[go: up one dir, main page]

WO2023231280A1 - Produit pour l'évaluation du risque de récidive chez un patient atteint d'un cancer pulmonaire - Google Patents

Produit pour l'évaluation du risque de récidive chez un patient atteint d'un cancer pulmonaire Download PDF

Info

Publication number
WO2023231280A1
WO2023231280A1 PCT/CN2022/127455 CN2022127455W WO2023231280A1 WO 2023231280 A1 WO2023231280 A1 WO 2023231280A1 CN 2022127455 W CN2022127455 W CN 2022127455W WO 2023231280 A1 WO2023231280 A1 WO 2023231280A1
Authority
WO
WIPO (PCT)
Prior art keywords
lung cancer
recurrence
markers
adjuvant chemotherapy
positive integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2022/127455
Other languages
English (en)
Chinese (zh)
Inventor
饶皑炳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Luwei Biotechnology Biomanifold Technology Co Ltd
Original Assignee
Shenzhen Luwei Biotechnology Biomanifold Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Luwei Biotechnology Biomanifold Technology Co Ltd filed Critical Shenzhen Luwei Biotechnology Biomanifold Technology Co Ltd
Publication of WO2023231280A1 publication Critical patent/WO2023231280A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • G16B25/10Gene or protein expression profiling; Expression-ratio estimation or normalisation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • CFH complement Factor H
  • This gene is a member of the complement activation regulator (RCA) gene cluster and encodes a protein with 20 short consensus repeats (SCR) domains. It plays a role in the regulation of complement activation. It plays a vital role.
  • KIAA0355 also known as GARRE1, Granule Associated Rac And RHOG Effector 1
  • GARRE1 Granule Associated Rac And RHOG Effector 1
  • OXCT1 (3-Oxoacid CoA-Transferase 1) is the 3-oxoacetate CoA-Transferase 1 gene.
  • the encoded protein is a homodimeric mitochondrial matrix enzyme that catalyzes the reversible transfer of coenzyme A from succinyl-CoA to acetoacetate. , plays a central role in extrahepatic ketone body catabolism.
  • the specific regimen of adjuvant chemotherapy can be a regimen including cisplatin (P), specifically a double-drug regimen including cisplatin, such as TP (paclitaxel + cisplatin), GP (gemcitabine + cisplatin), DP (docetaxel) + cisplatin), AP (pemetrexed + cisplatin), LP (paclitaxel liposome + cisplatin), etc. It is understandable that for some patients who cannot tolerate cisplatin, carboplatin can be used instead.
  • the markers when there is adjuvant chemotherapy, include at least one, at least two, at least three of AGFG2, PGGT1B, ZKSCAN7, KIAA0355, SNRPB, MAOB, UTP20, DHCR7, CFH, GPX2, Elevated levels of at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, and at least one, at least of CDC42BPA, ECI2, CCND2, RHEB, KIAA1109, PIK3CG A decrease in two, at least three, at least four, at least five, or at least six levels indicates a higher risk of relapse.
  • markers include ADAM8, ANGPT2, CAMP, CPE, CYP1A1, DDR2, DOPEY2, E2F3, EP300, EPHA2, FANCL, GABPA, KRT17, MIS18A, NDRG1, NOTCH1, At least two, at least three, at least four, at least five, at least six, at least seven, at least eight of NXT2, OXCT1, PBRM1, PITRM1, RNF43, SCGB2A2, SLC39A6, STC1, STC2, TSPYL5 and TUBG1 , at least nine, at least ten, at least eleven, at least twelve, at least thirteen, at least fourteen, at least fifteen, at least sixteen, at least seventeen, at least eighteen, at least Nineteen, at least twenty, at least twenty-one, at least twenty-two, at least twenty-three, at least twenty-four, at least twenty-five, at least twenty-six and all twenty-seven .
  • the reagent detects the mRNA expression level of the marker.
  • the marker includes at least N 1 of AGFG2, CCND2, CDC42BPA, CFH, DHCR7, ECI2, GPX2, KIAA0355, KIAA1109, MAOB, PGGT1B, PIK3CG, RHEB, SNRPB, UTP20 and ZKSCAN7, N 1 is optionally selected from a positive integer from 1 to 16.
  • markers include ADAM8, ANGPT2, CAMP, CPE, CYP1A1, DDR2, DOPEY2, E2F3, EP300, EPHA2, FANCL, GABPA, KRT17, MIS18A, NDRG1, NOTCH1, At least N 2 of NXT2, OXCT1, PBRM1, PITRM1, RNF43, SCGB2A2, SLC39A6, STC1, STC2, TSPYL5 and TUBG1, and N 2 is optionally a positive integer from 1 to 27; for example, at least two or at least three of them , at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven, at least twelve, at least thirteen, at least fourteen, at least Fifteen, at least sixteen, at least seventeen, at least eighteen, at least nineteen, at least twenty, at least twenty-one, at least twenty-two, at least twenty-three, at least twenty
  • the markers include at least one, at least two, at least three, at least four, at least five of AGFG2, PGGT1B, ZKSCAN7, KIAA0355, SNRPB, MAOB, UTP20, DHCR7, CFH, and GPX2 at least one, at least six, at least seven, at least eight, at least nine, at least ten, and/or at least one, at least two, at least three, at least CDC42BPA, ECI2, CCND2, RHEB, KIAA1109, PIK3CG Four, at least five, at least six.
  • the reagent detects the mRNA expression level of the marker.
  • the memory may optionally include memory located remotely relative to the processor, and these remote memories may be connected to the processor through a network.
  • Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the scoring module mathematically correlates expression levels to obtain scores including ADAM8, ANGPT2, CAMP, CPE, CYP1A1, DDR2, DOPEY2, E2F3, EP300, EPHA2, FANCL, GABPA, KRT17, MIS18A,
  • the expression levels of at least one of NDRG1, NOTCH1, NXT2, OXCT1, PBRM1, PITRM1, RNF43, SCGB2A2, SLC39A6, STC1, STC2, TSPYL5 and TUBG1 were mathematically correlated to obtain a recurrence score, and AGFG2, CCND2, CDC42BPA, CFH
