WO2024050818A1 - Camera assembly and electrical device - Google Patents
Camera assembly and electrical device Download PDFInfo
- Publication number
- WO2024050818A1 WO2024050818A1 PCT/CN2022/118120 CN2022118120W WO2024050818A1 WO 2024050818 A1 WO2024050818 A1 WO 2024050818A1 CN 2022118120 W CN2022118120 W CN 2022118120W WO 2024050818 A1 WO2024050818 A1 WO 2024050818A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cam
- cylinder
- collapsible
- optical axis
- aperture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B9/00—Exposure-making shutters; Diaphragms
- G03B9/02—Diaphragms
- G03B9/06—Two or more co-operating pivoted blades, e.g. iris type
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B30/00—Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
Definitions
- the present disclosure relates to a camera assembly and an electrical device.
- Electrical devices such as smartphones and tablet terminals are widely used in our daily life.
- many of the electrical devices are equipped with a camera assembly for capturing images.
- Some of the electrical devices are portable and are thus easy to carry. Therefore, a user of the electrical device can easily take a picture of an object by using the camera assembly of the electrical device anytime, anywhere.
- the traditional video camera usually has an aperture to shoot in bright places for a long shutter speed.
- the video SNS is very popular, but at present, there are few camera assembles of the electrical devices, such as smartphones and tablet terminals, equipped with the aperture. There is also a trend toward larger sensors.
- the Pop-Up mechanism is one of the solutions to the increase in size of the sensor.
- the present disclosure aims to solve at least one of the technical problems mentioned above. Accordingly, the present disclosure needs to provide a camera assembly and an electrical device.
- a camera assembly includes:
- a collapsible cylinder configured to house a lens barrel inside, having a collapsible cam pin to slide the collapsible cylinder along an optical axis of the lens barrel;
- an aperture assembly fixed to the collapsible cylinder having a light amount adjusting cam pin to control an aperture diameter of an aperture in the aperture assembly, wherein the aperture diameter of the aperture in the aperture assembly is adjusted by changing a relative position of the light amount adjusting cam pin with respect to the collapsible cam pin in a rotation direction perpendicular to the optical axis;
- cam cylinder having a first cam groove configured to guide the collapsible cam pin and a second cam groove configured to guide the light amount adjusting cam pin, and configured such that the collapsible cylinder slides along the optical axis inside the cam cylinder,
- a driving wheel having a third cam groove configured to guide the collapsible cam pin and a fourth cam groove configured to guide the light amount adjusting cam pin, the cam cylinder being located inside the driving wheel, and
- a drive unit configured to rotate the driving wheel relative to the cam cylinder about the optical axis
- the collapsible cylinder pops up stepwise at two or more imaging positions, and the aperture diameter of the aperture of the aperture assembly changes at the two or more imaging positions, respectively.
- FIG. 1 is a plan view of a first side of an electrical device according to an embodiment of the present disclosure
- FIG. 2 is a plan view of a second side of the electrical device according to the embodiment of the present disclosure.
- FIG. 3 is a block diagram of the electrical device according to the embodiment of the present disclosure.
- FIG. 4A is a plan view showing an example of a configuration focusing on the pop-up lens unit of the camera assembly of the electrical device shown in FIG. 3;
- FIG. 4B is a side view showing an example of the configuration of the camera assembly shown in FIG. 4A;
- FIG. 4C is a side view showing an example of a configuration focusing on the cam cylinder, the collapsible cam pin, and the light amount adjusting cam pin of the camera assembly shown in FIG. 4A;
- FIG. 4D is a side view showing an example of a configuration focusing on the aperture assembly, the collapsible cam pin, and the light amount adjusting cam pin of the camera assembly shown in FIG. 4A;
- FIG. 5A is a plan view showing an example of a configuration focusing on the pop-up lens unit of the camera assembly of the electrical device shown in FIG. 3;
- FIG. 5B is a side view showing an example of the configuration of the camera assembly shown in FIG. 5A;
- FIG. 5C is a side view showing an example of a configuration focusing on the cam cylinder, the collapsible cam pin, and the light amount adjusting cam pin of the camera assembly shown in FIG. 5A;
- FIG. 5D is a side view showing an example of a configuration focusing on the aperture assembly, the collapsible cam pin, and the light amount adjusting cam pin of the camera assembly shown in FIG. 5A;
- FIG. 6A is a plan view showing an example of a configuration focusing on the pop-up lens unit of the camera assembly of the electrical device shown in FIG. 3;
- FIG. 6B is a side view showing an example of the configuration of the camera assembly shown in FIG. 6A;
- FIG. 6C is a side view showing an example of a configuration focusing on the cam cylinder, the collapsible cam pin, and the light amount adjusting cam pin of the camera assembly shown in FIG. 6A;
- FIG. 6D is a side view showing an example of a configuration focusing on the aperture assembly, the collapsible cam pin, and the light amount adjusting cam pin of the camera assembly shown in FIG. 6A;
- FIG. 7A is a plan view showing an example of a configuration focusing on the pop-up lens unit of the camera assembly of the electrical device shown in FIG. 3;
- FIG. 7B is a side view showing an example of the configuration of the camera assembly shown in FIG. 7A;
- FIG. 7C is a side view showing an example of a configuration focusing on the cam cylinder, the collapsible cam pin, and the light amount adjusting cam pin of the camera assembly shown in FIG. 7A;
- FIG. 7D is a side view showing an example of a configuration focusing on the aperture assembly, the collapsible cam pin, and the light amount adjusting cam pin of the camera assembly shown in FIG. 7A;
- FIG. 8A is a plan view showing an example of a configuration focusing on the pop-up lens unit of the camera assembly of the electrical device shown in FIG. 3;
- FIG. 8B is a side view showing an example of the configuration of the camera assembly shown in FIG. 8A;
- FIG. 8C is a side view showing an example of a configuration focusing on the cam cylinder, the collapsible cam pin, and the light amount adjusting cam pin of the camera assembly shown in FIG. 8A;
- FIG. 8D is a side view showing an example of a configuration focusing on the aperture assembly, the collapsible cam pin, and the light amount adjusting cam pin of the camera assembly shown in FIG. 8A;
- FIG. 9A is a plan view showing an example of the positional relationship between the collapsible cam pin and the light amount adjusting cam pin when the aperture diameter of the aperture of the camera assembly is large;
- FIG. 9B is a plan view showing an example of the positional relationship between the collapsible cam pin and the light amount adjusting cam pin when the aperture diameter of the aperture of the camera assembly is in the middle;
- FIG. 9C is a plan view showing an example of the positional relationship between the collapsible cam pin and the light amount adjusting cam pin when the aperture diameter of the aperture of the camera assembly is small;
- FIG. 10A is a side view showing an example of the arrangement of the light amount adjusting cam pin when the aperture assembly is located on the image sensor side in the optical axis direction of the cam cylinder;
- FIG. 10B is a side view showing a modified example of the arrangement of the light amount adjusting cam pin when the aperture assembly is located on the subject side in the optical axis direction of the cam cylinder;
- FIG. 11 is a side view showing a modified example of the arrangement of the camera assembly focusing on the aperture assembly, the collapsible cam pin, and the light amount adjusting cam pin.
- FIG. 1 is a plan view of a first side of an electrical device 10 according to an embodiment of the present disclosure
- FIG. 2 is a plan view of a second side of the electrical device 10 according to the embodiment of the present disclosure.
- the first side may be referred to as a back side of the electrical device 10 whereas the second side may be referred to as a front side of the electrical device 10.
- the electrical device 10 may include a display 20 and a camera assembly 30.
- the camera assembly 30 includes a first main camera 32, a second main camera 34 and a sub camera 36.
- the first main camera 32 and the second main camera 34 can capture an image in the first side of the electrical device 10 and the sub camera 36 can capture an image in the second side of the electrical device 10. Therefore, the first main camera 32 and the second main camera 34 are so-called out-cameras whereas the sub camera 36 is a so-called in-camera.
- the electrical device 10 can be a mobile phone, a tablet computer, a personal digital assistant, and so on.
- Each of the first main camera 32, the second main camera 34 and the sub camera 36 has an imaging sensor which converts a light which has passed a color filter to an electrical signal.
- a signal value of the electrical signal depends on an amount of the light which has passed the color filter.
- the electrical device 10 may have less than three cameras or more than three cameras.
- the electrical device 10 may have two, four, five cameras and so on.
- FIG. 3 is a block diagram of the electrical device 10 according to the present embodiment.
- the electrical device 10 may include a main processor 40, an image signal processor 42, a memory 44, a power supply circuit 46 and a communication circuit 48.
- the display 20, the camera assembly 30, the main processor 40, the image signal processor 42, the memory 44, the power supply circuit 46 and the communication circuit 48 are connected with each other via a bus 50.
- the main processor 40 executes one or more program instructions stored in the memory 44.
- the main processor 40 implements various applications and data processing of the electrical device 10 by executing the program instructions.
- the main processor 40 may be one or more computer processors.
- the main processor 40 is not limited to one CPU core, but it may have a plurality of CPU cores.
- the main processor 40 may be a main CPU of the electrical device 10, an image processing unit (IPU) or a DSP provided with the camera assembly 30.
- the main processor 40 constitutes a controller of the electrical device 10 in the present embodiment.
- the image signal processor 42 controls the camera assembly 30 and processes various kinds of image data captured by the camera assembly 30 to generate a target image data.
- the image signal processor 42 can apply a demosaicing process, a noise reduction process, an auto exposure process, an auto focus process, an auto white balance process, a high dynamic range process and so on, to the image data captured by the camera assembly 30.
- the main processor 40 and the image signal processor 42 collaborate with each other to generate a target image data of the object captured by the camera assembly 30. That is, the main processor 40 and the image signal processor 42 are configured to capture the image of the object by means of the camera assembly 30 and apply various kinds of image processing to the captured image data.
- the camera assembly 30 includes a drive unit 60 that drives the pop-up unit and an aperture assembly.
- the drive unit 60 includes, for example, one motor that drives a pop-up unit and the aperture assembly. That is, this one motor drives the pop-up unit and the aperture assembly.
- the drive unit 60 may be configured separately from the camera assembly 30.
- the pop-up unit and aperture assembly of the camera assembly 30 are driven by one drive unit 60 (one motor) . Therefore, the motor that drives the pop-up unit and the aperture assembly is also used. That is, it is possible to reduce a size (thinness) of the electrical device 10 and reduce a manufacturing cost of the electrical device 10.
- the memory 44 stores program instructions to be executed by the main processor 40, and various kinds of data. For example, data of the captured image are also stored in the memory 44.
- the memory 44 may include a high-speed RAM memory, and/or a non-volatile memory such as a flash memory and a magnetic disk memory. That is, the memory 44 may include a non-transitory computer readable medium in which the program instructions are stored.
- the power supply circuit 46 may have a battery such as a lithium-ion rechargeable battery and a battery management unit (BMU) for managing the battery.
- BMU battery management unit
- the communication circuit 48 is configured to receive and transmit data to communicate with base stations of a telecommunication network system, Internet, or other devices via wireless communication.
- the wireless communication may adopt any communication standard or protocol, including but not limited to GSM (Global System for Mobile communication) , CDMA (Code Division Multiple Access) , LTE (Long Term Evolution) , LTE-Advanced, 5th generation (5G) .
- the communication circuit 48 may include an antenna and an RF (radio frequency) circuit.
- FIG. 4A shows a state in which a collapsible cylinder Y is housed in a cam cylinder C.
- FIG. 5A shows a state in which the collapsible cylinder Y pops up from the cam cylinder C to a first imaging position P1 and an aperture diameter XO of the aperture is a maximum value (the first value) .
- FIG. 6A shows a state in which the collapsible cylinder Y pops up from the cam cylinder C to the first imaging position P1 and the aperture diameter XO of the aperture is a medium value (a second value) .
- FIG. 7A shows a state in which the collapsible cylinder Y pops up from the cam cylinder C to a second imaging position P2 and the aperture diameter XO of the aperture is the medium value (the second value) .
- FIG. 8A shows a state in which the collapsible cylinder Y pops up from the cam cylinder C to the second imaging position P2 and the aperture diameter XO of the aperture is the minimum value (a third value) .
- FIGS. 4A, 5A, 6A, 7A and 8A other configurations such as the image sensor and drive unit of the camera assembly 30 and a lens barrel of the collapsible cylinder Y are omitted.
- FIGS. 4B, 5B, 6B, 7B and 8B a groove of the cam cylinder C is omitted.
- the camera assembly 30 includes a collapsible cylinder Y, an aperture assembly X, a cam cylinder C, and a driving wheel W.
- the collapsible cylinder Y houses the lens barrel LB (FIGS. 10A and 10B) inside, and has a cylindrical shape extending around an optical axis L of the lens barrel LB.
- the collapsible cylinder Y moves along the optical axis direction DL of the optical axis L.
- the collapsible cylinder Y is provided with a collapsible cam pin PY.
- the collapsible cam pin PY extends in a direction perpendicular to the optical axis L.
- the aperture assembly X is fixed to the collapsible cylinder Y.
- This aperture assembly X is provided with a light amount adjustment cam pin PX for controlling the aperture diameter XO of the aperture to adjust the light amount.
- the light amount adjusting cam pin PX extends in a direction perpendicular to the optical axis L.
- the aperture assembly X adjusts the aperture diameter XO of the aperture by changing a relative position of the light amount adjusting cam pin PX with respect to the collapsible cam pin PY in the direction of rotation perpendicular to the optical axis L (the angle ⁇ between the collapsible cam pin PY and the light amount adjusting cam pin PX) .
- the aperture assembly X is located on between lenses of lens barrel LB of the collapsible cylinder Y, for example, as shown in FIG. 10A.
- the aperture assembly X may be located on the side of the subject A of the collapsible cylinder Y.
- the image sensor Z is a solid state imaging device such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor, a CCD (Charge-Coupled Device) image sensor and so on.
- CMOS Complementary Metal Oxide Semiconductor
- CCD Charge-Coupled Device
- the cam cylinder C has the cylindrical shape extending around the optical axis L.
- the cam cylinder C is fixed to a housing of the camera assembly 30 (That is, the camera assembly 30 is arranged in the housing that is provided in the electrical device 10) .
- the cam cylinder C is formed with a first cam groove M1a, M1b, M1c and M1d configured to guide the collapsible cam pin PY. Furthermore, the cam cylinder C is formed with a second cam groove M2 configured to guide the light amount adjusting cam pin PX.
- the collapsible cylinder Y slides along the optical axis L inside the cylindrical shape of the cam cylinder C.
- the first cam groove M1a, M1b, M1c and M1d and the second cam groove M2 of the cam cylinder C are formed such as to penetrate through the cylindrical shape of the cam cylinder C.
- the first cam groove M1a, M1b, M1c and M1d of the cam cylinder C include a first portion M1a formed such as to extend in a direction inclined from the optical axis direction, a second portion M1b formed such as to extend in a rotational direction and connected to the first portion of the first cam groove, a third portion M1c formed such as to extend in parallel with (in a same direction as) the first portion M1a of the first cam groove M1 and connected to the second portion M1b of the first cam groove M1, and a fourth portion M1d formed such as to extend in the rotational direction and connected to the third portion M1c of the first cam groove M1.
- the second cam groove M2 of the cam cylinder C is formed such as to extend in parallel with (in the same direction as) the first portion M1a and the third portion M1c of the first cam groove M1a, M1b, M1c and M1d.
- the first portion M1a of the first cam groove M1a, M1b, M1c and M1d and the second cam groove M2 are connected to each groove extended along the optical axis direction DL to insert the collapsible cam pin PY and the light amount adjusting cam pin PX when assembling the camera assembly 30.
- the driving wheel W has the cylindrical shape extending around the optical axis L.
- the cam cylinder C is located inside the cylindrical shape of the driving wheel W.
- the driving wheel W is formed with a third cam groove M3 configured to guide the collapsible cam pin PY, and a fourth cam groove M4a, M4b, M4c, and M4d configured to guide the light amount adjusting cam pin PX.
- the third cam groove M3 and the fourth cam groove M4a, M4b, M4c, and M4d of the driving wheel W are formed inside the cylindrical shape of the driving wheel W.
- the third cam groove M3 of the driving wheel W is formed such as to extend in the optical axis direction DL.
- the fourth cam groove M4a, M4b, M4c, and M4d of the driving wheel W includes the first portion M4a formed such as to extend in the optical axis direction DL, the second portion M4b formed such as to extend in the rotational direction and connected to the first portion M4a of the fourth cam groove M4a, M4b, M4c, and M4d, the third portion M4c formed such as to extend in the optical axis direction DL and connected to the second portion M4b of the fourth cam groove M4a, M4b, M4c, and M4d, and the fourth portion M4d formed such as to extend in the rotational direction and connected to the third portion M4c of the fourth cam groove M4a, M4b, M4c, and M4d.
- the third cam groove M3 and the first portion M4a of the fourth cam groove M4a, M4b, M4c, and M4d are connected to each groove for inserting the collapsible cam pin PY and the light amount adjusting cam pin PX when assembling the camera assembly 30.
- one drive unit 60 shown in FIG. 3 described above is configured to rotate the driving wheel W relative to the cam cylinder C about the optical axis L, such that the collapsible cam pin PY is guided through the first cam groove M1a, M1b, M1c, and M1d and the third cam groove M3, and the light amount adjusting cam pin PX is guided through the second cam groove M2 and the fourth cam groove M4a, M4b, M4c, and M4d.
- the drive unit 60 is, for example, one motor that rotates the driving wheel W relative to the cam cylinder C about the optical axis L.
- the drive unit 60 rotates the driving wheel W around the optical axis L in a first direction R1 relative to the cam cylinder C. Due to this rotation, the collapsible cylinder Y moves from a base position B (FIG. 4B) to first imaging position P1 (FIG. 5B) along the optical axis L with respect to the cam cylinder C (the collapsible cylinder Y pops up) ; after that, when the driving wheel W further rotates in the first direction R1, an opening diameter XO of a diaphragm changes from a first opening diameter (a first value (FIG.
- the base position B is the position where the collapsible cylinder Y is housed in the cam cylinder C.
- the first imaging position P1 is the position where the collapsible cylinder Y pops up from the cam cylinder C.
- the second imaging position P2 is the position where the collapsible cylinder Y further pops up from the first imaging position P1.
- the drive unit 60 rotates the driving wheel W relative to the cam cylinder about the optical axis L. Due to this rotation, the collapsible cam pin PY is guided through the first portion M1a of the first cam groove M1a, M1b, M1c and M1d and the third cam groove M3, and the light amount adjusting cam pin PX is guided through the second cam groove M2 and the first portion M4a of the fourth cam groove M4a, M4b, M4c, and M4d (FIGS. 4B, 4C, 5B, and 5C) .
- the collapsible cylinder Y moves along the optical axis L, in a state where the relative position of the light amount adjusting cam pin PX with respect to the collapsible cam pin PY is fixed (Fig. 4B, Fig. 5B) .
- the drive unit 60 rotates the driving wheel W relative to the cam cylinder about the optical axis L. Due to this rotation, the collapsible cam pin PY is guided by the second portion M1b of the first cam groove M1a, M1b, M1c, and M1d, and the light amount adjusting cam pin PX is guided by the second portion M4b of the fourth cam groove M4a, M4b, M4c, and M4d.
- the relative position of the light amount adjusting cam pin PX with respect to the collapsible cam pin PY changes to control the aperture diameter XO of the aperture of the aperture assembly X (FIGS. 5A and 6A) , in a state where the position of the collapsible cylinder Y in the optical axis direction DL is fixed (the collapsible cylinder Y is located at the first imaging position P1) .
- the drive unit 60 rotates the driving wheel W relative to the cam cylinder about the optical axis L. Due to this rotation, the collapsible cam pin PY is guided through the third portion M1c of the first cam groove M1a, M1b, M1c and M1d and the third cam groove M3, and the light amount adjusting cam pin PX is guided through the second cam groove M2 and the third portion M4c of the fourth cam groove M4a, M4b, M4c, and M4d (FIGS. 6B, 6C, 7B, and 7C) .
- the collapsible cylinder Y moves along the optical axis L, in a state where the relative position of the light amount adjusting cam pin PX with respect to the collapsible cam pin PY is fixed (Fig. 6B, Fig. 7B) .
- the drive unit 60 rotates the driving wheel W relative to the cam cylinder about the optical axis L. Due to this rotation, the collapsible cam pin PY is guided by the fourth portion M1d of the first cam groove M1a, M1b, M1c, and M1d, and the light amount adjusting cam pin PX is guided by the fourth portion M4d of the fourth cam groove M4a, M4b, M4c, and M4d.
- the relative position of the light amount adjusting cam pin PX with respect to the collapsible cam pin PY changes to control the aperture diameter XO of the aperture of the aperture assembly X (FIGS. 7A and 8A) , in a state where the position of the collapsible cylinder Y in the optical axis direction DL is fixed (the collapsible cylinder Y is located at the second imaging position P2) .
- the drive unit 60 rotates the driving wheel W around the optical axis L in a second direction R2 opposite to the first direction R1 relative to the cam cylinder, from the state where the collapsible cylinder Y is located at the second imaging position P2 (the collapsible cylinder Y pops up) .
- the collapsible cylinder Y pops up stepwise at two or more imaging positions P1 and P2, and the aperture diameter XO of the aperture of the aperture assembly X changes at the two or more imaging positions P1 and P2, respectively.
- the camera assembly 30 of the electrical device 10 achieves stepless aperture, that is, the aperture is not limited to two steps. Furthermore, the camera assembly 30 of the electrical device 10 can achieve the different aperture values at the Wide end and the Tele end. Especially, the camera assembly 30 of the electrical device 10 can suppressed the aberration at the Tele end.
- the position of the collapsible cam pin PY in the optical axis direction DL is different from the position of the light amount adjusting cam pin PX in the optical axis direction DL.
- the position of the collapsible cam pin PY in the optical axis direction DL may be the same as the position of the light amount adjusting cam pin PX in the optical axis direction DL.
- the first value is set to be the maximum value of the aperture diameter XO of the aperture
- the second value is set to be the medium value of the aperture diameter XO of the aperture
- the third value is set to be the minimum value of the aperture diameter XO of the aperture.
- the first value may be set to be the minimum value of the aperture diameter XO of the aperture
- the second value is set to be the medium value of the aperture diameter XO of the aperture
- the third value may be set to be the maximum value of the aperture diameter XO of the aperture.
- the camera assembly 30 of the electrical device 10 comprises: a collapsible cylinder Y configured to house a lens barrel inside, having a collapsible cam pin to slide the collapsible cylinder Y along an optical axis of the lens barrel; an aperture assembly X fixed to the collapsible cylinder Y, having a light amount adjusting cam pin to control an aperture diameter of an aperture in the aperture assembly X, wherein the aperture diameter of the aperture in the aperture assembly X is adjusted by changing a relative position of the light amount adjusting cam pin with respect to the collapsible cam pin in a rotation direction perpendicular to the optical axis; a cam cylinder C having a first cam groove configured to guide the collapsible cam pin and a second cam groove configured to guide the light amount adjusting cam pin, and configured such that the collapsible cylinder slides along the optical axis inside the cam cylinder, a driving wheel W having a third cam groove configured to guide the collapsible cylinder
- the collapsible cylinder Y pops up stepwise at two or more imaging positions P1 and P2, and the aperture diameter XO of the aperture of the aperture assembly X changes at the two or more imaging positions P1 and P2, respectively.
- the camera assembly 30 of the electrical device 10 can reduce the size (thinner) of the electrical device 10 and reduce the manufacturing cost of the electrical device 10, since the pop-up unit and aperture assembly of the camera assembly 30 are driven by one drive unit 60 (one motor) .
- the camera assembly 30 of the electrical device 10 achieves stepless aperture, that is, the aperture is not limited to two steps. Furthermore, the camera assembly 30 of the electrical device 10 can achieve the different aperture values at the Wide end and the Tele end. Especially, the camera assembly 30 of the electrical device 10 can suppressed the aberration at the Tele end.
- first and second are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features.
- the feature defined with “first” and “second” may comprise one or more of this feature.
- a plurality of means two or more than two, unless specified otherwise.
- the terms “mounted” , “connected” , “coupled” and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications of two elements, which can be understood by those skilled in the art according to specific situations.
- a structure in which a first feature is "on" or “below” a second feature may include an embodiment in which the first feature is in direct contact with the second feature, and may also include an embodiment in which the first feature and the second feature are not in direct contact with each other, but are contacted via an additional feature formed therebetween.
- a first feature "on” , “above” or “on top of” a second feature may include an embodiment in which the first feature is right or obliquely “on” , “above” or “on top of” the second feature, or just means that the first feature is at a height higher than that of the second feature; while a first feature “below” , “under” or “on bottom of” a second feature may include an embodiment in which the first feature is right or obliquely “below” , "under” or “on bottom of” the second feature, or just means that the first feature is at a height lower than that of the second feature.
- Any process or method described in a flow chart or described herein in other ways may be understood to include one or more modules, segments or portions of codes of executable instructions for achieving specific logical functions or steps in the process, and the scope of a preferred embodiment of the present disclosure includes other implementations, in which it should be understood by those skilled in the art that functions may be implemented in a sequence other than the sequences shown or discussed, including in a substantially identical sequence or in an opposite sequence.
- the logic and/or step described in other manners herein or shown in the flow chart, for example, a particular sequence table of executable instructions for realizing the logical function may be specifically achieved in any computer readable medium to be used by the instruction execution system, device or equipment (such as the system based on computers, the system comprising processors or other systems capable of obtaining the instruction from the instruction execution system, device and equipment and executing the instruction) , or to be used in combination with the instruction execution system, device and equipment.
- the computer readable medium may be any device adaptive for including, storing, communicating, propagating or transferring programs to be used by or in combination with the instruction execution system, device or equipment.
- the computer readable medium comprise but are not limited to: an electronic connection (an electronic device) with one or more wires, a portable computer enclosure (a magnetic device) , a random access memory (RAM) , a read only memory (ROM) , an erasable programmable read-only memory (EPROM or a flash memory) , an optical fiber device and a portable compact disk read-only memory (CDROM) .
- the computer readable medium may even be a paper or other appropriate medium capable of printing programs thereon, this is because, for example, the paper or other appropriate medium may be optically scanned and then edited, decrypted or processed with other appropriate methods when necessary to obtain the programs in an electric manner, and then the programs may be stored in the computer memories.
- each part of the present disclosure may be realized by the hardware, software, firmware or their combination.
- a plurality of steps or methods may be realized by the software or firmware stored in the memory and executed by the appropriate instruction execution system.
- the steps or methods may be realized by one or a combination of the following techniques known in the art: a discrete logic circuit having a logic gate circuit for realizing a logic function of a data signal, an application-specific integrated circuit having an appropriate combination logic gate circuit, a programmable gate array (PGA) , a field programmable gate array (FPGA) , etc.
- each function cell of the embodiments of the present disclosure may be integrated in a processing module, or these cells may be separate physical existence, or two or more cells are integrated in a processing module.
- the integrated module may be realized in a form of hardware or in a form of software function modules. When the integrated module is realized in a form of software function module and is sold or used as a standalone product, the integrated module may be stored in a computer readable storage medium.
- the storage medium mentioned above may be read-only memories, magnetic disks, CD, etc.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Diaphragms For Cameras (AREA)
Abstract
Description
Claims (20)
- A camera assembly comprising:a collapsible cylinder configured to house a lens barrel inside, having a collapsible cam pin to slide the collapsible cylinder along an optical axis of the lens barrel;an aperture assembly fixed to the collapsible cylinder, having a light amount adjusting cam pin to control an aperture diameter of an aperture in the aperture assembly, wherein the aperture diameter of the aperture in the aperture assembly is adjusted by changing a relative position of the light amount adjusting cam pin with respect to the collapsible cam pin in a rotation direction perpendicular to the optical axis;a cam cylinder having a first cam groove configured to guide the collapsible cam pin and a second cam groove configured to guide the light amount adjusting cam pin, configured such that the collapsible cylinder slides along the optical axis inside the cam cylinder,a driving wheel having a third cam groove configured to guide the collapsible cam pin and a fourth cam groove configured to guide the light amount adjusting cam pin, the cam cylinder being located inside the driving wheel, anda drive unit configured to rotate the driving wheel relative to the cam cylinder about the optical axis,wherein, when the driving wheel rotates relative to the cam cylinder, the collapsible cylinder pops up stepwise at two or more imaging positions, and the aperture diameter of the aperture of the aperture assembly changes at the two or more imaging positions, respectively.
- The camera assembly according to claim 1, wherein,when the drive unit rotates the driving wheel in a first direction relative to the cam cylinder about the optical axis, the collapsible cylinder pops up from a base position to a first imaging position along the optical axis,after that, when the driving wheel further rotates in the first direction, an opening diameter of a diaphragm changes from a first opening diameter to a second opening diameter, in a state where the collapsible cylinder pops up at the first imaging position,after that, when the driving wheel further rotates in the first direction, a retractable cylinder pops up from the first imaging position to a second imaging position along the optical axis, andafter that, when the driving wheel further rotates in the first direction, the opening diameter of the diaphragm changes from the second opening diameter to a third opening diameter, in a state where the collapsible cylinder pops up at the second imaging position.
- The camera assembly according to claim 1 or 2, wherein the drive unit is one motor that rotates the driving wheel relative to the cam cylinder about the optical axis.
- The camera assembly according to any one of claims 1 to 3, wherein:the first cam groove of the cam cylinder includes a first portion formed such as to extend in a direction inclined from the optical axis direction, a second portion formed such as to extend in a rotational direction and connected to the first portion of the first cam groove, a third portion formed such as to extend in parallel with the first portion of the first cam groove and connected to the second portion of the first cam groove, and a fourth portion formed such as to extend in the rotational direction and connected to the third portion of the first cam groove, andthe second cam groove of the cam cylinder is formed such as to extend in parallel with the first portion and the third portion of the first cam groove.
- The camera assembly according to claim 4, wherein:the third cam groove of the driving wheel is formed such as to extend in the optical axis direction, andthe fourth cam groove of the driving wheel includes a first portion formed such as to extend in the optical axis direction, a second portion formed such as to extend in the rotational direction and connected to the first portion of the fourth cam groove, a third portion formed such as to extend in the optical axis direction and connected to the second portion of the fourth cam groove, and a fourth portion formed such as to extend in the rotational direction and connected to the third portion of the fourth cam groove.
- The camera assembly according to any one of claims 1 to 5, wherein the aperture assembly is fixed to the collapsible cylinder.
- The camera assembly according to any one of claims 1 to 6, wherein the cam cylinder is fixed to a housing of the camera assembly.
- The camera assembly according to any one of claims 1 to 7, wherein a position of the collapsible cam pin in the optical axis direction is the same as a position of the light amount adjusting cam pin in the optical axis direction.
- The camera assembly according to any one of claims 1 to 7, wherein a position of the collapsible cam pin in the optical axis direction is different from a position of the light amount adjusting cam pin in the optical axis direction.
- The camera assembly according to any one of claims 1 to 9, wherein, in the state where the collapsible cylinder pops up, the drive unit causes the driving wheel to rotate relative to the cam cylinder about the optical axis, and the relative position of the light amount adjusting cam pin with respect to the collapsible cam pin changes.
- An electrical device comprising:a housing; anda camera assembly arranged in the housing,wherein the camera assembly comprises:a collapsible cylinder configured to house a lens barrel inside, having a collapsible cam pin to slide the collapsible cylinder along an optical axis of the lens barrel;an aperture assembly fixed to the collapsible cylinder, having a light amount adjusting cam pin to control an aperture diameter of an aperture in the aperture assembly, wherein the aperture diameter of the aperture in the aperture assembly is adjusted by changing a relative position of the light amount adjusting cam pin with respect to the collapsible cam pin in a rotation direction perpendicular to the optical axis;a cam cylinder having a first cam groove configured to guide the collapsible cam pin and a second cam groove configured to guide the light amount adjusting cam pin, and configured such that the collapsible cylinder slides along the optical axis inside the cam cylinder,a driving wheel having a third cam groove configured to guide the collapsible cam pin and a fourth cam groove configured to guide the light amount adjusting cam pin, the cam cylinder being located inside the driving wheel, anda drive unit configured to rotate the driving wheel relative to the cam cylinder about the optical axis,wherein, when the driving wheel rotates relative to the cam cylinder, the collapsible cylinder pops up stepwise at two or more imaging positions, and the aperture diameter of the aperture of the aperture assembly changes at the two or more imaging positions, respectively.
- The electrical device according to claim 11, wherein:when the drive unit rotates the driving wheel in a first direction relative to the cam cylinder about the optical axis, the collapsible cylinder pops up from a base position to a first imaging position along the optical axis,after that, when the driving wheel further rotates in the first direction, an opening diameter of a diaphragm changes from a first opening diameter to a second opening diameter, in a state where the collapsible cylinder pops up at the first imaging position,after that, when the driving wheel further rotates in the first direction, a retractable cylinder pops up from the first imaging position to a second imaging position along the optical axis, andafter that, when the driving wheel further rotates in the first direction, the opening diameter of the diaphragm changes from the second opening diameter to a third opening diameter, in a state where the collapsible cylinder pops up at the second imaging position.
- The electrical device according to claim 11 or 12, wherein the drive unit is one motor that rotates the driving wheel relative to the cam cylinder about the optical axis.
- The electrical device according to any one of claims 11 to 13, wherein:the first cam groove of the cam cylinder includes a first portion formed such as to extend in a direction inclined from the optical axis direction, a second portion formed such as to extend in a rotational direction and connected to the first portion of the first cam groove, a third portion formed such as to extend in parallel with the first portion of the first cam groove and connected to the second portion of the first cam groove, and a fourth portion formed such as to extend in the rotational direction and connected to the third portion of the first cam groove, andthe second cam groove of the cam cylinder is formed such as to extend in parallel with the first portion and the third portion of the first cam groove.
- The electrical device according to claim 14, wherein:the third cam groove of the driving wheel is formed such as to extend in the optical axis direction, andthe fourth cam groove of the driving wheel includes a first portion formed such as to extend in the optical axis direction, a second portion formed such as to extend in the rotational direction and connected to the first portion of the fourth cam groove, a third portion formed such as to extend in the optical axis direction and connected to the second portion of the fourth cam groove, and a fourth portion formed such as to extend in the rotational direction and connected to the third portion of the fourth cam groove.
- The electrical device according to any one of claims 11 to 15, wherein the aperture assembly is fixed to the collapsible cylinder.
- The electrical device according to any one of claims 1 to 16, wherein the cam cylinder is fixed to the housing.
- The electrical device according to any one of claims 11 to 17, wherein a position of the collapsible cam pin in the optical axis direction is the same as a position of the light amount adjusting cam pin in the optical axis direction.
- The electrical device according to any one of claims 11 to 17, wherein a position of the collapsible cam pin in the optical axis direction is different from a position of the light amount adjusting cam pin in the optical axis direction.
- The electrical device according to any one of claims 11 to 19, wherein, in the state where the collapsible cylinder pops up, the drive unit causes the driving wheel to rotate relative to the cam cylinder about the optical axis, and the relative position of the light amount adjusting cam pin with respect to the collapsible cam pin changes.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202280098494.4A CN119631018B (en) | 2022-09-09 | 2022-09-09 | Camera components and electrical equipment |
| PCT/CN2022/118120 WO2024050818A1 (en) | 2022-09-09 | 2022-09-09 | Camera assembly and electrical device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CN2022/118120 WO2024050818A1 (en) | 2022-09-09 | 2022-09-09 | Camera assembly and electrical device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2024050818A1 true WO2024050818A1 (en) | 2024-03-14 |
Family
ID=90192557
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2022/118120 Ceased WO2024050818A1 (en) | 2022-09-09 | 2022-09-09 | Camera assembly and electrical device |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN119631018B (en) |
| WO (1) | WO2024050818A1 (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180180971A1 (en) * | 2015-09-16 | 2018-06-28 | Canon Denshi Kabushiki Kaisha | Blade driving device and optical apparatus |
| US20190258022A1 (en) * | 2018-02-16 | 2019-08-22 | Canon Kabushiki Kaisha | Lens barrel and image capturing apparatus |
| US20200166729A1 (en) * | 2018-11-26 | 2020-05-28 | Canon Kabushiki Kaisha | Lens barrel and optical apparatus |
| WO2021049184A1 (en) * | 2019-09-13 | 2021-03-18 | 株式会社ニコン | Lens barrel and imaging device |
| US20220137325A1 (en) * | 2019-02-22 | 2022-05-05 | Nikon Corporation | Lens barrel and imaging device |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4688208B2 (en) * | 2005-10-18 | 2011-05-25 | 株式会社リコー | Lens barrel, camera, and portable information terminal device |
| US7679839B2 (en) * | 2007-12-10 | 2010-03-16 | Artificial Muscle, Inc. | Optical lens displacement systems |
| US8807847B2 (en) * | 2011-02-09 | 2014-08-19 | Panasonic Corporation | Lens barrel and imaging device |
| JP6415102B2 (en) * | 2013-06-25 | 2018-10-31 | キヤノン株式会社 | Lens barrel and optical apparatus having the same |
| JP6989015B2 (en) * | 2018-06-28 | 2022-01-05 | 株式会社ニコン | Lens barrel |
-
2022
- 2022-09-09 CN CN202280098494.4A patent/CN119631018B/en active Active
- 2022-09-09 WO PCT/CN2022/118120 patent/WO2024050818A1/en not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180180971A1 (en) * | 2015-09-16 | 2018-06-28 | Canon Denshi Kabushiki Kaisha | Blade driving device and optical apparatus |
| US20190258022A1 (en) * | 2018-02-16 | 2019-08-22 | Canon Kabushiki Kaisha | Lens barrel and image capturing apparatus |
| US20200166729A1 (en) * | 2018-11-26 | 2020-05-28 | Canon Kabushiki Kaisha | Lens barrel and optical apparatus |
| US20220137325A1 (en) * | 2019-02-22 | 2022-05-05 | Nikon Corporation | Lens barrel and imaging device |
| WO2021049184A1 (en) * | 2019-09-13 | 2021-03-18 | 株式会社ニコン | Lens barrel and imaging device |
Also Published As
| Publication number | Publication date |
|---|---|
| CN119631018B (en) | 2025-09-26 |
| CN119631018A (en) | 2025-03-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3327781B1 (en) | Image processing method and apparatus, and electronic device | |
| US10339632B2 (en) | Image processing method and apparatus, and electronic device | |
| US8379144B2 (en) | Battery cover structure including an antenna unit and photographing apparatus including the same | |
| US20190122337A1 (en) | Image processing method and apparatus, and electronic device | |
| EP3328078B1 (en) | Image processing method and apparatus, and electronic device | |
| US10262395B2 (en) | Image processing method and apparatus, and electronic device | |
| WO2024050818A1 (en) | Camera assembly and electrical device | |
| WO2023205933A1 (en) | Camera assembly and electrical device | |
| WO2023272486A1 (en) | Camera assembly and electrical device | |
| WO2024182943A1 (en) | Camera assembly and electronic device | |
| WO2024021044A1 (en) | Camera assembly and electronic device | |
| WO2023044852A1 (en) | Camera assembly and electrical device | |
| WO2021168802A1 (en) | Cover lens and imaging device | |
| WO2024016355A1 (en) | Camera assembly and electrical device | |
| WO2023115407A1 (en) | Imaging lens assembly, camera module and imaging device | |
| WO2025043691A1 (en) | Camera assembly and electronic device | |
| WO2024050833A1 (en) | Camera assembly and electronic device | |
| WO2023060556A1 (en) | Camera assembly and electrical device | |
| WO2025043692A1 (en) | Camera assembly and electronic device | |
| WO2021138867A1 (en) | Method for electronic device with a plurality of cameras and electronic device | |
| CN209402600U (en) | Camera module and its photosensitive component, bracket and mounting frame | |
| WO2023070360A1 (en) | Camera assembly and electronic device | |
| WO2024138372A1 (en) | Camera assembly and electronic device | |
| WO2022109795A1 (en) | Imaging lens assembly which takes into consideration image processing-based distortion correction, camera module and imaging device | |
| US20230121915A1 (en) | Lens assembly and electronic device including the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22957787 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 202280098494.4 Country of ref document: CN |
|
| WWP | Wipo information: published in national office |
Ref document number: 202280098494.4 Country of ref document: CN |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 22957787 Country of ref document: EP Kind code of ref document: A1 |