[go: up one dir, main page]

WO2023188995A1 - Vehicle and server - Google Patents

Vehicle and server Download PDF

Info

Publication number
WO2023188995A1
WO2023188995A1 PCT/JP2023/005975 JP2023005975W WO2023188995A1 WO 2023188995 A1 WO2023188995 A1 WO 2023188995A1 JP 2023005975 W JP2023005975 W JP 2023005975W WO 2023188995 A1 WO2023188995 A1 WO 2023188995A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
detection data
server
unit
communication unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2023/005975
Other languages
French (fr)
Japanese (ja)
Inventor
陽夫 小宮山
光洋 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SoftBank Corp
Original Assignee
SoftBank Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SoftBank Corp filed Critical SoftBank Corp
Priority to US18/849,659 priority Critical patent/US20250166496A1/en
Priority to EP23779025.8A priority patent/EP4510105A4/en
Publication of WO2023188995A1 publication Critical patent/WO2023188995A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096725Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096733Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place
    • G08G1/096741Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place where the source of the transmitted information selects which information to transmit to each vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096775Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information

Definitions

  • the present invention relates to a vehicle and a server.
  • Patent Document 1 describes a step of generating a digital twin of a vehicle, and a step of receiving digital data recorded by sensors and describing the state of the vehicle existing in the real world and the behavior of the vehicle traveling in the real world.
  • a method is described that includes updating a digital twin of a vehicle based on digital data so that the digital twin is consistent with state and behavior.
  • the more accurate the state of the vehicle to be reproduced the more real-time information about the state of the vehicle required by the server that generates the virtual space.
  • the reproduction accuracy increases, the amount of communication between the vehicle and the server increases, and there is a possibility that sufficient data cannot be sent to the server.
  • the accuracy of the vehicle state reproduced in the virtual space will decrease.
  • a vehicle includes a plurality of sensors, an acquisition unit that acquires detection data from the plurality of sensors, and at least one of the detection data acquired by the acquisition unit.
  • a communication unit that transmits the detection data to a server that predicts the future state of the vehicle using a learned model constructed by machine learning, and receives behavior instructions based on the prediction from the server; After transmitting the detection data, the communication unit transmits the next detection data based on a determination result indicating whether or not the next detection data can be transmitted.
  • a server provides a server that includes a plurality of sensors and an acquisition unit that acquires detection data from the plurality of sensors.
  • a communication unit that receives the output detection data; and a communication unit that predicts the future state of the vehicle based on the detection data received by the communication unit using a learned model constructed by machine learning, and uses the prediction result as prediction data.
  • an execution unit that performs a simulation regarding the traffic situation based on the received detection data and traffic data of traffic participants, and the communication unit, after receiving the detection data, The next detection data is received according to a result of determining whether or not the vehicle can transmit the next detection data.
  • FIG. 1 is a block diagram showing a digital twin system configured by a vehicle and a server according to an embodiment of one aspect of the present invention.
  • FIG. 2 is a block diagram showing the functional configuration of a vehicle included in the system.
  • FIG. 2 is a perspective view showing the vehicle and sensors included in the vehicle.
  • FIG. 2 is a block diagram showing the functional configuration of a server according to an embodiment.
  • FIG. 3 is a diagram showing a trained model used for prediction by the system. It is a time chart showing the operation of the digital twin system according to the embodiment.
  • FIG. 3 is a diagram illustrating some of the effects of the present invention.
  • FIG. 1 is a block diagram showing a digital twin system 100.
  • FIG. 2 is a block diagram showing the functional configuration of vehicle 101.
  • FIG. 3 is a diagram showing a trained model that the system 100 uses for prediction.
  • FIG. 4 is a perspective view showing the vehicle 101 and sensors included in the vehicle 101.
  • FIG. 5 is a block diagram showing the functional configuration of the server 102.
  • the digital twin system 100 reproduces a digital twin indicating the state of the vehicle 101 in a virtual space.
  • the digital twin system 100 includes a plurality of servers 101 and a server 102. These are connected to each other via a communication network N.
  • the vehicle 101 includes a plurality of types of sensors S, a vehicle-side control section 1, a vehicle-side communication section 2 (communication section), and a display section 3.
  • the vehicle-side communication unit 2 is connected to other devices (for example, a server 102 described later, a terminal device owned or attached to a traffic participant other than the vehicle 101 (pedestrian, person riding a bicycle), a drone, installed on the road) various data, signals, etc. are transmitted and received by wire or wirelessly with the road camera C installed on the road, the road sensor S9 installed on the road, etc.
  • the vehicle-side communication unit 2 according to this embodiment is composed of a communication module.
  • Display section 3 The display unit 3 is provided at a position in the vehicle 101 that is visible to the driver. Further, the display unit 3 displays a screen based on a signal from the vehicle-side control unit 1.
  • the vehicle-side control unit 1 includes an acquisition unit 11, a determination unit 12, a first transmission control unit 13, a first reception control unit 14, a determination unit 15, and a second transmission control unit. section 16 and an output control section 17.
  • the acquisition unit 11 according to the present embodiment acquires detection data D1 from a plurality of types of sensors S, respectively. Further, the acquisition unit 11 according to the present embodiment acquires detection data D1 from each sensor S via an input IF (not shown) to which each sensor S is connected. Further, the acquisition unit 11 according to the present embodiment acquires detection data D1 from other devices (road camera C, road sensor S9, etc.). The acquisition unit 11 according to the present embodiment acquires detection data D1 from another device via the vehicle-side communication unit 2. Further, the acquisition unit 11 according to the present embodiment repeatedly acquires various detection data D1 every time a predetermined time (for example, within a range of 50 to 150 msec) has elapsed. The predetermined time can be set to any length.
  • a predetermined time for example, within a range of 50 to 150 msec
  • the sensors S included in the vehicle 101 include, for example, a position (distance/angle) sensor S1, a speed sensor S2, an acceleration sensor S3, a pressure sensor S4, a temperature sensor S5, a force (torque) sensor S6, and a flow rate sensor as shown in FIG.
  • the gas sensor S7 includes at least one of a gas sensor S7 and a gas sensor S8.
  • the position (distance/angle) sensor S1 includes a sensor S11 that detects the distance from an object in front, a sensor S12 that detects the distance from an object in the rear, a sensor S13 that detects the rotation angle of the steering wheel, and a throttle valve.
  • the sensor S14 detects the inclination angle of the accelerator pedal
  • the sensor S15 detects the inclination angle of the accelerator pedal
  • the sensor S16 detects the inclination angle of the brake pedal.
  • the speed sensor S2 includes a sensor S21 that detects the rotational speed of the wheel, a sensor S22 that detects the speed of the crankshaft, a sensor S23 that detects the speed of the camshaft, and a sensor S24 that detects the injection speed of the injection pump in the diesel engine. Contains at least one of them.
  • the acceleration sensor S3 detects acceleration (impact) acting on the vehicle body.
  • the pressure sensors S4 include a sensor S41 for detecting tire air pressure, a sensor S42 for detecting brake pressure, a sensor S43 for detecting hydraulic reservoir pressure in power steering, a sensor S44 for detecting suction pressure, a sensor S45 for detecting filling pressure, and a sensor S45 for detecting fuel pressure. , a sensor S47 that detects refrigerant pressure in an air conditioner, and a sensor S48 that detects modulated pressure in an automatic transmission.
  • the temperature sensor S5 includes a sensor S51 for detecting tire temperature, a sensor S52 for detecting supply air temperature, a sensor S53 for detecting ambient temperature, a sensor S54 for detecting internal temperature, a sensor S55 for detecting evaporator temperature in air conditioning, and a sensor S55 for detecting coolant temperature. and a sensor S57 that detects engine oil temperature.
  • the force (torque) sensor S6 includes a sensor S61 that detects the force of pressing the pedal, a sensor S62 that detects the weight of the occupant, a sensor S63 that detects the torque acting on the drive shaft, and a sensor S63 that detects the torque acting on the steering wheel. Contains at least one of S64.
  • the flow meter S7 includes at least one of a sensor S71 that detects the flow rate of fuel and the amount of fuel supplied to the engine, and a sensor S72 that detects the amount of air sucked into the engine.
  • the gas sensor S8 includes at least one of a sensor S81 that detects the composition of exhaust gas and a sensor S82 that detects harmful substances contained in the supplied air.
  • the acquisition unit 11 may be configured to acquire the detection data D1 from a plurality of vehicles 101, respectively. Further, the acquisition unit 11 may acquire the detection data D1 (once stored in the storage device) from the vehicle 101 via a storage device (not shown). Further, the acquisition unit 11 may acquire the detection data D1 not through the vehicle-side communication unit 2 but through a recording medium or the like. Further, the acquisition unit 11 may acquire the detection data D1 from a traffic participant other than the vehicle 101, a drone, or the like. Furthermore, as shown in FIG. 2, the acquisition unit 11 may acquire the detection data D1 from at least one of the road camera C and the road sensor S9 via the vehicle-side communication unit 2.
  • the acquisition unit 11 may acquire route information set in the navigation system of the vehicle 101 or the terminal device as the detection data D1. Further, the acquisition unit 11 may be configured to acquire an image taken by a drive recorder or a rear camera included in the vehicle 101 as the detection data D1. Further, the acquisition unit 11 may be configured to acquire information (driver's drowsiness, etc.) determined by the vehicle 101 based on the detection data D1 as the detection data D1.
  • the determination unit 12 determines whether or not the detection data D1 can be transmitted. By providing the vehicle 101 with such a determination unit 12, determination can be made quickly.
  • the determination unit 12 determines whether or not the future predicted by the server 102 (described later) will be reached, as whether or not information can be transmitted. "Reaching the future” may refer to the time just before the future (for example, several seconds ago), or may refer to actually reaching the future.
  • the determining unit 12 may include a timer function, and may be configured to use this function to determine whether or not the above-mentioned future will be reached.
  • the determination unit 12 determines that the future has been reached based on the instruction from the server 102, and transmits the usage information. Also good. Cases in which usage information can be specified using information from sources other than the vehicle 101 include, for example, cases in which the server 102 can directly acquire detection data D1 such as position information and speed of the vehicle 101 from the road camera C, road sensor S9, etc. . Further, the determination unit 12 according to the present embodiment repeatedly performs such determination.
  • the first transmission control unit 13 transmits at least a portion of the detection data D1 acquired by the acquisition unit 11 (for example, only the detection data D1 determined to be transmittable by the determination unit 12) to the server 102. Further, the first transmission control section 13 controls the vehicle-side communication section 2 based on the determination result of the determination section 12. Thereby, the vehicle-side communication unit 2 wirelessly transmits at least a portion of the detection data D1 to the server 102 when the determination unit 12 determines that the predicted future will be reached.
  • the determination unit 12 repeatedly performs determination. Therefore, after transmitting the detection data D1, the vehicle-side communication unit 2 according to the present embodiment wirelessly transmits the next detection data D1 based on the determination result indicating whether or not the next detection data D1 can be transmitted. I will do it.
  • the determination unit 12 determines whether or not the predicted future will be reached, as whether or not it is possible to transmit the information. Therefore, the vehicle-side communication unit 2 according to the present embodiment wirelessly transmits the detection data D1 to the server 102 when the determination unit 12 determines that the predicted future will be reached. By doing so, there is no need to transmit data to the server 102 until the predicted future is reached, so the amount of communication between the vehicle 101 and the server 102 can be reduced.
  • the first transmission control unit 13 may control the vehicle-side communication unit 2 to stop transmitting the detection data D1. good.
  • the first reception control unit 14 controls the vehicle-side communication unit 2 to receive behavior instructions based on the prediction from the server 102.
  • the behavior instruction indicates, for example, the future position, speed, acceleration, etc. of the vehicle 101.
  • the first reception control unit 14 controls the vehicle-side communication unit 2 to receive the simulation result (digital twin) from the server 102.
  • the digital twin mentioned here includes both the meaning of performing a simulation on the server 102 and the fact that the simulation and the simulation results are fed back to the vehicle 101.
  • the determining unit 15 determines whether or not it is possible to drive based on the behavior instruction received by the vehicle-side communication unit 2. Specifically, the determination unit 15 compares the content of the behavior instruction with the current state of the vehicle 101 based on the immediately acquired detection data D1, and determines whether the behavior instruction is met when the future arrives. Judge whether the robot can reach the desired position, reach the speed specified by the behavior instructions (lower the speed), etc.
  • the second transmission control unit 16 controls the vehicle-side communication unit 2 based on the determination result of the determination unit 15. Thereby, the vehicle-side communication unit 2 transmits the detection data D1 to the server 102 when the determination unit 15 determines that driving based on the behavior instruction is not possible.
  • the output control unit 17 outputs the received behavior instruction.
  • the output control unit 17 controls the display unit 3 to display behavior instructions. Further, the output control unit 17 controls the display unit 3 to display the simulation results received from the server 102. Note that the output control unit 17 may be configured to control a speaker (not shown) to output audio.
  • the vehicle 101 may include a driving control section instead of the display section 3 and the output control section 17 or in addition to the display section 3 and the output control section 17.
  • the driving control unit automatically controls the operation of at least a portion of the vehicle 101 based on the simulation results received from the server 102. In this way, traffic information is provided to the driving control unit more quickly. For this reason, the operation control unit can operate with higher safety.
  • the vehicle-side control unit 1 may include a comparison unit that compares the future state based on the behavior instruction received from the server 102 and the current state based on the detection data D1 acquired by the acquisition unit 11. .
  • the determination unit 12 of the vehicle 101 determines whether an error greater than a threshold value has occurred between the future state based on the behavior instruction received from the server 102 and the current state based on the detection data D1 acquired by the acquisition unit 11. It may be configured to determine whether or not the usage information can be transmitted.
  • the server 102 predicts the future state of the vehicle 101 by inputting the detection data D1.
  • the server 102 includes a server-side control section 4, a server-side communication section 5, and a storage section 6.
