を出射するようにしてもよい。
In addition, although not shown, it may be possible to emit a guide light GB (e.g.,
レーザ発振器21は、加工工程では加工照射条件でレーザ光LBを出射し、被加工材Wの加工性を判定する加工性判定工程では判定照射条件でレーザ光LBを出射する。判定照射条件に基づき出射されるレーザ光LBは、被加工材Wを溶融させるが貫通はしないものなので、レーザ加工装置10による被加工材Wの切断加工に用いられるものではない。このような判定照射条件のレーザ光LBは、パルス発振により照射されてもよい。
The
レーザ加工ヘッド22は、ビームコントロールユニット24を有する。ビームコントロールユニット24は、レーザ光LBを被加工材Wの材料に適した集光径及び発散角に制御する機能を有する。ビームコントロールユニット24は、プロセスファイバ23の出力端から射出されたレーザ光LBを入射して平行光束に変換するコリメータレンズ24aと、コリメータレンズ24aから射出されたほぼ平行光束のレーザ光LBをX軸及びY軸と直交するZ軸方向の下方に向けて反射すると共に、所定の波長の光を透過させる折り返しミラー24bと、折り返しミラー24bで反射したレーザ光LBを集束させて被加工材Wに照射する加工用の集光レンズ24cと、を有する。折り返しミラー24bには、例えば、少なくともレーザ光LB及びガイド光GBの波長(例えば、1080nm、650nm)を反射するコーティングが施されている。
The
レーザ加工ヘッド22は、その先端部に、レーザ光LBを被加工材Wに照射するための円形の開口部25aを有するノズル25を備えている。ノズル25は、溶融した被加工材Wを除去するために、アシストガス供給装置から供給される所定のアシストガス圧のガス流をレーザ光LBと共に被加工材Wに噴射するノズル機能を有する。ノズル25は、レーザ加工ヘッド22に着脱自在に設けられる。
The
なお、コリメータレンズ24a、折り返しミラー24b、集光レンズ24c及びノズル25は、予め光軸が調整された状態でレーザ加工ヘッド22内に固定されている。また、ビームコントロールユニット24内には、集束位置を調整するために、コリメータレンズ24aを光軸に平行な方向(X軸方向)に駆動するレンズ駆動部(図示せず)が設けられている。また、集束位置を調整するため、レーザ加工ヘッド22自体を、図示しない駆動機構によって、X軸方向及びY軸方向と直交するZ軸方向に移動可能に構成されていてもよい。
The
分光器30は、例えば、レーザ加工ヘッド22のハウジング上部に搭載されている。分光器30は、ハウジング上部における折り返しミラー24bの被加工材Wと対峙した透過側において、被加工材Wの加工側から折り返しミラー24bに向かう光のうち、折り返しミラー24bを透過した測定対象の光を入力し、受光部31で受光する。分光器30は、受光部31で受光した測定対象の光を回折格子等によって分光し、波長毎に光強度(スペクトル)を検出する。このように、分光器30は、被加工材Wにレーザ光LBを照射したときに発生する発光スペクトルを測定可能に構成される。そして、分光器30は、検出された波長毎の光強度(スペクトル)を、時系列データとして出力する。なお、分光器30は、レーザ加工ヘッド22のハウジングの側部に設けられてもよい。
The
分光器30は、具体的には、第1の照射条件で被加工材Wに照射されたレーザ光LBにより被加工材Wにおいて発生した測定対象の光のスペクトル(第1の発光スペクトル)の時系列データを、加工性判定ユニット50に出力する。また、分光器30は、第2の照射条件で被加工材Wに照射されたレーザ光LBにより被加工材Wにおいて発生した測定対象の光のスペクトル(第2の発光スペクトル)の時系列データを、加工性判定ユニット50に出力する。なお、分光器30に代えて、例えば、バンドパスフィルタを有するフォトディテクタ等を測定装置として用いることもできる。
Specifically, the
次に、このように構成された加工システム100における加工性判定工程について説明する。
図2は、判定照射条件のレーザ光を被加工材に照射したときに発生する発光スペクトルを分光器で測定した測定結果に基づく時系列データの一例を示す図である。図3は、レーザ光の第1の照射条件及び第2の照射条件の一例を示す図である。図4は、第1の発光スペクトルの時系列データ及び第2の発光スペクトルの時系列データから第1の波形情報及び第2の波形情報を抽出するための波長軸方向及び時間軸方向の抽出ポイントを示す図である。なお、図2においては、各波長の時系列データのうち、特に800nm帯の時系列データを示しており、横軸が時間(Time:ミリ秒)を表し、縦軸が任意単位の発光強度の振幅(Amplitude)を表している。
Next, a process of determining workability in the
Fig. 2 is a diagram showing an example of time series data based on the measurement result of the emission spectrum generated when the laser light under the judgment irradiation condition is irradiated to the workpiece by a spectroscope. Fig. 3 is a diagram showing an example of the first irradiation condition and the second irradiation condition of the laser light. Fig. 4 is a diagram showing extraction points in the wavelength axis direction and the time axis direction for extracting the first waveform information and the second waveform information from the time series data of the first emission spectrum and the time series data of the second emission spectrum. Note that Fig. 2 shows the time series data of the 800 nm band in particular among the time series data of each wavelength, with the horizontal axis representing time (Time: milliseconds) and the vertical axis representing the amplitude (Amplitude) of the emission intensity in arbitrary units.
加工性判定工程では、レーザ加工装置10は、判定照射条件に従って被加工材Wにレーザ光LBを照射する。判定照射条件は、レーザ光LBが照射される期間中一定でもよいが、本実施形態では、図2に示すように、レーザ光LBの照射開始から照射終了までの時間を第1段階及び第2段階に分け、判定照射条件として、第1段階では第1の照射条件101(図3)でレーザ光LBを被加工材Wに照射し、第2段階では第2の照射条件102(図3)でレーザ光LBを被加工材Wに照射する。なお、レーザ加工装置10は、加工性判定工程においてレーザ光LBを判定照射条件下でスポット照射する(レーザ光LBを移動させずに照射する)ようにしてもよい。第1の照射条件101は、被加工材Wの表面の品質を評価するのに適した条件であり、第2の照射条件は、被加工材Wの内部の品質(例えば、不純物の割合等)を評価するのに適した条件である。第2の照射条件102は、第1の照射条件101よりも測定時間を短縮するための条件としてもよい。レーザ光LBの第1の照射条件101及び第2の照射条件102のレーザ出力は、加工工程における加工照射条件のレーザ出力よりも小さい。また、第1の照射条件101のレーザ出力は、第2の照射条件102のレーザ出力よりも小さい。具体的には、加工照射条件のレーザ出力は、7000W~8000Wであるのに対し、第1の照射条件101のレーザ出力は、1000Wであり、第2の照射条件102のレーザ出力は、1200W~1600Wである。また、被加工材Wに照射されるレーザ光LBの第1の照射条件101のレーザ照射時間(第1段階)は、第2の照射条件102のレーザ照射時間(第2段階)よりも短い。そして、判定照射条件(第1の照射条件101及び第2の照射条件102)でレーザ光LBを照射中のレーザ加工装置10のノズルギャップは、加工照射条件でレーザ光LBを照射中のレーザ加工装置10のノズルギャップよりも大きく設定される。
In the machinability judgment process, the
より詳しくは、例えば図2及び図3に示すように、第1段階におけるレーザ光LBの第1の照射条件101は、レーザ出力が1000Wでレーザ照射時間がレーザ開始(Laser ON)から0.5秒(500ms)である。また、第2段階におけるレーザ光LBの第2の照射条件102は、レーザ出力が1400Wでレーザ照射時間が500msからレーザ終了(Laser OFF)の2500msまでの2.0秒(2000ms)である。 More specifically, as shown in Figures 2 and 3, the first irradiation condition 101 of the laser light LB in the first stage is a laser output of 1000 W and a laser irradiation time of 0.5 seconds (500 ms) from the start of the laser (Laser ON). The second irradiation condition 102 of the laser light LB in the second stage is a laser output of 1400 W and a laser irradiation time of 2.0 seconds (2000 ms) from 500 ms to 2500 ms when the laser is ended (Laser OFF).
これら第1及び第2の照射条件101,102に共通するレーザ光LBの出力の周波数は1000Hz、デューティは100%、アシストガスのガス種は空気(Air)でガス圧は0.1MPa、及びノズルギャップは50mmである。レーザ光LBが照射される被加工材Wの材質は、例えば、軟鋼材(SS400)で板厚は19mm(t19)とした。 The output frequency of the laser light LB common to the first and second irradiation conditions 101, 102 is 1000 Hz, the duty is 100%, the gas type of the assist gas is air, the gas pressure is 0.1 MPa, and the nozzle gap is 50 mm. The material of the workpiece W irradiated with the laser light LB is, for example, mild steel (SS400) with a plate thickness of 19 mm (t19).
次に、上記の判定照射条件のレーザ光LBが被加工材Wに照射された結果、発光し、分光器30で測定される発光スペクトルの時系列データと、この時系列データから加工性の判定に用いる第1の波形情報及び第2の波形情報を求める処理について説明する。
分光器30で測定される発光スペクトルの時系列データは、図2に示す時系列データを、発光スペクトルを構成する波長分だけ備えた時系列データである。この時系列データを次元圧縮して、機械学習に適した特徴量を表す第1の波形情報及び第2の波形情報を抽出する。次元圧縮の手法は種々考えられるが、本実施形態では、時系列データの開始部分と終了部分の特定波長帯のデータを圧縮する。第1段階における第1の時間領域の時系列データに基づき被加工材Wの表面状態の特徴量を表す第1の波形情報1,3が生成される。また、第2段階における第2の時間領域の時系列データに基づき被加工材Wの内部状態の特徴量を表す第2の波形情報2,4が生成される。
Next, we will explain the process of obtaining time series data of the emission spectrum measured by the
The time series data of the emission spectrum measured by the
すなわち、第1の照射条件101によるレーザ光LBの照射時間内において、例えば、図2に示すように、レーザ開始から約0.2秒までの間(0秒~0.23秒)のa領域の時系列データは、主にレーザ光LBと被加工材Wの表面(材料表面)との反応を示す表面状態の特徴量を含んでいる。また、約0.2秒以降の時系列データは、レーザ光LBと被加工材Wの内部(素材内部)との反応を示している。 In other words, during the irradiation time of the laser light LB under the first irradiation condition 101, for example, as shown in FIG. 2, the time series data of region a from the start of the laser to approximately 0.2 seconds (0 seconds to 0.23 seconds) mainly includes surface condition features that indicate the reaction between the laser light LB and the surface (material surface) of the workpiece W. In addition, the time series data from approximately 0.2 seconds onwards indicates the reaction between the laser light LB and the inside of the workpiece W (material interior).
更に、第2の照射条件102によるレーザ光LBの照射時間内において、例えば、約1.8秒から約2.3秒までの間(1.83秒~2.35秒)のb領域の時系列データは、レーザ光LBと被加工材Wの内部との反応を示す内部状態の特徴量を含んでいる。このような特徴量は、被加工材Wの材料(材質の違い及び個体差等)によって、それぞれ異なる。 Furthermore, within the irradiation time of the laser light LB under the second irradiation condition 102, for example, the time series data of region b between about 1.8 seconds and about 2.3 seconds (1.83 seconds to 2.35 seconds) contains a feature of the internal state that indicates the reaction between the laser light LB and the inside of the workpiece W. Such a feature varies depending on the material of the workpiece W (differences in material quality and individual differences, etc.).
なお、レーザ光LBの第1及び第2の照射条件101,102は、実際の製品加工に使用される加工照射条件とは大きく異なっている。一般的な製品加工においては、例えば、ノズルギャップは0.3mm~1.5mm程度であるのに対し、第1及び第2の照射条件101,102では、50mmと非常に広いギャップが設定されている。 Note that the first and second irradiation conditions 101, 102 of the laser light LB are significantly different from the processing irradiation conditions used in actual product processing. In general product processing, for example, the nozzle gap is about 0.3 mm to 1.5 mm, whereas in the first and second irradiation conditions 101, 102, a very wide gap of 50 mm is set.
これは、被加工材Wの材料表面の酸化被膜の厚さが10μm~50μm程度と非常に薄いため、レーザ光LBのエネルギー密度が高すぎると照射時の発光を伴う反応による物理現象が速くなり、分光器30でこの反応を捉えることが非常に困難となるからである。従って、デフォーカスしたレーザ光LBを被加工材Wに照射して、抑制されたエネルギー密度と形成される溶融プールの大きさを確保することで、被加工材Wの表面状態を捉えるようにしている。
This is because the oxide film on the material surface of the workpiece W is very thin, about 10 μm to 50 μm, and if the energy density of the laser light LB is too high, the physical phenomenon caused by the reaction accompanied by light emission upon irradiation will be fast, making it very difficult to capture this reaction with the
本出願人の実験結果によると、ノズルギャップが10mm以下では分光器30で反応を捉えることができず、20mm程度から反応が見られるようになり、100mm程度と離し過ぎると十分な発光による光量を得ることができなくなった。このため、第1及び第2の照射条件101,102のノズルギャップは、30mm~70mm程度が適正範囲であると考えられる。このときのエネルギー密度は5kW/cm2~29kW/cm2程度であるため、この適正範囲の中間の50mmに設定した。
According to the results of experiments conducted by the applicant, if the nozzle gap is 10 mm or less, the reaction cannot be detected by the
一方、内部状態の測定においては、表面状態を捉える場合とは異なり、エネルギー密度を高くすることが可能である。そこで、測定時間を短縮するために、第2の照射条件102では、第1の照射条件101よりもレーザ出力を高く設定している。ただし、レーザ出力を、例えば、1800W程度と高くすると、過剰なエネルギーによって良好切断可能な標準材(良好切断材)と難加工材の時間波形の識別が困難となるため、適正なレーザ出力範囲は1200W~1600Wが望ましい。従って、第2の照射条件102のレーザ出力は、このレーザ出力範囲の中間である1400Wに設定した。 On the other hand, unlike when capturing the surface state, it is possible to increase the energy density when measuring the internal state. Therefore, in order to shorten the measurement time, the laser output is set higher in the second irradiation condition 102 than in the first irradiation condition 101. However, if the laser output is increased to, for example, about 1800 W, the excessive energy makes it difficult to distinguish the time waveforms of standard materials that can be cut well (materials that can be cut well) from difficult-to-process materials, so the appropriate laser output range is preferably 1200 W to 1600 W. Therefore, the laser output in the second irradiation condition 102 is set to 1400 W, which is in the middle of this laser output range.
図4に示すように、分光器30から得られた第1及び第2の発光スペクトルの時系列データから、波長方向及び時間方向に設定された4つの波長成分105~108の時系列データが抽出される。これら4つの波長成分105~108は、具体的には、波長450nm~570nmの第1の波長帯(第1の波長帯域)103と、波長720nm~850nmの第2の波長帯(第2の波長帯域)104と、において、それぞれ抽出された0秒~0.23秒の第1の時間領域の波長成分105,106及び1.83秒~2.35秒の第2の時間領域の波長成分107,108である。
As shown in FIG. 4, time series data of four wavelength components 105-108 set in the wavelength direction and time direction is extracted from the time series data of the first and second emission spectra obtained from the
波長成分105,106は、例えば、それぞれ波長方向に66行及び100行で、時間方向に200列のサンプルを抽出したスペクトルデータからなる。また、波長成分107,108は、例えば、それぞれ波長方向に66行及び100行で、時間方向に450列のサンプルを抽出したスペクトルデータからなる。
そして、第1の波形情報1,3及び第2の波形情報2,4は、上記の波長成分105~108から以下のように求められる。すなわち、まず、各波長成分105~108をそれぞれ波長方向に平均化した4つの時間波形を算出する。次に、第1の波長帯103の中心波長(例えば514nm)の時間波形と、第2の波長帯104の中心波長(例えば811nm)の時間波形の比を算出する。これら平均化した時間波形と中心波長の時間波形の比は、時系列データの帯域情報及び時間変化情報を含んでいる。
Then, the
こうして得られた各算出値のうち、第1の発光スペクトルのa領域の時系列データ(波長成分105,106)を平均化した時間波形を、第1の波形情報1,3として使用する。また、第2の発光スペクトルのb領域の時系列データ(波長成分107,108)を平均化した時間波形及び中心波長の時間波形の比を、第2の波形情報2,4として使用する。これら第1の波形情報1,3及び第2の波形情報2,4は、それぞれ被加工材Wの表面状態及び内部状態を的確に表すデータとして、後述する機械学習に用いられ得る。
Among the calculated values thus obtained, the time waveform obtained by averaging the time series data (
なお、上記のように抽出される発光スペクトルの第1及び第2の波長帯103,104は、好ましくは可視光域から近赤外域の波長帯域のうち、レーザ加工の基準となる波長(発光波長帯域)及びガイド光GBの波長を除いた波長帯であり、より好ましくは、450nm~850nmの波長帯からガイド光GBの波長を除いた波長帯であるとよい。これにより、加工性の判定に用いる第1の波形情報1,3及び第2の波形情報2,4は、レーザ光LB及びガイド光GBの反射光による影響を受けず、被加工材Wからの発光スペクトルのみを用いて算出可能になる。
The first and
図5は、被加工材の材料毎に表面状態が異なるa領域の時系列データの時間波形と表面画像とを比較可能に表す表面品質評価結果の一例を示す図である。図6は、被加工材の材料毎に内部状態が異なるb領域の時系列データの時間波形を比較可能に表す内部品質評価結果の一例を示す図である。なお、表面品質評価結果109a及び内部品質評価結果109bは、被加工材Wの表面品質評価及び内部品質評価を複数種の異なる数値に評点化した品質スコア(点数評価)を含む。
FIG. 5 is a diagram showing an example of a surface quality evaluation result that comparatively represents the time waveform of the time series data of region a, where the surface state differs for each material of the workpiece, and the surface image. FIG. 6 is a diagram showing an example of an internal quality evaluation result that comparatively represents the time waveform of the time series data of region b, where the internal state differs for each material of the workpiece. Note that the surface
図5に示すように、軟鋼材で板厚19mmの被加工材Wの表面品質評価結果109aにおいて、表面品質の品質評価の「○」、「△」及び「×」は、例えば、被加工材Wの材料表面を加工性の観点から実際に確認評価して定義したものであり、この並び順に「良」、「不良」及び「不可」を表し、それぞれ「2」、「1」及び「0」の品質スコア(点数評価)が付けられている。メーカAの被加工材Wの材料(A材)の場合、例えば、酸化被膜の密着性が良好で、表面の面粗さが低いので、品質評価は「○」で品質スコアは「2」となっている。また、a領域の時系列データの時間波形は、立ち上がりにピークが発生し、その後安定する波形となっている。
As shown in FIG. 5, in the surface
また、メーカBの被加工材Wの材料(B材)及びメーカCの被加工材Wの材料(C材)の場合、例えば、酸化被膜が剥がれやすく、表面が粗いので、品質評価は「△」で品質スコアは「1」となっている。また、a領域の時系列データの時間波形は、例えば、品質評価が「○」のA材と比べて、立ち上がりのピークが、B材のように低めに発生したり、C材のように高めに発生したりして、その後不安定な波形となっている。 In addition, in the case of the material W of manufacturer B (material B) and the material W of manufacturer C (material C), for example, the oxide film peels off easily and the surface is rough, so the quality evaluation is "△" and the quality score is "1." In addition, the time waveform of the time series data of region a, for example, compared to material A with a quality evaluation of "○," the rising peak occurs at a lower level like material B or a higher level like material C, and then the waveform becomes unstable.
また、メーカDの被加工材Wの材料(D材)の場合、例えば、酸化被膜が極薄であり、サビが発生していて表面が粗いので、品質評価は「×」で品質スコアは「0」となっている。また、a領域の時系列データの時間波形は、立ち上がりにピークが発生しない波形となっている。このように、表面品質評価結果109aによれば、材料の表面状態によって、a領域の時系列データの時間波形が異なっていることが把握され得る。
Furthermore, in the case of material W (material D) of manufacturer D, for example, the oxide film is extremely thin, rust has occurred, and the surface is rough, so the quality evaluation is "x" and the quality score is "0." Also, the time waveform of the time series data of region a is a waveform that does not have a peak at the rising edge. In this way, according to the surface
一方、図6に示すように、軟鋼材で板厚19mmの被加工材Wの内部品質評価結果109bにおいて、内部品質の品質評価の「○」、「△」及び「×」は、例えば、得られた時間波形の強度及び変動の大きさ並びにレーザ照射中の不純物の摘出程度等の観点から実際に確認評価して定義したものであり、この並び順に「良」、「不良」及び「不可」を表し、それぞれ「2」、「1」及び「0」の品質スコア(点数評価)が付けられている。
On the other hand, as shown in FIG. 6, in the internal
メーカEの被加工材Wの材料(E材)の場合、メーカFの被加工材Wの材料(F材)及びメーカGの被加工材Wの材料(G材)と比べて、例えば、b領域の時系列データの時間波形の強度が低く、変動が小さい。また、レーザ照射中の溶融プールにおける不純物の摘出は少ない。このため、品質評価は「○」で品質スコアは「2」となっている。 In the case of material W (material E) made by manufacturer E, compared to material W made by manufacturer F (material F) and material W made by manufacturer G (material G), for example, the intensity of the time waveform in the time series data of region b is lower and the fluctuation is smaller. Also, the amount of impurities extracted from the molten pool during laser irradiation is small. For this reason, the quality evaluation is "○" and the quality score is "2".
G材の場合、E材及びF材と比べて、例えば、b領域の時系列データの時間波形の強度が高く、変動が大きい。また、レーザ照射中の溶融プールにおける不純物の摘出は非常に多い。このため、品質評価は「×」で品質スコアは「0」となっている。なお、F材の場合、b領域の時系列データの時間波形の強度及び変動は、これらE材とG材の中間程度の状態となっており、レーザ照射中の溶融プールにおける不純物の摘出がE材よりもある程度多くG材よりもある程度少なく認められた。このため、品質評価は「△」で品質スコアは「1」となっている。 In the case of material G, for example, the intensity of the time waveform of the time series data in region b is high and the fluctuation is large compared to materials E and F. Also, a large amount of impurities were removed from the molten pool during laser irradiation. For this reason, the quality rating is "X" and the quality score is "0". In the case of material F, the intensity and fluctuation of the time waveform of the time series data in region b is somewhere between those of materials E and G, and it was observed that impurities were removed from the molten pool during laser irradiation to a certain extent more than material E and to a certain extent less than material G. For this reason, the quality rating is "△" and the quality score is "1".
このように、内部品質評価結果109bによれば、材料の内部状態によって、レーザ照射中の不純物の摘出の程度が異なり、摘出量が多くなるに従って、b領域の時系列データの時間波形の強度及び変動が大きくなることが把握され得る。そして、これらの強度及び変動が大きくなるに従って、レーザ加工装置10によるレーザ切断等の切断加工が困難になることが判明した。
In this way, according to the internal
なお、上記の品質評価及び品質スコアにより示される被加工材Wの表面状態及び内部状態は、より細かく把握可能に分割されていてもよい。例えば、表面品質の「△」の品質評価を、時間波形のピークが高いものについては「△´」とし、ピークが低いものについては「△」としたり、時間波形の周波数成分に着目して細分化しされてもよい。 The surface condition and internal condition of the workpiece W indicated by the above quality evaluation and quality score may be divided to allow for more detailed understanding. For example, a quality evaluation of surface quality "△" may be changed to "△´" for those with high peaks in the time waveform and to "△" for those with low peaks, or may be subdivided based on the frequency components of the time waveform.
このように、例えば、レーザ加工装置10による軟鋼材の酸素切断等の切断加工において、被加工材Wの材料の表面状態と内部状態はいずれも重要な要素である。本出願人は、図5及び図6の表面品質評価結果109a及び内部品質評価結果109bで示した分光器30から得られるa領域の時系列データの時間波形及びb領域の時系列データの時間波形に基づいて、材料の表面状態及び内部状態の両方を適切に把握可能であることを見出した。
In this way, for example, in cutting processes such as oxygen cutting of mild steel using a
加工システム100では、これらの時間波形を含む発光スペクトルの時系列データから算出された第1の波形情報1及び第2の波形情報2を説明変数とし、品質スコアを目的変数として機械学習を行って作成された判定モデルに基づき、被加工材Wの加工性を判定する構成とした。なお、第1及び第2の照射条件101,102によりレーザ光LBを被加工材Wに照射したときの表面側と内部側では、それぞれ発生する物理現象が異なるため、判定モデルはそれぞれ分けて作成することとした。
The
ここで、加工システム100の加工性判定ユニット50及びNC装置60について説明する。図7は、加工システムの概略的な機能ブロック図である。
図7に示すように、加工性判定ユニット50は、判定モデル保存部51と、加工性演算部52と、加工性判定部53と、を備える。
Here, a description will be given of the
As shown in FIG. 7 , the
判定モデル保存部51は、被加工材Wの表面状態に応じて、加工条件を評価するための第1の判定モデル5(図9)と、被加工材Wの内部状態に応じて、加工条件を評価するための第2の判定モデル6(図9)と、を読み出し可能に記憶する。例えば、第1の判定モデル5及び第2の判定モデル6は、被加工材Wの板厚毎に作成されている。なお、評価される加工条件は、例えば、予め後述するNC装置60の加工条件保存部62に保存されている。また、第1の判定モデル5及び第2の判定モデル6は、加工性判定ユニット50の判定モデル保存部51の内部に保存せずに、外部のサーバ等に保存されるようにしてもよい。
The judgment
加工性演算部52は、例えば、被加工材Wの板厚情報に基づいて、判定モデル保存部51から読み出した第1及び第2の判定モデル5,6と、分光器30により取得された第1の波形情報及び第2の波形情報と、に基づき、被加工材Wの加工性評価としての表面状態の品質スコア及び内部状態の品質スコアの点数付けを行い、表面品質評価及び内部品質評価の組み合わせとしての判定マトリックス情報を生成する。判定マトリックス情報は、判定モデル保存部51に保存され得る。
The
ここで、判定マトリックス情報は、例えば、加工対象となる被加工材Wの切断加工前に、被加工材Wの表面状態と内部状態の品質の組み合わせに基づく加工性を予測するために用いられ、予測された加工性に応じて推奨する加工条件を判定可能とするための情報である。この判定マトリックス情報については、後述する。 The judgment matrix information is used, for example, to predict the workability of the workpiece W based on a combination of the quality of the surface and internal conditions before cutting the workpiece W to be processed, and is information that makes it possible to determine the recommended processing conditions according to the predicted workability. This judgment matrix information will be described later.