  • the expression levels of at least one of , DHCR7, ECI2, GPX2, KIAA0355, KIAA1109, MAOB, PGGT1B, PIK3CG, RHEB, SNRPB, UTP20 and ZKSCAN7 were mathematically correlated to obtain another recurrence score, and lung cancer patients were mathematically correlated to
  • Linear models were constructed based on one or more of the above two sets of gene sets as markers to calculate the recurrence scores of the two lung cancers with or without adjuvant chemotherapy.
  • Individualized treatment plans can be implemented for patients based on two recurrence scores: those with high recurrence scores from adjuvant chemotherapy should be given the first choice of other treatment options without adjuvant chemotherapy; those with high recurrence scores without adjuvant chemotherapy should be given first choice with adjuvant chemotherapy.
  • two lung cancer recurrence scores should be compared with each other based on the same or close standards. For example, the two can be standardized and transformed in a set way and then compared in absolute size, or the two can be directly compared. The relative size of the scores to their corresponding thresholds, and so on.
  • a total of 46 lung cancer gene expression data sets were selected from the U.S. Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, including full transcriptome data of 6597 lung cancer tissue sections. After excluding gene transcripts with extremely low expression (the number of samples with non-zero expression does not exceed 10), miRNA and lncRNA were eliminated, and the common genes of these data sets were selected, resulting in a gene number of 8366.
  • GEO Gene Expression Omnibus
  • TCGA Cancer Genome Atlas
  • columns 1-34 include sample and patient information, including basic information such as patient age and gender, lung cancer pathological classification, mutation status of driver genes such as ALK, EGFR, KRAS, and TP53, as well as recurrence-free survival (RFS), overall survival ( OS) indicators and long-term clinical prognosis information, etc.
  • basic information such as patient age and gender, lung cancer pathological classification, mutation status of driver genes such as ALK, EGFR, KRAS, and TP53, as well as recurrence-free survival (RFS), overall survival ( OS) indicators and long-term clinical prognosis information, etc.
  • RFS recurrence-free survival
  • OS overall survival
  • NCHEMO's Nx and CHEMO's Tx there is no statistically significant difference between the non-recurrence and recurrence groups, but for NCHEMO's Tx, the average value of the recurrence group is 0.03 higher than that of the non-recurrence group, which is statistically significant; for CHEMO's Nx, the recurrence The average value of the group is 0.51 higher than that of the non-recurrence group, which is also statistically significant.
  • the formula score for calculating the risk of lung cancer recurrence without adjuvant chemotherapy 0.4322 ⁇ PBRM1+0.3548 ⁇ GABPA+0.3147 ⁇ DDR2+0.3003 ⁇ SCGB2A2+0.275 ⁇ CAMP+0.2562 ⁇ ADAM8+0.2284 ⁇ RNF43+0.2239 ⁇ PITRM1+0.222 ⁇ STC2+ 0.2097 ⁇ TUBG1+0.2044 ⁇ E2F3+0.2039 ⁇ ANGPT2+0.2011 ⁇ NXT2+0.1644 ⁇ NDRG1+0.1589 ⁇ CYP1A1+0.1533 ⁇ DOPEY2+0.1409 ⁇ SLC39A6+0.1201 ⁇ OXCT1+0.0815 ⁇ KRT17-0.0 657 ⁇ CPE-0.0665 ⁇ TSPYL5-0.157 ⁇ STC1-0.1615 ⁇ FANCL-0.1786 ⁇ EPHA2-0.2235 ⁇ EP300-0.2285 ⁇ NOTCH1-0.2628 ⁇ MIS18A.
  • the abbreviation of the marker in the formula represents the normal
  • the formula score for calculating the risk of lung cancer recurrence under adjuvant chemotherapy 0.5931 ⁇ AGFG2+0.5562 ⁇ PGGT1B+0.4632 ⁇ ZKSCAN7+0.3192 ⁇ KIAA0355+0.2759 ⁇ SNRPB+0.2276 ⁇ MAOB+0.2107 ⁇ UTP20+0.145 ⁇ DHCR7+0.1276 ⁇ CFH+0.06 13 ⁇ GPX2-0.212 ⁇ CDC42BPA-0.2196 ⁇ ECI2-0.2914 ⁇ CCND2-0.3073 ⁇ RHEB-0.405 ⁇ KIAA1109-0.4517 ⁇ PIK3CG.
  • the abbreviation of the marker in the formula represents the normalized value of the expression level of the corresponding marker.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Biology (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Pathology (AREA)
  • Data Mining & Analysis (AREA)
  • Microbiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Databases & Information Systems (AREA)
  • Bioethics (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La présente invention concerne l'utilisation d'un réactif pour détecter des marqueurs dans la préparation d'un produit destiné à évaluer le risque de récidive chez des patients atteints de cancer pulmonaire. Un premier aspect de la présente invention concerne l'utilisation du réactif pour la détection de marqueurs dans la préparation du produit pour l'évaluation du risque de récidive chez des patients atteints de cancer pulmonaire. Différents modèles concernant le risque de récidive sont établis pour les patients atteints de cancer pulmonaire recevant une chimiothérapie adjuvante et ne recevant pas de chimiothérapie adjuvante, différents moyens de traitement adjuvant pour les patients atteints de cancer pulmonaire sont distingués, le risque de récidive chez les patients est prédit au moyen de deux ensembles de marqueurs, et un moyen de traitement adjuvant approprié peut ainsi être sélectionné à partir de ces deux ensembles. Pour les patients présentant un risque de récidive plus élevé s'ils reçoivent une chimiothérapie adjuvante que s'ils n'en reçoivent pas, d'autres régimes thérapeutiques en plus de la chimiothérapie adjuvante sont préférés, tandis que la chimiothérapie adjuvante est privilégiée pour les patients présentant un risque de récidive plus élevé s'ils ne reçoivent pas de chimiothérapie adjuvante.
PCT/CN2022/127455 2022-05-31 2022-10-25 Produit pour l'évaluation du risque de récidive chez un patient atteint d'un cancer pulmonaire Ceased WO2023231280A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210610966.1 2022-05-31
CN202210610966.1A CN114934117A (zh) 2022-05-31 2022-05-31 评价肺癌患者复发风险的产品

