[go: up one dir, main page]

WO2024140880A1 - Procédé et appareil d'analyse de variant de nombre de copies, et support de stockage - Google Patents

Procédé et appareil d'analyse de variant de nombre de copies, et support de stockage Download PDF

Info

Publication number
WO2024140880A1
WO2024140880A1 PCT/CN2023/142605 CN2023142605W WO2024140880A1 WO 2024140880 A1 WO2024140880 A1 WO 2024140880A1 CN 2023142605 W CN2023142605 W CN 2023142605W WO 2024140880 A1 WO2024140880 A1 WO 2024140880A1
Authority
WO
WIPO (PCT)
Prior art keywords
copy
value
number variation
copy number
fragment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2023/142605
Other languages
English (en)
Chinese (zh)
Inventor
陈燕香
曾立董
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genemind Biosciences Co Ltd
Original Assignee
Genemind Biosciences Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genemind Biosciences Co Ltd filed Critical Genemind Biosciences Co Ltd
Publication of WO2024140880A1 publication Critical patent/WO2024140880A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/10Ploidy or copy number detection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks

Definitions

  • the present application relates to the technical field of copy number variation detection, and in particular to a method, device and storage medium for copy number variation analysis.
  • Genome copy number variation is a manifestation of genetic diversity between two individuals. It is well known that abnormalities in genome copy number may be the root cause of certain diseases. Genome copy number variation, also known as copy number polymorphism, is a copy number abnormality of DNA fragments longer than 1kb. It is widely distributed in the human genome, and the mutation rate of CNV sites is much higher than SNP (Single nucleotide polymorphism).
  • CMA chromosome microarray analysis
  • Array CGH microarray comparative genomic hybridization technology
  • single nucleotide polymorphism chip analysis has been widely used as the gold standard for detection.
  • Array CGH Since Array CGH is performed under the premise of known probes, it is impossible to detect unknown CNVs; in addition, the cost is high and the burden on the subjects is heavy.
  • the core issue of CNV detection based on data obtained from low-depth whole-genome sequencing is how to use low-depth sequencing data to quickly and accurately locate CNV boundaries and length and other related information.
  • whole-genome sequencing data there are three main core steps for genome CNV analysis: 1. Data processing, including quality control, alignment of sequencing data with reference sequences, genome sequence window division, window alignment read segment (reads) information statistics, window data smoothing, etc. 2. Breakpoint identification and length division. 3. Further removal of biologically meaningless breakpoints and merged segments (segments) and CNV filtering and classification based on CNV length, reads statistical coverage information, etc.
  • the corresponding processing solutions are relatively mature and standardized, and there are relatively many related processing software and algorithm implementations.
  • different software and algorithms have different definitions of this part of the solution and corresponding standards.
  • the copy number variation analysis method and device of the present application can avoid large variance values due to large fluctuations in sequencing data, reduce false positive or false negative judgments caused by this, increase the number of true copy number variation detections, and thus improve the overall detection rate.
  • the preset variance variance ⁇ n, where n is a natural number less than or equal to 3.
  • the copy number variation analysis device of the present application actually implements the method of genome copy number variation analysis of the present application through various modules.
  • the copy number variation fragment acquisition module to be analyzed is used to implement the copy number variation fragment acquisition step 11 of the genome copy number variation analysis method of the present application
  • the breakpoint sorting module is used to implement the breakpoint sorting step 12 of the genome copy number variation analysis method of the present application
  • the breakpoint deletion module is used to implement the breakpoint deletion step 13 of the genome copy number variation analysis method of the present application
  • the candidate copy number variation fragment screening module is used to implement the candidate copy number variation fragment screening step 14 of the genome copy number variation analysis method of the present application; therefore, the specific implementation method or parameter conditions of each module in the copy number variation analysis device of the present application refer to the genome copy number variation analysis method of the present application, and will not be repeated here.
  • 16 clinical sample data with different cv values were selected, as shown in Table 1.
  • the cv values ranged from 0.084 to 0.309.
  • the 16 samples were provided and stored by Zhenmai Biotechnology. No CNVs were detected in the 16 samples using the DNA-copy package standard process.
  • This example uses the above genome copy number variation analysis method to simulate and generate CNVs with a length ranging from 0.5M to 10M based on the 16 clinical sample data, as shown in Table 2.
  • Test 1 The breakpoint filtering method included in the DNAcopy package was used to merge all initial breakpoints and filter CNVs.
  • the filtering threshold sd was set to 2.5 to obtain the final CNV results.
  • Test 2 The above genome copy number variation analysis method was used, and the breakpoint deletion step used method 1 for breakpoint deletion and merging, and the candidate copy number variation fragment screening step used method 1 for CNV filtering to obtain the final CNV result.
  • Test 2 The above genome copy number variation analysis method is used, and the breakpoint deletion step uses method 1 for breakpoint deletion and merging, and the candidate copy number variation fragment screening step uses method 1 for CNV filtering to obtain the final CNV result.
  • the details are as follows:
  • the average copy-ratio information of each copy number variation fragment to be analyzed is judged whether the absolute value of the difference between it and the overall mean is within the standard deviation. If it is greater than the standard deviation, the fragment mean is corrected to the overall mean, and all window values contained in the fragment are replaced by the values calculated by the correction formula. After this processing scheme, the standard deviation of the copy-ratio values of all windows in the sample genome will decrease, thereby obtaining a sample information set with relatively small deviations. The corrected data is used as an internal reference in the subsequent fragment difference judgment step.