加工性判定部53は、加工性演算部52で生成された判定マトリックス情報に基づいて、被加工材Wの加工性(良好切断可能な標準材、難加工材)及びこれに基づき推奨される加工条件(標準条件、難加工材条件)を判定し決定する。なお、加工条件は、例えば、被加工材Wの材質(軟鋼、ステンレス鋼、高炉材、電炉材等)及び板厚(19mm、22mm等)に応じたレーザ切断の種々の加工条件(レーザ出力(ピーク出力:Peak Power、繰返し周波数:Repetition frequency、パルス幅:Pulse Width)、加工速度:Machining velocity、集束位置:Focus position、他)を含む。また、被加工材に与える時間当たりのエネルギー密度は、上記の加工条件(そのレーザ出力(レーザ平均出力)、集束位置(集束径)、及び加工速度)等のパラメータによって決定し得る。
The
NC装置60は、レーザ加工装置10、分光器30及び加工性判定ユニット50に各種動作の制御指示を出力すると共に、加工性判定部53の判定結果に基づき、例えば、ディスプレイ70に判定結果を表す各種情報の表示指示を出力可能な制御部61と、被加工材Wの各種の加工条件を記憶装置等に保存する加工条件保存部62と、を備える。
The
なお、加工条件は、例えば、被加工材Wの材質及び板厚等に応じて、NC装置60に予め標準仕様の標準条件及び難加工材用の加工条件(以下、「難加工材条件」という。)として複数備えられ、加工条件保存部62に保存されていてもよい。また、制御部61は、後述する出力I/F(Interface)を介してスピーカやランプに音声出力や点灯等の各種情報の報知指示も出力可能である。
The machining conditions may be prepared in advance in the
図8は、軟鋼の被加工材の板厚に応じた加工条件としての標準条件及び難加工材条件を例示する図である。図8(a)に示す加工条件110aは、被加工材Wの板厚が19mm(t19mm)の場合の標準条件及び難加工材条件を示し、図8(b)に示す加工条件110bは、被加工材Wの板厚が22mm(t22mm)の場合の標準条件及び難加工材条件を示している。
FIG. 8 is a diagram illustrating standard conditions and difficult-to-machine conditions as machining conditions according to the thickness of the workpiece of mild steel. Machining conditions 110a shown in FIG. 8(a) show the standard conditions and difficult-to-machine conditions when the workpiece W has a thickness of 19 mm (
図8(a)及び図8(b)に示すように、板厚19mmの加工条件110a及び板厚22mmの加工条件110bの標準条件及び難加工材条件は、ノズル、加工速度(mm/min)、レーザ出力(ピーク出力)(W)、(パルス)周波数(Hz)、(パルス)デューティ(パルス幅)(%)、ガス種、ガス圧(MPa)、ノズルギャップ(mm)及びACL(集光径を変更する機能)の各パラメータの項目が、それぞれ備えられている。なお、ACLはレーザ光LBをコリメート光にするときのビーム径に関するパラメータであり、数値が大きいほどコリメート光のビーム径が大きくなり、コリメート光のビーム径が大きくなるほどビームスポット径が小さくなるように作用するパラメータである。 As shown in Figures 8(a) and 8(b), the standard conditions and difficult-to-machine material conditions for machining conditions 110a for a plate thickness of 19 mm and machining conditions 110b for a plate thickness of 22 mm each include the following parameters: nozzle, machining speed (mm/min), laser output (peak output) (W), (pulse) frequency (Hz), (pulse) duty (pulse width) (%), gas type, gas pressure (MPa), nozzle gap (mm), and ACL (function to change the focused diameter). Note that ACL is a parameter related to the beam diameter when the laser light LB is collimated, and the larger the value, the larger the beam diameter of the collimated light, and the larger the beam diameter of the collimated light, the smaller the beam spot diameter.
加工条件110aの標準条件では、上記各パラメータの項目が、type-A、1000、7000、1000、75、O2、0.06、1、及び70に設定されている。また、加工条件110aの難加工材条件では、上記各パラメータの項目のうち、ノズルとACLを除く各項目が同じに設定されているものの、ノズルがtype-Bになり、ACLが80に設定されている。 In the standard conditions of the processing conditions 110a, the above-mentioned parameters are set to type-A, 1000, 7000, 1000, 75, O 2 , 0.06, 1, and 70. In the difficult-to-machine material conditions of the processing conditions 110a, the above-mentioned parameters are set to the same items except for the nozzle and ACL, but the nozzle is type-B and the ACL is set to 80.
加工条件110bの標準条件では、上記各パラメータの項目が、type-A、900、8000、1000、75、O2、0.06、1、及び70に設定されている。また、加工条件110bの難加工材条件では、上記各パラメータの項目のうち、ノズル、ガス圧及びACLを除く各項目が同じに設定されているものの、ノズルがtype-Bになり、ガス圧が0.07でACLが80に設定されている。 In the standard conditions of the processing conditions 110b, the above-mentioned parameters are set to type-A, 900, 8000, 1000, 75, O2 , 0.06, 1, and 70. In the difficult-to-machine material conditions of the processing conditions 110b, the above-mentioned parameters are set to the same except for the nozzle, gas pressure, and ACL, but the nozzle is type-B, the gas pressure is set to 0.07, and the ACL is set to 80.
図9は、加工システムで使用される加工性判定システムの概略構成を示すブロック図である。
図9に示すように、一実施形態に係る加工性判定システム90は、第1の判定モデル5及び第2の判定モデル6を有し、被加工材Wの加工性を判定する加工性判定工程において、レーザ光LBを被加工材Wを溶融させるが貫通はしない判定照射条件で、被加工材Wに照射したときに発生する発光スペクトルの時系列データから算出された第1の波形情報3及び第2の波形情報4をそれぞれ第1の判定モデル5及び第2の判定モデル6に入力し、第1の波形情報3及び第2の波形情報4に基づいて被加工材Wの加工性を判定する加工性判定ユニット(判定装置)50と、第1の判定モデル5及び第2の判定モデル6を作成する学習装置80と、を備える。加工性判定ユニット50は、発光スペクトルの時系列データから第1の時間領域の第1の波形情報3と第2の時間領域の第2の波形情報4とを抽出し、抽出された第1の波形情報3を推定用データとして第1の判定モデル5に入力して被加工材Wの表面品質評価を得、抽出された第2の波形情報4を推定用データとして第2の判定モデル6に入力して被加工材Wの内部品質評価を得る。また、加工性判定ユニット50は、得られた被加工材Wの表面品質評価及び内部品質評価の組み合わせに基づいて、レーザ光LBを加工照射条件で被加工材Wに照射して被加工材Wを切断加工する加工工程における予め設定された加工条件で切断加工された場合の被加工材Wの加工性の判定結果を出力する。学習装置80は、第1の波形情報1及び被加工材Wの表面品質を示す表面品質評価結果109aを第1の教師データとして入力して機械学習を行って第1の判定モデル5を作成し、第2の波形情報2及び被加工材Wの内部品質を示す内部品質評価結果109bを第2の教師データとして入力して機械学習を行って第2の判定モデル6を作成する。
FIG. 9 is a block diagram showing a schematic configuration of a workability determination system used in the machining system.
As shown in Figure 9, a
すなわち、加工性判定システム90は、上記のような学習装置80と、加工システム100に含まれる加工性判定ユニット50と、を備えて構成される。なお、学習装置80は、加工システム100の内部に設けられてもよいし、加工システム100の外部に設けられていてもよい。
In other words, the
学習装置80は、第1の判定モデル学習部81及び第2の判定モデル学習部82を有する。第1の判定モデル学習部81には、学習過程において、2つの教師データが入力される。1つ目は、分光器30で測定された第1の発光スペクトルのa領域の時系列データに基づく、説明変数としての第1の波形情報1である。2つ目は、表面品質評価結果109aに含まれる、目的変数としての表面品質の品質スコアである。第1の判定モデル学習部81は、これら第1の波形情報1及び表面品質評価結果109aを第1の教師データとして入力し、これら第1の教師データに基づいて機械学習を行って、被加工材Wの表面状態の予測用の第1の判定モデル5を作成し出力する。
The
第2の判定モデル学習部82には、学習過程において、2つの教師データが入力される。1つ目は、分光器30で測定された第2の発光スペクトルのb領域の時系列データに基づく、説明変数としての第2の波形情報2である。2つ目は、内部品質評価結果109bに含まれる、目的変数としての内部品質の品質スコアである。第2の判定モデル学習部82は、これら第2の波形情報2及び内部品質評価結果109bを第2の教師データとして入力し、これら第2の教師データに基づいて機械学習を行って、被加工材Wの内部状態の予測用の第2の判定モデル6を作成し出力する。
Two pieces of training data are input to the second judgment
一方、加工性判定ユニット50の加工性演算部52には、推定過程において、2つの推定用データが入力される。1つ目は、新たに切断加工される被加工材Wの切断加工前に分光器30で測定された第1の発光スペクトルのa領域の時系列データに基づく第1の波形情報3である。2つ目は、新たに切断加工される被加工材Wの切断加工前に分光器30で測定された第2の発光スペクトルのb領域の時系列データに基づく第2の波形情報4である。
Meanwhile, two pieces of estimation data are input to the
加工性演算部52は、これら第1及び第2の波形情報3,4を推定用データとして入力し、学習装置80で作成された第1及び第2の判定モデル5,6に基づいて、判定マトリックス情報を生成する。加工性判定部53は、判定マトリックス情報に基づいて、レーザ加工装置10でこれから行われる切断加工における被加工材Wの加工性及びこれに基づき推奨される加工条件を報知し得る判定結果9を出力する。なお、加工性判定システム90で用いられる説明変数及び目的変数は、上記例示したものに限定されるものではない。
The
なお、加工性判定ユニット(判定装置)50は、判定結果9を確認可能に報知するディスプレイ(報知部)70を含み、判定結果9は、表面品質評価及び内部品質評価の組み合わせにおける加工条件による被加工材Wへの適応性を表現可能な加工性評価を含んで構成されていてもよい。ディスプレイ(報知部)70は、加工性評価に基づいて、被加工材Wの材料に合わせてレーザ加工装置10に設定される加工条件を知らせる情報、レーザ加工装置10によるテスト加工を促す情報、並びに加工条件の調整、変更及び設定のいずれか一つの実行を促す情報の少なくとも一つを報知するように構成され得る。また、加工性判定ユニット(判定装置)50は、ディスプレイ(報知部)70により報知された情報に基づきオペレータが選択入力した入力情報を受け付けて、受け付けられた入力情報に応じた加工条件をレーザ加工装置10に設定する設定部を含んで構成されていてもよい。
The machinability judgment unit (judgment device) 50 may include a display (notification section) 70 that notifies the
また、学習装置80及び加工性判定ユニット50における機械学習及び判定に際しては、ランダムフォレスト(Random Forest:RF)、回帰分析(Regression Analysis:RA)、主成分分析(Principal Component Analysis:PCA)、特異値分解(Singular Value Decomposition:SVD)、線形判別分析(Linear Discriminant Analysis:LDA)、独立成分分析(Independent Component Analysis:ICA)、ガウス過程潜在変数モデル(Gaussian Process Latent Variable Model:GPLVM)、ロジスティクス回帰(Logistic Regression:LR)、サポートベクターマシン(Support Vector Machine:SVM)、判別分析(Discriminant Analysis:DA)、ランキングSVM(Ranking Support Vector Machine:RSVM)、勾配ブースティング(Gradient Boosting:GB)、ナイーブベイズ(Naive Bayes:NB)、K近接法(K-Nearest Neighbor Algorithm:K-NN)、NN(Neural Network)等の各種のアルゴリズムを利用することが可能であるが、これらに限定されるものではない。
In addition, for machine learning and judgment in the
[ハードウェア構成]
図10は、加工性判定ユニット、学習装置及び/又は加工性判定システムの基本的なハードウェア構成を示す説明図である。
図10に示すように、加工性判定ユニット50、学習装置80及び/又は加工性判定システム90は、例えば、GPU(画像演算処理装置:Graphics Processing Unit)212と、CPU(中央演算処理装置:Central Processing Unit)201と、RAM(Random Access Memory)202と、ROM(Read Only Memory)203と、HDD(ハードディスクドライブ:Hard Disk Drive)204と、SSD(ソリッドステートドライブ:Solid State Drive)205と、メモリカード206と、を備えたハードウェアにより実現されている。
[Hardware configuration]
FIG. 10 is an explanatory diagram showing a basic hardware configuration of the manufacturability determination unit, the learning device and/or the manufacturability determination system.
As shown in FIG. 10 , the
また、加工性判定ユニット50、学習装置80及び/又は加工性判定システム90は、例えば、入力I/F(インタフェース:Interface)207と、出力I/F(インタフェース:Interface)208と、通信I/F(インタフェース:Interface)209と、を備える。ハードウェアの各構成部201~209は、それぞれバス200によって相互に接続されている。
The
入力I/F207には、キーボード、トラックボール、ジョイスティック、マウス及びタッチパネル等の各種の入力デバイス、分光器30等の測定装置、及び温度センサ、光センサ、音響センサ、画像センサ、分光センサ等の各種センサを含む入力機器211が接続されている。出力I/F208には、報知部として機能するディスプレイ70、図示しないスピーカ及びランプ等を含む出力機器210が接続されている。通信I/F209は、インターネット等のネットワーク213を介して、サーバ等の外部機器214と通信を行う。上記加工性判定ユニット50、学習装置80及び/又は加工性判定システム90の各構成部は、このようなハードウェアによって構成され得る。
The input I/F 207 is connected to input
図11は、判定マトリックス情報を例示する図である。
図11に示すように、判定マトリックス情報110は、例えば、縦軸に被加工材Wの表面状態の品質評価の品質スコアを表し、横軸に被加工材Wの内部状態の品質評価の品質スコアを表して、これらをマトリックス表に組み合わせたデータからなる。
FIG. 11 is a diagram illustrating an example of the decision matrix information.
As shown in Figure 11, the
図11において、「S_score」は表面状態の品質スコアを表し、「B_score」は内部状態の品質スコアを表している。これらの品質スコアは、例えば、予め決められたしきい値に基づいて、「○」、「△」及び「×」の品質評価に対応して分類されている。例えば、「○」の品質評価は、表面状態の品質スコアが1.4以上(S_score≧1.4)及び内部状態の品質スコアが1.4以上(B_score≧1.4)となっている。また、「△」の品質評価は、表面状態の品質スコアが0.6以上1.4未満(0.6≦S_score<1.4)及び内部状態の品質スコアが0.6以上1.4未満(0.6≦B_score<1.4)となっている。また、「×」の品質評価は、表面状態の品質スコアが0.6未満(S_score<0.6)及び内部状態の品質スコアが0.6未満(B_score<0.6)となっている。 In FIG. 11, "S_score" represents the quality score of the surface state, and "B_score" represents the quality score of the internal state. These quality scores are classified according to quality evaluations of "○", "△", and "×" based on, for example, a predetermined threshold value. For example, the quality evaluation of "○" is a surface state quality score of 1.4 or more (S_score≧1.4) and an internal state quality score of 1.4 or more (B_score≧1.4). The quality evaluation of "△" is a surface state quality score of 0.6 or more and less than 1.4 (0.6≦S_score<1.4) and an internal state quality score of 0.6 or more and less than 1.4 (0.6≦B_score<1.4). The quality evaluation of "×" is a surface state quality score less than 0.6 (S_score<0.6) and an internal state quality score less than 0.6 (B_score<0.6).
加工性演算部52によって点数付けされた表面状態及び内部状態の品質スコアに基づく品質評価が共に「○」の被加工材Wは、判定マトリックス情報110における推奨する加工条件(Reco_cond)の変数が「1」となる第1の推奨条件(Reco_cond=1)の領域111に分類される。
The workpiece W for which the quality evaluation based on the quality scores of the surface condition and internal condition scored by the
また、加工性演算部52によって点数付けされた表面状態の品質スコアに基づく品質評価が「△」及び「×」のいずれかであり、内部状態の品質スコアに基づく品質評価が「×」である被加工材Wは、判定マトリックス情報110における推奨する加工条件(Reco_cond)の変数が「3」となる第3の推奨条件(Reco_cond=3)の領域113に分類される。
In addition, the workpiece W whose quality evaluation based on the quality score of the surface condition scored by the
また、加工性演算部52によって点数付けされた表面状態及び内部状態の品質スコアに基づく品質評価が上記以外のいずれかの被加工材Wは、判定マトリックス情報110における推奨する加工条件(Reco_cond)の変数が「2」となる第2の推奨条件(Reco_cond=2)の領域112に分類される。
Furthermore, any workpiece W whose quality evaluation based on the quality scores of the surface condition and internal condition scored by the
第1の推奨条件(Reco_cond=1)の領域111に分類された被加工材Wは、加工条件として標準条件で良好なレーザ切断(切断加工)が可能な標準材であると、加工性が判定される。第2の推奨条件(Reco_cond=2)の領域112に分類された被加工材Wは、加工条件として難加工材条件で良好なレーザ切断(切断加工)が可能な難加工材であると、加工性が判定される。第3の推奨条件(Reco_cond=3)の領域113に分類された被加工材Wは、加工条件として難加工材条件を用いても良好なレーザ切断(切断加工)が困難な難加工材(テストカット推奨材)であると、加工性が判定される。すなわち、難加工材の中には、標準条件でも難加工材条件でも良好切断ができないテストカット推奨材も含まれる。
The workpiece W classified in the
加工性判定部53は、このような判定マトリックス情報110を用いて被加工材Wの加工性を判定し、第1~第3の推奨条件で推奨される加工条件を含む、ディスプレイ70上等で報知し得る判定結果9を出力する。具体的には、第1の推奨条件(Reco_cond=1)で推奨される加工条件は標準条件であり、オペレータに被加工材Wは標準条件で加工可能な旨を報知し得る判定結果9を出力する。また、第2の推奨条件(Reco_cond=2)で推奨される加工条件は難加工材条件であり、オペレータに被加工材Wは難加工材条件で加工すべき旨(難加工材条件への変更を含む)を報知し得る判定結果9を出力する。また、第3の推奨条件(Reco_cond=3)で推奨される加工条件は難加工材条件であるが、オペレータに対して、被加工材Wに対する材料表面の改質処理を含む表面処理加工を含めたテスト加工(テストカット)を推奨する旨(テストカット推奨材であるために加工条件の調整、変更或いは再設定等を要する旨を含む)を報知し得る判定結果9を出力する。
The
[加工システムの処理フロー]
図12は、加工システムの処理フローの一例を示すフローチャートである。
図12に示すように、被加工材Wの切断加工前に、NC装置60において、例えば、加工テーブル11上の被加工材Wの板厚情報を取得して(ステップS100)、加工性判定ユニット50の判定モデル保存部51に送信する。
[Processing system process flow]
FIG. 12 is a flowchart showing an example of a processing flow of the machining system.
As shown in Figure 12, before cutting the workpiece W, the
次に、送信された板厚情報に基づいて、判定モデル保存部51において被加工材Wの板厚に対応する第1及び第2の判定モデル5,6が選定され(ステップS101)、加工性演算部52に送信される。また、レーザ加工ユニット20において、第1の照射条件及び第2の照射条件でレーザ光LBが被加工材Wに照射され(ステップS102)、分光器30によって発光スペクトルが測定される(ステップS103)。そして、分光器30において測定された発光スペクトルのうち、第1の発光スペクトルの時系列データから算出された第1の波形情報3及び第2の発光スペクトルの時系列データから算出された第2の波形情報4が加工性演算部52に送信される。
Next, based on the transmitted plate thickness information, the judgment
加工性演算部52は、送信された第1の波形情報3及び第2の波形情報4を、選定された第1の判定モデル5及び第2の判定モデル6にそれぞれ入力し、被加工材Wの表面状態及び内部状態の品質評価(表面品質評価及び内部品質評価)を示す品質スコアを算出し(ステップS104)、判定マトリックス情報110を生成する(ステップS105)。
The
加工性判定部53は、加工性演算部52で算出及び生成された品質スコア及び判定マトリックス情報110に基づいて、被加工材Wの加工性の判定を行う。加工性の判定においては、まず、被加工材Wの表面状態の品質スコアが1.4以上(S_score≧1.4)、且つ内部状態の品質スコアが1.4以上(B_score≧1.4)であるか否か、すなわち、表面状態及び内部状態の品質評価が共に「○」であるか否かを判定する(ステップS106)。
The
品質スコアがこの判定条件を満たしている場合(ステップS106のT:True)は、被加工材Wは判定マトリックス情報110の第1の推奨条件(Reco_cond=1)の領域111に分類され得るので、第1の推奨条件(Reco_cond=1)がフラグ立ちした(ステップS107)判定結果9が、NC装置60の制御部61に送信される。
If the quality score satisfies this judgment condition (T: True in step S106), the workpiece W can be classified into the
NC装置60の制御部61は、送信された判定結果9に基づいて、例えば、ディスプレイ70上等に被加工材Wを標準条件で加工可能である旨、表面状態の品質スコア(S_score)の数値及び内部状態の品質スコア(B-score)の数値等の加工性評価を含む判定結果9に関する情報を表示(ステップS108)等して、オペレータに報知する。このとき、例えば、バックグラウンドで加工条件保存部62から標準条件が呼び出されていてもよい。
The
一方、品質スコアがステップS106の判定条件を満たしていない場合(ステップS106のF:False)は、被加工材Wの表面状態の品質スコアが1.4未満(S_score<1.4)、且つ内部状態の品質スコアが0.6未満(B_score<0.6)であるか否か、すなわち、表面状態の品質評価が「△」又は「×」であり、内部状態の品質評価が「×」であるか否かを判定する(ステップS109)。 On the other hand, if the quality score does not satisfy the judgment condition in step S106 (F: False in step S106), it is judged whether the quality score of the surface condition of the workpiece W is less than 1.4 (S_score<1.4) and the quality score of the internal condition is less than 0.6 (B_score<0.6), i.e., whether the quality evaluation of the surface condition is "△" or "X" and the quality evaluation of the internal condition is "X" (step S109).
品質スコアがこの判定条件を満たしていない場合(ステップS109のF:False)は、被加工材Wは判定マトリックス情報110の第2の推奨条件(Reco_cond=2)の領域112に分類され得るので、第2の推奨条件(Reco_cond=2)がフラグ立ちした(ステップS110)判定結果9が、NC装置60の制御部61に送信される。
If the quality score does not satisfy this judgment condition (F: False in step S109), the workpiece W can be classified into the
NC装置60の制御部61は、送信された判定結果9に基づいて、例えば、ディスプレイ70上等に被加工材Wを難加工材に適した加工条件(難加工材条件)で加工可能である旨、難加工材条件への変更を促す旨、表面状態の品質スコア(S_score)の数値及び内部状態の品質スコア(B-score)の数値等の加工性評価を含む判定結果9に関する情報を表示(ステップS112)等して、オペレータに報知する。このとき、例えば、バックグラウンドで加工条件保存部62から難加工材条件が呼び出されていてもよい。
The
なお、品質スコアがステップS109の判定条件を満たしている場合(ステップS109のT:True)は、被加工材Wの表面状態の品質評価が「△」又は「×」であり、内部状態の品質評価が「×」であることを意味するので、被加工材Wは判定マトリックス情報110の第3の推奨条件(Reco_cond=3)の領域113に分類され得る。従って、第3の推奨条件(Reco_cond=3)がフラグ立ちした(ステップS113)判定結果9がNC装置60の制御部61に送信される。
If the quality score satisfies the judgment condition in step S109 (T: True in step S109), this means that the quality evaluation of the surface condition of the workpiece W is "△" or "X" and the quality evaluation of the internal condition is "X", so the workpiece W can be classified into the
NC装置60の制御部61は、送信された判定結果9に基づいて、例えば、ディスプレイ70上等に被加工材Wを難加工材条件によっても加工が困難な加工困難材(テストカット推奨材)である旨、上記のようなテスト加工の実施を推奨する旨、表面状態の品質スコア(S_score)の数値及び内部状態の品質スコア(B-score)の数値等の加工性評価を含む判定結果9に関する情報を表示(ステップS114)等して、オペレータに報知する。このとき、例えば、バックグラウンドで加工条件保存部62から難加工材条件が呼び出されていてもよい。
The
なお、このように被加工材Wが難加工材であり切断加工が困難であるとの加工性の判定が行われたとしても、制御部61によって、例えば、難加工材条件に含まれるレーザ出力、加工速度及び焦点位置(集束位置)等の調整可能な各項目のパラメータの調整を行えば、加工品質の改善が見込まれたり切断自体が可能となることがある。このため、上記ステップS114の後に、例えば、タッチパネル等の入力機器211等を介したオペレータの操作入力により受け付けられた入力情報に基づいて、制御部61により、難加工材条件に基づくテスト加工が実施される(ステップS115)。
Even if the workpiece W is determined to be difficult to cut, the
その後、テスト加工による被加工材Wの切断面の状態等の確認が行われ、加工品質がOKであるか否かが判断される(ステップS116)。加工品質がOKではないと判断された場合(ステップS116のF:False)は、例えば、オペレータの操作入力によって、難加工材条件を中心に加工条件の各パラメータの項目を調整し(ステップS117)、再度テスト加工を実施し(ステップS115)、以降の処理を繰り返す。 Then, the condition of the cut surface of the workpiece W from the test machining is checked, and it is determined whether the machining quality is OK (step S116). If it is determined that the machining quality is not OK (F: False in step S116), the operator inputs, for example, to adjust each parameter item of the machining conditions, focusing on the conditions for difficult-to-machine materials (step S117), and the test machining is carried out again (step S115), and the subsequent processes are repeated.