Publications (1)

Publication Number Publication Date
WO2023231280A1 true WO2023231280A1 (fr) 2023-12-07

Family

ID=82867159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127455 Ceased WO2023231280A1 (fr) 2022-05-31 2022-10-25 Produit pour l'évaluation du risque de récidive chez un patient atteint d'un cancer pulmonaire

Country Status (2)

Country Link
CN (1) CN114934117A (fr)
WO (1) WO2023231280A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114934117A (zh) * 2022-05-31 2022-08-23 深圳市陆为生物技术有限公司 评价肺癌患者复发风险的产品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151677A1 (fr) * 2012-04-02 2013-10-10 Broad Institute, Inc. Mutations touchant le gène ddr2 et cancer
CN109735619A (zh) * 2018-12-21 2019-05-10 中国科学院北京基因组研究所 与非小细胞肺癌预后相关的分子标志物及其应用
CN111394456A (zh) * 2020-03-19 2020-07-10 中国医学科学院肿瘤医院 早期肺腺癌患者预后评估系统及其应用
CN114622015A (zh) * 2021-05-13 2022-06-14 四川大学华西医院 一种基于循环肿瘤DNA预测非小细胞肺癌术后复发的NGS panel及其用途
CN114934117A (zh) * 2022-05-31 2022-08-23 深圳市陆为生物技术有限公司 评价肺癌患者复发风险的产品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114512184B (zh) * 2021-10-11 2024-10-29 上海市胸科医院 一种用于预测癌症疗效和预后的方法及其装置和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151677A1 (fr) * 2012-04-02 2013-10-10 Broad Institute, Inc. Mutations touchant le gène ddr2 et cancer
CN109735619A (zh) * 2018-12-21 2019-05-10 中国科学院北京基因组研究所 与非小细胞肺癌预后相关的分子标志物及其应用
CN111394456A (zh) * 2020-03-19 2020-07-10 中国医学科学院肿瘤医院 早期肺腺癌患者预后评估系统及其应用
CN114622015A (zh) * 2021-05-13 2022-06-14 四川大学华西医院 一种基于循环肿瘤DNA预测非小细胞肺癌术后复发的NGS panel及其用途
CN114934117A (zh) * 2022-05-31 2022-08-23 深圳市陆为生物技术有限公司 评价肺癌患者复发风险的产品

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUI WANG, XIANG MING; DING BOYING: "Relationship between a Disintegrin and Metalloproteinase and Tumors", CHINESE JOURNAL OF CLINICAL MEDICINE, vol. 20, no. 6, 25 December 2013 (2013-12-25), pages 864 - 867, XP093116904 *
LU, YAN ET AL.: "Gene-Expression Signature Predicts Postoperative Recurrence in Stage I Non-Small Cell Lung Cancer Patients", PLOS ONE., vol. 7, no. 1, 23 January 2012 (2012-01-23), XP055177681, DOI: 10.1371/journal.pone.0030880 *
YU-JUAN HUANG: "Study trend of the treatment of non-small-cell lung cancer with brain metastasis", CHONGQING MEDICAL JOURNAL, vol. 8, 30 August 2015 (2015-08-30), pages 1177 - 1179, XP093116906 *

Also Published As

Publication number Publication date
CN114934117A (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
Xiao et al. The long noncoding RNA TTTY15, which is located on the Y chromosome, promotes prostate cancer progression by sponging let-7
US11174518B2 (en) Method of classifying and diagnosing cancer
CN103459597B (zh) 用于预测胃癌预后的标记和使用该标记预测胃癌预后的方法
van der Heijden et al. A five-gene expression signature to predict progression in T1G3 bladder cancer
JP6351112B2 (ja) 前立腺癌の予後を定量化するための遺伝子発現プロフィールアルゴリズムおよび試験
JP6049739B2 (ja) 前立腺癌の分類のためのマーカー遺伝子
US8202968B2 (en) Predicting lung cancer survival using gene expression
US11591655B2 (en) Diagnostic transcriptomic biomarkers in inflammatory cardiomyopathies
AU2009234444A1 (en) Methods, agents and kits for the detection of cancer
EP2942724A2 (fr) Procédé pour le diagnostic in vitro d'une maladie complexe
JP2011500071A (ja) 遺伝子に基づくアルゴリズム的ガン予後及び患者の臨床結果
WO2013025322A2 (fr) Score de risque de pronostic à base d'un marqueur dans le cancer du foie
US20250137066A1 (en) Compostions and methods for diagnosing lung cancers using gene expression profiles
WO2023231280A1 (fr) Produit pour l'évaluation du risque de récidive chez un patient atteint d'un cancer pulmonaire
WO2015079060A2 (fr) Mirna en tant qu'outil de diagnostic avancé chez des patients atteints de maladie cardiovasculaire, en particulier de l'infarctus aigu du myocarde (iam)
WO2015095686A1 (fr) Analyses et méthodes associées au traitement de mélanomes
CN109402252A (zh) 急性髓系白血病风险评估基因标志物及其应用
EP3931318A1 (fr) Sous-typage indépendant de la pureté de tumeurs (purist), plateforme et classificateur d'échantillon unique indépendant du type d'échantillon pour la prise de décision de traitement dans le cancer du pancréas
EP3666906A1 (fr) Procédés et kits pour le pronostic de carcinomes de cellules squameuses (ccs)
CN106319062A (zh) 一种用于甲状腺癌辅助诊断或疗效预测的微创试剂盒
US20220228218A1 (en) Clinical and Molecular Prognostic Markers for Liver Transplantation
Zhang et al. GREM1, LRPPRC and SLC39A4 as potential biomarkers of intervertebral disc degeneration: a bioinformatics analysis based on multiple microarray and single-cell sequencing data
WO2019158705A1 (fr) Procédé de classification de patient et de pronostic
CA3212786A1 (fr) Methodes d'evaluation de la proliferation et de la reponse therapeutique anti-folate
US20230071390A1 (en) Assessment of pr cellular signaling pathway activity using mathematical modelling of target gene expression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22944588

Country of ref document: EP

Kind code of ref document: A1