  • the server-side communication unit 5 exchanges various data and various signals with other devices (for example, the vehicle 101, a terminal device owned by a traffic participant other than the vehicle 101, a drone, a road camera C, a road sensor S9, etc.). etc., can be sent and received by wire or wirelessly.
  • the server-side communication unit 5 according to this embodiment is composed of a communication module.
  • the storage unit 6 stores a learned model 61.
  • the trained model 61 according to this embodiment is configured to generate prediction data D2 based on a plurality of detection data D1.
  • the detection data D1 includes advance information D11 that is set before driving, event information D12 that occurs when an event occurs, and update information D13 that is periodically updated.
  • the prior information D11 includes, for example, route information of a navigation system.
  • the event information D12 includes, for example, braking information regarding braking of the vehicle 101.
  • the braking information includes, for example, steering information indicating that the steering wheel has been operated, brake information indicating that the brake has been depressed, and turn signal information indicating that the blinker has been blinked.
  • the update information D13 includes, for example, the position of the vehicle 101, the speed of the vehicle 101, the acceleration/deceleration of the vehicle 101, and the like.
  • the update information D13 may be from the sensor S of the vehicle 101, or may be from the road camera C or the road sensor S9.
  • the prediction data D2 includes, for example, future traffic information (eg, position, etc.) of the vehicle 101.
  • the learned model 61 includes previously obtained detection data D1 and traffic information obtained when the detection data D1 was obtained or in a situation similar to when the detection data D1 was obtained. It was constructed using machine learning (for example, deep learning) using the set of as training data. Note that the learned model 61 may be configured to generate other prediction data D2 that is a candidate, different from the prediction data D2.
  • the server-side control unit 4 includes a second reception control unit 41, a prediction unit 42, an execution unit 43, and a third transmission control unit 44.
  • the second reception control unit 41 controls the server side communication unit 5 so that the server side communication unit 5 receives the detection data D1 from the vehicle 101. Further, the second reception control unit 41 according to the present embodiment controls the server side communication unit 5 to receive the detection data D1 from the road camera C and the road sensor S9. As described above, after wirelessly transmitting the detection data D1, the vehicle-side communication unit 2 of the vehicle 101 according to the present embodiment wirelessly transmits the next detection data D1 according to the determination result that the next detection data D1 is to be transmitted. Send by. Therefore, after receiving the detection data D1, the second reception control unit 41 causes the vehicle 101 to wirelessly receive the next detection data D1 transmitted according to the determination result that the vehicle 101 transmits the next detection data D1. Controls the communication section 2. Therefore, after receiving the detection data D1, the server side communication unit 5 receives the next detection data D1.
  • the prediction unit 42 uses the learned model 61 to predict the future state of the vehicle 101 based on the detection data D1, and outputs the prediction result as prediction data D2.
  • the future refers to, for example, the time after the first predetermined time from the time when the server 102 acquired the detection data D1.
  • the first predetermined time can be set to any length that exceeds the acquisition cycle of the detection data D1 (for example, within a range of 500 to 700 msec).
  • the first predetermined time may include the time from when the server 102 transmits the prediction data D2 until the vehicle 101 receives it.
  • the prediction unit 42 uses the learned model 61 stored in the storage unit 6 to predict the future.
  • the prediction data D2 includes, for example, the future position of the vehicle.
  • the prediction unit 42 may output prediction data D2 with a temporal range instead of prediction data D2 indicating the state at a certain moment in the future. Further, the prediction unit 42 may request the vehicle 101 to transmit the detection data D1 for a new prediction immediately before the predicted future arrives. Further, the prediction unit 42 may be configured to output prediction data D2 having a spatiotemporal range as the prediction data D2 indicating the state at a certain moment in the future.
  • the execution unit 43 performs a simulation regarding the traffic situation based on the detection data D1 and traffic data of traffic participants around the vehicle 101, and generates a behavior instruction based on the simulation result.
  • the traffic data is, for example, various data transmitted from a terminal device owned or attached to a traffic participant, a drone, a road camera C installed on the road, a road sensor S9 installed on the road, and the like.
  • the simulation results may include not only information regarding the vehicle 101 but also information regarding the surrounding environment of the vehicle 101 (for example, information on other traffic participants, etc.).
  • the execution unit 43 may perform the simulation based on this detection data D1 instead of the usage information of the vehicle 101.
  • the third transmission control unit 44 controls the server-side communication unit 5 when the execution unit 43 performs the simulation.
  • the server-side communication unit 5 wirelessly transmits the behavior instruction generated by the execution unit 43 to at least one of the vehicle 101 and the terminal device owned by the traffic participant.
  • the occupants of the vehicle 101 can see the simulation results displayed on the display unit 3 (the display unit of the terminal device) and see what kind of situation they may be placed in in the future. You can find out if there is.
  • the occupants of the vehicle 101 (traffic participants) can drive (move) with high safety while being aware of the informed situation. This also makes cities and human settlements safer. This will contribute to achieving Goal 11 of the Sustainable Development Goals (SDGs), ⁇ Creating sustainable cities.''
  • the determination unit 12 of the vehicle 101 determines whether or not an error greater than a threshold has occurred between the future state based on the behavior instruction received from the server 102 and the current state based on the detection data D1 acquired by the acquisition unit 11.
  • the learned model 61 uses relatively fewer types of detection data D1 (for example, update information D13 and map information D14) than those described above.
  • the prediction data D2 may be generated based on the prediction data D2. Further, in that case, the learned model 61 may be configured to predict the state of the vehicle 101 in the relatively near future.
  • the relatively near future refers to, for example, a time a second predetermined time after the time when the server 102 acquires the detection data D1.
  • the second predetermined time can be set to an arbitrary length that exceeds the acquisition cycle of the detection data D1 but does not exceed the first predetermined time (for example, within a range of 350 to 450 msec).
  • the second predetermined time may include the time from when the server 102 transmits the prediction data D2 until the vehicle 101 receives it.
  • the state of the vehicle 101 in the near future output by the learned model 61 becomes a predicted value of the detection data D1 after a second predetermined time corresponding to the input detection data D1.
  • the digital twin system 100 includes a vehicle that has a function to output detection data D1 but does not have a function to obtain simulation results, and a vehicle that does not have a function to output detection data D1 but obtains simulation results.
  • the vehicle may include at least one of the following vehicles.
  • the vehicle 101 transmits detection data D1 as shown in FIG. 6 (T11).
  • the predetermined events include setting route information in the navigation system, various sensors S included in the vehicle 101 generating detection data D1, and the like.
  • communication with the server 102 is repeated thereafter (T12, T13, etc.), but after transmitting the detection data D1 at time T11, the vehicle 101 returns to the predicted future (T1t).
  • the detection data D1 is not transmitted until it is determined that the detection data D1 has arrived.
  • the server 102 that has received the detection data D1 uses the learned model 61 to output prediction data D2 indicating the state of the vehicle 101 in the future (T2t). Then, the server 102 performs a simulation based on the output prediction data D2, and generates a behavior instruction that instructs the state of the vehicle 101 in the future (at time T1t). Then, the server 102 transmits the generated behavior instruction to the vehicle 101.
  • the vehicle 101 that has received the behavior instruction determines whether or not it is possible to travel based on the behavior instruction, outputs the behavior instruction, etc. Furthermore, when the vehicle 101 reaches the previously predicted future (T1t) (here, at the time (T21) immediately before the previously predicted future (T1t)), the vehicle 101 again transmits the detection data D1 to the server. 102 (T21). After transmitting the detection data D1 at time T21, the vehicle 101 does not transmit the detection data D1 until it determines that it will reach the predicted future (T2t).
  • the server 102 which has received the detection data D1, uses the learned model 61 to output prediction data D2 indicating the state of the vehicle 101 in the future (T2t). Then, the server 102 performs a simulation based on the output prediction data D2, and generates a behavior instruction that instructs the state of the vehicle 101 in the future (at time T2t). Then, the server 102 transmits the generated behavior instruction to the vehicle 101. Thereafter, the vehicle 101 and the server 102 repeat the operations described above every time they reach the previously predicted future (T31). As a result, while conventionally data was transmitted periodically as shown in the upper part of FIG. The detection data D1 will be transmitted at longer intervals.
  • the determination unit 12 of the vehicle 101 determines whether an error greater than a threshold value has occurred between the future state (for example, the time after the first predetermined time from the time when the server 102 acquired the above-mentioned detection data D1) and the current state. If configured to determine whether or not the digital twin system 100 further operates as follows.
  • the vehicle 101 that has received the behavior instruction acquires detection data D1 every time a predetermined period of time has elapsed. Then, it is repeatedly determined whether an error equal to or greater than a threshold value has occurred between the future state based on the behavior instruction received from the server 102 and the current state based on the detection data D1 acquired by the acquisition unit 11. If it is determined that an error greater than the threshold value has occurred, the vehicle 101 transmits the detection data D1 to the server 102 without waiting for the arrival of the next transmission time (T21) of the detection data D1.
  • the server 102 that has received the detection data D1 uses the learned model 61 to output the predicted data D2 after the second predetermined time (350 to 450 msec) described above. Then, the server 102 performs a simulation based on the output prediction data D2, and generates a behavior instruction that instructs the state of the vehicle 101 after a second predetermined period of time. Then, the server 102 transmits the generated behavior instruction to the vehicle 101.
  • the vehicle 101 that has received the behavior instruction determines whether or not it is possible to travel based on the behavior instruction, outputs the behavior instruction, etc.
  • the vehicle 101 that has received the behavior instruction determines whether an error greater than a threshold value has occurred between the future state based on the behavior instruction received from the server 102 and the current state based on the detection data D1 acquired by the acquisition unit 11. It is repeatedly determined whether or not. Then, when the state in which it is determined that no error greater than the threshold value has occurred continues for a second predetermined period of time, the vehicle 101 returns the transmission operation of the detection data D1 to normal. That is, the vehicle 101 returns to the operation of transmitting the detection data D1 to the server 102 when the second predetermined time has elapsed after receiving the behavior instruction.
  • the predicted data D2 outputted by the server 102 that received the detected data D1 also returns to the predicted data D2 after the first predetermined time (for example, 600 msec) described above.
  • the vehicle 101 detects the data without waiting for the arrival of the transmission time of the next detection data D1 (after the second predetermined time). Data D1 is sent to the server 102.
  • the server 102 which has received the detection data D1, uses the learned model 61 to output predicted data D2 after a third predetermined time period (for example, within a range of 200 to 300 msec) that is shorter than the second predetermined time period.
  • the third predetermined time may be longer than the acquisition cycle of the detection data D1.
  • the third predetermined time may include the time from when the server 102 transmits the prediction data D2 until the vehicle 101 receives it. Then, the server 102 performs a simulation based on the output prediction data D2, and generates a behavior instruction that instructs the state of the vehicle 101 after a third predetermined period of time. Then, the server 102 transmits the generated behavior instruction to the vehicle 101.
  • the vehicle 101 that has received the behavior instruction determines whether an error greater than a threshold value has occurred between the future state based on the behavior instruction received from the server 102 and the current state based on the detection data D1 acquired by the acquisition unit 11. is repeatedly determined. Then, when the state in which it is determined that no error greater than the threshold value has occurred continues for a third predetermined period of time, the vehicle 101 returns to the normal transmission operation of the detection data D1 after receiving the next behavior instruction. Then, the predicted data D2 outputted by the server 102 that received the detected data D1 also returns to the predicted data D2 after the second predetermined time (350 to 450 msec) described above.
  • the vehicle 101 detects the data without waiting for the transmission time of the next detection data D1 (after the third predetermined time). Data D1 is sent to the server 102. Thereafter, the vehicle 101 and the server 102 repeat the operations described above.
  • the amount of communication between the vehicle 101 and the server 102 is reduced, and when an unexpected situation occurs in the vehicle 101, or when an unexpected situation occurs, the amount of communication between the vehicle 101 and the server 102 is reduced. If this continues, the amount of communication will increase somewhat, but the server 102 will be able to grasp the status of the vehicle 101 in more real time.
  • the server 102 since the detection data D1 is transmitted to the server 102 and the future state of the vehicle 101 is predicted on the server 102 side, the server 102 has a sufficient amount of detection data. Based on D1, it is possible to predict the distant future with higher accuracy and generate accurate behavior instructions. Furthermore, by doing so, there is no need to transmit data to the server 102 until the predicted future is reached, so the amount of communication between the vehicle 101 and the server 102 can be reduced. As a result, in the digital twin system 100 that includes the vehicle 101 and the server 102 that generates the digital twin of the vehicle 101, the amount of communication between the vehicle 101 and the server 102 can be reduced without reducing the accuracy of the digital twin. be able to.
  • each of the control blocks described above can also be realized by a logic circuit.
  • a logic circuit for example, an integrated circuit in which a logic circuit functioning as each of the control blocks described above is formed is also included in the scope of the present invention.
  • the functions of the vehicle 101 and the server 102 are programs for making a computer function as the devices, and each control block of the device (in particular, the vehicle-side control unit 1, the server Each unit included in the side control unit 4) can be realized by a program for causing a computer to function.
  • the device includes a computer having at least one control device (for example, a processor) and at least one storage device (for example, a memory) as hardware for executing the program.
  • the above program may be recorded on one or more computer-readable recording media instead of temporary. This recording medium may or may not be included in the above device. In the latter case, the program may be supplied to the device via any transmission medium, wired or wireless.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)

Abstract

In the present invention, a digital twin system comprises a vehicle and a server that generates a digital twin of the vehicle, and the digital twin system realizes a reduction in communication volume between the vehicle and the server without reducing the accuracy of the digital twin. A vehicle (101) comprises: a plurality of sensors (S); an acquisition unit (11) that acquires detection data from each of the plurality of sensors; and a communication unit (2) that transmits at least a portion of the acquired detection data to a server (102) which predicts the future state of the vehicle through input of the detection data, and that receives action instructions based on the prediction from the server. Upon transmitting the detection data, the communication unit transmits the subsequent detection data on the basis of determination results indicating whether the subsequent detection data can be transmitted.

Description

車両およびサーバVehicles and servers

 本発明は、車両およびサーバに関する。 The present invention relates to a vehicle and a server.

 車両が備える各種センサが出力した検知データに基づいて、当該車両の状態を仮想空間において再現するデジタルツインシステムに関する技術が従来知られている。例えば特許文献1には、車両のデジタルツインを生成するステップと、センサによって記録され、現実世界に存在する車両の状態、および現実世界で走行する車両の挙動を記述するデジタルデータを受信するステップと、デジタルツインが状態および挙動と一致するように、デジタルデータに基づいて車両のデジタルツインを更新するステップと、を含む方法について記載されている。 Technology related to a digital twin system that reproduces the state of a vehicle in a virtual space based on detection data output by various sensors included in the vehicle is conventionally known. For example, Patent Document 1 describes a step of generating a digital twin of a vehicle, and a step of receiving digital data recorded by sensors and describing the state of the vehicle existing in the real world and the behavior of the vehicle traveling in the real world. , a method is described that includes updating a digital twin of a vehicle based on digital data so that the digital twin is consistent with state and behavior.

特開2020-013557号公報JP2020-013557A

 ところで、デジタルツインシステムにおいては、再現しようとする車両の状態が高精度になるほど、仮想空間を生成するサーバが必要とする車両の状態に関する情報は、よりリアルタイム性の高いものとなる。しかしながら、上述のような従来技術では、再現精度を高めるほど、車両-サーバ間の通信量が増大してしまい、十分なデータをサーバへ送信できなくなってしまう可能性がある。一方、車両-サーバ間の通信量を抑制しようとすると、仮想空間において再現される車両の状態の精度が低下してしまう。 By the way, in the digital twin system, the more accurate the state of the vehicle to be reproduced, the more real-time information about the state of the vehicle required by the server that generates the virtual space. However, with the above-mentioned conventional technology, as the reproduction accuracy increases, the amount of communication between the vehicle and the server increases, and there is a possibility that sufficient data cannot be sent to the server. On the other hand, if an attempt is made to suppress the amount of communication between the vehicle and the server, the accuracy of the vehicle state reproduced in the virtual space will decrease.

 上記の課題を解決するために、本発明の一態様に係る車両は、複数のセンサと、前記複数のセンサからそれぞれ検知データを取得する取得部と、前記取得部が取得した検知データの少なくとも一部を、前記検知データの入力により車両の未来の状態を、機械学習により構築された学習済モデルを用いて予測するサーバへ送信し、前記サーバから予測に基づく挙動指示を受信する通信部と、を備え、前記通信部は、前記検知データを送信した後、次の前記検知データを送信することの可否を示す判定結果に基づいて次の前記検知データを送信する。 In order to solve the above problems, a vehicle according to one aspect of the present invention includes a plurality of sensors, an acquisition unit that acquires detection data from the plurality of sensors, and at least one of the detection data acquired by the acquisition unit. a communication unit that transmits the detection data to a server that predicts the future state of the vehicle using a learned model constructed by machine learning, and receives behavior instructions based on the prediction from the server; After transmitting the detection data, the communication unit transmits the next detection data based on a determination result indicating whether or not the next detection data can be transmitted.

 上記の課題を解決するために、本発明の他の態様に係るサーバは、複数のセンサと、前記複数のセンサからそれぞれ検知データを取得する取得部と、を備える車両から、前記複数のセンサが出力した検知データを受信する通信部と、前記通信部が受信した検知データに基づいて車両の未来の状態を、機械学習により構築された学習済モデルを用いて予測し、その予測結果を予測データとして出力する予測部と、受信した検知データと、交通参加者の交通データと、に基づいて交通状況に関するシミュレーションを行う実行部と、を備え、前記通信部は、前記検知データを受信した後、前記車両が次の前記検知データを送信することの可否が判定された結果に従い次の前記検知データを受信する。 In order to solve the above-mentioned problem, a server according to another aspect of the present invention provides a server that includes a plurality of sensors and an acquisition unit that acquires detection data from the plurality of sensors. A communication unit that receives the output detection data; and a communication unit that predicts the future state of the vehicle based on the detection data received by the communication unit using a learned model constructed by machine learning, and uses the prediction result as prediction data. and an execution unit that performs a simulation regarding the traffic situation based on the received detection data and traffic data of traffic participants, and the communication unit, after receiving the detection data, The next detection data is received according to a result of determining whether or not the vehicle can transmit the next detection data.

本発明の一態様の実施形態に係る車両およびサーバによって構成されるデジタルツインシステムを示すブロック図である。FIG. 1 is a block diagram showing a digital twin system configured by a vehicle and a server according to an embodiment of one aspect of the present invention. 同システムが備える車両の機能的構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of a vehicle included in the system. 同車両および当該車両が備えるセンサを示す斜視図である。FIG. 2 is a perspective view showing the vehicle and sensors included in the vehicle. 実施形態に係るサーバの機能的構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of a server according to an embodiment. 同システムが予測に用いる学習済モデルを示す図である。FIG. 3 is a diagram showing a trained model used for prediction by the system. 実施形態に係るデジタルツインシステムの動作を示すタイムチャートである。It is a time chart showing the operation of the digital twin system according to the embodiment. 本発明の効果の一部を説明する図である。FIG. 3 is a diagram illustrating some of the effects of the present invention.

 <実施形態>
 まず、本発明の実施形態について、詳細に説明する。図1はデジタルツインシステム100を示すブロック図である。図2は車両101の機能的構成を示すブロック図である。図3は同システム100が予測に用いる学習済モデルを示す図である。図4は同車両101および当該車両101が備えるセンサを示す斜視図である。図5はサーバ102の機能的構成を示すブロック図である。
<Embodiment>
First, embodiments of the present invention will be described in detail. FIG. 1 is a block diagram showing a digital twin system 100. FIG. 2 is a block diagram showing the functional configuration of vehicle 101. FIG. 3 is a diagram showing a trained model that the system 100 uses for prediction. FIG. 4 is a perspective view showing the vehicle 101 and sensors included in the vehicle 101. FIG. 5 is a block diagram showing the functional configuration of the server 102.

 [デジタルツインシステム100の構成]
 デジタルツインシステム100は、仮想空間において車両101の状態を示すデジタルツインを再現するものである。デジタルツインシステム100は、図1に示したように、複数の両101と、サーバ102と、を備えている。これらは、通信ネットワークNを介して互いに接続されている。
[Configuration of digital twin system 100]
The digital twin system 100 reproduces a digital twin indicating the state of the vehicle 101 in a virtual space. As shown in FIG. 1, the digital twin system 100 includes a plurality of servers 101 and a server 102. These are connected to each other via a communication network N.

 〔車両101〕
 車両101は、図2に示したように、複数種類のセンサSと、車両側制御部1と、車両側通信部2(通信部)と、表示部3と、を備える。
[Vehicle 101]
As shown in FIG. 2, the vehicle 101 includes a plurality of types of sensors S, a vehicle-side control section 1, a vehicle-side communication section 2 (communication section), and a display section 3.

 (車両側通信部2)
 車両側通信部2は、他の装置(例えば、後述するサーバ102、車両101以外の交通参加者(歩行者、自転車に乗った人)が所持するまたは取り付けられた端末装置、ドローン、路上に設置された路上カメラC、路上に設置された路上センサS9等)との間で、各種データ、各種信号等を、有線または無線で送受信する。本実施形態に係る車両側通信部2は、通信モジュールで構成されている。
(Vehicle side communication section 2)
The vehicle-side communication unit 2 is connected to other devices (for example, a server 102 described later, a terminal device owned or attached to a traffic participant other than the vehicle 101 (pedestrian, person riding a bicycle), a drone, installed on the road) various data, signals, etc. are transmitted and received by wire or wirelessly with the road camera C installed on the road, the road sensor S9 installed on the road, etc. The vehicle-side communication unit 2 according to this embodiment is composed of a communication module.

 (表示部3)
 表示部3は、車両101における運転者が視認可能な位置に設けられている。また、表示部3は、車両側制御部1からの信号に基づく画面を表示する。
(Display section 3)
The display unit 3 is provided at a position in the vehicle 101 that is visible to the driver. Further, the display unit 3 displays a screen based on a signal from the vehicle-side control unit 1.

 (車両側制御部1)
 車両側制御部1は、図2に示したように、取得部11と、判定部12と、第一送信制御部13と、第一受信制御部14と、判断部15と、第二送信制御部16と、出力制御部17と、を備える。
(Vehicle side control unit 1)
As shown in FIG. 2, the vehicle-side control unit 1 includes an acquisition unit 11, a determination unit 12, a first transmission control unit 13, a first reception control unit 14, a determination unit 15, and a second transmission control unit. section 16 and an output control section 17.

 ・取得部11
 本実施形態に係る取得部11は、複数種類のセンサSからそれぞれ検知データD1を取得する。また、本実施形態に係る取得部11は、各センサSが接続された図示しない入力IFを介して各センサSからの検知データD1を取得する。また、本実施形態に係る取得部11は、他の装置(路上カメラC、路上センサS9等)から、検知データD1を取得する。本実施形態に係る取得部11は、車両側通信部2を介して他の装置からの検知データD1を取得する。また、本実施形態に係る取得部11は、各種検知データD1を、所定時間(例えば50~150msecの範囲内)が経過する度に繰り返し取得する。所定時間は、任意の長さに設定することができる。
- Acquisition unit 11
The acquisition unit 11 according to the present embodiment acquires detection data D1 from a plurality of types of sensors S, respectively. Further, the acquisition unit 11 according to the present embodiment acquires detection data D1 from each sensor S via an input IF (not shown) to which each sensor S is connected. Further, the acquisition unit 11 according to the present embodiment acquires detection data D1 from other devices (road camera C, road sensor S9, etc.). The acquisition unit 11 according to the present embodiment acquires detection data D1 from another device via the vehicle-side communication unit 2. Further, the acquisition unit 11 according to the present embodiment repeatedly acquires various detection data D1 every time a predetermined time (for example, within a range of 50 to 150 msec) has elapsed. The predetermined time can be set to any length.

 車両101が備えるセンサSは、例えば図3に示したような、位置(距離/角度)センサS1、速度センサS2、加速度センサS3、圧力センサS4、温度センサS5、力(トルク)センサS6、流量計S7、およびガスセンサS8の少なくともいずれかを含む。 The sensors S included in the vehicle 101 include, for example, a position (distance/angle) sensor S1, a speed sensor S2, an acceleration sensor S3, a pressure sensor S4, a temperature sensor S5, a force (torque) sensor S6, and a flow rate sensor as shown in FIG. The gas sensor S7 includes at least one of a gas sensor S7 and a gas sensor S8.

 位置(距離/角度)センサS1は、前方に存在する物体からの距離を検知するセンサS11、後方に存在する物体からの距離を検知するセンサS12、ハンドルの回転角度を検知するセンサS13、スロットルバルブの傾斜角を検知するセンサS14、アクセルペダルの傾斜角を検知するセンサS15、およびブレーキペダルの傾斜角を検知するセンサS16の少なくともいずれかを含む。 The position (distance/angle) sensor S1 includes a sensor S11 that detects the distance from an object in front, a sensor S12 that detects the distance from an object in the rear, a sensor S13 that detects the rotation angle of the steering wheel, and a throttle valve. The sensor S14 detects the inclination angle of the accelerator pedal, the sensor S15 detects the inclination angle of the accelerator pedal, and the sensor S16 detects the inclination angle of the brake pedal.

 速度センサS2は、ホイールの回転速度を検知するセンサS21、クランクシャフトの速度を検知するセンサS22、カムシャフトの速度を検知するセンサS23、およびディーゼルエンジンにおける噴射ポンプの噴射速度を検知するセンサS24の少なくともいずれかを含む。 The speed sensor S2 includes a sensor S21 that detects the rotational speed of the wheel, a sensor S22 that detects the speed of the crankshaft, a sensor S23 that detects the speed of the camshaft, and a sensor S24 that detects the injection speed of the injection pump in the diesel engine. Contains at least one of them.

 加速度センサS3は、車体に作用する加速度(衝撃)を検知する。 The acceleration sensor S3 detects acceleration (impact) acting on the vehicle body.

 圧力センサS4は、タイヤ空気圧を検知するセンサS41、ブレーキ圧を検知するセンサS42、パワーステアリングにおける油圧リザーバー圧力を検知するセンサS43、吸引圧力を検知するセンサS44、充填圧力を検知するセンサS45、燃圧を検知するセンサS46、空調における冷媒圧力を検知するセンサS47、およびオートマチックトランスミッションにおける変調圧力を検知するセンサS48の少なくともいずれかを含む。 The pressure sensors S4 include a sensor S41 for detecting tire air pressure, a sensor S42 for detecting brake pressure, a sensor S43 for detecting hydraulic reservoir pressure in power steering, a sensor S44 for detecting suction pressure, a sensor S45 for detecting filling pressure, and a sensor S45 for detecting fuel pressure. , a sensor S47 that detects refrigerant pressure in an air conditioner, and a sensor S48 that detects modulated pressure in an automatic transmission.

 温度センサS5は、タイヤ温度を検知するセンサS51、給気温度を検知するセンサS52、周囲温度を検知するセンサS53、内部温度を検知するセンサS54、空調におけるエバポレータ温度を検知するセンサS55、クーラント温度を検知するセンサS56、エンジンオイル温度を検知するセンサS57、の少なくともいずれかを含む。 The temperature sensor S5 includes a sensor S51 for detecting tire temperature, a sensor S52 for detecting supply air temperature, a sensor S53 for detecting ambient temperature, a sensor S54 for detecting internal temperature, a sensor S55 for detecting evaporator temperature in air conditioning, and a sensor S55 for detecting coolant temperature. and a sensor S57 that detects engine oil temperature.

 力(トルク)センサS6は、ペダルを踏む力を検知するセンサS61、乗員の体重を検知するセンサS62、およびドライブシャフトに作用するトルクを検知するセンサS63、およびハンドルに作用するトルクを検知するセンサS64の少なくともいずれかを含む。 The force (torque) sensor S6 includes a sensor S61 that detects the force of pressing the pedal, a sensor S62 that detects the weight of the occupant, a sensor S63 that detects the torque acting on the drive shaft, and a sensor S63 that detects the torque acting on the steering wheel. Contains at least one of S64.

 流量計S7は、燃料の流量や燃料のエンジンへの供給量を検知するセンサS71、およびエンジンが吸引する空気量を検知するセンサS72の少なくとも一方を含む。 The flow meter S7 includes at least one of a sensor S71 that detects the flow rate of fuel and the amount of fuel supplied to the engine, and a sensor S72 that detects the amount of air sucked into the engine.

 ガスセンサS8は、排気ガスの組成を検知するセンサS81、および供給される空気に含まれる有害物質を検出するセンサS82の少なくとも一方を含む。 The gas sensor S8 includes at least one of a sensor S81 that detects the composition of exhaust gas and a sensor S82 that detects harmful substances contained in the supplied air.

 なお、上記各種センサSは、例えば下記Webページにおいて開示されているように、公知のものである。
・Vehicle sensors functions and types
https://innovationdiscoveries.space/vehicle-sensors-functions-and-types/
・Automotive sensors: the design engineer’s guide
https://www.avnet.com/wps/portal/abacus/solutions/markets/automotive-and-transportation/automotive/communications-and-connectivity/automotive-sensors/
Note that the various sensors S described above are known ones, as disclosed, for example, on the following Web page.
・Vehicle functions and types
https://innovationdiscoveries.space/vehicle-sensors-functions-and-types/
・Automotive sensors: the design engineer's guide
https://www.avnet.com/wps/portal/abacus/solutions/markets/automotive-and-transportation/automotive/communications-and-connectivity/automotive-sensors/

 なお、取得部11は、複数の車両101から検知データD1をそれぞれ取得するようになっていてもよい。また、取得部11は、車両101から図示しない記憶装置を介して(いったん記憶装置に格納された)検知データD1を取得するようになっていてもよい。また、取得部11は、車両側通信部2ではなく、記録媒体等を介して検知データD1を取得するようになっていてもよい。また、取得部11は、車両101以外の交通参加者、ドローン等から検知データD1を取得するようになっていてもよい。また、取得部11は、図2に示したように、路上カメラCおよび路上センサS9の少なくとも一方から、車両側通信部2を介して検知データD1を取得するようになっていてもよい。また、取得部11は、車両101や端末装置のナビゲーションシステムに設定された経路情報を検知データD1として取得するようになっていてもよい。また、取得部11は、車両101が備えるドライブレコーダやリアカメラが撮影した画像を検知データD1として取得するようになっていてもよい。また、取得部11は、検知データD1に基づいて車両101が判断した情報(ドライバの眠気等)を検知データD1として取得するようになっていてもよい。 Note that the acquisition unit 11 may be configured to acquire the detection data D1 from a plurality of vehicles 101, respectively. Further, the acquisition unit 11 may acquire the detection data D1 (once stored in the storage device) from the vehicle 101 via a storage device (not shown). Further, the acquisition unit 11 may acquire the detection data D1 not through the vehicle-side communication unit 2 but through a recording medium or the like. Further, the acquisition unit 11 may acquire the detection data D1 from a traffic participant other than the vehicle 101, a drone, or the like. Furthermore, as shown in FIG. 2, the acquisition unit 11 may acquire the detection data D1 from at least one of the road camera C and the road sensor S9 via the vehicle-side communication unit 2. Further, the acquisition unit 11 may acquire route information set in the navigation system of the vehicle 101 or the terminal device as the detection data D1. Further, the acquisition unit 11 may be configured to acquire an image taken by a drive recorder or a rear camera included in the vehicle 101 as the detection data D1. Further, the acquisition unit 11 may be configured to acquire information (driver's drowsiness, etc.) determined by the vehicle 101 based on the detection data D1 as the detection data D1.

 判定部12は、検知データD1を送信することの可否を判定する。このような判定部12を車両101が備えることにより、判定を迅速に行うことができる。本実施形態に係る判定部12は、後述するサーバ102が予測した未来に到達するか否かを、情報を送信することの可否として判定する。「未来に到達する」には、未来の直前(例えば、数秒前)の時刻になったことを指すこととしてもよいし、実際に未来に到達したことを指すこととしてもよい。判定部12は、タイマの機能を含み、この機能を用いて上記未来に到達するか否かを判定するように構成されていてもよい。また、後述するサーバ102が車両101以外からの情報をもって利用情報を特定できる場合、判定部12は、サーバ102からの指示をもって未来に到達したと判定し、利用情報を送信するようになっていても良い。車両101以外からの情報をもって利用情報を特定できる場合には、例えば、サーバ102が路上カメラC、路上センサS9等から車両101の位置情報・速度等の検知データD1を直接取得できる場合が含まれる。また、本実施形態に係る判定部12は、こうした判定を繰り返し行う。 The determination unit 12 determines whether or not the detection data D1 can be transmitted. By providing the vehicle 101 with such a determination unit 12, determination can be made quickly. The determination unit 12 according to the present embodiment determines whether or not the future predicted by the server 102 (described later) will be reached, as whether or not information can be transmitted. "Reaching the future" may refer to the time just before the future (for example, several seconds ago), or may refer to actually reaching the future. The determining unit 12 may include a timer function, and may be configured to use this function to determine whether or not the above-mentioned future will be reached. Further, if the server 102 (to be described later) can identify the usage information using information from other than the vehicle 101, the determination unit 12 determines that the future has been reached based on the instruction from the server 102, and transmits the usage information. Also good. Cases in which usage information can be specified using information from sources other than the vehicle 101 include, for example, cases in which the server 102 can directly acquire detection data D1 such as position information and speed of the vehicle 101 from the road camera C, road sensor S9, etc. . Further, the determination unit 12 according to the present embodiment repeatedly performs such determination.

 ・第一送信制御部13
 第一送信制御部13は、取得部11が取得した検知データD1の少なくとも一部(例えば、判定部12が送信可と判定した検知データD1のみ)をサーバ102へ送信する。また、第一送信制御部13は、判定部12の判定結果に基づいて車両側通信部2を制御する。これにより、車両側通信部2は、予測した未来に到達すると判定部12が判定した場合に、検知データD1の少なくとも一部をサーバ102へ無線で送信する。
・First transmission control unit 13
The first transmission control unit 13 transmits at least a portion of the detection data D1 acquired by the acquisition unit 11 (for example, only the detection data D1 determined to be transmittable by the determination unit 12) to the server 102. Further, the first transmission control section 13 controls the vehicle-side communication section 2 based on the determination result of the determination section 12. Thereby, the vehicle-side communication unit 2 wirelessly transmits at least a portion of the detection data D1 to the server 102 when the determination unit 12 determines that the predicted future will be reached.

 また、上述したように、本実施形態に係る判定部12は、判定を繰り返し行う。このため、本実施形態に係る車両側通信部2は、検知データD1を送信した後、次の検知データD1を送信することの可否を示す判定結果に基づいて次の検知データD1を無線で送信することになる。 Furthermore, as described above, the determination unit 12 according to the present embodiment repeatedly performs determination. Therefore, after transmitting the detection data D1, the vehicle-side communication unit 2 according to the present embodiment wirelessly transmits the next detection data D1 based on the determination result indicating whether or not the next detection data D1 can be transmitted. I will do it.

 また、上述したように、本実施形態に係る判定部12は、予測した未来に到達するか否かを、情報を送信することの可否として判定する。このため、本実施形態に係る車両側通信部2は、予測した未来に到達すると判定部12が判定した場合に、検知データD1をサーバ102へ無線で送信する。こうすることで、予測した未来に到達するまでの間はサーバ102へデータを送信する必要がなくなるため、車両101-サーバ102間の通信量を低減することができる。なお、サーバ102が路上カメラC、路上センサS9等から検知データD1を直接取得できる場合、第一送信制御部13は、検知データD1の送信を停止するよう車両側通信部2を制御してもよい。 Furthermore, as described above, the determination unit 12 according to the present embodiment determines whether or not the predicted future will be reached, as whether or not it is possible to transmit the information. Therefore, the vehicle-side communication unit 2 according to the present embodiment wirelessly transmits the detection data D1 to the server 102 when the determination unit 12 determines that the predicted future will be reached. By doing so, there is no need to transmit data to the server 102 until the predicted future is reached, so the amount of communication between the vehicle 101 and the server 102 can be reduced. Note that when the server 102 can directly acquire the detection data D1 from the road camera C, the road sensor S9, etc., the first transmission control unit 13 may control the vehicle-side communication unit 2 to stop transmitting the detection data D1. good.

 ・第一受信制御部14
 第一受信制御部14は、サーバ102から予測に基づく挙動指示を受信するよう車両側通信部2を制御する。挙動指示には、例えば、未来の車両101の位置、速度、加速度等を指し示すものである。また、第一受信制御部14は、サーバ102からのシミュレーション結果(デジタルツイン)を受信するよう車両側通信部2を制御する。ここで挙げるデジタルツインには、サーバ102においてシミュレーションを行うことと、シミュレーションを行うことおよびシミュレーションの結果を車両101へフィードバックすること、の両方の意味が含まれる。
・First reception control unit 14
The first reception control unit 14 controls the vehicle-side communication unit 2 to receive behavior instructions based on the prediction from the server 102. The behavior instruction indicates, for example, the future position, speed, acceleration, etc. of the vehicle 101. Further, the first reception control unit 14 controls the vehicle-side communication unit 2 to receive the simulation result (digital twin) from the server 102. The digital twin mentioned here includes both the meaning of performing a simulation on the server 102 and the fact that the simulation and the simulation results are fed back to the vehicle 101.

・判断部15
 判断部15は、車両側通信部2が受信した挙動指示に基づく走行が可能であるか否かを判断する。具体的には、判断部15は、挙動指示の内容と、取得した直後の検知データD1に基づく車両101の現在の状態と、を比較することにより、未来が到達した時点で、挙動指示にあった位置に到達できるか、挙動指示にあった速度に達するか(下げられるか)等を判断する。
Judgment part 15
The determining unit 15 determines whether or not it is possible to drive based on the behavior instruction received by the vehicle-side communication unit 2. Specifically, the determination unit 15 compares the content of the behavior instruction with the current state of the vehicle 101 based on the immediately acquired detection data D1, and determines whether the behavior instruction is met when the future arrives. Judge whether the robot can reach the desired position, reach the speed specified by the behavior instructions (lower the speed), etc.

・第二送信制御部16
 第二送信制御部16は、判断部15の判断結果に基づいて車両側通信部2を制御する。これにより、車両側通信部2は、挙動指示に基づく走行が可能ではないと判断部15が判断した場合に検知データD1をサーバ102へ送信する。
-Second transmission control section 16
The second transmission control unit 16 controls the vehicle-side communication unit 2 based on the determination result of the determination unit 15. Thereby, the vehicle-side communication unit 2 transmits the detection data D1 to the server 102 when the determination unit 15 determines that driving based on the behavior instruction is not possible.

 ・出力制御部17
 出力制御部17は、受信した挙動指示を出力する。本実施形態に係る出力制御部17は、挙動指示を表示するよう表示部3を制御する。また、出力制御部17は、サーバ102から受信したシミュレーション結果を表示するよう表示部3を制御する。なお、出力制御部17は、音声を出力するよう図示しないスピーカを制御するようになっていてもよい。
Output control section 17
The output control unit 17 outputs the received behavior instruction. The output control unit 17 according to this embodiment controls the display unit 3 to display behavior instructions. Further, the output control unit 17 controls the display unit 3 to display the simulation results received from the server 102. Note that the output control unit 17 may be configured to control a speaker (not shown) to output audio.

・その他
 なお、車両101は、表示部3および出力制御部17の代わりに、または表示部3および出力制御部17に加えて、運転制御部を備えていてもよい。運転制御部は、サーバ102から受信したシミュレーション結果に基づいて車両101の少なくとも一部の動作を自動で制御する。このようにすれば、交通情報がより早く運転制御部に提供される。このため、運転制御部はより安全性の高い運転ができる。また、車両側制御部1は、サーバ102から受信した挙動指示に基づく未来の状態と、取得部11が取得した検知データD1に基づく現在の状態と、を比較する比較部を備えていてもよい。その場合、車両101の判定部12は、サーバ102から受信した挙動指示に基づく未来の状態と、取得部11が取得した検知データD1に基づく現在の状態との間に閾値以上の誤差が生じたか否かを、利用情報を送信することの可否として判定するよう構成されていてもよい。
- Others Note that the vehicle 101 may include a driving control section instead of the display section 3 and the output control section 17 or in addition to the display section 3 and the output control section 17. The driving control unit automatically controls the operation of at least a portion of the vehicle 101 based on the simulation results received from the server 102. In this way, traffic information is provided to the driving control unit more quickly. For this reason, the operation control unit can operate with higher safety. Further, the vehicle-side control unit 1 may include a comparison unit that compares the future state based on the behavior instruction received from the server 102 and the current state based on the detection data D1 acquired by the acquisition unit 11. . In that case, the determination unit 12 of the vehicle 101 determines whether an error greater than a threshold value has occurred between the future state based on the behavior instruction received from the server 102 and the current state based on the detection data D1 acquired by the acquisition unit 11. It may be configured to determine whether or not the usage information can be transmitted.

 〔サーバ102〕
 サーバ102は、検知データD1の入力により車両101の未来の状態を予測するものである。サーバ102は、図4に示したように、サーバ側制御部4と、サーバ側通信部5と、記憶部6と、を備えている。
[Server 102]
The server 102 predicts the future state of the vehicle 101 by inputting the detection data D1. As shown in FIG. 4, the server 102 includes a server-side control section 4, a server-side communication section 5, and a storage section 6.

 (サーバ側通信部5)
 サーバ側通信部5は、他の装置(例えば、車両101、車両101以外の交通参加者が所持する端末装置、ドローン、路上カメラC、路上センサS9等)との間で、各種データ、各種信号等を、有線または無線で送受信する。本実施形態に係るサーバ側通信部5は、通信モジュールで構成されている。
(Server side communication department 5)
The server-side communication unit 5 exchanges various data and various signals with other devices (for example, the vehicle 101, a terminal device owned by a traffic participant other than the vehicle 101, a drone, a road camera C, a road sensor S9, etc.). etc., can be sent and received by wire or wirelessly. The server-side communication unit 5 according to this embodiment is composed of a communication module.

 (記憶部6)
 記憶部6は、学習済モデル61を格納している。本実施形態に係る学習済モデル61は、複数の検知データD1に基づいて予測データD2を生成するようになっている。検知データD1には、図5に示したように、走行前に設定される事前情報D11、イベントが発生したときに生じるイベント情報D12、および周期的に更新される更新情報D13が含まれる。事前情報D11には、例えばナビゲーションシステムの経路情報が含まれる。イベント情報D12には、例えば車両101の制動に関する制動情報が含まれる。制動情報には、例えばハンドルを操作したことを示す操舵情報、ブレーキを踏んだことを示すブレーキ情報、およびウインカーを点滅させたことを示すウインカー情報が含まれる。更新情報D13には、例えば車両101の位置、車両101の速度、車両101の加減速等が含まれる。更新情報D13は、車両101のセンサSからのものであってもよいし、路上カメラCや路上センサS9からのものであってもよい。予測データD2には、例えば、車両101の未来の交通情報(例えば、位置等)が含まれる。
(Storage unit 6)
The storage unit 6 stores a learned model 61. The trained model 61 according to this embodiment is configured to generate prediction data D2 based on a plurality of detection data D1. As shown in FIG. 5, the detection data D1 includes advance information D11 that is set before driving, event information D12 that occurs when an event occurs, and update information D13 that is periodically updated. The prior information D11 includes, for example, route information of a navigation system. The event information D12 includes, for example, braking information regarding braking of the vehicle 101. The braking information includes, for example, steering information indicating that the steering wheel has been operated, brake information indicating that the brake has been depressed, and turn signal information indicating that the blinker has been blinked. The update information D13 includes, for example, the position of the vehicle 101, the speed of the vehicle 101, the acceleration/deceleration of the vehicle 101, and the like. The update information D13 may be from the sensor S of the vehicle 101, or may be from the road camera C or the road sensor S9. The prediction data D2 includes, for example, future traffic information (eg, position, etc.) of the vehicle 101.

 本実施形態に係る学習済モデル61は、過去に得られた検知データD1および当該検知データD1が得られたとき、または当該検知データD1が得られたときと類似した状況で得られた交通情報の組を教師データとする機械学習(例えばディープラーニング)により構築されたものとなっている。なお、学習済モデル61は、予測データD2とは別の、候補となる他の予測データD2を生成するようになっていてもよい。 The learned model 61 according to the present embodiment includes previously obtained detection data D1 and traffic information obtained when the detection data D1 was obtained or in a situation similar to when the detection data D1 was obtained. It was constructed using machine learning (for example, deep learning) using the set of as training data. Note that the learned model 61 may be configured to generate other prediction data D2 that is a candidate, different from the prediction data D2.

 (サーバ側制御部4)
 サーバ側制御部4は、第二受信制御部41と、予測部42と、実行部43と、第三送信制御部44と、を備えている。
(Server side control unit 4)
The server-side control unit 4 includes a second reception control unit 41, a prediction unit 42, an execution unit 43, and a third transmission control unit 44.

 ・第二受信制御部41
 第二受信制御部41は、サーバ側通信部5が、上記車両101から、検知データD1を受信するようサーバ側通信部5を制御する。また、本実施形態に係る第二受信制御部41は、路上カメラCや路上センサS9から、検知データD1を受信するようサーバ側通信部5を制御する。上述したように、本実施形態に係る車両101の車両側通信部2は、検知データD1を無線で送信した後、次の検知データD1を送信する旨の判定結果に従い次の検知データD1を無線で送信する。このため、第二受信制御部41は、検知データD1を受信した後、車両101が次の検知データD1を送信する旨の判定結果に従い送信した次の検知データD1を無線で受信するよう車両側通信部2を制御する。このため、サーバ側通信部5は、検知データD1を受信した後、次の検知データD1を受信する。
-Second reception control section 41
The second reception control unit 41 controls the server side communication unit 5 so that the server side communication unit 5 receives the detection data D1 from the vehicle 101. Further, the second reception control unit 41 according to the present embodiment controls the server side communication unit 5 to receive the detection data D1 from the road camera C and the road sensor S9. As described above, after wirelessly transmitting the detection data D1, the vehicle-side communication unit 2 of the vehicle 101 according to the present embodiment wirelessly transmits the next detection data D1 according to the determination result that the next detection data D1 is to be transmitted. Send by. Therefore, after receiving the detection data D1, the second reception control unit 41 causes the vehicle 101 to wirelessly receive the next detection data D1 transmitted according to the determination result that the vehicle 101 transmits the next detection data D1. Controls the communication section 2. Therefore, after receiving the detection data D1, the server side communication unit 5 receives the next detection data D1.

 ・予測部42
 予測部42は、学習済モデル61を用い、検知データD1に基づいて車両101の未来の状態を予測し、その予測結果を予測データD2として出力する。未来は、例えば、検知データD1をサーバ102が取得した時刻から第一所定時間後の時刻を指す。第一所定時間は、検知データD1の取得周期を超える任意の長さ(例えば、500~700msecの範囲内)に設定することができる。第一所定時間には、予測データD2をサーバ102が送信し車両101が受信するまで時間を含めてもよい。予測部42は、記憶部6に格納された学習済モデル61を用いて未来を予測する。予測データD2には、例えば未来の車両の位置等が含まれる。なお、予測部42は、未来のある瞬間の状態を示す予測データD2ではなく、時間的に幅のある予測データD2を出力するようになっていてもよい。また、予測部42は、予測した未来が到達する直前に、新たな予測のために車両101に検知データD1の送信を要求するようになっていてもよい。また、予測部42は、未来のある瞬間の状態を示す予測データD2として、時空間的に幅のある予測データD2を出力するようになっていてもよい。
Prediction unit 42
The prediction unit 42 uses the learned model 61 to predict the future state of the vehicle 101 based on the detection data D1, and outputs the prediction result as prediction data D2. The future refers to, for example, the time after the first predetermined time from the time when the server 102 acquired the detection data D1. The first predetermined time can be set to any length that exceeds the acquisition cycle of the detection data D1 (for example, within a range of 500 to 700 msec). The first predetermined time may include the time from when the server 102 transmits the prediction data D2 until the vehicle 101 receives it. The prediction unit 42 uses the learned model 61 stored in the storage unit 6 to predict the future. The prediction data D2 includes, for example, the future position of the vehicle. Note that the prediction unit 42 may output prediction data D2 with a temporal range instead of prediction data D2 indicating the state at a certain moment in the future. Further, the prediction unit 42 may request the vehicle 101 to transmit the detection data D1 for a new prediction immediately before the predicted future arrives. Further, the prediction unit 42 may be configured to output prediction data D2 having a spatiotemporal range as the prediction data D2 indicating the state at a certain moment in the future.

 ・実行部43
 実行部43は、検知データD1と、車両101の周囲にいる交通参加者の交通データと、に基づいて、交通状況に関するシミュレーションを行い、シミュレーション結果に基づく挙動指示を生成する。交通データは、例えば、交通参加者が所持するまたは取り付けられた端末装置、ドローン、路上に設置された路上カメラC、路上に設置された路上センサS9等から送信されてきた各種データである。なお、シミュレーション結果には、車両101に関する情報だけでなく、車両101の周辺環境に関する情報(例えば、他の交通参加者の情報等)を含めてもよい。また、車両101以外の検知データD1を直接取得できる場合、実行部43は、車両101の利用情報の代わりにこの検知データD1に基づいてシミュレーションを行うようになっていてもよい。
Execution unit 43
The execution unit 43 performs a simulation regarding the traffic situation based on the detection data D1 and traffic data of traffic participants around the vehicle 101, and generates a behavior instruction based on the simulation result. The traffic data is, for example, various data transmitted from a terminal device owned or attached to a traffic participant, a drone, a road camera C installed on the road, a road sensor S9 installed on the road, and the like. Note that the simulation results may include not only information regarding the vehicle 101 but also information regarding the surrounding environment of the vehicle 101 (for example, information on other traffic participants, etc.). Furthermore, if the detection data D1 of a vehicle other than the vehicle 101 can be directly acquired, the execution unit 43 may perform the simulation based on this detection data D1 instead of the usage information of the vehicle 101.

 ・第三送信制御部44
 第三送信制御部44は、実行部43がシミュレーションを行うと、サーバ側通信部5を制御する。これにより、サーバ側通信部5は、実行部43が生成した挙動指示を、車両101および交通参加者が所持する端末装置の少なくとも一方に無線で送信する。こうすることで、車両101の乗員(交通参加者)は、表示部3(端末装置の表示部)に表示されたシミュレーション結果を見ることにより、自身が未来にどのような状況に置かれる可能性があるかを知ることができる。その結果、車両101の乗員(交通参加者)は、知らされた状況を意識した安全性の高い運転(移動)ができる。また、このようにすれば、都市と人間の居住地が安全になる。これにより、持続可能な開発目標(SDGs)の目標11「住み続けられるまちづくりを」の達成に貢献できる。
-Third transmission control section 44
The third transmission control unit 44 controls the server-side communication unit 5 when the execution unit 43 performs the simulation. Thereby, the server-side communication unit 5 wirelessly transmits the behavior instruction generated by the execution unit 43 to at least one of the vehicle 101 and the terminal device owned by the traffic participant. By doing this, the occupants of the vehicle 101 (traffic participants) can see the simulation results displayed on the display unit 3 (the display unit of the terminal device) and see what kind of situation they may be placed in in the future. You can find out if there is. As a result, the occupants of the vehicle 101 (traffic participants) can drive (move) with high safety while being aware of the informed situation. This also makes cities and human settlements safer. This will contribute to achieving Goal 11 of the Sustainable Development Goals (SDGs), ``Creating sustainable cities.''

 (サーバその他)
 車両101の判定部12が、サーバ102から受信した挙動指示に基づく未来の状態と、取得部11が取得した検知データD1に基づく現在の状態との間に閾値以上の誤差が生じたか否かを、利用情報を送信することの可否として判定するよう構成されている場合、学習済モデル61は、上述したよりも相対的に少ない種類の検知データD1(例えば、更新情報D13および地図情報D14)に基づいて予測データD2を生成するよう構成されていてもよい。また、その場合、学習済モデル61は、相対的に近い未来の車両101の状態を予測するよう構成されていてもよい。相対的に近い未来は、例えば、サーバ102が検知データD1を取得した時刻から第二所定時間後の時刻を指す。第二所定時間は、検知データD1の取得周期を超えるが上記第一所定時間を超えない任意の長さ(例えば、350~450msecの範囲内)に設定することができる。また、第二所定時間には、予測データD2をサーバ102が送信し車両101が受信するまでの時間を含めてもよい。この場合、学習済モデル61が出力する近い未来の車両101の状態は、入力された検知データD1に対応する第二所定時間後の検知データD1の予測値となる。
(server and others)
The determination unit 12 of the vehicle 101 determines whether or not an error greater than a threshold has occurred between the future state based on the behavior instruction received from the server 102 and the current state based on the detection data D1 acquired by the acquisition unit 11. , when the learned model 61 is configured to determine whether or not to transmit the usage information, the learned model 61 uses relatively fewer types of detection data D1 (for example, update information D13 and map information D14) than those described above. The prediction data D2 may be generated based on the prediction data D2. Further, in that case, the learned model 61 may be configured to predict the state of the vehicle 101 in the relatively near future. The relatively near future refers to, for example, a time a second predetermined time after the time when the server 102 acquires the detection data D1. The second predetermined time can be set to an arbitrary length that exceeds the acquisition cycle of the detection data D1 but does not exceed the first predetermined time (for example, within a range of 350 to 450 msec). Further, the second predetermined time may include the time from when the server 102 transmits the prediction data D2 until the vehicle 101 receives it. In this case, the state of the vehicle 101 in the near future output by the learned model 61 becomes a predicted value of the detection data D1 after a second predetermined time corresponding to the input detection data D1.

 〔デジタルツインシステム100その他〕
 デジタルツインシステム100は、検知データD1を出力する機能を有しているがシミュレーション結果を取得する機能を有していない車両、および検知データD1を出力する機能を有していないがシミュレーション結果を取得する機能を有している車両の少なくとも一方を含んでいてもよい。
[Digital Twin System 100 Others]
The digital twin system 100 includes a vehicle that has a function to output detection data D1 but does not have a function to obtain simulation results, and a vehicle that does not have a function to output detection data D1 but obtains simulation results. The vehicle may include at least one of the following vehicles.

 [デジタルツインシステム100の動作]
 デジタルツインシステム100を構成する車両101に所定の事象が発生すると、図6に示したように、車両101は、検知データD1を送信する(T11)。所定の事象には、ナビゲーションシステムに経路情報が設定されること、車両101が備える各種センサSが検知データD1を生成すること等が含まれる。従来の車両の場合であれば、その後(T12,T13・・)もサーバ102との通信を繰り返すが、車両101は、時刻T11に検知データD1を送信した後は、予測した未来(T1t)に到達すると判定するまで、検知データD1を送信しない。
[Operation of digital twin system 100]
When a predetermined event occurs in the vehicle 101 constituting the digital twin system 100, the vehicle 101 transmits detection data D1 as shown in FIG. 6 (T11). The predetermined events include setting route information in the navigation system, various sensors S included in the vehicle 101 generating detection data D1, and the like. In the case of a conventional vehicle, communication with the server 102 is repeated thereafter (T12, T13, etc.), but after transmitting the detection data D1 at time T11, the vehicle 101 returns to the predicted future (T1t). The detection data D1 is not transmitted until it is determined that the detection data D1 has arrived.

 検知データD1を受信したサーバ102は、学習済モデル61を用いて未来(T2t)の車両101の状態を示す予測データD2を出力する。そして、サーバ102は、出力した予測データD2に基づいてシミュレーションを行い、未来(時刻T1tにおける)の車両101の状態を指示する挙動指示を生成する。そして、サーバ102は生成した挙動指示を車両101へ送信する。 The server 102 that has received the detection data D1 uses the learned model 61 to output prediction data D2 indicating the state of the vehicle 101 in the future (T2t). Then, the server 102 performs a simulation based on the output prediction data D2, and generates a behavior instruction that instructs the state of the vehicle 101 in the future (at time T1t). Then, the server 102 transmits the generated behavior instruction to the vehicle 101.

 挙動指示を受信した車両101は、挙動指示に基づく走行が可能であるか否かの判断や、挙動指示の出力等を行う。また、車両101は、前回予測した未来(T1t)に到達すると(ここでは、前回予測した未来(T1t)の直前の時刻(T21)になると)、車両101は、再び、検知データD1を、サーバ102へ送信する(T21)。そして、車両101は、時刻T21に検知データD1を送信した後は、予測した未来(T2t)に到達すると判定するまで、検知データD1を送信しない。 The vehicle 101 that has received the behavior instruction determines whether or not it is possible to travel based on the behavior instruction, outputs the behavior instruction, etc. Furthermore, when the vehicle 101 reaches the previously predicted future (T1t) (here, at the time (T21) immediately before the previously predicted future (T1t)), the vehicle 101 again transmits the detection data D1 to the server. 102 (T21). After transmitting the detection data D1 at time T21, the vehicle 101 does not transmit the detection data D1 until it determines that it will reach the predicted future (T2t).

 検知データD1を受信したサーバ102は、学習済モデル61を用いて未来(T2t)の車両101の状態を示す予測データD2を出力する。そして、サーバ102は、出力した予測データD2に基づいてシミュレーションを行い、未来(時刻T2tにおける)の車両101の状態を指示する挙動指示を生成する。そして、サーバ102は生成した挙動指示を車両101へ送信する。以降、車両101およびサーバ102は、前回予測した未来(T31・・)に到達する度に、上述したような動作を繰り返す。その結果、従来は、図7上段に示したように、定期的にデータを送信するようになっていたのに対し、本実施形態に係る車両101は、図7下段に示したように、従来よりも長い間隔をあけて検知データD1を送信することになる。 The server 102, which has received the detection data D1, uses the learned model 61 to output prediction data D2 indicating the state of the vehicle 101 in the future (T2t). Then, the server 102 performs a simulation based on the output prediction data D2, and generates a behavior instruction that instructs the state of the vehicle 101 in the future (at time T2t). Then, the server 102 transmits the generated behavior instruction to the vehicle 101. Thereafter, the vehicle 101 and the server 102 repeat the operations described above every time they reach the previously predicted future (T31...). As a result, while conventionally data was transmitted periodically as shown in the upper part of FIG. The detection data D1 will be transmitted at longer intervals.

 車両101の判定部12が、未来の状態(例えば、上述した検知データD1をサーバ102が取得した時刻から第一所定時間後の時刻)と現在の状態との間に閾値以上の誤差が生じたか否かを判定するよう構成されている場合、デジタルツインシステム100は、更に以下のように動作する。挙動指示を受信した車両101は、所定時間が経過する度に検知データD1を取得する。そして、サーバ102から受信した挙動指示に基づく未来の状態と、取得部11が取得した検知データD1に基づく現在の状態との間に閾値以上の誤差が生じたか否かを繰り返し判定する。そして、閾値以上の誤差が生じたと判定した場合、車両101は、次の検知データD1の送信時刻(T21)の到来を待つことなく検知データD1をサーバ102に送信する。 The determination unit 12 of the vehicle 101 determines whether an error greater than a threshold value has occurred between the future state (for example, the time after the first predetermined time from the time when the server 102 acquired the above-mentioned detection data D1) and the current state. If configured to determine whether or not the digital twin system 100 further operates as follows. The vehicle 101 that has received the behavior instruction acquires detection data D1 every time a predetermined period of time has elapsed. Then, it is repeatedly determined whether an error equal to or greater than a threshold value has occurred between the future state based on the behavior instruction received from the server 102 and the current state based on the detection data D1 acquired by the acquisition unit 11. If it is determined that an error greater than the threshold value has occurred, the vehicle 101 transmits the detection data D1 to the server 102 without waiting for the arrival of the next transmission time (T21) of the detection data D1.

 この場合、検知データD1を受信したサーバ102は、学習済モデル61を用いて上述した第二所定時間(350~450msec)後の予測データD2を出力する。そして、サーバ102は、出力した予測データD2に基づいてシミュレーションを行い、第二所定時間後の車両101の状態を指示する挙動指示を生成する。そして、サーバ102は生成した挙動指示を車両101へ送信する。 In this case, the server 102 that has received the detection data D1 uses the learned model 61 to output the predicted data D2 after the second predetermined time (350 to 450 msec) described above. Then, the server 102 performs a simulation based on the output prediction data D2, and generates a behavior instruction that instructs the state of the vehicle 101 after a second predetermined period of time. Then, the server 102 transmits the generated behavior instruction to the vehicle 101.

 挙動指示を受信した車両101は、挙動指示に基づく走行が可能であるか否かの判断や、挙動指示の出力等を行う。そして、挙動指示を受信した車両101は、サーバ102から受信した挙動指示に基づく未来の状態と、取得部11が取得した検知データD1に基づく現在の状態との間に閾値以上の誤差が生じたか否かを繰り返し判定する。そして、閾値以上の誤差が生じていないと判定される状態が第二所定時間継続された場合、車両101は、検知データD1の送信動作を通常に戻す。すなわち、車両101は、挙動指示を受信してから第二所定時間が経過すると検知データD1をサーバ102へ送信する動作に戻る。そして、検知データD1を受信したサーバ102が出力する予測データD2も、上述した第一所定時間(例えば、600msec)後の予測データD2に戻る。一方、未来の状態と現在の状態の間に閾値以上の誤差が生じたと判定された場合、車両101は、次の検知データD1の送信時刻(第二所定時間後)の到来を待つことなく検知データD1をサーバ102に送信する。 The vehicle 101 that has received the behavior instruction determines whether or not it is possible to travel based on the behavior instruction, outputs the behavior instruction, etc. The vehicle 101 that has received the behavior instruction determines whether an error greater than a threshold value has occurred between the future state based on the behavior instruction received from the server 102 and the current state based on the detection data D1 acquired by the acquisition unit 11. It is repeatedly determined whether or not. Then, when the state in which it is determined that no error greater than the threshold value has occurred continues for a second predetermined period of time, the vehicle 101 returns the transmission operation of the detection data D1 to normal. That is, the vehicle 101 returns to the operation of transmitting the detection data D1 to the server 102 when the second predetermined time has elapsed after receiving the behavior instruction. Then, the predicted data D2 outputted by the server 102 that received the detected data D1 also returns to the predicted data D2 after the first predetermined time (for example, 600 msec) described above. On the other hand, if it is determined that an error equal to or greater than the threshold has occurred between the future state and the current state, the vehicle 101 detects the data without waiting for the arrival of the transmission time of the next detection data D1 (after the second predetermined time). Data D1 is sent to the server 102.

 検知データD1を受信したサーバ102は、学習済モデル61を用いて第二所定時間よりも短い第三所定時間(例えば、200~300msecの範囲内)後の予測データD2を出力する。なお、第三所定時間は、検知データD1の取得周期より長くてもよい。また、第三所定時間には、予測データD2をサーバ102が送信し車両101が受信するまでの時間を含めてもよい。そして、サーバ102は、出力した予測データD2に基づいてシミュレーションを行い、第三所定時間後の車両101の状態を指示する挙動指示を生成する。そして、サーバ102は生成した挙動指示を車両101へ送信する。 The server 102, which has received the detection data D1, uses the learned model 61 to output predicted data D2 after a third predetermined time period (for example, within a range of 200 to 300 msec) that is shorter than the second predetermined time period. Note that the third predetermined time may be longer than the acquisition cycle of the detection data D1. Further, the third predetermined time may include the time from when the server 102 transmits the prediction data D2 until the vehicle 101 receives it. Then, the server 102 performs a simulation based on the output prediction data D2, and generates a behavior instruction that instructs the state of the vehicle 101 after a third predetermined period of time. Then, the server 102 transmits the generated behavior instruction to the vehicle 101.

 挙動指示を受信した車両101は、サーバ102から受信した挙動指示に基づく未来の状態と、取得部11が取得した検知データD1に基づく現在の状態との間に閾値以上の誤差が生じたか否かを繰り返し判定する。そして、閾値以上の誤差が生じていないと判定される状態が第三所定時間継続された場合、車両101は、次の挙動指示を受信した後の検知データD1の送信動作を通常に戻す。そして、検知データD1を受信したサーバ102が出力する予測データD2も、上述した第二所定時間(350~450msec)後の予測データD2に戻る。一方、未来の状態と現在の状態の間に閾値以上の誤差が生じたと判定された場合、車両101は、次の検知データD1の送信時刻(第三所定時間後)の到来を待つことなく検知データD1をサーバ102に送信する。以降、車両101およびサーバ102は、上述したような動作を繰り返す。 The vehicle 101 that has received the behavior instruction determines whether an error greater than a threshold value has occurred between the future state based on the behavior instruction received from the server 102 and the current state based on the detection data D1 acquired by the acquisition unit 11. is repeatedly determined. Then, when the state in which it is determined that no error greater than the threshold value has occurred continues for a third predetermined period of time, the vehicle 101 returns to the normal transmission operation of the detection data D1 after receiving the next behavior instruction. Then, the predicted data D2 outputted by the server 102 that received the detected data D1 also returns to the predicted data D2 after the second predetermined time (350 to 450 msec) described above. On the other hand, if it is determined that an error equal to or greater than the threshold has occurred between the future state and the current state, the vehicle 101 detects the data without waiting for the transmission time of the next detection data D1 (after the third predetermined time). Data D1 is sent to the server 102. Thereafter, the vehicle 101 and the server 102 repeat the operations described above.

 こうすることで、車両101が想定内の状態にある場合は、車両101-サーバ102間の通信量を低減しつつ、車両101に想定外の事態が生じた場合、または想定外の事態が起き続けている場合は、通信量が多少増大することにはなるが、サーバ102が車両101の状態をよりリアルタイムに把握することができる。 By doing this, when the vehicle 101 is in an expected state, the amount of communication between the vehicle 101 and the server 102 is reduced, and when an unexpected situation occurs in the vehicle 101, or when an unexpected situation occurs, the amount of communication between the vehicle 101 and the server 102 is reduced. If this continues, the amount of communication will increase somewhat, but the server 102 will be able to grasp the status of the vehicle 101 in more real time.

 [作用効果]
 以上説明してきた本実施形態に係る車両101によれば、検知データD1をサーバ102へ送信し、未来の車両101の状態をサーバ102側で予測するので、サーバ102は、十分な量の検知データD1に基づいてより遠い未来の予測をより高い精度で行い、正確な挙動指示を生成することができる。また、こうすることで、予測した未来に到達するまでの間はサーバ102へデータを送信する必要がなくなるため、車両101-サーバ102間の通信量を低減することができる。その結果、車両101と、車両101のデジタルツインを生成するサーバ102と、を備えるデジタルツインシステム100において、デジタルツインの精度を落とすことなく、車両101-サーバ102間の通信量の低減を実現することができる。
[Effect]
According to the vehicle 101 according to the present embodiment described above, since the detection data D1 is transmitted to the server 102 and the future state of the vehicle 101 is predicted on the server 102 side, the server 102 has a sufficient amount of detection data. Based on D1, it is possible to predict the distant future with higher accuracy and generate accurate behavior instructions. Furthermore, by doing so, there is no need to transmit data to the server 102 until the predicted future is reached, so the amount of communication between the vehicle 101 and the server 102 can be reduced. As a result, in the digital twin system 100 that includes the vehicle 101 and the server 102 that generates the digital twin of the vehicle 101, the amount of communication between the vehicle 101 and the server 102 can be reduced without reducing the accuracy of the digital twin. be able to.

 <実施形態その他>
 上記各制御ブロックの機能の一部または全部は、論理回路により実現することも可能である。例えば、上記各制御ブロックとして機能する論理回路が形成された集積回路も本発明の範疇に含まれる。この他にも、例えば量子コンピュータにより上記各制御ブロックの機能を実現することも可能である。
<Other embodiments>
Part or all of the functions of each of the control blocks described above can also be realized by a logic circuit. For example, an integrated circuit in which a logic circuit functioning as each of the control blocks described above is formed is also included in the scope of the present invention. In addition to this, it is also possible to realize the functions of each of the control blocks described above using, for example, a quantum computer.

 [ソフトウェアによる実現例]
 上記車両101およびサーバ102(以下、「装置等」と呼ぶ)の機能は、当該装置等としてコンピュータを機能させるためのプログラムであって、当該装置の各制御ブロック(特に車両側制御部1、サーバ側制御部4に含まれる各部)としてコンピュータを機能させるためのプログラムにより実現することができる。この場合、上記装置は、上記プログラムを実行するためのハードウェアとして、少なくとも1つの制御装置(例えばプロセッサ)と少なくとも1つの記憶装置(例えばメモリ)を有するコンピュータを備えている。この制御装置と記憶装置により上記プログラムを実行することにより、上記各実施形態で説明した各機能が実現される。上記プログラムは、一時的ではなく、コンピュータ読み取り可能な、1または複数の記録媒体に記録されていてもよい。この記録媒体は、上記装置が備えていてもよいし、備えていなくてもよい。後者の場合、上記プログラムは、有線または無線の任意の伝送媒体を介して上記装置に供給されてもよい。
[Example of implementation using software]
The functions of the vehicle 101 and the server 102 (hereinafter referred to as "devices, etc.") are programs for making a computer function as the devices, and each control block of the device (in particular, the vehicle-side control unit 1, the server Each unit included in the side control unit 4) can be realized by a program for causing a computer to function. In this case, the device includes a computer having at least one control device (for example, a processor) and at least one storage device (for example, a memory) as hardware for executing the program. By executing the above program using this control device and storage device, each function described in each of the above embodiments is realized. The above program may be recorded on one or more computer-readable recording media instead of temporary. This recording medium may or may not be included in the above device. In the latter case, the program may be supplied to the device via any transmission medium, wired or wireless.

 また、以上説明してきた本発明の各態様によれば、上述した作用効果を奏することにより、持続可能な開発目標(SDGs)の目標9「産業と具術革新の基盤をつくろう」の達成に貢献できる。なお、本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 In addition, according to each aspect of the present invention described above, by achieving the above-mentioned effects, it contributes to the achievement of Goal 9 of the Sustainable Development Goals (SDGs), "Create a foundation for industrial and technological innovation." can. Note that the present invention is not limited to the embodiments described above, and can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. The embodiments are also included in the technical scope of the present invention.

100 デジタルツインシステム
 101 車両
  1 車両側制御部
   11 取得部
   12 判定部
   13 第一送信制御部
   14 第一受信制御部
   15 判断部
   16 第二送信制御部
   17 出力制御部
  2 車両側通信部
  3 表示部
 102 サーバ
  4 サーバ側制御部
   41 第二受信制御部
   42 予測部
   43 実行部
   44 第三送信制御部
  5 サーバ側通信部
  6 記憶部
   61 学習済モデル

 
100 Digital Twin System 101 Vehicle 1 Vehicle-side control section 11 Acquisition section 12 Judgment section 13 First transmission control section 14 First reception control section 15 Judgment section 16 Second transmission control section 17 Output control section 2 Vehicle-side communication section 3 Display section 102 Server 4 Server-side control unit 41 Second reception control unit 42 Prediction unit 43 Execution unit 44 Third transmission control unit 5 Server-side communication unit 6 Storage unit 61 Learned model

Claims (8)

 複数のセンサと、
 前記複数のセンサからそれぞれ検知データを取得する取得部と、
 前記取得部が取得した検知データの少なくとも一部を、前記検知データの入力により車両の未来の状態を、機械学習により構築された学習済モデルを用いて予測するサーバへ送信し、前記サーバから予測に基づく挙動指示を受信する通信部と、を備え、
 前記通信部は、前記検知データを送信した後、次の前記検知データを送信することの可否を示す判定結果に基づいて次の前記検知データを送信する、車両。
multiple sensors and
an acquisition unit that acquires detection data from each of the plurality of sensors;
At least a part of the detection data acquired by the acquisition unit is transmitted to a server that predicts the future state of the vehicle based on the input of the detection data using a trained model constructed by machine learning, and the server predicts the future state of the vehicle. a communication unit that receives behavior instructions based on the
In the vehicle, the communication unit transmits the next detection data based on a determination result indicating whether or not to transmit the next detection data after transmitting the detection data.
 前記通信部が受信した前記挙動指示に基づく走行が可能であるか否かを判断する判断部を備え、
 前記通信部は、前記挙動指示に基づく走行が可能ではないと判断部が判断した場合に前記検知データを送信する、
請求項1に記載の車両。
comprising a determination unit that determines whether or not running is possible based on the behavior instruction received by the communication unit;
The communication unit transmits the detection data when the determination unit determines that running based on the behavior instruction is not possible.
The vehicle according to claim 1.
 前記通信部が受信した前記挙動指示に基づいて車両の少なくとも一部の動作を自動で制御する運転制御部、または前記挙動指示の出力を制御する出力制御部を備える、請求項1または2に記載の車両。 3. The vehicle according to claim 1, further comprising a driving control section that automatically controls the operation of at least a portion of the vehicle based on the behavior instruction received by the communication section, or an output control section that controls output of the behavior instruction. vehicle.  前記検知データを送信することの可否を判定する判定部を更に備える、請求項1~3のいずれか一項に記載の車両。 The vehicle according to any one of claims 1 to 3, further comprising a determination unit that determines whether or not the detection data can be transmitted.  前記判定部は、所定時間後の時刻に到達するか否かを、前記検知データを送信することの可否として判定し、
 前記通信部は、前記所定時間後の時刻に到達すると前記判定部が判定した場合に、前記検知データを前記サーバへ送信する、請求項4に記載の車両。
The determination unit determines whether or not the time arrives after a predetermined time as whether or not the detection data can be transmitted;
The vehicle according to claim 4, wherein the communication unit transmits the detection data to the server when the determination unit determines that a time after the predetermined time has arrived.
 複数のセンサと、前記複数のセンサからそれぞれ検知データを取得する取得部と、を備える車両から、前記複数のセンサが出力した検知データを受信する通信部と、
 前記通信部が受信した検知データに基づいて車両の未来の状態を、機械学習により構築された学習済モデルを用いて予測し、その予測結果を予測データとして出力する予測部と、
 受信した検知データと、交通参加者の交通データと、に基づいて交通状況に関するシミュレーションを行う実行部と、を備え、
 前記通信部は、前記検知データを受信した後、前記車両が次の前記検知データを送信することの可否が判定された結果に従い次の前記検知データを受信する、サーバ。
a communication unit that receives detection data output from the plurality of sensors from a vehicle including a plurality of sensors and an acquisition unit that acquires detection data from the plurality of sensors, respectively;
a prediction unit that predicts the future state of the vehicle based on the detection data received by the communication unit using a learned model constructed by machine learning, and outputs the prediction result as prediction data;
an execution unit that performs a simulation regarding traffic conditions based on the received detection data and traffic data of traffic participants;
The communication unit is a server, wherein after receiving the detection data, the communication unit receives the next detection data according to a result of determining whether or not the vehicle can transmit the next detection data.
 前記予測部は、所定時間後の時刻が到達する直前に、新たな予測のために車両に検知データの送信を要求する、請求項6に記載のサーバ。 The server according to claim 6, wherein the prediction unit requests the vehicle to transmit detection data for new prediction immediately before a time after a predetermined time arrives.  前記通信部は、前記実行部が行ったシミュレーションの結果を、前記車両および前記交通参加者が所持する端末装置の少なくとも一方に送信する、請求項6または7に記載のサーバ。

 
The server according to claim 6 or 7, wherein the communication unit transmits the result of the simulation performed by the execution unit to at least one of a terminal device owned by the vehicle and the traffic participant.

PCT/JP2023/005975 2022-03-28 2023-02-20 Vehicle and server Ceased WO2023188995A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/849,659 US20250166496A1 (en) 2022-03-28 2023-02-20 Vehicle and server
EP23779025.8A EP4510105A4 (en) 2022-03-28 2023-02-20 VEHICLE AND SERVER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022052506A JP7348344B1 (en) 2022-03-28 2022-03-28 Vehicles and servers
JP2022-052506 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023188995A1 true WO2023188995A1 (en) 2023-10-05

Family

ID=88021687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005975 Ceased WO2023188995A1 (en) 2022-03-28 2023-02-20 Vehicle and server

Country Status (4)

Country Link
US (1) US20250166496A1 (en)
EP (1) EP4510105A4 (en)
JP (1) JP7348344B1 (en)
WO (1) WO2023188995A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7348343B1 (en) * 2022-03-28 2023-09-20 ソフトバンク株式会社 Vehicles and servers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018146882A1 (en) * 2017-02-08 2018-08-16 住友電気工業株式会社 Information providing system, server, mobile terminal, and computer program
WO2018220853A1 (en) * 2017-06-02 2018-12-06 本田技研工業株式会社 Vehicle control device and method for controlling autonomous driving vehicle
JP2020013557A (en) 2018-06-13 2020-01-23 トヨタ自動車株式会社 Digital twin for evaluating vehicle risk
JP2020042553A (en) * 2018-09-11 2020-03-19 本田技研工業株式会社 Mobile body support system and mobile body support method
JP2021111346A (en) * 2019-12-30 2021-08-02 株式会社Subaru Mobility information provision systems, server devices, and vehicles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060069470A1 (en) * 2004-09-30 2006-03-30 International Business Machines Corporation Bi-directional absolute automated tracking system for material handling
EP3794847B1 (en) * 2018-06-07 2025-08-06 Huawei Technologies Co., Ltd. Method of mobility based on prediction and pre-preparation
US11312372B2 (en) * 2019-04-16 2022-04-26 Ford Global Technologies, Llc Vehicle path prediction
US11132897B2 (en) * 2020-02-14 2021-09-28 Gm Global Technology Operations, Llc Methods, systems, and apparatuses for edge based notification through crowdsourced live fleet streamed communications
US20220081003A1 (en) * 2020-09-15 2022-03-17 Tusimple, Inc. DETECTING A CONSTRUCTION ZONE BY A LEAD AUTONOMOUS VEHICLE (AV) AND UPDATING ROUTING PLANS FOR FOLLOWING AVs
US11597395B2 (en) * 2020-09-16 2023-03-07 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods to manage vehicles under anomalous driving behavior
US11984029B2 (en) * 2021-01-26 2024-05-14 Ford Global Technologies, Llc Method and apparatus for adaptive routing broadcasting and handling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018146882A1 (en) * 2017-02-08 2018-08-16 住友電気工業株式会社 Information providing system, server, mobile terminal, and computer program
WO2018220853A1 (en) * 2017-06-02 2018-12-06 本田技研工業株式会社 Vehicle control device and method for controlling autonomous driving vehicle
JP2020013557A (en) 2018-06-13 2020-01-23 トヨタ自動車株式会社 Digital twin for evaluating vehicle risk
JP2020042553A (en) * 2018-09-11 2020-03-19 本田技研工業株式会社 Mobile body support system and mobile body support method
JP2021111346A (en) * 2019-12-30 2021-08-02 株式会社Subaru Mobility information provision systems, server devices, and vehicles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4510105A4

Also Published As

Publication number Publication date
JP7348344B1 (en) 2023-09-20
EP4510105A4 (en) 2025-08-06
EP4510105A1 (en) 2025-02-19
JP2023145176A (en) 2023-10-11
US20250166496A1 (en) 2025-05-22

Similar Documents

Publication Publication Date Title
JP6605642B2 (en) Vehicle and system for managing and controlling vehicle
JP6970117B2 (en) Control data creation method for driver rule-based support
US8401733B2 (en) Optimized powertrain with route-learning feature
JP4807421B2 (en) In-vehicle alarm system
US20190071100A1 (en) Autonomous driving adjustment method, apparatus, and system
US20120001771A1 (en) Computer based system and method for providing a driver assist information
JP2020167551A (en) Control devices, control methods and programs
JP5585194B2 (en) Accident situation recording system
JP2008265706A (en) Vehicle travel control device and vehicle travel control method
CN103842232A (en) Method for activating a driver assistance system
CN112955362A (en) Assessing ride quality of autonomous vehicles
WO2022059522A1 (en) Information processing device, information processing method, and program
JP2021018636A (en) Vehicle remote instruction system
JP2023111990A (en) Information recording device
CN116834744A (en) Computer-implemented method, electronic device, and machine-readable medium
JP5233711B2 (en) Running state recording device
WO2023188995A1 (en) Vehicle and server
CN116745595A (en) Method for conducting test drives with at least one test vehicle
JP5435113B2 (en) Energy saving evaluation device, energy saving evaluation method
WO2023228781A1 (en) Processing system and information presentation method
CN116811878A (en) Computer-implemented methods, machine-readable media, and electronic devices
JP2019121314A (en) Determination device, information recording device, determination method, and program for determination
JP2018081357A (en) Driving assistance device
JP7348343B1 (en) Vehicles and servers
EP4120172B1 (en) Real time event triggered feedback for autonomous vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779025

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18849659

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023779025

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023779025

Country of ref document: EP

Effective date: 20241023

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 18849659

Country of ref document: US