[go: up one dir, main page]

WO2022239579A1 - Information processing device, estimation method, and estimation program - Google Patents

Information processing device, estimation method, and estimation program Download PDF

Info

Publication number
WO2022239579A1
WO2022239579A1 PCT/JP2022/017126 JP2022017126W WO2022239579A1 WO 2022239579 A1 WO2022239579 A1 WO 2022239579A1 JP 2022017126 W JP2022017126 W JP 2022017126W WO 2022239579 A1 WO2022239579 A1 WO 2022239579A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
information
possibility
unit
diabetes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2022/017126
Other languages
French (fr)
Japanese (ja)
Inventor
眞人 古橋
希尚 田中
幸村 東浦
慎一郎 西崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Symax Inc
Sapporo Medical University
Original Assignee
Symax Inc
Sapporo Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Symax Inc, Sapporo Medical University filed Critical Symax Inc
Publication of WO2022239579A1 publication Critical patent/WO2022239579A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present invention relates to an information processing device for estimating the possibility of diabetes, its estimation method, and an estimation program.
  • Patent Literature 1 discloses a health condition estimation device that estimates a user's health condition based on the user's degree of obesity.
  • an object of the present invention is to provide an information processing device, an estimation method, and an estimation program that can estimate the possibility that a user will develop diabetes using a method different from the conventional method.
  • the information processing apparatus includes a reception unit that receives input of the user's age, the presence or absence of a smoking habit, and urine pH as user information about the user; and an output unit configured to output information indicating the possibility of the user having diabetes estimated by the estimation unit.
  • the estimation unit may estimate the possibility that the user will develop diabetes based on the presence or absence of smoking habits for each predetermined range of urine pH according to the age of the user.
  • the user information may further include the user's degree of obesity.
  • the estimation unit may estimate the possibility that the user will develop diabetes according to the degree of obesity relative to a predetermined threshold value and whether or not the user has a smoking habit for each predetermined range of urine pH. .
  • the estimation unit may estimate the possibility that the user will develop diabetes based on the user information and the disease possibility information.
  • the storage unit stores the disease possibility information for each age of the user within a predetermined range, and the estimation unit determines whether the user is diagnosed with diabetes based on the disease possibility information according to the age of the user. It is also possible to estimate the possibility of
  • the estimating unit compares the user with other users of the same age who have a degree of obesity below a predetermined threshold and who do not have a smoking habit, and compares the user with diabetes. It is also possible to estimate the multiplier indicating the possibility that the user will develop diabetes.
  • the estimation unit may estimate the possibility that the user will develop diabetes after a predetermined number of years.
  • the above information processing apparatus may include a proposal unit that makes a proposal to prevent the user from developing diabetes based on the possibility that the user will develop diabetes estimated by the estimation unit.
  • the communication unit is attached to the toilet bowl and communicates with the measuring device that measures pH, and the reception unit receives the pH measured by the measurement device received by the communication unit as the urine pH of the user.
  • the communication unit receives specific information specifying a user corresponding to the urine pH measured by the measuring device, and the output unit outputs information indicating the possibility of diabetes of the user indicated by the specific information. It may be transmitted to the terminal.
  • the user may be male.
  • the reception unit further receives morbidity information indicating that the user has diabetes, and the information processing device, based on the morbidity information and the user information of the user corresponding to the morbidity information, An updating unit that updates the disease possibility information may be provided.
  • the estimation method according to the present invention is an estimation method in which a computer estimates the possibility that a user will develop diabetes, and the user's age, the presence or absence of a smoking habit, and the urine pH are input as user information about the user. a receiving step of receiving, an estimating step of estimating the possibility of the user suffering from diabetes based on the user information, an outputting step of outputting information indicating the possibility of the user suffering from diabetes estimated by the estimating step, including.
  • the estimating program according to the present invention is provided in a computer with a reception function that receives input of the user's age, the presence or absence of a smoking habit, and urine pH as user information about the user, and based on the user information, the user is diagnosed with diabetes. and an output function for outputting information indicating the possibility that the user will develop diabetes, which is estimated by the estimation function.
  • the information processing device, estimation method, and estimation program according to the present invention can estimate the possibility that a user will develop diabetes after a predetermined number of years. Therefore, when the estimation result indicates that the possibility of developing diabetes is high, for example, preventive measures can be taken from the present time to reduce the likelihood of developing diabetes.
  • FIG. 1 is a block diagram showing a configuration example of an information processing apparatus according to a first embodiment
  • FIG. FIG. 5 is a diagram showing an example of a first control table for estimating the possibility of developing diabetes according to Example 1
  • 4 is a flow chart showing an example of the operation of the information processing apparatus according to the first embodiment
  • FIG. 11 is a block diagram showing a configuration example of an information processing apparatus according to a second embodiment
  • FIG. 12 is a diagram showing an example of a second control table for estimating the possibility of developing diabetes according to Example 2
  • 9 is a flow chart showing an operation example of the information processing apparatus according to the second embodiment
  • FIG. 11 is a system diagram showing a configuration example of a diabetes estimation system for estimating diabetes according to Example 3
  • FIG. 11 is a block diagram illustrating a configuration example of an information processing apparatus according to a third embodiment
  • FIG. 11 is a block diagram showing a configuration example of a measuring device according to Example 3
  • FIG. 12 is a block diagram showing a configuration example of a user terminal according to Example 3
  • 4 is a data conceptual diagram showing a data configuration example of user information
  • FIG. FIG. 4 is a sequence diagram showing an example of exchanges between the measuring device, the information processing device, and the user terminal in the diabetes estimation system
  • FIG. 13 is a flow chart showing an operation example of the measurement device for realizing the exchange shown in FIG. 12
  • FIG. 13 is a flow chart showing an operation example of the information processing device for realizing the exchange shown in FIG. 12
  • 13 is a flow chart showing an operation example of a user terminal for realizing the exchange shown in FIG. 12
  • FIG. 10 is a diagram showing a display example of an estimation result on a user terminal;
  • FIG. 1 is a block diagram showing a configuration example of an information processing apparatus 100 according to the present invention.
  • the information processing apparatus 100 is a computer that can estimate the possibility that a user will develop diabetes 10 years from now, based on the user's urine pH, smoking habit, and age. Further, the information processing apparatus 100 may be a computer that can suggest improvements in lifestyle habits and the like for preventing diabetes in 10 years from now, based on the possibility that the user will have diabetes in 10 years from now. A detailed description will be given below.
  • the information processing device 100 includes a communication unit 110, an input unit 120, a control unit 130, a storage unit 140, and an output unit 150.
  • the communication unit 110 is a communication interface having a function of communicating with an external device (not shown in FIG. 1) via a network.
  • the external device may be various communication terminals such as a user's smartphone, mobile phone, tablet terminal, PC, notebook PC, etc. that estimate the possibility of developing diabetes in 10 years, and the user's urine pH ( It may be a measuring device for measuring uric acid level), or an information processing device provided in a hospital or the like that holds information on a user's urinary pH and degree of obesity.
  • Communication unit 110 transmits the received information to control unit 130 . Further, the communication unit 110 transmits information instructed by the control unit 130 to the instructed destination.
  • the input unit 120 is an input interface that receives input from the operator of the information processing device 100 or the like.
  • the input unit 120 may be implemented by, for example, a mouse, keyboard, touch panel, or the like, but is not limited to these.
  • the input unit 120 may be, for example, a microphone that receives voice input.
  • the input unit 120 transmits input contents to the control unit 130 .
  • the input unit 120 may receive, for example, the user's urinary pH, the presence or absence of a smoking habit, the age, and the like, as information regarding the user for estimating the possibility of developing diabetes in 10 years.
  • the control unit 130 is a processor having a function of controlling each unit of the information processing device 100 .
  • the control unit 130 uses various programs and data stored in the storage unit 140 to implement the functions that the information processing apparatus 100 should perform.
  • the control unit 130 has an estimation unit 131 as a function to be performed. Also, the control unit 130 may include a proposal unit 132 .
  • the estimation unit 131 estimates the possibility that the user will develop diabetes 10 years from now, based on the user's age, urine pH, and whether or not the user has a smoking habit.
  • the estimating unit 131 reads out the disease possibility information 141 stored in the storage unit 140, and estimates the possibility that the user will develop diabetes 10 years later, corresponding to the user's age, urine pH, and smoking habit. Get an index value that indicates . Then, based on the acquired index value, the possibility that the user will develop diabetes 10 years from now is estimated.
  • the estimating unit 131 may estimate how likely the user will develop diabetes 10 years from now, compared to other users. That is, the estimation unit 131 may output relative information compared with others as information indicating the possibility that the user will develop diabetes in 10 years.
  • the estimating unit 131 is basically a user of the same age as the user, and may estimate how likely it is to get diabetes compared to a user of the type who is least susceptible to diabetes. A user who becomes a person does not have to be a user of the same age. However, it can be said that the index estimated by the estimation unit 131 is easier for the user to understand when compared with users of the same age.
  • the proposal unit 132 proposes measures for preventing the user from developing diabetes in 10 years.
  • the proposing unit 132 may, for example, propose measures for preventing diabetes based on the estimation result estimated by the estimating unit 131 .
  • the proposing unit 132 associates the index value range estimated by the estimating unit 131 with preventive measures to be taken by the user according to the specified index value range in the storage unit 140. By storing the preventive table, the content to be proposed may be specified.
  • the storage unit 140 stores in advance a learning model that learns the relationship between an index value indicating the possibility of developing diabetes in 10 years and preventive measures to be taken to prevent diabetes, By inputting the index value estimated by the estimation unit 131 into this learning model, the contents to be proposed may be specified. There may be multiple proposal contents. Specific examples of the content of the proposal include, but are not limited to, promoting exercise, improving lifestyle habits, and improving diet. Further, the proposing unit 132 may execute a proposal when the index value indicating the estimation result estimated by the estimating unit 131 is equal to or greater than a predetermined threshold. As an example, the proposing unit 132 may propose exercise and exercise time to the user according to the index value indicating the estimation result by the estimating unit 131 .
  • the storage unit 140 is a storage medium having a function of storing various programs and data required for the information processing apparatus 100 to operate.
  • the storage unit 140 may be realized by, for example, a HDD (Hard Disc Drive), SSD (Solid State Drive), flash memory, etc., but is not limited to these.
  • storage part 140 may contain ROM and RAM.
  • the storage unit 140 stores a program for estimating the possibility that the user will develop diabetes 10 years from now, based on the information about the user input to the input unit 120 by the estimating unit 131, A program may be stored for suggesting measures to deter the possibility of contracting the disease.
  • the storage unit 140 also stores disease possibility information 141 .
  • the disease possibility information 141 is a first control table referred to for estimating the possibility of developing diabetes 10 years from now based on the user's age, urine pH, and smoking habit. Details of the disease possibility information 141 will be described later.
  • the output unit 150 has a function of outputting information specified by the control unit 130 .
  • the output unit 150 may be realized by a monitor, a speaker, or the like provided in the information processing apparatus 100 or connected to the information processing apparatus 100 .
  • the output unit 150 may output a character string or an image, or may output a sound.
  • the output unit 150 has a function of outputting the estimation result estimated by the estimation unit 131 and the content of the proposal proposed by the proposal unit 132 .
  • the above is a configuration example of the information processing apparatus 100 .
  • FIG. 2 is a data conceptual diagram showing a data configuration example of the disease possibility information 141.
  • the disease possibility information 141 is a table referred to by the control unit 130 in order to estimate the possibility that the user will develop diabetes ten years from now.
  • the disease possibility information 141 includes, as age, the range of urine pH according to each generation, and the likelihood of developing diabetes 10 years later according to the presence or absence of smoking habit in each range. It is information that defines the indicators of In the case of the disease possibility information 141 shown in FIG. 2, an example is shown in which age is divided into less than 40 years old, 40 to 50 years old, and 51 years old and over. Also, an example is shown in which the urine pH is divided into four categories of 6.5 or more, 6.0, 5.5, and 5.0 or less. Basically, people with lower urine pH are more likely to develop diabetes, and people with higher urine pH are less likely to develop diabetes than people with low urine pH.
  • the disease possibility information 141 shown in FIG. 2 as an example, a user whose age is between 40 and 50, who has a urine pH of 5.0 or less, and who has a smoking habit of 10 years from now The index value indicating the possibility of developing diabetes is "2.5".
  • the index value indicating the possibility of developing diabetes 10 years later in the disease possibility information 141 shown in FIG. 2 is a reference pattern for other cases. It is an index that shows how high the possibility of getting diabetes is.
  • the index value is "1.0", so it can be understood that it is used as a standard.
  • the index value indicating the possibility that a user whose age is “under 40”, whose urine pH is “6.0”, and whose smoking habit is “yes” will develop diabetes in 10 years is “5. 3”. That is, a user whose age is “under 40”, whose urine pH is “6.0”, and whose smoking habit is “yes” is “under 40” and whose urine pH is “6.5 or higher”.
  • the estimating unit 131 determines that the user is "under 40" in age, has a urine pH of "6.0”, and has a smoking habit of "yes.” 5.3 times more likely than a person with a urine pH of 6.5 or higher and no smoking habit to have diabetes in 10 years.” can be done.
  • the estimation unit estimates that the user is 2.1 times more likely to develop diabetes 10 years later than a person of the same age who has a urine pH of 6.5 or higher and who does not have a smoking habit.
  • the estimating unit 131 basically estimates the possibility that the user will develop diabetes by comparing with people of the same age who are least likely to develop diabetes.
  • the index values and urine pH threshold values shown in FIG. It can be identified by collecting the user's past information (urine pH and information on whether or not he/she has a smoking habit) from a year ago.
  • the urine pH is set to 0.5 increments, but this is an example.
  • the illustrated column for urine pH 6.0 may be, for example, 5.8 to 6.0, and the column for urine pH 5.5 may be, for example, 5.1 to 5.7. good too.
  • the urine pH shown in FIG. Close values may be identified as applicable to the user. For example, when the user's urine pH is "6.1", the index value corresponding to the urine pH of "6.0" in the disease possibility information 141 may be used.
  • the estimating unit 131 can estimate the possibility that the user will develop diabetes 10 years later. , it is possible to estimate how likely a person is to suffer from diabetes. Here, it is assumed that the possibility of developing diabetes 10 years from now is estimated. If you collect past information (urine pH and information on the presence or absence of smoking habits) of users who do not have diabetes five years ago (information on urine pH and smoking habits), five years later Disease possibility information 141 for estimating the possibility of contracting diabetes can be generated.
  • FIG. 3 is a flow chart showing an operation example in estimation processing by the information processing apparatus 100 .
  • the information processing apparatus 100 receives input of information about the user (step S301).
  • the information about the user is information on the user's age, urine pH, and whether or not he or she has a smoking habit.
  • the information processing apparatus 100 may accept direct input from the user via the input unit 120, or receive information via communication from another device, such as a user terminal held by the user, via the communication unit 110. It may be accepted by Communication unit 110 or input unit 120 transmits the received information about the user to control unit 130 .
  • the estimating unit 131 of the control unit 130 refers to the disease possibility information 141 based on the received user's age, urine pH, and smoking habit, and determines whether the user will have diabetes in 10 years. is estimated (step S302). Then, the estimation unit 131 outputs the estimated estimation result via the output unit 150 (step S304).
  • the output of the estimation result by the output unit 150 may be output as an image or a character string on the monitor of the information processing device 100, or may be output as a voice from the speaker of the information processing device 100, or the communication unit 110. It may also be the output by transfer to another device via the . Also, the estimation unit 131 transmits the estimated result to the proposal unit 132 .
  • the proposing unit 132 proposes a preventive measure for preventing the user from developing diabetes based on the estimation result of the possibility that the user will develop diabetes transmitted from the estimating unit 131 (step S304), and ends the process.
  • the proposal unit 132 outputs the proposed preventive measures via the output unit 150 .
  • the proposal by the proposal unit 132 may be output in any form of display of an image or a character string, output by voice, or information transfer from another device, similarly to the output of the estimation result by the estimation unit 131 .
  • ⁇ Summary of Embodiment 1> The inventors have found that a user's age, urinary pH, and whether or not they have a smoking habit greatly contribute to whether or not a user will suffer from diabetes. Conventionally, it is known that a user's degree of obesity is related to diabetes. The inventors have invented the information processing apparatus 100 that can estimate the possibility of a user suffering from diabetes from information related to diabetes. According to the information processing apparatus 100, it is possible to estimate the possibility that the user will develop diabetes after a predetermined number of years (for example, 10 years). In addition, the information processing apparatus 100 can propose measures for reducing the possibility of the user suffering from diabetes due to the suggestion unit, and can contribute to the user's health.
  • the information processing apparatus 100 estimates the possibility that the user will develop diabetes 10 years from now based on the user's age, urine pH, and smoking habit.
  • the information processing apparatus 100 uses the user's obesity level (BMI: Body Mass Index) in addition to the user's age, urine pH, and whether or not he or she has a smoking habit.
  • BMI Body Mass Index
  • the degree of obesity of the user is considered to be highly related to diabetes, and by estimating the possibility of developing diabetes in 10 years by taking into account BMI, the accuracy is higher than in the first embodiment.
  • An information processing device that performs estimation can be provided.
  • FIG. 4 is a block diagram showing a configuration example of an information processing device 400 according to the second embodiment.
  • the information processing device 400 includes a communication section 410 , an input section 420 , a control section 430 , a storage section 440 and an output section 450 .
  • the control unit 430 also includes an estimation unit 431 and a proposal unit 432 , and the storage unit 440 stores disease possibility information 441 . Since each part of the information processing apparatus 400 operates in the same manner as each part having the same name as the information processing apparatus 100 shown in the first embodiment, differences from the first embodiment will be explained in the second embodiment.
  • the communication unit 410 or the input unit 420 receives input of the user's obesity level (BMI value) in addition to the user's age, urine pH, and smoking habit as information about the user, and transmits the input to the control unit 430. .
  • BMI value the user's obesity level
  • the disease possibility information 441 stored in the storage unit 440 is based on the user's age, urine pH, the presence or absence of smoking habit, and the user's degree of obesity. It is a second control table for estimating the possibility of doing. Details of the disease possibility information 441 will be described later.
  • the estimating unit 431 estimates the possibility that the user will develop diabetes 10 years from now, based on the user's age, urine pH, and smoking habit, as well as the user's degree of obesity.
  • the estimation method itself by the estimation unit 431 is the same as that of the estimation unit 131 shown in the first embodiment.
  • the information processing apparatus 400 differs from the information processing apparatus 100 depending on whether or not information on the degree of obesity of the user is used.
  • FIG. 5 is a data conceptual diagram showing a data configuration example of the disease possibility information 441 according to the second embodiment.
  • the index values are classified by BMI. That is, as shown in FIG. 5, in the disease possibility information 441, the BMI value of 25 is used as a threshold, and the indices are further divided.
  • the disease possibility information 441 is an index indicating the possibility of developing diabetes according to the user's age range, urinary pH range, obesity degree range, and smoking habit. It is information with a defined value.
  • the disease possibility information 441 shows an example in which the age of the user is divided into under 40, 40 to 50, and over 50 years old.
  • the urine pH is divided into four categories of 6.5 or more, 6.0, 5.5, and less than 5.0. Basically, people with lower urine pH are more likely to develop diabetes, and people with higher urine pH are less likely to develop diabetes than people with low urine pH.
  • index values are set with 25 as the boundary for BMI.
  • a user whose age is “under 40”, whose urine pH is “6.0”, whose BMI is “under 25”, and whose smoking habit is “yes” is “under 40” and has a urine pH of “6.0”. is 3.4 times more likely to develop diabetes 10 years later than users with a BMI of '6.5 or more', a BMI of 'less than 25', and a smoking habit of 'no'.
  • the estimating unit 131 also detects that the user is "under 40" in age, has a urine pH of "6.0”, has a BMI of "less than 25", and has a smoking habit of "has”.
  • users are 3.4 times more likely to have diabetes 10 years later than non-smokers of the same age who have a urine pH of 6.5 or higher and a BMI of less than 25. Such content can be output as an estimation result.
  • the target user is "56 years old”
  • the urine pH is "4.4”
  • the BMI is "32”
  • the smoking habit is "none”
  • the estimated Part 431 is 2.3 times more likely than a person whose age is “50 years old or older”, whose urine pH is "6.5” or higher, whose BMI is "less than 25”, and whose smoking habit is "no". are likely to have diabetes 10 years later.
  • the index value, urine pH threshold, and BMI threshold shown in FIG. It can be identified by collecting past information (urine pH, smoking habit, and BMI information) of users who do not smoke 10 years ago.
  • the BMI threshold is set to 25, but this is an example and is not limited to 25.
  • the BMI threshold may be set to 30.
  • Each index value shown in FIGS. 2 and 5 is an example, and varies depending on the number of samples. The larger the number of samples, the more accurate index values can be calculated.
  • the estimation unit 431 can estimate the possibility that the user will develop diabetes 10 years from now. Here, it is assumed that the possibility of developing diabetes 10 years later is estimated. If you collect past information (urine pH and information on the presence or absence of smoking habits) of users who do not have diabetes five years ago (information on urine pH and smoking habits), five years later Disease possibility information 441 for estimating the possibility of contracting diabetes can be generated.
  • FIG. 6 is a flowchart showing an operation example of estimating the possibility that the user will develop diabetes ten years from now by the information processing apparatus 400 .
  • the information processing device 400 receives input of information about the user (step S601).
  • the information about the user is information on the user's age, urine pH, smoking habit, and degree of obesity.
  • the information processing apparatus 400 may receive direct input from the user via the input unit 420, or receive information via communication from another device such as a user terminal held by the user via the communication unit 410. It may be accepted by Communication unit 410 or input unit 420 transmits the received information about the user to control unit 430 .
  • the estimating unit 431 of the control unit 430 Upon receiving the information about the user, the estimating unit 431 of the control unit 430 refers to the disease possibility information 441 based on the user's age, urine pH, smoking habit, and obesity level to determine whether the user is The possibility of developing diabetes 10 years later is estimated (step S602). Then, the estimation unit 431 outputs the estimated estimation result via the output unit 450 (step S604).
  • the output of the estimation result by the output unit 450 may be output as an image or a character string on the monitor of the information processing device 400, or may be output as a voice from the speaker of the information processing device 400, or the communication unit 410. It may also be the output by transfer to another device via the . Also, the estimation unit 431 transmits the estimated result to the proposal unit 432 .
  • the proposing unit 432 proposes preventive measures for preventing the user from developing diabetes based on the estimation result of the possibility of the user developing diabetes transmitted from the estimating unit 431 (step S604), and ends the process.
  • the proposal unit 432 outputs the proposed preventive measures via the output unit 450 .
  • the proposal by the proposal unit 432 may be output in any form of display of an image or a character string, output by voice, or information transfer from another device, similarly to the output of the estimation result by the estimation unit 431 .
  • ⁇ Summary of Embodiment 2> by using the degree of body mass index (BMI), which is conventionally considered to be closely related to diabetes, the user will be diagnosed with diabetes after a predetermined number of years (for example, after 10 years). It is possible to estimate the possibility more accurately than the information processing apparatus 100 of the first embodiment.
  • BMI body mass index
  • Embodiments 1 and 2 the description is based on the assumption that the user is aware of his/her own urine pH. However, it is not uncommon for normal users to measure their own urine pH. Therefore, in the third embodiment, an estimation system will be described that can measure the urine pH and estimate the possibility that the user will develop diabetes 10 years from now without forcing the user to perform complicated processing.
  • FIG. 7 is a diagram showing a system configuration example of an estimation system for estimating the possibility that a user will develop diabetes.
  • the estimation system 700 comprises an information processing device 800, a measurement device 900, and a user terminal 1000 connected via a network 710 so as to be able to communicate with each other.
  • the information processing device 800 is a device for estimating the possibility that a user will develop diabetes in the same manner as the information processing devices 100 and 200 shown in the first and second embodiments, and transmits the estimated result to the user terminal 1000 of the user.
  • the measuring device 900 is provided in a toilet bowl, measures the pH of the user's urine, and transmits the result to the information processing device 800 .
  • a mode of using the urine pH measured by the measuring device 900 will be described.
  • the mounting position of the measuring unit 930 of the measuring device 900 to the toilet bowl is not limited to that shown in the figure. For example, when mounting to the toilet bowl, the measuring unit 930 may be attached to the front side of the bowl.
  • FIG. 8 is a block diagram showing a configuration example of an information processing apparatus 800 according to the third embodiment.
  • the information processing device 800 includes a communication section 810 , an input section 820 , a control section 830 , a storage section 840 and an output section 850 .
  • the control unit 830 also includes an estimation unit 831 and a proposal unit 832 , and the storage unit 840 stores disease possibility information 841 and user information 842 .
  • Each part of the information processing apparatus 800 operates similarly to each part having the same name as the information processing apparatus 100 shown in the first embodiment and the information processing apparatus 400 shown in the second embodiment.
  • the information processing apparatus 800 determines the possibility that the user will develop diabetes based on the user's age, urine pH, smoking habit, and degree of obesity. Assuming that this is an apparatus for estimation, differences from the second embodiment will be described.
  • the communication unit 810 receives a user ID as information about the user transmitted from the measuring device 900 and information indicating the urine pH of the user. Then, communication unit 810 transmits the received user ID and information indicating urine pH to control unit 830 .
  • the control unit 830 includes, as functions of the control unit 830, an estimation unit 831, a proposal unit 832, an acquisition unit 833, and an identification unit 834.
  • the acquisition unit 833 acquires the user's urine pH measured by the measuring device 900 .
  • the acquisition unit 833 transmits the acquired urine pH to the estimation unit 831 .
  • the identifying unit 834 refers to the user information 842 based on the user ID received from the measuring device 900 to identify the user whose urine pH is obtained by the obtaining unit 833 .
  • the identifying unit 834 refers to the user information 842 to identify the gender information, the age information, the smoking habit information, and the obesity level information of the user, and transmits the information to the estimating unit 831 .
  • the estimating unit 831 calculates the urine pH transmitted from the acquiring unit 833, the age-related information transmitted from the identifying unit 834, and the smoking habit. Using the presence/absence and the degree of obesity, the disease possibility information 841 is referenced to estimate the possibility that the user will develop diabetes 10 years from now.
  • the disease possibility information 841 is the same as the disease possibility information 441 described in the second embodiment.
  • the above is the configuration of the information processing apparatus 800 according to the third embodiment.
  • FIG. 9 is a block diagram showing a configuration example of the measuring device 900. As shown in FIG.
  • the measuring device 900 is a sensor that is provided in a toilet bowl or the like, measures the user's urine pH, and transmits the measured information to the information processing device 800 .
  • the measurement device 900 includes a communication section 910, an input section 920, a measurement section 930, a control section 940, and a storage section 950.
  • the measuring device 900 may comprise an output section 960 .
  • a communication unit 910 is a communication interface having a function for executing communication with other devices.
  • the communication unit 910 may perform communication using any communication protocol as long as it can communicate with another device, and may be wired or wireless communication.
  • the communication unit 910 communicates with the information processing device 800 to receive the morbidity possibility information and the proposal information transmitted from the information processing device 800 and transmit them to the control unit 940 .
  • the input unit 920 is an input interface that receives input of information regarding the user of the user terminal 1000 .
  • the input unit 920 receives information that uniquely identifies the user output by a health monitoring application or the like installed in the user terminal 300 owned by the user (for example, a QR code (registered trademark) including user ID information) ( Information that identifies the user is hereinafter referred to as "user identification information"), or magnetic information including the user's user ID contained in the IC (Integrated Circuit) card owned by the user, WiMAX (Worldwide Interoperability for Microwave Access) , WiFi (Wireless Fidelity) and wireless LAN (Local Area Network) such as Bluetooth (registered trademark).
  • a QR code registered trademark
  • user ID information Information that identifies the user is hereinafter referred to as "user identification information”
  • magnetic information including the user's user ID contained in the IC (Integrated Circuit) card owned by the user
  • WiMAX Worldwide Interoperability for Microwave Access
  • WiFi Wireless Fidel
  • the user ID read from the IC card is transmitted to the control unit 940 .
  • the input unit 920 may be realized by soft keys such as a touch panel, or may be realized by hard keys.
  • the input unit 920 may be a microphone for receiving voice input. In this case, the input unit 920 may receive the input of the user ID directly from the user and transmit it to the control unit 940 .
  • the measurement unit 930 is a sensor that is provided in a toilet bowl and has a function of measuring the urine pH of the user's urine based on the urine of the user who used the toilet bowl.
  • the measurement unit 930 may include an electrode unit for measuring urine pH.
  • the electrode unit includes two or more electrodes, and the electromotive force (potential difference, voltage value) by the electrolyte and the current value flowing between the electrodes immersed in urination or urination-containing water for a specific component in urine, which is an electrolyte.
  • the above electrodes are used to measure and generate voltage information.
  • the electrode unit is composed of two or more electrodes, a potentiometer, and an ammeter to measure the concentration of a specific component in urine.
  • the electrode unit for example, among two or more electrodes, one is used as a reference electrode and the other electrode is used as a working electrode.
  • a potentiometer measures the electromotive force difference between the working electrode and the reference electrode in response to the concentration (activity) of the urinary component.
  • the electrode unit generates voltage information based on the measurement results.
  • voltage information may be information related to the electromotive force (potential difference, voltage value) generated by a specific component (electrolyte) in urine generated using two or more electrodes.
  • an enzyme electrode method GOD (Glucose OxiDase)
  • GOD Glucose OxiDase
  • the potential difference E as voltage information, the pH value pHi of the reference electrode, and the pH value pHo which is the hydrogen ion concentration as a characteristic component in urine, can be expressed by the following equation (1). .
  • the measurement unit 930 calculates the pH o specified by the above formula as the urine pH of the user, and transmits it to the control unit 940 .
  • the control section 940 is a processor having a function of controlling each section of the measuring device 900 .
  • the control unit 940 uses various programs and data stored in the storage unit 950 to implement the functions that the measurement device 900 should perform.
  • Control unit 940 transmits the user ID transmitted from input unit 920 and the urine pH measured by measurement unit 930 to information processing apparatus 800 via communication unit 910 .
  • the storage unit 950 has a function of storing various programs and data required by the measuring device 900 for its operation.
  • the storage unit 950 can be implemented by, for example, a HDD (Hard Disc Drive), SSD (Solid State Drive), flash memory, or the like.
  • the output unit 960 has a function of outputting information specified by the control unit 940 .
  • the output unit 960 may be implemented by a monitor, a speaker, or the like provided in the measuring device 900 .
  • the output unit 960 may display information prompting the user to read the user ID again. may be displayed.
  • the above is the configuration example of the measuring device 900 .
  • FIG. 10 is a block diagram showing a configuration example of the user terminal 1000. As shown in FIG. 10
  • the user terminal 1000 may be realized by a smart phone, a mobile phone, a tablet terminal, a PC, a notebook PC, etc., but is not limited to these.
  • the user terminal 1000 includes a communication section 1010, an input section 1020, a control section 1030, a storage section 1040, and an output section 1050.
  • a communication unit 1010 is a communication interface having a function for executing communication with other devices.
  • the communication unit 1010 may perform communication using any communication protocol as long as it can communicate with another device, and may be wired or wireless communication.
  • the communication unit 1010 communicates with the information processing device 800 to receive the morbidity possibility information and the proposal information transmitted from the information processing device 800 and transmit them to the control unit 1030 .
  • the input unit 1020 is an input interface having a function of receiving input from the user of the user terminal 1000 and transmitting it to the control unit 1030 .
  • the input unit 1020 may be realized by soft keys such as a touch panel, or may be realized by hard keys. Alternatively, input unit 1020 may be a microphone for receiving voice input.
  • the input unit 1020 transmits input contents input by the user to the control unit 1030 .
  • the control unit 1030 is a processor having a function of controlling each unit of the user terminal 1000 .
  • the control unit 1030 uses various programs and data stored in the storage unit 1040 to implement the functions that the user terminal 1000 should perform.
  • the control unit 1030 Based on the morbidity possibility information transmitted from the information processing device 800, the control unit 1030 causes the output unit 1050 to output information indicating the possibility that the user of the user terminal 1000 will develop diabetes in 10 years.
  • the control unit 1030 causes the output unit 1050 to output information indicating preventive measures to prevent the user of the user terminal 1000 from developing diabetes in 10 years.
  • the storage unit 1040 has a function of storing various programs and data required by the user terminal 1000 for operation.
  • Storage unit 1040 can be implemented by, for example, a HDD (Hard Disc Drive), SSD (Solid State Drive), flash memory, or the like.
  • the output unit 1050 has a function of outputting information specified by the control unit 1030 .
  • the output unit 1050 may be realized by a monitor, a speaker, or the like provided in the user terminal 1000 or connected to the user terminal 1000 .
  • the output unit 1050 may output a character string or an image, or may output a sound.
  • the output unit 1050 may display information indicating the possibility that the user will develop diabetes in 10 years, or display information indicating preventive measures for preventing the user from developing diabetes.
  • the above is an example of the configuration of the user terminal 1000.
  • FIG. 11 is a data conceptual diagram showing a data configuration example of user information 842, which is information held by the information processing apparatus 800. As shown in FIG.
  • user information 842 is information in which user ID 1101, name 1102, gender 1103, date of birth 1104, BMI 1105, smoking habit 1106, and address 1107 are associated.
  • the user ID 1101 is unique identification information for each user that is given to uniquely distinguish each user managed by the information processing apparatus 800 .
  • the name 1102 is information indicating the name of the user indicated by the corresponding user ID 1101.
  • the gender 1103 is information indicating the gender of the user indicated by the corresponding user ID 1101.
  • the date of birth 1104 is information indicating the date of birth of the user indicated by the corresponding user ID 1101, and is information for specifying the age of the user.
  • the BMI 1105 is information indicating the degree of obesity of the user indicated by the corresponding user ID 1101.
  • the smoking habit 1106 is information indicating whether or not the user indicated by the corresponding user ID 1101 has a smoking habit.
  • the address 1107 is information on the user terminal held by the user indicated by the corresponding user ID 1101, and is information indicating the destination of the information indicating the possibility of developing diabetes.
  • the name 1102 of the user whose user ID 1101 is "U02338" is "A mountain A child", the gender 1103 is “male”, and the date of birth 1104 is "1964 July”. Month 6”, BMI 1105 is "28.2”, Smoking Habit 1106 is “Yes”, and Address is "AAA@AA.co.jp”. Since this user has a high BMI and a habit of smoking, it is predicted that the possibility of developing diabetes is high.
  • the user information 842 may include information other than these pieces of information.
  • the urine pH measured by the measuring device 900 may be registered in the user information 842 together with the measurement date.
  • some information may not be included in the user information 842, for example, the name 1102 may not be included in the user information 842.
  • FIG. Also, for example, if each piece of information required by the estimation unit 831 of the information processing device 800 for estimation processing can be acquired, the information does not have to be included in the user information 842 .
  • FIG. 12 is a sequence diagram illustrating an example of exchanges between devices related to the estimation system.
  • the measuring device 900 accepts input of user information (step S1201).
  • the user information that is input here is the information of the user who does the errand.
  • Measuring device 900 measures the user's urine pH (step S1202). Then, measuring device 900 transmits the received user information and the measured urine pH to information processing device 800 (step S1203).
  • the information processing apparatus 800 Upon receiving the user information and the urine pH, the information processing apparatus 800 identifies the user based on the user information (step S1204). Then, the specified user estimates the possibility of being affected 10 years later (step S1205). The information processing apparatus 800 transmits morbidity probability information indicating the estimation result and proposal information based on the estimation result to the user terminal 1000 (step S1206).
  • the user terminal 1000 When the user terminal 1000 receives the morbidity possibility information and the proposal information transmitted from the information processing device 800, the user terminal 1000 displays the contents indicated by the received morbidity possibility information and the contents of the proposal information (step S1207). . As a result, the user can recognize the possibility that he or she will develop diabetes 10 years from now on his/her own terminal, and can recognize what should be done to prevent diabetes.
  • FIG. 13 is a flow chart showing an operation example of the measuring device 900 for realizing the exchange shown in FIG.
  • the input unit 920 of the measuring device 900 receives input of a user ID from the user (step S1301). Input unit 920 transmits the input user ID to control unit 940 .
  • the measurement unit 930 of the measurement device receives the user's urine and measures the urine pH of the user's urine (step S1302). Measurement unit 930 then transmits the measured urine pH to control unit 940 .
  • the control unit 940 transmits measurement information in which the user ID and the urine pH are associated with each other via the communication unit 910 . Send to the processing device 800 .
  • the user can notify the information processing device 800 of his/her own urinary pH without particular effort, and can have his/her own possibility of developing diabetes estimated.
  • FIG. 14 is a flow chart showing an operation example of the information processing device 800 for realizing the exchange shown in FIG.
  • the communication unit 810 of the information processing device 800 receives, from the measuring device 900, information in which the user ID as information about the user and the urine pH measured by the measuring device 900 are associated with the user's urine pH. (Step S1401). Communication unit 810 transmits the received user ID and urine pH to control unit 830 .
  • the specifying unit 834 of the control unit 830 refers to the user information 842 based on the transmitted user ID, specifies the information of the user (step S1402), and transmits it to the estimating unit 831.
  • the user information to be transmitted is information regarding the user's sex, age, degree of obesity, and whether or not he or she has a smoking habit.
  • the acquisition unit 833 acquires the user's urine pH and transmits it to the estimation unit 831 .
  • the estimation unit 831 determines whether the user is male based on the user's gender information included in the transmitted user information (step S1403). Compared to men, the possibility of developing diabetes in women cannot be determined from age, urinary pH, degree of obesity, and whether or not they have a smoking habit. accuracy is reduced). If the estimation unit 831 determines that the user is not male (NO in step S1403), the process ends without doing anything.
  • the estimating unit 831 collects the transmitted urine pH (urine pH measured by the measuring device 900) and the user specified by the specifying unit 834.
  • the disease possibility information 841 is referenced based on the age of the user, the presence or absence of a smoking habit, and the degree of obesity to estimate the possibility of the user suffering from diabetes (step S1404).
  • the estimation unit 831 transmits the estimation result to the proposal unit 832 .
  • the estimation unit 831 generates morbidity possibility information indicating the estimated possibility that the user will develop diabetes (step S1405).
  • the estimating unit 831 determines that the estimated index value indicating the possibility that the user will develop diabetes differs from the user who is of the same age as the user and at least one of urine pH, smoking habit, and degree of obesity. The index value for the user and the morbidity probability information are generated.
  • the proposal unit 832 Based on the estimation result transmitted from the estimation unit 831, the proposal unit 832 generates proposal information indicating proposal content for reducing the possibility of the user suffering from diabetes (step S1406).
  • the control unit 830 transmits the disease probability information generated by the estimation unit 831 and the proposal information generated by the proposal unit 832 to the user terminal 1000 via the communication unit 810 (step S1407), and ends the process. .
  • FIG. 15 is a flow chart showing an operation example of the user terminal 1000 for realizing the exchange shown in FIG.
  • the communication unit 1010 of the user terminal 1000 receives the disease probability information and the proposal information transmitted from the information processing device 800 (step S1501).
  • the communication unit 1010 transmits the received morbidity possibility information and proposal information to the control unit 1030 .
  • control unit 1030 When the control unit 1030 receives the morbidity possibility information from the communication unit 1010, the control unit 1030 outputs to the output unit 850 information indicating the possibility that the user of the user terminal 1000 will develop diabetes in 10 years, which is indicated in the received morbidity possibility information.
  • Output (display) (step S1502).
  • control unit 1030 displays preventive measures for the user indicated in the received proposal information to prevent diabetes (step S1503), and ends the process. .
  • FIG. 16A is a diagram showing a display example of the estimation result on the user terminal 1000.
  • FIG. 16(b) is a diagram showing a display example of proposal information on the user terminal 1000. As shown in FIG. Note that although the example of the display by the user terminal 1000 is used here, the display on the monitor of the information processing device 800 (100, 400) may be the same.
  • the user terminal 1000 displays information 1601 indicating the possibility of the user suffering from diabetes.
  • the information 1601 indicating the likelihood that the user will develop diabetes is comparison information with other users, that is, how high the likelihood that the user will develop diabetes is compared to other users. It becomes information indicating By displaying information that compares the user to other users of the same age, the user can see how likely they are to develop diabetes rather than simply displaying information such as a percentage indicating the likelihood of developing diabetes. easy to feel.
  • the percentages shown in FIG. 16(a) are index values indicating the possibility of the user's own diabetes, and other classifications (different urine pH classifications, different BMI classifications, smoking habits, non-smoking habits, etc.). ) can be calculated from the index value of
  • the user terminal 1000 includes information 1601 indicating the possibility that the user will develop diabetes, as well as proposal information indicating preventive measures for reducing the possibility that the user will develop diabetes. 1602 may be displayed.
  • FIG. 16B shows an example in which information 1601 indicating the possibility of developing diabetes and proposal information 1602 are displayed in parallel, but proposal information 1602 may be displayed alone.
  • the information processing apparatus 800 it is possible to estimate the possibility of the user suffering from diabetes without directly accepting input of information about the user from the user. Since the user can recognize the possibility that he/she will be diagnosed with diabetes just by doing errands, it is possible to provide the estimation system and the information processing apparatus 800 that are highly convenient for the user.
  • the information processing apparatus 800 may be configured to exclude from the estimation by the estimation unit 831 if the target user is already suffering from diabetes. This is because it is meaningless to estimate the possibility of developing diabetes when the subject already has diabetes. Whether or not the user has diabetes is determined by, for example, storing information indicating whether or not the user has diabetes as information registered in the user information 842, and using the information. good. That is, before estimating the possibility that the user will have diabetes 10 years from now, the estimation unit 831 refers to the user information 842 to confirm that the user does not have diabetes, and then executes the estimation. It is good to do. The same applies to the information processing apparatuses 100 and 400 as well.
  • the information processing device (100, 400, 800) may be used as part of telemedicine in conjunction with a medical institution or the like.
  • the user information 842 stored in the storage unit 840 stores information on the medical institution, doctor, etc. associated with each user, and when updating the measurement/test result DB, etc., the measured values and test result data of the DB are stored.
  • the information processing apparatus 800 is configured so that the information is transmitted to the medical institution or the like, and the doctor or the like can remotely examine the patient's health based on the transmitted data and provide guidance, etc. even if the patient is at home. good too.
  • the user information included in the user information 842 may be obtained from a server of a medical institution or the like, or may be obtained from an electronic medical chart or the like with the permission of a doctor or the like.
  • each functional unit of the information processing apparatuses 100, 400, 800, the measuring apparatus 900, and the user terminal 1000 includes a logic circuit (hardware) formed in an integrated circuit (IC (Integrated Circuit) chip, LSI (Large Scale Integration)) or the like. It may be implemented by a dedicated circuit, or by software using a CPU (Central Processing Unit) and memory. Further, each functional unit may be implemented by one or more integrated circuits, and the functions of multiple functional units may be implemented by one integrated circuit. LSIs are sometimes called VLSIs, super LSIs, ultra LSIs, etc., depending on the degree of integration. It should be noted that the term "circuit” here may also include the meaning of digital processing by a computer, that is, functional processing by software. Also, the circuit may be realized by a reconfigurable circuit (for example, FPGA: Field ProgrammableGateAway).
  • FPGA Field ProgrammableGateAway
  • the functional units of the information processing devices 100, 400, 800, the measuring device 900, and the user terminal 1000 are each A CPU that executes the instructions of the estimation program, which is software that realizes the function, a ROM (Read Only Memory) or storage device in which the estimation program and various data are recorded so that the computer (or CPU) can read them (these are referred to as "recording media") ), a RAM (Random Access Memory) for developing the estimation program, and the like.
  • the object of the present invention is achieved by a computer (or CPU) reading and executing the estimation program from the recording medium.
  • a "non-temporary tangible medium” such as a tape, disk, card, semiconductor memory, programmable logic circuit, or the like can be used.
  • the estimation program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the estimation program.
  • the invention can also be implemented in the form of a data signal embedded in a carrier wave, in which the estimation program is embodied by electronic transmission.
  • the estimation program can be implemented using, for example, script languages such as ActionScript and JavaScript (registered trademark), object-oriented programming languages such as Objective-C and Java (registered trademark), markup languages such as HTML5, and the like.
  • script languages such as ActionScript and JavaScript (registered trademark)
  • object-oriented programming languages such as Objective-C and Java (registered trademark)
  • markup languages such as HTML5, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Provided is an information processing device for estimating the possibility of a user to develop diabetes in 10 years. This information processing device is provided with: a reception unit that receives input of the age of a user, the presence or absence of smoking habit, and urine pH as user information relating to the user; an estimation unit that estimates the possibility of the user to develop diabetes on the basis of the user information; and an output unit that outputs information indicating the possibility of the user to develop diabetes estimated by the estimation unit.

Description

情報処理装置、推定方法、および、推定プログラムInformation processing device, estimation method, and estimation program

 本発明は、糖尿病に関する可能性を推定する情報処理装置、及び、その推定方法並びに推定プログラムに関する。 The present invention relates to an information processing device for estimating the possibility of diabetes, its estimation method, and an estimation program.

 従来、ユーザの肥満度が糖尿病に関連することが知られている。特許文献1には、ユーザの肥満度に基づいて、ユーザの健康状態を推定する健康状態推定装置が開示されている。 Conventionally, it is known that a user's degree of obesity is related to diabetes. Patent Literature 1 discloses a health condition estimation device that estimates a user's health condition based on the user's degree of obesity.

特開2020-166441号公報JP 2020-166441 A

 ところで、ユーザが糖尿病に罹患する可能性について、更なる推定精度の向上が要望されており、肥満度による推定以外の手法も求められている。 By the way, there is a demand for further improvement in the accuracy of estimating the possibility that a user will develop diabetes, and methods other than estimation based on the degree of obesity are also in demand.

 そこで、本発明は、従来とは異なる手法を用いてユーザが糖尿病に罹患する可能性を推定することができる情報処理装置、推定方法および推定プログラムを提供することを目的とする。 Therefore, an object of the present invention is to provide an information processing device, an estimation method, and an estimation program that can estimate the possibility that a user will develop diabetes using a method different from the conventional method.

 本発明に係る情報処理装置は、ユーザに関するユーザ情報として、ユーザの年齢と、喫煙習慣の有無と、尿pHとの入力を受け付ける受付部と、ユーザ情報に基づいて、ユーザが糖尿病に罹患する可能性を推定する推定部と、推定部が推定したユーザが糖尿病に罹患する可能性を示す情報を出力する出力部と、を備える。 The information processing apparatus according to the present invention includes a reception unit that receives input of the user's age, the presence or absence of a smoking habit, and urine pH as user information about the user; and an output unit configured to output information indicating the possibility of the user having diabetes estimated by the estimation unit.

 上記情報処理装置において、推定部は、ユーザの年齢に応じて、尿pHの所定範囲ごとに、喫煙習慣の有無に基づいて、ユーザが糖尿病に罹患する可能性を推定することとしてもよい。 In the above information processing device, the estimation unit may estimate the possibility that the user will develop diabetes based on the presence or absence of smoking habits for each predetermined range of urine pH according to the age of the user.

 上記情報処理装置において、ユーザ情報は、さらに、ユーザの肥満度を含むことしてもよい。 In the above information processing device, the user information may further include the user's degree of obesity.

 上記情報処理装置において、推定部は、尿pHの所定範囲ごとに、肥満度の所定の閾値に対する大小および喫煙習慣の有無に応じて、ユーザが糖尿病に罹患する可能性を推定することとしてもよい。 In the above information processing device, the estimation unit may estimate the possibility that the user will develop diabetes according to the degree of obesity relative to a predetermined threshold value and whether or not the user has a smoking habit for each predetermined range of urine pH. .

 上記情報処理装置において、尿pHの所定範囲ごとに、肥満度の所定の閾値に対する大小及び喫煙習慣の有無に応じて糖尿病に罹患する可能性を示す疾病可能性情報を記憶する記憶部を備え、推定部は、ユーザ情報と疾病可能性情報とに基づいて、ユーザが糖尿病に罹患する可能性を推定することとしてもよい。 In the above information processing device, comprising a storage unit for storing disease possibility information indicating the possibility of contracting diabetes according to the degree of obesity with respect to a predetermined threshold value and the presence or absence of a smoking habit for each predetermined range of urine pH, The estimation unit may estimate the possibility that the user will develop diabetes based on the user information and the disease possibility information.

 上記情報処理装置において、記憶部は、疾病可能性情報を、ユーザの所定範囲の年代ごとに記憶し、推定部は、ユーザの年齢に応じた疾病可能性情報に基づいて、ユーザが糖尿病に罹患する可能性を推定することとしてもよい。 In the above information processing device, the storage unit stores the disease possibility information for each age of the user within a predetermined range, and the estimation unit determines whether the user is diagnosed with diabetes based on the disease possibility information according to the age of the user. It is also possible to estimate the possibility of

 上記情報処理装置において、推定部は、ユーザの同年代の他のユーザであって、肥満度が所定の閾値未満であり、かつ、喫煙習慣がない他のユーザと比較して、ユーザが糖尿病に罹患する可能性を示す倍率を、ユーザが糖尿病に罹患する可能性として推定することとしてもよい。 In the above information processing device, the estimating unit compares the user with other users of the same age who have a degree of obesity below a predetermined threshold and who do not have a smoking habit, and compares the user with diabetes. It is also possible to estimate the multiplier indicating the possibility that the user will develop diabetes.

 上記情報処理装置において、推定部は、ユーザが所定年数後に糖尿病に罹患する可能性を推定することとしてもよい。 In the above information processing device, the estimation unit may estimate the possibility that the user will develop diabetes after a predetermined number of years.

 上記情報処理装置において、推定部により推定されたユーザが糖尿病に罹患する可能性に基づいて、ユーザが糖尿病を患いにくくするための提案をする提案部を備えることとしてもよい。 The above information processing apparatus may include a proposal unit that makes a proposal to prevent the user from developing diabetes based on the possibility that the user will develop diabetes estimated by the estimation unit.

 上記情報処理装置において、便器に取り付けられ、pHを測定する測定装置と通信する通信部を備え、受付部は、ユーザの尿pHとして、通信部が受信した測定装置により測定されたpHを受け付けることとしてもよい。 In the information processing device, the communication unit is attached to the toilet bowl and communicates with the measuring device that measures pH, and the reception unit receives the pH measured by the measurement device received by the communication unit as the urine pH of the user. may be

 上記情報処理装置において、通信部は、測定装置により測定した尿pHに対応するユーザを特定する特定情報を受信し、出力部は、糖尿病に罹患する可能性を示す情報を特定情報が示すユーザの端末に送信することとしてもよい。 In the above information processing device, the communication unit receives specific information specifying a user corresponding to the urine pH measured by the measuring device, and the output unit outputs information indicating the possibility of diabetes of the user indicated by the specific information. It may be transmitted to the terminal.

 上記情報処理装置において、ユーザは、男性であることとしてもよい。 In the above information processing device, the user may be male.

 上記情報処理装置において、受付部は、さらに、ユーザが糖尿病を罹患したことを示す罹患情報を受け付け、情報処理装置は、罹患情報と、罹患情報に対応するユーザのユーザ情報と、に基づいて、疾病可能性情報を更新する更新部を備えることとしてもよい。 In the above information processing device, the reception unit further receives morbidity information indicating that the user has diabetes, and the information processing device, based on the morbidity information and the user information of the user corresponding to the morbidity information, An updating unit that updates the disease possibility information may be provided.

 本発明に係る推定方法は、コンピュータが、ユーザが糖尿病に罹患する可能性を推定する推定方法であって、ユーザに関するユーザ情報として、ユーザの年齢と、喫煙習慣の有無と、尿pHとの入力を受け付ける受付ステップと、ユーザ情報に基づいて、ユーザが糖尿病に罹患する可能性を推定する推定ステップと、推定ステップが推定したユーザが糖尿病に罹患する可能性を示す情報を出力する出力ステップと、を含む。 The estimation method according to the present invention is an estimation method in which a computer estimates the possibility that a user will develop diabetes, and the user's age, the presence or absence of a smoking habit, and the urine pH are input as user information about the user. a receiving step of receiving, an estimating step of estimating the possibility of the user suffering from diabetes based on the user information, an outputting step of outputting information indicating the possibility of the user suffering from diabetes estimated by the estimating step, including.

 本発明に係る推定プログラムは、コンピュータに、ユーザに関するユーザ情報として、ユーザの年齢と、喫煙習慣の有無と、尿pHとの入力を受け付ける受付機能と、ユーザ情報に基づいて、ユーザが糖尿病に罹患する可能性を推定する推定機能と、推定機能が推定したユーザが糖尿病に罹患する可能性を示す情報を出力する出力機能と、を実現させる。 The estimating program according to the present invention is provided in a computer with a reception function that receives input of the user's age, the presence or absence of a smoking habit, and urine pH as user information about the user, and based on the user information, the user is diagnosed with diabetes. and an output function for outputting information indicating the possibility that the user will develop diabetes, which is estimated by the estimation function.

 本発明に係る情報処理装置、推定方法および推定プログラムは、ユーザが、所定年数後に糖尿病に罹患する可能性を推定することができる。したがって、その推定結果が糖尿病に罹患する可能性が高いことを示す場合には、例えば、現時点から、糖尿病に罹患しにくくなるための予防策を立てることができる。 The information processing device, estimation method, and estimation program according to the present invention can estimate the possibility that a user will develop diabetes after a predetermined number of years. Therefore, when the estimation result indicates that the possibility of developing diabetes is high, for example, preventive measures can be taken from the present time to reduce the likelihood of developing diabetes.

実施例1に係る情報処理装置の構成例を示すブロック図である。1 is a block diagram showing a configuration example of an information processing apparatus according to a first embodiment; FIG. 実施例1に係る糖尿病に罹患する可能性を推定するための第1制御テーブルの一例を示す図である。FIG. 5 is a diagram showing an example of a first control table for estimating the possibility of developing diabetes according to Example 1; 実施例1に係る情報処理装置の動作例を示すフローチャートである。4 is a flow chart showing an example of the operation of the information processing apparatus according to the first embodiment; 実施例2に係る情報処理装置の構成例を示すブロック図である。FIG. 11 is a block diagram showing a configuration example of an information processing apparatus according to a second embodiment; 実施例2に係る糖尿病に罹患する可能性を推定するための第2制御テーブルの一例を示す図である。FIG. 12 is a diagram showing an example of a second control table for estimating the possibility of developing diabetes according to Example 2; 実施例2に係る情報処理装置の動作例を示すフローチャートである。9 is a flow chart showing an operation example of the information processing apparatus according to the second embodiment; 実施例3に係る糖尿病を推定するための糖尿病推定システムの構成例を示すシステム図である。FIG. 11 is a system diagram showing a configuration example of a diabetes estimation system for estimating diabetes according to Example 3; 実施例3に係る情報処理装置の構成例を示すブロック図である。FIG. 11 is a block diagram illustrating a configuration example of an information processing apparatus according to a third embodiment; 実施例3に係る測定装置の構成例を示すブロック図である。FIG. 11 is a block diagram showing a configuration example of a measuring device according to Example 3; 実施例3に係るユーザ端末の構成例を示すブロック図である。FIG. 12 is a block diagram showing a configuration example of a user terminal according to Example 3; ユーザ情報のデータ構成例を示すデータ概念図である。4 is a data conceptual diagram showing a data configuration example of user information; FIG. 糖尿病推定システムにおける測定装置と情報処理装置とユーザ端末との間のやり取りの例を示すシーケンス図である。FIG. 4 is a sequence diagram showing an example of exchanges between the measuring device, the information processing device, and the user terminal in the diabetes estimation system; 図12に示すやり取りを実現するための測定装置の動作例を示すフローチャートである。FIG. 13 is a flow chart showing an operation example of the measurement device for realizing the exchange shown in FIG. 12; FIG. 図12に示すやり取りを実現するための情報処理装置の動作例を示すフローチャートである。13 is a flow chart showing an operation example of the information processing device for realizing the exchange shown in FIG. 12; 図12に示すやり取りを実現するためのユーザ端末の動作例を示すフローチャートである。13 is a flow chart showing an operation example of a user terminal for realizing the exchange shown in FIG. 12; ユーザ端末における推定結果の表示例を示す図である。FIG. 10 is a diagram showing a display example of an estimation result on a user terminal;

 以下、本発明の一実施態様について、図面を参照しながら説明する。 An embodiment of the present invention will be described below with reference to the drawings.

<実施形態1>
<構成>
 図1は、本発明に係る情報処理装置100の構成例を示すブロック図である。
<Embodiment 1>
<Configuration>
FIG. 1 is a block diagram showing a configuration example of an information processing apparatus 100 according to the present invention.

 実施形態1に係る情報処理装置100は、ユーザの尿pH、喫煙習慣の有無、年齢に基づいて、ユーザが10年後に糖尿病に罹患する可能性を推定することができるコンピュータである。また、情報処理装置100は、ユーザが10年後に糖尿病に罹患する可能性に基づいて、10年後に糖尿病に罹患しにくくなるための生活習慣等の改善を提案できるコンピュータであってもよい。以下、詳細に説明する。 The information processing apparatus 100 according to Embodiment 1 is a computer that can estimate the possibility that a user will develop diabetes 10 years from now, based on the user's urine pH, smoking habit, and age. Further, the information processing apparatus 100 may be a computer that can suggest improvements in lifestyle habits and the like for preventing diabetes in 10 years from now, based on the possibility that the user will have diabetes in 10 years from now. A detailed description will be given below.

 図1に示すように、情報処理装置100は、通信部110と、入力部120と、制御部130と、記憶部140と、出力部150と、を備える。 As shown in FIG. 1, the information processing device 100 includes a communication unit 110, an input unit 120, a control unit 130, a storage unit 140, and an output unit 150.

 通信部110は、ネットワークを介して外部の装置(図1には図示せず)と通信する機能を有する通信インターフェースである。外部の装置は、一例として、10年後に糖尿病に罹患する可能性を推定するユーザのスマートフォンや携帯電話、タブレット端末、PC、ノートPCなど各種の通信端末であってよいし、ユーザの尿pH(尿酸値)を測定する測定装置であってもよいし、ユーザの尿pHや肥満度の情報を保持する病院等に設けられた情報処理装置であってもよい。通信部110は、受信した情報を、制御部130に伝達する。また、通信部110は、制御部130から指示された情報を、指示された宛先に送信する。 The communication unit 110 is a communication interface having a function of communicating with an external device (not shown in FIG. 1) via a network. As an example, the external device may be various communication terminals such as a user's smartphone, mobile phone, tablet terminal, PC, notebook PC, etc. that estimate the possibility of developing diabetes in 10 years, and the user's urine pH ( It may be a measuring device for measuring uric acid level), or an information processing device provided in a hospital or the like that holds information on a user's urinary pH and degree of obesity. Communication unit 110 transmits the received information to control unit 130 . Further, the communication unit 110 transmits information instructed by the control unit 130 to the instructed destination.

 入力部120は、情報処理装置100のオペレータ等からの入力を受け付ける入力インターフェースである。入力部120は、一例として、マウス、キーボード、タッチパネル等により実現されてよいが、これらに限定するものではない。入力部120は、例えば、音声入力を受け付けるマイクなどであってもよい。入力部120は、入力された内容を制御部130に伝達する。入力部120は、10年後に糖尿病に罹患する可能性を推定するユーザに関する情報として、例えば、ユーザの尿pH、喫煙習慣の有無や年齢などの情報を受け付けることとしてよい。 The input unit 120 is an input interface that receives input from the operator of the information processing device 100 or the like. The input unit 120 may be implemented by, for example, a mouse, keyboard, touch panel, or the like, but is not limited to these. The input unit 120 may be, for example, a microphone that receives voice input. The input unit 120 transmits input contents to the control unit 130 . The input unit 120 may receive, for example, the user's urinary pH, the presence or absence of a smoking habit, the age, and the like, as information regarding the user for estimating the possibility of developing diabetes in 10 years.

 制御部130は、情報処理装置100の各部を制御する機能を有するプロセッサである。制御部130は、記憶部140に記憶されている各種プログラム、データを利用して、情報処理装置100として果たすべき機能を実現する。制御部130は、果たすべき機能として、推定部131を備える。また、制御部130は、提案部132を備えてもよい。 The control unit 130 is a processor having a function of controlling each unit of the information processing device 100 . The control unit 130 uses various programs and data stored in the storage unit 140 to implement the functions that the information processing apparatus 100 should perform. The control unit 130 has an estimation unit 131 as a function to be performed. Also, the control unit 130 may include a proposal unit 132 .

 推定部131は、ユーザの年齢と、尿pHと、喫煙習慣の有無と、に基づいて、ユーザが10年後に糖尿病に罹患する可能性を推定する。推定部131は、記憶部140に記憶されている疾病可能性情報141を読み出して、ユーザの年齢と、尿pHと、喫煙習慣の有無とに対応するユーザが10年後に糖尿病に罹患する可能性を示す指標値を取得する。そして、取得した指標値に基づいて、ユーザが10年後に糖尿病に罹患する可能性を推定する。 The estimation unit 131 estimates the possibility that the user will develop diabetes 10 years from now, based on the user's age, urine pH, and whether or not the user has a smoking habit. The estimating unit 131 reads out the disease possibility information 141 stored in the storage unit 140, and estimates the possibility that the user will develop diabetes 10 years later, corresponding to the user's age, urine pH, and smoking habit. Get an index value that indicates . Then, based on the acquired index value, the possibility that the user will develop diabetes 10 years from now is estimated.

 推定部131は、ユーザが10年後に糖尿病に罹患する可能性について、他のユーザと比較して、どれだけ糖尿病に罹患する可能性が高いかを推定することとしてよい。即ち、推定部131は、ユーザが10年後に糖尿病に罹患する可能性を示す情報として、他者と比較した相対情報を出力するものであってよい。推定部131は、基本的にユーザの同年代のユーザであって、最も糖尿病に罹患しにくいタイプのユーザと比較してどれだけ糖尿病に罹患しやすいかを推定することとしてよいが、比較の対象となるユーザは同年代のユーザでなくてもよい。ただ、同年代のユーザと比較した方が、推定部131により推定された指標が、ユーザにとって理解しやすいといえる。 The estimating unit 131 may estimate how likely the user will develop diabetes 10 years from now, compared to other users. That is, the estimation unit 131 may output relative information compared with others as information indicating the possibility that the user will develop diabetes in 10 years. The estimating unit 131 is basically a user of the same age as the user, and may estimate how likely it is to get diabetes compared to a user of the type who is least susceptible to diabetes. A user who becomes a person does not have to be a user of the same age. However, it can be said that the index estimated by the estimation unit 131 is easier for the user to understand when compared with users of the same age.

 提案部132は、推定部131が推定した推定結果に基づいて、ユーザが10年後に糖尿病に罹患することを予防するための方策を提案する。提案部132は、例えば、推定部131が推定した推定結果に基づいて、糖尿病に罹患することを予防するための方策を提案してよい。提案部132は、一例として、図示しないが記憶部140に、推定部131が推定した指標値の範囲と、特定した指標値の範囲に応じてユーザが実行すべき予防策と、を対応付けた予防表を記憶しておくことで、提案する内容を特定することとしてもよい。また、あるいは、記憶部140に予め、10年後に糖尿病に罹患する可能性を示す指標値と、糖尿病に罹患しないために実行すべき予防策との関係を学習した学習モデルを記憶しておき、この学習モデルに推定部131が推定した指標値を入力することで、提案する内容を特定することとしてもよい。提案内容は、複数あってもよい。提案内容の具体例としては、運動の促進、生活習慣の改善、食事の改善などが考えられるが、これらに限定するものではない。また、提案部132は、推定部131が推定した推定結果を示す指標値が所定の閾値以上である場合に、提案を実行することとしてもよい。提案部132は、一例として、推定部131による推定結果を示す指標値の多寡に応じて、ユーザに対して、運動とその運動時間の提案をすることとしてよい。 Based on the estimation result estimated by the estimation unit 131, the proposal unit 132 proposes measures for preventing the user from developing diabetes in 10 years. The proposing unit 132 may, for example, propose measures for preventing diabetes based on the estimation result estimated by the estimating unit 131 . As an example, although not shown, the proposing unit 132 associates the index value range estimated by the estimating unit 131 with preventive measures to be taken by the user according to the specified index value range in the storage unit 140. By storing the preventive table, the content to be proposed may be specified. Alternatively, the storage unit 140 stores in advance a learning model that learns the relationship between an index value indicating the possibility of developing diabetes in 10 years and preventive measures to be taken to prevent diabetes, By inputting the index value estimated by the estimation unit 131 into this learning model, the contents to be proposed may be specified. There may be multiple proposal contents. Specific examples of the content of the proposal include, but are not limited to, promoting exercise, improving lifestyle habits, and improving diet. Further, the proposing unit 132 may execute a proposal when the index value indicating the estimation result estimated by the estimating unit 131 is equal to or greater than a predetermined threshold. As an example, the proposing unit 132 may propose exercise and exercise time to the user according to the index value indicating the estimation result by the estimating unit 131 .