そして、加工品質がOKである場合(ステップS116のT:True)、及び判定結果9に関する情報の表示(ステップS108,S112)が行われたら、加工性が判定された被加工材Wの材料状態(表面状態及び内部状態)に合わせた加工条件を、例えば、オペレータの操作入力に基づきレーザ加工装置10に設定し(ステップS118)、設定された加工条件に基づく被加工材Wの製品加工が実施されて(ステップS119)、本フローチャートによる一連の処理を終了する。
If the processing quality is OK (T: True in step S116) and information on the
加工システム100は、このようにオペレータが製品加工に際して、切断加工前に被加工材Wの加工条件に基づく加工性が判定され得るので、被加工材Wの材料状態に合わせた加工条件を設定可能であり、予め設定された加工条件で切断加工を行うべきか、被加工材に適した加工条件に変更等すべきかの判定結果9を容易に把握することが可能となる。なお、上記ステップS118の設定処理は、オペレータの操作入力による手動設定の他、制御部61が判定結果9に応じて自動に設定を行うようにしてもよい。
In this way, when the operator processes a product, the
[実施例]
図13は、第1及び第2の判定モデルによる材料状態の予測結果、加工性の判定結果及び実加工検証結果を含む結果表を示す図である。図14は、加工品質の品質評価基準を表す説明図である。
[Example]
Fig. 13 is a diagram showing a result table including the prediction results of the material state by the first and second judgment models, the judgment results of the workability, and the actual processing verification results. Fig. 14 is an explanatory diagram showing the quality evaluation criteria of the processing quality.
本出願人は、加工システム100及び加工性判定システム90における加工性の判定について検証を行うために、例えば、板厚が19mmで、材質、生産ロット及び生産過程(電炉/高炉)が異なる27種の被加工材Wのそれぞれについて、複数個のサンプルを用意した。そして、各サンプルにおいて、第1の波形情報1及び表面品質評価結果109aに基づき機械学習によって第1の判定モデル5を作成し、第2の波形情報2及び内部品質評価結果109bに基づき機械学習によって第2の判定モデル6を作成した。
In order to verify the judgment of workability in the
こうして作成された第1及び第2の判定モデル5,6を有する加工性判定ユニット50を用い、機械学習に使用していない17種類(t19mm:12種、t22mm:5種)の被加工材Wに第1及び第2の照射条件のレーザ光LBを照射して、第1及び第2の波形情報3,4を測定して材料状態を予測し、判定マトリックス情報110を作成して、加工性を判定した。なお、第1及び第2の波形情報3,4の測定は、一つの被加工材Wにつき異なる5箇所で測定することで、各測定点での表面状態及び内部状態のそれぞれの品質評価を行い、品質スコアを算出した上でその平均値を求め、これを代表値として利用した。
Using the
図13に示す結果表120において、予測結果121は材料No(No:Number)1~17の各被加工材W毎の表面状態及び内部状態の品質評価(「○」、「△」及び「×」)の予測結果を示し、判定結果122は予測結果121に基づく各被加工材W毎の加工性(良好切断(標準材)、難加工材、テストカットが推奨される難加工材(テストカット推奨材))の判定結果を示している。また、実加工検証結果123は、図9に示した各加工条件110a,110bで実際に各被加工材Wを加工した際の標準条件及び難加工材条件の検証結果(「○」、「△」及び「×」)を表している。
In the result table 120 shown in FIG. 13, the prediction results 121 show the predicted results of the quality evaluation ("○", "△" and "×") of the surface condition and internal condition of each workpiece W of material No. (No: Number) 1 to 17, and the judgment results 122 show the judgment results of the workability (good cutting (standard material), difficult-to-cut material, difficult-to-cut material for which test cutting is recommended (test cut recommended material)) for each workpiece W based on the prediction results 121. In addition, the actual
なお、実加工検証結果123における標準条件及び難加工材条件の「○」、「△」及び「×」で示す検証結果は、焦点位置の余裕度を考慮するため、焦点位置を複数変化させて各焦点位置での切断品質を、図14に示すような加工品質の品質評価基準114に基づく品質評価をオペレータにより行って、この品質評価に基づきまとめられた評価の結果を示している。品質評価の判断要素は、例えば、加工部裏面に付着した溶融金属であるドロスの高さ、切断面に突発的に増大した粗さであるノッチの深さ、及びノッチの数等である。なお、焦点位置の余裕度とは、例えば、切断焦点を標準値から集光レンズ24c側及び/又はその反対側に離れた値に変更したときの切断品質に関して、加工条件における焦点位置の位置ずれの余裕度のことを意味し、加工条件の材料への適応余裕度の意味も含んでいる。
The verification results shown by "○", "△" and "×" for the standard conditions and the difficult-to-machine material conditions in the actual
すなわち、図14に示すように、品質評価が「◎」である場合は高品位な切断であることを表し、「○」である場合は良好な切断であることを表している。また、品質評価が「○´」である場合はやや品質で劣る切断であることを表し、「○△」である場合は品質NGの切断であることを表している。更に、品質評価が「△」である場合は分断が可能な切断であることを表し、「×」である場合は切断不可であることを表している。なお、品質評価の分類は、この6つの評価範囲に限定されるものではなく、より詳細な評価が可能に分類されていてもよい。 In other words, as shown in FIG. 14, a quality rating of "◎" indicates a high-quality cut, and a quality rating of "○" indicates a good cut. A quality rating of "○´" indicates a cut of slightly poor quality, and a quality rating of "○△" indicates a cut of poor quality. Furthermore, a quality rating of "△" indicates a cut that is capable of being severed, and a quality rating of "×" indicates that cutting is not possible. Note that the classification of quality ratings is not limited to these six evaluation ranges, and may be classified to allow for more detailed evaluation.
そして、品質評価が「◎」を2つ以上もしくは「○」以上が3つある場合は、「良好切断可能:○」と判断する。また、「良好切断可能:○」の条件を満たしていない場合で、品質評価が「○´」以上が2つ以上である場合は、「切断可能:△」と判断する。更に、品質評価が「○´」以上が2つ未満である場合は、「切断困難:×」と判断する。 If the quality evaluation has two or more "◎"s or three or more "○"s, it is judged as "Good cuttable: ○". If the condition for "Good cuttable: ○" is not met and there are two or more "○´"s or higher in the quality evaluation, it is judged as "Cuttable: △". Furthermore, if there are less than two "○´"s or higher in the quality evaluation, it is judged as "Difficult to cut: ×".
図15は、実加工結果を判定マトリックス情報において分類した結果を示す図である。
図15に示すように、No1~No17の被加工材Wのうち、材料の表面状態及び内部状態の品質評価が共に「○」と判定された被加工材W(材料No:No3,No8,No10,No13,No14)は、加工性の判定結果が「良好切断(標準材)」と判定され、第1の推奨条件(Reco_cond=1)の領域111に分類される。これらの被加工材Wは、実際に標準条件で良好切断が得られる「○」の検証結果となり、加工性を正しく判定できていることが確認された。
FIG. 15 is a diagram showing the results of classifying the actual machining results in the determination matrix information.
As shown in Fig. 15, among the workpieces W No. 1 to No. 17, the workpieces W (material No.: No. 3, No. 8, No. 10, No. 13, No. 14) for which the quality evaluations of both the surface condition and the internal condition of the material were judged to be "○" were judged to have a machinability judgment result of "good cutting (standard material)" and were classified into the
なお、第2の推奨条件(Reco_cond=2)の領域112に分類された材料NoがNo6の被加工材Wについては、表面状態の品質評価が「○」であり内部状態の品質評価が「×」であるため、加工性の判定結果は「難加工材」となったが、実際には標準条件で良好切断が得られる「○」の検証結果となった。しかし、難加工材条件においても「○」の検証結果となったので、加工性を正しく判定できていることと判断され得る。
Note that for the workpiece W with material number No. 6 classified in
材料の表面状態の品質評価が「△」で内部状態の品質評価が「×」と判定され、加工性の判定結果が「テストカット推奨材」と判定された被加工材W(材料No:No2,No4,No7,No9,No12,No16,No17)は、第3の推奨条件(Reco_cond=3)の領域113に分類される。これらの被加工材Wのうち、材料NoがNo2,No4,No7,No16の被加工材Wは、実際は標準条件で切断が困難な「×」であったが難加工材条件で良好切断が得られる「○」の検証結果となった。一方で、材料NoがNo2,No4,No7,No16を除く被加工材W(材料No:No9,No12,No17)は、実際は標準条件では切断が困難な「×」であり、難加工材条件でも「×」又は良好切断が得られない「△」の検証結果となった。つまり、この領域113に分類された被加工材Wは、新たに加工条件を調整するなどしたテストカットが必要となる可能性があることが確認でき、加工性を正しく判定できていることと判断され得る。
The workpieces W (material numbers: No2, No4, No7, No9, No12, No16, No17) whose surface condition was evaluated as "△", whose internal condition was evaluated as "×", and whose machinability was evaluated as "recommended for test cutting" are classified into
なお、上記以外の被加工材W(材料No:No1,No5,No11,No15)は、加工性の判定結果が「難加工材」と判定され、第2の推奨条件(Reco_cond=2)の領域112に分類される。これらの被加工材Wは、実際に標準条件では切断が困難な「×」又は良好切断が得られない「△」であり、難加工材条件では良好切断が得られる「○」の検証結果となり、加工性を正しく判定できていることが確認された。
The workpieces W other than those mentioned above (material numbers: No1, No5, No11, No15) were judged to be "difficult to cut" and were classified into
図16は、標準材と判定された被加工材の実加工検証結果の詳細の一例を示す図である。図17は、難加工材と判定された被加工材の実加工検証結果の詳細の一例を示す図である。図18は、難加工材(テストカット推奨材)と判定された被加工材の実加工検証結果の詳細の一例を示す図である。
図16に示すように、例えば、加工性の判定結果が標準材と判定された材料NoがNo13の被加工材Wは、板厚22mmの加工条件110bの標準条件下にて、焦点位置が2.5mm~6.5mmの5段階の範囲で、切断面の品質評価が全て「◎」となっている。このため、第1及び第2の判定モデル5,6並びに判定マトリックス情報110を用いた加工性の判定結果9が正確であることが確認された。
Fig. 16 is a diagram showing an example of details of an actual machining verification result of a workpiece determined to be a standard material. Fig. 17 is a diagram showing an example of details of an actual machining verification result of a workpiece determined to be a difficult-to-machine material. Fig. 18 is a diagram showing an example of details of an actual machining verification result of a workpiece determined to be a difficult-to-machine material (recommended material for test cut).
16, for example, the workpiece W,
また、図17に示すように、例えば、加工性の判定結果が難加工材と判定された材料NoがNo15の被加工材Wは、板厚19mmの加工条件110aの標準条件下では、焦点位置が2.5mm~6.5mmの5段階の範囲で、切断面の品質評価が全て「○△」となった。これに対し、難加工材条件下では、焦点位置が3.0mm~7.0mmの5段階の範囲で、切断面の品質評価が「◎」又は「○」となったので、難加工材条件を用いることにより加工品質が改善されることが示され、第1及び第2の判定モデル5,6並びに判定マトリックス情報110を用いた加工性の判定結果9が正確であることが確認された。
Also, as shown in FIG. 17, for example, for the workpiece W with material No. 15, whose workability was judged to be difficult to work, under standard conditions of processing conditions 110a with a plate thickness of 19 mm, the quality evaluation of the cut surface was all "○△" in the five-level range of focal positions from 2.5 mm to 6.5 mm. In contrast, under the difficult-to-work material conditions, the quality evaluation of the cut surface was "◎" or "○" in the five-level range of focal positions from 3.0 mm to 7.0 mm. This shows that the use of difficult-to-work material conditions improves the processing quality, and it was confirmed that the
また、図18に示すように、例えば、加工性の判定結果が難加工材(テストカット推奨材)と判定された材料NoがNo17の被加工材Wは、板厚19mmの加工条件110aの標準条件下では、焦点位置が2.5mm~6.5mmの5段階の範囲で、切断面の品質評価が全て「△」となった。また、難加工材条件下においても、焦点位置が3.0mm~7.0mmの5段階の範囲で、切断面の品質評価が「○」、「○´」又は「○△」となったので、難加工材条件を用いても高品位な切断(良好切断)が得られていないことが示され、テスト加工の実施が必要となる可能性が浮き彫りとなったので、第1及び第2の判定モデル5,6並びに判定マトリックス情報110を用いた加工性の判定結果9が正確であることが確認された。
Also, as shown in FIG. 18, for example, for the workpiece W with material No. 17, whose workability was judged to be difficult to work (recommended material for test cutting), under standard conditions of processing conditions 110a with a plate thickness of 19 mm, the quality evaluation of the cut surface was all "△" in the five-level range of focal positions from 2.5 mm to 6.5 mm. Even under the difficult-to-work material conditions, the quality evaluation of the cut surface was "○", "○´", or "○△" in the five-level range of focal positions from 3.0 mm to 7.0 mm. This indicates that high-quality cutting (good cutting) is not achieved even when using difficult-to-work material conditions, and highlights the possibility that test processing may be required. Therefore, it was confirmed that the
以上のように、第1の実施形態の加工システム100及び加工性判定システム90は、切断加工前に被加工材Wの加工条件に基づく加工性を判定して、その判定結果9の内容(被加工材Wの材料状態及び推奨される加工条件)に合わせて取るべき対応(例えば、推奨された加工条件で切断加工を行うべきか、被加工材Wに適した加工条件に変更すべきか、推奨された加工条件を調整すべきか、テスト加工を実施すべきか等)の判断が容易で、加工品質の改善を図ることを迅速に行い得るので、加工不良を低減することが可能となる。
As described above, the
[第2の実施形態]
次に、第2の実施形態について説明する。第2の実施形態に係る加工システム及び加工性判定システムは、先に説明した分光器30によりレーザ光LBを照射したときに発生する発光スペクトルを測定する第1の実施形態の加工システム及び加工性判定システムに、放射温度計(赤外線センサ)によりレーザ光LBを照射したときに発生する放射光の赤外線強度を測定する構成を加え、上述した分光器30による被加工材Wの加工性の判定結果(第1の判定結果)と、放射温度計による被加工材Wの加工性の判定結果(第2の判定結果)と、を組み合わせて、加工工程における予め設定された加工条件で切断加工された場合の被加工材Wの加工性の判定結果(第3の判定結果)を出力可能に構成した加工システム及び加工性判定システムである。
Second Embodiment
Next, a second embodiment will be described. The processing system and the machinability judgment system according to the second embodiment are configured to add a configuration for measuring the infrared intensity of the radiation light generated when the laser light LB is irradiated by a radiation thermometer (infrared sensor) to the processing system and the machinability judgment system according to the first embodiment, which measures the emission spectrum generated when the laser light LB is irradiated by the
このため、第1の実施形態で説明した基本的構成、概略構成、機能的構成、ハードウェア構成等の各構成は全て含み得ると共に作用効果は全て実現し得るので、以下では、特に言及しない限り、第1の実施形態と重複する箇所には同一の符号を付して、既に説明した部分と重複する説明は割愛する。 For this reason, all of the basic configuration, schematic configuration, functional configuration, hardware configuration, etc. described in the first embodiment can be included, and all of the effects can be realized. Therefore, in the following, unless otherwise specified, the same reference numerals are used for parts that overlap with the first embodiment, and descriptions that overlap with parts that have already been described will be omitted.
上述したように、軟鋼の被加工材Wの酸素切断は、被加工材Wの表面状態(酸化膜の状態)及び内部状態に影響される。同一の鋼種及び板厚であっても、同じレーザ切断の加工条件で、メーカ及び製造ロットの違い等の個体差により切断品質が異なる。本発明者等は、切断品質に強く影響を及ぼしている材料特性の因子を見つけ、それを測定及び解析すべく、第1の実施形態の加工システム及び加工性判定システムを構成した。 As described above, oxygen cutting of a workpiece W of mild steel is affected by the surface condition (state of the oxide film) and internal condition of the workpiece W. Even with the same steel type and plate thickness, the cutting quality differs under the same laser cutting processing conditions due to individual differences such as differences in manufacturer and production lot. The inventors have constructed the processing system and machinability assessment system of the first embodiment in order to find the material property factors that have a strong influence on the cutting quality and to measure and analyze them.
すなわち、被加工材Wの材料表面(素材表面)の酸化膜は表面でのレーザ吸収率、酸化反応に影響する。レーザ吸収率は、酸化膜の種類によって異なり、例えば黒色のマグネタイトは、レーザ吸収率及び酸化膜の密着性が高く、切断品質は安定する。一方、ヘマタイトは、レーザ吸収率が低く、酸化膜の密着性も小さい。このため、レーザ切断中に酸化膜が剥離しやすく、剥離部分を起点としてノッチが入りやすい。 In other words, the oxide film on the material surface (raw material surface) of the workpiece W affects the laser absorption rate and oxidation reaction at the surface. The laser absorption rate differs depending on the type of oxide film; for example, black magnetite has a high laser absorption rate and oxide film adhesion, and the cutting quality is stable. On the other hand, hematite has a low laser absorption rate and poor oxide film adhesion. For this reason, the oxide film is easily peeled off during laser cutting, and notches are easily created starting from the peeled part.
また、酸化膜が薄くなっている部分や、酸化膜が剥離している部分は、素材表面で酸化反応しやすく、素材表面で過剰燃焼が起こりやすくなり、切断面が粗くなる。このような観点から、本発明者等は、酸化膜の密着性は、被加工材Wの表面をレーザ光LBで溶融させるときに、レーザ照射直後に発生する発光スペクトルによって判定できることを見出した。 In addition, areas where the oxide film is thin or peeled off are prone to oxidation reactions on the material surface, making excessive combustion more likely to occur on the material surface and resulting in a rough cut surface. From this perspective, the inventors have discovered that the adhesion of the oxide film can be determined by the emission spectrum generated immediately after laser irradiation when the surface of the workpiece W is melted with laser light LB.
例えば、被加工材Wに密着性の高い酸化膜がある場合と、被加工材Wに密着性の低い酸化膜があるか、或いは酸化膜が薄いか又は剥離している場合との違いは、被加工材Wの表面(素材表面)の酸化膜が無くなるまでに発生する発光スペクトルの時間的変化によって判定が可能である。 For example, the difference between a workpiece W having a highly adhesive oxide film and a workpiece W having a poorly adhesive oxide film, or a thin or peeled oxide film, can be determined by the change over time in the emission spectrum that occurs until the oxide film on the surface (material surface) of the workpiece W disappears.
また、酸化膜の分布状態を評価するためには、素材表面を溶融させない範囲でレーザ光LBを照射し、素材表面に発生する熱応力で酸化膜の密着性を評価することが可能である。熱応力により酸化膜が剥離すると閃光が発生するので、赤外線スペクトルで検出することができる。また、素材表面の酸化膜の種類、粗さ(凹凸)等によってもレーザ吸収率の違いから温度が変動するので、赤外線スペクトルの変動として捉えることができる。 In addition, to evaluate the distribution of the oxide film, it is possible to irradiate the material surface with laser light LB without melting it, and evaluate the adhesion of the oxide film from the thermal stress generated on the material surface. When the oxide film peels off due to thermal stress, a flash is generated, which can be detected by infrared spectroscopy. In addition, the type and roughness (unevenness) of the oxide film on the material surface cause temperature fluctuations due to differences in laser absorption rate, which can be captured as fluctuations in the infrared spectrum.
また、被加工材Wの内部特性としては、素材に含まれる内部成分のうち鉄以外の元素の成分に起因した溶融挙動の安定性、及び熱の伝わり易さ(熱伝導率)が影響することが判明している。鉄以外の元素の影響について、特に炭素量が多いものは、成分偏析が発生しやく、炭素濃度分布が不均一になり、溶融温度も不均一になるために、溶融ムラにより切断面が粗れやすくなる。次いで、マンガンも成分偏析を増長する元素で溶融ムラにより、溶融挙動が不安定になりやすい。 Furthermore, it has been found that the internal characteristics of the workpiece W are affected by the stability of the melting behavior due to the internal components of elements other than iron contained in the material, and the ease of heat transfer (thermal conductivity). Regarding the influence of elements other than iron, those with a particularly high carbon content are prone to component segregation, resulting in an uneven carbon concentration distribution and an uneven melting temperature, which makes the cut surface prone to becoming rough due to uneven melting. Next, manganese is also an element that increases component segregation, and uneven melting can easily make the melting behavior unstable.
そのため、溶融挙動の安定性は溶融時に発生する発光スペクトルの時間的変化に影響する。例えば、炭素量が多いと鋼板内部での成分偏析が大きくなり、低融点部と高融点部の不均一性があり、発光スペクトルの時間的変化の変動が大きくなる。
また、素材に含まれる鉄以外の元素が多くなると熱伝導率が小さくなるので、レーザ切断の加工点で高熱になりやすく、同様に過剰に溶融しやすくなり、切断面が粗れやすくなる。
Therefore, the stability of the melting behavior affects the time-dependent change in the emission spectrum that occurs during melting. For example, a high carbon content leads to greater component segregation within the steel sheet, resulting in non-uniformity between the low-melting point and high-melting point areas, and greater fluctuation in the time-dependent change in the emission spectrum.
In addition, as the material contains more elements other than iron, its thermal conductivity decreases, so it is more likely to become hot at the point of laser cutting, which in turn makes it more likely to melt excessively and results in rough cut surfaces.
以上の点を踏まえて、第1の実施形態に係る加工システム及び加工性判定システムを構成したが、第2の実施形態に係る加工システム及び加工性判定システムでは、更に判定精度を高めるため、次のような構成とした。
内部成分の熱伝導率は、材料を溶融させないレーザ照射条件で繰り返し加熱冷却を行うことで、温度上昇の大きさから熱の伝わり易さとして評価できる。なお、可視光領域では約600℃以下の温度では測定できないため、1600nm以上の波長帯の赤外線強度を測定して温度上昇の低温側の温度測定を行うようにした。
Taking the above points into consideration, the processing system and workability judgment system of the first embodiment have been configured. In order to further improve the judgment accuracy, the processing system and workability judgment system of the second embodiment have the following configuration.
The thermal conductivity of the internal components can be evaluated as the ease of heat transfer from the magnitude of the temperature rise by repeatedly heating and cooling under laser irradiation conditions that do not melt the material. Note that, since it is not possible to measure temperatures below about 600°C in the visible light region, the infrared intensity in the wavelength band above 1600 nm was measured to measure the temperature on the low-temperature side of the temperature rise.
従って、第2の実施形態の加工システム及び加工性判定システムでは、可視光での被加工材Wの加工性の判定については、上述したように機械学習を利用した判定モデル用いて判定を行い、赤外光での被加工材Wの加工性の判定については、赤外線強度の時間的又は位置的変化を特徴量とした情報(特徴量情報)をしきい値と比較することで判定を行うように構成した。 Therefore, in the processing system and machinability judgment system of the second embodiment, the judgment of the machinability of the workpiece W with visible light is performed using a judgment model that utilizes machine learning as described above, and the judgment of the machinability of the workpiece W with infrared light is performed by comparing information (feature information) in which the temporal or positional change in infrared intensity is used as a feature value with a threshold value.
[加工システムの基本的構成]
図19は、本発明の第2の実施形態に係る加工システムの基本的構成を概略的に示す説明図である。
図19に示すように、第2の実施形態に係る加工システム100Aは、レーザ光LBを加工照射条件で被加工材Wに照射して被加工材Wを切断加工する加工工程と、レーザ光LBを、被加工材Wを溶融させるが貫通はしない第1の判定照射条件(第1の実施形態の「判定照射条件」)、及びレーザ光LBを被加工材Wの素材の融点を超えない第2の判定照射条件で被加工材Wに照射して、被加工材Wの加工性を判定する加工性判定工程と、を実行可能なレーザ加工装置10Aを備える。また、加工システム100Aは、被加工材Wに第1の判定照射条件でレーザ光LBを照射したときに発生する発光スペクトルを測定する分光器30(第1の測定部)と、被加工材Wに第2の判定照射条件でレーザ光LBを照射したときに発生する放射光の赤外線強度を測定する放射温度計30A(第2の測定部)と、を含むレーザ加工ユニット20A(測定装置)を備える。また、加工システム100Aは、レーザ加工ユニット20Aの分光器30によって測定された発光スペクトルの時系列データに基づいて、被加工材Wの加工性を判定するPC(Personal Computer)50A(第1の判定部)と、レーザ加工ユニット20Aの放射温度計30Aによって測定された赤外線強度の時系列データに基づいて、被加工材Wの加工性を判定するNC装置60(第2の判定部)と、PC50Aにより判定された第1の判定結果及びNC装置60により判定された第2の判定結果の組み合わせに基づいて、加工工程における予め設定された加工条件で切断加工された場合の被加工材Wの加工性を判定し第3の判定結果を出力するNC装置60(第3の判定部)と、を含む判定装置(PC50A及びNC装置60)を備える。判定装置は、第1の判定モデル5(図9)及び第2の判定モデル6(図9)を有する。判定装置のPC50Aは、レーザ加工ユニット20Aの分光器30によって測定された発光スペクトルの時系列データから第1の時間領域の第1の波形情報3(図9)と第2の時間領域の第2の波形情報4(図9)とを抽出する。判定装置のPC50Aは、抽出された第1の波形情報3を推定用データとして第1の判定モデル5に入力し被加工材Wの表面品質評価を得る。また、判定装置のPC50Aは、抽出された第2の波形情報4を推定用データとして第2の判定モデル6に入力し被加工材Wの内部品質評価を得る。そして、判定装置のPC50Aは、得られた被加工材Wの表面品質評価及び内部品質評価の組み合わせに基づいて、被加工材の加工性を判定した前記第1の判定結果を出力する。また、判定装置のNC装置60は、レーザ加工ユニット20Aの放射温度計30Aによって測定された赤外線強度の時系列データに基づいて、被加工材Wの温度の時間的又は位置的変化を示す特徴量情報を抽出し、抽出された特徴量情報と、図示しない記憶装置等に予め登録済みの被加工材の加工性の判定用の基準情報と、に基づいて、被加工材の加工性を判定した第2の判定結果を出力する。
[Basic configuration of the machining system]
FIG. 19 is an explanatory diagram illustrating a basic configuration of a processing system according to the second embodiment of the present invention.