  • the difference value is the absolute value of the difference between the average copy-ratio values of the two fragments after taking log2, that is, the first difference value.
  • (11) Calculate the z-score value based on the copy-ratio value of each window of the first copy number variation fragment and the mean and standard deviation of the normal distribution model of the corresponding similar window information set, and judge whether the window is significantly different from the normal window based on the z-score threshold set by the user, and judge the window greater than the z-score threshold as a significant difference window.
  • the set z-score threshold is the first z-score threshold, and the default value is 2.
  • the difference value is the absolute value of the difference between the average copy-ratio values of the two fragments after taking the log2, that is, the first difference value.
  • a window size is slid across the entire genome of the sample genome to capture the same number of windows corresponding to the candidate CNV, forming a certain number of fragment sets containing the same number of windows.
  • step (3) In the case of deleting the breakpoint, merge the two copy number variation fragments to be analyzed before and after, recalculate the average copy-ratio value of the merged fragment, and return to step (3). For the retained breakpoint, determine that its copy number variation fragment to be analyzed is a candidate copy number variation fragment.
  • the fragments with copy-ratio values between 0.9 and 1.1 are directly filtered.
  • the method of steps (5)-(8) is used to re-determine whether the fragment is an abnormal fragment.
  • the z-score value of the fragment is calculated based on the constructed normal distribution model elements, and the z-score value is compared with the threshold set by the user. The default value is 3.0. If the z-score value is greater than the threshold, the current fragment is judged to be an abnormal fragment and is retained. Otherwise, it is filtered out. Specifically including:
  • a window size is slid across the entire genome of the sample genome to capture the same number of windows corresponding to the candidate copy number variation fragments, forming a certain number of fragment sets containing the same number of windows.
  • the normal distribution model elements of the fragment information set corresponding to each fragment of the two candidate copy number variation fragments before and after the breakpoint are calculated respectively: mean (mean), variance (sd); that is, the fourth normal distribution model.
  • the z-score value corresponding to each fragment is calculated based on the normal distribution model elements and the average copy-ratio value of the candidate copy number variation fragments.
  • the z-score value is compared with the threshold set by the user. If the z-score value is greater than the threshold, the copy number variation fragment to be analyzed is judged to be an abnormal fragment, otherwise it is a normal fragment.
  • Test 4 The above genome copy number variation analysis method was used, and the breakpoint deletion step adopted method 1 and adopted the strategy of setting different z-score thresholds according to different cv values of samples to perform breakpoint deletion and merging.
  • the candidate copy number variation fragment screening step adopted method 2 for CNV filtering to obtain the final CNV result. The details are as follows:
  • the average copy-ratio information of each copy number variation fragment to be analyzed is judged whether the absolute value of the difference between it and the overall mean is within the standard deviation. If it is greater than the standard deviation, the fragment mean is corrected to the overall mean, and all window values contained in the fragment are replaced by the values calculated by the correction formula. After this processing scheme, the standard deviation of the copy-ratio values of all windows in the sample genome will decrease, thereby obtaining a sample information set with relatively small deviations. The corrected data is used as an internal reference in the subsequent fragment difference judgment step.
  • the difference value is the absolute value of the difference between the average copy-ratio values of the two fragments after taking the log2, that is, the first difference value.
  • the candidate CNV fragment is judged as a fragment with significant difference from the normal fragment, wherein 95% is a set ratio threshold.
  • the fragment with a copy-ratio value of 0.9-1.1 is directly filtered.
  • the method of steps (8)-(12) is used to re-determine whether the fragment is an abnormal fragment.
  • the z-score value of the fragment is calculated based on the constructed normal distribution model elements, and the z-score value is compared with the user-set The default value is 3.0. If the z-score value is greater than the threshold, the current segment is considered an abnormal segment and is retained, otherwise it is filtered out. Specifically:
  • the z-score value corresponding to each fragment is calculated based on the normal distribution model elements and the average copy-ratio value of the candidate copy number variation fragments.
  • This example uses the same 16 clinical sample data with different cv values as in Example 1, and uses a method similar to Example 1 to simulate and generate CNVs with lengths ranging from 10.5M to 20M, as shown in Table 7.
  • Simulated CNV length range 10.5M-20M, a total of 20 gradients
  • Test 3 Same as Test 3 of Example 1.
  • the total number of CNVs analyzed in the three tests is the same, all 14080, but the number of true CNVs detected in Test 1 is 7575, the number of false CNVs detected is 819, and the overall detection rate is only 0.5380; the number of true CNVs detected in Test 2 is 12991, the number of false CNVs detected is 469, and the overall detection rate is 0.9227; the number of true CNVs detected in Test 3 is 13482, the number of false CNVs detected is 393, and the overall detection rate is 0.9575; the number of true CNVs detected in Test 4 is 13878, the number of false CNVs detected is 465, and the overall detection rate is 0.9857. Comparing the above tests, it can be seen that the genome copy number variation analysis method of the present application can greatly increase the number of true CNV detections and improve the overall detection rate.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Physiology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Complex Calculations (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

L'invention concerne un procédé et un appareil d'analyse de variant de nombre de copies, ainsi qu'un support de stockage. Le procédé de la présente demande consiste à : acquérir tous les points de rupture de chaque chromosome d'un génome d'échantillon à soumettre à une détection, puis prendre deux segments, dont les points de rupture sont associés, comme segments de variant du nombre de copies à analyser ; prendre, comme première valeur de différence, une valeur de différence entre les valeurs moyennes du rapport de copie des deux segments de variant du nombre de copies à analyser, dont les points de rupture sont associés, puis effectuer un séquençage des point de rupture en fonction de la première valeur de différence ; traiter les points de rupture en séquence, filtrer les points de rupture d'après la première valeur de différence des points de rupture et une valeur seuil minimale prédéfinie et/ou d'après la différence entre les segments de variant du nombre de copies à analyser des points de rupture et un segment normal, puis déterminer des segments de variant du nombre de copies candidats ; et filtrer les segments de variant de nombre de copies candidats d'après les valeurs de rapport de copie, déterminer les segments anormaux et les prendre comme segments de variant du nombre de copies. Selon la présente demande, le procédé permet d'éviter une détermination erronée provoquée par une grande fluctuation des données de séquençage, ainsi que d'augmenter le nombre réel de variants de nombre de copies détectés, ce qui permet d'augmenter le taux de détection global.
PCT/CN2023/142605 2022-12-30 2023-12-28 Procédé et appareil d'analyse de variant de nombre de copies, et support de stockage Ceased WO2024140880A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211735537.3A CN117995269A (zh) 2022-12-30 2022-12-30 一种基因组拷贝数变异分析的方法、装置及存储介质
CN202211735537.3 2022-12-30

Publications (1)

Publication Number Publication Date
WO2024140880A1 true WO2024140880A1 (fr) 2024-07-04

Family

ID=90898293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/142605 Ceased WO2024140880A1 (fr) 2022-12-30 2023-12-28 Procédé et appareil d'analyse de variant de nombre de copies, et support de stockage

Country Status (2)

Country Link
CN (1) CN117995269A (fr)
WO (1) WO2024140880A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119864076A (zh) * 2025-03-25 2025-04-22 广州凯普医学检验所有限公司 基因组拷贝数变异分析数据的处理方法、装置及设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014040206A1 (fr) * 2012-09-12 2014-03-20 深圳华大基因研究院 Méthode de détection des variations du nombre de copies par des fragments de séquençage du génome
US20150012252A1 (en) * 2012-01-20 2015-01-08 Bgi Diagnosis Co., Ltd. Method and system for determining whether copy number variation exists in sample genome, and computer readable medium
WO2018161245A1 (fr) * 2017-03-07 2018-09-13 深圳华大基因研究院 Procédé et dispositif de détection de variations chromosomiques
CN110910954A (zh) * 2019-12-04 2020-03-24 上海捷易生物科技有限公司 一种低深度全基因组基因拷贝数变异的检测方法及系统
CN112669901A (zh) * 2020-12-31 2021-04-16 北京优迅医学检验实验室有限公司 基于低深度高通量基因组测序的染色体拷贝数变异检测装置
CN114242164A (zh) * 2021-12-21 2022-03-25 苏州吉因加生物医学工程有限公司 一种全基因组复制的分析方法、装置和存储介质
CN114758720A (zh) * 2022-06-14 2022-07-15 北京贝瑞和康生物技术有限公司 用于检测拷贝数变异的方法、设备和介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150012252A1 (en) * 2012-01-20 2015-01-08 Bgi Diagnosis Co., Ltd. Method and system for determining whether copy number variation exists in sample genome, and computer readable medium
WO2014040206A1 (fr) * 2012-09-12 2014-03-20 深圳华大基因研究院 Méthode de détection des variations du nombre de copies par des fragments de séquençage du génome
WO2018161245A1 (fr) * 2017-03-07 2018-09-13 深圳华大基因研究院 Procédé et dispositif de détection de variations chromosomiques
CN110910954A (zh) * 2019-12-04 2020-03-24 上海捷易生物科技有限公司 一种低深度全基因组基因拷贝数变异的检测方法及系统
CN112669901A (zh) * 2020-12-31 2021-04-16 北京优迅医学检验实验室有限公司 基于低深度高通量基因组测序的染色体拷贝数变异检测装置
CN114242164A (zh) * 2021-12-21 2022-03-25 苏州吉因加生物医学工程有限公司 一种全基因组复制的分析方法、装置和存储介质
CN114758720A (zh) * 2022-06-14 2022-07-15 北京贝瑞和康生物技术有限公司 用于检测拷贝数变异的方法、设备和介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QI HONG, XUAN ZHAO-LING, DU YANG, CAI LI-RONG, ZHANG HAN, WEN XIAO-HUI, KONG XIANG-DONG, YANG KAI, MI YANG, FU XIN-XIN, CAO SHAN-B: "High resolution global chromosomal aberrations from spontaneous miscarriages revealed by low coverage whole genome sequencing", EUROPEAN JOURNAL OF OBSTETRICS & GYNECOLOGY AND REPRODUCTIVE BIOLOGY, ELSEVIER IRELAND LTD., IE, vol. 224, 1 May 2018 (2018-05-01), IE , pages 21 - 28, XP093186174, ISSN: 0301-2115, DOI: 10.1016/j.ejogrb.2018.03.008 *
XUCHAO LI, SHENGPEI CHEN, WEIWEI XIE, IDA VOGEL, KWONG WAI CHOY, FANG CHEN, RIKKE CHRISTENSEN, CHUNLEI ZHANG, HUIJUAN GE, HAOJUN J: "PSCC: Sensitive and Reliable Population-Scale Copy Number Variation Detection Method Based on Low Coverage Sequencing", PLOS ONE, PUBLIC LIBRARY OF SCIENCE, US, vol. 9, no. 1, 21 January 2014 (2014-01-21), US , pages e85096 - e85096-10, XP002745107, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0085096 *
YE LI-PING, MAO XIN-LI, ZHOU XIAN-BIN, WANG YI, XU SHI-WEN, HE SAI-QIN, QIAN ZI-LIANG, ZHANG XIAO-GANG, ZHAI LI-JUAN, PENG JIN-BAN: "Cost-effective low-coverage whole-genome sequencing assay for the risk stratification of gastric cancer", WORLD JOURNAL OF GASTROINTESTINAL ONCOLOGY, vol. 14, no. 3, 15 March 2022 (2022-03-15), pages 690 - 702, XP093186172, ISSN: 1948-5204, DOI: 10.4251/wjgo.v14.i3.690 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119864076A (zh) * 2025-03-25 2025-04-22 广州凯普医学检验所有限公司 基因组拷贝数变异分析数据的处理方法、装置及设备

Also Published As

Publication number Publication date
CN117995269A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
CN107423578B (zh) 检测体细胞突变的装置
CN111326212B (zh) 一种结构变异的检测方法
CN107992721B (zh) 用于检测目标区域基因融合的方法、装置和存储介质
CN110648721B (zh) 针对外显子捕获技术检测拷贝数变异的方法及装置
CN106033502B (zh) 鉴定病毒的方法和装置
CN113096737B (zh) 一种用于对病原体类型进行自动分析的方法及系统
CN114530199A (zh) 基于双重测序数据检测低频突变的方法、装置及存储介质
WO2018218787A1 (fr) Procédé de correction de séquence de séquençage de troisième génération basé sur un graphique local
CN117316271A (zh) 基于二代测序技术筛查血液肿瘤标本拷贝数变异的方法及检测系统
WO2024140880A1 (fr) Procédé et appareil d'analyse de variant de nombre de copies, et support de stockage
CN116646006B (zh) 一种基于高通量测序和高斯混合模型的肿瘤相关基因体系突变检测方法及装置
CN111292803B (zh) 基因组断裂点识别方法及应用
CN113808665B (zh) 全基因组致病snp精细定位的因果关联分析方法
CN115954052B (zh) 一种实体瘤微小残留病灶监控位点筛选方法及系统
CN115331730B (zh) 核基因组拷贝数变异检测方法及装置、设备、存储介质
CN118072831A (zh) 一种基于宏基因组的病原识别方法、装置、介质及产品
CN115273971B (zh) 基因拷贝数变异检测方法及装置、设备、存储介质
CN114530200B (zh) 基于计算snp熵值的混合样本鉴定方法
CN113496761B (zh) 确定核酸样本中cnv的方法、装置及应用
CN114627967A (zh) 一种精确注释三代全长转录本的方法
CN111584003B (zh) 病毒序列整合的优化检测方法
CN114936208A (zh) 一种基于数据清洗的信息分析系统
CN116959564A (zh) 样本污染检测方法、装置、系统及相关设备
CN117174178B (zh) 一种基于二代短读长序列的单倍型距离评估方法及装置
CN116935961B (zh) 一种关于拷贝数目重复变异的来源检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23910797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE