[go: up one dir, main page]

WO2023120243A1 - 表面検査装置、表面検査方法、欠陥自動修理システム及びプログラム - Google Patents

表面検査装置、表面検査方法、欠陥自動修理システム及びプログラム Download PDF

Info

Publication number
WO2023120243A1
WO2023120243A1 PCT/JP2022/045476 JP2022045476W WO2023120243A1 WO 2023120243 A1 WO2023120243 A1 WO 2023120243A1 JP 2022045476 W JP2022045476 W JP 2022045476W WO 2023120243 A1 WO2023120243 A1 WO 2023120243A1
Authority
WO
WIPO (PCT)
Prior art keywords
images
depth
foreign matter
estimating
feature amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2022/045476
Other languages
English (en)
French (fr)
Inventor
祥人 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to EP22910953.3A priority Critical patent/EP4455646A4/en
Priority to US18/719,976 priority patent/US20250045898A1/en
Priority to JP2023569310A priority patent/JPWO2023120243A1/ja
Priority to CN202280083390.6A priority patent/CN118414540A/zh
Publication of WO2023120243A1 publication Critical patent/WO2023120243A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30156Vehicle coating
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Definitions

  • the present invention relates to a surface inspection apparatus, a surface inspection method, an automatic defect repair system, and a program capable of estimating the depth from the painted surface of foreign matter that has been mixed into the painted surface of products such as automobiles and caused surface defects. .
  • the painted surface of an automobile is composed of four or more layers, but about 80% of automobile paint defects are caused by the contamination of foreign matter before or during painting.
  • the depth of foreign matter from the painted surface also called the contamination depth
  • the contamination depth can be estimated, and can be used for quality control, for example.
  • the rate of occurrence of surface defects is monitored for each depth of contamination, and an alarm is issued when the rate of occurrence reaches an abnormal value. be able to.
  • Patent Document 1 discloses a technique capable of accurately determining whether a defect is a genuine defect (defect requiring correction) or a fake defect (defect not corrected).
  • Patent Document 2 discloses a technique for determining the depth of a defect by using two types of thresholds for binarization processing and using the area ratio of the defect in the binarized image for each of them.
  • Patent Document 3 a complex time image is generated from a time-correlated image captured by illumination that gives a periodic temporal change in light intensity and a periodic spatial change, and the height or depth of a defect is estimated. Techniques are disclosed.
  • Patent Document 1 does not describe estimating the contamination depth of foreign matter.
  • Patent Document 2 describes determination of the depth of porous defects on the surface and Patent Document 3 describes determination of the depth of surface unevenness, the depth of contamination by foreign matter is described. It is not described to determine the tightness.
  • the present invention has been made in view of such a technical background, and provides a surface inspection apparatus, a surface inspection method, and an automatic defect repair system capable of estimating the depth from the coated surface of foreign matter mixed in the coated surface of the work. and to provide programs.
  • the above object is achieved by the following means. (1) Acquiring a plurality of images of the inspected portion photographed by an imaging device while the light-dark pattern of the illumination device that illuminates the inspected portion of the coated surface of the work is moved relative to the work. an image acquisition means for A calculation means for calculating a feature quantity representing surface defects for a plurality of images acquired by the image acquisition means; an estimating means for estimating the depth from the painted surface of the foreign matter that caused the surface defect by using the change in the feature quantity calculated by the computing means; surface inspection equipment.
  • the surface inspection device according to the preceding item 1, wherein the depth of the foreign matter from the coated surface is estimated using (3)
  • the feature amount is the minimum value of pixel values in the defective area.
  • an imaging device that captures a plurality of images of the inspected portion in a state in which the light-dark pattern of the lighting device that illuminates the inspected portion of the coated surface of the work is moved relative to the work;
  • the surface inspection apparatus according to any one of claims 1 to 5, which acquires the plurality of images and estimates the depth from the painted surface of the foreign matter that caused the surface defect; repair means for repairing surface defects based on the estimated result of the surface inspection device; defect auto-repair system.
  • the value of the coefficient a when the frame number of the plurality of images is x, the feature amount is y, and a quadratic curve of y ax 2 +bx+c is fitted to changes in the feature amount.
  • an image acquisition step for A computing step of calculating a feature quantity representing a surface defect for a plurality of images acquired by the image acquisition step; an estimating step of estimating the depth from the painted surface of the foreign matter that caused the surface defect using the change in the feature amount calculated in the computing step; A program that causes a computer to run (13) In the estimating step, the frame number of the plurality of images is x, the feature amount is y, and the value of the coefficient a when a quadratic curve of y ax 2 +bx+c is fitted to changes in the feature amount. 13.
  • the program according to the preceding item 12 which causes the computer to execute a process of estimating the depth of the foreign matter from the coated surface using .
  • the light-dark pattern of the illumination device that illuminates the inspected portion of the coated surface of the workpiece is imaged by the imaging device while being moved relative to the workpiece. , a plurality of images of the inspected portion are acquired, and a feature quantity representing a defect is calculated for the acquired plurality of images. Then, by using the calculated change in the feature amount, the depth from the painted surface where the foreign matter that caused the defect exists can be estimated. flow efficiency.
  • defects on the painted surface can be automatically repaired based on the depth of the foreign matter from the painted surface estimated by the surface inspection device.
  • the part to be inspected is imaged by the imaging device in a state in which the light-dark pattern of the lighting device that illuminates the part to be inspected on the coated surface of the work is moved relative to the work. a plurality of images are acquired, the feature value representing the defect is calculated for the acquired plurality of images, and the change in the calculated feature value is used to determine the depth from the coating surface of the foreign matter that caused the defect.
  • a computer can be caused to perform the process of estimating the height.
  • FIG. 1 is a configuration diagram of an automatic defect repair system using a surface inspection apparatus according to an embodiment of the present invention
  • FIG. It is a perspective view which shows the structural example of the light-and-dark pattern by an illuminating device.
  • FIG. 11 is a perspective view showing another configuration example of a light-dark pattern by the lighting device;
  • (A) to (E) are images of the vicinity of the front tire house on the left side of the vehicle body taken by a camera while moving the workpiece.
  • (A) is an original camera image when a foreign substance exists in a layer deep from the coating surface
  • (B) is an image obtained by binarizing the original image with a certain threshold value.
  • FIG. 2 is a scatter diagram plotting the deep layer shown in Table 1 and the shallow layer shown in Table 2, with the horizontal axis x representing the frame number and the vertical axis y representing the number of pixels (area) of the defect region, which is a feature quantity.
  • . 2 is a scatter diagram plotting the deep layer shown in Table 1 and the shallow layer shown in Table 2, with the horizontal axis x representing the frame number, and the vertical axis y representing the minimum pixel value of the defect region, which is a feature quantity. .
  • 3 is a cross-sectional view of a sample plate used in Examples.
  • 10 is a graph showing the distribution of the coefficient a of the second-order term when a quadratic curve is fitted to changes in the feature amount, using the number of pixels in the defect area measured using the sample plate as the feature amount.
  • FIG. 1 is a configuration diagram of an automatic defect repair system using a surface inspection apparatus 3 according to one embodiment of the present invention.
  • the work 100 to be inspected is a car body having a surface coated, and the part to be inspected of the work 100 is the painted surface. A case of estimating the depth from the surface is shown.
  • the surface of the car body is subjected to base treatment, metallic paint, clear paint, etc., and a multi-layered paint film layer is formed. Surface defects occur.