As shown in Fig. 19, the
なお、レーザ加工装置10Aのレーザ加工ユニット20Aは、放射温度計30Aと、ダイクロイックミラー24dと、を備える点が、第1の実施形態のレーザ加工ユニット20とは相違している。放射温度計30Aは、例えばレーザ加工ヘッド22の上部に設けられている。また、PC50AはNC装置60に含まれていてもよく、NC装置60はレーザ加工装置10Aに含まれるように搭載されていてもよい。
The
放射温度計30Aは、レーザ光LBにより加熱された被加工材Wの材料から発せられる広帯域の波長を有する電磁波のうち、熱輻射で放出される赤外線を含む放射光のこの赤外線を捉え、電気信号に変換する。放射温度計30Aは、1600nm以上の波長帯の赤外線強度を測定する。すなわち、放射温度計30Aは、例えば、特定帯域(1600nm以上、2500nm以下)の波長のみを透過する波長フィルタを前段に配置し、後段に光電変換素子として、例えば、InGaAs(インジウム・ガリウム・ヒ素)を用いたフォトダイオード使用している。
The
ダイクロイックミラー24dは、折り返しミラー24bの上部に設けられている。ダイクロイックミラー24dは、被加工材Wの加工側から折り返しミラー24bに向かう光に含まれる放射光のうち、折り返しミラー24bを透過した所定波長の赤外光(赤外線)を放射温度計30A側に透過し、可視光を分光器30の受光部31側に反射させる。
ここで、加工システム100AのPC50A及びNC装置60について説明する。
図20は、加工システムの概略的な機能ブロック図である。
図20に示すように、PC50Aは、第1の実施形態の加工性判定ユニット50と同様に、判定モデル保存部51、加工性演算部52、及び加工性判定部53を備える。PC50Aは、一般的なPCと同様のハードウェア構成(CPU、RAM、ROM等)を備える。
Here, the
FIG. 20 is a schematic functional block diagram of the processing system.
20, like the
PC50Aの加工性判定部53は、加工性演算部52で生成された判定マトリックス情報に基づき被加工材Wの加工性(良好切断可能な標準材、難加工材)を判定した第1の判定結果をNC装置60に出力し得る。その他の各部51~53の機能及び作用等は、第1の実施形態で説明した通りであるので、ここでは説明を省略する。
The
NC装置60は、切断加工を実行するレーザ加工ユニット20Aの制御の他に、機能的には、演算処理部63、加工性判定部66、総合判定部65、制御部61、及び加工条件保存部62を備える。演算処理部63は、特定の演算処理を高速で行えるハードウェア又はミドルウェアの演算処理装置等からなる。
In addition to controlling the
演算処理部63は、放射温度計30Aの出力信号の瞬時的な電圧値を赤外線の光強度に換算し、この光強度の時系列データを取得し得る。演算処理部63は、得られた光強度の時系列データに基づく温度特性の時間的遷移を表す特徴量情報を抽出する。また、演算処理部63は、例えば信号処理ユニットとしても機能する。
The
すなわち、放射温度計30Aで捉えられ光電変換された電流出力の出力信号は、演算処理部63に向けて伝送される。電流転送された出力信号は、図示しない電流-電圧変換回路によって電圧信号に変換される。そして、電圧信号に変化された出力信号は、A/D変換器40によってデジタル信号に変換されて、このデジタル信号が演算処理部63に入力される。
In other words, the output signal of the current output captured by the
加工性判定部66は、演算処理部63によって抽出された特徴量情報と、例えば図示しない記憶装置等に記憶された基準情報と、に基づいて、これから行う加工の加工条件に基づく被加工材Wの加工性(予めレーザ加工装置10Aに設定された加工条件で切断加工された場合の被加工材Wの加工性)を判定した第2の判定結果を出力する。なお、基準情報は、例えば実験等により選定されて定められ、予め登録された情報である。
The
総合判定部65は、PC50Aの加工性判定部53からの第1の判定結果と、加工性判定部66からの第2の判定結果との組み合わせに基づいて、分光器30による可視光の測定で得られた情報(材料特性の品質スコア等)及び放射温度計30Aによる赤外線の測定で得られた情報(材料特性の品質評価等)を総合的に利用して、加工工程における予め設定された加工条件で切断加工された場合の被加工材Wの加工性を判定し、総合判定結果(第3の判定結果)を出力する。
The
制御部61は、各種I/F(インタフェース:Interface)を介してレーザ加工ユニット20A(レーザ加工ヘッド22、ビームコントロールユニット24等)の動作を制御する。また、制御部61は、レーザ加工装置10A及び分光器30等に各種動作の制御指示を出力すると共に、総合判定部65の判定結果(第3の判定結果)に基づき、例えばディスプレイ70に判定結果を表す各種情報の表示指示を出力する。なお、制御部61のその他の機能及び作用等、並びに加工条件保存部62については、第1の実施形態と同様であるので説明を省略する。
The
ディスプレイ70は、切断加工の加工条件等の各種情報を入力する設定入力画面、判定結果等のオペレータへ確認可能に報知する各種情報の表示画面等を表示し得る。また、ディスプレイ70は、NC装置60の総合判定部65により判定された第3の判定結果を確認可能に報知する報知部として機能する。ディスプレイ70は、例えば入力部として機能するタッチパネルを備えて構成され得る。ディスプレイ70がタッチパネルを備えた場合は、オペレータは、例えばディスプレイ70を操作することにより、被加工材Wに関する各種情報等を、NC装置60の制御部61に対して入力可能となる。
The
なお、第2の実施形態に係る加工性判定システム(PC50A及びNC装置60)は、第1の判定モデル5及び第2の判定モデル6を有し、被加工材Wの加工性を判定する加工性判定工程において、レーザ光LBを、被加工材Wを溶融させるが貫通はしない第1の判定照射条件(第1の照射条件、第2の照射条件)で、被加工材Wに照射したときに発生する発光スペクトルの時系列データから抽出(算出)された第1の波形情報3及び第2の波形情報4を、それぞれ第1の判定モデル5及び第2の判定モデル6に入力し、第1の波形情報3及び前記第2の波形情報4に基づいて被加工材Wの加工性を判定する加工性判定ユニット50及び学習装置80を含むPC50A(第1の判定部)と、加工性判定工程において、レーザ光LBを、被加工材Wの素材の融点を超えない第2の判定照射条件(第3の照射条件、第4の照射条件)で、被加工材Wに照射したときに発生する放射光の赤外線強度の時系列データから抽出された特徴量情報と、予め登録済みの被加工材Wの加工性の判定用の基準情報と、に基づいて被加工材Wの加工性を判定するNC装置60(第2の判定部)と、PC50A(第1の判定部)により判定された被加工材Wの表面状態及び内部状態の判定結果(第1の判定結果)及びNC装置60(第2の判定部)により判定された被加工材Wの表面性状及び内部特性の判定結果(第2の判定結果)の組み合わせに基づいて、加工工程における予め設定された加工条件で切断加工された場合の被加工材Wの加工性を判定し材料特性の判定結果(第3の判定結果)を出力するNC装置60(第3の判定部)と、を含む判定装置と、第1の判定モデル5及び第2の判定モデル6を作成するPC50A(学習装置)と、を備える。判定装置は、PC50A(第1の判定部)が、発光スペクトルの時系列データから第1の時間領域の第1の波形情報3と第2の時間領域の第2の波形情報4とを抽出し、抽出された第1の波形情報3を推定用データとして第1の判定モデル5に入力し被加工材Wの表面品質評価を得て、抽出された第2の波形情報4を推定用データとして第2の判定モデル6に入力し被加工材Wの内部品質評価を得て、得られた被加工材Wの表面品質評価及び内部品質評価の組み合わせに基づいて、被加工材Wの加工性を判定した第1の判定結果を出力する。また、NC装置60(第2の判定部)が、赤外線強度の時系列データに基づいて、被加工材Wの温度の時間的又は位置的変化を示す特徴量情報(第1の特徴量情報、第2の特徴量情報)を抽出し、抽出された特徴量情報と基準情報(第1の判定基準、第2の判定基準)とに基づいて、被加工材Wの加工性を判定した第2の判定結果を出力する。PC50A(学習装置80)は、第1の波形情報1及び被加工材Wの表面品質を示す表面品質評価結果109aを第1の教師データとして入力して機械学習を行って第1の判定モデル5を作成し、第2の波形情報2及び被加工材Wの内部品質を示す内部品質評価結果109bを第2の教師データとして入力して機械学習を行って第2の判定モデル6を作成する。
The machinability judgment system (
すなわち、第2の実施形態の加工性判定システムは、図9に示された第1の実施形態の加工性判定システム90(加工性判定ユニット50及び学習装置80)を含むPC50Aと、NC装置60と、を備えた上記の加工システム100Aによって構成され得る。
In other words, the machinability determination system of the second embodiment can be configured by the above-mentioned
[加工性判定方法]
次に、加工システム100Aによる加工性の判定方法について説明する。
なお、上述したように分光器30で発光スペクトルを測定して被加工材Wの表面状態及び内部状態を判定する際のレーザ光LBの判定照射条件(第1の照射条件、第2の照射条件)は、以下では第1の判定照射条件として説明するが、PC50A側での分光器30による被加工材Wの加工性の判定についての全体的な説明は、第1の実施形態と同様である。従って、ここでは、総合判定において分光器30による被加工材Wの加工性の判定結果(第1の判定結果)も利用することを前提としつつも、まずは、放射温度計30Aで赤外線スペクトル(赤外線強度)を測定して、被加工材Wの表面性状及び内部特性の材料特性を判定することに主眼を置いて説明する。
[Processability assessment method]
Next, a method for determining workability by the
As described above, the judgment irradiation conditions (first irradiation conditions, second irradiation conditions) of the laser light LB when the emission spectrum is measured by the
第2の実施形態においては、レーザ加工装置10Aは、加工性判定工程において、第1の判定照射条件で、レーザ光LBを被加工材Wにスポット照射し、第2の判定照射条件で、レーザ光LBを照射位置を移動させながら被加工材Wの素材表面に照射、及びレーザ光LBを被加工材Wの素材内部に繰り返し照射する。
In the second embodiment, in the process of determining the machinability, the
ここで、上述したように、第1の判定照射条件は、第1の照射条件及び第2の照射条件を含む。レーザ加工装置10Aは、加工性判定工程において、第1の判定照射条件でレーザ光LBを照射する場合、レーザ光LBの照射開始から照射終了までの時間を第1段階及び第2段階に分け、第1の判定照射条件として、第1段階では第1の照射条件101(図3)でレーザ光LBを被加工材Wに照射し、第2段階では第2の照射条件102(図3)でレーザ光LBを被加工材Wに照射する。レーザ加工ユニット20Aの分光器30は、第1の照射条件でレーザ光LBが被加工材Wに照射されたときに発生する第1の発光スペクトルと、第2の照射条件でレーザ光LBが被加工材Wに照射されたときに発生する第2の発光スペクトルと、を測定する。判定装置のPC50Aは、レーザ加工ユニット20Aの分光器30によって測定された第1の発光スペクトルの時系列データから第1の時間領域の第1の波形情報1,3(図9)を抽出し、レーザ加工ユニット20Aの分光器30によって測定された第2の発光スペクトルの時系列データから第2の時間領域の第2の波形情報2,4(図9)を抽出する。
Here, as described above, the first judgment irradiation condition includes the first irradiation condition and the second irradiation condition. When the
一方、放射温度計30Aでの測定に際しては、レーザ光LBを被加工材Wの素材の融点を超えない第2の判定照射条件で照射する。すなわち、被加工材Wの材料を溶融させない範囲でレーザ照射を行い、その赤外線スペクトルの時間的又は位置的変化から材料特性を判定する。本発明者等は、NC装置60の標準加工条件で、素材内部の成分(内部成分)及び素材表面の性状(表面性状)の異なる種々の被加工材Wを切断加工(レーザ切断)して、被加工材Wの切断面を観察した。その結果、被加工材Wの加工性(切断性)は、被加工材Wの表面性状及び内部成分の特性(内部特性)に大きく影響を受けていることが判明した。
On the other hand, when measuring with the
すなわち、被加工材Wの表面性状とは、具体的には、被加工材Wの素材表面の表層部分における酸化膜の状態及び素材表面との密着性(以下、「酸化膜の状態及び密着性」と称する。)を意味する。ここで、表層部分とは、素材表面に形成された酸化膜のレイヤーに該当する部分のことを意味し、素材表面に酸化膜がない場合は、この表層部分もないこととなる。被加工材Wの加工性は、第1に、被加工材Wの素材表面の酸化膜の状態及び密着性に大きく影響されることが判明した。以下、この要因を「表面起因」と呼ぶ。表面起因が良好とはいえない場合の切断面は、レーザ入射面側の条痕の乱れが大きい。特に、酸化膜が剥離した部分では、条痕が乱れ、ノッチが発生し易い。 In other words, the surface quality of the workpiece W specifically refers to the state of the oxide film on the surface layer of the workpiece W and its adhesion to the material surface (hereinafter referred to as "state and adhesion of the oxide film"). Here, the surface layer refers to the part corresponding to the oxide film layer formed on the material surface, and if there is no oxide film on the material surface, this surface layer part will also not exist. It has been found that the workability of the workpiece W is primarily affected by the state and adhesion of the oxide film on the material surface of the workpiece W. Hereinafter, this factor will be referred to as "surface-related". When the surface-related factor is not good, the cut surface has large irregularities in the striations on the laser incident surface side. In particular, in the parts where the oxide film has peeled off, the striations are irregular and notches are likely to occur.
また、被加工材Wの内部特性とは、具体的には、被加工材Wの内部成分による熱伝導率の大きさを意味する。被加工材Wの加工性は、第2に、被加工材Wの内部成分に基づく熱伝導率の大きさに大きく影響されることが判明した。以下、この要因を「内部起因」と呼ぶ。例えば、軟鋼の厚板では、アシストガスとして酸素を用い、レーザ光の熱と酸化反応熱を熱源として溶融切断を行う。そのとき、熱伝導率が小さい元素が多いものは切断面が粗くなりやすい。熱伝導率が小さい元素が多いと熱が拡散しにくく、切断面の温度上昇を助長しやすいことと、熱伝導率が小さいと過剰燃焼しやすくなることと、が原因と考えられる。 The internal characteristics of the workpiece W specifically refer to the magnitude of the thermal conductivity due to the internal components of the workpiece W. Secondly, it has been found that the workability of the workpiece W is greatly affected by the magnitude of the thermal conductivity due to the internal components of the workpiece W. Hereinafter, this factor will be referred to as "internal causes." For example, in the case of a thick plate of mild steel, oxygen is used as the assist gas, and melt cutting is performed using the heat of the laser light and the heat of the oxidation reaction as the heat source. At that time, if there are many elements with low thermal conductivity, the cut surface is likely to be rough. This is thought to be due to the fact that if there are many elements with low thermal conductivity, heat is difficult to diffuse, which tends to promote a rise in temperature on the cut surface, and low thermal conductivity makes it easier for excessive combustion to occur.
そこで、被加工材Wの材料特性として、固体状態の熱伝導率、及び素材表面の酸化膜分布状態を評価することとした。レーザ光LBの判定照射条件(第2の判定照射条件)として、素材を溶融させない(融点を超えない)温度領域で600℃以下の低温側では可視光領域が弱いため、1600nm以上の波長帯の赤外線領域の波長スペクトル強度(赤外線強度)を測定することとした。 Therefore, we decided to evaluate the thermal conductivity in the solid state and the distribution of the oxide film on the surface of the workpiece W as the material properties. As the judgment irradiation condition (second judgment irradiation condition) for the laser light LB, we decided to measure the wavelength spectrum intensity (infrared intensity) in the infrared region of wavelengths above 1600 nm, because the visible light region is weak on the low temperature side of 600°C or less, which is the temperature range that does not melt the material (does not exceed the melting point).
まず、内部起因の影響を調べるために、第1の調査を行った。第1の調査に当たっては、被加工材Wの表面状態の影響を排除するため、被加工材Wの素材表面の酸化膜を除去して表面状態を揃えた状態でレーザ切断を行った。酸化膜の除去は、表面の平均面粗さが0.8以下となるように研磨することによって行った。レーザ切断は、レーザ出力3(kW)、加工速度630(mm/min)及びアシストガスを酸素(O2)とした加工条件で行った。 First, the first study was conducted to investigate the influence of internal factors. In the first study, in order to eliminate the influence of the surface condition of the workpiece W, the oxide film on the surface of the workpiece W was removed to make the surface condition uniform, and the laser cutting was performed in that state. The oxide film was removed by polishing the surface so that the average surface roughness was 0.8 or less. The laser cutting was performed under the following processing conditions: laser output 3 (kW), processing speed 630 (mm/min), and assist gas oxygen ( O2 ).
そして、熱伝導率の測定は、レーザフラッシュ法により行った。熱伝導率の測定に際しては、例えば、サンプルa~cについて板厚4mmで10mm角の矩形状の試験片を作製し、素材表面に黒鉛を塗布して片面側(素材表面側)からレーザ光LBをフラッシュ照射し、反対面側(素材裏面側)の温度上昇から熱拡散率を測定して熱伝導率を求めた。
Thermal conductivity was measured using the laser flash method. For example,
図21は、被加工材の材料毎の熱伝導率、レーザ切断面及び切断面粗さの調査結果を示す結果表である。図22は、切断面の平均粗さと熱伝導率との関係を示すグラフである。なお、結果表300における各項目の品質評価の「○」、「△」及び「×」は、得られた数値及び切断面等を品質の観点から実際に観察評価して定義したものであり、それぞれ「良」、「可(不良)」及び「不可」に対応している。 Figure 21 is a result table showing the results of investigations into the thermal conductivity of each material of the processed material, the laser cut surface, and the roughness of the cut surface. Figure 22 is a graph showing the relationship between the average roughness of the cut surface and the thermal conductivity. Note that the quality evaluations of each item in the result table 300, "○", "△", and "×", are defined by actually observing and evaluating the obtained numerical values and the cut surfaces, etc., from the viewpoint of quality, and correspond to "good", "fair (poor)", and "unacceptable", respectively.
図21に示すように、結果表300においては、サンプルa、サンプルb及びサンプルcの結果301,302,303が示されている。
サンプルaについては、熱伝導率が56.7W/(m・K)で、切断面は、部分的に条痕が深くなり、ピッチも大きくなり、やや粗くなることから「△」の評価となった。レーザ光LBの入射深さが1mmでの切断面粗さ(条痕変化)は、深さにややバラつきのある結果となっていることが確認できる。
As shown in FIG. 21, a result table 300 shows results 301, 302, and 303 of samples a, b, and c.
Sample a had a thermal conductivity of 56.7 W/(m·K), and the cut surface was rated as "△" because the streaks were partially deep, the pitch was large, and the cut surface was somewhat rough. It can be seen that the roughness of the cut surface (streaking) when the laser beam LB was incident to a depth of 1 mm showed some variation in depth.
サンプルbについては、熱伝導率が60.3W/(m・K)で、切断面は、ノッチが少なく、条痕の深さも最も浅いことから、「○」の評価となった。レーザ光LBの入射深さが1mmでの切断面粗さ(条痕変化)は、深さのバラつきが少なく全てのサンプルの中で最も浅い結果となったので、概ね切断面の評価通りの結果となっていることが確認できる。 Sample b had a thermal conductivity of 60.3 W/(m·K), few notches on the cut surface, and the shallowest streak depth, so it was rated as "○". The cut surface roughness (streak change) when the laser light LB was incident to a depth of 1 mm showed little variation in depth and was the shallowest of all the samples, so it can be confirmed that the results were generally in line with the cut surface evaluation.
サンプルcについては、熱伝導率が49.5W/(m・K)で、切断面は、全てのサンプルの中で最もノッチが多くなったことから「×」の評価となった。レーザ光LBの入射深さが1mmでの切断面粗さ(条痕変化)は、深さにバラつきが多く深い結果となったので、概ね切断面の評価通りの結果となっていることが確認できる。 Sample c had a thermal conductivity of 49.5 W/(m·K) and the cut surface had the most notches of all the samples, so it was rated as "X". The cut surface roughness (streak change) when the laser light LB was incident to a depth of 1 mm was deep with a lot of variation in depth, so it can be confirmed that the results were generally in line with the cut surface evaluation.
そして、サンプルa、サンプルb及びサンプルcの切断面の平均粗さを算出し、算出結果を、図22に示すように、縦軸に切断面の平均粗さ(μm)を表し、横軸に熱伝導率(W/(m・K))の大きさを表したグラフ304にプロットして回帰直線305を得た。図22からも明らかなように、切断面の粗さは熱伝導率の大きさ順に粗くなることが分かった。従って、被加工材Wの材料の切断性と熱伝導率の大きさには相関があることが証明された。
Then, the average roughness of the cut surfaces of Sample a, Sample b, and Sample c was calculated, and the calculation results were plotted on a
上述した熱伝導率をレーザ切断の加工前に評価するために、被加工材Wの内部材質と熱伝導率の違いについて分類するための第2の調査を行った。第2の調査では、被加工材Wの材料を溶融しないレーザ出力範囲(第2の判定照射条件でのレーザ出力の範囲)で、被加工材Wの素材内部にレーザ光LBによって繰り返し加熱冷却を行うことで、熱伝導率の違いを調査した。 In order to evaluate the above-mentioned thermal conductivity before laser cutting, a second study was conducted to classify the internal material and thermal conductivity of the workpiece W. In the second study, the difference in thermal conductivity was investigated by repeatedly heating and cooling the inside of the workpiece W with laser light LB in the laser output range that does not melt the material of the workpiece W (the laser output range under the second judgment irradiation conditions).
図23は、被加工材に繰り返し加熱冷却を実施した際の温度と時間との関係及び冷却到達温度と時間との関係を示すグラフである。
図23(a)は、放射温度計30Aでサンプルbを測定して、放射温度計30Aから出力された赤外線強度の時系列データを温度の時系列データに変換した温度波形310を示している。図23(a)において、縦軸は温度(℃)を表し、横軸は時間(ミリ秒:ms)を表している。
FIG. 23 is a graph showing the relationship between temperature and time when repeatedly heating and cooling a workpiece, and the relationship between the temperature reached by cooling and time.
Fig. 23(a) shows a
第2の調査に当たっては、第2の判定照射条件として、板厚19mmの被加工材Wの素材内部に照射するレーザ光LBのレーザ出力を425W、周波数を10Hz、デューティを50%に設定し、1秒間に10回の繰り返し加熱を行った。図23(b)は、図23(a)の温度波形310の2周期分を、時間軸をms単位で拡大して示した温度波形311を示す図である。
In the second investigation, the second judgment irradiation conditions were set to 425 W laser output, 10 Hz frequency, and 50% duty for the laser light LB irradiated to the inside of the workpiece W having a plate thickness of 19 mm, and heating was repeated 10 times per second. Figure 23(b) shows a
図23(a),(b)に示すように、レーザ光LBの照射開始から10秒間において、複数サイクルのレーザ照射により時間経過と共に被加工材Wの温度波形310,311が、約300℃~約750℃の間で細かく上下動(発熱及び放熱の繰り返し)することが分かる。
As shown in Figures 23(a) and (b), during the first 10 seconds of irradiation with the laser beam LB, the
図23(c)は、図23(a)で示した繰り返し加熱冷却による温度波形310の下側の包絡線を示す波形図である。この波形図は、図23(a)の波形図の1サイクル毎の冷却到達温度の時間的遷移を特徴量情報(第2の特徴量情報)312として抽出したものである。この特徴量情報312は、被加工材Wの熱伝導に起因した温度上昇の度合いを示し、以後の判定評価に用いることができる。この特徴量情報312に基づき、レーザ照射開始から5秒後の冷却到達温度を、被加工材Wの材料の内部特性を判定するための判定基準(第2の判定基準)として設定した。すなわち、レーザ照射開始から5秒後の冷却到達温度が550℃以上である場合は熱伝導の評価が「×」で、470℃以上550℃未満である場合は熱伝導の評価が「△」で、470℃未満である場合は熱伝導の評価が「○」と評価した。
23(c) is a waveform diagram showing the lower envelope of the
図23(c)に図中矢印で示すように、サンプルbについては、レーザ照射開始から5秒後の冷却到達温度が421℃であるため、熱伝導は「○」の評価となっている。これは、加工点で発生した熱が拡散しやすく、温度が上がりにくい材料であることを示している。図21の結果表300に示したサンプルbの結果302でも熱伝導率が比較的大きくなっていることが分かるので、レーザ照射による繰り返し加熱冷却の温度解析結果と合致することが判明した。 As shown by the arrow in Figure 23 (c), for sample b, the cooling temperature reached 5 seconds after the start of laser irradiation was 421°C, so the thermal conductivity was rated as "○". This indicates that the heat generated at the processing point is easily diffused and the material is not prone to temperature increases. It can also be seen from result 302 for sample b shown in result table 300 in Figure 21 that the thermal conductivity is relatively large, which was found to match the temperature analysis results of repeated heating and cooling by laser irradiation.
図24は、被加工材に繰り返し加熱冷却を実施した際の温度と時間との関係及び冷却到達温度と時間との関係を示すグラフである。
図24(a)は、放射温度計30Aでサンプルcを測定して、放射温度計30Aから出力された赤外線強度の時系列データを温度の時系列データに変換した温度波形315を示している。加工条件と第2の判定照射条件については、サンプルbと共通する。また、温度波形316及び特徴量情報(第2の特徴量情報)317についても、図23と同様である。
FIG. 24 is a graph showing the relationship between temperature and time when repeatedly heating and cooling a workpiece, and the relationship between the temperature reached by cooling and time.
24A shows a
図24(c)に図中矢印で示すように、サンプルcについては、レーザ照射開始から5秒後の冷却到達温度が551℃であるため、熱伝導は「×」の評価となっている。これは、加工点で発生する熱が逃げにくく、熱伝導率が小さい材料であることを示している。図21の結果表300に示したサンプルcの結果303でも熱伝導率が比較的小さくなっていることが分かるので、レーザ照射による繰り返し加熱冷却の温度解析結果と合致することとが判明した。 As shown by the arrow in Figure 24 (c), for sample c, the cooling temperature reached 5 seconds after the start of laser irradiation was 551°C, so the thermal conductivity was rated as "x". This indicates that the heat generated at the processing point does not easily escape, and that the material has low thermal conductivity. It can be seen from result 303 of sample c shown in result table 300 in Figure 21 that the thermal conductivity is relatively low, which is consistent with the temperature analysis results of repeated heating and cooling by laser irradiation.
次に、表面起因について調べるために、第3の調査を行った。第3の調査に当たっては、まず、被加工材Wの素材表面の酸化膜の状態と条痕の乱れとの関係について調べることにした。
例えば、図25に示すタイプAの被加工材Wは、素材の状態で酸化膜が剥離(斑状)しており、酸化膜の剥離率が比較的大きいタイプのものが該当する。また、図27に示すタイプBの被加工材Wは、素材の状態で酸化膜の剥離はない(酸化膜が付着している)が、レーザ照射により酸化膜が剥離するタイプのものが該当する。これら、タイプA及びタイプBのいずれの被加工材Wでも、素材表面の酸化膜が剥離すると、表面におけるレーザ吸収率及び酸化反応のしやすさ等が変化する。このため、切断面においては、酸化膜が剥離した部分で条痕が不均一となる。従って、切断面の条痕の乱れは素材表面の酸化膜の密着性と強い相関があると考えられる。このことは、上記のように調べたタイプA及びタイプBの被加工材Wの切断面の画像において、酸化膜の剥離箇所を起点として、条痕が深くノッチとなっていたことからも明らかである。
Next, a third investigation was carried out to investigate surface causes. In the third investigation, we first investigated the relationship between the state of the oxide film on the surface of the workpiece W and the irregularities of the streaks.
For example, the type A workpiece W shown in FIG. 25 corresponds to a type in which the oxide film is peeled off (in a spotted form) in the raw material state, and the peeling rate of the oxide film is relatively large. The type B workpiece W shown in FIG. 27 corresponds to a type in which the oxide film is not peeled off (the oxide film is attached) in the raw material state, but the oxide film is peeled off by laser irradiation. In both types A and B workpiece W, when the oxide film on the surface of the material peels off, the laser absorption rate and the ease of oxidation reaction on the surface change. For this reason, the cut surface has uneven streaks in the area where the oxide film has peeled off. Therefore, it is considered that the irregularity of the streaks on the cut surface is strongly correlated with the adhesion of the oxide film on the surface of the material. This is also clear from the fact that in the images of the cut surfaces of the type A and type B workpiece W examined as above, the streaks were deep and notched, starting from the peeled part of the oxide film.
以上のことを踏まえ、被加工材Wは、表面性状において、上記タイプA及びタイプBの他に、図29に示す、レーザ照射によっても、素材表面の酸化膜が全く剥離しないタイプのタイプCを加えた3つのタイプに分類することが可能であることが判明した。そこで、第3の調査に当たっては、被加工材Wの素材表面の酸化膜の密着性(酸化膜分布状態)を調べるために、例えば、第2の判定照射条件として、板厚19mmの被加工材Wの素材表面に照射するレーザ光LBのレーザ出力を125W、速度を240mm/min、周波数を100Hz、デューティを100%に設定し、80mmの走査距離でレーザ照射(レーザ走査)を行った。そのときの温度の時間的変化を調べることで、酸化膜の位置的な密着状況を調べることが可能である。被加工材Wの表面にはレーザ走査による加熱冷却により熱応力が発生するが、酸化膜の密着性が弱いと酸化膜が剥離するので、温度変化となって現れる。 In light of the above, it was found that the workpiece W can be classified into three types in terms of surface properties: Type A and Type B, as well as Type C, shown in Figure 29, in which the oxide film on the material surface does not peel off at all even when irradiated with a laser. In the third investigation, in order to investigate the adhesion (distribution state of the oxide film) of the oxide film on the material surface of the workpiece W, for example, as the second judgment irradiation condition, the laser output of the laser light LB irradiated on the material surface of the workpiece W with a plate thickness of 19 mm was set to 125 W, the speed to 240 mm/min, the frequency to 100 Hz, and the duty to 100%, and laser irradiation (laser scanning) was performed with a scanning distance of 80 mm. By investigating the change in temperature over time at that time, it is possible to investigate the positional adhesion state of the oxide film. Thermal stress is generated on the surface of the workpiece W by heating and cooling due to laser scanning, but if the adhesion of the oxide film is weak, the oxide film will peel off, which appears as a temperature change.
図25は、タイプAの被加工材の表面状態の調査結果を説明するための図である。図26は、図25の被加工材を切断した際の切断面画像及び面粗さを示す図である。
図25(a)及び図25(b)に示すように、タイプAの被加工材Wは、その表面画像330及び素材表面の拡大画像330aからも分かるように、素材の状態で酸化膜が剥離しているところがある。図25(c)は、タイプAの被加工材Wにレーザ走査を行ったときの検出温度の位置的変化を示す波形図を含んでいる。この波形図は、温度の位置的変化を特徴量情報(第1の特徴量情報)331として抽出したものである。素材の状態で酸化膜が剥離しているところがあるため、図25(c)に示すように、レーザ走査をすると、波形図の横軸に表す距離(mm)において、縦軸に表す温度(℃)の位置的変化を示す特徴量情報(第1の特徴量情報)331は、図示のように表される。なお、特徴量情報(第1の特徴量情報)331は、放射温度計30Aにより1.95μm~2.5μmの赤外線強度を放射率1として温度で測定した温度パターンを表している(以下、同じ)。波形図の下方における表面画像332は、波形図に対応するレーザ走査後の表面状態を表している。
Fig. 25 is a diagram for explaining the results of an investigation into the surface condition of the workpiece of type A. Fig. 26 is a diagram showing a cut surface image and surface roughness when the workpiece of Fig. 25 is cut.
As shown in Fig. 25(a) and Fig. 25(b), the type A workpiece W has some areas where the oxide film is peeled off in the raw state, as can be seen from the surface image 330 and the enlarged image 330a of the material surface. Fig. 25(c) includes a waveform diagram showing the positional change in the detected temperature when the type A workpiece W is subjected to laser scanning. This waveform diagram is obtained by extracting the positional change in temperature as feature amount information (first feature amount information) 331. Since the type A workpiece W has some areas where the oxide film is peeled off in the raw state, when the type A workpiece W is subjected to laser scanning as shown in Fig. 25(c), the feature amount information (first feature amount information) 331 showing the positional change in temperature (°C) shown on the vertical axis at the distance (mm) shown on the horizontal axis of the waveform diagram is expressed as shown. The feature amount information (first feature amount information) 331 represents a temperature pattern measured by the
すなわち、素材表面において、レーザ光LBを照射する前から酸化膜が剥離しているところでは温度が低くなる。酸化膜が載っている(付着している)ところで、酸化膜の密着性が弱い部分はレーザ光LBの照射により酸化膜が剥離してしまう。このようなレーザ照射により酸化膜が剥離したところ(表面画像332の白っぽいところ)では、酸化膜が発光発熱し温度が高くなる。このため、特徴量情報(第1の特徴量情報)331は、高温側のピークが多く現れると共に、高温側及び低温側において波形の乱れが多く散見される結果となった。 In other words, the temperature is low in areas on the material surface where the oxide film has peeled off before the laser light LB is irradiated. In areas where an oxide film is present (attached) and the adhesion of the oxide film is weak, the oxide film peels off when irradiated with the laser light LB. In areas where the oxide film has peeled off due to such laser irradiation (whitish areas in surface image 332), the oxide film emits light and generates heat, causing the temperature to rise. As a result, the feature information (first feature information) 331 shows many peaks on the high temperature side, and there is a lot of waveform distortion on both the high temperature and low temperature sides.
また、タイプAの被加工材Wの切断面画像は、図26(a)に示す画像333のようになり、表面から1mmの深さ(Iで示す線)の面粗さ及び2mmの深さ(IIで示す線)の面粗さは、図26(b)に示すグラフ334のようになった。タイプAの被加工材Wは、表面から1mmの深さ及び2mmの深さのいずれにおいても、面粗さは不安定で全体的にバラつきがあり、切断面の条痕の乱れも多く見られる結果となった。 The cut surface image of type A workpiece W was as shown in image 333 in Figure 26(a), and the surface roughness at a depth of 1 mm from the surface (line indicated by I) and at a depth of 2 mm (line indicated by II) was as shown in graph 334 in Figure 26(b). For type A workpiece W, the surface roughness was unstable and varied overall at both a depth of 1 mm and a depth of 2 mm from the surface, with many irregularities in the striations on the cut surface.
図27は、タイプBの被加工材の表面状態の調査結果を説明するための図である。図28は、図27の被加工材を切断した際の切断面画像及び面粗さを示す図である。
図27(a)及び図27(b)に示すように、タイプBの被加工材Wは、その表面画像340及び素材表面の拡大画像340aからも分かるように、素材の状態で酸化膜の剥離はない(酸化膜が付着している)。図27(c)は、タイプBの被加工材Wにレーザ走査を行ったときの検出温度の位置的変化を示す波形図を含んでいる。この波形図は、温度の位置的変化を特徴量情報(第1の特徴量情報)341として抽出したものである。素材の状態で酸化膜の剥離はないが、図27(c)に示すように、レーザ走査をすると、波形図の横軸に表す距離(mm)において、縦軸に表す温度(℃)の位置的変化を示す特徴量情報(第1の特徴量情報)341は、図示のように表され、レーザ走査後の表面状態は、波形図の下方の表面画像342のようになる。
Fig. 27 is a diagram for explaining the results of investigating the surface condition of the workpiece of type B. Fig. 28 is a diagram showing a cut surface image and surface roughness when the workpiece of Fig. 27 is cut.
As shown in Fig. 27(a) and Fig. 27(b), the type B workpiece W has no peeling of the oxide film in the raw state (the oxide film is attached) as can be seen from the surface image 340 and the enlarged image 340a of the material surface. Fig. 27(c) includes a waveform diagram showing the positional change in the detected temperature when the type B workpiece W is subjected to laser scanning. This waveform diagram is obtained by extracting the positional change in temperature as feature amount information (first feature amount information) 341. Although there is no peeling of the oxide film in the raw state, as shown in Fig. 27(c), when the type B workpiece W is subjected to laser scanning, the feature amount information (first feature amount information) 341 showing the positional change in temperature (°C) shown on the vertical axis at the distance (mm) shown on the horizontal axis of the waveform diagram is shown as shown, and the surface state after laser scanning becomes as shown in the surface image 342 below the waveform diagram.
すなわち、素材表面において、酸化膜の密着性が弱くレーザ照射により酸化膜が剥離する箇所(表面画像342の白っぽいところ)が増える傾向にあるので、特徴量情報(第1の特徴量情報)341は、低温側ではタイプAのものに比べると安定しているが、高温側ではやはりピークが多く現れて、高温側及び低温側における波形の乱れも多少見られる結果となった。 In other words, since there is a tendency for the adhesion of the oxide film on the material surface to be weak and for the oxide film to peel off due to laser irradiation to increase (the whitish areas in surface image 342), the feature amount information (first feature amount information) 341 is more stable on the low temperature side compared to that of type A, but there are still many peaks on the high temperature side, and some distortion of the waveform can be seen on both the high temperature side and the low temperature side.
また、タイプBの被加工材Wの切断面画像は、図28(a)に示す画像343のようになり、表面から1mmの深さ(Iで示す線)の面粗さ及び2mmの深さ(IIで示す線)の面粗さは、図28(b)に示すグラフ344のようになった。タイプBの被加工材Wは、表面から2mmの深さの面粗さの方が、表面から1mmの深さの面粗さよりも安定し、タイプAのものよりも全体的にバラつきは少ないが、切断面に多少の条痕の乱れが現れる結果となった。 The cut surface image of type B workpiece W was as shown in image 343 in FIG. 28(a), and the surface roughness at a depth of 1 mm from the surface (line indicated by I) and at a depth of 2 mm (line indicated by II) was as shown in graph 344 in FIG. 28(b). For type B workpiece W, the surface roughness at a depth of 2 mm from the surface was more stable than the surface roughness at a depth of 1 mm from the surface, and there was less overall variation than with type A, but some irregular streaks appeared on the cut surface.
図29は、タイプCの被加工材の表面状態の調査結果を説明するための図である。図30は、図29の被加工材を切断した際の切断面画像及び面粗さを示す図である。
図29(a)及び図29(b)に示すように、タイプCの被加工材Wは、その表面画像350及び素材表面の拡大画像350aからも分かるように、素材の状態で素材表面の酸化膜が全く剥離していない(酸化膜がしっかり付着している)。図29(c)は、タイプCの被加工材Wにレーザ走査を行ったときの検出温度の位置的変化を示す波形図を含んでいる。この波形図は、温度の位置的変化を特徴量情報(第1の特徴量情報)351として抽出したものである。素材の状態で酸化膜が全く剥離していないため、図29(c)に示すように、レーザ走査をすると、波形図の横軸に表す距離(mm)において、縦軸に表す温度(℃)の位置的変化を示す特徴量情報(第1の特徴量情報)351は、図示のように表される。波形図の下方の表面画像352は、波形図に対応するレーザ走査後の表面状態を表している。
Fig. 29 is a diagram for explaining the results of an investigation into the surface condition of the workpiece of type C. Fig. 30 is a diagram showing a cut surface image and surface roughness when the workpiece of Fig. 29 is cut.
As shown in Fig. 29(a) and Fig. 29(b), as can be seen from the
すなわち、素材表面において、酸化膜の剥離はほとんどないので、レーザ照射により極一部酸化膜が剥離するものの(表面画像352の白っぽいところ)、特徴量情報(第1の特徴量情報)351は、高温側のピークが少し現れるが、低温側において波形の乱れがほとんどなく安定している結果となった。 In other words, there is almost no peeling of the oxide film on the surface of the material, and although a very small portion of the oxide film is peeled off by laser irradiation (the whitish area in surface image 352), the feature information (first feature information) 351 shows a slight peak on the high temperature side, but there is almost no distortion of the waveform on the low temperature side, resulting in a stable result.
また、タイプCの被加工材Wの切断面画像は、図30(a)に示す画像353のようになり、表面から1mmの深さ(Iで示す線)の面粗さ及び2mmの深さ(IIで示す線)の面粗さは、図30(b)に示すグラフ354のようになった。タイプCの被加工材Wは、表面から1mmの深さの面粗さの方が、表面から2mmの深さの面粗さよりも安定しているが、タイプA及びタイプBのものよりも全体的にバラつきが少なく、切断面に条痕の乱れが現れない結果となった。 The cut surface image of type C workpiece W is shown in image 353 in Figure 30(a), and the surface roughness at a depth of 1 mm from the surface (line indicated by I) and at a depth of 2 mm (line indicated by II) is shown in graph 354 in Figure 30(b). For type C workpiece W, the surface roughness at a depth of 1 mm from the surface is more stable than the surface roughness at a depth of 2 mm from the surface, but there is less overall variation than types A and B, and no irregular streaks appear on the cut surface.
以上の観点から、軟鋼の被加工材Wの切断性(加工性)は、材料表面の酸化膜分布状態と、内部成分などによる熱伝導率の大きさ(内部特性)と、に強く依存しており、赤外線強度に基づく温度の時間的又は位置的変化によって判定可能であることが証明された。そこで、本出願人は、レーザ加工ユニット20A及び放射温度計30Aを用いて実施された上記の各調査の結果等を勘案し、被加工材Wの加工性の判定用の基準情報を設定した。
From the above perspective, it has been proven that the cuttability (machinability) of the workpiece W of mild steel is strongly dependent on the distribution state of the oxide film on the material surface and the magnitude of thermal conductivity (internal characteristics) due to internal components, etc., and can be determined by the time or positional change in temperature based on infrared intensity. Therefore, the applicant has taken into consideration the results of the above-mentioned investigations conducted using the
すなわち、基準情報は、被加工材Wの表面性状の判定用の第1の判定基準(しきい値)及び被加工材Wの内部特性の判定用の第2の判定基準(しきい値)を含む。第1の判定基準は、被加工材Wの基準温度範囲及び温度のバラつきの少なくとも一方に関する情報を含み、第2の判定基準は、被加工材Wの温度上昇の度合いを示す情報を含む。 In other words, the reference information includes a first judgment criterion (threshold value) for judging the surface properties of the workpiece W and a second judgment criterion (threshold value) for judging the internal properties of the workpiece W. The first judgment criterion includes information on at least one of the reference temperature range and temperature variation of the workpiece W, and the second judgment criterion includes information indicating the degree of temperature rise of the workpiece W.
そして、NC装置60における放射温度計30Aによる加工性の判定において、具体的には、加工システム100Aにおいては、レーザ加工装置10Aは、加工性判定工程において、第2の判定照射条件で、レーザ光LBを、照射位置を移動させながら被加工材Wの素材表面に照射する。演算処理部63は、放射温度計30Aによって測定された赤外線強度の時系列データに基づき被加工材Wの温度の位置的変化を特徴量情報として抽出する。例えば記憶装置等に記憶された基準情報は、被加工材Wの基準温度範囲及び温度のバラつきの少なくとも一方に基づく判定基準を含む。加工性判定部66は、例えば記憶装置等に記憶された特徴量情報に含まれる被加工材Wの温度の位置的変化が、判定基準を満たすかどうかによって、被加工材Wの加工性を判定する。また、加工システム100Aにおいては、レーザ加工装置10Aは、加工性判定工程において、第2の判定照射条件で、レーザ光LBを被加工材Wの素材内部に繰り返し照射する。演算処理部63は、放射温度計30Aによって測定された赤外線強度の時系列データに基づき被加工材Wの温度の時間的変化を特徴量情報として抽出する。例えば記憶装置等に記憶された基準情報は、被加工材Wの温度上昇の度合いを示す判定基準を含む。加工性判定部66は、例えば記憶装置等に記憶された特徴量情報に含まれる被加工材Wの温度の時間的変化が、判定基準を外れる温度上昇の状態か否かによって、被加工材Wの加工性を判定する。
In the judgment of the workability by the
更に、加工システム100Aにおいては、第2の判定照射条件は、第3の照射条件及び第4の照射条件を含み、レーザ加工装置10Aは、加工性判定工程において、第3の照射条件で、レーザ光LBを、照射位置を移動させながら被加工材Wの素材表面に照射し、第4の照射条件で、レーザ光LBを被加工材Wの素材内部に繰り返し照射する。また、放射温度計30A(第2の測定部)は、第3の照射条件でレーザ光LBが被加工材に照射されたときに発生する赤外光(放射光)の第1の赤外線強度と、第4の照射条件でレーザ光LBが被加工材Wに照射されたときに発生する赤外光(放射光)の第2の赤外線強度と、を測定する。また、演算処理部63は、放射温度計30Aによって測定された第1の赤外線強度の時系列データに基づき被加工材Wの温度の位置的変化を示す第1の特徴量情報を抽出すると共に、放射温度計30Aによって測定された第2の赤外線強度の時系列データに基づき被加工材Wの温度の時間的変化を示す第2の特徴量情報を抽出する。また、加工性判定部66は、第1の特徴量情報を基準情報に含まれる第1の判定基準(しきい値)と比較して、第1の特徴量情報に含まれる被加工材Wの温度の位置的変化が、基準情報に含まれる被加工材Wの基準温度範囲及び温度のバラつきの少なくとも一方に基づく第1の判定基準(しきい値)を満たすかどうかを判定する。これと共に、加工性判定部66は、第2の特徴量情報を基準情報に含まれる第2の判定基準(しきい値)と比較して、第2の特徴量情報に含まれる被加工材Wの温度の時間的変化が、基準情報に含まれる被加工材Wの温度上昇の度合いを示す第2の判定基準(しきい値)を外れる温度上昇の状態か否かを判定して、その結果の組み合わせに基づき被加工材Wの加工性を判定する。なお、記憶装置等は、例えば、演算処理部63によって抽出された第1の特徴量情報及び第2の特徴量情報を読み書き可能に記憶する。
Furthermore, in the
なお、被加工材Wの内部特性を正確に判定するためには、好ましくは、レーザ加工装置10Aは、第4の照射条件でレーザ光LBを被加工材Wの素材内部に照射する前に、第5の照射条件でレーザ光LBを被加工材Wの素材表面に照射して被加工材Wの表面の酸化膜除去(表面改質)を行う。ここで、被加工材Wの表面の酸化膜除去は、例えば、第5の照射条件としてレーザ出力2500W、ノズルギャップ70mmと高出力でギャップを大きくすることで、酸化膜を剥離する領域(エリア)を確保する。これにより、被加工材Wの表面に深さ約1.0mm~約1.5mm、くぼみ径約6mmのクレータが生成される。
In order to accurately determine the internal characteristics of the workpiece W, the
従って、レーザ加工装置10Aにより照射されるレーザ光LBの第3の照射条件、第4の照射条件及び第5の照射条件のレーザ出力は、切断加工条件に含まれるレーザ出力よりも小さく、第3の照射条件のレーザ出力は、第4の照射条件のレーザ出力よりも小さくなるように設定される。
Therefore, the laser output of the laser light LB irradiated by the
具体的には、レーザ切断の加工の標準の加工条件(標準条件)は、例えば、被加工材Wの板厚に応じた、レーザ出力が3000(W)、加工速度が630(mm/min)、(パルス)周波数が2000(Hz)、(パルス)デューティ(パルス幅)が100(%)、ガス種がO2、ガス圧が0.06(MPa)、ノズルギャップが1(mm)及びACLが62等の各パラメータの項目が設定されている。 Specifically, the standard processing conditions (standard conditions) for laser cutting are, for example, set as parameters according to the thickness of the workpiece W, such as a laser output of 3000 (W), a processing speed of 630 (mm/min), a (pulse) frequency of 2000 (Hz), a (pulse) duty (pulse width) of 100 (%), a gas type of O2 , a gas pressure of 0.06 (MPa), a nozzle gap of 1 (mm), and an ACL of 62.
一方、レーザ光LBの第3の照射条件は、例えば、レーザ出力が125(W)、加工速度が500(mm/min)、(パルス)周波数が100(Hz)、(パルス)デューティ(パルス幅)が100(%)、ガス圧が0.04(MPa)、ノズルギャップが50(mm)、ノズルがD2.5W、ガス種がO2、レンズ焦点距離が190(mm)、ACLが120、B軸が25(mm)及びレーザ照射径が5.9(Φ)等の各パラメータの項目が設定され、例えば、上記加工速度で80mmの距離にわたってレーザ走査を行い、被加工材Wの材料の表面状態(酸化膜の密着性又は剥離状態)を温度特性により判別するための条件である。 On the other hand, the third irradiation condition of the laser light LB is, for example, a laser output of 125 (W), a processing speed of 500 (mm/min), a (pulse) frequency of 100 (Hz), a (pulse) duty (pulse width) of 100 (%), a gas pressure of 0.04 (MPa), a nozzle gap of 50 (mm), a nozzle of D2.5W, a gas type of O2 , a lens focal length of 190 (mm), an ACL of 120, a B-axis of 25 (mm), and a laser irradiation diameter of 5.9 (Φ), and is a condition for performing laser scanning over a distance of, for example, 80 mm at the above processing speed and determining the surface condition of the material of the workpiece W (adhesion or peeling state of the oxide film) based on the temperature characteristics.
また、レーザ光LBの第4の照射条件は、例えば、レーザ出力が425(W)、加工速度が0(mm/min)、(パルス)周波数が10(Hz)、(パルス)デューティ(パルス幅)が50(%)、ガス圧が0.01(MPa)、ノズルギャップが35(mm)、ノズルがD7.0AL、ガス種が空気(Air)、レンズ焦点距離が190(mm)、ACLが140、B軸が25(mm)及びレーザ照射径が4.5(Φ)等の各パラメータの項目が設定され、例えば、スポット(定点)照射によりレーザ走査を行い、被加工材Wの材料の内部状態(熱伝導率)を温度特性により判別するための条件である。 The fourth irradiation condition of the laser light LB is, for example, a laser output of 425 (W), a processing speed of 0 (mm/min), a (pulse) frequency of 10 (Hz), a (pulse) duty (pulse width) of 50 (%), a gas pressure of 0.01 (MPa), a nozzle gap of 35 (mm), a nozzle of D7.0AL, a gas type of air (Air), a lens focal length of 190 (mm), an ACL of 140, a B-axis of 25 (mm), and a laser irradiation diameter of 4.5 (Φ), and these are conditions for, for example, performing laser scanning by spot (fixed point) irradiation and determining the internal state (thermal conductivity) of the material of the workpiece W based on its temperature characteristics.
また、レーザ光LBの第5の照射条件は、例えば、焦点位置が素材表面に位置する状態で、レーザ出力が2500(W)、加工速度が0(mm/min)、(パルス)周波数が100(Hz)、(パルス)デューティ(パルス幅)が100(%)、ガス圧が0.4(MPa)、ノズルギャップが70(mm)、ノズルがD7.0AL、ガス種が空気(Air)及びレンズ焦点距離が190(mm)等の各パラメータの項目が設定され、例えば、第3の照射条件及び第4の照射条件よりもレーザ出力が高い状態で、被加工材Wの材料の表面改質(酸化膜の除去)を行うための条件である。 The fifth irradiation condition of the laser light LB is, for example, a condition in which the focal position is located on the material surface, the parameters are set as follows: laser output 2500 (W), processing speed 0 (mm/min), (pulse) frequency 100 (Hz), (pulse) duty (pulse width) 100 (%), gas pressure 0.4 (MPa), nozzle gap 70 (mm), nozzle D7.0AL, gas type air, and lens focal length 190 (mm), and is a condition for performing surface modification (removal of oxide film) of the material of the workpiece W under a laser output higher than those under the third and fourth irradiation conditions.
なお、第3の照射条件で照射されるレーザ光LBのエネルギー密度は、1W/mm2以上5W/mm2未満であり、第4の照射条件で照射されるレーザ光LBのエネルギー密度は、5W/mm2以上10W/mm2以下である。第3の照射条件を上記のように設定して被加工材Wの表面性状を判定するのは、次の理由による。 The energy density of the laser beam LB irradiated under the third irradiation condition is 1 W/mm 2 or more and less than 5 W/mm 2 , and the energy density of the laser beam LB irradiated under the fourth irradiation condition is 5 W/mm 2 or more and 10 W/mm 2 or less. The reason for determining the surface texture of the workpiece W by setting the third irradiation condition as described above is as follows.
すなわち、上記第1~第3の調査により、密着性の弱い酸化膜は、レーザ切断中に酸化膜が素材表面から剥離し、切断面にノッチが入りやすいことが判明している。このため、その密着性をレーザ走査による温度変化の挙動から予測することとした。被加工材Wの素材表面の状態を正確に評価するため、レーザによる熱の侵入深さを極力抑えて、被加工材Wの素材表面の酸化膜を加熱冷却することで熱応力を発生させている。照射するレーザ光LBのエネルギー密度が強すぎると、材料の内部成分による影響も現れてしまうため、熱応力を負荷させる目的で1W/mm2以上5W/mm2未満のエネルギー密度で十分に足りると想定した。そして、酸化膜がレーザ照射により剥離すると、スパッタとなって発光し高温となるため、逆に素材の状態で既に素材表面の酸化膜が剥がれている部分は、レーザ吸収率が小さくなるため温度が低くなる。本出願人の知見によると、酸化膜の素材表面への密着性がよいと、温度はある特定の温度範囲内で安定することが判明している。なお、レーザ光LBの照射エリア(レーザ照射径)が大きいと、酸化膜の状態変化がレーザ走査により平均化されてしまうので温度変化の挙動が小さくなり、表面状態の違いが見えにくくなってしまう。また、照射エリアが小さいとレーザ出力も同時に弱くする必要があるために、レーザ出力が不安定になってしまう。これらのことから、被加工材Wの表面性状の判定に際しては、例えば、レーザ出力を125(W)に設定し、照射エリア(レーザ照射径)を約5.9(Φ)と設定した。 That is, the above-mentioned first to third investigations have revealed that an oxide film with weak adhesion is likely to peel off from the material surface during laser cutting, and a notch is likely to be formed on the cut surface. For this reason, it was decided to predict the adhesion from the behavior of temperature change due to laser scanning. In order to accurately evaluate the state of the material surface of the workpiece W, the thermal stress is generated by heating and cooling the oxide film on the material surface of the workpiece W while minimizing the penetration depth of heat by the laser. If the energy density of the irradiated laser light LB is too strong, the influence of the internal components of the material also appears, so it was assumed that an energy density of 1 W/mm2 or more and less than 5 W/ mm2 is sufficient for the purpose of loading thermal stress. And, when the oxide film peels off due to laser irradiation, it becomes sputtered, emits light, and becomes hot, so conversely, the part of the material surface where the oxide film has already peeled off in the raw state has a low laser absorption rate and therefore a low temperature. According to the knowledge of the present applicant, it has been found that if the oxide film has good adhesion to the material surface, the temperature is stable within a certain temperature range. If the irradiation area of the laser beam LB (laser irradiation diameter) is large, the state change of the oxide film is averaged by the laser scanning, so the behavior of the temperature change becomes small and the difference in the surface state becomes difficult to see. In addition, if the irradiation area is small, the laser output must be weakened at the same time, so the laser output becomes unstable. For these reasons, when judging the surface quality of the workpiece W, for example, the laser output is set to 125 (W) and the irradiation area (laser irradiation diameter) is set to about 5.9 (Φ).
また、第4の照射条件を上記のように設定して被加工材Wの内部特性を判定するのは、次の理由による。
すなわち、上記第1及び第2の調査により、温度変化の挙動から材料の熱伝導率を評価することにより、被加工材Wの材質的な加工性(切断性)の品質を判定可能なことが判明している。例えば、鉄(Fe)は800℃付近の温度で磁気変態し、900℃前後での温度で相変態して、1500℃前後の温度で溶融する特性の材料であるため、これらの温度で熱伝導や比熱が変化する。そのため、被加工材Wの材料の内部における熱伝導率を解析するのに、材料が溶融するまでの温度の時間的変化で評価する。このことから、レーザ照射のエネルギー密度を5W/mm2以上10W/mm2以下となるように設定した。また、このエネルギー密度は、レーザ切断の加工に必要なレーザ照射のエネルギー密度と比べると十分に弱いため、レーザ出力(パワー)が不安定になりやすい。そのため、照射エリア(レーザ照射径)を大きめに設定しレーザ出力(パワー)を調整するようにした。
The reason why the internal characteristics of the workpiece W are determined by setting the fourth irradiation condition as described above is as follows.
That is, the first and second investigations have revealed that the quality of the material workability (cuttability) of the workpiece W can be determined by evaluating the thermal conductivity of the material from the behavior of temperature change. For example, iron (Fe) is a material that undergoes magnetic transformation at a temperature of about 800°C, phase transformation at a temperature of about 900°C, and melts at a temperature of about 1500°C, so that the thermal conductivity and specific heat change at these temperatures. Therefore, in order to analyze the thermal conductivity inside the material of the workpiece W, it is evaluated by the change in temperature over time until the material melts. For this reason, the energy density of the laser irradiation is set to be 5 W/mm 2 or more and 10 W/mm 2 or less. In addition, this energy density is sufficiently weak compared to the energy density of the laser irradiation required for laser cutting, so the laser output (power) is likely to become unstable. Therefore, the irradiation area (laser irradiation diameter) is set to be large and the laser output (power) is adjusted.
そして、材料の熱伝導を評価するためには、レーザ照射による加熱での到達温度を評価するよりも、レーザ照射をオフにしたときの冷却温度を評価した方が、材料の熱伝導率を強く反映した結果が得られることが判明している。すなわち、レーザ照射による加熱の温度変化の挙動は、熱伝導率以外に、例えば、材料表面のレーザ吸収率の影響なども受けてしまうため、熱伝導の評価には不向きである。一方、冷却に関しては、レーザ照射のエネルギーが小さくても鋼の熱伝導率が比較的大きいので、1サイクル(100ms)程度で高温から室温近くまで冷却される。従って、材料の冷却到達温度の大きさを評価するためには、冷却時間50ms前後が適当であると想定した。また、繰り返し加熱冷却による冷却温度の温度変化の挙動を正確に評価するために、(パルス)周波数を10(Hz)とし、(パルス)デューティ(パルス幅)を50(%)と設定した。また、アシストガスのガス圧が強すぎると、冷却速度が速過ぎてしまうので、保護ガラスへのスパッタ飛散防止程度の目的でガス圧を0.01(MPa)に設定した。なお、レーザ照射による加熱温度自体が低いので酸化熱の発生量は小さくなるため、アシストガスの種類は酸素(O2)であっても窒素(N2)であってもよい。 It has been found that, in order to evaluate the thermal conductivity of a material, it is better to evaluate the cooling temperature when the laser irradiation is turned off than to evaluate the temperature reached by heating with laser irradiation, and a result that strongly reflects the thermal conductivity of the material is obtained. In other words, the behavior of the temperature change caused by heating with laser irradiation is affected by, for example, the laser absorption rate of the material surface in addition to the thermal conductivity, and is therefore unsuitable for evaluating thermal conductivity. On the other hand, with regard to cooling, even if the energy of the laser irradiation is small, the thermal conductivity of steel is relatively large, so it is cooled from a high temperature to near room temperature in about one cycle (100 ms). Therefore, it was assumed that a cooling time of about 50 ms is appropriate for evaluating the magnitude of the cooling temperature reached by the material. In addition, in order to accurately evaluate the behavior of the temperature change of the cooling temperature due to repeated heating and cooling, the (pulse) frequency was set to 10 (Hz) and the (pulse) duty (pulse width) was set to 50 (%). In addition, if the gas pressure of the assist gas is too strong, the cooling speed will be too fast, so the gas pressure was set to 0.01 (MPa) for the purpose of preventing spatter scattering on the protective glass. Since the heating temperature itself by laser irradiation is low and therefore the amount of oxidation heat generated is small, the type of assist gas may be either oxygen (O 2 ) or nitrogen (N 2 ).
以上のような見解から、本出願人は、被加工材Wの表面性状を判定するための第1の判定基準(しきい値)を、例えば、所定距離のレーザ走査により取得された特徴量情報331,341,351において、450℃~800℃の温度範囲にあるデータ成分が40%以下であるか、又はその温度パターンにおける標準偏差が100℃以上であるか、に設定した。表面性状は、温度範囲に40%以下であり、又は標準偏差が100℃以上である場合は、酸化膜の状態が悪く品質が悪いとされる。また、被加工材Wの内部特性を判定するための第2の判定基準(しきい値)を、例えば、繰り返し加熱冷却によるレーザ照射開始から5秒後の冷却到達温度が470℃未満であるか、に設定した。内部特性は、レーザ照射開始から5秒後の冷却到達温度が470℃未満である場合は、熱伝導率が大きく品質が良いとされる。なお、第1及び第2の判定基準は、これらに限定されるものではない。 From the above viewpoint, the applicant has set the first judgment criterion (threshold) for judging the surface quality of the workpiece W to, for example, whether the data components in the temperature range of 450°C to 800°C are 40% or less in the feature amount information 331, 341, 351 acquired by laser scanning at a predetermined distance, or whether the standard deviation in the temperature pattern is 100°C or more. If the surface quality is 40% or less in the temperature range, or if the standard deviation is 100°C or more, the condition of the oxide film is poor and the quality is poor. In addition, the second judgment criterion (threshold) for judging the internal characteristics of the workpiece W is set to, for example, whether the cooling temperature reached 5 seconds after the start of laser irradiation by repeated heating and cooling is less than 470°C. If the cooling temperature reached 5 seconds after the start of laser irradiation is less than 470°C, the internal characteristics are considered to have a high thermal conductivity and good quality. Note that the first and second judgment criteria are not limited to these.
例えば、第1の判定基準を、レーザ出力150(W)、照射エリア(レーサ照射径)6.5(Φ)で加工速度100(mm/s)により10秒間レーザ走査させたときの、蓄積時間1msの測定温度が450℃~800℃の範囲にある総積算時間を比べるものとしてもよい。この総積算時間が第1の判定基準と比べて、短ければ酸化膜の状態が悪く、長ければ酸化膜の密着性が良好であると判定することもできる。また、例えば、蓄積時間1msの測定温度データの標準偏差を比べるものとしてもよい。この標準偏差が、第1の判定基準と比べて、大きければ酸化膜の状態が悪く、小さければ酸化膜の密着性が良好であると判定することもできる。 For example, the first criterion may be a comparison of the total accumulated time during which the measured temperature is in the range of 450°C to 800°C with an accumulation time of 1 ms when laser scanning is performed for 10 seconds with a laser output of 150 (W), an irradiation area (laser irradiation diameter) of 6.5 (Φ), and a processing speed of 100 (mm/s). If this total accumulated time is shorter than the first criterion, it can be determined that the condition of the oxide film is poor, and if it is longer, the adhesion of the oxide film is good. Also, for example, the standard deviation of the measured temperature data with an accumulation time of 1 ms may be compared. If this standard deviation is larger than the first criterion, it can be determined that the condition of the oxide film is poor, and if it is smaller, the adhesion of the oxide film is good.
更に、例えば、第2の判定基準を、温度800℃までレーザ照射を行いスポット加熱した後にレーザ照射をオフにして冷却を開始し、冷却開始から300℃までに到達する時間を比べるものとしてもよい。この到達する時間が第2の判定基準と比べて、短ければ内部特性が良好で、長ければ切断面が粗くなると判定することもできる。また、レーザ照射をオフにしてから50ms後の冷却温度を比べるものとしてもよい。この冷却温度が第2の判定基準と比べて、低ければ内部特性が良好で、高ければ切断の品質が悪くなると判定することもできる。なお、基準情報(第1の判定基準、第2の判定基準)は、例えばオペレータにより適宜変更、設定等することが可能な情報である。
Furthermore, for example, the second criterion may be a comparison of the time taken from the start of cooling to reach 300°C after spot heating by irradiating the laser up to a temperature of 800°C and then turning off the laser irradiation and starting cooling. If this time is shorter than the second criterion, it can be determined that the internal characteristics are good, and if it is longer, the cut surface will be rough. Also, the cooling
[加工性判定処理フロー]
図31及び図32は、放射温度計による加工性判定処理フローの一例を示すフローチャートである。
図31に示すように、加工システム100Aにおいて放射温度計30Aによる加工性判定処理がスタートすると、まず、NC装置60において、記憶装置等の加工プログラムDB(Database)390から、制御部61に必要な加工プログラムが選択されて読み出される(ステップS120)。次に、加工プログラムにより選択された加工条件が、記憶装置等の加工条件DB(Database)391から読み出される(ステップS121)と共に、加工条件が適用される被加工材Wの内部特性判定用のしきい値(第2の判定基準)及び表面性状判定用のしきい値(第1の判定基準)が、記憶装置等の内部特性判定用のしきい値DB(Database)392及び表面性状判定用のしきい値DB(Database)393からロードされて、制御部61及び演算処理部63にそれぞれ設定される。
[Processing ability assessment process flow]
31 and 32 are flowcharts showing an example of a process flow for determining workability using a radiation thermometer.
As shown in Fig. 31, when the processability judgment process using the
そして、演算処理部63において各判定用のしきい値を決定し(ステップS122)、内部(特性)判定処理においては、第5の照射条件下でレーザ光LBを被加工材Wに照射して上記のような表面改質を行った後に、表面改質部に第4の照射条件下でレーザ光LBを被加工材Wに照射して(ステップS123)、放射温度計30Aによりレーザ照射時の放射光の赤外線に基づく温度を測定する(ステップS124)。また、表面(性状)判定処理においては、第3の照射条件下でレーザ光LBを被加工材Wに照射して(ステップS125)、放射温度計30Aによりレーザ照射時の放射光の赤外線に基づく温度を測定する(ステップS126)。なお、上記内部判定処理及び表面判定処理は、並行して行われても、いずれか一方が先でいずれか他方が後に行われてもよい。
Then, the
図32に示すように、演算処理部63は、上記ステップS124で測定された温度の時系列データを入力し、被加工材Wの温度の時間的変化を示す特徴量情報(第2の特徴量情報)を抽出する。加工性判定部66は、抽出された特徴量情報(第2の特徴量情報)を、設定された内部特性判定用のしきい値と比較することにより、例えば、材料の内部特性がしきい値以下であるか否かを判定する(ステップS127)。また、演算処理部63は、上記ステップS126で測定された温度の時系列データを入力し、被加工材Wの温度の位置的変化を示す特徴量情報(第1の特徴量情報)を抽出する。加工性判定部66は、抽出された特徴量情報(第2の特徴量情報)を、設定された表面性状判定用のしきい値と比較することにより、例えば、材料の表面性状がしきい値以下であるか否かを判定する(ステップS130)。
As shown in FIG. 32, the
上記ステップS127で内部特性がしきい値以下であると判定した場合(ステップS127のYES)は、被加工材Wの材料の内部特性が良好であると判定する(ステップS128)。一方、上記ステップS127で内部特性がしきい値以下ではないと判定した場合(ステップS127のNO)は、被加工材Wの材料の内部特性が不良であると判定する(ステップS129)。 If it is determined in step S127 that the internal characteristic is equal to or less than the threshold (YES in step S127), it is determined that the internal characteristic of the material of the workpiece W is good (step S128). On the other hand, if it is determined in step S127 that the internal characteristic is not equal to or less than the threshold (NO in step S127), it is determined that the internal characteristic of the material of the workpiece W is poor (step S129).
また、上記ステップS130で表面性状がしきい値以下であると判定した場合(ステップS130のYES)は、被加工材Wの材料の表面性状が良好であると判定する(ステップS131)。一方、上記ステップS130で表面性状がしきい値以下ではないと判定した場合(ステップS130のNO)は、被加工材Wの材料の表面性状が不良であると判定する(ステップS132)。 If it is determined in step S130 that the surface texture is equal to or less than the threshold (YES in step S130), the surface texture of the material of the workpiece W is determined to be good (step S131). On the other hand, if it is determined in step S130 that the surface texture is not equal to or less than the threshold (NO in step S130), the surface texture of the material of the workpiece W is determined to be poor (step S132).
そして、加工性判定部66は、上記ステップS128及びS129のいずれかの結果、並びに上記ステップS131及びS132のいずれかの結果に基づき、被加工材Wの加工性の判定結果処理を行う(ステップS133)。すなわち、上記ステップS128及びS131の組み合わせの場合、内部特性(内部成分による熱伝導率の大きさ)が良好であると共に表面性状(酸化膜の状態及び密着性)が良好であるので、例えば、被加工材Wの加工性は良好であるとの判定結果(第2の判定結果)を得る。また、それ以外の上記ステップS128及びS132の組み合わせの場合、内部特性は良好であるが表面性状が不良であり、上記ステップS129及びS131の組み合わせの場合、内部特性は不良であるが表面性状が良好であり、上記ステップS129及びS132の組み合わせの場合、内部特性及び表面性状が共に不良であるので、これらの場合は被加工材Wの加工性は不良であるとの判定結果(第2の判定結果)を得る。
Then, the
こうして得られた被加工材Wの加工性の判定結果(第2の判定結果)は、加工性判定部66から総合判定部65に出力されると共に、放射温度計30Aによる加工性の判定結果として、例えば、ディスプレイ70上に表示される(ステップS134)等してオペレータに報知され、本フローチャートによる一連の処理を終了する。このように、NC装置60における放射温度計30Aによる加工性判定処理は行われ得る。
The judgment result of the workability of the workpiece W thus obtained (second judgment result) is output from the
[総合判定]
次に、NC装置60の総合判定部65による分光器30及び放射温度計30Aを用いた総合判定について説明する。総合判定では、上述した分光器30による被加工材Wの加工性の判定結果(第1の判定結果)と、放射温度計30Aによる被加工材Wの加工性の判定結果(第2の判定結果)と、の組み合わせに基づき、総合判定部65で被加工材Wの加工性の総合的な判定が行われる。
図33は、分光器及び放射温度計による判定結果と実加工による切断品質(切断性)評価結果とを総合判定マトリックス情報において分類した結果を示す図である。
[Comprehensive judgment]
Next, a description will be given of the comprehensive judgment using the
FIG. 33 is a diagram showing the result of classifying the judgment results using the spectroscope and the radiation thermometer and the cutting quality (cuttability) evaluation results obtained by actual cutting in the comprehensive judgment matrix information.
図33に示すように、総合判定マトリックス情報400は、例えば、縦軸に被加工材Wの表面状態及び表面性状の分光器30及び放射温度計30Aによる表面判定の判定結果としての品質評価である「○」、「△」及び「×」を表し、横軸に被加工材Wの内部状態及び内部特性の分光器30及び放射温度計30Aによる内部判定の判定結果としての品質評価である「○」、「△」及び「×」を表して、これらをマトリックス表に組み合わせたデータからなる。
As shown in FIG. 33, the overall
総合判定マトリックス情報400のマトリックス領域404は、図中実線で囲むカテゴリー1の領域401と、図中破線で囲むカテゴリー2の領域402と、図中二点鎖線で囲むカテゴリー3の領域403と、に分けられている。カテゴリー1の領域401は、放射温度計30Aによる表面判定及び内部判定の品質評価がいずれも「○」で、分光器30による表面判定及び内部判定の品質評価が「○」~「×」の全ての組み合わせが該当する。
The
また、カテゴリー1の領域401は、放射温度計30Aによる表面判定及び内部判定の品質評価がいずれも「○」、又は分光器30による表面判定及び内部判定の品質評価がいずれも「○」の組み合わせが該当する。
In addition, the
一方、カテゴリー2の領域402は、放射温度計30Aによる表面判定の品質評価が「△」又は「×」及び内部判定の品質評価が「○」、又は分光器30による表面判定の品質評価が「△」又は「×」及び内部判定の品質評価「○」で、カテゴリー1に属さない組み合わせが該当する。
On the other hand,
更に、カテゴリー3の領域403は、カテゴリー1及び2に属さない組み合わせで、放射温度計30Aによる表面判定の品質評価が「○」~「×」及び内部判定の品質評価が「△」又は「×」、又は分光器30による表面判定の品質評価が「○」及び内部判定の品質評価が「△」又は「×」の組み合わせが該当する。
Furthermore,
なお、上記カテゴリー1~3は、単純に被加工材Wの加工性(切断性)の良否を示すものではなく、例えば、被加工材Wの切断加工前に、分光器30及び放射温度計30Aの表面判定及び内部判定の判定結果の組み合わせ基づく加工性をより精密に予測するために分類されている。従って、総合判定マトリックス情報400を用いれば、予測された加工性に応じて推奨する加工条件をより適切に判定することができる。そして、総合判定部65によって、カテゴリー1の領域401に分類された被加工材Wは、総合判定マトリックス情報400における推奨する加工条件として、標準条件で良好なレーザ切断(切断加工)が可能な被加工材(標準材)であると、加工性(切断性)が判定される。また、総合判定部65によって、カテゴリー2の領域402に分類された被加工材Wは、総合判定マトリックス情報400における推奨する加工条件として、標準条件でレーザ切断(切断加工)が可能ではあるが標準条件の調整が必要な被加工材(要テストカット実施材)であると、加工性が判定される。また、総合判定部65によって、カテゴリー3の領域403に分類された被加工材Wは、総合判定マトリックス情報400における推奨する加工条件として、標準条件を用いるとレーザ切断(切断加工)が困難な被加工材(テストカット推奨材)であると、加工性が判定される。すなわち、被加工材Wの中には、標準材、標準条件で切断は可能であるが良好切断ができない要テストカット実施材、及び標準条件では切断が困難なテストカット推奨材が含まれる。
The
なお、被加工材Wの切断品質の評価に当たっては、上述した第1及び第2の判定モデル5,6の機械学習に使用していない、例えば、板厚25mmで、材質、生産ロット及び生産過程等が異なる25種(サンプル1~4、No1~No21)の軟鋼の被加工材Wを使用した。これらの被加工材Wに、第1の判定照射条件のレーザ光LBを照射して分光器30により測定を行って、上記のような被加工材Wの表面状態及び内部状態の判定結果(第1の判定結果)を得ると共に、第2の判定照射条件のレーザ光LBを照射して放射温度計30Aにより測定を行って、上記のような被加工材Wの表面性状及び内部特性の判定結果(第2の判定結果)を得て、総合判定マトリックス情報400を作成し、加工性(切断性)を総合的に判定した。
In addition, when evaluating the cutting quality of the workpiece W, 25 types (
また、図33における切断品質(切断性)の評価に際し、レーザ切断の切断条件(加工条件)を、レーザ出力が9000(W)、加工速度が850(mm/min)、(パルス)周波数が2000(Hz)、(パルス)デューティ(パルス幅)が65(%)、ガス圧が0.09(MPa)、ノズルギャップが0.5(mm)、ノズルがDG2.5、ガス種が酸素(O2)、レンズ焦点距離が190(mm)、及びACLが70に設定し、複数の焦点位置にて切断加工を行い、観察評価によって切断品質を評価した。 In addition, when evaluating the cutting quality (cuttability) in Figure 33, the cutting conditions (processing conditions) for laser cutting were set to a laser output of 9000 (W), processing speed of 850 (mm/min), (pulse) frequency of 2000 (Hz), (pulse) duty (pulse width) of 65 (%), gas pressure of 0.09 (MPa), nozzle gap of 0.5 (mm), nozzle DG of 2.5, gas type of oxygen ( O2 ), lens focal length of 190 (mm), and ACL of 70, and cutting processing was performed at multiple focal positions, and the cutting quality was evaluated by observation evaluation.
図33における切断品質(切断性)の評価は、良好な切断品質の場合(切断性良好)は、品質スコアを「2」とし、切断品質が若干劣る場合(切断性不良)は、品質スコアを「1」とした。また、切断品質が悪い又は切断不可の場合(切断性不可)は、品質スコアを「0」とした。そして、切断品質の評価と共に、各被加工材Wの種別(サンプル1~4、No.1~21)を、総合判定マトリックス情報400のマトリックス領域404に分類して表した。
In FIG. 33, the cutting quality (cuttability) was evaluated as follows: good cutting quality (good cuttability) was assigned a quality score of "2", and slightly poor cutting quality (poor cuttability) was assigned a quality score of "1". Also, poor cutting quality or cutting impossible (uncuttable) was assigned a quality score of "0". The type of each workpiece W (samples 1-4, No. 1-21) was classified and displayed in the
図33に示す総合判定マトリックス情報400によれば、分光器30による判定結果(第1の判定結果)と、放射温度計30Aによる判定結果(第2の判定結果)とで、各被加工材W(サンプル1~4、No1~No21)の材料状態(材料特性)の判定結果(品質評価)がそれぞれ異なる場合があることが分かる。
According to the overall
図33に示すように、例えば、材料番号(材料Number:No)がNo13とNo14の被加工材Wでは、表面判定(表面状態及び表面性状)の判定結果は、分光器30の場合と放射温度計30Aの場合とで、品質評価は共に「○」で「良」の評価となっているが、内部判定(内部状態及び内部特性)の判定結果は異なっている。すなわち、放射温度計30Aによる内部特性の判定結果は、品質評価が「△」で「可」の評価となり、熱伝導が若干悪いことを示している。一方、分光器30による内部状態の判定結果は、品質評価が「○」で「良」の評価となっているので、内部状態が良好であることを示している。また、これらNo13,No14の被加工材Wの切断加工の結果によると、切断品質はスコアが「2」で切断性が良いことが示されている。
As shown in FIG. 33, for example, in the case of the workpiece W with material numbers (material number: No) No. 13 and No. 14, the surface judgment (surface condition and surface properties) judgment results are both rated as "○" and "good" by the
すなわち、上記の場合であると、例えば放射温度計30Aでは捉えきれない物理現象を分光器30側では捉えて、内部判定をしていることが分かる。一方で、分光器30側では材料状態(表面状態及び内部状態)を捉えきれずに誤った切断性を判定してしまう場合もあるが、放射温度計30Aでは材料状態(表面性状及び内部特性)を捉えて切断性を正確に判定できる場合もある。そのことを調べるために、第4の調査を行った。
In other words, in the above case, it can be seen that the
図34は、サンプル1~4の分光器及び放射温度計による材料状態(材料特性)の判定結果と切断面の評価結果との結果表を示す図である。
図34の結果表405に示すサンプル1,2及びサンプル3,4は、それぞれ同一ロットで製造された鋼材に含まれる内部成分が異なる2種の材料の被加工材Wであり、素材のままの状態がサンプル1,3で、表面改質した状態のものがサンプル2,4である。
FIG. 34 is a table showing the results of the determination of the material state (material characteristics) of
表面改質は、例えば、素材表面の酸化膜を研磨により除去して平均面粗さを0.8以下にした後に、水蒸気雰囲気で500℃の中に2時間加熱保持することで、素材表面に密着性の高い酸化物(マグネタイト)を生成させることにより行った。レーザ切断の切断条件は、レーザ出力3(kW)、加工速度630(mm/min)、及びアシストガスを酸素(O2)と設定した上で、切断加工を行い、切断面を観察評価により評価した。 The surface modification was performed, for example, by removing the oxide film on the material surface by polishing to reduce the average surface roughness to 0.8 or less, and then heating and holding the material in a water vapor atmosphere at 500°C for 2 hours to generate an oxide (magnetite) with high adhesion on the material surface. The cutting conditions for the laser cutting were set to a laser output of 3 (kW), a processing speed of 630 (mm/min), and oxygen ( O2 ) as the assist gas, and the cutting process was performed, and the cut surface was evaluated by observation.
第4の調査では、図34に示すように、まず、分光器30による判定では、表面品質及び内部品質のいずれもが、サンプル1~4で同じ判定結果となったが、切断面の品質評価は異なる結果(サンプル1,3が「×」で、サンプル2が「○」で、サンプル4が「△」)となった。すなわち、分光器30による判定では、サンプル1~4のいずれも、表面品質(酸化膜種類、厚さ)の判定結果は「×」で、内部品質(溶融挙動の安定性)の判定結果は「△」となった。この理由について考察する。
In the fourth investigation, as shown in Figure 34, first, when judged by the
図35は、サンプル1~4の材料に含まれる鉄以外の化学成分(mass%)を示す図である。図35の成分表406には、炭素(C)、シリコン(Si)、マンガン(Mn)、リン(P)、硫黄(S)、クロム(Cr)、ニッケル(Ni)、モリブデン(Mo)及び銅(Cu)の含有量(質量百分率(mass%))が表されている。
図35の成分表406に示すように、サンプル1,2は、炭素(C)が多いのが特徴での材料あり、サンプル3,4は、炭素が少なくマンガン(Mn)が多いのが特徴の材料である。
Fig. 35 is a diagram showing chemical components (mass%) other than iron contained in the materials of
As shown in the composition table 406 of FIG. 35,
炭素は素材の最終凝固部に濃化しやすい元素であり、炭素が濃化した部分では溶融しやすく、炭素が少ない部分は溶融しにくい。炭素が多いと素材内部での溶融ムラが発生しやすくなる。マンガンも炭素ほど顕著ではないが同様な傾向を示す。サンプル1,2は炭素量が多く、サンプル3,4は炭素量は少ないがマンガン量が多い。そのため、サンプル1,2とサンプル3,4は、溶融状態で分光器30により測定される発光スペクトルの時間的変動はほぼ同様な結果となったと考えられる。
Carbon is an element that tends to concentrate in the final solidification part of the material, and the parts with concentrated carbon melt easily, while parts with less carbon melt less easily. If there is a lot of carbon, uneven melting is more likely to occur inside the material. Manganese also shows a similar tendency, although it is not as pronounced as carbon.
一方、固体状態で熱伝導を評価する放射温度計30Aによる判定では、炭素以外に、シリコン及びマンガンの影響も強く受けるため、鉄以外のマンガン等の合金元素を多く含むサンプル3,4の内部判定では、熱伝導率が小さいものと判定されたと考えられる。レーザフラッシュ法で熱伝導率を実測した結果では、サンプル3,4の熱伝導率は48.9W/(m・K)で、サンプル1,2の熱伝導率の57.7W/(m・K)よりも小さくなったので、放射温度計30Aによる内部判定の正確性を反映しているものと考えられる。
On the other hand, the evaluation using
図36は、サンプル1に繰り返し加熱冷却を実施した際の温度と時間との関係を示すグラフである。図36は、放射温度計30Aでサンプル1を測定して、放射温度計30Aから出力された赤外線強度の時系列データを温度の時系列データに変換した温度波形410を示している。
図36に示す温度波形410によると、レーザ照射開始から5秒後の冷却到達温度は、図中矢印で示す420℃で、第2の判定基準(しきい値)の470℃未満となったので、品質評価は「○」である。
Fig. 36 is a graph showing the relationship between temperature and time when repeated heating and cooling were performed on
According to the
図37は、サンプル3に繰り返し加熱冷却を実施した際の温度と時間との関係を示すグラフである。図37は、放射温度計30Aでサンプル3を測定して、放射温度計30Aから出力された赤外線強度の時系列データを温度の時系列データに変換した温度波形411を示している。
図37に示す温度波形411によると、レーザ照射開始から5秒後の冷却到達温度は、図中矢印で示す558℃で、第2の判定基準(しきい値)の470℃以上となったので、品質評価は「×」である。このように、放射温度計30Aによる内部判定によれば、サンプル1,2及びサンプル3,4の違いを判定可能であることが認められた。
Fig. 37 is a graph showing the relationship between temperature and time when repeated heating and cooling were performed on
37, the cooling temperature reached 5 seconds after the start of laser irradiation was 558° C., as indicated by the arrow in the figure, which was higher than the second judgment criterion (threshold value) of 470° C., and therefore the quality evaluation was “x.” In this way, it was confirmed that the internal judgment using the
図38は、サンプル1及び2にレーザ走査を行った際の温度と時間との関係を示すグラフである。図38(a)はサンプル1について素材表面にレーザ走査を行って放射温度計30Aにより得られた温度波形412を示し、図38(b)はサンプル2について表面改質後の素材表面にレーザ走査を行って放射温度計30Aにより得られた温度波形413を示している。図39は、サンプル1を切断した際の切断面画像及び面粗さを示す図である。図40は、サンプル2を切断した際の切断面画像及び面粗さを示す図である。
Figure 38 is a graph showing the relationship between temperature and time when laser scanning was performed on
上述したように、サンプル1,2は、分光器30による判定では、表面判定及び内部判定共に同じ判定結果(表面品質が「×」及び内部品質が「△」)となったが、放射温度計30Aによる判定では、表面判定の判定結果が異なる(表面品質が「×」及び「○」)ものとなった。なお、放射温度計30Aによる内部判定では、判定結果は同じ(内部品質が「○」)となっている。
As described above, when
図38(a)の温度波形412に示すように、サンプル1は、レーザ照射中の温度変動が大きくて多いので、酸化膜の密着性が悪くて剥離が大きいと判定される。また、サンプル1の切断面画像は、図39(a)に示す画像414のようになり、レーザ照射面から1mmの深さ(Iで示す線)の面粗さ及び15mmの深さ(IIで示す線)の面粗さは、それぞれ図39(b)に示すグラフ415a及び図39(c)に示すグラフ415bのようになった。サンプル1は、レーザ照射面から1mmの深さの面粗さはバラつきが少なく安定しているが、レーザ照射面から15mmの深さの面粗さはバラつきが多く不安定で、切断面に多少の条痕の乱れが現れる結果となった。
As shown in the
これに対し、図38(b)の温度波形413に示すように、サンプル2は、レーザ照射中の温度変動が小さくて少ないので、酸化膜が均一に密着していると判定される。また、サンプル2の切断面画像は、図40(a)に示す画像416のようになり、レーザ照射面から1mmの深さ(Iで示す線)の面粗さ及び15mmの深さ(IIで示す線)の面粗さは、それぞれ図40(b)に示すグラフ417a及び図40(c)に示すグラフ417bのようになった。サンプル2は、レーザ照射面から1mmの深さの面粗さの方が、レーザ照射面から15mmの深さの面粗さよりも安定しているが、全体的にバラつきが少なく安定していて、切断面に条痕の乱れが現れない結果となった。
In contrast, as shown in the
そして、レーザ切断による切断面の品質評価が、熱伝導率が同じ57.7W/(m・K)であるにもかかわらず、サンプル1が「×」でサンプル2が「○」と異なっているのは、表面改質したサンプル2では切断面の面粗さが小さくなり、切断品質が大きく改善されることを表している。これは、表面改質することで、素材表面で酸化膜の密着性と均一性が高まることにより、素材表面での酸化反応が抑制され、切断性に及ぼす酸化反応の影響が小さくなったためと考えられる。
The quality evaluation of the cut surface by laser cutting is different, with
図41は、サンプル3及び4にレーザ走査を行った際の温度と時間との関係を示すグラフである。図41(a)はサンプル3について素材表面にレーザ走査を行って放射温度計30Aにより得られた温度波形418を示し、図41(b)はサンプル4について表面改質後の素材表面にレーザ走査を行って放射温度計30Aにより得られた温度波形419を示している。図42は、サンプル3を切断した際の切断面画像及び面粗さを示す図である。図43は、サンプル4を切断した際の切断面画像及び面粗さを示す図である。
Figure 41 is a graph showing the relationship between temperature and time when laser scanning was performed on
上記サンプル1,2と同様に、サンプル3,4は、分光器30による判定では、表面判定及び内部判定共に同じ判定結果(表面品質が「×」及び内部品質が「△」)となったが、放射温度計30Aによる判定では、表面判定の判定結果が異なる(表面品質が「×」及び「○」)ものとなった。なお、放射温度計30Aによる内部判定では、判定結果は同じ(内部品質が「×」)となっている。
Similar to
図41(a)の温度波形418に示すように、サンプル3は、レーザ照射中の温度変動が大きくて多いので、酸化膜の密着性が悪くて剥離が大きいと判定される。また、サンプル3の切断面画像は、図42(a)に示す画像420のようになり、レーザ照射面から1mmの深さ(Iで示す線)の面粗さ及び15mmの深さ(IIで示す線)の面粗さは、それぞれ図42(b)に示すグラフ421a及び図42(c)に示すグラフ421bのようになった。サンプル3は、レーザ照射面から1mmの深さの面粗さはバラつきが少なく安定しているが、レーザ照射面から15mmの深さの面粗さはバラつきが多くかなり不安定で、切断面に多くの条痕の乱れが見られる結果となった。
As shown in the
これに対し、図41(b)の温度波形419に示すように、サンプル4は、レーザ照射中の温度変動が少ないので、酸化膜の均一性がサンプル3よりも改善されているものと判定される。また、サンプル4の切断面画像は、図43(a)に示す画像422のようになり、レーザ照射面から1mmの深さ(Iで示す線)の面粗さ及び15mmの深さ(IIで示す線)の面粗さは、それぞれ図43(b)に示すグラフ423a及び図43(c)に示すグラフ423bのようになった。サンプル4は、レーザ照射面から1mmの深さの面粗さは安定しているものの、レーザ照射面から15mmの深さの面粗さは不安定でバラつきがあり、切断面に条痕の乱れも多く見られる結果となった。
In contrast, as shown by the
そして、レーザ切断による切断面の品質評価が、熱伝導率が同じ48.9W/(m・K)であるにもかかわらず、サンプル3が「×」でサンプル4が「△」と異なっているのは、表面改質したサンプル4では切断面の面粗さが小さくなり、切断品質が改善されることを表している。その理由はサンプル1,2の考察で述べた通りである。ただし、サンプル3,4はサンプル1,2と比べると熱伝導率が小さいため、切断面は粗れやすく、切断面の面粗さはやや大きくなるので、切断品質は劣るものとなる。
The quality evaluation of the cut surface by laser cutting is different, with
以上のように、軟鋼の被加工材Wの切断性(加工性)は、被加工材Wの素材表面の酸化膜状態、内部特性と強い相関があり、酸化膜の種類及び密着性、並びに素材内部の溶融挙動の安定性は、材料の素材表面を溶融させたときに発生する発光スペクトル強度の時間的変化(時系列データ)に基づき解析が可能であることと、酸化膜分布状態及び素材内部の熱伝導の大きさは、材料の素材を溶融させないレーザ出力での温度の時間的又は位置的変化(時系列データ)に基づき解析が可能であることが証明された。これらの解析結果は、上述した第1の判定結果及び第2の判定結果に含まれる。 As described above, it has been proven that the cutting ability (machinability) of the mild steel workpiece W is strongly correlated with the state of the oxide film on the surface of the workpiece W and the internal characteristics, and that the type and adhesion of the oxide film, as well as the stability of the melting behavior inside the material, can be analyzed based on the temporal change (time series data) in the emission spectrum intensity generated when the material surface is melted, and that the oxide film distribution state and the magnitude of heat conduction inside the material can be analyzed based on the temporal or positional change (time series data) in temperature at a laser output that does not melt the material. These analysis results are included in the first and second judgment results described above.
従って、加工システム100Aによる総合判定では、分光器30による被加工材Wの加工性の判定結果(第1の判定結果)と、放射温度計30Aによる被加工材Wの加工性の判定結果(第2の判定結果)と、を利用して(組み合わせて)被加工材Wの加工性を総合的に判定する。これにより、分光器30による判定結果と放射温度計30Aによる判定結果の弱点部分を相互に補完可能であると共に、加工性(切断性)の判定精度をより向上させることが可能となる。
Therefore, in the comprehensive judgment by the
なお、被加工材Wの表面判定において、放射温度計30Aで温度のバラつきが大きいものと判定された被加工材Wは、その判定結果を分光器30による判定結果と合わせて、酸化膜の種類、厚さを判定結果の組み合わせにより判定することで、最適な加工条件(切断条件)を設定することも可能である。
In addition, when the
例えば、酸化膜がヘマタイト(Fe2O3)主体のものであれば、酸化膜の密着性が弱く(小さく)剥離しやすいので、素材表面でレーザ光LBの集光径を絞る等の加工条件のパラメータを調整する対策が有効である。また、酸化膜の一部がマグネタイト(Fe3O4)で構成されているものであれば、酸化膜の密着性がやや高めであるが、その中でレーザ切断中に剥離するものについては、レーザ切断の加工前に切断経路をケガキ加工したり、表面状態を均一にする先行焼きの処理をしたりする等の対策が有効であると考えられる。このような被加工材Wは、図23の総合判定マトリックス情報400のマトリックス領域404におけるカテゴリー2の領域402に分類され得る。
For example, if the oxide film is mainly composed of hematite (Fe 2 O 3 ), the adhesion of the oxide film is weak (small) and it is easy to peel off, so it is effective to adjust the parameters of the processing conditions, such as narrowing the focus diameter of the laser light LB on the material surface. Also, if part of the oxide film is composed of magnetite (Fe 3 O 4 ), the adhesion of the oxide film is somewhat high, but for those that peel off during laser cutting, it is considered effective to take measures such as marking the cutting path before laser cutting or performing a pre-burning process to make the surface condition uniform. Such a processed material W can be classified into the
また、被加工材Wの内部判定において、分光器30で内部状態が良くないものと判定された被加工材Wについては、燃焼反応を抑えるために、例えば、レーザ加工ヘッド22のノズル25のノズル径を大きくしてアシストガスの流速を抑える等の対策が有効である。また、放射温度計30Aで内部特性が良くないものと判定された被加工材Wについては、冷却効果を上げるために、冷却用に使用する水の水量を増やしたり、加工条件における周波数又はデューティを下げて、それに合わせて切断速度も下げたりする等の対策が有効であると考えられる。このような被加工材Wは、図33の総合判定マトリックス情報400のマトリックス領域404におけるカテゴリー3の領域403に分類され得る。
Furthermore, in the internal judgment of the workpiece W, for the workpiece W whose internal condition is judged to be poor by the
[総合判定による処理フロー]
図44は、加工システムの総合判定による処理フローの一例を示すフローチャートである。
図44に示すように、加工システム100Aでは、被加工材Wの切断加工前に、NC装置60において、例えば、加工テーブル11上の被加工材Wの板厚情報を取得して(ステップS150)、PC50Aの判定モデル保存部51に送信する。
[Processing flow based on overall judgment]
FIG. 44 is a flowchart showing an example of a process flow based on a comprehensive judgment of a machining system.
As shown in FIG. 44, in the
次に、送信された板厚情報に基づいて、上記のように判定モデル保存部51において板厚に対応する第1及び第2の判定モデル5,6が選定されて加工性演算部52に送信される。そして、レーザ加工ユニット20Aにおいて、分光器30用のプローブ光(レーザ光LB)が、第1の判定照射条件(第1の照射条件、第2の照射条件)で被加工材Wに照射され(ステップS151)、分光器30によって発光スペクトルの時系列データに基づくスペクトルデータが取得され(ステップS152)、上記のように第1の波形情報3及び第2の波形情報4が算出され送信される。
Next, based on the transmitted plate thickness information, the first and
加工性演算部52は、上記のように送信された第1の波形情報3及び第2の波形情報4並びに第1の判定モデル5及び第2の判定モデル6に基づき、被加工材Wの表面状態及び内部状態の品質評価を示す品質スコアを算出して判定マトリックス情報110を生成する(ステップS153)。
The
そして、加工性判定部53は、算出された品質スコア及び生成された判定マトリックス情報110に基づいて、被加工材Wの表面状態及び内部状態の品質を判定(表面判定及び内部判定)して(ステップS154)、被加工材Wの加工性の第1の判定結果を総合判定部65に送信する。
Then, the
また、レーザ加工ユニット20Aにおいて、放射温度計30A用のプローブ光(レーザ光LB)が、第2の判定照射条件(第3の照射条件~第5の照射条件)で被加工材Wに照射され(ステップS155)、放射温度計30Aによって赤外線強度の時系列データに基づく温度データが取得されて(ステップS156)、演算処理部63により特徴量情報(第1の特徴量情報、第2の特徴量情報)が抽出される。
In addition, in the
加工性判定部66は、抽出された特徴量情報と判定基準(第1の判定基準、第2の判定基準)とに基づいて、被加工材Wの表面性状及び内部特性の品質を判定(表面判定及び内部判定)して(ステップS157)、被加工材Wの加工性の第2の判定結果を総合判定部65に出力する。
The
そして、総合判定部65は、分光器30による第1の判定結果と、放射温度計30Aによる第2の判定結果との各判定結果から、総合判定マトリックス情報400を用いて被加工材Wの総合的な材料状態の品質を判定して(ステップS158)、被加工材Wの加工性を総合的に判定した総合判定結果(第3の判定結果)を得る。
Then, the
総合判定結果により、被加工材Wが総合判定マトリックス情報400のマトリックス領域404におけるカテゴリー1の領域401に分類される場合は、例えば条件Aをディスプレイ70上に表示する(ステップS159)。条件Aは、例えば、被加工材Wが標準材であるとの加工性を示す第3の判定結果に関する情報、被加工材Wを標準条件で加工可能である旨を報知する情報等を含む。
If the workpiece W is classified into the
そして、総合判定部65により加工性が判定された被加工材Wの材料状態に合わせた加工条件を、例えば、オペレータの操作入力等に基づきレーザ加工装置10Aに設定し(ステップS165)、設定された加工条件に基づく被加工材Wの製品加工が実施されて(ステップS166)、本フローチャートによる一連の処理を終了する。
Then, processing conditions that correspond to the material state of the workpiece W whose workability has been determined by the
また、被加工材Wが総合判定マトリックス情報400のマトリックス領域404におけるカテゴリー2の領域402に分類される場合は、例えば条件Bをディスプレイ70上に表示する(ステップS160)。条件Bは、例えば、被加工材Wが要テストカット実施材であるとの加工性を示す第3の判定結果に関する情報、被加工材Wの加工条件を、例えば標準条件から上述したように集光径を絞る等により変更、調整等する必要がある旨を報知する情報等を含む。
In addition, if the workpiece W is classified into the
また、被加工材Wが総合判定マトリックス情報400のマトリックス領域404におけるカテゴリー3の領域403に分類される場合は、例えば条件Cをディスプレイ70上に表示する(ステップS161)。条件Cは、例えば、被加工材Wがテストカット推奨材であるとの加工性を示す第3の判定結果に関する情報、被加工材Wの加工条件を、例えば標準条件又は難加工材条件から上述したように燃焼反応を抑えるためにアシストガスの流速を抑える等により変更、調整等する必要がある旨を報知する情報等を含む。
In addition, if the workpiece W is classified into the
また、上記ステップS160で条件Bを表示、又は上記ステップS161で条件Cを表示したら、例えばオペレータの操作入力等に基づき加工条件を変更、調整等した上でテスト加工が実施され(ステップS162)、テスト加工による被加工材Wの切断面の状態等の品質(加工品質)の確認が行われ、加工品質がOKであるか否かが判断される(ステップS163)。 Furthermore, after condition B is displayed in step S160 or condition C is displayed in step S161, the processing conditions are changed or adjusted based on, for example, an operator's input, and then test processing is performed (step S162). The quality (processing quality) of the state of the cut surface of the workpiece W obtained by the test processing is checked, and it is determined whether the processing quality is OK (step S163).
ここで、加工品質がOKではないと判断された場合(ステップS163のF:False)は、例えば、オペレータの操作入力等によって、テストカット実施時の加工条件の各パラメータの項目を調整し(ステップS164)、再度テスト加工を実施して(ステップS162)、以降の処理を繰り返す。 If it is determined that the processing quality is not OK (F: False in step S163), the parameters of the processing conditions at the time of the test cut are adjusted, for example, by the operator's input (step S164), test processing is performed again (step S162), and the subsequent processes are repeated.
一方、加工品質がOKであると判断された場合(ステップS163のT:True)は、上述したようにステップS165に移行して被加工材Wの材料状態に合わせた加工条件をレーザ加工装置10Aに設定し(ステップS165)、これに基づく製品加工が実施されて(ステップS166)、本フローチャートによる一連の処理を終了する。なお、上記ステップS150~S154の分光器30側の処理と、上記ステップS155~S157の放射温度計30A側の処理とは、動作順序が入れ替わってもよい。
On the other hand, if it is determined that the processing quality is OK (T: True in step S163), the process proceeds to step S165 as described above, where processing conditions suited to the material state of the workpiece W are set in the
以上のように、第2の実施形態の加工システム(加工性判定システム)100Aは、切断加工前に被加工材Wの加工条件に基づく加工性を、分光器30による測定に基づき判定すると共に、放射温度計30Aによる測定に基づき判定して、これらの判定結果の組み合わせに基づき総合的に判定するので、判定精度をより向上させることができ、その判定結果の内容(被加工材Wの材料状態及び推奨される加工条件)に合わせて取るべき対応(例えば、推奨された加工条件で切断加工を行うべきか、被加工材Wに適した加工条件に変更、調整すべきか、推奨された加工条件を更に調整すべきか、テスト加工を実施すべきか等の各種の対応)の提示がより正確且つ判断が容易となる。これにより、加工品質の改善を図ることを正確且つ迅速に行い得るので、熟練者によるスキルが不要で、製品不良の発生及び条件調整の手間を削減することができ、加工不良をより低減することが可能となる。
As described above, the processing system (machinability judgment system) 100A of the second embodiment judges the processability based on the processing conditions of the workpiece W before cutting based on the measurement by the
以上、本発明のいくつかの実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be embodied in various other forms, and various omissions, substitutions, and modifications can be made without departing from the gist of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are included in the scope of the invention and its equivalents as set forth in the claims.
1 第1の波形情報(説明変数の教師データ)
2 第2の波形情報(説明変数の教師データ)
3 第1の波形情報(説明変数の推定用データ)
4 第2の波形情報(説明変数の推定用データ)
5 第1の判定モデル
6 第2の判定モデル
9 判定結果
10,10A レーザ加工装置
20,20A レーザ加工ユニット
30 分光器
50 加工性判定ユニット
51 判定モデル保存部
52 加工性演算部
53,66 加工性判定部
60 NC装置
61 制御部
62 加工条件保存部
63 演算処理部
65 総合判定部
70 ディスプレイ
80 学習装置
81 第1の判定モデル学習部
82 第2の判定モデル学習部
90 加工性判定システム
100,100A 加工システム
109a 表面品質評価結果(目的変数の教師データ)
109b 内部品質評価結果(目的変数の教師データ)
1. First waveform information (teaching data of explanatory variables)
2. Second waveform information (teaching data of explanatory variables)
3. First waveform information (data for estimating explanatory variables)
4. Second waveform information (data for estimating explanatory variables)
5
109b Internal quality evaluation result (teaching data of objective variable)
Claims (23)
前記被加工材に前記判定照射条件で前記レーザ光を照射したときに発生する発光スペクトルを測定する測定装置と、
前記測定装置で測定された前記発光スペクトルの時系列データに基づいて前記被加工材の加工性を判定する判定装置と、
を備え、
前記判定装置は、
第1の判定モデル及び第2の判定モデルを有し、
前記測定装置によって測定された前記発光スペクトルの時系列データから第1の時間領域の第1の波形情報と第2の時間領域の第2の波形情報とを抽出し、
前記抽出された第1の波形情報を推定用データとして前記第1の判定モデルに入力して前記被加工材の表面品質評価を得、
前記抽出された第2の波形情報を推定用データとして前記第2の判定モデルに入力して前記被加工材の内部品質評価を得、
前記得られた前記被加工材の表面品質評価及び内部品質評価の組み合わせに基づいて、前記加工工程における予め設定された加工条件で切断加工された場合の前記被加工材の加工性の判定結果を出力する
加工システム。 a laser processing device capable of executing a processing step of cutting a workpiece by irradiating the workpiece with a laser beam under processing irradiation conditions, and a workability judgment step of irradiating the workpiece with the laser beam under judgment irradiation conditions that melt the workpiece but do not penetrate the workpiece, and judging the workability of the workpiece;
a measuring device for measuring an emission spectrum generated when the workpiece is irradiated with the laser light under the judgment irradiation conditions;
a determination device for determining the workability of the workpiece based on the time series data of the emission spectrum measured by the measurement device;
Equipped with
The determination device includes:
A first judgment model and a second judgment model are included,
extracting first waveform information in a first time domain and second waveform information in a second time domain from the time series data of the emission spectrum measured by the measurement device;
inputting the extracted first waveform information as estimation data into the first judgment model to obtain a surface quality evaluation of the workpiece;
inputting the extracted second waveform information as estimation data into the second judgment model to obtain an internal quality evaluation of the workpiece;
a processing system that outputs a judgment result of the workability of the workpiece when cut and processed under preset processing conditions in the processing step, based on a combination of the obtained surface quality evaluation and internal quality evaluation of the workpiece.
