[go: up one dir, main page]

WO2024004215A1 - 地盤変動解析装置および地盤変動解析方法 - Google Patents

地盤変動解析装置および地盤変動解析方法 Download PDF

Info

Publication number
WO2024004215A1
WO2024004215A1 PCT/JP2022/026506 JP2022026506W WO2024004215A1 WO 2024004215 A1 WO2024004215 A1 WO 2024004215A1 JP 2022026506 W JP2022026506 W JP 2022026506W WO 2024004215 A1 WO2024004215 A1 WO 2024004215A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
interest
slope
data
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2022/026506
Other languages
English (en)
French (fr)
Inventor
アビナンダン アルヤ
ブジェトゥ パムンガス
プラカル ミスラ
リシャヴ チャウハン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synspective
Synspective Inc
Original Assignee
Synspective
Synspective Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synspective, Synspective Inc filed Critical Synspective
Priority to JP2024530268A priority Critical patent/JPWO2024004215A1/ja
Priority to PCT/JP2022/026506 priority patent/WO2024004215A1/ja
Publication of WO2024004215A1 publication Critical patent/WO2024004215A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • G01C7/02Tracing profiles of land surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing

Definitions

  • the present invention relates to a ground deformation analysis device and a ground deformation analysis method, and is particularly suitable for use in a device and method that analyze the state of ground deformation using observation data measured using a synthetic aperture radar.
  • Ground failures such as landslides on slopes are one of the major geological hazard phenomena that require monitoring. Landslides have become more frequent in recent years due to abnormal weather and unplanned human activities. Therefore, it is becoming important to identify and monitor slopes where landslides may occur in order to prevent or reduce the various losses associated with landslides.
  • GNSS Global Navigation Satellite System
  • Patent Document 1 Japanese Patent Application Publication No. 2021-56008
  • Patent Document 2 Patent No. 3987451
  • the landslide area detection device described in Patent Document 1 uses at least a combination of landslide characteristics in each of phase difference data and coherence data obtained by performing interference analysis on ground surface data obtained by radar measurements at different timings. Based on this information, landslide-prone ground movements are detected. Here, based on the topographical data corresponding to the range of ground surface data, the range where landslide-prone ground movements are not detected is identified, and this range is excluded from the ground movement area, thereby eliminating the need for detection processing. This reduces the amount of time and effort required and also suppresses the occurrence of misjudgments.
  • the ground surface is measured by performing synthetic aperture interference processing on the ground surface reflected waves of pulsed radio waves emitted from one synthetic aperture radar mounted on a satellite. Find the amount of variation. Specifically, by performing synthetic aperture interference processing on the reflected waves obtained twice in the ascending orbit and the descending orbit, the distances from the ascending orbit and the descending orbit to the measurement target point are determined, and then By adding the condition of the direction of ground surface movement specified by the ground structure (the condition that landslide movement occurs along the slope's maximum slope line), the actual amount of change from the past position of the measurement target point is determined.
  • LoS variation data can be converted into vertical ground movement, which helps in meaningfully interpreting the ground movement situation. Furthermore, in the case of a slope whose aspect direction is parallel to the LoS direction, the LoS fluctuation data can be interpreted as movement along the slope.
  • the present invention has been made to solve such problems, and it is possible to accurately capture the ground deformation situation in areas with undulating topography using observation data from synthetic aperture radar.
  • the purpose is to
  • the present invention uses LoS fluctuation data acquired for each of a plurality of predetermined unit areas included in a region of interest based on information regarding the orientation of the satellite and information regarding the tilt characteristics of the region of interest. Convert the tilt variation data in the direction along the tilt direction of the region of interest, and convert each of the tilt variation data obtained for each of the plurality of predetermined unit areas to the average value of the tilt variation data obtained for each of the plurality of predetermined unit areas. Correct the offset using . Then, using the offset-corrected slope variation data, areas where the ground surface variation is larger than the surrounding area are extracted as variation hot spots.
  • LoS fluctuation data observed in an area with undulating topography is converted into slope fluctuation data in a direction along the slope direction of the undulations, and further noise reduction is performed by offset correction. After these data components are removed, areas with large ground surface fluctuations are extracted as fluctuation hotspots. As a result, even in areas with undulating topography, the state of ground deformation can be accurately captured using observation data from synthetic aperture radar.
  • FIG. 1 is a diagram showing a network configuration of an analysis system according to the present embodiment.
  • FIG. 1 is a block diagram showing an example of the functional configuration of a ground deformation analysis device according to the present embodiment.
  • FIG. 3 is a diagram for explaining the LoS direction.
  • FIG. 2 is a block diagram showing a specific functional configuration example of a hot spot extraction unit according to the present embodiment.
  • FIG. 2 is a diagram for explaining the processing content of the difference analysis unit according to the present embodiment, and is a diagram showing a state in which a certain area of the ground surface is viewed from above. It is a diagram for explaining the processing content of the difference analysis unit according to the present embodiment, and is a diagram showing the transition of slope fluctuation data (time-series slope) in one predetermined unit area.
  • FIG. 6 is a diagram for explaining the processing content of the adjacent area extraction unit according to the present embodiment. It is a flow chart showing an example of the operation of the ground deformation analysis device according to the present embodiment.
  • FIG. 1 is a diagram showing a network configuration of an analysis system 100 according to this embodiment.
  • the analysis system 100 includes a satellite base station 50 that receives satellite data from a satellite S flying in a satellite orbit in space, a database DB that records satellite data, and a ground deformation analysis device 10 that analyzes the satellite data.
  • the satellite S is equipped with a satellite data acquisition unit (including, for example, an optical sensor, a synthetic aperture radar, etc.), and transmits satellite data including images of the ground taken by the satellite data acquisition unit to the satellite base station 50.
  • a satellite data acquisition unit including, for example, an optical sensor, a synthetic aperture radar, etc.
  • the satellite base station 50 receives satellite data from the satellite S and records it in the database DB.
  • the database DB is connected to a communication network N such as the Internet.
  • the ground deformation analysis device 10 acquires satellite data stored in the database DB via the communication network N.
  • FIG. 2 is a block diagram showing an example of the functional configuration of the ground deformation analysis device 10 according to this embodiment.
  • the ground deformation analysis device 10 of this embodiment includes a LoS fluctuation data acquisition section 11, a tilt projection section 12, an offset correction section 13, and a hot spot extraction section 14 as functional configurations.
  • the functional blocks 11 to 14 can be configured by hardware, DSP (Digital Signal Processor), or software.
  • the functional blocks 11 to 14 are configured with a computer's CPU, RAM, ROM, etc., and an analysis program stored in a storage medium such as the RAM, ROM, hard disk, or semiconductor memory runs. This is achieved by The analysis program may be provided stored in a storage medium or may be provided via a communication network.
  • the ground deformation analysis device 10 may include an LSI (Large-Scale Integration) in which a CPU, RAM, and ROM are integrated. Furthermore, in this embodiment, a case will be described in which the ground deformation analysis device 10 is composed of one computer, but the ground deformation analysis device 10 may be realized by combining a plurality of computers.
  • LSI Large-Scale Integration
  • the LoS fluctuation data acquisition unit 11 analyzes time-series observation data measured using a synthetic aperture radar, and determines the line-of-sight direction when looking at the ground surface from the satellite for each of a plurality of predetermined unit areas included in the region of interest. Obtain LoS fluctuation data, which is data indicating fluctuations in .
  • the region of interest refers to an area whose ground deformation is to be monitored.
  • the observation data used in this embodiment is, for example, time-series SAR images stored in a storage medium (not shown) based on daily observations using synthetic aperture radar.
  • a satellite equipped with a synthetic aperture radar observes all points on the earth from two directions: a northward orbit (Ascending) and a southward orbit (Descending) from a pre-designated orbit of the satellite.
  • a time-series SAR image observed by a satellite whose traveling direction is a northward orbit hereinafter referred to as a "northern orbit SAR image”
  • a time-series SAR image observed by a satellite whose satellite traveling direction is a southward orbit is input to the LoS fluctuation data acquisition unit 11.
  • the LoS variation data acquisition unit 11 analyzes the northbound orbit SAR image and the southbound orbit SAR image, thereby obtaining data indicating variations in the ground surface in the direction of line of sight when looking at the ground surface from a satellite in the northbound orbit. (hereinafter referred to as northbound LoS variation data) and data indicating variations in the ground surface in the line-of-sight direction when looking at the ground surface from a satellite in a southbound orbit (hereinafter referred to as southbound LoS variation data).
  • northbound LoS variation data data indicating variations in the ground surface in the line-of-sight direction when looking at the ground surface from a satellite in a southbound orbit
  • southbound LoS variation data data indicating variations in the ground surface in the line-of-sight direction when looking at the ground surface from a satellite in a southbound orbit
  • the known InSAR analysis can be used as the analysis performed by the LoS fluctuation data acquisition unit 11.
  • FIG. 3 is a diagram for explaining the LoS direction, which is the line of sight direction when looking at the earth's surface from a satellite.
  • Radar waves emitted from a satellite are not irradiated perpendicularly to the earth's surface, but in directions with incident angles ⁇ asc and ⁇ desc deviated from the perpendicular direction. That is, radar waves are irradiated in directions with slightly different incident angles ⁇ asc and ⁇ desc between the satellite in the northward orbit shown in FIG. 3(a) and the satellite in the southward orbit shown in FIG. 3(b).
  • the amount of variation in the LoS direction of the satellite is determined instead of the amount of variation in the vertical direction of the ground surface.
  • the LoS fluctuation data acquisition unit 11 replaces the northbound LoS fluctuation data and southbound LoS fluctuation data acquired as described above with fluctuation data for each predetermined unit time and for each predetermined unit area.
  • the LoS fluctuation data acquisition unit 11 matches the time axis and the spatial axis between the northbound LoS fluctuation data and the southbound LoS fluctuation data, and the matched northbound LoS fluctuation data and southbound LoS fluctuation data and detect.
  • the northbound LoS fluctuation data and the southbound LoS fluctuation data may not match in the time axis direction and the spatial axis direction. Therefore, the LoS fluctuation data acquisition unit 11 sets a threshold value in the time axis direction, and if there is northbound LoS fluctuation data and southbound LoS fluctuation data that can be considered the same within the range of the threshold value, it matches them and detects them. do. Similarly, a threshold is set in the spatial axis direction, and if there is northbound LoS variation data and southbound LoS variation data that can be considered the same within the range of the threshold, they are matched and detected. Matching here refers to the process of determining whether there is a point within a threshold set in the time axis direction or the spatial axis direction where northbound LoS fluctuation data and southbound LoS fluctuation data can be considered the same. .
  • the time-axis threshold and the spatial-axis threshold used when performing matching we use thresholds commonly set on the Sentinel-1 satellite, which is used during measurements that require strictness and precision. Is possible.
  • the matching conditions may be set loosely by making at least one of the time axis threshold and the spatial axis threshold larger than the threshold generally set for the Sentinel-1 satellite.
  • the threshold on the time axis can be set to 11 days
  • the threshold on the spatial axis can be set to a rectangular area of 20 m square.
  • the LoS fluctuation data acquisition unit 11 sets the northbound LoS fluctuation data as master data and the southbound LoS fluctuation data as slave data, and determines the same data as the northbound LoS fluctuation data within a time range of 11 days and within a distance difference of 20 m square. Detect southbound LoS fluctuation data that can be considered. Then, only when conditions that can be considered to be the same can be detected, the northbound LoS fluctuation data and the southbound This is adopted as row LoS fluctuation data. In this case, the predetermined unit time and predetermined unit area are specified based on the northbound LoS fluctuation data used as master data.
  • the oblique projection unit 12 is configured to obtain information about the orientation of the satellite (azimuth angle ⁇ and incident angle ⁇ ) and information about the inclination characteristics of the region of interest (inclination angle S and aspect angle A) by the LoS fluctuation data acquisition unit 11.
  • the LoS variation data is converted into tilt variation data in a direction along the tilt direction of the region of interest.
  • the LoS fluctuation data to be converted is the northbound LoS fluctuation data used as master data. Further, as information regarding the orientation of the satellite (azimuth angle ⁇ and incident angle ⁇ ), information regarding northbound LoS fluctuation data is used. Information regarding the slope characteristics (slope angle S and aspect angle A) of the region of interest can be obtained, for example, using topographic data published by public institutions such as the Geospatial Information Authority of Japan.
  • the slope projection unit 12 converts the LoS fluctuation data V LOS into slope fluctuation data V slope based on the following (Equation 1).
  • V slope V LOS /C [mm/predetermined unit time]...
  • ⁇ LOS [sin ⁇ * sin ⁇ , -cos ⁇ *sin ⁇ , cos ⁇ ]
  • ⁇ slope [-cosA*cosS, -sinA*cosS, sinS]
  • Azimuth angle with respect to the North Pole (true north) in the orbit
  • Incident angle from the satellite to the ground surface
  • the offset correction unit 13 performs offset correction on each of the tilt variation data obtained for each of the plurality of predetermined unit areas by the tilt projection unit 12 using the average value of the tilt variation data obtained for each of the plurality of predetermined unit areas. do. Specifically, the offset correction unit 13 calculates the average value of time-series gradients representing the transition of slope fluctuation data regarding all the matched predetermined unit areas within the observation area, and calculates the average value of the time-series gradient from the time-series gradient of each predetermined unit area. Offset correction is performed by subtracting the respective average values.
  • the hot spot extraction unit 14 uses the time-series slope variation data offset-corrected by the offset correction unit 13 to extract an area where the ground surface variation is larger than the surrounding area as a variation hot spot.
  • FIG. 4 is a block diagram showing a specific functional configuration example of the hot spot extracting section 14. As shown in FIG. As shown in FIG. 4, the hot spot extraction unit 14 of this embodiment includes a difference analysis unit 14a, a first filter unit 14b, a second filter unit 14c, and a nearby area extraction unit 14d as specific functional configurations. We are prepared.
  • the difference analysis unit 14a takes one of the predetermined unit areas as an area of interest, and analyzes the difference between slope fluctuation data of a local area that includes the area of interest and slope fluctuation data of a control area that includes the local area and is wider than the local area. Then, an area of interest that satisfies the first condition regarding the large difference is extracted as a candidate for a fluctuation hot spot.
  • FIG. 5 and 6 are diagrams for explaining the processing contents of the difference analysis section 14a.
  • FIG. 5 shows a bird's-eye view of a certain area of the ground surface from above, and each position indicated by a black mark indicates a plurality of matched predetermined unit areas. Although there are actually many more predetermined unit areas, they are shown in a simplified manner for convenience of explanation.
  • FIG. 6 shows the time-series slope of the slope fluctuation data V slope in one predetermined unit area, obtained by the processing of the tilt projection unit 12 and the offset correction unit 13, for each predetermined unit time (every 11 days). , and each dot indicates slope fluctuation data V slope acquired every 11 days.
  • the shapes of the local area A local and the control area A region are both circular here, they are not limited to this.
  • the shape of at least one of the local area A local and the control area A region may be rectangular.
  • the slope fluctuation data of the local area A local is used as the slope fluctuation data of the attention area P and other predetermined unit areas Q L1 , Q L2 , ..., Q Lm existing in the local area A local .
  • the average value of the data V slope is used.
  • slope variation data V region of the control area A region the attention area P and other predetermined unit areas Q L1 , Q L2 , ..., Q Lm , Q R1 , Q R2 existing in the control area A region are added. ,..., Q
  • the average value of the slope fluctuation data V slope of Rn is used.
  • the slope fluctuation data V slope whose average value is to be calculated is obtained by sampling a predetermined number of slope fluctuation data V slope from among the time series slopes shown in FIG. 6 .
  • k pieces of slope fluctuation data V slope from the latest final time point T1 to time point Tk are used as the average value calculation target.
  • the value of the sampling number k may be a fixed value or a variable value that can be set arbitrarily by the user. Alternatively, if environmental conditions such as the season and the climate of the observation area are set, the value of the sampling number k may be automatically calculated according to the set environmental conditions.
  • the average value of the slope fluctuation data V slope of the predetermined unit areas P, Q L1 , Q L2 , ..., Q Lm at the time T 1 is used as the slope fluctuation data of the local area A local at the time T 1; is written as V local-T1 .
  • the slope fluctuation data of the local area A local at time T k is the average value of slope fluctuation data V slope of predetermined unit areas P, Q L1 , Q L2 , ..., Q Lm at time T k , This is written as V local-Tk .
  • slope fluctuation data of the control area A region at time T 1 predetermined unit areas P, Q L1 , Q L2 , ..., Q Lm , Q R1 , Q R2 , ..., Q Rn at time T 1 Using the average value of the slope fluctuation data V slope of , this is expressed as V region-T1 .
  • the slope fluctuation data of the control area A region at the time Tk is the slope of the predetermined unit area P, Q L1 , Q L2 , ..., Q Lm , Q R2 , ..., Q Rn at the time T k This is the average value of the fluctuation data V slope , and is expressed as V region-Tk .
  • the difference ⁇ V between the slope fluctuation data V local of the local area A local and the slope fluctuation data V region of the control area A region is expressed as follows.
  • the first condition regarding the magnitude of the difference ⁇ V is defined as follows using the time-series average ⁇ Vavg of the difference ⁇ V and the time-series standard deviation ⁇ V of the difference ⁇ V.
  • the time series average ⁇ Vavg is the average value of V local-T1 ⁇ V region-T1 , V local-T2 ⁇ V region-T2 , . . . , V local-Tk ⁇ V region-Tk .
  • the time series standard deviation ⁇ V is the standard deviation of V local-T1 ⁇ V region-T1 , V local-T2 ⁇ V region-T2 , . . . , V local-Tk ⁇ V region-Tk .
  • the time-series average ⁇ Vavg calculated as described above indicates how much the ground deformation in the area of interest P differs from the ground deformation in the control area A region around the area of interest P.
  • the area of interest P is set to be a hotspot with large ground surface fluctuations compared to the surrounding area. Extract as a candidate.
  • the first filter unit 14b extracts the slope fluctuation data of the area of interest P extracted by the difference analysis unit 14a as satisfying the first condition, and the slope fluctuation data of the area of interest P and the area of interest of a plurality of predetermined unit areas included in the region of interest. By extracting an area of interest P in which the magnitude of variation in the area of interest P satisfies the second condition based on the slope variation data, candidates for variation hot spots are narrowed down.
  • the first filter unit 14b selects k slopes sampled from the time-series slope of the slope fluctuation data Vslope as described above for the area of interest P extracted by the difference analysis unit 14a as satisfying the first condition.
  • the average value of the fluctuation data V slope-T1 to V slope-Tk is calculated, and this is expressed as V P avg.
  • the first filter unit 14b also calculates the standard deviation of k pieces of slope fluctuation data V slope sampled from the time series slope of slope fluctuation data V slope for all predetermined unit areas included in the region of interest. , this is written as ⁇ V slope .
  • the second condition regarding the magnitude of variation in the area of interest P is defined as follows.
  • the first filter section 14b further extracts an area of interest P that satisfies the second condition from among the areas of interest P that have been extracted by the difference analysis section 14a as satisfying the first condition.
  • the area of interest P in which unstable ground movement occurs within the region of interest is extracted as a candidate for a movement hot spot.
  • the slope change data V P avg of the area of interest P has a negative value.
  • the second condition requires that the negative value of the slope variation data V P avg of the area of interest P be larger in absolute value than the negative value of the standard deviation ⁇ V slope .
  • the slope variation data V P avg of the area of interest P has a positive value.
  • the second condition requires that the positive value of the slope variation data V P avg of the area of interest P be larger in absolute value than the positive value of the standard deviation ⁇ V slope .
  • V P and ⁇ V slope may be calculated using slope fluctuation data at the most recent final time point T 1 .
  • V P V slope-T1 .
  • the second filter unit 14c extracts slope fluctuation data of the attention area P extracted by the first filter unit 14b as satisfying the second condition, and slope fluctuation data included in the control area A region .
  • the change hot spot candidates are further narrowed down by comparing the above and extracting an area of interest P that satisfies the third condition in which the magnitude of variation in the area of interest P is larger than the magnitude of variation in the control area A region .
  • the second filter unit 14c defines a third condition in which the magnitude of variation in the area of interest P is larger than the magnitude of variation in the control area A region , and defines an area of interest that satisfies this third condition.
  • P is extracted as a candidate for a fluctuation hotspot.
  • V P avg when the sign of V P avg is positive, it means that the ground in the area of interest P is uplifted.
  • the sign of ⁇ Vavg is positive, it means that the ground deformation in the local area A local is larger than the ground deformation in the control area A region (the area of interest P is rising at a faster rate than the surrounding area).
  • the sign of ⁇ Vavg is negative, it means that the ground deformation in the local area A local is smaller than the ground deformation in the control area A region (the area of interest P is rising at a slower rate than the surrounding area).
  • V P avg when the sign of V P avg is negative, it means that the ground in the area of interest P is sinking.
  • the sign of ⁇ Vavg if the sign of ⁇ Vavg is negative, it means that the ground deformation in the local area A local is larger than the ground deformation in the control area A region (the area of interest P is sinking at a faster rate than the surrounding area).
  • the sign of ⁇ Vavg is positive, it means that the ground deformation in the local area A local is smaller than the ground deformation in the control area A region (the area of interest P is sinking at a slower rate than the surrounding area).
  • the sign of the slope fluctuation data V P avg of the area of interest P and the time series average ⁇ Vavg which is the average value of the difference ⁇ V between the slope fluctuation data V local of the local area A local and the slope fluctuation data V region of the control area A region.
  • a third condition in which the magnitude of variation in the area of interest P is larger than the magnitude of variation in the control area A region may be defined as follows.
  • V region avg is the average value of the time-series slope of the slope fluctuation data V region of the control area A region , and is expressed as follows.
  • V region avg V region-T1 +V region-T2 +...+V region-Tk /k
  • the adjacent area extraction unit 14d extracts a plurality of areas of interest P (extracted by the processing of the difference analysis unit 14a, the first filter unit 14b, and the second filter unit 14c), which are extracted as having large fluctuations in the ground surface compared to the surrounding areas.
  • attention areas P existing at positions within a predetermined distance from each other are extracted, and an area including a set of the extracted attention areas P is extracted as a fluctuation hot spot.
  • the value of the predetermined distance can be set to a different value depending on the SAR image used as input for the InSAR analysis.
  • the predetermined distance is, for example, 44 m.
  • FIG. 7 is a diagram for explaining the processing content of the adjacent area extraction unit 14d.
  • FIG. 7 shows a bird's-eye view of a certain area of the ground surface from above, and the individual positions marked with ⁇ are the positions of the difference analysis section 14a, the first filter section 14b, and the second filter section 14c. It shows a plurality of areas of interest P 1 to P 5 extracted as candidates for fluctuation hot spots through processing. In reality, there may be many more attention areas P that are candidates for fluctuation hot spots, but FIG. 7 shows them in a simplified manner for convenience of explanation.
  • the adjacent area extraction unit 14d extracts an area including a set of three areas of interest P 1 to P 3 as a fluctuation hot spot HS.
  • the area including the set of the three attention areas P 1 to P 3 is a rectangular area that inscribed and surrounds the three attention areas P 1 to P 3 , as shown in FIG. 7, for example.
  • the remaining two areas of interest P 4 and P 5 are not extracted as variable hot spots HS. That is, attention areas P 4 and P 5 that are highly likely to have no spatial relationship with other attention areas P are excluded from the variable hot spots HS.
  • the adjacent area extraction unit 14d extracts a set of the plurality of attention areas P only when there are a predetermined number (for example, 5) or more of the attention areas P existing at close positions within a predetermined distance from each other.
  • the area including the above may be extracted as a fluctuation hotspot HS.
  • the shape of the area of the fluctuation hot spot HS shown in FIG. 7 is an example, and the shape is not limited thereto. For example, it may be a rectangle, a circle, an ellipse, or another polygon with the minimum area that includes the areas of interest P 1 to P 3 .
  • the fluctuation hot spot HS with a higher level of reliability can be obtained. Detection becomes possible.
  • FIG. 8 is a flowchart showing an example of the operation of the ground movement analysis device 10 according to the present embodiment (an example of the processing procedure of the ground movement analysis method).
  • the LoS fluctuation data acquisition unit 11 analyzes time-series observation data measured using a synthetic aperture radar, and analyzes the time-series observation data for each of a plurality of predetermined unit areas included in the region of interest and for each of a plurality of predetermined unit times. Obtain LoS fluctuation data (step S1).
  • the tilt projection unit 12 uses the above-mentioned (Equation 1) based on the information regarding the orientation of the satellite (azimuth angle ⁇ and incident angle ⁇ ) and the information regarding the tilt characteristics of the region of interest (tilt angle S and aspect angle A). Accordingly, the LoS fluctuation data acquired by the LoS fluctuation data acquisition unit 11 is converted into slope fluctuation data (step S2).
  • the offset correction section 13 converts each of the tilt variation data obtained for each of the plurality of predetermined unit areas by the tilt projection section 12 using the average value of the tilt variation data obtained for each of the plurality of predetermined unit areas. Offset correction is performed (step S3).
  • the difference analysis unit 14a analyzes the difference between the slope fluctuation data of the local area A local including the area of interest P and the slope fluctuation data of the control area A region , which is wider than the local area A local , and determines the magnitude of the difference.
  • An area of interest P that satisfies the first condition is extracted as a variable hot spot candidate (step S4).
  • the first filter unit 14b extracts the tilt variation data of the area of interest P and a plurality of predetermined units included in the area of interest. Based on the area slope variation data, an area of interest P in which the magnitude of variation in the area of interest P satisfies the second condition is extracted (step S5).
  • the second filter unit 14c extracts the slope fluctuation data of the area of interest P extracted by the first filter unit 14b as satisfying the second condition, and the slope included in the control area A region .
  • the area of interest P is compared with the variation data, and an area of interest P that satisfies the third condition in which the variation of the area of interest P is larger than the magnitude of variation of the control area A region is extracted (step S6).
  • the adjacent area extraction unit 14d extracts attention areas P that are located at intervals within a predetermined distance from each other from among the plurality of attention areas P extracted by the second filter unit 14c, and The area including the set of areas P is extracted as a fluctuation hotspot (step S7). With the above steps, the processing of the flowchart shown in FIG. 8 is completed.
  • the LoS fluctuation data obtained for each of a plurality of predetermined unit areas included in the region of interest is Convert the slope fluctuation data in the direction along the slope direction of the area, and convert each of the slope fluctuation data obtained for each of the plurality of predetermined unit areas to the average value of the slope fluctuation data obtained for each of the plurality of predetermined unit areas. Use this to correct the offset. Then, using the offset-corrected slope variation data, areas where the ground surface variation is larger than the surrounding area are extracted as variation hot spots.
  • LoS variation data observed in an area with undulating topography is converted to slope variation data in a direction along the slope direction of the undulations, and further noise is reduced by offset correction. After these data components are removed, fluctuation hotspots are extracted from areas with large ground surface fluctuations. As a result, even in areas with undulating topography, the state of ground deformation can be accurately captured using observation data from synthetic aperture radar.
  • the processing of the hot spot extraction section 14 the processing of the difference analysis section 14a, the first filter section 14b, and the second filter section 14c is performed, so that the ground movement is simply less than that of the surrounding area. This makes it possible to extract not only large areas but also areas with unstable ground deformation, where the rate of deformation is faster than the surrounding areas, as candidates for deformation hotspots. Further, as the processing of the hot spot extracting section 14, the processing of the adjacent area extracting section 14d is also performed, so that areas that are likely to have no spatial relationship can be excluded from candidates for variable hot spots. This makes it possible to detect fluctuation hotspots with a higher level of reliability.
  • the hot spot extraction section 14 does not necessarily need to perform all the processing of the difference analysis section 14a, first filter section 14b, second filter section 14c, and adjacent area extraction section 14d.
  • the hot spot extracting unit 14 extracts an area including a set of areas of interest P in which the magnitude of the difference satisfies the first condition as a variable hot spot HS.
  • the area is not processed by the adjacent area extraction unit 14d, so there is a possibility that the area exists in multiple locations.
  • the processing of the difference analysis section 14a and the processing of the adjacent area extraction section 14d may be performed in combination so that the extraction locations of the fluctuating hot spots HS are not dispersed.
  • the processing of the difference analysis section 14a and the processing of any one or two of the first filter section 14b, the second filter section 14c, and the adjacent area extraction section 14d may be performed in combination.
  • the processing by the difference analysis section 14a and the processing by the first filter section 14b may be performed.
  • the hot spot extraction unit 14 extracts an area including the set of attention areas P extracted by the first filter unit 14b as a fluctuating hot spot HS.
  • the area will exist in multiple locations.
  • the processing of the difference analysis section 14a, the processing of the first filter section 14b, and the processing of the adjacent area extraction section 14d may be performed in combination so that the extraction locations of the fluctuating hot spots HS are not dispersed.
  • the processing by the difference analysis section 14a and the processing by the second filter section 14c may be performed.
  • the second filter unit 14c compares the slope variation data of the area of interest P and the slope variation data of the control area A region . and extracts an area of interest P that satisfies the third condition in which the variation in the area of interest P is greater than the magnitude of variation in the control area A region .
  • the hot spot extraction unit 14 extracts an area including the set of attention areas P extracted by the second filter unit 14c as a fluctuating hot spot HS. In this case, there is also a possibility that the area will exist in multiple locations.
  • the processing of the difference analysis section 14a, the processing of the second filter section 14c, and the processing of the adjacent area extraction section 14d may be performed in combination so that the extraction locations of the fluctuating hot spots HS are not dispersed.
  • the processing of the adjacent area extraction section 14d may be omitted, and the processing of the difference analysis section 14a, the first filter section 14b, and the second filter section 14c may be performed.
  • the hot spot extracting unit 14 extracts an area including the set of attention areas P extracted by the second filter unit 14c as a fluctuating hot spot HS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

関心領域に含まれる複数の所定単位エリアごとに取得されるLoS変動データを、関心領域の傾斜方向に沿った方向の傾斜変動データに変換する傾斜投影部(12)と、傾斜変動データをオフセット補正するオフセット補正部(13)と、オフセット補正された傾斜変動データを用いて、周囲に比べて地表面の変動が大きい区域を変動ホットスポットとして抽出するホットスポット抽出部(14)とを備え、起伏のある地形を有するエリアで観測されるLoS変動データを、起伏の傾斜方向に沿った方向の傾斜変動データに変換し、さらにオフセット補正によってノイズ性のデータ成分を除去した上で、地表面の変動が大きい区域を変動ホットスポットとして抽出することにより、起伏のある地形を有するエリアにおいても、地盤変動の状況を正確に捉えることができるようにする。

Description

地盤変動解析装置および地盤変動解析方法
 本発明は、地盤変動解析装置および地盤変動解析方法に関し、特に、合成開口レーダを用いて測定された観測データを用いて地盤変動の状況を解析する装置および方法に用いて好適なものである。
 斜面における地滑り等の地盤崩壊は、監視が必要な主要な地質災害現象の1つである。近年の異常気象や計画外の人間活動のために、地滑りの発生はより頻繁になってきている。そのため、地滑りに関連する各種の損失を防止または軽減するために、地滑りが発生する可能性のある斜面の特定および監視を行うことが重要になりつつある。
 従来、斜面での地盤変動を監視するための手法として、頻繁に繰り返される現地調査、あるいは、GNSS(Global Navigation Satellite System:全球測位衛星システム)の地上センサによる測定などが用いられてきた。ただし、これらの手法では、現地調査が行われた現場や地上センサが設置された場所などの限られた範囲でしか監視の情報が得られないという問題があった。
 これに対して、地球観測技術としての合成開口レーダ(SAR)を用いた監視手法も提案されている(例えば、特許文献1,2参照)。合成開口レーダを用いた監視手法によれば、衛星から地表面を見たときの視線(Line-of-Sight:LoS)の方向の地表面の変動を示すデータを得ることが可能であり、このLoS変動データを解析することにより、比較的広い領域での地盤変動を監視することが可能である。
 特許文献1:特開2021-56008号公報
 特許文献2:特許第3987451号公報
 特許文献1に記載の地滑り領域検出装置では、異なるタイミングにおけるレーダ計測により得られた地表データに対して干渉解析を行って得られた位相差データおよびコヒーレンスデータの各々における少なくとも地滑りの特徴の組み合わせに基づいて、地滑り性の地盤変動を検出する。ここで、地表データの範囲に対応する地形データに基づいて、地滑り性の地盤変動が検出されない範囲を特定し、当該範囲内を地盤変動の領域から除外しておくことで、検出処理にかかる不要な手間を軽減するとともに、誤判定の発生を抑制する。
 特許文献2に記載の地表面変動量計測方法では、衛星に搭載されている1台の合成開口レーダから発射されるパルス状の電波の地表面反射波を合成開口干渉処理することにより、地表面の変動量を求める。具体的には、昇交軌道および降交軌道にて2回ずつ取得した反射波どうしを合成開口干渉処理することにより、昇交軌道と降交軌道から測定対象地点までの距離をそれぞれ求め、更に地盤構造上特定される地表面の変動方向の条件(地滑り変動が斜面の最大傾斜線に沿って発生するという条件)を加えることで、計測対象地点の過去位置からの実際の変動量を求める。
 合成開口レーダを用いる場合、起伏のない平坦な地形を有するエリアでは、LoS変動データを垂直方向の地盤変動に変換することができ、地盤の動きの状況を有意義に解釈するのに役立つ。また、アスペクト方向がLoS方向と平行な斜面の場合、LoS変動データは斜面に沿った動きとして解釈することが可能である。
 しかしながら、起伏のある地形を有するエリアでは、LOS変動データまたはそれを垂直方向に変換した垂直変動データをそのままそのエリアの地盤の動きとして解釈するのは難しい。すなわち、例えば山岳地帯は通常あらゆる方向に傾斜し、小さなエリア内にも起伏がある。そのため、LoS変動データおよび垂直変動データを用いても、地盤変動の状況を正確に捉えることができないという問題があった。
 本発明は、このような問題を解決するために成されたものであり、起伏のある地形を有するエリアについて、合成開口レーダによる観測データを用いて地盤変動の状況を正確に捉えることができるようにすることを目的とする。
 上記した課題を解決するために、本発明では、衛星の向きに関する情報および関心領域の傾斜特性に関する情報に基づいて、関心領域に含まれる複数の所定単位エリアごとに取得されるLoS変動データを、関心領域の傾斜方向に沿った方向の傾斜変動データに変換し、複数の所定単位エリアごとに求められた傾斜変動データのそれぞれを、複数の所定単位エリアごとに求められた傾斜変動データの平均値を用いてオフセット補正する。そして、オフセット補正された傾斜変動データを用いて、周囲に比べて地表面の変動が大きい区域を変動ホットスポットとして抽出するようにしている。
 上記のように構成した本発明によれば、起伏のある地形を有するエリアで観測されるLoS変動データが、起伏の傾斜方向に沿った方向の傾斜変動データに変換され、さらにオフセット補正によってノイズ性のデータ成分が除去された上で、地表面の変動が大きい区域が変動ホットスポットとして抽出されることとなる。これにより、起伏のある地形を有するエリアにおいても、合成開口レーダによる観測データを用いて地盤変動の状況を正確に捉えることができる。
本実施形態に係る解析システムのネットワーク構成を示す図である。 本実施形態による地盤変動解析装置の機能構成例を示すブロック図である。 LoS方向を説明するための図である。 本実施形態によるホットスポット抽出部の具体的な機能構成例を示すブロック図である。 本実施形態による差分分析部の処理内容を説明するための図であり、ある広さの地表面を上空から俯瞰した状態を示す図である。 本実施形態による差分分析部の処理内容を説明するための図であり、ある1つの所定単位エリアにおける傾斜変動データの推移(時系列勾配)を示す図である。 本実施形態による近接エリア抽出部の処理内容を説明するための図である。 本実施形態による地盤変動解析装置の動作例を示すフローチャートである。
 以下、本発明の一実施形態を図面に基づいて説明する。図1は、本実施形態に係る解析システム100のネットワーク構成を示す図である。解析システム100は、宇宙の衛星軌道を飛行する衛星Sから衛星データを受信する衛星基地局50と、衛星データを記録するデータベースDBと、衛星データを解析する地盤変動解析装置10とを備える。
 衛星Sは、衛星データ取得部(例えば、光学センサや合成開口レーダ等を含む)を備え、衛星データ取得部で撮影した地上の画像を含む衛星データを衛星基地局50に送信する。
 衛星基地局50は、衛星Sから衛星データを受信し、データベースDBに記録する。データベースDBは、インターネット等の通信ネットワークNに接続される。地盤変動解析装置10は、通信ネットワークNを介して、データベースDBに保存された衛星データを取得する。
 図2は、本実施形態による地盤変動解析装置10の機能構成例を示すブロック図である。図2に示すように、本実施形態の地盤変動解析装置10は、機能構成として、LoS変動データ取得部11、傾斜投影部12、オフセット補正部13およびホットスポット抽出部14を備えている。
 上記機能ブロック11~14は、ハードウェア、DSP(Digital Signal Processor)、ソフトウェアの何れによっても構成することが可能である。例えばソフトウェアによって構成する場合、上記機能ブロック11~14は、コンピュータのCPU、RAM、ROMなどを備えて構成され、RAMやROM、ハードディスクまたは半導体メモリ等の記憶媒体に記憶された解析プログラムが動作することによって実現される。解析プログラムは、記憶媒体に記憶されて提供されるほか、通信ネットワークを介して提供されてもよい。
 なお、ここに記載した物理的な構成は例示であって、必ずしも独立した構成でなくてもよい。例えば、地盤変動解析装置10は、CPUとRAMやROMが一体化したLSI(Large-Scale Integration)を備えていてもよい。また、本実施形態では、地盤変動解析装置10が一台のコンピュータで構成される場合について説明するが、地盤変動解析装置10は、複数のコンピュータが組み合わされて実現されてもよい。
 LoS変動データ取得部11は、合成開口レーダを用いて測定された時系列の観測データを解析し、関心領域に含まれる複数の所定単位エリアごとに、衛星から地表面を見たときの視線方向の変動を示すデータであるLoS変動データを取得する。関心領域とは、地盤変動の監視対象とする領域のことをいう。本実施形態において用いる観測データは、例えば、合成開口レーダを用いた毎日の観測によって図示しない記憶媒体に格納された時系列のSAR画像である。
 合成開口レーダを搭載した衛星は、あらかじめ指定された衛星の軌道から、地球上のあらゆる地点を北行軌道(Ascending)および南行軌道(Descending)の2方向から観測する。これにより、衛星進行方向が北行軌道である衛星により観測される時系列のSAR画像(以下、北行軌道SAR画像という)と、衛星進行方向が南行軌道である衛星により観測される時系列のSAR画像(以下、南行軌道SAR画像という)とがLoS変動データ取得部11に入力される。
 LoS変動データ取得部11は、北行軌道SAR画像と南行軌道SAR画像とを解析することにより、北行軌道の衛星から地表面を見たときの視線の方向の地表面の変動を示すデータ(以下、北行LoS変動データという)と、南行軌道の衛星から地表面を見たときの視線方向の地表面の変動を示すデータ(以下、南行LoS変動データという)とを取得する。ここで、LoS変動データ取得部11が行う解析として、公知のInSAR解析を用いることが可能である。
 図3は、衛星から地表面を見たときの視線方向であるLoS方向を説明するための図である。衛星から発射されるレーダ波は、地表面に対して垂直方向にではなく、垂直方向からずれた入射角λasc,λdescの方向に照射される。すなわち、図3(a)に示す北行軌道の衛星と図3(b)に示す南行軌道の衛星とで少しずつ異なる入射角λasc,λdescの方向にレーダ波が照射される。その結果、InSAR解析では、地表面の垂直方向の変動量ではなく、衛星のLoS方向の変動量を求めることとなる。
 LoS変動データ取得部11は、以上のようにして取得された北行LoS変動データおよび南行LoS変動データを、所定単位時間ごとおよび所定単位エリアごとの変動データに置換する。ここで、LoS変動データ取得部11は、北行LoS変動データと南行LoS変動データとの間で時間軸および空間軸のマッチングを行い、マッチングされた北行LoS変動データと南行LoS変動データとを検出する。
 北行LoS変動データと南行LoS変動データは、時間軸方向および空間軸方向に一致しないことがある。そこで、LoS変動データ取得部11は、時間軸方向に閾値を設定し、当該閾値の範囲内で同一とみなせる北行LoS変動データと南行LoS変動データとがあれば、それらをマッチングさせ、検出する。同様に、空間軸方向に閾値を設定し、当該閾値の範囲内で同一とみなせる北行LoS変動データと南行LoS変動データとがあれば、それらをマッチングさせ、検出する。ここでマッチングとは、時間軸方向もしくは空間軸方向で設定された閾値の範囲内で北行LoS変動データと南行LoS変動データとを同一とみなせる地点が存在するかどうかを判断する処理をいう。
 本実施形態では、マッチングを行う際に用いる時間軸の閾値および空間軸の閾値の一例として、厳密性・精度が求められる計測時に使用されるSentinel-1衛星で一般的に設定される閾値を用いることが可能である。あるいは、時間軸の閾値および空間軸の閾値の少なくとも一方をSentinel-1衛星で一般的に設定される閾値よりも大きくすることにより、マッチングの条件を緩めに設定してもよい。例えば、時間軸の閾値を11日とし、空間軸の閾値は20m四方の矩形エリアとすることが可能である。
 LoS変動データ取得部11は、例えば北行LoS変動データをマスターデータ、南行LoS変動データをスレーブデータとして、11日の時間範囲以内かつ20m四方の距離差以内で北行LoS変動データと同一とみなせる南行LoS変動データを検出する。そして、同一とみなせる状態が検出できた場合のみ、所定単位時間ごと(例えば、11日ごと)および所定単位エリアごと(例えば、20m四方の矩形エリアごと)のマッチングされた北行LoS変動データおよび南行LoS変動データとして採用する。この場合の所定単位時間および所定単位エリアは、マスターデータとして用いた北行LoS変動データに基づき特定する。
 傾斜投影部12は、衛星の向き(方位角φおよび入射角λ)に関する情報および関心領域の傾斜特性(傾斜角Sおよびアスペクト角A)に関する情報に基づいて、LoS変動データ取得部11により取得されたLoS変動データを、関心領域の傾斜方向に沿った方向の傾斜変動データに変換する。
 ここで、変換対象とするLoS変動データは、マスターデータとして用いた北行LoS変動データである。また、衛星の向き(方位角φおよび入射角λ)に関する情報としては、北行LoS変動データに関するものを用いる。関心領域の傾斜特性(傾斜角Sおよびアスペクト角A)に関する情報は、例えば国土地理院等の公的機関から公表されている地形データを利用して得ることが可能である。
 具体的に、傾斜投影部12は、次の(式1)に基づいて、LoS変動データVLOSを傾斜変動データVslopeに変換する。
 Vslope=VLOS/C [mm/所定単位時間]・・・(式1)
ここで、
 C=ηLOS×ηslope=NLOS×Nslope+ELOS×Eslope+ZLOS×Zslope
 (N:北方向、E:東方向、Z:北および東に直角な鉛直方向)
 ηLOS=[sinφ*  sinλ,-cosφ*sinλ,cosλ]
 ηslope=[-cosA*cosS,-sinA*cosS,sinS]
 A:観測地域の斜面の衛星から見た方向を示すアスペクト角
 S:観測地域の斜面の傾斜角
 φ:軌道における北極点(真北)に対する方位角
 λ:衛星から地表面に対する入射角
 オフセット補正部13は、傾斜投影部12により複数の所定単位エリアごとに求められた傾斜変動データのそれぞれを、当該複数の所定単位エリアごとに求められた傾斜変動データの平均値を用いてオフセット補正する。具体的に、オフセット補正部13は、観測地域内でマッチングされた全ての所定単位エリアに関する傾斜変動データの推移を表す時系列勾配の平均値を算出し、各所定単位エリアの時系列勾配からその平均値をそれぞれ差し引くことによってオフセット補正を実行する。
 ホットスポット抽出部14は、オフセット補正部13によりオフセット補正された時系列の傾斜変動データを用いて、周囲に比べて地表面の変動が大きい区域を変動ホットスポットとして抽出する。図4は、このホットスポット抽出部14の具体的な機能構成例を示すブロック図である。図4に示すように、本実施形態のホットスポット抽出部14は、具体的な機能構成として、差分分析部14a、第1のフィルタ部14b、第2のフィルタ部14cおよび近接エリア抽出部14dを備えている。
 差分分析部14aは、所定単位エリアの1つを注目エリアとし、当該注目エリアを含む局所エリアの傾斜変動データと、局所エリアを含んで局所エリアより広い対照エリアの傾斜変動データとの差分を分析し、差分が大きいことに関して第1の条件を満たす注目エリアを変動ホットスポットの候補として抽出する。
 図5および図6は、差分分析部14aの処理内容を説明するための図である。図5は、ある広さの地表面を上空から俯瞰した状態を示すものであり、■印で示す個々の位置は、マッチングされた複数の所定単位エリアを示している。実際には所定単位エリアはもっと多数存在するが、説明の便宜のため簡略化して図示している。図6は、傾斜投影部12およびオフセット補正部13の処理により得られた、ある1つの所定単位エリアにおける傾斜変動データVslopeの時系列勾配を所定単位時間ごと(11日ごと)に示したものであり、ドットの1つ1つが11日ごとに取得された傾斜変動データVslopeを示している。
 図5において、符号Pで示した所定単位エリアが注目エリアである。この注目エリアPを中心として、半径r1(例えば、100m)の円形のエリアが局所エリアAlocalであり、半径r2(r1<r2。例えば、r2=500m)の円形のエリアが対照エリアAregionである。図5の例では、局所エリアAlocalの中に注目エリアPおよび他の所定単位エリアQL1,QL2,・・・,QLm(図5の例ではm=3)が存在し、対照エリアAregionの中にはこれ以外の更に所定単位エリアQR1,QR2,・・・,QRn(図5の例ではn=9)が存在する。
 なお、ここでは局所エリアAlocalおよび対照エリアAregionの形状を何れも円形としたが、これに限定されない。例えば、局所エリアAlocalおよび対照エリアAregionの少なくとも一方の形状を矩形としてもよい。
 本実施形態において、局所エリアAlocalの傾斜変動データVlocalとして、局所エリアAlocalの中に存在する注目エリアPおよび他の所定単位エリアQL1,QL2,・・・,QLmの傾斜変動データVslopeの平均値を用いる。また、対照エリアAregionの傾斜変動データVregionとして、対照エリアAregionの中に存在する注目エリアPおよび他の所定単位エリアQL1,QL2,・・・,QLm,QR1,QR2,・・・,QRnの傾斜変動データVslopeの平均値を用いる。
 ここで、平均値の計算対象とする傾斜変動データVslopeは、図6に示す時系列勾配の中から所定数の傾斜変動データVslopeをサンプリングして用いる。例えば、直近の最終時点Tから過去に遡って時点Tまでのk個の傾斜変動データVslopeを平均値の計算対象として用いる。サンプリング数kの値は固定値であってもよいし、ユーザが任意に設定できる可変値であってもよい。あるいは、季節や観測地域の気候などの環境条件を設定すると、その設定した環境条件に応じてサンプリング数kの値が自動的に計算されるようにしてもよい。
 例えば、時点Tにおける局所エリアAlocalの傾斜変動データとして、時点Tにおける所定単位エリアP,QL1,QL2,・・・,QLmの傾斜変動データVslopeの平均値を用い、これをVlocal-T1と表記する。同様に、時点Tにおける局所エリアAlocalの傾斜変動データは、時点Tにおける所定単位エリアP,QL1,QL2,・・・,QLmの傾斜変動データVslopeの平均値であり、これをVlocal-Tkと表記する。
 また、時点Tにおける対照エリアAregionの傾斜変動データとして、時点Tにおける所定単位エリアP,QL1,QL2,・・・,QLm,QR1,QR2,・・・,QRnの傾斜変動データVslopeの平均値を用い、これをVregion-T1と表記する。同様に、時点Tにおける対照エリアAregionの傾斜変動データは、時点Tにおける所定単位エリアP,QL1,QL2,・・・,QLm,QR2,・・・,QRnの傾斜変動データVslopeの平均値であり、これをVregion-Tkと表記する。
 この場合、局所エリアAlocalの傾斜変動データVlocalと対照エリアAregionの傾斜変動データVregionとの差分ΔVは、以下のように表される。
 ΔV=Vlocal-Vregion
   ={Vlocal-T1-Vregion-T1,Vlocal-T2-Vregion-T2,・・・,Vlocal-Tk-Vregion-Tk
 そして、この差分ΔVの大きさに関する第1の条件を、差分ΔVの時系列平均ΔVavgと、差分ΔVの時系列標準偏差σΔVとを用いて次のように定義する。
 第1の条件:ΔVavg>2σΔV
ここで、時系列平均ΔVavgは、Vlocal-T1-Vregion-T1,Vlocal-T2-Vregion-T2,・・・,Vlocal-Tk-Vregion-Tkの平均値である。また、時系列標準偏差σΔVは、Vlocal-T1-Vregion-T1,Vlocal-T2-Vregion-T2,・・・,Vlocal-Tk-Vregion-Tkの標準偏差である。
 以上のようにして算出される時系列平均ΔVavgは、注目エリアPでの地盤変動が、注目エリアPの周囲の対照エリアAregionの地盤変動と比べてどの程度異なるかを示している。本実施形態では、この時系列平均ΔVavgが時系列標準偏差σΔVの2倍値より大きいという第1の条件を満たす場合に、注目エリアPを地表面の変動が周囲に比べて大きい変動ホットスポットの候補として抽出する。
 第1のフィルタ部14bは、差分分析部14aにより第1の条件を満たすとして抽出された注目エリアPについて、当該注目エリアPの傾斜変動データと、関心領域内に含まれる複数の所定単位エリアの傾斜変動データとに基づいて、注目エリアPの変動の大きさが第2の条件を満たす注目エリアPを抽出することにより、変動ホットスポットの候補の絞り込みを行う。
 例えば、第1のフィルタ部14bは、差分分析部14aにより第1の条件を満たすとして抽出された注目エリアPについて、上述のように傾斜変動データVslopeの時系列勾配からサンプリングしたk個の傾斜変動データVslope-T1~Vslope-Tkの平均値を算出し、これをVPavgと表記する。また、第1のフィルタ部14bは、関心領域内に含まれる全ての所定単位エリアについてそれぞれ傾斜変動データVslopeの時系列勾配からサンプリングしたk個ずつの傾斜変動データVslopeの標準偏差を算出し、これをσVslopeと表記する。
 本実施形態では、注目エリアPの変動の大きさに関する第2の条件を次のように定義する。
 第2の条件:VPavg>σVslope
 第1のフィルタ部14bは、差分分析部14aにより第1の条件を満たすとして抽出された注目エリアPの中から、この第2の条件を満たす注目エリアPをさらに抽出する。これにより、関心領域の中で不安定な地盤変動をしている注目エリアPだけが変動ホットスポットの候補として抽出されることとなる。
 ここで、注目エリアPにおいて地盤が沈下している場合、注目エリアPの傾斜変動データVPavgは負の値となる。この場合、第2の条件は、標準偏差σVslopeの負の値よりも、注目エリアPの傾斜変動データVPavgの負の値の方が絶対値として大きいことを要する。一方、注目エリアPにおいて地盤が隆起している場合、注目エリアPの傾斜変動データVPavgは正の値となる。この場合、第2の条件は、標準偏差σVslopeの正の値よりも、注目エリアPの傾斜変動データVPavgの正の値の方が絶対値として大きいことを要する。
 なお、ここでは傾斜変動データの時系列勾配からサンプリングしたk個の傾斜変動データを用いて、注目エリアPの傾斜変動データVPavgおよび関心領域内に含まれる複数の所定単位エリアの傾斜変動データの標準偏差σVslopeを算出する例について説明したが、これに限定されない。例えば、直近の最終時点Tの傾斜変動データを用いてVP,σVslopeを算出するようにしてもよい。この場合、VP=Vslope-T1である。
 第2のフィルタ部14cは、第1のフィルタ部14bにより第2の条件を満たすとして抽出された注目エリアPについて、当該注目エリアPの傾斜変動データと、対照エリアAregionに含まれる傾斜変動データとを比較し、注目エリアPの変動の大きさが対照エリアAregionの変動の大きさより大きい第3の条件を満たす注目エリアPを抽出することにより、変動ホットスポットの候補の絞り込みをさらに行う。
 例えば、第2のフィルタ部14cは、注目エリアPの変動の大きさが対照エリアAregionの変動の大きさより大きい第3の条件を次のように定義し、この第3の条件を満たす注目エリアPを変動ホットスポットの候補として抽出する。
 第3の条件:VPavgの符号≠ΔVavgの符号
 例えば、VPavgの符号が正の場合、注目エリアPでは地盤が隆起していることを意味する。このとき、ΔVavgの符号が正である場合、局所エリアAlocalの地盤変動が対照エリアAregionの地盤変動より大きい(注目エリアPが周囲より速い速度で隆起している)ことを意味する一方、ΔVavgの符号が負である場合、局所エリアAlocalの地盤変動が対照エリアAregionの地盤変動より小さい(注目エリアPが周囲より遅い速度で隆起している)ことを意味する。
 また、VPavgの符号が負の場合、注目エリアPでは地盤が沈下していることを意味する。このとき、ΔVavgの符号が負である場合、局所エリアAlocalの地盤変動が対照エリアAregionの地盤変動より大きい(注目エリアPが周囲より速い速度で沈下している)ことを意味する一方、ΔVavgの符号が正である場合、局所エリアAlocalの地盤変動が対照エリアAregionの地盤変動より小さい(注目エリアPが周囲より遅い速度で沈下している)ことを意味する。
 したがって、注目エリアPの傾斜変動データVPavgの符号と、局所エリアAlocalの傾斜変動データVlocalと対照エリアAregionの傾斜変動データVregionとの差分ΔVの平均値である時系列平均ΔVavgの符号が異なることを第3の条件として第2のフィルタ部14cの処理を行うことにより、周囲よりも変動の速度が大きい注目エリアPだけが変動ホットスポットの候補として抽出されることとなる。
 なお、注目エリアPの変動の大きさが対照エリアAregionの変動の大きさより大きい第3の条件を次のように定義してもよい。
 第3の条件:VPavg>Vregionavg
ここで、Vregionavgは、対照エリアAregionの傾斜変動データVregionの時系列勾配の平均値であり、以下のように表される。
 Vregionavg=Vregion-T1+Vregion-T2+・・・+Vregion-Tk/k
 近接エリア抽出部14dは、周囲に比べて地表面の変動が大きいとして抽出された複数の注目エリアP(差分分析部14a、第1のフィルタ部14bおよび第2のフィルタ部14cの処理によって抽出された複数の注目エリアP)のうち、互いに所定距離以内の間隔の位置に存在する注目エリアPを抽出し、抽出された注目エリアPの集合を含む区域を変動ホットスポットとして抽出する。
 ここで、所定距離の値は、InSAR解析の入力として使用されるSAR画像によって異なる値とすることが可能である。例えば、IPTA(Interferometric Point Target)メソッドを使用したシングルルックとマルチルックの両方の処理を含むSentinel-1ベースのInSAR解析を行う場合、例えば所定距離を44mとする。
 図7は、近接エリア抽出部14dの処理内容を説明するための図である。図7は、ある広さの地表面を上空から俯瞰した状態を示すものであり、■印で示す個々の位置は、差分分析部14a、第1のフィルタ部14bおよび第2のフィルタ部14cの処理によって変動ホットスポットの候補として抽出された複数の注目エリアP1~P5を示している。実際には変動ホットスポットの候補とされた注目エリアPはもっと多数存在し得るが、図7は説明の便宜のため簡略化して図示している。
 図7に示す複数の注目エリアP1~P5のうち、3つの注目エリアP1~P3は、互いに所定距離以内の間隔の近接位置に存在する。一方、残り2つの注目エリアP4,P5は、他のどれとも所定距離以内の間隔の位置に存在していない。この場合、近接エリア抽出部14dは、3つの注目エリアP1~P3の集合を含む区域を変動ホットスポットHSとして抽出する。3つの注目エリアP1~P3の集合を含む区域は、例えば図7のように、当該3つの注目エリアP1~P3を内接するように囲む矩形領域である。残り2つの注目エリアP4,P5については、変動ホットスポットHSとして抽出されない。すなわち、他の注目エリアPと空間的な関係を持たない可能性の高い注目エリアP4,P5については変動ホットスポットHSの対象から除外される。
 ここで、近接エリア抽出部14dは、互いに所定距離以内の間隔の近接位置に存在する注目エリアPの数が所定個(例えば、5個)以上ある場合にのみ、それら複数の注目エリアPの集合を含む区域を変動ホットスポットHSとして抽出するようにしてもよい。
 なお、図7に示す変動ホットスポットHSの区域の形状は一例であり、これに限定されない。例えば、注目エリアP1~P3が内包される最小面積の長方形、円形、楕円形、あるいは他の多角形などであってもよい。
 以上のように、差分分析部14a、第1のフィルタ部14b、第2のフィルタ部14cおよび近接エリア抽出部14dの処理を行うことにより、より高いレベルの信頼性を備えた変動ホットスポットHSの検出が可能となる。
 図8は、本実施形態による地盤変動解析装置10の動作例(地盤変動解析方法の処理手順の一例)を示すフローチャートである。まず、LoS変動データ取得部11は、合成開口レーダを用いて測定された時系列の観測データを解析し、関心領域に含まれる複数の所定単位エリアごとおよび複数の所定単位時間ごとに時系列のLoS変動データを取得する(ステップS1)。
 次に、傾斜投影部12は、衛星の向き(方位角φおよび入射角λ)に関する情報および関心領域の傾斜特性(傾斜角Sおよびアスペクト角A)に関する情報に基づいて、上述した(式1)に従って、LoS変動データ取得部11により取得されたLoS変動データを傾斜変動データに変換する(ステップS2)。
 次いで、オフセット補正部13は、傾斜投影部12により複数の所定単位エリアごとに求められた傾斜変動データのそれぞれを、当該複数の所定単位エリアごとに求められた傾斜変動データの平均値を用いてオフセット補正する(ステップS3)。
 次に、差分分析部14aは、注目エリアPを含む局所エリアAlocalの傾斜変動データと、局所エリアAlocalより広い対照エリアAregionの傾斜変動データとの差分を分析し、差分の大きさが第1の条件を満たす注目エリアPを変動ホットスポットの候補として抽出する(ステップS4)。
 次いで、第1のフィルタ部14bは、差分分析部14aにより第1の条件を満たすとして抽出された注目エリアPについて、当該注目エリアPの傾斜変動データと、関心領域内に含まれる複数の所定単位エリアの傾斜変動データとに基づいて、注目エリアPの変動の大きさが第2の条件を満たす注目エリアPを抽出する(ステップS5)。
 さらに、第2のフィルタ部14cは、第1のフィルタ部14bにより第2の条件を満たすとして抽出された注目エリアPについて、当該注目エリアPの傾斜変動データと、対照エリアAregionに含まれる傾斜変動データとを比較し、注目エリアPの変動が対照エリアAregionの変動の大きさより大きい第3の条件を満たす注目エリアPを抽出する(ステップS6)。
 最後に、近接エリア抽出部14dは、第2のフィルタ部14cにより抽出された複数の注目エリアPのうち、互いに所定距離以内の間隔の位置に存在する注目エリアPを抽出し、抽出された注目エリアPの集合を含む区域を変動ホットスポットとして抽出する(ステップS7)。以上により、図8に示すフローチャートの処理が終了する。
 以上詳しく説明したように、本実施形態では、衛星の向きに関する情報および関心領域の傾斜特性に関する情報に基づいて、関心領域に含まれる複数の所定単位エリアごとに取得されるLoS変動データを、関心領域の傾斜方向に沿った方向の傾斜変動データに変換し、複数の所定単位エリアごとに求められた傾斜変動データのそれぞれを、複数の所定単位エリアごとに求められた傾斜変動データの平均値を用いてオフセット補正する。そして、オフセット補正された傾斜変動データを用いて、周囲に比べて地表面の変動が大きい区域を変動ホットスポットとして抽出するようにしている。
 このように構成した本実施形態によれば、起伏のある地形を有するエリアで観測されるLoS変動データが、起伏の傾斜方向に沿った方向の傾斜変動データに変換され、さらにオフセット補正によってノイズ性のデータ成分が除去された上で、地表面の変動が大きい区域を変動ホットスポットが抽出されることとなる。これにより、起伏のある地形を有するエリアにおいても、合成開口レーダによる観測データを用いて地盤変動の状況を正確に捉えることができる。
 また、上記実施形態では、ホットスポット抽出部14の処理として、差分分析部14a、第1のフィルタ部14bおよび第2のフィルタ部14cの処理を行っているので、単に周囲に比べて地盤変動が大きいエリアというだけでなく、不安定な地盤変動をしているエリアで、周囲よりも変動の速度が大きいエリアだけを変動ホットスポットの候補として抽出することが可能となる。また、ホットスポット抽出部14の処理として、近接エリア抽出部14dの処理も行っているので、空間的な関係を持たない可能性の高いエリアについては変動ホットスポットの候補から除外することができる。これにより、より高いレベルの信頼性を備えた変動ホットスポットの検出を行うことが可能となる。
 なお、ホットスポット抽出部14の処理として、差分分析部14a、第1のフィルタ部14b、第2のフィルタ部14cおよび近接エリア抽出部14dの全ての処理を行うことを必須とするものではない。例えば、差分分析部14aの処理だけを行うようにしてもよい。この場合、ホットスポット抽出部14は、差分の大きさが第1の条件を満たす注目エリアPの集合を含む区域を変動ホットスポットHSとして抽出する。この場合の区域は、近接エリア抽出部14dの処理を行っていないため、複数箇所に分散して存在することになる可能性がある。変動ホットスポットHSの抽出箇所が分散しないように、差分分析部14aの処理と近接エリア抽出部14dの処理とを組み合わせて行うようにしてもよい。
 あるいは、差分分析部14aの処理と、第1のフィルタ部14b、第2のフィルタ部14cおよび近接エリア抽出部14dのうち何れか1つまたは2つの処理とを組み合わせて行うようにしてもよい。例えば、差分分析部14aの処理と第1のフィルタ部14bの処理とを行うようにしてもよい。この場合、ホットスポット抽出部14は、第1のフィルタ部14bにより抽出された注目エリアPの集合を含む区域を変動ホットスポットHSとして抽出する。この場合の区域も、複数箇所に分散して存在することになる可能性がある。変動ホットスポットHSの抽出箇所が分散しないように、差分分析部14aの処理と第1のフィルタ部14bの処理と近接エリア抽出部14dの処理とを組み合わせて行うようにしてもよい。
 また、差分分析部14aの処理と第2のフィルタ部14cの処理とを行うようにしてもよい。この場合、第2のフィルタ部14cは、差分分析部14aにより第1の条件を満たすとして抽出された注目エリアPについて、当該注目エリアPの傾斜変動データと、対照エリアAregionの傾斜変動データとを比較し、注目エリアPの変動が対照エリアAregionの変動の大きさより大きい第3の条件を満たす注目エリアPを抽出する。ホットスポット抽出部14は、第2のフィルタ部14cにより抽出された注目エリアPの集合を含む区域を変動ホットスポットHSとして抽出する。この場合の区域も、複数箇所に分散して存在することになる可能性がある。変動ホットスポットHSの抽出箇所が分散しないように、差分分析部14aの処理と第2のフィルタ部14cの処理と近接エリア抽出部14dの処理とを組み合わせて行うようにしてもよい。
 また、近接エリア抽出部14dの処理を省略し、差分分析部14aの処理と第1のフィルタ部14bの処理と第2のフィルタ部14cの処理とを行うようにしてもよい。この場合、ホットスポット抽出部14は、第2のフィルタ部14cにより抽出された注目エリアPの集合を含む区域を変動ホットスポットHSとして抽出する。
 その他、上記実施形態は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
 10 地盤変動解析装置
 11 LoS変動データ取得部
 12 傾斜投影部
 13 オフセット補正部
 14 ホットスポット抽出部
 14a 差分分析部
 14b 第1のフィルタ部
 14c 第2のフィルタ部
 14d 近接エリア抽出部

Claims (7)

  1.  合成開口レーダを用いて測定された時系列の観測データを解析し、関心領域に含まれる複数の所定単位エリアごとに、衛星から地表面を見たときの視線方向の変動を示すデータであるLoS変動データを取得するLoS変動データ取得部と、
     上記衛星の向きに関する情報および上記関心領域の傾斜特性に関する情報に基づいて、上記LoS変動データ取得部により取得された上記LoS変動データを、上記関心領域の傾斜方向に沿った方向の傾斜変動データに変換する傾斜投影部と、
     上記複数の所定単位エリアごとに求められた上記傾斜変動データのそれぞれを、上記複数の所定単位エリアごとに求められた上記傾斜変動データの平均値を用いてオフセット補正するオフセット補正部と、
     上記オフセット補正部によりオフセット補正された上記傾斜変動データを用いて、周囲に比べて地表面の変動が大きい区域を変動ホットスポットとして抽出するホットスポット抽出部とを備えた
    ことを特徴とする地盤変動解析装置。
  2.  上記ホットスポット抽出部は、
     上記所定単位エリアの1つを注目エリアとし、当該注目エリアを含む局所エリアの上記傾斜変動データと、上記局所エリアを含んで上記局所エリアより広い対照エリアの上記傾斜変動データとの差分を分析する差分分析部を備え、
     上記差分の大きさが第1の条件を満たす上記注目エリアの集合を含む区域を上記変動ホットスポットとして抽出する
    ことを特徴とする請求項1に記載の地盤変動解析装置。
  3.  上記ホットスポット抽出部は、
     上記差分分析部により上記第1の条件を満たすとして抽出された上記注目エリアについて、当該注目エリアの上記傾斜変動データと、上記関心領域内に含まれる複数の所定単位エリアの上記傾斜変動データとに基づいて、上記注目エリアの変動の大きさが大きい第2の条件を満たす上記注目エリアを抽出する第1のフィルタ部を更に備え、
     上記第1のフィルタ部により抽出された上記注目エリアの集合を含む区域を上記変動ホットスポットとして抽出する
    ことを特徴とする請求項2に記載の地盤変動解析装置。
  4.  上記ホットスポット抽出部は、
     上記差分分析部により上記第1の条件を満たすとして抽出された上記注目エリアについて、当該注目エリアの上記傾斜変動データと、上記対照エリアに含まれる上記傾斜変動データとを比較し、上記注目エリアの変動が上記対照エリアの変動の大きさより大きい第3の条件を満たす上記注目エリアを抽出する第2のフィルタ部を更に備え、
     上記第2のフィルタ部により抽出された上記注目エリアの集合を含む区域を上記変動ホットスポットとして抽出する
    ことを特徴とする請求項2に記載の地盤変動解析装置。
  5.  上記ホットスポット抽出部は、
     上記第1のフィルタ部により上記第2の条件を満たすとして抽出された上記注目エリアについて、当該注目エリアの上記傾斜変動データと、上記対照エリアに含まれる上記傾斜変動データとを比較し、上記注目エリアの変動が上記対照エリアの変動の大きさより大きい第3の条件を満たす上記注目エリアを抽出する第2のフィルタ部を更に備え、
     上記第2のフィルタ部により抽出された上記注目エリアの集合を含む区域を上記変動ホットスポットとして抽出する
    ことを特徴とする請求項3に記載の地盤変動解析装置。
  6.  上記ホットスポット抽出部は、
     上記周囲に比べて地表面の変動が大きいとして抽出された複数の上記注目エリアのうち、互いに所定距離以内の間隔の位置に存在する上記注目エリアを抽出する近接エリア抽出部を更に備え、
     上記近接エリア抽出部により抽出された上記注目エリアの集合を含む区域を上記変動ホットスポットとして抽出する
    ことを特徴とする請求項2~5の何れか1項に記載の地盤変動解析装置。
  7.  地盤変動解析装置のLoS変動データ取得部が、合成開口レーダを用いて測定された時系列の観測データを解析し、関心領域に含まれる複数の所定単位エリアごとに、衛星から地表面を見たときの視線方向の変動を示すデータであるLoS変動データを取得する第1のステップと、
     上記地盤変動解析装置の傾斜投影部が、上記衛星の向きに関する情報および上記関心領域の傾斜特性に関する情報に基づいて、上記LoS変動データ取得部により取得された上記LoS変動データを、上記関心領域の傾斜方向に沿った方向の傾斜変動データに変換する第2のステップと、
     上記地盤変動解析装置のオフセット補正部が、上記複数の所定単位エリアごとに求められた上記傾斜変動データのそれぞれを、上記複数の所定単位エリアごとに求められた上記傾斜変動データの平均値を用いてオフセット補正する第3のステップと、
     上記地盤変動解析装置のホットスポット抽出部が、上記オフセット補正部によりオフセット補正された上記傾斜変動データを用いて、周囲に比べて地表面の変動が大きい区域を変動ホットスポットとして抽出する第4のステップとを有する
    ことを特徴とする地盤変動解析方法。
PCT/JP2022/026506 2022-07-01 2022-07-01 地盤変動解析装置および地盤変動解析方法 Ceased WO2024004215A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024530268A JPWO2024004215A1 (ja) 2022-07-01 2022-07-01
PCT/JP2022/026506 WO2024004215A1 (ja) 2022-07-01 2022-07-01 地盤変動解析装置および地盤変動解析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/026506 WO2024004215A1 (ja) 2022-07-01 2022-07-01 地盤変動解析装置および地盤変動解析方法

Publications (1)

Publication Number Publication Date
WO2024004215A1 true WO2024004215A1 (ja) 2024-01-04

Family

ID=89381810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026506 Ceased WO2024004215A1 (ja) 2022-07-01 2022-07-01 地盤変動解析装置および地盤変動解析方法

Country Status (2)

Country Link
JP (1) JPWO2024004215A1 (ja)
WO (1) WO2024004215A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017207457A (ja) * 2016-05-20 2017-11-24 国際航業株式会社 領域変位算出システム、領域変位算出方法、及び領域変位算出プログラム
JP2018054540A (ja) * 2016-09-30 2018-04-05 株式会社パスコ 関心領域における地表面変位の可視化装置及び関心領域における地表面変位の可視化プログラム
JP2020165746A (ja) * 2019-03-29 2020-10-08 国際航業株式会社 地すべり面推定装置、及び地すべり面推定方法
JP2021056008A (ja) * 2019-09-27 2021-04-08 株式会社パスコ 地すべり領域検出装置及びプログラム
CN112904337A (zh) * 2021-05-07 2021-06-04 北京东方至远科技股份有限公司 一种基于Offset Tracking技术的边坡形变时序监测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017207457A (ja) * 2016-05-20 2017-11-24 国際航業株式会社 領域変位算出システム、領域変位算出方法、及び領域変位算出プログラム
JP2018054540A (ja) * 2016-09-30 2018-04-05 株式会社パスコ 関心領域における地表面変位の可視化装置及び関心領域における地表面変位の可視化プログラム
JP2020165746A (ja) * 2019-03-29 2020-10-08 国際航業株式会社 地すべり面推定装置、及び地すべり面推定方法
JP2021056008A (ja) * 2019-09-27 2021-04-08 株式会社パスコ 地すべり領域検出装置及びプログラム
CN112904337A (zh) * 2021-05-07 2021-06-04 北京东方至远科技股份有限公司 一种基于Offset Tracking技术的边坡形变时序监测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIRATA, IKUSHI ET AL.: "Study of slope change detection function in SAR interferometry using ALS-2/PALSAR-2", JSECE PUBLICATION, no. 83, 16 May 2018 (2018-05-16), pages 711 - 712, XP009552054, ISSN: 2433-0477 *

Also Published As

Publication number Publication date
JPWO2024004215A1 (ja) 2024-01-04

Similar Documents

Publication Publication Date Title
James et al. 3‐D uncertainty‐based topographic change detection with structure‐from‐motion photogrammetry: precision maps for ground control and directly georeferenced surveys
EP3084350B1 (en) Method and system for generating a geoid via three computation spaces and airborne-acquired gravity data
Gallay et al. Assessing modern ground survey methods and airborne laser scanning for digital terrain modelling: A case study from the Lake District, England
Bovenga et al. Using C/X-band SAR interferometry and GNSS measurements for the Assisi landslide analysis
Huang et al. An efficient method of monitoring slow-moving landslides with long-range terrestrial laser scanning: a case study of the Dashu landslide in the Three Gorges Reservoir Region, China
CN111340012B (zh) 一种地质灾害解译方法、装置、终端设备
Sheng et al. Automated georeferencing and orthorectification of Amazon basin-wide SAR mosaics using SRTM DEM data
Weifeng et al. Multi-source DEM accuracy evaluation based on ICESat-2 in Qinghai-Tibet Plateau, China
Hollands et al. Reliability measures for sea ice motion retrieval from synthetic aperture radar images
Fenoglio et al. Advances in NE-Atlantic coastal sea level change monitoring by Delay Doppler altimetry
US20230228868A1 (en) Innovative method for the detection of deformed or damaged structures based on the use of single sar images
Farrell et al. Sea-ice freeboard retrieval using digital photon-counting laser altimetry
Csatho et al. Airborne laser swath mapping of the summit of Erebus volcano, Antarctica: Applications to geological mapping of a volcano
Chen et al. Region-wide glacier mass budgets for the tanggula mountains between∼ 1969 and∼ 2015 derived from remote sensing data
Feng et al. A hierarchical network densification approach for reconstruction of historical ice velocity fields in East Antarctica
Feng et al. Automatic selection of permanent scatterers-based GCPs for refinement and reflattening in InSAR DEM generation
Leigh et al. The use of LiDAR in digital surface modelling: Issues and errors
WO2024004216A1 (ja) 地盤変動解析装置および地盤変動解析方法
Walstra Time for change-quantifying landslide evolution using historical aerial photographs and modern photogrammetric methods
Kumar et al. Accuracy validation and bias assessment for various multi-sensor open-source DEMs in part of the Karakoram region
WO2024004215A1 (ja) 地盤変動解析装置および地盤変動解析方法
KR101797027B1 (ko) 표고 영상의 정합 방법 및 장치
Wu et al. DEM-based radar incidence angle tracking for distortion analysis without orbital data
Sudalaimuthu et al. Development of linear regression model to predict ground elevation from satellite elevation–statistical approach
Santos Filho et al. Cartographic Accuracy Standard (CAS) of the digital terrain model of the digital and continuous cartographic base of the state of Amapá: case study in the city of Macapá

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024530268

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22949488

Country of ref document: EP

Kind code of ref document: A1