  • the workpiece 100 is not limited to the vehicle body, and may be a workpiece other than the vehicle body as long as the surface is coated.
  • the illumination device 1 In order to detect surface defects on the workpiece 100, the illumination device 1 needs to irradiate the inspected portion of the workpiece 100 with illumination light having a light-and-dark pattern having at least a pair of bright portions and dark portions.
  • the type of lighting device 1 is not limited as long as it can irradiate a light-dark pattern having at least a pair of bright portions and dark portions.
  • the illumination device 1 as shown in FIG. 2, a part of the planar light emitting portion is covered with a black mask in the moving direction of the workpiece 100, thereby forming a dark portion 12 covered with the black mask and a bright portion not covered with the black mask.
  • An LED illumination device or the like that illuminates the inspected portion with a pair of stripe patterns of the portion 11 can be used.
  • the bright and dark pattern is not limited to the one shown in FIG. 2, and may be a stripe pattern in which a plurality of pairs of bright portions 11 and dark portions 12 are present.
  • the formation of the dark portion 12 does not need to be formed by masking a part of the light emitting surface of the lighting device 1.
  • a light-dark pattern may be formed by forming a dark portion 12 around the illumination device 1 .
  • the workpiece 100 is continuously moved and the relative positional relationship between the light-dark pattern and the workpiece 100 is shifted little by little.
  • the camera 2 is moved together with the illumination device 1 .
  • both the workpiece 100 and the illumination device 1 may be moved at different moving speeds so that one of them moves relatively to the other.
  • the illumination device 1 is composed of a display panel such as an LED
  • the illumination device 1 by scrolling the brightness pattern displayed on the display surface without physically moving the illumination device 1, the brightness pattern and the workpiece 100 can be displayed. may be moved relatively.
  • the camera 2 is a CCD camera or a CMOS camera, and may be a camera that generates monochrome images or a camera that generates color images. In this embodiment, while at least one of the light-dark pattern of the illumination device 1 and the work 100 is moved, the camera 2 sequentially images a preset inspection range of the work 100 at predetermined time intervals.
  • the imaging operation of the camera 2, the moving operation of the workpiece 100 or the illumination device 1, the control of the light/dark pattern of the illumination device 1, and the like are performed by a control device (not shown). Alternatively, it may be controlled by the surface inspection device 3 .
  • the surface inspection device 3 is composed of a personal computer (PC) or the like, and an arithmetic processing unit such as a CPU executes an operation program stored in a storage unit, thereby estimating the contamination depth of foreign matter.
  • PC personal computer
  • arithmetic processing unit such as a CPU executes an operation program stored in a storage unit, thereby estimating the contamination depth of foreign matter.
  • the surface inspection device 3 functionally has an image acquisition unit 31 , a calculation unit 32 and an estimation unit 33 .
  • the image acquisition unit 31 acquires the image of the workpiece 100 captured by the camera 2. Images may be acquired directly from the camera 2 through wired communication or wireless communication, or images captured by the camera 2 may be temporarily stored in an external storage device, and the stored images may be transferred from the storage device. You can get it.
  • the calculation unit 32 calculates feature amounts representing surface defects (so-called spots) for a plurality of acquired images, and the estimation unit 33 uses changes in feature amounts for each image calculated by the calculation unit , to estimate the contamination depth of the foreign matter that caused the defect.
  • the process of estimating the feature amount representing the surface defect and the mixture depth will be described later.
  • the repair device 4 uses a robot to polish and repair surface defects caused by foreign matter when the depth of foreign matter contamination estimated by the surface inspection device 3 is a depth that can be repaired by surface polishing. be.
  • FIG. 5(A) shows a plurality of camera original images when a foreign substance exists in a layer deep from the coating surface
  • FIG. 5(B) shows an image obtained by binarizing the original image with a certain threshold value.
  • a dark portion (white in the image) appearing in a light band 101 (black in the image) in FIG. Expansion processing or contraction processing may be performed on the defect area 102 .
  • the numerical value displayed in each image is the frame number of the image.
  • FIG. 6A shows a plurality of camera original images when a foreign substance exists in a layer shallow from the coating surface, and FIG. , respectively.
  • a dark portion which is a defect region 102, appears in the light band 101 in FIG. 6B. Note that there is no relationship between the frame number of the image in FIG. 5 and the frame number of the image in FIG.
  • the luminance change of the defect region 102 in the original image is small, and when the foreign matter exists in a deep layer, the luminance Big change.
  • the change in area of the defect region 102 is small when the foreign matter exists in a shallow layer, and the area change is large when the foreign matter exists in a deep layer.
  • Table 1 shows the results of calculating the area of the defect region 102 (the number of pixels in the defect region) and the minimum pixel value (brightness) of each pixel in the defect region 102 when the foreign matter exists in a deep layer. Calculation results are shown. Table 2 shows similar calculation results when the foreign matter is present in a shallow layer. These calculations are performed by the calculation unit 32 of the surface inspection device 3 .
  • the defect area 102 is a closed white circle area in the binarized image shown in FIGS. 5B and 6B.
  • FIG. 7 plots each of the deep layers shown in Table 1 and the shallow layers shown in Table 2, with the horizontal axis x representing the frame number and the vertical axis y representing the number of pixels (area) of the defect region 102, which is a characteristic quantity.
  • FIG. 8 is a scatter diagram similarly plotted using the minimum pixel value of the defect area 102 as a feature quantity.
  • the number of pixels (area) of the defect area 102 or the minimum value of the pixel values of the defect area 102 is used as a feature amount, and the change in the feature amount in each image is fitted by a quadratic equation. It can be seen that the penetration depth of the foreign matter from the surface can be estimated by using the coefficient a of the second-order term in the case as an index.
  • the deep layer shown in FIG. 7 has a larger numerical value than the shallow layer shown in FIG. It can be seen that the depth from the surface of the foreign matter can be estimated.
  • the feature amount may be set to 1. Furthermore, the feature amount may be normalized by dividing by the maximum value or minimum value of the feature amount.
  • silica beads 300 with diameters of 100 ⁇ m, 150 ⁇ m, and 200 ⁇ m were placed as foreign matter on the surface of the electrodeposition (ED) layer 201, on the surface of the primer (primer: intermediate coating) layer 202 with a thickness of 45 ⁇ m, and on the surface of the primer layer 202 with a thickness of 30 ⁇ m.
  • a sample plate 200 was prepared by coating a plurality of base layers (Base Coat) 203 on the surface of each, and further coating a clear layer (Clear Coat) 204 having a thickness of 45 ⁇ m on the surface. The surface of the sample plate 200 was photographed by the camera 2 and a plurality of images were obtained by moving the sample plate 200 while illuminating it with illumination light having a light and dark pattern.
  • the coefficient a of the second-order term forms a group of values with significant differences for each mixing depth. Therefore, it can be seen that the existence position (mixing depth) of the silica beads 300 can be estimated to some extent using the coefficient a of the second-order term.
  • the repair device 4 for polishing and repairing by a robot is incorporated into the system, and only defects that can be repaired by polishing are selected according to the depth of foreign matter contamination of the surface defect site estimated by the surface inspection device 1. can be automatically repaired by the repair device 4, and the efficiency of the repair process can be improved.
  • the present invention is not limited to the above embodiment.
  • the surface coating of the workpiece 100 is multi-layer coating
  • it may be single-layer coating.
  • the present invention can be used, for example, in a surface inspection device capable of estimating the depth from the painted surface of foreign matter that has entered the painted surface of products such as automobiles and caused surface defects.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

表面検査装置(3)は、ワーク(100)の塗装表面の被検査部位を照明する照明装置(1)の明暗パターンをワーク(100)に対して相対的に移動させた状態で撮像装置(2)により撮影された、被検査部位についての複数の画像を取得する画像取得手段(31)、取得された複数の画像について表面欠陥を表す特徴量を計算する演算手段(32)、計算された特徴量の変化を利用して、表面欠陥の原因となった異物の塗装表面からの深さを推定する推定手段(33)を備えている。

Description

表面検査装置、表面検査方法、欠陥自動修理システム及びプログラム
 この発明は、例えば自動車等の商品の塗装表面に混入して表面欠陥の原因となった異物の塗装表面からの深さを推定可能な表面検査装置、表面検査方法、欠陥自動修理システム及びプログラムに関する。
 一般に、自動車の塗装表面は約4層以上の層で構成されているが、自動車塗装欠陥の約80%は、塗装前あるいは塗装中に異物が混入することで発生する。
 異物の塗装表面からの深さ(混入深さともいう)を推定できれば種々の利点があり、例えば品質管理に使用できる。具体的には、異物の混入深さごとに表面欠陥の発生率を監視しておき、発生率が異常値となった際に警報を発し早急に源流を改善することで不良率の上昇を抑えることができる。
 また、修理工程の流動効率化にも利用できる。即ち、小さな異物が深い層に存在している場合は研磨のみで欠陥の修理が可能であり、ロボットによる自動修理を適用しやすい。一方、大きな異物や塗装表面近くに異物が存在している場合は、切削後の再塗装が必要となり、手作業による修理が必要となる。よって、異物の混入深さを推定して自動修理が可能な表面欠陥のみをロボットに修理させることで修理コストの低減が可能となる。
 しかしながら、塗装表面での異物の混入深さを推定する技術はなく、塗装表面を削って確認する他に方法はないのが現状である。
 なお、特許文献1には、本物欠陥(要修正欠陥)であるか偽物欠陥(無修正欠陥)であるかを正確に判定することができる技術が開示されている。
 また、特許文献2には、2値化処理の閾値を2種類用い、それぞれで2値化した画像における欠陥の面積比を用いて欠陥の深さを判定する技術が開示されている。
 また、特許文献3には、光強度の周期的な時間変化と周期的な空間変化を与える照明によって撮像された時間相関画像から複素時間画像を生成し、欠陥の高さまたは深さを推定する技術が開示されている。
特開平09-318338号公報 国際公開2016/006039号公報 特開2019-174232号公報
 しかしながら、特許文献1には、異物の混入深さを推定することは記載されていない。
 また、特許文献2に記載には表面のポーラス状の欠陥の深さを判定することが、特許文献3には表面凹凸の深さを判定することがそれぞれ記載されているものの、異物の混入深さを判定することは記載されていない。
 この発明は、このような技術的背景に鑑みてなされたものであって、ワークの塗装表面に混入した異物の塗装表面からの深さを推定できる表面検査装置、表面検査方法、欠陥自動修理システム及びプログラムの提供を目的とする。
 上記目的は、以下の手段によって達成される。
(1)ワークの塗装表面の被検査部位を照明する照明装置の明暗パターンをワークに対して相対的に移動させた状態で撮像装置により撮影された、前記被検査部位についての複数の画像を取得する画像取得手段と、
 前記画像取得手段により取得された複数の画像について表面欠陥を表す特徴量を計算する演算手段と、
 前記演算手段で計算された特徴量の変化を利用して、表面欠陥の原因となった異物の塗装表面からの深さを推定する推定手段と、
 を備えた表面検査装置。
(2)前記推定手段は、前記複数の画像のフレーム番号をx、前記特徴量をyとし、特徴量の変化に対しy=ax2+bx+cの2次曲線をフィッティングさせた時の係数aの値を用いて、前記異物の塗装表面からの深さを推定する前項1に記載の表面検査装置。
(3)前記推定手段は、前記特徴量の最大値-最小値を用いて、前記異物の塗装表面からの深さを推定する前項1に記載の表面検査装置。
(4)前記複数の画像を2値化した画像において、欠陥部を構成する画素の集合を欠陥領域としたとき、前記特徴量を前記欠陥領域の画素数とする前項1~3のいずれかに記載の表面検査装置。
(5)前記複数の画像を2値化した画像において、欠陥部を構成する画素の集合を欠陥領域としたとき、前記特徴量を前記欠陥領域における画素値の最小値とする前項1~3のいずれかに記載の表面検査装置。
(6)ワークの塗装表面の被検査部位を照明する照明装置の明暗パターンをワークに対して相対的に移動させた状態で、前記被検査部位についての複数の画像を撮影する撮像装置と、
 前記複数の画像を取得し、表面欠陥の原因となった異物の塗装表面からの深さを推定する請求項1~5のいずれかに記載の表面検査装置と、
 前記表面検査装置による推定結果に基づいて表面欠陥を修理する修理手段と、
 を備えた欠陥自動修理システム。
(7)ワークの塗装表面の被検査部位を照明する照明装置の明暗パターンをワークに対して相対的に移動させた状態で撮像装置により撮影された、前記被検査部位についての複数の画像を取得する画像取得ステップと、
 前記画像取得ステップにより取得された複数の画像について表面欠陥を表す特徴量を計算する演算ステップと、
 前記演算ステップで計算された特徴量の変化を利用して、表面欠陥の原因となった異物の存在する塗装表面からの深さを推定する推定ステップと、
 を備えた表面検査方法。
(8)前記推定ステップでは、前記複数の画像のフレーム番号をx、前記特徴量をyとし、特徴量の変化に対しy=ax2+bx+cの2次曲線をフィッティングさせた時の係数aの値を用いて、前記異物の塗装表面からの深さを推定する前項7に記載の表面検査方法。
(9)前記推定ステップでは、前記特徴量の最大値-最小値を用いて、前記異物の塗装表面からの深さを推定する前項7に記載の表面検査方法。
(10)前記複数の画像を2値化した画像において、欠陥部を構成する画素の集合を欠陥領域としたとき、前記特徴量を前記欠陥領域の画素数とする前項7~9のいずれかに記載の表面検査方法。
(11)前記複数の画像を2値化した画像において、欠陥部を構成する画素の集合を欠陥領域としたとき、前記特徴量を前記欠陥領域における画素値の最小値とする前項7~9のいずれかに記載の表面検査方法。
(12)ワークの塗装表面の被検査部位を照明する照明装置の明暗パターンをワークに対して相対的に移動させた状態で撮像装置により撮影された、前記被検査部位についての複数の画像を取得する画像取得ステップと、
 前記画像取得ステップにより取得された複数の画像について表面欠陥を表す特徴量を計算する演算ステップと、
 前記演算ステップで計算された特徴量の変化を利用して、表面欠陥の原因となった異物の塗装表面からの深さを推定する推定ステップと、
 をコンピュータに実行させるためのプログラム。
(13)前記推定ステップでは、前記複数の画像のフレーム番号をx、前記特徴量をyとし、特徴量の変化に対しy=ax2+bx+cの2次曲線をフィッティングさせた時の係数aの値を用いて、前記異物の塗装表面からの深さを推定する処理を前記コンピュータに実行させる前項12に記載のプログラム。
(14)前記推定ステップでは、前記特徴量の最大値-最小値を用いて、前記異物の塗装表面からの深さを推定する処理を前記コンピュータに実行させる前項12に記載のプログラム。
(15)前記複数の画像を2値化した画像において、欠陥部を構成する画素の集合を欠陥領域としたとき、前記特徴量を前記欠陥領域の画素数とする前項12~14のいずれかに記載のプログラム。
(16)前記複数の画像を2値化した画像において、欠陥部を構成する画素の集合を欠陥領域としたとき、前記特徴量を前記欠陥領域における画素値の最小値とする請求項12~15のいずれかに記載のプログラム。
 この発明に係る表面検査装置及び表面検査方法によれば、ワークの塗装表面の被検査部位を照明する照明装置の明暗パターンをワークに対して相対的に移動させた状態で撮像装置により撮像された、被検査部位についての複数の画像を取得するとともに、取得した複数の画像について欠陥を表す特徴量が計算される。そして、計算された特徴量の変化を利用して、欠陥の原因となった異物の存在する塗装表面からの深さを推定するから、種々の活用が可能となり、例えば前述した品質管理や修理工程の流動効率化に資することができる。
 また、この発明に係る欠陥自動修理システムによれば、表面検査装置で推定された異物の塗装表面からの深さに基づいて、塗装表面の欠陥を自動で修理することができる。
 また、この発明に係るプログラムによれば、ワークの塗装表面の被検査部位を照明する照明装置の明暗パターンをワークに対して相対的に移動させた状態で撮像装置により撮像された、被検査部位についての複数の画像を取得し、取得された複数の画像について欠陥を表す特徴量を計算し、計算された特徴量の変化を利用して、欠陥の原因となった異物の塗装表面からの深さを推定する処理を、コンピュータに実行させることができる。
この発明の一実施形態に係る表面検査装置が用いられた欠陥自動修理システムの構成図である。 照明装置による明暗パターンの構成例を示す斜視図である。 照明装置による明暗パターンの他の構成例を示す斜視図である。 (A)~(E)は、ワークを移動しながら、カメラで車体左側の前タイヤハウス付近を撮影した画像である。 (A)は塗装表面から深い層に異物が存在する場合のカメラ原画像であり、同図(B)は原画像に対してある閾値で2値化処理を行った画像である。 (A)は塗装表面から浅い層に異物が存在する場合のカメラ原画像であり、同図(B)は原画像に対してある閾値で2値化処理を行った画像である。 表1に示した深い層と、表2に示した浅い層のそれぞれについて、横軸xをフレーム番号、縦軸yを特徴量である欠陥領域の画素数(面積)としてプロットした散布図である。 表1に示した深い層と、表2に示した浅い層のそれぞれについて、横軸xをフレーム番号、縦軸yを特徴量である欠陥領域の画素値の最小値としてプロットした散布図である。 実施例に用いたサンプル板の断面図である。 サンプル板を用いて測定した欠陥領域の画素数を特徴量として、特徴量の変化に対して二次曲線をフィッティングしたときの2次の項の係数aの分布を示すグラフである。
 以下、この発明の実施形態を図面に基づいて説明する。
  図1は、この発明の一実施形態に係る表面検査装置3が用いられた欠陥自動修理システムの構成図である。この実施形態では、検査対象のワーク100が表面塗装が施された車体であり、ワーク100の被検査部位が塗装表面であり、塗装表面の欠陥を検出するとともに、欠陥部において混入した異物の塗装表面からの深さを推定する場合を示す。
 一般的に、車体表面は下地処理、メタリック塗装、クリア塗装等が施され、多層構造の塗膜層が形成されるが、塗装中に異物が混入することで最上層のクリア層に凸状の表面欠陥が生じる。なお、ワーク100は車体に限定されることはなく、表面塗装が施されたものであれば車体以外のワークであっても良い。
 図1に示す欠陥自動修理システムは、コンベア等により矢印F方向へ所定の速度で連続的に移動するワーク100の被検査部位を照明する照明装置1と、照明された被検査部位を撮影する撮像装置としてのカメラ2と、カメラ2で撮影された被検査部位の画像を取得して表面欠陥を検出し、混入した異物の塗装表面からの深さ(混入深さ)を推定する表面検査装置3と、修理装置4を備えている。
 照明装置1は、ワーク100の表面欠陥の検出のために、少なくとも一対の明部と暗部を有する明暗パターンの照明光をワーク100の被検査部位に照射する必要がある。少なくとも一対の明部と暗部を有する明暗パターンを照射できる限りにおいて、照明装置1の種類は限定されない。照明装置1の一例としては、図2に示すように、ワーク100の移動方向において、面状発光部の一部を黒いマスクで被覆することにより、黒いマスクで被覆された暗部12と被覆されない明部11の一対のストライプパターンで被検査部位を照明するLED照明装置等を挙げることができる。
 なお、明暗パターンは図2に示したものに限定されることはなく、明部11と暗部12が複数対存在するストライプパターンでも良い。
 また、暗部12の形成は、照明装置1の発光面の一部をマスクすることにより形成される必要はなく、例えば、図3に示すように、照明装置1で明部11のみを形成し、照明装置1の周囲を暗部12とすることにより、明暗パターンを形成しても良い。
  また、図1の例では、ワーク100が連続的に移動して、明暗パターンとワーク100との相対位置関係を少しずつずらす構成としたが、ワーク100を固定とし、照明装置1を移動させる構成であっても良い。この場合、カメラ2を照明装置1と共に移動させる。
  また、ワーク100と照明装置1のいずれもが、異なる移動速度で移動することにより、一方が他方に対して相対的に移動していても良い。
  また、照明装置1がLED等のディスプレイパネルからなる場合、照明装置1を物理的に移動させることなく、表示面に表示した明暗パターンを表示面上でスクロールさせることにより、明暗パターンとワーク100とを相対的に移動させても良い。
  カメラ2はCCDカメラあるいはCMOSカメラであり、モノクロで画像を生成するカメラでもカラーで画像を生成するカメラでも良い。この実施形態では、照明装置1の明暗パターンとワーク100の少なくとも一方を移動させながら、カメラ2は予め設定されたワーク100の検査範囲を所定の時間間隔で順次撮像する。
  なお、カメラ2の撮像動作、ワーク100または照明装置1の移動動作、照明装置1の明暗パターンの制御などは、図示しない制御装置により行われる。あるいは表面検査装置3によって制御されても良い。
 表面検査装置3はパーソナルコンピュータ(PC)等からなり、CPU等の演算処理部が記憶部に記憶された動作プログラムを実行することにより、異物の混入深さの推定処理を行う。
 表面検査装置3は、機能的に、画像取得部31と演算部32と推定部33を有している。
 画像取得部31はカメラ2で撮影されたワーク100の画像を取得する。画像の取得はカメラ2から有線通信あるいは無線通信により直接に取得しても良いし、カメラ2で撮影された画像を外部の記憶装置に一旦蓄積しておくとともに、蓄積された画像を記憶装置から取得しても良い。
 演算部32は、取得された複数の画像について、表面欠陥(所謂ブツ)を表す特徴量を計算し、推定部33は、演算部32で演算された画像毎の特徴量の変化を利用して、欠陥の原因となった異物の混入深さを推定する。表面欠陥を表す特徴量及び混入深さの推定処理については後述する。
 修理装置4は、表面検査装置3により推定された異物の混入深さが、表面研磨により修理可能な深さである場合に、異物の混入で生じた表面欠陥部をロボットで研磨修理するものである。
 図4(A)~(E)に、ワーク100を移動しながら、カメラ2で車体左側の前タイヤハウス付近を撮影したときの画像を示す。ワーク100を移動しながらワーク100に映った照明装置1の明暗パターンの明部11に対応する光帯101を検出し、光帯101内の欠陥画像を検出する。
 次に、塗装前あるいは塗装中に異物が混入したことによって発生する表面欠陥について説明する。
 図5(A)は塗装表面から深い層に異物が存在する場合の複数のカメラ原画像であり、同図(B)は原画像に対してある閾値で2値化処理を行った画像である。図5(B)の光帯101(画像では黒色)内に現れる暗部(画像では白色)が表面欠陥部であり、これを欠陥領域102と呼ぶ。欠陥領域102に対して膨張処理や収縮処理を行っても良い。また、各画像に表示されている数値は画像のフレーム番号である。
 同様に、塗装表面から浅い層に異物が存在する場合の複数のカメラ原画像を図6(A)に、原画像に対してある閾値で2値化処理を行ったものを図6(B)に、それぞれ示す。図5(B)と同じく、図6(B)の光帯101内に欠陥領域102である暗部が現れている。なお、図5の画像のフレーム番号と図6の画像のフレーム番号に関係性はない。
 上記の図5と図6の画像を比較すると明らかなように、浅い層に異物が存在する場合は、原画像での欠陥領域102の輝度変化が小さく、深い層に異物が存在する場合は輝度変化が大きい。2値化画像については、浅い層に異物が存在する場合は欠陥領域102の面積変化が小さく、深い層に異物が存在する場合は面積変化が大きい。
 表1は、異物が深い層に存在する場合の、欠陥領域102の面積(欠陥領域の画素数)を計算した結果と、欠陥領域102における各画素の画素値(輝度)のうちの最小値を計算した結果を示している。表2は、異物が浅い層に存在する場合における同様の計算結果を示している。これらの計算は表面検査装置3の演算部32が行う。欠陥領域102は、前述したように、図5(B)及び図6(B)に示した2値化画像の白丸の閉じた領域である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 図7は、表1に示した深い層と、表2に示した浅い層のそれぞれについて、横軸xをフレーム番号、縦軸yを特徴量である欠陥領域102の画素数(面積)としてプロットした散布図、図8は、欠陥領域102の画素値の最小値を特徴量として、同様にプロットした散布図である。
 図7において、各プロットした点に対して最小二乗法で2次曲線をフィッティングさせたとき、深い層についての2次式(2次曲線の式)はy=0.7863x2-41.696x+545.75、浅い層についての2次式はy=-0.1553x2+9.0038x-114.28となる。従って、2次の項の係数aの値は、深い層では表1のように約0.786、浅い層では表2のように約-0.155となる。
 一方、図8においても同様に、各プロットした点に対して最小二乗法で2次曲線をフィッティングさせたとき、深い層についての2次式はy=-1.0369x2+54.826x-658.79、浅い層についての2次式はy=-0.3977x2+22.264x-288.5となる。従って、2次の項の係数aの値は、深い層では表1のように約-1.037、浅い層では表2のように約-0.398となる。
 図7及び図8から明らかなように、欠陥領域102の画素数(面積)または欠陥領域102の画素値の最小値を特徴量とし、各画像における特徴量の変化を2次式でフィッティングさせた場合の2次項の係数aを指標にして、異物の表面からの混入深さを推定できることがわかる。
 また、特徴量の最大値-最小値についても、図7に示す深い層の場合は図8に示す浅い層の場合よりも数値が大きいことから、特徴量の最大値-最小値を指標として、異物の表面からの深さを推定できることがわかる。
 また、欠陥領域102の面積(画素数)を特徴量とする場合、欠陥領域102が出現する最初のフレーム番号と最後のフレーム番号の間のフレームにおいて、欠陥領域102が存在しない場合、そのフレームの特徴量を1としてもよい。さらに、特徴量の最大値あるいは最小値で割ることで特徴量を規格化しても良い。
 次にこの発明の実施例を示す。
 図9に示すように、異物として直径100μm、150μm、200μmのシリカビーズ300を、電着(ED)層201の面上、厚み45μmのプライマー(Primer:中塗り)層202の面上、厚み30μmのベース層(Base Coat)203の面上にそれぞれ複数配置して塗装し、さらに表面に厚み45μmのクリア層(Clear Coat)204を塗装したサンプル板200を作製した。このサンプル板200を明暗パターンの照明光で照明しながら移動させて、サンプル板200の表面をカメラ2で撮影し複数枚の画像を得た。
 次いで、表面検査装置3により、撮影画像から求めた各深さ位置の複数のシリカビーズ300に対応する複数の欠陥領域102の各画素数を特徴量とするとともに、フレーム番号をx、特徴量をyとし、図7と同様に各撮影画像における特徴量の変化に対しy=ax2+bx+cの2次曲線を最小二乗法によりフィッティングし、2次の項の係数aをそれぞれ算出した。この時、欠陥領域102が見つからなかった画像については特徴量を1とし、すべての特徴量を最小値で規格化した。算出結果を図10に示す。
 図10から、シリカビーズ300が150μmまでのサイズであれば、2次の項の係数aが混入深さ毎に有意差のある値群となっていることがわかる。従って、2次の項の係数aを用いてシリカビーズ300の存在位置(混入深さ)をある程度推定できることがわかる。
 異物が混入して生じた表面欠陥は、異物が小さく深い層に存在している場合は表面の研磨のみで修理が可能である。従って、図1で説明したように、ロボットで研磨修理する修理装置4をシステムに組み込み、表面検査装置1で推定された表面欠陥部位の異物の混入深さに応じて、研磨修理可能な欠陥のみを修理装置4で自動修理させることが可能となり、修理工程を効率化することができる。
 以上、本発明の一実施形態を説明したが、本発明は上記実施形態に限定されることはない。例えば、ワーク100の表面塗装が多層塗装である場合を示したが、単層塗装であっても良い。
 本願は、2021年12月21日付で出願された日本国特許出願の特願2021-207503号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。
 本発明は、例えば自動車等の商品の塗装表面に混入して表面欠陥の原因となった異物の塗装表面からの深さを推定可能な表面検査装置等に利用可能である。
 1  照明装置
 2  撮像装置(カメラ)
 3  表面検査装置
 4  修理装置
 11 明部
 12 暗部
 100 ワーク
 101 光帯
 102 欠陥領域
 200 サンプル板
 201 電着層
 202 プライマー層
 203 ベース層
 204 クリア層
 300 シリカビーズ(異物)

Claims (16)

  1.  ワークの塗装表面の被検査部位を照明する照明装置の明暗パターンをワークに対して相対的に移動させた状態で撮像装置により撮影された、前記被検査部位についての複数の画像を取得する画像取得手段と、
     前記画像取得手段により取得された複数の画像について表面欠陥を表す特徴量を計算する演算手段と、
     前記演算手段で計算された特徴量の変化を利用して、表面欠陥の原因となった異物の塗装表面からの深さを推定する推定手段と、
     を備えた表面検査装置。
  2.  前記推定手段は、前記複数の画像のフレーム番号をx、前記特徴量をyとし、特徴量の変化に対しy=ax2+bx+cの2次曲線をフィッティングさせた時の係数aの値を用いて、前記異物の塗装表面からの深さを推定する請求項1に記載の表面検査装置。
  3.  前記推定手段は、前記特徴量の最大値-最小値を用いて、前記異物の塗装表面からの深さを推定する請求項1に記載の表面検査装置。
  4.  前記複数の画像を2値化した画像において、欠陥部を構成する画素の集合を欠陥領域としたとき、前記特徴量を前記欠陥領域の画素数とする請求項1~3のいずれかに記載の表面検査装置。
  5.  前記複数の画像を2値化した画像において、欠陥部を構成する画素の集合を欠陥領域としたとき、前記特徴量を前記欠陥領域における画素値の最小値とする請求項1~3のいずれかに記載の表面検査装置。
  6.  ワークの塗装表面の被検査部位を照明する照明装置の明暗パターンをワークに対して相対的に移動させた状態で、前記被検査部位についての複数の画像を撮影する撮像装置と、
     前記複数の画像を取得し、表面欠陥の原因となった異物の塗装表面からの深さを推定する請求項1~5のいずれかに記載の表面検査装置と、
     前記表面検査装置による推定結果に基づいて表面欠陥を修理する修理手段と、
     を備えた欠陥自動修理システム。
  7.  ワークの塗装表面の被検査部位を照明する照明装置の明暗パターンをワークに対して相対的に移動させた状態で撮像装置により撮影された、前記被検査部位についての複数の画像を取得する画像取得ステップと、
     前記画像取得ステップにより取得された複数の画像について表面欠陥を表す特徴量を計算する演算ステップと、
     前記演算ステップで計算された特徴量の変化を利用して、表面欠陥の原因となった異物の存在する塗装表面からの深さを推定する推定ステップと、
     を備えた表面検査方法。
  8.  前記推定ステップでは、前記複数の画像のフレーム番号をx、前記特徴量をyとし、特徴量の変化に対しy=ax2+bx+cの2次曲線をフィッティングさせた時の係数aの値を用いて、前記異物の塗装表面からの深さを推定する請求項7に記載の表面検査方法。
  9.  前記推定ステップでは、前記特徴量の最大値-最小値を用いて、前記異物の塗装表面からの深さを推定する請求項7に記載の表面検査方法。
  10.  前記複数の画像を2値化した画像において、欠陥部を構成する画素の集合を欠陥領域としたとき、前記特徴量を前記欠陥領域の画素数とする請求項7~9のいずれかに記載の表面検査方法。
  11.  前記複数の画像を2値化した画像において、欠陥部を構成する画素の集合を欠陥領域としたとき、前記特徴量を前記欠陥領域における画素値の最小値とする請求項7~9のいずれかに記載の表面検査方法。
  12.  ワークの塗装表面の被検査部位を照明する照明装置の明暗パターンをワークに対して相対的に移動させた状態で撮像装置により撮影された、前記被検査部位についての複数の画像を取得する画像取得ステップと、
     前記画像取得ステップにより取得された複数の画像について表面欠陥を表す特徴量を計算する演算ステップと、
     前記演算ステップで計算された特徴量の変化を利用して、表面欠陥の原因となった異物の塗装表面からの深さを推定する推定ステップと、
     をコンピュータに実行させるためのプログラム。
  13.  前記推定ステップでは、前記複数の画像のフレーム番号をx、前記特徴量をyとし、特徴量の変化に対しy=ax2+bx+cの2次曲線をフィッティングさせた時の係数aの値を用いて、前記異物の塗装表面からの深さを推定する処理を前記コンピュータに実行させる請求項12に記載のプログラム。
  14.  前記推定ステップでは、前記特徴量の最大値-最小値を用いて、前記異物の塗装表面からの深さを推定する処理を前記コンピュータに実行させる請求項12に記載のプログラム。
  15.  前記複数の画像を2値化した画像において、欠陥部を構成する画素の集合を欠陥領域としたとき、前記特徴量を前記欠陥領域の画素数とする請求項12~14のいずれかに記載のプログラム。
  16.  前記複数の画像を2値化した画像において、欠陥部を構成する画素の集合を欠陥領域としたとき、前記特徴量を前記欠陥領域における画素値の最小値とする請求項12~14のいずれかに記載のプログラム。
PCT/JP2022/045476 2021-12-21 2022-12-09 表面検査装置、表面検査方法、欠陥自動修理システム及びプログラム Ceased WO2023120243A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22910953.3A EP4455646A4 (en) 2021-12-21 2022-12-09 Surface scanning device, surface scanning method, automatic defect repair system and program therefor
US18/719,976 US20250045898A1 (en) 2021-12-21 2022-12-09 Surface inspection device, surface inspection method, automatic defect repair system, and program
JP2023569310A JPWO2023120243A1 (ja) 2021-12-21 2022-12-09
CN202280083390.6A CN118414540A (zh) 2021-12-21 2022-12-09 表面检查装置、表面检查方法、缺陷自动修理系统以及程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-207503 2021-12-21
JP2021207503 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023120243A1 true WO2023120243A1 (ja) 2023-06-29

Family

ID=86902387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045476 Ceased WO2023120243A1 (ja) 2021-12-21 2022-12-09 表面検査装置、表面検査方法、欠陥自動修理システム及びプログラム

Country Status (5)

Country Link
US (1) US20250045898A1 (ja)
EP (1) EP4455646A4 (ja)
JP (1) JPWO2023120243A1 (ja)
CN (1) CN118414540A (ja)
WO (1) WO2023120243A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317417A (ja) * 1992-01-23 1994-11-15 Mazda Motor Corp 表面異常検出装置
JPH09318338A (ja) 1996-05-31 1997-12-12 Nissan Motor Co Ltd 表面欠陥検査装置
JP2010151802A (ja) * 2008-11-20 2010-07-08 Asahi Glass Co Ltd 透明体検査装置および透明体検査方法
WO2016006039A1 (ja) 2014-07-08 2016-01-14 日産自動車株式会社 欠陥検査装置及び生産システム
JP2019174232A (ja) 2018-03-28 2019-10-10 リコーエレメックス株式会社 検査システムおよび検査方法
JP2021014988A (ja) * 2017-10-25 2021-02-12 パナソニックIpマネジメント株式会社 計測装置
JP2021139817A (ja) * 2020-03-06 2021-09-16 コニカミノルタ株式会社 ワークの表面検査装置、表面検査システム、表面検査方法及びプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6714831B2 (en) * 2002-01-24 2004-03-30 Ford Motor Company Paint defect automated seek and repair assembly and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317417A (ja) * 1992-01-23 1994-11-15 Mazda Motor Corp 表面異常検出装置
JPH09318338A (ja) 1996-05-31 1997-12-12 Nissan Motor Co Ltd 表面欠陥検査装置
JP2010151802A (ja) * 2008-11-20 2010-07-08 Asahi Glass Co Ltd 透明体検査装置および透明体検査方法
WO2016006039A1 (ja) 2014-07-08 2016-01-14 日産自動車株式会社 欠陥検査装置及び生産システム
JP2021014988A (ja) * 2017-10-25 2021-02-12 パナソニックIpマネジメント株式会社 計測装置
JP2019174232A (ja) 2018-03-28 2019-10-10 リコーエレメックス株式会社 検査システムおよび検査方法
JP2021139817A (ja) * 2020-03-06 2021-09-16 コニカミノルタ株式会社 ワークの表面検査装置、表面検査システム、表面検査方法及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4455646A4

Also Published As

Publication number Publication date
EP4455646A1 (en) 2024-10-30
CN118414540A (zh) 2024-07-30
US20250045898A1 (en) 2025-02-06
JPWO2023120243A1 (ja) 2023-06-29
EP4455646A4 (en) 2025-04-16

Similar Documents

Publication Publication Date Title
CA2968843C (en) Defect inspection method and apparatus therefor
EP3060902B1 (en) Defect inspection system and method
US10267747B2 (en) Surface defect inspecting device and method for steel sheets
JP2014066657A (ja) 自動車車体の表面検査装置および表面検査方法
JP2023151945A (ja) 検査システムおよび検査方法
JP2018146442A (ja) 検査装置、検査システム及び物品の製造方法
Zhang et al. Defect inspection of coated automobile roofs using a single camera
JP2009204388A (ja) 欠陥検査方法
JP2021139817A (ja) ワークの表面検査装置、表面検査システム、表面検査方法及びプログラム
JP2019207114A (ja) ダル仕上げ材表面の良否判定方法及び良否判定装置
WO2023120243A1 (ja) 表面検査装置、表面検査方法、欠陥自動修理システム及びプログラム
JP5605010B2 (ja) 表面検査方法
JP4760029B2 (ja) 欠陥検査方法および欠陥検査装置
JP4322230B2 (ja) 表面欠陥検査装置及び表面欠陥検査方法
US10410336B2 (en) Inspection device, storage medium, and program
JP6373743B2 (ja) 面の評価方法および面の評価装置
WO2021049326A1 (ja) 表面欠陥判別装置、外観検査装置及びプログラム
JP2009139209A (ja) 欠陥検査方法
JP2000136917A (ja) 成形品の表面観察方法及びこれに用いる照明装置
JP4269423B2 (ja) 表面検査装置及び表面検査方法
US7321679B2 (en) Machine for inspecting glass bottles
JP3661466B2 (ja) 塗装ムラ検査装置および方法
JP2016109532A5 (ja)
KR102117697B1 (ko) 표면검사 장치 및 방법
JP7242418B2 (ja) 表面検査方法とその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023569310

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18719976

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280083390.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022910953

Country of ref document: EP

Effective date: 20240722