請求項1記載の加工システム。 The processing system according to claim 1 , wherein the laser processing device spot irradiates the laser light under the judgment irradiation condition in the processability judgment step.
前記第2の判定モデルは、前記第2の波形情報及び前記被加工材の内部品質を示す内部品質評価結果を第2の教師データとして入力して機械学習を行って作成された
請求項1又は2記載の加工システム。 The first judgment model is created by performing machine learning using the first waveform information and a surface quality evaluation result indicating a surface quality of the workpiece as first teacher data,
The processing system according to claim 1 or 2, wherein the second judgment model is created by performing machine learning by inputting the second waveform information and an internal quality evaluation result indicating the internal quality of the workpiece as second training data.
前記測定装置は、前記第1の照射条件で前記レーザ光が前記被加工材に照射されたときに発生する第1の発光スペクトルと、前記第2の照射条件で前記レーザ光が前記被加工材に照射されたときに発生する第2の発光スペクトルと、を測定し、
前記判定装置は、前記測定装置によって測定された前記第1の発光スペクトルの時系列データから前記第1の時間領域の第1の波形情報を抽出し、前記測定装置によって測定された前記第2の発光スペクトルの時系列データから前記第2の時間領域の第2の波形情報を抽出する
請求項1又は2記載の加工システム。 The laser processing apparatus divides a time from the start of irradiation of the laser light to the end of irradiation in the processability judgment step into a first stage and a second stage, and irradiates the workpiece with the laser light under a first irradiation condition in the first stage and irradiates the workpiece with the laser light under a second irradiation condition in the second stage as the judgment irradiation condition,
the measuring device measures a first emission spectrum generated when the laser beam is irradiated onto the workpiece under the first irradiation condition, and a second emission spectrum generated when the laser beam is irradiated onto the workpiece under the second irradiation condition;
3. The machining system according to claim 1 or 2, wherein the determination device extracts first waveform information in the first time domain from time series data of the first emission spectrum measured by the measurement device, and extracts second waveform information in the second time domain from time series data of the second emission spectrum measured by the measurement device.
請求項1又は2記載の加工システム。 3. The processing system according to claim 1 or 2, wherein the determination device extracts the first waveform information in a first time domain and in a first wavelength band and a second wavelength band, and the second waveform information in a second time domain and in the first wavelength band and the second wavelength band, from the time series data of the emission spectrum measured by the measurement device.
請求項5記載の加工システム。 The processing system according to claim 5 , wherein the first wavelength band and the second wavelength band are different from an emission wavelength band of the laser light.
請求項1又は2記載の加工システム。 The processing system according to claim 1 or 2, wherein the laser output of the judgment irradiation condition is smaller than the laser output of the processing irradiation condition.
請求項4記載の加工システム。 The processing system according to claim 4 , wherein a laser output under the first irradiation condition is smaller than a laser output under the second irradiation condition.
請求項4記載の加工システム。 The processing system of claim 4 , wherein the first stage is shorter than the second stage.
請求項1又は2記載の加工システム。 The processing system according to claim 1 or 2, wherein a nozzle gap of the laser processing device while irradiating the laser light under the judgment irradiation condition is larger than a nozzle gap of the laser processing device while irradiating the laser light under the processing irradiation condition.
前記判定結果は、前記表面品質評価及び内部品質評価の組み合わせにおける前記加工条件による前記被加工材への適応性を表現可能な加工性評価を含む
請求項1又は2記載の加工システム。 the determination device includes a notification unit that notifies the determination result in a confirmable manner,
The machining system according to claim 1 or 2, wherein the judgment result includes a processability evaluation capable of expressing the adaptability of the machining conditions to the workpiece in a combination of the surface quality evaluation and the internal quality evaluation.
請求項11記載の加工システム。 The processing system according to claim 11, wherein the notification unit notifies at least one of information informing the user of the processing conditions to be set in the laser processing device according to the workpiece based on the processability evaluation, information encouraging test processing by the laser processing device, and information encouraging the user to adjust, change, or set the processing conditions.
請求項12記載の加工システム。 The processing system according to claim 12, wherein the determination device includes a setting unit that receives input information selected and input by an operator based on the information notified by the notification unit, and sets processing conditions corresponding to the received input information to the laser processing device.
請求項3記載の加工システム。 The processing system according to claim 3 , wherein the surface quality evaluation result and the internal quality evaluation result include a score evaluation obtained by scoring the surface quality evaluation and the internal quality evaluation of the workpiece into a plurality of different numerical values.
請求項1又は2記載の加工システム。 The processing system according to claim 1 or 2, wherein the first judgment model and the second judgment model are created for each thickness of the workpiece.
前記第1の判定モデル及び前記第2の判定モデルを作成する学習装置と、
を備え、
前記判定装置は、
前記発光スペクトルの時系列データから第1の時間領域の第1の波形情報と第2の時間領域の第2の波形情報とを抽出し、
前記抽出された第1の波形情報を推定用データとして前記第1の判定モデルに入力して前記被加工材の表面品質評価を得、
前記抽出された第2の波形情報を推定用データとして前記第2の判定モデルに入力して前記被加工材の内部品質評価を得、
前記得られた前記被加工材の表面品質評価及び内部品質評価の組み合わせに基づいて、前記レーザ光を加工照射条件で前記被加工材に照射して前記被加工材を切断加工する加工工程における予め設定された加工条件で切断加工された場合の前記被加工材の加工性の判定結果を出力し、
前記学習装置は、
前記第1の波形情報及び前記被加工材の表面品質を示す表面品質評価結果を第1の教師データとして入力して機械学習を行って前記第1の判定モデルを作成し、
前記第2の波形情報及び前記被加工材の内部品質を示す内部品質評価結果を第2の教師データとして入力して機械学習を行って前記第2の判定モデルを作成する
加工性判定システム。 a judgment device having a first judgment model and a second judgment model, in a workability judgment step for judging the workability of a workpiece, inputting first waveform information and second waveform information calculated from time series data of an emission spectrum generated when a laser beam is irradiated onto the workpiece under judgment irradiation conditions that melt the workpiece but do not penetrate the workpiece, into the first judgment model and the second judgment model, respectively, and judging the workability of the workpiece based on the first waveform information and the second waveform information;
a learning device that creates the first determination model and the second determination model;
Equipped with
The determination device includes:
extracting first waveform information in a first time domain and second waveform information in a second time domain from the time series data of the emission spectrum;
inputting the extracted first waveform information as estimation data into the first judgment model to obtain a surface quality evaluation of the workpiece;
inputting the extracted second waveform information as estimation data into the second judgment model to obtain an internal quality evaluation of the workpiece;
Based on the obtained combination of the surface quality evaluation and internal quality evaluation of the workpiece, a judgment result of the workability of the workpiece when cut under preset processing conditions in a processing step of irradiating the workpiece with the laser light under processing irradiation conditions to cut the workpiece is outputted;
The learning device includes:
The first waveform information and a surface quality evaluation result indicating the surface quality of the workpiece are input as first teacher data, and machine learning is performed to create the first judgment model;
A workability judgment system that inputs the second waveform information and an internal quality evaluation result indicating the internal quality of the workpiece as second training data and performs machine learning to create the second judgment model.
前記被加工材に前記第1の判定照射条件で前記レーザ光を照射したときに発生する発光スペクトルを測定する第1の測定部と、前記被加工材に前記第2の判定照射条件で前記レーザ光を照射したときに発生する放射光の赤外線強度を測定する第2の測定部と、を含む測定装置と、
前記測定装置の前記第1の測定部によって測定された前記発光スペクトルの時系列データに基づいて、前記被加工材の加工性を判定する第1の判定部と、前記測定装置の前記第2の測定部によって測定された前記赤外線強度の時系列データに基づいて、前記被加工材の加工性を判定する第2の判定部と、前記第1の判定部により判定された第1の判定結果及び前記第2の判定部により判定された第2の判定結果の組み合わせに基づいて、前記加工工程における予め設定された加工条件で切断加工された場合の前記被加工材の加工性を判定し第3の判定結果を出力する第3の判定部と、を含む判定装置と、
を備え、
前記判定装置は、第1の判定モデル及び第2の判定モデルを有し、
前記判定装置の前記第1の判定部は、
前記測定装置の前記第1の測定部によって測定された前記発光スペクトルの時系列データから第1の時間領域の第1の波形情報と第2の時間領域の第2の波形情報とを抽出し、前記抽出された第1の波形情報を推定用データとして前記第1の判定モデルに入力し前記被加工材の表面品質評価を得て、前記抽出された第2の波形情報を推定用データとして前記第2の判定モデルに入力し前記被加工材の内部品質評価を得て、前記得られた前記被加工材の表面品質評価及び内部品質評価の組み合わせに基づいて、前記被加工材の加工性を判定した前記第1の判定結果を出力し、
前記判定装置の前記第2の判定部は、
前記測定装置の前記第2の測定部によって測定された前記赤外線強度の時系列データに基づいて、前記被加工材の温度の時間的又は位置的変化を示す特徴量情報を抽出し、前記抽出された特徴量情報と、予め登録済みの前記被加工材の加工性の判定用の基準情報と、に基づいて、前記被加工材の加工性を判定した前記第2の判定結果を出力する
加工システム。 a laser processing device capable of executing a processing step of irradiating a workpiece with a laser beam under processing irradiation conditions to cut the workpiece, and a workability judgment step of irradiating the workpiece with the laser beam under first judgment irradiation conditions under which the laser beam melts the workpiece but does not penetrate it, and under second judgment irradiation conditions under which the laser beam does not exceed the melting point of the material of the workpiece, to judge the workability of the workpiece;
a measuring device including a first measuring unit that measures an emission spectrum generated when the workpiece is irradiated with the laser light under the first judgment irradiation condition, and a second measuring unit that measures an infrared intensity of radiant light generated when the workpiece is irradiated with the laser light under the second judgment irradiation condition;
a first judgment unit that judges the workability of the workpiece based on time series data of the emission spectrum measured by the first measurement unit of the measuring device, a second judgment unit that judges the workability of the workpiece based on time series data of the infrared intensity measured by the second measurement unit of the measuring device, and a third judgment unit that judges the workability of the workpiece when cut under preset processing conditions in the processing step based on a combination of a first judgment result judged by the first judgment unit and a second judgment result judged by the second judgment unit, and outputs a third judgment result;
Equipped with
the determination device has a first determination model and a second determination model;
The first determination unit of the determination device
extracting first waveform information in a first time domain and second waveform information in a second time domain from time series data of the emission spectrum measured by the first measurement unit of the measuring device, inputting the extracted first waveform information as estimation data into the first judgment model to obtain a surface quality evaluation of the workpiece, inputting the extracted second waveform information as estimation data into the second judgment model to obtain an internal quality evaluation of the workpiece, and outputting the first judgment result that judges the workability of the workpiece based on a combination of the obtained surface quality evaluation and internal quality evaluation of the workpiece,
The second determination unit of the determination device
A processing system which extracts feature information indicating a temporal or positional change in temperature of the workpiece based on time series data of the infrared intensity measured by the second measurement unit of the measuring device, and outputs the second judgment result which judges the workability of the workpiece based on the extracted feature information and pre-registered reference information for judging the workability of the workpiece.
請求項17記載の加工システム。 18. The processing system according to claim 17, wherein, in the processability judgment step, the laser processing device spot irradiates the workpiece with the laser light under the first judgment irradiation condition, irradiates the material surface of the workpiece with the laser light while moving an irradiation position under the second judgment irradiation condition, and repeatedly irradiates the laser light into the inside of the workpiece.
前記レーザ加工装置は、前記加工性判定工程において、前記第1の判定照射条件で前記レーザ光を照射する場合、前記レーザ光の照射開始から照射終了までの時間を第1段階及び第2段階に分け、前記第1段階では前記第1の照射条件で前記レーザ光を前記被加工材に照射し、前記第2段階では前記第2の照射条件で前記レーザ光を前記被加工材に照射し、
前記測定装置の前記第1の測定部は、前記第1の照射条件で前記レーザ光が前記被加工材に照射されたときに発生する第1の発光スペクトルと、前記第2の照射条件で前記レーザ光が前記被加工材に照射されたときに発生する第2の発光スペクトルと、を測定し、
前記判定装置の前記第1の判定部は、前記測定装置の前記第1の測定部によって測定された前記第1の発光スペクトルの時系列データから前記第1の時間領域の第1の波形情報を抽出し、前記測定装置の前記第1の測定部によって測定された前記第2の発光スペクトルの時系列データから前記第2の時間領域の第2の波形情報を抽出する
請求項17又は18記載の加工システム。 the first determination irradiation condition includes a first irradiation condition and a second irradiation condition,
In the laser processing apparatus, when the laser beam is irradiated under the first judgment irradiation condition in the processability judgment step, a time from the start of irradiation of the laser beam to the end of irradiation is divided into a first stage and a second stage, the laser beam is irradiated to the workpiece under the first irradiation condition in the first stage, and the laser beam is irradiated to the workpiece under the second irradiation condition in the second stage;
the first measurement unit of the measuring device measures a first emission spectrum generated when the laser light is irradiated onto the workpiece under the first irradiation condition, and a second emission spectrum generated when the laser light is irradiated onto the workpiece under the second irradiation condition;
19. The machining system according to claim 17 or 18, wherein the first determination unit of the determination device extracts first waveform information of the first time domain from time series data of the first emission spectrum measured by the first measurement unit of the measurement device, and extracts second waveform information of the second time domain from time series data of the second emission spectrum measured by the first measurement unit of the measurement device.
前記第2の判定モデルは、前記第2の波形情報及び前記被加工材の内部品質を示す内部品質評価結果を第2の教師データとして入力して機械学習を行って作成された、
請求項17又は18記載の加工システム。 The first judgment model is created by performing machine learning using the first waveform information and a surface quality evaluation result indicating a surface quality of the workpiece as first teacher data,
The second judgment model is created by inputting the second waveform information and an internal quality evaluation result indicating the internal quality of the workpiece as second teacher data and performing machine learning.
19. The processing system according to claim 17 or 18.
前記レーザ加工装置は、前記加工性判定工程において、前記第2の判定照射条件で前記レーザ光を照射する場合、前記第3の照射条件で前記レーザ光を照射位置を移動させながら前記被加工材の素材表面に照射し、前記第4の照射条件で前記レーザ光を前記被加工材の素材内部に繰り返し照射し、
前記測定装置の前記第2の測定部は、前記第3の照射条件で前記レーザ光が前記被加工材に照射されたときに発生する放射光の第1の赤外線強度と、前記第4の照射条件で前記レーザ光が前記被加工材に照射されたときに発生する放射光の第2の赤外線強度と、を測定し、
前記判定装置の前記第2の判定部は、前記測定装置の前記第2の測定部によって測定された前記第1の赤外線強度の時系列データに基づき前記被加工材の温度の位置的変化を示す第1の特徴量情報を抽出すると共に、前記測定装置の前記第2の測定部によって測定された前記第2の赤外線強度の時系列データに基づき前記被加工材の温度の時間的変化を示す第2の特徴量情報を抽出し、前記第1の特徴量情報に含まれる前記被加工材の温度の位置的変化が、前記基準情報に含まれる前記被加工材の基準温度範囲及び温度のバラつきの少なくとも一方に基づく第1の判定基準を満たすかどうかを判定すると共に、前記第2の特徴量情報に含まれる前記被加工材の温度の時間的変化が、前記基準情報に含まれる前記被加工材の温度上昇の度合いを示す第2の判定基準を外れる温度上昇の状態か否かを判定して、その結果の組み合わせに基づき前記被加工材の加工性を判定した前記第2の判定結果を出力する
請求項17又は18記載の加工システム。 the second determination irradiation condition includes a third irradiation condition and a fourth irradiation condition,
In the laser processing apparatus, in the processability judgment step, when the laser light is irradiated under the second judgment irradiation condition, the laser light is irradiated onto the surface of the workpiece while moving the irradiation position under the third irradiation condition, and the laser light is repeatedly irradiated into the inside of the workpiece under the fourth irradiation condition;
the second measuring unit of the measuring device measures a first infrared intensity of radiated light generated when the laser beam is irradiated onto the workpiece under the third irradiation condition, and a second infrared intensity of radiated light generated when the laser beam is irradiated onto the workpiece under the fourth irradiation condition;
19. The machining system according to claim 17 or 18, wherein the second judgment section of the judgment device extracts first feature information indicating a positional change in temperature of the workpiece based on the time series data of the first infrared intensity measured by the second measurement section of the measuring device, extracts second feature information indicating a temporal change in temperature of the workpiece based on the time series data of the second infrared intensity measured by the second measurement section of the measuring device, judges whether the positional change in temperature of the workpiece included in the first feature information satisfies a first judgment criterion based on at least one of a reference temperature range and a temperature variation of the workpiece included in the reference information, and judges whether the temporal change in temperature of the workpiece included in the second feature information is a temperature rise state that falls outside a second judgment criterion indicating a degree of temperature rise of the workpiece included in the reference information, and outputs the second judgment result that judges the workability of the workpiece based on a combination of the results.
請求項17又は18記載の加工システム。 The machining system according to claim 17 or 18, wherein the determination device includes a notification unit that notifies the third determination result determined by the third determination unit in a verifiable manner.
前記加工性判定工程において、前記レーザ光を、前記被加工材の素材の融点を超えない第2の判定照射条件で、前記被加工材に照射したときに発生する放射光の赤外線強度の時系列データから抽出された特徴量情報と、予め登録済みの前記被加工材の加工性の判定用の基準情報と、に基づいて前記被加工材の加工性を判定する第2の判定部と、
前記第1の判定部により判定された第1の判定結果及び前記第2の判定部により判定された第2の判定結果の組み合わせに基づいて、前記加工工程における予め設定された加工条件で切断加工された場合の前記被加工材の加工性を判定し第3の判定結果を出力する第3の判定部と、を含む判定装置と、
前記第1の判定モデル及び前記第2の判定モデルを作成する学習装置と、
を備え、
前記判定装置は、
前記第1の判定部が、
前記発光スペクトルの時系列データから第1の時間領域の第1の波形情報と第2の時間領域の第2の波形情報とを抽出し、前記抽出された第1の波形情報を推定用データとして前記第1の判定モデルに入力し前記被加工材の表面品質評価を得て、前記抽出された第2の波形情報を推定用データとして前記第2の判定モデルに入力し前記被加工材の内部品質評価を得て、前記得られた前記被加工材の表面品質評価及び内部品質評価の組み合わせに基づいて、前記被加工材の加工性を判定した前記第1の判定結果を出力し、
前記第2の判定部が、
前記赤外線強度の時系列データに基づいて、前記被加工材の温度の時間的又は位置的変化を示す特徴量情報を抽出し、前記抽出された特徴量情報と前記基準情報とに基づいて、前記被加工材の加工性を判定した前記第2の判定結果を出力し、
前記学習装置は、
前記第1の波形情報及び前記被加工材の表面品質を示す表面品質評価結果を第1の教師データとして入力して機械学習を行って前記第1の判定モデルを作成し、
前記第2の波形情報及び前記被加工材の内部品質を示す内部品質評価結果を第2の教師データとして入力して機械学習を行って前記第2の判定モデルを作成する、
加工性判定システム。 a first judgment unit having a first judgment model and a second judgment model, which in a workability judgment step of judging the workability of a workpiece, inputs first waveform information and second waveform information extracted from time series data of an emission spectrum generated when a laser beam is irradiated to the workpiece under a first judgment irradiation condition where the workpiece is melted but not penetrated, into the first judgment model and the second judgment model, respectively, and judges the workability of the workpiece based on the first waveform information and the second waveform information;
a second determination unit that determines the workability of the workpiece based on feature amount information extracted from time series data of infrared intensity of radiated light generated when the laser light is irradiated to the workpiece under second determination irradiation conditions that do not exceed the melting point of the material of the workpiece in the workability determination step, and preregistered reference information for determining the workability of the workpiece;
a third judgment unit that judges the workability of the workpiece when it is cut and processed under preset processing conditions in the processing step based on a combination of a first judgment result judged by the first judgment unit and a second judgment result judged by the second judgment unit, and outputs a third judgment result;
a learning device that creates the first determination model and the second determination model;
Equipped with
The determination device includes:
The first determination unit,
extracting first waveform information in a first time domain and second waveform information in a second time domain from the time series data of the emission spectrum, inputting the extracted first waveform information as estimation data into the first judgment model to obtain a surface quality evaluation of the workpiece, inputting the extracted second waveform information as estimation data into the second judgment model to obtain an internal quality evaluation of the workpiece, and outputting the first judgment result that judges the workability of the workpiece based on a combination of the obtained surface quality evaluation and internal quality evaluation of the workpiece;
The second determination unit,
extracting feature amount information indicating a change in temperature of the workpiece over time or position based on the time-series data of the infrared intensity, and outputting the second judgment result that judges the workability of the workpiece based on the extracted feature amount information and the reference information;
The learning device includes:
The first waveform information and a surface quality evaluation result indicating the surface quality of the workpiece are input as first teacher data, and machine learning is performed to create the first judgment model;
the second waveform information and an internal quality evaluation result indicating the internal quality of the workpiece are input as second teacher data, and machine learning is performed to create the second judgment model;
Machinability assessment system.
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2023-006494 | 2023-01-19 | ||
| JP2023006494 | 2023-01-19 | ||
| JP2023-184401 | 2023-10-27 | ||
| JP2023184401A JP7538933B2 (en) | 2023-01-19 | 2023-10-27 | Machining system and machinability assessment system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2024154571A1 true WO2024154571A1 (en) | 2024-07-25 |
Family
ID=91955883
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2023/047042 Ceased WO2024154571A1 (en) | 2023-01-19 | 2023-12-27 | Machining system and machinability determination system |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2024154571A1 (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH11221686A (en) * | 1997-10-23 | 1999-08-17 | Trw Inc | Method and apparatus for monitoring quality of laser beam weld part by measuring plasma size |
| US20190084092A1 (en) * | 2016-05-13 | 2019-03-21 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Methods and apparatuses for controlling cutting processes |
| JP2019051540A (en) * | 2017-09-14 | 2019-04-04 | ファナック株式会社 | Laser processing apparatus that adjusts the focus shift according to the contamination level of the optical system during laser processing |
| JP2022118774A (en) * | 2021-02-03 | 2022-08-16 | 株式会社アマダ | Laser beam machine |
-
2023
- 2023-12-27 WO PCT/JP2023/047042 patent/WO2024154571A1/en not_active Ceased
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH11221686A (en) * | 1997-10-23 | 1999-08-17 | Trw Inc | Method and apparatus for monitoring quality of laser beam weld part by measuring plasma size |
| US20190084092A1 (en) * | 2016-05-13 | 2019-03-21 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Methods and apparatuses for controlling cutting processes |
| JP2019051540A (en) * | 2017-09-14 | 2019-04-04 | ファナック株式会社 | Laser processing apparatus that adjusts the focus shift according to the contamination level of the optical system during laser processing |
| JP2022118774A (en) * | 2021-02-03 | 2022-08-16 | 株式会社アマダ | Laser beam machine |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20220324056A1 (en) | Systems and methods for measuring radiated thermal energy during an additive manufacturing operation | |
| US11938560B2 (en) | Systems and methods for measuring radiated thermal energy during an additive manufacturing operation | |
| US12048970B2 (en) | Laser processing apparatus | |
| CN108778606B (en) | Thermal crack detection during laser welding | |
| Schleier et al. | Burr formation detector for fiber laser cutting based on a photodiode sensor system | |
| JP7379542B2 (en) | Automatic material recognition by laser | |
| US11474512B2 (en) | Machining failure detection device, laser cutting apparatus, and electric discharge machining apparatus | |
| JPWO2018185973A1 (en) | Laser processing monitoring method and laser processing monitoring device | |
| Quackatz et al. | Spatially resolved EDS, XRF and LIBS measurements of the chemical composition of duplex stainless steel welds: A comparison of methods | |
| CN110702686B (en) | Directional energy deposition process nondestructive testing equipment and method based on coherent imaging | |
| Bartkowiak | Direct laser deposition process within spectrographic analysis in situ | |
| JP7538933B2 (en) | Machining system and machinability assessment system | |
| WO2024154571A1 (en) | Machining system and machinability determination system | |
| US20120103954A1 (en) | System and method for minimizing formation of striation patterns in laser cutting | |
| JP7595548B2 (en) | WELDING SYSTEM AND WELDING RESULT JUDGMENT DEVICE | |
| US20250162065A1 (en) | Machining system and machinability determination system | |
| JP7523645B1 (en) | Workability assessment device, workability assessment method, and workability assessment program | |
| JP7742911B1 (en) | Processing system and processability assessment system | |
| CN113714635A (en) | Laser processing apparatus | |
| Hildinger et al. | Characterization of optical emissions during laser metal deposition for the implementation of an in-process powder stream monitoring | |
| Yilbas et al. | The Taguchi method for determining CO 2 laser cut quality | |
| Begic-Hajdarevic et al. | Optimization of process parameters for cut quality in CO2 laser cutting using taguchi method | |
| WO2024154570A1 (en) | Machinability determination device, machinability determination method, and machinability determination program | |
| Ancona et al. | Optical sensor for real-time weld defect detection | |
| Müller et al. | Impact of fume on two-channel-pyrometric temperature measurements and process stability during Laser Powder Bed Fusion |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23917781 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |