WO2023058994A1 - Method and device for orthodontic treatment result prediction based on deep learning - Google Patents
Method and device for orthodontic treatment result prediction based on deep learning Download PDFInfo
- Publication number
- WO2023058994A1 WO2023058994A1 PCT/KR2022/014715 KR2022014715W WO2023058994A1 WO 2023058994 A1 WO2023058994 A1 WO 2023058994A1 KR 2022014715 W KR2022014715 W KR 2022014715W WO 2023058994 A1 WO2023058994 A1 WO 2023058994A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- orthodontic treatment
- extraction
- dental
- deep learning
- images before
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C7/00—Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C9/00—Impression cups, i.e. impression trays; Impression methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/20—Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
Definitions
- the present invention relates to a deep learning-based orthodontic treatment result prediction method and apparatus.
- Malocclusion refers to a condition in which the arrangement of teeth is not aligned for some reason or the state of upper and lower meshing is out of the normal range.
- Malocclusion can cause aesthetic and functional problems or increase the incidence of tooth decay and various diseases. Orthodontic treatment helps to create or maintain healthy oral tissue by removing physiological and psychological disorders caused by malocclusion, and can create a harmonious face.
- each treatment result for various treatment methods can be predicted in the pre-treatment diagnosis and treatment plan establishment stage in order to obtain a successful orthodontic treatment effect, it can be of great help in establishing a treatment plan that meets the patient's needs.
- Orthodontic treatment is a series of numerous medical ‘judgments’, such as consultation, diagnosis, establishment of an initial treatment plan, and large or small changes in the contents of treatment according to numerous variables at each visit.
- the results of orthodontic treatment can vary greatly depending on what kind of judgment the medical staff makes when establishing a treatment plan.
- one of the variables that can have a significant impact on the outcome of orthodontic treatment can be considered is whether or not the tooth is extracted and the decision of the tooth to be extracted.
- Deep Learning one of the fields of Artificial Intelligence (AI) Neural Network technology, is used to cluster or classify data through a deeply layered/hierarchical model that represents a probability distribution similar to the input data population.
- AI Artificial Intelligence
- deep learning algorithms in dentistry are used in areas such as tooth localization/numbering, detection of dental caries/periodontal disease/periapical disease/oral cancerous lesion, localization of cephalometric landmarks, image quality enhancement, prediction and compensation of deformation error in additive manufacturing of prosthesis, etc. its application is being attempted.
- the present invention proposes a deep learning-based orthodontic treatment result prediction method and apparatus that can help establish an effective orthodontic treatment plan.
- an apparatus for predicting a result of orthodontic treatment based on deep learning comprising: a processor; and a memory connected to the processor, wherein the memory pre-processes and standardizes pre-collected dental images before and after orthodontic treatment and dental images before and after non-extraction orthodontic treatment, and standardizes the standardized dental images before and after orthodontic treatment.
- an orthodontic treatment result prediction device that stores program instructions executed by the processor to generate a predictive dental image after tooth extraction or non-extraction orthodontic treatment of a predetermined patient.
- the program instructions adjust the degree of blackness of the collected dental images before and after orthodontic treatment and the dental images before and after non-extraction orthodontic treatment, centered on a preset reference point, the collected dental images before and after orthodontic treatment,
- the collected dental images before and after non-extraction orthodontic treatment are overlapped, respectively, and after the overlap, a region of interest of each of the collected dental images before and after orthodontic treatment and the dental images before and after non-extraction orthodontic treatment may be extracted.
- the preset reference point may be the frontal cranial fossa by the stable bone superimposition method.
- the region of interest may include upper and lower lip soft tissues and anterior teeth.
- the program commands may convert the collected dental images before and after orthodontic treatment and the contrast of the dental images before and after non-extraction orthodontic treatment into black and white images to represent standardized brightness.
- the first deep learning model and the second deep learning model may be composed of a CGAN model including a generative adversarial network (GAN) and a convolutional neural network (CNN).
- GAN generative adversarial network
- CNN convolutional neural network
- the first deep learning model and the second deep learning model are a virtual dental image generated by taking the pre-orthodontic dental image generated by the adversarial neural network as an input and a real image after orthodontic treatment after a predetermined time has elapsed from the dental image before orthodontic treatment. It may be repeatedly learned until the correlation coefficient with the dental image is equal to or greater than a preset threshold value.
- a deep learning-based orthodontic treatment result prediction method of a device including a processor and a memory, data preprocessing of pre-collected dental images before and after orthodontic treatment and dental images before and after non-extraction orthodontic treatment Standardizing by doing; constructing a pair of dental images before and after the standardized orthodontic treatment as a first data set; constructing a pair of dental images before and after the standardized non-extraction orthodontic treatment as a second data set; learning a first deep learning model for predicting an orthodontic treatment result using the first data set; learning a second deep learning model for predicting non-extraction orthodontic treatment results using the second data set; and generating a predictive dental image after extraction or non-extraction orthodontic treatment of a predetermined patient by using the first deep learning model or the second deep learning model that has been learned.
- a computer program stored in a computer readable non-transitory recording medium for performing the above orthodontic treatment result prediction is provided.
- an image (X-ray) after orthodontic treatment based on a tooth image before orthodontic treatment, and through this, an objective basis can be provided when an orthodontist establishes an orthodontic treatment plan, and also It has the advantage of facilitating communication with patients by providing visual data for each treatment plan during patient consultation.
- FIG. 1 is a diagram showing the configuration of a device for predicting a result of orthodontic treatment based on deep learning according to a preferred embodiment of the present invention.
- FIG. 2 is a flowchart of a process for predicting a result of orthodontic treatment according to an embodiment of the present invention.
- FIG. 3 is a diagram illustrating a data pre-processing process according to an embodiment of the present invention.
- FIG. 5 is a diagram for explaining a process of overlapping dental images before and after orthodontic treatment according to the present embodiment.
- FIG. 6 is a view showing results of extracting a region of interest at the same location in a state in which dental images before and after orthodontic treatment are overlapped.
- FIG. 7 to 8 are views illustrating a process of constructing a data set and learning a deep learning model through dental images before and after orthodontic treatment and dental images before and after non-extraction orthodontic treatment.
- FIG. 10 shows the verification results of the second deep learning model for predicting non-extraction orthodontic treatment results according to the present embodiment.
- 11 and 12 show statistical verification of results after orthodontic treatment and after orthodontic treatment by applying a dental image of an actual patient before orthodontic treatment to a trained extraction/non-extraction dental image deep learning model.
- the present invention proposes a method for predicting results after orthodontic treatment in case of tooth extraction and non-extraction using deep learning among artificial intelligence techniques.
- FIG. 1 is a diagram showing the configuration of a device for predicting a result of orthodontic treatment based on deep learning according to a preferred embodiment of the present invention.
- the device may include a processor 100 and a memory 102 .
- the processor 100 may include a central processing unit (CPU) capable of executing a computer program or other virtual machines.
- CPU central processing unit
- Memory 102 may include a non-volatile storage device such as a non-removable hard drive or a removable storage device.
- the removable storage device may include a compact flash unit, a USB memory stick, and the like.
- Memory 102 may also include volatile memory, such as various random access memories.
- memory 102 stores program instructions for predicting orthodontic treatment results.
- FIG. 2 is a flowchart of a process for predicting a result of orthodontic treatment according to an embodiment of the present invention.
- the process of FIG. 2 is defined as a process performed by program instructions installed in the device according to the present embodiment.
- the apparatus provides dental images before and after orthodontic treatment of patients with tooth extraction (hereinafter, referred to as 'dental images before orthodontic treatment and dental images after orthodontic treatment') and before and after orthodontic treatment of non-extraction patients.
- Dental images hereinafter referred to as 'dental images before non-extraction orthodontic treatment and dental images after non-extraction orthodontic treatment' are collected (step 200).
- the dental images collected in step 200 are images captured by a standardized device with a time difference before and after orthodontic treatment for individual patients who have actually performed extraction and non-extraction orthodontic treatment.
- the collected dental images are a dental X-ray image before orthodontic treatment and a dental X-ray image after orthodontic treatment of a patient who received comprehensive orthodontic treatment with fixed orthodontic devices attached to the entire upper and lower jaw dentition.
- data preprocessing is performed to standardize the collected dental images before and after orthodontic treatment and dental images before and after orthodontic treatment to be suitable for deep learning model learning (step 202).
- FIG. 3 is a diagram illustrating a data pre-processing process according to an embodiment of the present invention.
- the apparatus adjusts the degree of blackening of the collected dental images (step 300).
- step 300 the degree of blackening is uniformly adjusted so that the region of interest (eg, upper and lower lip soft tissue and upper and lower anterior teeth) is clearly visible.
- region of interest eg, upper and lower lip soft tissue and upper and lower anterior teeth
- the device according to the present embodiment uses the structural method for dental images before and after orthodontic treatment, centering on the frontal region with relatively little growth change and bone change during the orthodontic treatment period. Superposition is performed (step 302).
- FIG. 5 is a diagram for explaining a process of overlapping dental images before and after orthodontic treatment according to the present embodiment.
- a difference due to a change in head position is compensated for in two dental images before and after orthodontic treatment taken at a time difference through an overlapping process, and images changed by orthodontic treatment are easily recognized.
- the red circle represents the frontal cranial fossa, which is the criterion for overlapping the stable bone overlapping method.
- a region of interest at the same location is extracted in a state in which dental images before and after orthodontic treatment are overlapped (step 304).
- the region of interest according to the present embodiment includes upper and lower lip soft tissues and anterior teeth to be obtained in the analysis, and a red rectangle in FIG. 6 represents an extracted region of interest.
- the angle and size of the face are adjusted according to the region of interest to match the irregular facial contour and teeth shown in the dental image before and after orthodontic treatment. (Step 306).
- the apparatus according to the present embodiment may perform black-and-white image conversion to represent brightness and darkness of dental images, which may be different from each other, with standardized brightness.
- the device according to the present embodiment converts a dental image into an image having standardized contrast using the following equation.
- DN represents a digital number representing the contrast of the dental image between 0 and 255.
- Max() is a function for obtaining the maximum value
- Min() is a function for obtaining the minimum value
- n represents the number of data pairs.
- Data pre-processing according to the present embodiment is separately performed for dental images before and after non-extraction orthodontic treatment and dental images before and after orthodontic treatment.
- a first data set is constructed as a pair of a standardized dental image before orthodontic extraction and a dental image after orthodontic treatment, and a standardized dental image before non-extraction orthodontic treatment
- a second data set is configured with a pair of images and dental images after non-extraction orthodontic treatment (step 204).
- step 204 a standardized dental image (A n ) of a first time (t) before orthodontic treatment for a patient who has undergone orthodontic treatment and a second time point (A n ) for which prediction is desired after a certain time ( ) of dental images (B n ) as data pairs to form a data set.
- the data set according to the present embodiment can be expressed by the following equation.
- standardized dental images before and after orthodontic treatment and dental images before and after non-extraction orthodontic treatment are X-ray images, black and white images with a ⁇ b resolution, and deep learning model learning. To do this, the number of horizontal and vertical pixels is converted to a multiple of 2 to form a new data set.
- the original dental image has a size of 360 ⁇ 360
- the dental image converted for deep learning learning data is converted to have a size of 256 ⁇ 256, which is a multiple of 2.
- it is converted so that the horizontal and vertical sizes are the same as the size of a natural number that is a multiple of 2.
- FIG. 7 to 8 are views illustrating a process of constructing a data set and learning a deep learning model through dental images before and after orthodontic treatment and dental images before and after non-extraction orthodontic treatment.
- the input of the deep learning model is the aforementioned first data set, and in FIG. 8, it is the second data set.
- the apparatus learns a deep learning model using the first data set and the second data set (step 206).
- the deep learning model according to this embodiment is composed of a CGAN model composed of a Generative Adversarial Network (GAN) and a Convolution Neural Network (CNN), each The loss function of the neural network is trained to be minimal.
- GAN Generative Adversarial Network
- CNN Convolution Neural Network
- the deep learning model according to the present embodiment is a deep learning model for orthodontic treatment (first deep learning model) and a deep learning model for orthodontic treatment without extraction (second deep learning model). ) can be configured independently.
- the GAN of each deep learning model includes a generator and a discriminator, and the generator takes a standardized dental image corresponding to a specific time (t) before orthodontic treatment as an input and determines a predetermined time after orthodontic treatment ( ⁇ After t) has elapsed, a virtual dental image is generated.
- the discriminator compares the real dental image after orthodontic treatment with the virtual dental image, and repeatedly generates the virtual dental image and compares it with the real dental image until the GAN loss function (L GAN ) is minimized.
- the loss function of GAN can be determined using the equation below.
- E represents the expected value
- G represents the generator of GAN
- D represents the discriminator of GAN.
- a 1 represents a dental image corresponding to a specific time (t) before orthodontic treatment, after orthodontic treatment ( ), and G(X) is after orthodontic treatment ( ) represents the predicted virtual dental image.
- the similarity between the virtual dental image and the real dental image can be determined using a CNN model together.
- the apparatus according to the present embodiment calculates the loss function of the CNN model using Equation 4.
- E represents the expected value
- after orthodontic treatment ( ) represents a real dental image captured in
- G(X) represents a virtual dental image.
- ? ? denotes a function for calculating a pixel-by-pixel distance between a real dental image after correction and a predicted virtual dental image.
- the deep learning model according to the present embodiment may be trained to minimize loss functions of the GAN model and the CNN model.
- the generator According to the discrimination result of the discriminator, the generator generates a virtual dental image so that the difference from the actual dental image after the actual orthodontic treatment is minimized.
- the apparatus according to the present embodiment may obtain a predicted virtual dental image G(X) with a time difference ⁇ t before and after orthodontic treatment through the deep learning model.
- the threshold value is determined when the correlation coefficient is maximum using a correlation coefficient (CC) of a real dental image and a virtual dental image.
- the correlation coefficient according to this embodiment is as follows.
- CC is a quantitative representation of the relationship between the real dental image and the virtual dental image, and the closer to 1, the higher the prediction accuracy, and the closer to 0, the lower the prediction accuracy.
- o represents an actual dental image (eg, a dental image after a significant period of time has elapsed after orthodontic treatment or non-extraction orthodontic treatment)
- f is a predicted virtual dentist using a trained deep learning model. represents an image.
- i is an individual pixel of the dental image, is the average value of actual dental images, represents the average value of the virtual dental image, and n represents the total number of pixels in the dental image.
- the apparatus performs a verification process (step 208).
- FIG. 9A is a real dental image before orthodontic treatment
- FIG. 9B is an actual dental image after orthodontic treatment. Referring to FIGS. 9A to 9B , after orthodontic treatment, the patient's upper and lower anterior teeth moved backward, the dentition was changed, and the labial inclination of the upper and lower anterior teeth decreased.
- 9C is a dental image predicted by the first deep learning model after a lapse of a predetermined time. When this is compared with FIG. 9B , it can be confirmed that the dental image after orthodontic treatment is predicted with very high accuracy.
- FIG. 10 shows the verification results of the second deep learning model for predicting non-extraction orthodontic treatment results according to the present embodiment.
- FIG. 10A is a real dental image before non-extraction orthodontic treatment
- FIG. 10B is an actual dental image after non-extraction orthodontic treatment
- FIG. 10C shows a dental image predicted by a second deep learning model, with the deep learning model taking FIG. 10A as an input. This is a predicted dental image after a predetermined time has elapsed.
- the apparatus according to the present embodiment predicts results that may appear when orthodontic treatment or non-extraction orthodontic treatment is performed through a deep learning model that has been learned and verified (step 210).
- 11 and 12 show statistical verification of results after orthodontic treatment and after orthodontic treatment by applying a dental image of an actual patient before orthodontic treatment to a trained extraction/non-extraction dental image deep learning model.
- 11 and 12 show predictions of expected treatment results through the deep learning model when orthodontic treatment and non-extraction orthodontic treatment are performed, respectively, in a state before orthodontic treatment.
- 11 and 12 show CC values between an actual dental image after orthodontic treatment and a dental image predicted through the deep learning model.
- the deep learning model according to the present embodiment shows a very high correlation between the predicted dental image and the actual dental image, and accurate prediction is possible in both extraction and non-extraction orthodontic treatment.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Medical Informatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Dentistry (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Primary Health Care (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Architecture (AREA)
- Computer Graphics (AREA)
- Computer Hardware Design (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
본 발명은 딥러닝 기반 치아 교정치료 결과 예측 방법 및 장치에 관한 것이다. The present invention relates to a deep learning-based orthodontic treatment result prediction method and apparatus.
부정교합이란 어떤 원인에 의해 치아의 배열이 가지런하지 않거나 위아래 맞물림의 상태가 정상 범주의 위치를 벗어난 상태를 의미한다. Malocclusion refers to a condition in which the arrangement of teeth is not aligned for some reason or the state of upper and lower meshing is out of the normal range.
부정교합은 심미적, 기능적 문제를 야기하거나 충치 및 각종 질환 발생률을 증가시킬 수 있다. 교정치료는 부정교합으로 인한 생리적, 심리적 장애를 제거하여 건강한 구강조직을 만들거나 유지하는 것을 도우며, 조화를 이룬 얼굴을 만들 수 있다. Malocclusion can cause aesthetic and functional problems or increase the incidence of tooth decay and various diseases. Orthodontic treatment helps to create or maintain healthy oral tissue by removing physiological and psychological disorders caused by malocclusion, and can create a harmonious face.
성공적인 교정치료 효과를 얻기 위해 치료전 진단 및 치료계획 수립 단계에서 다양한 치료 방법들에 대한 각각의 치료결과가 예측 가능하다면, 환자의 Needs에 부합하는 치료계획을 수립하는데 많은 도움이 될 수 있다. If each treatment result for various treatment methods can be predicted in the pre-treatment diagnosis and treatment plan establishment stage in order to obtain a successful orthodontic treatment effect, it can be of great help in establishing a treatment plan that meets the patient's needs.
교정치료는 상담부터 진단, 초기 치료계획의 수립, 매 내원시 마다 수많은 변수에 따른 치료 내용의 크고 작은 변경 등 일련의 과정들은 수많은 의료적 ‘판단’의 연속이다. 특히 치료 계획 수립 시 의료진이 어떠한 판단을 내리는지에 따라 교정치료의 결과는 크게 달라질 수 있다.Orthodontic treatment is a series of numerous medical ‘judgments’, such as consultation, diagnosis, establishment of an initial treatment plan, and large or small changes in the contents of treatment according to numerous variables at each visit. In particular, the results of orthodontic treatment can vary greatly depending on what kind of judgment the medical staff makes when establishing a treatment plan.
치료계획 수립 시 치아 교정치료의 결과에 큰 영향을 줄 수 있는 변수 중 하나로 고려할 수 있는 것은 발치 여부와 발치 치아의 결정이라고 할 수 있다. When establishing a treatment plan, one of the variables that can have a significant impact on the outcome of orthodontic treatment can be considered is whether or not the tooth is extracted and the decision of the tooth to be extracted.
치아, 잇몸뼈, 총생의 정도, 상하악 골격 상태 및 성장에 있어 개인차가 크게 존재하므로, 정밀검진과 정확한 분석 및 예측을 통해 개인에 맞는 교정치료 계획을 수립하는 것이 필요하다. 많은 요인들을 고려하여 발치를 동반한 교정치료 계획을 수립하지만, 환자들의 증례에 따라서는 객관적인 통일된 기준보다 담당 주치의의 주관적인 판단에도 크게 영향을 받게 된다. Since there are large individual differences in teeth, gum bone, degree of growth, maxillary and mandibular skeletal conditions and growth, it is necessary to establish an orthodontic treatment plan tailored to each individual through precise examination and accurate analysis and prediction. An orthodontic treatment plan with tooth extraction is established considering many factors, but depending on the patient's case, it is greatly influenced by the subjective judgment of the attending physician rather than an objective unified standard.
효율적이고 정확한 교정치료 계획 수립을 위해 치과 교정의의 판단에 보다 객관적인 근거를 제공할 수 있는 예측 방법이 필요한 실정이다. In order to establish an efficient and accurate orthodontic treatment plan, there is a need for a predictive method that can provide a more objective basis for the orthodontist's judgment.
인공지능 (AI, Artificial Intelligence) Neural Network technology 분야 중 하나인 딥러닝 (Deep Learning) 기법은 입력 데이터 모집단과 유사한 확률 분포를 나타내는 deeply layered/hierarchical 모델을 통해 데이터를 클러스터링 하거나 분류하는데 사용된다. Deep Learning, one of the fields of Artificial Intelligence (AI) Neural Network technology, is used to cluster or classify data through a deeply layered/hierarchical model that represents a probability distribution similar to the input data population.
최근 의학, 치의학의 다양한 분야에 인공지능과 딥러닝 알고리즘의 적용이 시도되고 있다. Recently, applications of artificial intelligence and deep learning algorithms are being attempted in various fields of medicine and dentistry.
특히 치의학에서 딥러닝 알고리즘은 tooth localization/numbering, detection of dental caries/periodontal disease/periapical disease/oral cancerous lesion, localization of cephalometric landmarks, image quality enhancement, prediction and compensation of deformation error in additive manufacturing of prosthesis 등의 분야에 그 적용이 시도되고 있다. In particular, deep learning algorithms in dentistry are used in areas such as tooth localization/numbering, detection of dental caries/periodontal disease/periapical disease/oral cancerous lesion, localization of cephalometric landmarks, image quality enhancement, prediction and compensation of deformation error in additive manufacturing of prosthesis, etc. its application is being attempted.
상기한 종래기술의 문제점을 해결하기 위해, 본 발명은 효과적인 교정치료 계획의 수립에 도움을 줄 수 있는 딥러닝 기반 치아 교정치료 결과 예측 방법 및 장치를 제안하고자 한다. In order to solve the problems of the prior art, the present invention proposes a deep learning-based orthodontic treatment result prediction method and apparatus that can help establish an effective orthodontic treatment plan.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따르면, 딥러닝 기반 치아 교정치료 결과 예측 장치로서, 프로세서; 및 상기 프로세서 연결되는 메모리를 포함하되, 상기 메모리는, 미리 수집된 발치 교정치료 이전 및 이후 치과 영상과 비발치 교정치료 이전 및 이후 치과 영상을 데이터 전처리하여 표준화하고, 상기 표준화된 발치 교정치료 이전 및 이후 치과 영상의 쌍을 제1 데이터 셋으로 구성하고, 상기 표준화된 비발치 교정치료 이전 및 이후 치과 영상 쌍을 제2 데이터 셋으로 구성하고, 상기 제1 데이터 셋을 이용하여 발치 교정치료 결과 예측을 위한 제1 딥러닝 모델을 학습하고, 상기 제2 데이터 셋을 이용하여 비발치 교정치료 결과 예측을 위한 제2 딥러닝 모델을 학습하고, 학습이 완료된 상기 제1 딥러닝 모델 또는 제2 딥러닝 모델을 이용하여 소정 환자의 발치 또는 비발치 교정치료 이후 예측 치과 영상을 생성하도록, 상기 프로세서에 의해 실행되는 프로그램 명령어들을 저장하는 치아 교정치료 결과 예측 장치가 제공된다.In order to achieve the above object, according to an embodiment of the present invention, an apparatus for predicting a result of orthodontic treatment based on deep learning, comprising: a processor; and a memory connected to the processor, wherein the memory pre-processes and standardizes pre-collected dental images before and after orthodontic treatment and dental images before and after non-extraction orthodontic treatment, and standardizes the standardized dental images before and after orthodontic treatment. Construct a pair of dental images as a first data set, configure a pair of dental images before and after the standardized non-extraction orthodontic treatment as a second data set, and use the first data set to predict orthodontic treatment results 1 Learning a deep learning model, learning a second deep learning model for predicting non-extraction orthodontic treatment results using the second data set, and using the first deep learning model or the second deep learning model for which learning has been completed Provided is an orthodontic treatment result prediction device that stores program instructions executed by the processor to generate a predictive dental image after tooth extraction or non-extraction orthodontic treatment of a predetermined patient.
상기 프로그램 명령어들은, 상기 수집된 발치 교정치료 이전 및 이후 치과 영상과 비발치 교정치료 이전 및 이후 치과 영상의 흑화도를 조정하고, 미리 설정된 기준점을 중심으로 상기 수집된 발치 교정치료 이전 및 이후 치과 영상과, 상기 수집된 비발치 교정치료 이전 및 이후 치과 영상을 각각 중첩하고, 상기 중첩 이후, 상기 수집된 발치 교정치료 이전 및 이후 치과 영상과 비발치 교정치료 이전 및 이후 치과 영상 각각의 관심 영역을 추출할 수 있다. The program instructions adjust the degree of blackness of the collected dental images before and after orthodontic treatment and the dental images before and after non-extraction orthodontic treatment, centered on a preset reference point, the collected dental images before and after orthodontic treatment, The collected dental images before and after non-extraction orthodontic treatment are overlapped, respectively, and after the overlap, a region of interest of each of the collected dental images before and after orthodontic treatment and the dental images before and after non-extraction orthodontic treatment may be extracted.
상기 미리 설정된 기준점은 안정골 중첩법에 의한 전두개처일 수 있다. The preset reference point may be the frontal cranial fossa by the stable bone superimposition method.
상기 관심 영역은 상하순 연조직 및 전치부 치아를 포함할 수 있다. The region of interest may include upper and lower lip soft tissues and anterior teeth.
상기 프로그램 명령어들은, 상기 수집된 발치 교정치료 이전 및 이후 치과 영상과 비발치 교정치료 이전 및 이후 치과 영상의 명암을 표준화된 명도로 나타내기 위해 흑백 영상으로 변환할 수 있다. The program commands may convert the collected dental images before and after orthodontic treatment and the contrast of the dental images before and after non-extraction orthodontic treatment into black and white images to represent standardized brightness.
상기 제1 데이터 셋 및 제2 데이터 셋을 구성할 때, 악교정 수술 또는 안면 연조직 수술 시행, 방사선 사진상 Artifact 존재, 교정치료 중 보철치료 또는 금속물을 이용한 보존적 치료를 시행한 경우, 매복치, 만기잔존 유치, 미맹출 영구치 존재 및 방사선 사진 해상도 불량인 치과 영상을 제외할 수 있다. When constructing the first data set and the second data set, orthognathic surgery or facial soft tissue surgery, presence of artifacts on radiographs, prosthetic treatment or conservative treatment using metal objects during orthodontic treatment, impacted teeth, remaining at maturity Dental images with deciduous teeth, the presence of unerupted permanent teeth, and poor radiographic resolution can be excluded.
상기 제1 딥러닝 모델 및 제2 딥러닝 모델은 대립 신경망(Generative Adversarial Network, GAN)과 콘볼루션 신경망(Convolution Neural Network, CNN)을 포함하는 CGAN 모델로 구성될 수 있다. The first deep learning model and the second deep learning model may be composed of a CGAN model including a generative adversarial network (GAN) and a convolutional neural network (CNN).
상기 제1 딥러닝 모델 및 제2 딥러닝 모델은, 상기 대립 신경망이 생성한 교정치료 이전 치과 영상을 입력으로 하여 생성한 가상 치과 영상과 상기 교정치료 이전 치과 영상으로부터 소정 시간 경과한 교정치료 이후 실제 치과 영상과의 상관계수가 미리 설정된 임계값 이상이 될 때까지 반복적으로 학습될 수 있다. The first deep learning model and the second deep learning model are a virtual dental image generated by taking the pre-orthodontic dental image generated by the adversarial neural network as an input and a real image after orthodontic treatment after a predetermined time has elapsed from the dental image before orthodontic treatment. It may be repeatedly learned until the correlation coefficient with the dental image is equal to or greater than a preset threshold value.
본 발명의 다른 측면에 따르면, 프로세서 및 메모리를 포함하는 장치의 딥러닝 기반 치아 교정치료 결과 예측 방법으로서, 미리 수집된 발치 교정치료 이전 및 이후 치과 영상과 비발치 교정치료 이전 및 이후 치과 영상을 데이터 전처리하여 표준화하는 단계; 상기 표준화된 발치 교정치료 이전 및 이후 치과 영상의 쌍을 제1 데이터 셋으로 구성하는 단계; 상기 표준화된 비발치 교정치료 이전 및 이후 치과 영상 쌍을 제2 데이터 셋으로 구성하는 단계; 상기 제1 데이터 셋을 이용하여 발치 교정치료 결과 예측을 위한 제1 딥러닝 모델을 학습하는 단계; 상기 제2 데이터 셋을 이용하여 비발치 교정치료 결과 예측을 위한 제2 딥러닝 모델을 학습하는 단계; 및 학습이 완료된 상기 제1 딥러닝 모델 또는 제2 딥러닝 모델을 이용하여 소정 환자의 발치 또는 비발치 교정치료 이후 예측 치과 영상을 생성하는 단계를 포함하는 치아 교정치료 결과 예측 방법이 제공된다. According to another aspect of the present invention, as a deep learning-based orthodontic treatment result prediction method of a device including a processor and a memory, data preprocessing of pre-collected dental images before and after orthodontic treatment and dental images before and after non-extraction orthodontic treatment Standardizing by doing; constructing a pair of dental images before and after the standardized orthodontic treatment as a first data set; constructing a pair of dental images before and after the standardized non-extraction orthodontic treatment as a second data set; learning a first deep learning model for predicting an orthodontic treatment result using the first data set; learning a second deep learning model for predicting non-extraction orthodontic treatment results using the second data set; and generating a predictive dental image after extraction or non-extraction orthodontic treatment of a predetermined patient by using the first deep learning model or the second deep learning model that has been learned.
본 발명의 또 다른 측면에 따르면, 상기한 치아 교정치료 결과 예측을 수행하는 컴퓨터 판독 가능한 비-일시적(non-transitory) 기록매체에 저장된 컴퓨터 프로그램이 제공된다. According to another aspect of the present invention, a computer program stored in a computer readable non-transitory recording medium for performing the above orthodontic treatment result prediction is provided.
본 발명에 따르면, 치과 교정치료 전 치아 영상을 기반으로 교정치료 후 영상(X-ray)을 예측 가능하게 하며, 이를 통해 치과 교정의의 치과 교정치료 계획 수립 시 객관적 근거를 제공할 수 있고, 또한 환자 상담 시 각각의 치료 계획에 대한 시각적 자료를 제공하여 환자와의 커뮤니케이션을 원활하게 하는 장점이 있다. According to the present invention, it is possible to predict an image (X-ray) after orthodontic treatment based on a tooth image before orthodontic treatment, and through this, an objective basis can be provided when an orthodontist establishes an orthodontic treatment plan, and also It has the advantage of facilitating communication with patients by providing visual data for each treatment plan during patient consultation.
도 1은 본 발명의 바람직한 일 실시예에 따른 딥러닝 기반 치아 교정치료 결과 예측 장치의 구성을 도시한 도면이다. 1 is a diagram showing the configuration of a device for predicting a result of orthodontic treatment based on deep learning according to a preferred embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 치아 교정치료 결과 예측 과정의 순서도이다. 2 is a flowchart of a process for predicting a result of orthodontic treatment according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 데이터 전처리 과정을 도시한 도면이다. 3 is a diagram illustrating a data pre-processing process according to an embodiment of the present invention.
도 4는 본 실시예에 따른 흑화도가 조정된 전후 치과 영상을 나타낸 것이다.4 shows dental images before and after adjusting the degree of blackening according to the present embodiment.
도 5는 본 실시예에 따른 교정치료 이전 및 이후 치과 영상의 중첩 과정을 설명하기 위한 도면이다. 5 is a diagram for explaining a process of overlapping dental images before and after orthodontic treatment according to the present embodiment.
도 6은 교정치료 이전 및 이후 치과 영상을 중첩한 상태에서 동일한 위치의 관심 영역을 추출한 결과를 나타낸 도면이다. 6 is a view showing results of extracting a region of interest at the same location in a state in which dental images before and after orthodontic treatment are overlapped.
도 7 내지 도 8은 발치 교정치료 이전 및 이후 치과 영상과, 비발치 교정치료 이전 및 이후 치과 영상을 통해 데이터 셋을 구성하고, 딥러닝 모델을 학습하는 과정을 나타낸 도면이다. 7 to 8 are views illustrating a process of constructing a data set and learning a deep learning model through dental images before and after orthodontic treatment and dental images before and after non-extraction orthodontic treatment.
도 9는 본 실시예에 따른 발치 교정치료 결과 예측을 위한 제1 딥러닝 모델의 검증 결과를 나타낸 것이다. 9 shows the verification results of the first deep learning model for predicting the result of orthodontic extraction according to the present embodiment.
도 10은 본 실시예에 따른 비발치 교정치료 결과 예측을 위한 제2 딥러닝 모델의 검증 결과를 나타낸 것이다. 10 shows the verification results of the second deep learning model for predicting non-extraction orthodontic treatment results according to the present embodiment.
도 11 내지 도 12는 실제 환자의 교정치료 이전 치과 영상을 학습이 완료된 발치/비발치 치과 영상 딥러닝 모델에 적용하여 발치 교정치료 이후의 결과 및 비발치 교정치료 후의 결과를 통계 검증한 것을 나타낸 것이다. 11 and 12 show statistical verification of results after orthodontic treatment and after orthodontic treatment by applying a dental image of an actual patient before orthodontic treatment to a trained extraction/non-extraction dental image deep learning model.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다.Since the present invention can make various changes and have various embodiments, specific embodiments are illustrated in the drawings and described in detail.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
본 발명은 인공지능 기법 중 딥러닝 기법을 이용하여 발치 및 비발치 시 각각의 치아 교정치료 이후의 결과 예측 방법을 제안한다. The present invention proposes a method for predicting results after orthodontic treatment in case of tooth extraction and non-extraction using deep learning among artificial intelligence techniques.
도 1은 본 발명의 바람직한 일 실시예에 따른 딥러닝 기반 치아 교정치료 결과 예측 장치의 구성을 도시한 도면이다. 1 is a diagram showing the configuration of a device for predicting a result of orthodontic treatment based on deep learning according to a preferred embodiment of the present invention.
도 1에 도시된 바와 같이, 본 실시예에 따른 장치는 프로세서(100) 및 메모리(102)를 포함할 수 있다. As shown in FIG. 1 , the device according to the present embodiment may include a
프로세서(100)는 컴퓨터 프로그램을 실행할 수 있는 CPU(central processing unit)나 그 밖에 가상 머신 등을 포함할 수 있다. The
메모리(102)는 고정식 하드 드라이브나 착탈식 저장 장치와 같은 불휘발성 저장 장치를 포함할 수 있다. 착탈식 저장 장치는 콤팩트 플래시 유닛, USB 메모리 스틱 등을 포함할 수 있다. 메모리(102)는 각종 랜덤 액세스 메모리와 같은 휘발성 메모리도 포함할 수 있다.
본 발명의 일 실시예에 따르면, 메모리(102)에는 치아 교정치료 결과를 예측하는 프로그램 명령어들이 저장된다. According to one embodiment of the present invention,
도 2는 본 발명의 일 실시예에 따른 치아 교정치료 결과 예측 과정의 순서도이다. 2 is a flowchart of a process for predicting a result of orthodontic treatment according to an embodiment of the present invention.
도 2의 과정은 본 실시예에 따른 장치에 설치된 프로그램 명령어들에 의해 수행되는 과정으로 정의된다. The process of FIG. 2 is defined as a process performed by program instructions installed in the device according to the present embodiment.
도 2를 참조하면, 본 실시예에 따른 장치는 발치 환자들의 교정치료 전과 후의 치과 영상(이하, '발치 교정치료 이전 치과 영상 및 발치 교정치료 이후 치과 영상'이라 함)과 비발치 환자들의 교정 전과 후의 치과 영상(이하, '비발치 교정치료 이전 치과 영상 및 비발치 교정치료 이후 치과 영상'이라 함)을 수집한다(단계 200).Referring to FIG. 2 , the apparatus according to the present embodiment provides dental images before and after orthodontic treatment of patients with tooth extraction (hereinafter, referred to as 'dental images before orthodontic treatment and dental images after orthodontic treatment') and before and after orthodontic treatment of non-extraction patients. Dental images (hereinafter referred to as 'dental images before non-extraction orthodontic treatment and dental images after non-extraction orthodontic treatment') are collected (step 200).
단계 200에서 수집되는 치과 영상은 발치 및 비발치 교정치료를 실제로 수행한 개별 환자들에 대해서 교정치료 전후의 시간 차를 두고 규격화된 기기에서 촬영된 영상이다. The dental images collected in
예를 들어, 수집된 치과 영상은 상하악 전체 치열에 고정식 교정장치를 부착하고 포괄적 교정치료를 받은 환자의 교정치료 이전 치과 X-ray 영상과 교정치료 이후 치과 X-ray 영상이다. For example, the collected dental images are a dental X-ray image before orthodontic treatment and a dental X-ray image after orthodontic treatment of a patient who received comprehensive orthodontic treatment with fixed orthodontic devices attached to the entire upper and lower jaw dentition.
이후, 수집한 발치 교정치료 이전 및 이후 치과 영상과 발치 교정치료 이전 및 이후 치과 영상을 딥러닝 모델 학습에 적합하도록 표준화하는 데이터 전처리를 수행한다(단계 202).Thereafter, data preprocessing is performed to standardize the collected dental images before and after orthodontic treatment and dental images before and after orthodontic treatment to be suitable for deep learning model learning (step 202).
도 3은 본 발명의 일 실시예에 따른 데이터 전처리 과정을 도시한 도면이다. 3 is a diagram illustrating a data pre-processing process according to an embodiment of the present invention.
도 3을 참조하면, 본 실시예에 따른 장치는 수집된 치과 영상의 흑화도를 조정한다(단계 300).Referring to FIG. 3 , the apparatus according to the present embodiment adjusts the degree of blackening of the collected dental images (step 300).
단계 300에서 흑화도를 균일하게 조정하여 관심 영역(예를 들어, 상하순 연조직 및 상하악 전치부 치아)이 잘 보이도록 한다. In step 300, the degree of blackening is uniformly adjusted so that the region of interest (eg, upper and lower lip soft tissue and upper and lower anterior teeth) is clearly visible.
도 4는 본 실시예에 따른 흑화도가 조정된 전후 치과 영상을 나타낸 것이다. 4 shows dental images before and after adjusting the degree of blackening according to the present embodiment.
다음으로, 데이터 전처리를 위해 본 실시예에 따른 장치는 교정치료 이전 및 이후 치과 영상에 대해 교정치료 기간 동안 성장변화 및 골변화가 비교적 적은 전두개처를 중심으로 안정골 중첩법(Structural method)을 이용하여 중첩을 수행한다(단계 302). Next, for data pre-processing, the device according to the present embodiment uses the structural method for dental images before and after orthodontic treatment, centering on the frontal region with relatively little growth change and bone change during the orthodontic treatment period. Superposition is performed (step 302).
도 5는 본 실시예에 따른 교정치료 이전 및 이후 치과 영상의 중첩 과정을 설명하기 위한 도면이다. 5 is a diagram for explaining a process of overlapping dental images before and after orthodontic treatment according to the present embodiment.
도 5를 참조하면, 중첩 과정을 통해 시간차를 두고 촬영된 두 개의 교정치료 이전 및 이후 치과 영상에서 두부 위치 변화에 의한 차이를 보완하고, 교정치료로 변화된 이미지를 쉽게 인식하도록 한다. Referring to FIG. 5 , a difference due to a change in head position is compensated for in two dental images before and after orthodontic treatment taken at a time difference through an overlapping process, and images changed by orthodontic treatment are easily recognized.
도 5에서 빨간색 원은 안정골 중첩법의 중첩 기준이 되는 전두개처를 나타낸다. In FIG. 5, the red circle represents the frontal cranial fossa, which is the criterion for overlapping the stable bone overlapping method.
영상 중첩 이후, 도 6에 도시된 바와 같이, 교정치료 이전 및 이후 치과 영상을 중첩한 상태에서 동일한 위치의 관심 영역을 추출한다(단계 304). After overlapping the images, as shown in FIG. 6 , a region of interest at the same location is extracted in a state in which dental images before and after orthodontic treatment are overlapped (step 304).
본 실시예에 따른 관심 영역은 분석에서 얻고자 하는 상하순 연조직 및 전치부 치아를 포함하며, 도 6에서 빨간색 사각형은 추출된 관심 영역을 나타낸다. The region of interest according to the present embodiment includes upper and lower lip soft tissues and anterior teeth to be obtained in the analysis, and a red rectangle in FIG. 6 represents an extracted region of interest.
상기한 바와 같이 상하순 연조직 및 전치부 치아가 관심 영역으로 선택된 이후, 관심 영역에 맞게 얼굴의 각도와 크기 등을 조정하여 치과 영상에 나타난 불규칙한 얼굴 윤곽선과 치아 부분을 교정치료 전후 일치시키는 과정이 수행된다(단계 306). As described above, after the upper and lower lip soft tissue and anterior teeth are selected as the region of interest, the angle and size of the face are adjusted according to the region of interest to match the irregular facial contour and teeth shown in the dental image before and after orthodontic treatment. (Step 306).
본 실시예에 따른 장치는 서로 다를 수 있는 치과 영상의 명암을 표준화된 명도로 나타내기 위한 흑백 영상 변환을 수행할 수 있다.The apparatus according to the present embodiment may perform black-and-white image conversion to represent brightness and darkness of dental images, which may be different from each other, with standardized brightness.
예를 들어, 본 실시예에 따른 장치는 하기의 수학식을 이용하여 치과 영상을 표준화된 명암을 갖는 영상으로 변환한다. For example, the device according to the present embodiment converts a dental image into an image having standardized contrast using the following equation.
여기서, 은 n번째 관측된 환자의 치과 영상이고, DN은 치과 영상의 명암을 0 ~ 255 사이로 표현하는 디지털 넘버를 나타낸다.here, is a dental image of the nth observed patient, and DN represents a digital number representing the contrast of the dental image between 0 and 255.
i와 j는 256×256 크기의 치과 영상 내에서의 픽셀의 위치를 좌우와 상하를 나타내는 인덱스를 의미하고, Max()는 최대값을 구하는 함수이며, Min()은 최소값을 구하는 함수이며, n은 데이터 쌍의 개수를 나타낸다. i and j mean indices indicating left and right and top and bottom positions of pixels in a 256×256 dental image, Max() is a function for obtaining the maximum value, Min() is a function for obtaining the minimum value, and n represents the number of data pairs.
본 실시예에 따른 데이터 전처리는 비발치 교정치료 이전 및 이후 치과 영상과, 발치 교정치료 이전 및 이후 치과 영상에 대해 개별적으로 수행된다. Data pre-processing according to the present embodiment is separately performed for dental images before and after non-extraction orthodontic treatment and dental images before and after orthodontic treatment.
다시 도 2를 참조하면, 상기와 같은 데이터 전처리가 수행된 이후, 표준화된 발치 교정치료 이전 치과 영상과 발치 교정치료 이후 치과 영상의 쌍으로 제1 데이터 셋을 구성하고, 표준화된 비발치 교정치료 이전 치과 영상과 비발치 교정치료 이후 치과 영상의 쌍으로 제2 데이터 셋을 구성한다(단계 204).Referring back to FIG. 2 , after the data preprocessing is performed, a first data set is constructed as a pair of a standardized dental image before orthodontic extraction and a dental image after orthodontic treatment, and a standardized dental image before non-extraction orthodontic treatment A second data set is configured with a pair of images and dental images after non-extraction orthodontic treatment (step 204).
단계 204에서, 교정치료를 받은 하나의 환자에 대해 치과 교정치료 전 제1 시간(t)의 표준화된 치과 영상(An)과 일정 시간 이후 예측을 원하는 제2 시점()의 치과 영상(Bn)을 데이터 쌍으로 하여 데이터 셋을 구성한다. In step 204, a standardized dental image (A n ) of a first time (t) before orthodontic treatment for a patient who has undergone orthodontic treatment and a second time point (A n ) for which prediction is desired after a certain time ( ) of dental images (B n ) as data pairs to form a data set.
본 실시예에 따른 데이터 셋은 다음의 수학식으로 표현할 수 있다. The data set according to the present embodiment can be expressed by the following equation.
본 실시예에 따르면, 표준화된 발치 교정치료 이전 및 이후 치과 영상과 비발치 교정치료 이전 및 이후 치과 영상은 X-ray로 촬영된 영상으로서, a×b 해상도를 갖는 흑백 영상이며, 딥러닝 모델 학습을 위해 가로와 세로의 픽셀수가 2의 배수가 되도록 변환되어 새로운 데이터 셋을 구성한다. According to this embodiment, standardized dental images before and after orthodontic treatment and dental images before and after non-extraction orthodontic treatment are X-ray images, black and white images with a × b resolution, and deep learning model learning. To do this, the number of horizontal and vertical pixels is converted to a multiple of 2 to form a new data set.
예를 들어, 원본 치과 영상은 360×360 크기를 가지며, 데이터 전처리 후에 딥러닝 학습 자료용으로 변환된 치과 영상은 2의 배수인 256×256 크기를 가지도록 변환된다. 또한, 2의 배수인 자연수의 크기로 가로 세로 크기가 같도록 변환된다. For example, the original dental image has a size of 360 × 360, and after data preprocessing, the dental image converted for deep learning learning data is converted to have a size of 256 × 256, which is a multiple of 2. In addition, it is converted so that the horizontal and vertical sizes are the same as the size of a natural number that is a multiple of 2.
이와 같은 데이터 셋을 구성할 때, 다음과 같은 조건의 치과 영상들은 제외한다.When constructing such a data set, dental images under the following conditions are excluded.
(1) 악교정 수술 또는 안면 연조직 수술 시행(1) Orthognathic surgery or facial soft tissue surgery
(2) 방사선 사진상 Artifact (금속 교정장치, implant, miniplate, miniscrew, 금속침 등) 존재(2) Presence of artifacts (metal orthodontic devices, implants, miniplates, miniscrews, metal needles, etc.) on radiographs
(3) 교정치료 중 보철치료 또는 금속물을 이용한 보존적 치료를 시행한 경우 (crown 또는 inlay 수복, 아말감, 근관충전재 등)(3) Prosthetic treatment or conservative treatment using metal during orthodontic treatment (crown or inlay restoration, amalgam, root canal filling, etc.)
(4) 매복치, 만기잔존 유치, 미맹출 영구치 존재(4) Impacted teeth, remaining mature primary teeth, and non-eupruded permanent teeth
(5) 방사선 사진 해상도 불량(5) Poor radiographic resolution
도 7 내지 도 8은 발치 교정치료 이전 및 이후 치과 영상과, 비발치 교정치료 이전 및 이후 치과 영상을 통해 데이터 셋을 구성하고, 딥러닝 모델을 학습하는 과정을 나타낸 도면이다. 7 to 8 are views illustrating a process of constructing a data set and learning a deep learning model through dental images before and after orthodontic treatment and dental images before and after non-extraction orthodontic treatment.
도 7에서 딥러닝 모델의 입력이 상기한 제1 데이터 셋이며, 도 8에서는 제2 데이터 셋이다. In FIG. 7, the input of the deep learning model is the aforementioned first data set, and in FIG. 8, it is the second data set.
다시 도 2를 참조하면, 본 실시예에 따른 장치는 제1 데이터 셋과 제2 데이터 셋을 이용하여 딥러닝 모델을 학습한다(단계 206). Referring back to FIG. 2 , the apparatus according to the present embodiment learns a deep learning model using the first data set and the second data set (step 206).
도 7 내지 도 8에 도시된 바와 같이, 본 실시예에 따른 딥러닝 모델은 대립 신경망(Generative Adversarial Network, GAN)과 콘볼루션 신경망(Convolution Neural Network, CNN)으로 구성되는 CGAN 모델로 구성되며, 각 신경망의 손실 함수가 최소가 되도록 학습된다. 7 to 8, the deep learning model according to this embodiment is composed of a CGAN model composed of a Generative Adversarial Network (GAN) and a Convolution Neural Network (CNN), each The loss function of the neural network is trained to be minimal.
이하에서는 딥러닝 모델의 학습 과정을 상세하게 설명한다. Hereinafter, the learning process of the deep learning model will be described in detail.
본 실시예에 따른 딥러닝 모델은 도 7 내지 도 8에 도시된 바와 같이, 발치 교정치료에 대한 딥러닝 모델(제1 딥러닝 모델)과 비발치 교정치료에 대한 딥러닝 모델(제2 딥러닝 모델)이 독립적으로 구성될 수 있다. As shown in FIGS. 7 and 8 , the deep learning model according to the present embodiment is a deep learning model for orthodontic treatment (first deep learning model) and a deep learning model for orthodontic treatment without extraction (second deep learning model). ) can be configured independently.
각 딥러닝 모델의 GAN은 생성기(Generator)와 판별기(Discriminator)를 포함하며, 생성기는 교정치료 이전 특정 시간(t)에 해당하는 표준화된 치과 영상을 입력으로 하여, 교정치료 후 소정 시간(△t)이 경과한 후의 가상 치과 영상를 생성한다. The GAN of each deep learning model includes a generator and a discriminator, and the generator takes a standardized dental image corresponding to a specific time (t) before orthodontic treatment as an input and determines a predetermined time after orthodontic treatment (Δ After t) has elapsed, a virtual dental image is generated.
판별기는 교정치료 후의 실제 치과 영상과 가상 치과 영상을 비교하여 GAN의 손실 함수(LGAN)이 최소가 될 때까지 가상 치과 영상의 생성 및 실제 치과 영상과의 비교를 반복 수행한다. The discriminator compares the real dental image after orthodontic treatment with the virtual dental image, and repeatedly generates the virtual dental image and compares it with the real dental image until the GAN loss function (L GAN ) is minimized.
GAN의 손실 함수는 아래의 수학식을 이용하여 결정될 수 있다. The loss function of GAN can be determined using the equation below.
E는 기대값을 나타내고, G는 GAN의 생성기를 나타내며, D는 GAN의 판별기를 나타낸다. A1은 교정치료 이전 특정 시간(t)에 해당하는 치과 영상을 나타내고, 는 교정치료 이후()에 촬영된 실제 치과 영상을 나타내며, G(X)는 교정치료 이후()에 예측된 가상 치과 영상을 나타낸다. E represents the expected value, G represents the generator of GAN, and D represents the discriminator of GAN. A 1 represents a dental image corresponding to a specific time (t) before orthodontic treatment, after orthodontic treatment ( ), and G(X) is after orthodontic treatment ( ) represents the predicted virtual dental image.
또한, 가상 치과 영상과 실제 치과 영상 간의 유사성은 CNN 모델을 함께 이용하여 판별될 수 있다.In addition, the similarity between the virtual dental image and the real dental image can be determined using a CNN model together.
본 실시예에 따른 장치는 수학식 4를 이용하여 CNN 모델의 손실 함수를 계산한다. The apparatus according to the present embodiment calculates the loss function of the CNN model using Equation 4.
여기서, E는 기대값을 나타내고, 는 교정치료 이후()에 촬영된 실제 치과 영상을 나타내고, G(X)는 가상 치과 영상을 나타낸다. 또한, ∥ ∥는 교정후 실제 치과 영상과 예측된 가상 치과 영상의 픽셀별 거리를 계산하는 함수를 나타낸다. Here, E represents the expected value, after orthodontic treatment ( ) represents a real dental image captured in , and G(X) represents a virtual dental image. In addition, ? ? denotes a function for calculating a pixel-by-pixel distance between a real dental image after correction and a predicted virtual dental image.
본 실시예에 따른 딥러닝 모델은 GAN 모델과 CNN 모델의 손실 함수가 최소가 되도록 학습이 수행될 수 있다. The deep learning model according to the present embodiment may be trained to minimize loss functions of the GAN model and the CNN model.
판별기의 판별 결과에 따라 생성기는 실제 교정치료 이후 실제 치과 영상과의 차이가 최소가 되도록 가상 치과 영상을 생성한다.According to the discrimination result of the discriminator, the generator generates a virtual dental image so that the difference from the actual dental image after the actual orthodontic treatment is minimized.
이를 수학식으로 나타내면, 수학식 5와 같다. If this is expressed as an equation, it is equivalent to Equation 5.
본 실시예에 따른 장치는 상기한 딥러닝 모델을 통해 교정치료 전후 시간차(△t)를 두고 예측된 가상 치과 영상(G(X))을 획득할 수 있다. The apparatus according to the present embodiment may obtain a predicted virtual dental image G(X) with a time difference Δt before and after orthodontic treatment through the deep learning model.
예측된 가상 치과 영상과 실제 치과 영상을 통계적으로 비교하여 유사도를 계산한 후 미리 설정된 임계값에 도달하면 딥러닝 모델의 학습을 완료한다. After calculating the degree of similarity by statistically comparing the predicted virtual dental image with the actual dental image, learning of the deep learning model is completed when a preset threshold is reached.
여기서, 임계값은 실제 치과 영상과 가상 치과 영상의 상관계수(Correlation Coefficient, CC)을 이용하여 상관계수가 최대일 때로 결정된다.Here, the threshold value is determined when the correlation coefficient is maximum using a correlation coefficient (CC) of a real dental image and a virtual dental image.
본 실시예에 따른 상관계수는 다음과 같다. The correlation coefficient according to this embodiment is as follows.
여기서, CC는 실제 치과 영상과 가상 치과 영상 사이의 관계를 정량적으로 나타낸 것으로 1에 가까울수록 예측 정확도가 높이며, 0에 가까울수록 예측 정확도가 낮은 것이다. Here, CC is a quantitative representation of the relationship between the real dental image and the virtual dental image, and the closer to 1, the higher the prediction accuracy, and the closer to 0, the lower the prediction accuracy.
그리고, 는 교정치료 후의 시간, o는 실제 치과 영상(예를 들어, 발치 교정치료 또는 비발치 교정치료 후 상당한 시간이 경과한 후의 치과 영상)을 나타내고, f는 학습된 딥러닝 모델을 이용하여 예측된 가상 치과 영상을 나타낸다. and, is the time after orthodontic treatment, o represents an actual dental image (eg, a dental image after a significant period of time has elapsed after orthodontic treatment or non-extraction orthodontic treatment), and f is a predicted virtual dentist using a trained deep learning model. represents an image.
i는 치과 영상의 개별 화소, 는 실제 치과 영상의 평균값, 는 가상 치과 영상의 평균값을 나타내며, n은 치과 영상의 전체 화소수를 나타낸다. i is an individual pixel of the dental image, is the average value of actual dental images, represents the average value of the virtual dental image, and n represents the total number of pixels in the dental image.
상기한 바와 같이 딥러닝 모델의 학습이 완료된 이후, 본 실시예에 따른 장치는 검증 과정을 수행한다(단계 208).As described above, after learning of the deep learning model is completed, the apparatus according to the present embodiment performs a verification process (step 208).
도 9는 본 실시예에 따른 발치 교정치료 결과 예측을 위한 제1 딥러닝 모델의 검증 결과를 나타낸 것이다. 9 shows the verification results of the first deep learning model for predicting the result of orthodontic extraction according to the present embodiment.
도 9a는 발치 교정치료 이전 실제 치과 영상이고, 도 9b는 발치 교정치료 이후 실제 치과 영상이다. 도 9a 내지 9b를 참조하면, 발치 교정치료 이후 환자의 상하학 전치가 후방으로 들어가면서 치열 변화가 이루어졌고, 상하악 전치부 치아의 순측 경사가 감소하였다. 9A is a real dental image before orthodontic treatment, and FIG. 9B is an actual dental image after orthodontic treatment. Referring to FIGS. 9A to 9B , after orthodontic treatment, the patient's upper and lower anterior teeth moved backward, the dentition was changed, and the labial inclination of the upper and lower anterior teeth decreased.
도 9c는 제1 딥러닝 모델이 소정 시간 경과 후 예측한 치과 영상이다. 이를 도 9b와 비교하였을 때 매우 높은 정확도로 발치 교정치료 이후 치과 영상을 예측함을 확인할 수 있다. 9C is a dental image predicted by the first deep learning model after a lapse of a predetermined time. When this is compared with FIG. 9B , it can be confirmed that the dental image after orthodontic treatment is predicted with very high accuracy.
도 10은 본 실시예에 따른 비발치 교정치료 결과 예측을 위한 제2 딥러닝 모델의 검증 결과를 나타낸 것이다. 10 shows the verification results of the second deep learning model for predicting non-extraction orthodontic treatment results according to the present embodiment.
도 10a는 비발치 교정치료 이전 실제 치과 영상이고, 도 10b는 비발치 교정치료 이후 실제 치과 영상이고, 도 10c는 제2 딥러닝 모델이 예측한 치과 영상을 나타낸 것으로, 딥러닝 모델이 도 10a를 입력으로 하여 소정 시간 경과한 이후의 예측한 치과 영상이다. 10A is a real dental image before non-extraction orthodontic treatment, FIG. 10B is an actual dental image after non-extraction orthodontic treatment, and FIG. 10C shows a dental image predicted by a second deep learning model, with the deep learning model taking FIG. 10A as an input. This is a predicted dental image after a predetermined time has elapsed.
도 10b 및 도 10c를 비교하였을 때 매우 높은 정확도로 비발치 교정치료 이후 결과를 예측함을 확인할 수 있다. When comparing FIGS. 10B and 10C , it can be confirmed that the result after non-extraction orthodontic treatment is predicted with very high accuracy.
본 실시예에 따른 장치는 학습 및 검증이 완료된 딥러닝 모델을 통해 발치 교정치료 또는 비발치 교정치료를 진행하였을 때 나타날 수 있는 결과를 예측한다(단계 210).The apparatus according to the present embodiment predicts results that may appear when orthodontic treatment or non-extraction orthodontic treatment is performed through a deep learning model that has been learned and verified (step 210).
도 11 내지 도 12는 실제 환자의 교정치료 이전 치과 영상을 학습이 완료된 발치/비발치 치과 영상 딥러닝 모델에 적용하여 발치 교정치료 이후의 결과 및 비발치 교정치료 후의 결과를 통계 검증한 것을 나타낸 것이다. 11 and 12 show statistical verification of results after orthodontic treatment and after orthodontic treatment by applying a dental image of an actual patient before orthodontic treatment to a trained extraction/non-extraction dental image deep learning model.
도 11과 12는 교정치료 이전 상태에서 각각 발치 교정치료 및 비발치 교정치료를 시행하였을 때 예상되는 치료 결과를 해당 딥러닝 모델을 통해 예측한 것을 나타낸 것이다. 11 and 12 show predictions of expected treatment results through the deep learning model when orthodontic treatment and non-extraction orthodontic treatment are performed, respectively, in a state before orthodontic treatment.
또한, 도 11과 도 12는 교정치료 이후 실제 치과 영상과 상기한 딥러닝 모델을 통해 예측한 치과 영상간의 CC 값을 나타낸다. 11 and 12 show CC values between an actual dental image after orthodontic treatment and a dental image predicted through the deep learning model.
도면에 도시된 바와 같이, 본 실시예에 따른 딥러닝 모델의 예측 치과 영상과 실제 치과 영상간에 매우 높은 상관성을 나타내며 발치 및 비발치 교정치료 모두에서 정확한 예측이 가능한 것을 알 수 있다. As shown in the figure, it can be seen that the deep learning model according to the present embodiment shows a very high correlation between the predicted dental image and the actual dental image, and accurate prediction is possible in both extraction and non-extraction orthodontic treatment.
상기한 본 발명의 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다.The embodiments of the present invention described above have been disclosed for illustrative purposes, and those skilled in the art having ordinary knowledge of the present invention will be able to make various modifications, changes, and additions within the spirit and scope of the present invention, and such modifications, changes, and additions will be considered to fall within the scope of the following claims.
Claims (10)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2021-0131653 | 2021-10-05 | ||
| KR1020210131653A KR102448169B1 (en) | 2021-10-05 | 2021-10-05 | Method and device for predicting orthodontic treatment results based on deep learning |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2023058994A1 true WO2023058994A1 (en) | 2023-04-13 |
Family
ID=83461178
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/KR2022/014715 Ceased WO2023058994A1 (en) | 2021-10-05 | 2022-09-30 | Method and device for orthodontic treatment result prediction based on deep learning |
Country Status (2)
| Country | Link |
|---|---|
| KR (1) | KR102448169B1 (en) |
| WO (1) | WO2023058994A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102448169B1 (en) * | 2021-10-05 | 2022-09-28 | 세종대학교산학협력단 | Method and device for predicting orthodontic treatment results based on deep learning |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20170125263A (en) * | 2016-05-04 | 2017-11-14 | 주식회사 디오코 | Method for correcting teeth in tooth correcton simulation device |
| KR20200007213A (en) * | 2018-07-12 | 2020-01-22 | 주식회사 진이어스 | Procedural prediction solution |
| KR20210098683A (en) * | 2020-02-03 | 2021-08-11 | (주)어셈블써클 | Method for providing information about orthodontics and device for providing information about orthodontics using deep learning ai algorithm |
| JP2021524768A (en) * | 2018-05-10 | 2021-09-16 | スリーエム イノベイティブ プロパティズ カンパニー | Orthodontic treatment simulated by enhanced visualization in real time |
| KR102448169B1 (en) * | 2021-10-05 | 2022-09-28 | 세종대학교산학협력단 | Method and device for predicting orthodontic treatment results based on deep learning |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2021015278A (en) | 2019-07-10 | 2021-02-12 | 株式会社東京技研 | Dental skill evaluation device and dental skill evaluation program |
| KR102392312B1 (en) * | 2020-01-13 | 2022-05-02 | 가톨릭대학교 산학협력단 | Apparatus and method for dental medical record |
| KR102557133B1 (en) * | 2020-02-28 | 2023-07-19 | 고려대학교 산학협력단 | Prediction systems or methods for possible dental treatment plan |
-
2021
- 2021-10-05 KR KR1020210131653A patent/KR102448169B1/en active Active
-
2022
- 2022-09-30 WO PCT/KR2022/014715 patent/WO2023058994A1/en not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20170125263A (en) * | 2016-05-04 | 2017-11-14 | 주식회사 디오코 | Method for correcting teeth in tooth correcton simulation device |
| JP2021524768A (en) * | 2018-05-10 | 2021-09-16 | スリーエム イノベイティブ プロパティズ カンパニー | Orthodontic treatment simulated by enhanced visualization in real time |
| KR20200007213A (en) * | 2018-07-12 | 2020-01-22 | 주식회사 진이어스 | Procedural prediction solution |
| KR20210098683A (en) * | 2020-02-03 | 2021-08-11 | (주)어셈블써클 | Method for providing information about orthodontics and device for providing information about orthodontics using deep learning ai algorithm |
| KR102448169B1 (en) * | 2021-10-05 | 2022-09-28 | 세종대학교산학협력단 | Method and device for predicting orthodontic treatment results based on deep learning |
Also Published As
| Publication number | Publication date |
|---|---|
| KR102448169B1 (en) | 2022-09-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Jader et al. | Deep instance segmentation of teeth in panoramic X-ray images | |
| WO2021157966A1 (en) | Method for providing information about orthodontics using deep learning artificial intelligence algorithm, and device using same | |
| WO2021141416A1 (en) | Apparatus and method for generating three-dimensional model through data matching | |
| WO2021215582A1 (en) | Periodontitis automatic diagnosis method and program for implementing same | |
| WO2019112301A2 (en) | Apparatus and method for designating implant implantation region | |
| CN114399621A (en) | A deep learning-based oral disease recognition system | |
| WO2019231116A1 (en) | Method for designing dental surgical guide, apparatus therefor, and record medium in which same is recorded | |
| WO2020184876A1 (en) | Method for establishing implant surgery plan by using artificial intelligence and medical image processing device therefor | |
| WO2021025296A1 (en) | Method for automatically recommending crown model and prosthesis cad apparatus for performing same | |
| US20240024076A1 (en) | Combined face scanning and intraoral scanning | |
| WO2023013805A1 (en) | Method for deriving head measurement parameters for tooth correction diagnosis based on machine learning from three-dimensional cbct image captured at natural head position | |
| JP7269587B2 (en) | segmentation device | |
| WO2020013642A1 (en) | Oral care device and oral care service system including same | |
| WO2021145607A1 (en) | Dental medical record device and dental medical record method thereof | |
| WO2016175545A1 (en) | Method and system for precise dental procedure | |
| WO2019045390A1 (en) | Oral care system | |
| WO2023058994A1 (en) | Method and device for orthodontic treatment result prediction based on deep learning | |
| Mallick et al. | Analysis of panoramic images using deep learning for dental disease identification | |
| WO2020189917A1 (en) | Method for establishing implant placement plan using implant centerline, and dental image processing apparatus therefor | |
| KR20220019860A (en) | Teeth examination system using deep learning algorithms | |
| WO2023191566A1 (en) | Simulation method for movement of mandible | |
| KR20220068583A (en) | System for diagnosising of peri-implantitis using deep learning and method thereof | |
| WO2021132856A1 (en) | Artificial intelligence-based oral ct automatic color conversion device and method for driving same | |
| WO2022103141A1 (en) | Occlusion alignment method and occlusion alignment device | |
| Shekarappa et al. | Artificial Intelligence-powered Dentistry: Enhancing Patient Care and Efficiency |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22878815 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 22878815 Country of ref document: EP Kind code of ref document: A1 |