 記憶部140は、情報処理装置100が動作する上で必要とする各種プログラム、データを記憶する機能を有する記憶媒体である。記憶部140は、例えば、HDD(Hard Disc Drive)、SSD(Solid State Drive)、フラッシュメモリなどにより実現されてよいが、これらに限定するものではない。また、記憶部140は、ROM、RAMを含んでよい。記憶部140は、推定部131が入力部120に入力されたユーザに関する情報に基づいて、ユーザが10年後に糖尿病に罹患する可能性を推定するためのプログラムや、提案部132が10年後に糖尿病に罹患する可能性を抑止するための方策を提案するためのプログラムを記憶していてよい。また、記憶部140は、疾病可能性情報141を記憶する。疾病可能性情報141は、ユーザの年齢と、尿pHと、喫煙習慣の有無に基づいて、10年後に糖尿病に罹患する可能性があるかを推定するために参照する第1制御テーブルである。疾病可能性情報141の詳細については後述する。 The storage unit 140 is a storage medium having a function of storing various programs and data required for the information processing apparatus 100 to operate. The storage unit 140 may be realized by, for example, a HDD (Hard Disc Drive), SSD (Solid State Drive), flash memory, etc., but is not limited to these. Moreover, the memory|storage part 140 may contain ROM and RAM. The storage unit 140 stores a program for estimating the possibility that the user will develop diabetes 10 years from now, based on the information about the user input to the input unit 120 by the estimating unit 131, A program may be stored for suggesting measures to deter the possibility of contracting the disease. The storage unit 140 also stores disease possibility information 141 . The disease possibility information 141 is a first control table referred to for estimating the possibility of developing diabetes 10 years from now based on the user's age, urine pH, and smoking habit. Details of the disease possibility information 141 will be described later.

 出力部150は、制御部130から指定された情報を出力する機能を有する。出力部150は、情報処理装置100に備えられた、または、情報処理装置100に接続されたモニタやスピーカなどにより実現されてよい。出力部150は、文字列や画像による出力を行ってもよく、音声による出力を行ってもよい。出力部150は、推定部131が推定した推定結果や、提案部132が提案した提案内容を出力する機能を有する。 The output unit 150 has a function of outputting information specified by the control unit 130 . The output unit 150 may be realized by a monitor, a speaker, or the like provided in the information processing apparatus 100 or connected to the information processing apparatus 100 . The output unit 150 may output a character string or an image, or may output a sound. The output unit 150 has a function of outputting the estimation result estimated by the estimation unit 131 and the content of the proposal proposed by the proposal unit 132 .

 以上が、情報処理装置100の構成例である。 The above is a configuration example of the information processing apparatus 100 .

<データ>
 図2は、疾病可能性情報141のデータ構成例を示すデータ概念図である。上述の通り、疾病可能性情報141は、ユーザが10年後に糖尿病に罹患する可能性を推定するために制御部130により参照されるテーブルである。
<Data>
FIG. 2 is a data conceptual diagram showing a data configuration example of the disease possibility information 141. As shown in FIG. As described above, the disease possibility information 141 is a table referred to by the control unit 130 in order to estimate the possibility that the user will develop diabetes ten years from now.

 図2に示すように、疾病可能性情報141は、年齢として、各年代に応じて、尿pHの範囲と、各範囲において喫煙習慣の有無に応じて、10年後の糖尿病の罹患しやすさの指標を定めた情報である。図2に示す疾病可能性情報141の場合、年齢は、40歳未満、40~50、51歳以上に分けた例を示している。また、尿pHは、6.5以上、6.0、5.5、5.0以下の4つに分けた例を示している。基本的に尿pHが低いほど糖尿病に罹患しやすく、尿pHが高い方が低いよりも比較的糖尿病に罹患しにくい。 As shown in FIG. 2, the disease possibility information 141 includes, as age, the range of urine pH according to each generation, and the likelihood of developing diabetes 10 years later according to the presence or absence of smoking habit in each range. It is information that defines the indicators of In the case of the disease possibility information 141 shown in FIG. 2, an example is shown in which age is divided into less than 40 years old, 40 to 50 years old, and 51 years old and over. Also, an example is shown in which the urine pH is divided into four categories of 6.5 or more, 6.0, 5.5, and 5.0 or less. Basically, people with lower urine pH are more likely to develop diabetes, and people with higher urine pH are less likely to develop diabetes than people with low urine pH.

 図2に示す疾病可能性情報141の場合、一例として、年齢が「40~50」の間で、尿pHが「5.0以下」で、喫煙習慣が「有」のユーザが、10年後に糖尿病に罹患する可能性を示す指標値は、「2.5」となっている。 In the case of the disease possibility information 141 shown in FIG. 2, as an example, a user whose age is between 40 and 50, who has a urine pH of 5.0 or less, and who has a smoking habit of 10 years from now The index value indicating the possibility of developing diabetes is "2.5".

 図2に示す疾病可能性情報141における10年後に糖尿病に罹患する可能性を示す指標値は、他の事例の基準となるパターンであって、10年後に糖尿病に罹患しにくいパターンに対して、どれだけ、糖尿病に罹患する可能性が高いかを示す指標である。 The index value indicating the possibility of developing diabetes 10 years later in the disease possibility information 141 shown in FIG. 2 is a reference pattern for other cases. It is an index that shows how high the possibility of getting diabetes is.

 図2の場合、年齢が「40歳未満」で、尿pHが「6.5以上」で、喫煙習慣が「無」のユーザを基準に、他の場合(他の40歳未満のユーザの場合)の糖尿病に罹患する可能性が高いかを示しており、その指標値が「1.0」であることから、基準になっていることが理解できる。そして、例えば、年齢が「40歳未満」で、尿pHが「6.0」で、喫煙習慣が「有」のユーザが10年後に糖尿病に罹患する可能性を示す指標値は、「5.3」となっている。即ち、年齢が「40歳未満」で、尿pHが「6.0」で、喫煙習慣が「有」のユーザは、年齢が「40歳未満」で、尿pHが「6.5以上」で、喫煙習慣が「無」のユーザと比して、「5.3」倍も10年後に糖尿病に罹患しやすいことを意味する。そして、推定部131も、このような場合には、ユーザが、年齢が「40歳未満」で、尿pHが「6.0」で、喫煙習慣が「有」のユーザであるとして、「同年代で、尿pHが6.5以上で喫煙習慣の無い人間よりも、5.3倍、10年後に糖尿病に罹患している可能性が高い」というような内容を、推定結果として、出力することができる。 In the case of FIG. 2, based on the user whose age is “under 40”, whose urine pH is “6.5 or more”, and whose smoking habit is “none”, in the other cases (other users under 40) ), and the index value is "1.0", so it can be understood that it is used as a standard. For example, the index value indicating the possibility that a user whose age is “under 40”, whose urine pH is “6.0”, and whose smoking habit is “yes” will develop diabetes in 10 years is “5. 3”. That is, a user whose age is “under 40”, whose urine pH is “6.0”, and whose smoking habit is “yes” is “under 40” and whose urine pH is “6.5 or higher”. , means that users with a smoking habit of "no" are "5.3" times more likely to develop diabetes after 10 years. In such a case, the estimating unit 131 also determines that the user is "under 40" in age, has a urine pH of "6.0", and has a smoking habit of "yes." 5.3 times more likely than a person with a urine pH of 6.5 or higher and no smoking habit to have diabetes in 10 years." can be done.

 また、他の例としては、推定部131は、対象のユーザが、「42歳」で、尿pHが、「5.5」で、喫煙習慣が「無」い場合には、その比較対象は、年齢が「40~50」で、尿pH「6.5以上」で、喫煙習慣が「無」い人となる。その結果、推定部は、当該ユーザは、同年代で、尿pHが6.5以上で喫煙習慣の無い人間よりも、2.1倍、10年後に糖尿病に罹患する可能性が高いと推定する。このように、推定部131は、基本的には、同年代で最も糖尿病に罹患する可能性が低い人間と比べる形で、ユーザが糖尿病に罹患する可能性を推定する。 As another example, if the target user is "42 years old", has a urine pH of "5.5", and does not have a smoking habit of "no", then the comparison target is , age 40 to 50, urine pH 6.5 or higher, and no smoking habit. As a result, the estimation unit estimates that the user is 2.1 times more likely to develop diabetes 10 years later than a person of the same age who has a urine pH of 6.5 or higher and who does not have a smoking habit. Thus, the estimating unit 131 basically estimates the possibility that the user will develop diabetes by comparing with people of the same age who are least likely to develop diabetes.

 図2に示す指標値や尿pHの閾値は、糖尿病に罹患しているユーザの10年前のユーザの過去情報(尿pHと喫煙習慣の有無の情報)、糖尿病に罹患していないユーザの10年前のユーザの過去情報(尿pHと喫煙習慣の有無の情報)を収集することにより特定することができる。なお、図2においては、尿pHについて0.5刻みとしているが、これは一例である。図示の、尿pHの6.0の欄は、例えば、5.8~6.0であってもよく、尿pHの5.5の欄は、例えば、5.1~5.7であってもよい。測定されたユーザの尿pHが例えば、0.1刻みで測定されるものであった場合には、図2の疾病可能性情報141を利用する場合には、図2において示される尿pHに最も近い値をユーザに該当する値として特定してよい。例えば、ユーザの尿pHが、「6.1」の場合には、疾病可能性情報141における尿pHが「6.0」に対応する指標値を利用することとしてよい。 The index values and urine pH threshold values shown in FIG. It can be identified by collecting the user's past information (urine pH and information on whether or not he/she has a smoking habit) from a year ago. In addition, in FIG. 2, the urine pH is set to 0.5 increments, but this is an example. The illustrated column for urine pH 6.0 may be, for example, 5.8 to 6.0, and the column for urine pH 5.5 may be, for example, 5.1 to 5.7. good too. For example, when the measured urine pH of the user is measured in increments of 0.1, when using the disease possibility information 141 in FIG. 2, the urine pH shown in FIG. Close values may be identified as applicable to the user. For example, when the user's urine pH is "6.1", the index value corresponding to the urine pH of "6.0" in the disease possibility information 141 may be used.

 疾病可能性情報141があることにより、推定部131は、ユーザが10年後に糖尿病に罹患する可能性を推定することができ、10年後に糖尿病に罹患する可能性が最も低いユーザと比較して、どの程度、糖尿病に罹患する可能性が高いかを推定することができる。なお、ここでは、10年後に糖尿病に罹患する可能性を推定することとしているが、疾病可能性情報141を生成する際に参照するデータとして、糖尿病に罹患しているユーザの5年前のユーザの過去情報(尿pHと喫煙習慣の有無の情報)、糖尿病に罹患していないユーザの5年前のユーザの過去情報(尿pHと喫煙習慣の有無の情報)を収集すれば、5年後に糖尿病に罹患する可能性を推定するための疾病可能性情報141を生成することができる。 With the disease possibility information 141, the estimating unit 131 can estimate the possibility that the user will develop diabetes 10 years later. , it is possible to estimate how likely a person is to suffer from diabetes. Here, it is assumed that the possibility of developing diabetes 10 years from now is estimated. If you collect past information (urine pH and information on the presence or absence of smoking habits) of users who do not have diabetes five years ago (information on urine pH and smoking habits), five years later Disease possibility information 141 for estimating the possibility of contracting diabetes can be generated.

<動作>
 図3は、情報処理装置100による推定処理における動作例を示すフローチャートである。
<Action>
FIG. 3 is a flow chart showing an operation example in estimation processing by the information processing apparatus 100 .

 図3に示すように、情報処理装置100は、ユーザに関する情報の入力を受け付ける(ステップS301)。ここで、ユーザに関する情報は、ユーザの年齢、尿pH、喫煙習慣の有無の情報である。情報処理装置100は、ユーザからの入力部120を介した直接入力により受け付けることとしてもよいし、通信部110を介して、他の装置、例えば、ユーザが保持するユーザ端末から通信により情報を受信することで受け付けることとしてもよい。通信部110、あるいは、入力部120は、受け付けたユーザに関する情報を、制御部130に伝達する。 As shown in FIG. 3, the information processing apparatus 100 receives input of information about the user (step S301). Here, the information about the user is information on the user's age, urine pH, and whether or not he or she has a smoking habit. The information processing apparatus 100 may accept direct input from the user via the input unit 120, or receive information via communication from another device, such as a user terminal held by the user, via the communication unit 110. It may be accepted by Communication unit 110 or input unit 120 transmits the received information about the user to control unit 130 .

 制御部130の推定部131は、ユーザに関する情報を受け付けると、受け付けたユーザの年齢と、尿pHと、喫煙習慣の有無とから、疾病可能性情報141を参照して、ユーザが10年後に糖尿病に罹患する可能性を推定する(ステップS302)。そして、推定部131は、推定した推定結果を、出力部150を介して出力する(ステップS304)。出力部150による推定結果の出力は、情報処理装置100のモニタによる画像や文字列による出力であってもよいし、情報処理装置100のスピーカから音声による出力であってもよいし、通信部110を介して他の装置への転送による出力であってもよい。また、推定部131は、推定した推定結果を提案部132に伝達する。 When the information about the user is received, the estimating unit 131 of the control unit 130 refers to the disease possibility information 141 based on the received user's age, urine pH, and smoking habit, and determines whether the user will have diabetes in 10 years. is estimated (step S302). Then, the estimation unit 131 outputs the estimated estimation result via the output unit 150 (step S304). The output of the estimation result by the output unit 150 may be output as an image or a character string on the monitor of the information processing device 100, or may be output as a voice from the speaker of the information processing device 100, or the communication unit 110. It may also be the output by transfer to another device via the . Also, the estimation unit 131 transmits the estimated result to the proposal unit 132 .

 提案部132は、推定部131から伝達されたユーザが糖尿病に罹患する可能性の推定結果に基づいて、ユーザが糖尿病に罹患しないための予防策を提案し(ステップS304)、処理を終了する。提案部132は、提案する予防策を、出力部150を介して出力する。提案部132による提案は、推定部131による推定結果の出力と同様に、画像や文字列の表示、音声による出力、他の装置の情報転送のいずれの態様による出力であってもよい。 The proposing unit 132 proposes a preventive measure for preventing the user from developing diabetes based on the estimation result of the possibility that the user will develop diabetes transmitted from the estimating unit 131 (step S304), and ends the process. The proposal unit 132 outputs the proposed preventive measures via the output unit 150 . The proposal by the proposal unit 132 may be output in any form of display of an image or a character string, output by voice, or information transfer from another device, similarly to the output of the estimation result by the estimation unit 131 .

<実施形態1まとめ>
 発明者らは、ユーザが糖尿病に罹患するかどうかについて、ユーザの年齢と、尿pHと、喫煙習慣の有無が大きく寄与することを知見した。従来、ユーザの肥満度が糖尿病に関連することは知られているが、それ以外の要因として、尿pHと喫煙習慣の有無があることを特定したことにより、ユーザの尿pHと喫煙習慣の有無に関する情報からユーザが糖尿病に罹患する可能性を推定することができる情報処理装置100を発明するに至った。情報処理装置100によれば、ユーザが所定年数後(例えば、10年後)に糖尿病に罹患する可能性を推定することができる。また、情報処理装置100は、提案部があることにより、ユーザが、糖尿病に罹患する可能性を低減するための方策を提案することができ、ユーザの健康に寄与することができる。
<Summary of Embodiment 1>
The inventors have found that a user's age, urinary pH, and whether or not they have a smoking habit greatly contribute to whether or not a user will suffer from diabetes. Conventionally, it is known that a user's degree of obesity is related to diabetes. The inventors have invented the information processing apparatus 100 that can estimate the possibility of a user suffering from diabetes from information related to diabetes. According to the information processing apparatus 100, it is possible to estimate the possibility that the user will develop diabetes after a predetermined number of years (for example, 10 years). In addition, the information processing apparatus 100 can propose measures for reducing the possibility of the user suffering from diabetes due to the suggestion unit, and can contribute to the user's health.

<実施形態2>
 上記実施形態1においては、情報処理装置100は、ユーザの年齢と、尿pHと、喫煙習慣の有無とから、ユーザが10年後に糖尿病に罹患する可能性を推定する例を示した。本実施形態2においては、情報処理装置100は、ユーザの年齢と、尿pHと、喫煙習慣の有無とに加えて、ユーザの肥満度(BMI:Body Mass Index)を利用して、ユーザが10年後に糖尿病に罹患する可能性を推定する。従来からユーザの肥満度は、糖尿病に対する関連が高いと目されており、BMIも加味して10年後に糖尿病に罹患する可能性を推定することで、実施形態1と比してより精度の高い推定を行う情報処理装置を提供することができる。
<Embodiment 2>
In the first embodiment, the information processing apparatus 100 estimates the possibility that the user will develop diabetes 10 years from now based on the user's age, urine pH, and smoking habit. In the second embodiment, the information processing apparatus 100 uses the user's obesity level (BMI: Body Mass Index) in addition to the user's age, urine pH, and whether or not he or she has a smoking habit. Estimate the likelihood of developing diabetes in years to come. Conventionally, the degree of obesity of the user is considered to be highly related to diabetes, and by estimating the possibility of developing diabetes in 10 years by taking into account BMI, the accuracy is higher than in the first embodiment. An information processing device that performs estimation can be provided.

 図4は、実施形態2に係る情報処理装置400の構成例を示すブロック図である。図4に示すように、情報処理装置400は、通信部410と、入力部420と、制御部430と、記憶部440と、出力部450と、を備える。また、制御部430は、推定部431と、提案部432と、を備え、記憶部440は、疾病可能性情報441を記憶している。情報処理装置400の各部は、実施形態1に示した情報処理装置100の同名の各部と同様に動作するので、本実施形態2においては、実施形態1との差分について説明する。 FIG. 4 is a block diagram showing a configuration example of an information processing device 400 according to the second embodiment. As shown in FIG. 4 , the information processing device 400 includes a communication section 410 , an input section 420 , a control section 430 , a storage section 440 and an output section 450 . The control unit 430 also includes an estimation unit 431 and a proposal unit 432 , and the storage unit 440 stores disease possibility information 441 . Since each part of the information processing apparatus 400 operates in the same manner as each part having the same name as the information processing apparatus 100 shown in the first embodiment, differences from the first embodiment will be explained in the second embodiment.

 通信部410、又は、入力部420は、ユーザに関する情報として、ユーザの年齢、尿pH、喫煙習慣の有無に加え、ユーザの肥満度(BMI値)の入力を受け付けて、制御部430に伝達する。 The communication unit 410 or the input unit 420 receives input of the user's obesity level (BMI value) in addition to the user's age, urine pH, and smoking habit as information about the user, and transmits the input to the control unit 430. .

 また、記憶部440に記憶されている疾病可能性情報441は、ユーザの年齢と、尿pHと、喫煙習慣の有無と、ユーザの肥満度、とに基づいて、ユーザが10年後に糖尿病に罹患する可能性を推定するための第2制御テーブルである。疾病可能性情報441の詳細については後述する。 Further, the disease possibility information 441 stored in the storage unit 440 is based on the user's age, urine pH, the presence or absence of smoking habit, and the user's degree of obesity. It is a second control table for estimating the possibility of doing. Details of the disease possibility information 441 will be described later.

 推定部431は、ユーザの年齢と、尿pHと、喫煙習慣の有無とに加えて、ユーザの肥満度に基づいて、ユーザが10年後に糖尿病に罹患する可能性を推定する。推定部431による推定手法自体は、実施形態1に示す推定部131と同様である。 The estimating unit 431 estimates the possibility that the user will develop diabetes 10 years from now, based on the user's age, urine pH, and smoking habit, as well as the user's degree of obesity. The estimation method itself by the estimation unit 431 is the same as that of the estimation unit 131 shown in the first embodiment.

 以上に示すように、情報処理装置400は、情報処理装置100と、ユーザの肥満度の情報を利用するか否かによって相違する。 As described above, the information processing apparatus 400 differs from the information processing apparatus 100 depending on whether or not information on the degree of obesity of the user is used.

<データ>
 図5は、実施形態2に係る疾病可能性情報441のデータ構成例を示すデータ概念図である。図5に示す疾病可能性情報441は、図2に示す疾病可能性情報141と比較すれば明らかなように、指標値が、BMIによる区分けがされていることが理解できる。即ち、図5に示すように疾病可能性情報441では、BMI値25を閾値として、更に指標が分けられている。
<Data>
FIG. 5 is a data conceptual diagram showing a data configuration example of the disease possibility information 441 according to the second embodiment. As can be seen by comparing the disease possibility information 441 shown in FIG. 5 with the disease possibility information 141 shown in FIG. 2, it can be understood that the index values are classified by BMI. That is, as shown in FIG. 5, in the disease possibility information 441, the BMI value of 25 is used as a threshold, and the indices are further divided.

 図5に示すように、疾病可能性情報441は、ユーザの年代ごとに、尿pHの範囲と、肥満度の範囲と、喫煙習慣の有無とに応じて、糖尿病に罹患する可能性を示す指標値が定められた情報である。 As shown in FIG. 5, the disease possibility information 441 is an index indicating the possibility of developing diabetes according to the user's age range, urinary pH range, obesity degree range, and smoking habit. It is information with a defined value.

 図5に示すように、疾病可能性情報441は、ユーザの年齢として、40歳未満、40~50、50歳以上に分けた例を示している。また、尿pHは、6.5以上、6.0、5.5、5.0未満の4つに分けた例を示している。基本的に尿pHが低いほど糖尿病に罹患しやすく、尿pHが高い方が低いよりも比較的糖尿病に罹患しにくい。また、疾病可能性情報441では、BMIとして25を境界として、指標値が設定されている。 As shown in FIG. 5, the disease possibility information 441 shows an example in which the age of the user is divided into under 40, 40 to 50, and over 50 years old. In addition, an example is shown in which the urine pH is divided into four categories of 6.5 or more, 6.0, 5.5, and less than 5.0. Basically, people with lower urine pH are more likely to develop diabetes, and people with higher urine pH are less likely to develop diabetes than people with low urine pH. In addition, in the disease possibility information 441, index values are set with 25 as the boundary for BMI.

 図5の場合、対象のユーザの年齢が40歳未満の場合には、年齢が「40歳未満」で、尿pHが「6.5以上」で、BMIが「25未満」で、喫煙習慣が「無」のユーザを基準に、他の場合の糖尿病に罹患する可能性が高いかを示しており、その指標値が「1.0」であることから、基準になっていることが理解できる。そして、例えば、年齢が「40歳未満」で、尿pHが「6.0」で、喫煙習慣が「有」って、BMIが「25未満」であるユーザが10年後に糖尿病に罹患する可能性を示す指標値は、「3.4」となっている。即ち、年齢が「40歳未満」で、尿pHが「6.0」で、BMIが「25未満」で、喫煙習慣が「有」のユーザは、年齢が「40歳未満」で、尿pHが「6.5以上」で、BMIが「25未満」で、喫煙習慣が「無」のユーザと比して、3.4倍も10年後に糖尿病に罹患しやすいことを意味する。そして、推定部131も、このような場合には、ユーザが、年齢が「40歳未満」で、尿pHが「6.0」で、BMIが「25未満」で、喫煙習慣が「有」のユーザであるとして、「同年代で、尿pHが6.5以上でBMIが25未満で喫煙習慣の無い人間よりも、3.4倍、10年後に糖尿病に罹患している可能性が高い」というような内容を、推定結果として、出力することができる。 In the case of FIG. 5, when the age of the target user is under 40, the age is "under 40", the urine pH is "6.5 or more", the BMI is "under 25", and the smoking habit is Based on the user who answered "none", it indicates whether there is a high possibility of suffering from diabetes in other cases, and since the index value is "1.0", it can be understood that it is used as a reference. . For example, a user whose age is “under 40”, whose urine pH is “6.0”, whose smoking habit is “yes”, and whose BMI is “less than 25” may develop diabetes in 10 years. The index value indicating the sex is "3.4". That is, a user whose age is “under 40”, whose urine pH is “6.0”, whose BMI is “under 25”, and whose smoking habit is “yes” is “under 40” and has a urine pH of “6.0”. is 3.4 times more likely to develop diabetes 10 years later than users with a BMI of '6.5 or more', a BMI of 'less than 25', and a smoking habit of 'no'. In such a case, the estimating unit 131 also detects that the user is "under 40" in age, has a urine pH of "6.0", has a BMI of "less than 25", and has a smoking habit of "has". users are 3.4 times more likely to have diabetes 10 years later than non-smokers of the same age who have a urine pH of 6.5 or higher and a BMI of less than 25. Such content can be output as an estimation result.

 また、他の例を挙げれば、対象のユーザが「56歳」で、尿pHが、「4.4」で、BMIが「32」で、喫煙習慣が「無」である場合には、推定部431は、年齢が「50歳以上」で、尿pHが、「6.5」以上で、BMIが「25未満」で、喫煙習慣が「無」の人間と比して、2.3倍も10年後に糖尿病に罹患している可能性が高いと推定する。 As another example, if the target user is "56 years old", the urine pH is "4.4", the BMI is "32", and the smoking habit is "none", the estimated Part 431 is 2.3 times more likely than a person whose age is "50 years old or older", whose urine pH is "6.5" or higher, whose BMI is "less than 25", and whose smoking habit is "no". are likely to have diabetes 10 years later.

 図5に示す指標値や尿pHの閾値、BMIの閾値は、糖尿病に罹患しているユーザの10年前のユーザの過去情報(尿pHと喫煙習慣の有無とBMIの情報)、糖尿病に罹患していないユーザの10年前のユーザの過去情報(尿pHと喫煙習慣の有無とBMIの情報)を収集することにより特定することができる。なお、図5に示す例は、BMIの閾値を25としているが、これは一例であり、25に限定するものではない。例えば、BMIの閾値を30とすることとしてもよい。また、図2、図5に示した各指標値は、一例であり、標本数によって異なる。標本数が多ければ多いほど、より正確な指標値を算出することができる。 The index value, urine pH threshold, and BMI threshold shown in FIG. It can be identified by collecting past information (urine pH, smoking habit, and BMI information) of users who do not smoke 10 years ago. In the example shown in FIG. 5, the BMI threshold is set to 25, but this is an example and is not limited to 25. For example, the BMI threshold may be set to 30. Each index value shown in FIGS. 2 and 5 is an example, and varies depending on the number of samples. The larger the number of samples, the more accurate index values can be calculated.

 疾病可能性情報441があることにより、推定部431は、ユーザが10年後に糖尿病に罹患する可能性を推定することができる。なお、ここでは、10年後に糖尿病に罹患する可能性を推定することとしているが、疾病可能性情報441を生成する際に参照するデータとして、糖尿病に罹患しているユーザの5年前のユーザの過去情報(尿pHと喫煙習慣の有無の情報)、糖尿病に罹患していないユーザの5年前のユーザの過去情報(尿pHと喫煙習慣の有無の情報)を収集すれば、5年後に糖尿病に罹患する可能性を推定するための疾病可能性情報441を生成することができる。 With the disease possibility information 441, the estimation unit 431 can estimate the possibility that the user will develop diabetes 10 years from now. Here, it is assumed that the possibility of developing diabetes 10 years later is estimated. If you collect past information (urine pH and information on the presence or absence of smoking habits) of users who do not have diabetes five years ago (information on urine pH and smoking habits), five years later Disease possibility information 441 for estimating the possibility of contracting diabetes can be generated.

<動作>
 図6は、情報処理装置400によるユーザが10年後に糖尿病に罹患する可能性を推定する動作例を示すフローチャートである。
<Action>
FIG. 6 is a flowchart showing an operation example of estimating the possibility that the user will develop diabetes ten years from now by the information processing apparatus 400 .

 図6に示すように、情報処理装置400は、ユーザに関する情報の入力を受け付ける(ステップS601)。ここで、ユーザに関する情報は、ユーザの年齢、尿pH、喫煙習慣の有無、肥満度の情報である。情報処理装置400は、ユーザからの入力部420を介した直接入力により受け付けることとしてもよいし、通信部410を介して、他の装置、例えば、ユーザが保持するユーザ端末から通信により情報を受信することで受け付けることとしてもよい。通信部410、あるいは、入力部420は、受け付けたユーザに関する情報を、制御部430に伝達する。 As shown in FIG. 6, the information processing device 400 receives input of information about the user (step S601). Here, the information about the user is information on the user's age, urine pH, smoking habit, and degree of obesity. The information processing apparatus 400 may receive direct input from the user via the input unit 420, or receive information via communication from another device such as a user terminal held by the user via the communication unit 410. It may be accepted by Communication unit 410 or input unit 420 transmits the received information about the user to control unit 430 .

 制御部430の推定部431は、ユーザに関する情報を受け付けると、受け付けたユーザの年齢と、尿pHと、喫煙習慣の有無と、肥満度とから、疾病可能性情報441を参照して、ユーザが10年後に糖尿病に罹患する可能性を推定する(ステップS602)。そして、推定部431は、推定した推定結果を、出力部450を介して出力する(ステップS604)。出力部450による推定結果の出力は、情報処理装置400のモニタによる画像や文字列による出力であってもよいし、情報処理装置400のスピーカから音声による出力であってもよいし、通信部410を介して他の装置への転送による出力であってもよい。また、推定部431は、推定した推定結果を提案部432に伝達する。 Upon receiving the information about the user, the estimating unit 431 of the control unit 430 refers to the disease possibility information 441 based on the user's age, urine pH, smoking habit, and obesity level to determine whether the user is The possibility of developing diabetes 10 years later is estimated (step S602). Then, the estimation unit 431 outputs the estimated estimation result via the output unit 450 (step S604). The output of the estimation result by the output unit 450 may be output as an image or a character string on the monitor of the information processing device 400, or may be output as a voice from the speaker of the information processing device 400, or the communication unit 410. It may also be the output by transfer to another device via the . Also, the estimation unit 431 transmits the estimated result to the proposal unit 432 .

 提案部432は、推定部431から伝達されたユーザが糖尿病に罹患する可能性の推定結果に基づいて、ユーザが糖尿病に罹患しないための予防策を提案し(ステップS604)、処理を終了する。提案部432は、提案する予防策を、出力部450を介して出力する。提案部432による提案は、推定部431による推定結果の出力と同様に、画像や文字列の表示、音声による出力、他の装置の情報転送のいずれの態様による出力であってもよい。 The proposing unit 432 proposes preventive measures for preventing the user from developing diabetes based on the estimation result of the possibility of the user developing diabetes transmitted from the estimating unit 431 (step S604), and ends the process. The proposal unit 432 outputs the proposed preventive measures via the output unit 450 . The proposal by the proposal unit 432 may be output in any form of display of an image or a character string, output by voice, or information transfer from another device, similarly to the output of the estimation result by the estimation unit 431 .

<実施形態2まとめ>
 実施形態2に係る情報処理装置400によれば、従来から糖尿病に大きく関連すると目される肥満度(BMI)を用いることで、ユーザが所定年数後(例えば、10年後)に糖尿病に罹患する可能性を、実施形態1の情報処理装置100よりも正確に推定することが可能となる。
<Summary of Embodiment 2>
According to the information processing apparatus 400 according to the second embodiment, by using the degree of body mass index (BMI), which is conventionally considered to be closely related to diabetes, the user will be diagnosed with diabetes after a predetermined number of years (for example, after 10 years). It is possible to estimate the possibility more accurately than the information processing apparatus 100 of the first embodiment.

<実施形態3>
 上記実施形態1、2においては、ユーザは、自身の尿pHについて認識できていることを前提として説明した。しかしながら、通常の生活をするユーザが、自身の尿pHを測定することなどそうそうない。そこで、本実施形態3においては、ユーザに煩雑な処理を強いることなく、尿pHを測定して、ユーザが10年後に糖尿病に罹患する可能性を推定することができる推定システムについて説明する。
<Embodiment 3>
In Embodiments 1 and 2 above, the description is based on the assumption that the user is aware of his/her own urine pH. However, it is not uncommon for normal users to measure their own urine pH. Therefore, in the third embodiment, an estimation system will be described that can measure the urine pH and estimate the possibility that the user will develop diabetes 10 years from now without forcing the user to perform complicated processing.

<構成>
<システム構成>
 図7は、ユーザが糖尿病に罹患する可能性を推定する推定システムのシステム構成例を示す図である。
<Configuration>
<System configuration>
FIG. 7 is a diagram showing a system configuration example of an estimation system for estimating the possibility that a user will develop diabetes.

 図7に示すように、推定システム700は、情報処理装置800と、測定装置900と、ユーザ端末1000とが、ネットワーク710を介して、通信可能に接続されて成る。 As shown in FIG. 7, the estimation system 700 comprises an information processing device 800, a measurement device 900, and a user terminal 1000 connected via a network 710 so as to be able to communicate with each other.

 情報処理装置800は、上記実施形態1、2に示した情報処理装置100、200と同様にユーザが糖尿病に罹患する可能性を推定する装置であり、推定した推定結果をユーザのユーザ端末1000に送信する。測定装置900は、便器に設けられてユーザの尿のpHを測定し、情報処理装置800に送信する。このように、本実施形態3においては、測定装置900が測定した尿pHを利用する態様を説明する。なお、便器への測定装置900の測定部930の取付位置は図示するものに限定するものではなく、例えば、大便器に取り付ける場合には、ボウルの手前側に取り付けるようにしてもよい。 The information processing device 800 is a device for estimating the possibility that a user will develop diabetes in the same manner as the information processing devices 100 and 200 shown in the first and second embodiments, and transmits the estimated result to the user terminal 1000 of the user. Send. The measuring device 900 is provided in a toilet bowl, measures the pH of the user's urine, and transmits the result to the information processing device 800 . As described above, in the third embodiment, a mode of using the urine pH measured by the measuring device 900 will be described. The mounting position of the measuring unit 930 of the measuring device 900 to the toilet bowl is not limited to that shown in the figure. For example, when mounting to the toilet bowl, the measuring unit 930 may be attached to the front side of the bowl.

<情報処理装置の構成>
 図8は、実施形態3に係る情報処理装置800の構成例を示すブロック図である。図8に示すように、情報処理装置800は、通信部810と、入力部820と、制御部830と、記憶部840と、出力部850とを備える。また、制御部830は、推定部831と、提案部832と、を備え、記憶部840は、疾病可能性情報841と、ユーザ情報842とを記憶している。情報処理装置800の各部は、実施形態1に示した情報処理装置100、実施形態2に示した情報処理装置400の同名の各部と同様に動作する。よって、本実施形態3においては、情報処理装置800は、情報処理装置400と同様にユーザの年齢と、尿pHと、喫煙習慣の有無と、肥満度とからユーザが糖尿病に罹患する可能性を推定する装置であるとして、実施形態2との差分について説明する。
<Configuration of information processing device>
FIG. 8 is a block diagram showing a configuration example of an information processing apparatus 800 according to the third embodiment. As shown in FIG. 8 , the information processing device 800 includes a communication section 810 , an input section 820 , a control section 830 , a storage section 840 and an output section 850 . The control unit 830 also includes an estimation unit 831 and a proposal unit 832 , and the storage unit 840 stores disease possibility information 841 and user information 842 . Each part of the information processing apparatus 800 operates similarly to each part having the same name as the information processing apparatus 100 shown in the first embodiment and the information processing apparatus 400 shown in the second embodiment. Therefore, in the third embodiment, the information processing apparatus 800, like the information processing apparatus 400, determines the possibility that the user will develop diabetes based on the user's age, urine pH, smoking habit, and degree of obesity. Assuming that this is an apparatus for estimation, differences from the second embodiment will be described.

 通信部810は、測定装置900から送信されるユーザに関する情報としてのユーザIDと、そのユーザの尿pHを示す情報と、を受信する。そして、通信部810は受信したユーザIDと、尿pHを示す情報とを、制御部830に伝達する。 The communication unit 810 receives a user ID as information about the user transmitted from the measuring device 900 and information indicating the urine pH of the user. Then, communication unit 810 transmits the received user ID and information indicating urine pH to control unit 830 .

 制御部830は、制御部830の機能として、推定部831と、提案部832と、取得部833と、特定部834と、を備える。 The control unit 830 includes, as functions of the control unit 830, an estimation unit 831, a proposal unit 832, an acquisition unit 833, and an identification unit 834.

 取得部833は、測定装置900が測定するユーザの尿pHを取得する。取得部833は、取得した尿pHを推定部831に伝達する。 The acquisition unit 833 acquires the user's urine pH measured by the measuring device 900 . The acquisition unit 833 transmits the acquired urine pH to the estimation unit 831 .

 特定部834は、測定装置900から受信したユーザIDに基づいて、ユーザ情報842を参照して、取得部833が取得したユーザの尿pHが誰であるかを特定する。特定部834は、ユーザ情報842を参照して、ユーザの性別情報と、年齢に関する情報と、喫煙習慣の有無に関する情報と、肥満度に関する情報とを、特定し、推定部831に伝達する。 The identifying unit 834 refers to the user information 842 based on the user ID received from the measuring device 900 to identify the user whose urine pH is obtained by the obtaining unit 833 . The identifying unit 834 refers to the user information 842 to identify the gender information, the age information, the smoking habit information, and the obesity level information of the user, and transmits the information to the estimating unit 831 .

 推定部831は、特定部834から伝達されたユーザの性別情報が、男性である場合に、取得部833から伝達された尿pHと、特定部834から伝達された年齢に関する情報と、喫煙習慣の有無と、肥満度とを用いて、疾病可能性情報841を参照して、ユーザが10年後に糖尿病に罹患する可能性を推定する。 When the gender information of the user transmitted from the identifying unit 834 indicates that the user is male, the estimating unit 831 calculates the urine pH transmitted from the acquiring unit 833, the age-related information transmitted from the identifying unit 834, and the smoking habit. Using the presence/absence and the degree of obesity, the disease possibility information 841 is referenced to estimate the possibility that the user will develop diabetes 10 years from now.

 なお、疾病可能性情報841は、実施形態2において説明した疾病可能性情報441と同一のものである。 The disease possibility information 841 is the same as the disease possibility information 441 described in the second embodiment.

 以上が、実施形態3に係る情報処理装置800の構成である。 The above is the configuration of the information processing apparatus 800 according to the third embodiment.

<測定装置の構成>
 図9は、測定装置900の構成例を示すブロック図である。
<Configuration of measuring device>
FIG. 9 is a block diagram showing a configuration example of the measuring device 900. As shown in FIG.

 測定装置900は、便器等に設けられて、ユーザの尿pHを測定し、情報処理装置800に、測定した情報を送信するセンサである。 The measuring device 900 is a sensor that is provided in a toilet bowl or the like, measures the user's urine pH, and transmits the measured information to the information processing device 800 .

 図9に示すように、測定装置900は、通信部910と、入力部920と、測定部930と、制御部940と、記憶部950と、を備える。測定装置900は、出力部960を備えてもよい。 As shown in FIG. 9, the measurement device 900 includes a communication section 910, an input section 920, a measurement section 930, a control section 940, and a storage section 950. The measuring device 900 may comprise an output section 960 .

 通信部910は、他の装置と通信を実行するための機能を有する通信インターフェースである。通信部910は、他の装置と通信可能であれば、いずれの通信プロトコルにより通信を行ってもよく、有線、無線のいずれでの通信であってよい。通信部910は情報処理装置800と通信を行って、情報処理装置800から送信された罹患可能性情報と、提案情報を受信し、制御部940に伝達する。 A communication unit 910 is a communication interface having a function for executing communication with other devices. The communication unit 910 may perform communication using any communication protocol as long as it can communicate with another device, and may be wired or wireless communication. The communication unit 910 communicates with the information processing device 800 to receive the morbidity possibility information and the proposal information transmitted from the information processing device 800 and transmit them to the control unit 940 .

 入力部920は、ユーザ端末1000のユーザに関する情報の入力を受け付ける入力インターフェースである。入力部920は、例えば、当該使用者が所有するユーザ端末300に搭載するヘルスモニタリングアプリ等が出力するユーザを一意に識別する情報(例えば、ユーザIDの情報を含むQRコード(登録商標))(当該使用者を識別する情報を、以降「ユーザ識別情報」という)、あるいは、ユーザが所有するIC(Integrated Circuit)カードに含まれるユーザのユーザIDを含む磁気情報、WiMAX(Worldwide Interoperability for Microwave Access)やWiFi(Wireless Fidelity)およびBluetooth(登録商標)等の無線LAN(Local Area Network)などのユーザを一意に識別する情報を読み取るリーダであってよく、入力部920はユーザのユーザ端末1000(あるいはユーザのICカード)から読み取ったユーザIDを制御部940に伝達する。また、入力部920は、タッチパネル等のソフトキーにより実現されてもよいし、ハードキーにより実現されてもよい。また、あるいは、入力部920は、音声入力を受け付けるためのマイクであってもよい。この場合に、入力部920は、ユーザから直接、ユーザIDの入力を受け付けて、制御部940に伝達することとしてよい。 The input unit 920 is an input interface that receives input of information regarding the user of the user terminal 1000 . For example, the input unit 920 receives information that uniquely identifies the user output by a health monitoring application or the like installed in the user terminal 300 owned by the user (for example, a QR code (registered trademark) including user ID information) ( Information that identifies the user is hereinafter referred to as "user identification information"), or magnetic information including the user's user ID contained in the IC (Integrated Circuit) card owned by the user, WiMAX (Worldwide Interoperability for Microwave Access) , WiFi (Wireless Fidelity) and wireless LAN (Local Area Network) such as Bluetooth (registered trademark). The user ID read from the IC card) is transmitted to the control unit 940 . Also, the input unit 920 may be realized by soft keys such as a touch panel, or may be realized by hard keys. Alternatively, the input unit 920 may be a microphone for receiving voice input. In this case, the input unit 920 may receive the input of the user ID directly from the user and transmit it to the control unit 940 .

 測定部930は、便器に設けられて、当該便器を使用したユーザの尿に基づいて、ユーザの尿の尿pHを測定する機能を有するセンサである。 The measurement unit 930 is a sensor that is provided in a toilet bowl and has a function of measuring the urine pH of the user's urine based on the urine of the user who used the toilet bowl.

 測定部930は、一例として、尿pHを測定するために、電極部を備えることとしてよい。 For example, the measurement unit 930 may include an electrode unit for measuring urine pH.

 電極部は、二以上の電極を含み、電解質である尿中の特定成分について、当該電解質による起電力(電位差、電圧値)および排尿または排尿含有水に浸漬した電極間を流れる電流値を、二以上の電極を使用して測定し、電圧情報を生成する。具体的には、例えば、電極部は、尿中の特定成分の濃度を測定するために、二以上の電極、電位差計、電流計から構成される。電極部は、例えば、二以上の電極のうち、一つを参照電極とし、他の電極を作用電極とすることで、これらの電極を排尿あるいは排尿含有水に浸漬し、排尿含有水の分析目的の尿成分の濃度(活量)に応答する作用電極と参照電極の起電力差を電位差計で測定する。電極部は、測定結果に基づいて電圧情報を生成する。 The electrode unit includes two or more electrodes, and the electromotive force (potential difference, voltage value) by the electrolyte and the current value flowing between the electrodes immersed in urination or urination-containing water for a specific component in urine, which is an electrolyte. The above electrodes are used to measure and generate voltage information. Specifically, for example, the electrode unit is composed of two or more electrodes, a potentiometer, and an ammeter to measure the concentration of a specific component in urine. For the electrode unit, for example, among two or more electrodes, one is used as a reference electrode and the other electrode is used as a working electrode. A potentiometer measures the electromotive force difference between the working electrode and the reference electrode in response to the concentration (activity) of the urinary component. The electrode unit generates voltage information based on the measurement results.

 ここで「電圧情報」とは、二以上の電極を用いて発生する尿中の特定成分(電解質)による起電力(電位差、電圧値)に係る情報であってよい。なお、ここではイオン選択性電極法を用いた例を示したが、酵素電極法(GOD(Glucose OxiDase))を用いてもよく、また、対極となる電極を追加して、三極による電極法を用いてもよい。これにより、生成した電圧情報に基づいて尿中の特定成分の濃度等を測ることができる。 Here, "voltage information" may be information related to the electromotive force (potential difference, voltage value) generated by a specific component (electrolyte) in urine generated using two or more electrodes. Although an example using an ion-selective electrode method is shown here, an enzyme electrode method (GOD (Glucose OxiDase)) may be used. may be used. As a result, the concentration of the specific component in urine can be measured based on the generated voltage information.

 一例として、電圧情報としての電位差Eと、参照電極のpH値pHiと、尿中の特性成分として水素イオン濃度であるpH値pHoとは、次式(1)のように表すことができる。通常pHi≒7となり、αは感度を、eは不斉電位を指定する。例えば、水温25℃の理想的な電極では、α=1、e=0となる。 As an example, the potential difference E as voltage information, the pH value pHi of the reference electrode, and the pH value pHo , which is the hydrogen ion concentration as a characteristic component in urine, can be expressed by the following equation (1). . Usually pH i ≈7, where α designates the sensitivity and e the asymmetry potential. For example, in an ideal electrode with a water temperature of 25° C., α=1 and e=0.

Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

 測定部930は、上記の式により、特定されるpHoを、ユーザの尿pHとして算出し、制御部940に伝達する。 The measurement unit 930 calculates the pH o specified by the above formula as the urine pH of the user, and transmits it to the control unit 940 .

 制御部940は、測定装置900の各部を制御する機能を有するプロセッサである。制御部940は、記憶部950に記憶されている各種プログラム、データを用いて、測定装置900が果たすべき機能を実現する。制御部940は、入力部920から伝達されたユーザIDと、測定部930により測定された尿pHとを、通信部910を介して、情報処理装置800に送信する。 The control section 940 is a processor having a function of controlling each section of the measuring device 900 . The control unit 940 uses various programs and data stored in the storage unit 950 to implement the functions that the measurement device 900 should perform. Control unit 940 transmits the user ID transmitted from input unit 920 and the urine pH measured by measurement unit 930 to information processing apparatus 800 via communication unit 910 .

 記憶部950は、測定装置900が動作上必要とする各種のプログラム及びデータを記憶する機能を有する。記憶部950は、例えば、HDD(Hard Disc Drive)、SSD(Solid State Drive)、フラッシュメモリ等により実現することができる。 The storage unit 950 has a function of storing various programs and data required by the measuring device 900 for its operation. The storage unit 950 can be implemented by, for example, a HDD (Hard Disc Drive), SSD (Solid State Drive), flash memory, or the like.

 出力部960は、制御部940から指定された情報を出力する機能を有する。出力部960は、測定装置900に備えられたモニタやスピーカなどにより実現されてよい。出力部960は、一例として、入力部920がユーザIDを読み取れなかった場合に、再度、ユーザIDの読み取りをユーザに促す情報を表示したりすることとしてよく、測定部930が測定した測定結果を表示したりしてもよい。 The output unit 960 has a function of outputting information specified by the control unit 940 . The output unit 960 may be implemented by a monitor, a speaker, or the like provided in the measuring device 900 . For example, when the input unit 920 fails to read the user ID, the output unit 960 may display information prompting the user to read the user ID again. may be displayed.

 以上が、測定装置900の構成例である。 The above is the configuration example of the measuring device 900 .

<ユーザ端末の構成>
 図10は、ユーザ端末1000の構成例を示すブロック図である。
<Configuration of user terminal>
FIG. 10 is a block diagram showing a configuration example of the user terminal 1000. As shown in FIG.

 ユーザ端末1000は、スマートフォンや携帯電話、タブレット端末、PC、ノートPCなどにより実現されてよいがこれらに限定するものではない。 The user terminal 1000 may be realized by a smart phone, a mobile phone, a tablet terminal, a PC, a notebook PC, etc., but is not limited to these.

 図10に示すようにユーザ端末1000は、通信部1010と、入力部1020と、制御部1030と、記憶部1040と、出力部1050と、を備える。 As shown in FIG. 10, the user terminal 1000 includes a communication section 1010, an input section 1020, a control section 1030, a storage section 1040, and an output section 1050.

 通信部1010は、他の装置と通信を実行するための機能を有する通信インターフェースである。通信部1010は、他の装置と通信可能であれば、いずれの通信プロトコルにより通信を行ってもよく、有線、無線のいずれでの通信であってよい。通信部1010は情報処理装置800と通信を行って、情報処理装置800から送信された罹患可能性情報と、提案情報を受信し、制御部1030に伝達する。 A communication unit 1010 is a communication interface having a function for executing communication with other devices. The communication unit 1010 may perform communication using any communication protocol as long as it can communicate with another device, and may be wired or wireless communication. The communication unit 1010 communicates with the information processing device 800 to receive the morbidity possibility information and the proposal information transmitted from the information processing device 800 and transmit them to the control unit 1030 .

 入力部1020は、ユーザ端末1000のユーザからの入力を受け付けて、制御部1030に伝達する機能を有する入力インターフェースである。入力部1020は、タッチパネル等のソフトキーにより実現されてもよいし、ハードキーにより実現されてもよい。また、あるいは、入力部1020は、音声入力を受け付けるためのマイクであってもよい。入力部1020は、ユーザから入力された入力内容を、制御部1030に伝達する。 The input unit 1020 is an input interface having a function of receiving input from the user of the user terminal 1000 and transmitting it to the control unit 1030 . The input unit 1020 may be realized by soft keys such as a touch panel, or may be realized by hard keys. Alternatively, input unit 1020 may be a microphone for receiving voice input. The input unit 1020 transmits input contents input by the user to the control unit 1030 .

 制御部1030は、ユーザ端末1000の各部を制御する機能を有するプロセッサである。制御部1030は、記憶部1040に記憶されている各種プログラム、データを用いて、ユーザ端末1000が果たすべき機能を実現する。制御部1030は、情報処理装置800から送信された罹患可能性情報に基づいて、ユーザ端末1000のユーザが10年後に糖尿病に罹患する可能性を示す情報を出力部1050に出力させる。また、制御部1030は、情報処理装置800から送信された提案情報に基づいて、ユーザ端末1000のユーザが10年後に糖尿病に罹患しないための予防策を示す情報を出力部1050に出力させる。 The control unit 1030 is a processor having a function of controlling each unit of the user terminal 1000 . The control unit 1030 uses various programs and data stored in the storage unit 1040 to implement the functions that the user terminal 1000 should perform. Based on the morbidity possibility information transmitted from the information processing device 800, the control unit 1030 causes the output unit 1050 to output information indicating the possibility that the user of the user terminal 1000 will develop diabetes in 10 years. Based on the proposal information transmitted from the information processing device 800, the control unit 1030 causes the output unit 1050 to output information indicating preventive measures to prevent the user of the user terminal 1000 from developing diabetes in 10 years.

 記憶部1040は、ユーザ端末1000が動作上必要とする各種のプログラム及びデータを記憶する機能を有する。記憶部1040は、例えば、HDD(Hard Disc Drive)、SSD(Solid State Drive)、フラッシュメモリ等により実現することができる。 The storage unit 1040 has a function of storing various programs and data required by the user terminal 1000 for operation. Storage unit 1040 can be implemented by, for example, a HDD (Hard Disc Drive), SSD (Solid State Drive), flash memory, or the like.

 出力部1050は、制御部1030から指定された情報を出力する機能を有する。出力部1050は、ユーザ端末1000に備えられた、または、ユーザ端末1000に接続されたモニタやスピーカなどにより実現されてよい。出力部1050は、文字列や画像による出力を行ってもよく、音声による出力を行ってもよい。出力部1050は、ユーザが10年後に糖尿病に罹患する可能性を示す情報を表示したり、ユーザが糖尿病に罹患しないための予防策を示す情報を表示したりすることとしてよい。 The output unit 1050 has a function of outputting information specified by the control unit 1030 . The output unit 1050 may be realized by a monitor, a speaker, or the like provided in the user terminal 1000 or connected to the user terminal 1000 . The output unit 1050 may output a character string or an image, or may output a sound. The output unit 1050 may display information indicating the possibility that the user will develop diabetes in 10 years, or display information indicating preventive measures for preventing the user from developing diabetes.

 以上が、ユーザ端末1000の構成例である。 The above is an example of the configuration of the user terminal 1000.

<データ>
 図11は、情報処理装置800が保持する情報であって、ユーザ情報842のデータ構成例を示すデータ概念図である。
<Data>
FIG. 11 is a data conceptual diagram showing a data configuration example of user information 842, which is information held by the information processing apparatus 800. As shown in FIG.

 図11に示すように、ユーザ情報842は、ユーザID1101と、名前1102と、性別1103と、生年月日1104と、BMI1105と、喫煙習慣1106と、アドレス1107が対応付けられた情報である。 As shown in FIG. 11, user information 842 is information in which user ID 1101, name 1102, gender 1103, date of birth 1104, BMI 1105, smoking habit 1106, and address 1107 are associated.

 ユーザID1101は、情報処理装置800が、管理する各ユーザを一意に区別するために付与された、各ユーザに固有の識別情報である。 The user ID 1101 is unique identification information for each user that is given to uniquely distinguish each user managed by the information processing apparatus 800 .

 名前1102は、対応するユーザID1101が示すユーザの名前を示す情報である。 性別1103は、対応するユーザID1101が示すユーザの性別を示す情報である。 The name 1102 is information indicating the name of the user indicated by the corresponding user ID 1101. The gender 1103 is information indicating the gender of the user indicated by the corresponding user ID 1101.

 生年月日1104は、対応するユーザID1101が示すユーザの生年月日を示す情報であり、ユーザの年齢を特定するための情報である。 The date of birth 1104 is information indicating the date of birth of the user indicated by the corresponding user ID 1101, and is information for specifying the age of the user.

 BMI1105は、対応するユーザID1101が示すユーザの肥満度を示す情報である。 The BMI 1105 is information indicating the degree of obesity of the user indicated by the corresponding user ID 1101.

 喫煙習慣1106は、対応するユーザID1101が示すユーザに喫煙習慣が有るか否かを示す情報である。 The smoking habit 1106 is information indicating whether or not the user indicated by the corresponding user ID 1101 has a smoking habit.

 アドレス1107は、対応するユーザID1101が示すユーザが保持するユーザ端末の情報であって、糖尿病に罹患する可能性を示す情報の送信先を示す情報である。 The address 1107 is information on the user terminal held by the user indicated by the corresponding user ID 1101, and is information indicating the destination of the information indicating the possibility of developing diabetes.

 図11の例で言えば、ユーザID1101が「U02338」のユーザの名前1102は、「A山A児」であり、性別1103は、「男」であり、生年月日1104は、「1964年7月6日」であり、BMI1105は、「28.2」であり、喫煙習慣1106は、「有」であり、アドレスは、「AAA@AA.co.jp」となっている。このユーザの場合、BMIが高く、喫煙習慣があることから、糖尿病になる可能性は高くなることが予測される。 In the example of FIG. 11, the name 1102 of the user whose user ID 1101 is "U02338" is "A mountain A child", the gender 1103 is "male", and the date of birth 1104 is "1964 July". Month 6", BMI 1105 is "28.2", Smoking Habit 1106 is "Yes", and Address is "AAA@AA.co.jp". Since this user has a high BMI and a habit of smoking, it is predicted that the possibility of developing diabetes is high.

 なお、ユーザ情報842には、これらの情報以外の情報が含まれてもよい。例えば、測定装置900により測定された尿pHが、その測定日とともにユーザ情報842に登録されていてもよい。また、一部の情報はユーザ情報842に含まれなくてもよく、例えば、ユーザ情報842のうち、名前1102は含まれなくてもよい。また、例えば、情報処理装置800の推定部831が推定処理をする段階で必要とする各情報を取得できるのであれば、その情報については、ユーザ情報842に含まれていなくてもよい。 Note that the user information 842 may include information other than these pieces of information. For example, the urine pH measured by the measuring device 900 may be registered in the user information 842 together with the measurement date. Also, some information may not be included in the user information 842, for example, the name 1102 may not be included in the user information 842. FIG. Also, for example, if each piece of information required by the estimation unit 831 of the information processing device 800 for estimation processing can be acquired, the information does not have to be included in the user information 842 .

<動作>
 図12は、推定システムに係る各装置間のやり取りの例を示すシーケンス図である。
<Action>
FIG. 12 is a sequence diagram illustrating an example of exchanges between devices related to the estimation system.

 図12に示すように、測定装置900は、ユーザ情報の入力を受け付ける(ステップS1201)。ここで入力されるユーザ情報は、小用をたすユーザの情報である。測定装置900は、ユーザの尿pHを測定する(ステップS1202)。そして、測定装置900は、受け付けたユーザ情報と、測定した尿pHと、を情報処理装置800に送信する(ステップS1203)。 As shown in FIG. 12, the measuring device 900 accepts input of user information (step S1201). The user information that is input here is the information of the user who does the errand. Measuring device 900 measures the user's urine pH (step S1202). Then, measuring device 900 transmits the received user information and the measured urine pH to information processing device 800 (step S1203).

 情報処理装置800は、ユーザ情報と尿pHを受信すると、ユーザ情報に基づいてユーザが誰かを特定する(ステップS1204)。そして、特定したユーザが、10年後に罹患する可能性を推定する(ステップS1205)。情報処理装置800は、推定結果を示す罹患可能性情報と、推定結果に基づく提案情報と、をユーザ端末1000に送信する(ステップS1206)。 Upon receiving the user information and the urine pH, the information processing apparatus 800 identifies the user based on the user information (step S1204). Then, the specified user estimates the possibility of being affected 10 years later (step S1205). The information processing apparatus 800 transmits morbidity probability information indicating the estimation result and proposal information based on the estimation result to the user terminal 1000 (step S1206).

 ユーザ端末1000は、情報処理装置800から送信された罹患可能性情報と、提案情報と、を受信すると、受信した罹患可能性情報が示す内容と、提案情報の内容とを表示する(ステップS1207)。これにより、ユーザは自身の端末で自身が10年後に糖尿病に罹患する可能性を認識することができ、糖尿病に罹患しないために何をすればいいのかを認識することができる。 When the user terminal 1000 receives the morbidity possibility information and the proposal information transmitted from the information processing device 800, the user terminal 1000 displays the contents indicated by the received morbidity possibility information and the contents of the proposal information (step S1207). . As a result, the user can recognize the possibility that he or she will develop diabetes 10 years from now on his/her own terminal, and can recognize what should be done to prevent diabetes.

 図13は、図12に示すやり取りを実現するための測定装置900の動作例を示すフローチャートである。 FIG. 13 is a flow chart showing an operation example of the measuring device 900 for realizing the exchange shown in FIG.

 図13に示すように、測定装置900の入力部920は、ユーザからユーザIDの入力を受け付ける(ステップS1301)。入力部920は、入力されたユーザIDを制御部940に伝達する。 As shown in FIG. 13, the input unit 920 of the measuring device 900 receives input of a user ID from the user (step S1301). Input unit 920 transmits the input user ID to control unit 940 .

 次に、測定装置の測定部930は、ユーザの尿を受け付けて、ユーザの尿の尿pHを測定する(ステップS1302)。そして、測定部930は、測定された尿pHを制御部940に伝達する。 Next, the measurement unit 930 of the measurement device receives the user's urine and measures the urine pH of the user's urine (step S1302). Measurement unit 930 then transmits the measured urine pH to control unit 940 .

 制御部940は、入力部920からユーザIDを伝達され、測定部930から尿pHを伝達されると、ユーザIDと、尿pHとを対応付けた測定情報を、通信部910を介して、情報処理装置800に送信する。 When the user ID is transmitted from the input unit 920 and the urine pH is transmitted from the measurement unit 930 , the control unit 940 transmits measurement information in which the user ID and the urine pH are associated with each other via the communication unit 910 . Send to the processing device 800 .

 これにより、ユーザは自身の尿pHを、特に労することなく、情報処理装置800に通知することができ、自身が糖尿病に罹患する可能性を推定してもらうことができる。 As a result, the user can notify the information processing device 800 of his/her own urinary pH without particular effort, and can have his/her own possibility of developing diabetes estimated.

 図14は、図12に示すやり取りを実現するための情報処理装置800の動作例を示すフローチャートである。 FIG. 14 is a flow chart showing an operation example of the information processing device 800 for realizing the exchange shown in FIG.

 情報処理装置800の通信部810は、測定装置900から、ユーザに関する情報としてのユーザIDと、測定装置900によって測定された尿pHであって当該ユーザの尿pHとを対応付けた情報を受信する(ステップS1401)。通信部810は、受信したユーザIDと尿pHとを、制御部830に伝達する。 The communication unit 810 of the information processing device 800 receives, from the measuring device 900, information in which the user ID as information about the user and the urine pH measured by the measuring device 900 are associated with the user's urine pH. (Step S1401). Communication unit 810 transmits the received user ID and urine pH to control unit 830 .

 制御部830の特定部834は、伝達されたユーザIDに基づいて、ユーザ情報842を参照して、そのユーザの情報を特定し(ステップS1402)、推定部831に伝達する。ここで、伝達するユーザの情報は、ユーザの性別、年齢、肥満度、喫煙習慣の有無に関する情報である。また、取得部833は、ユーザの尿pHを取得し、推定部831に伝達する。 The specifying unit 834 of the control unit 830 refers to the user information 842 based on the transmitted user ID, specifies the information of the user (step S1402), and transmits it to the estimating unit 831. Here, the user information to be transmitted is information regarding the user's sex, age, degree of obesity, and whether or not he or she has a smoking habit. Also, the acquisition unit 833 acquires the user's urine pH and transmits it to the estimation unit 831 .

 推定部831は、伝達されたユーザの情報に含まれるユーザの性別の情報に基づいて、ユーザが男性であるか否かを判定する(ステップS1403)。これは、女性の場合には、男性の場合に比して、年齢と、尿pHと、肥満度と、喫煙習慣の有無とから、糖尿病に罹患する可能性を確定できない(予測の可能性の精度が落ちる)ためである。推定部831が、ユーザが男性ではないと判定した場合には(ステップS1403のNO)、何もせずに処理を終了する。 The estimation unit 831 determines whether the user is male based on the user's gender information included in the transmitted user information (step S1403). Compared to men, the possibility of developing diabetes in women cannot be determined from age, urinary pH, degree of obesity, and whether or not they have a smoking habit. accuracy is reduced). If the estimation unit 831 determines that the user is not male (NO in step S1403), the process ends without doing anything.

 ユーザが男性であると判定した場合には(ステップS1403のYES)、推定部831は、伝達されている尿pH(測定装置900により測定された尿pH)と、特定部834に特定されたユーザの年齢と、喫煙習慣の有無と、肥満度と、に基づいて、疾病可能性情報841を参照して、ユーザが糖尿病に罹患する可能性を推定する(ステップS1404)。推定部831は推定結果を提案部832に伝達する。 If it is determined that the user is male (YES in step S1403), the estimating unit 831 collects the transmitted urine pH (urine pH measured by the measuring device 900) and the user specified by the specifying unit 834. The disease possibility information 841 is referenced based on the age of the user, the presence or absence of a smoking habit, and the degree of obesity to estimate the possibility of the user suffering from diabetes (step S1404). The estimation unit 831 transmits the estimation result to the proposal unit 832 .

 推定部831は、推定したユーザが糖尿病に罹患する可能性を示す罹患可能性情報を生成する(ステップS1405)。一例として、推定部831は、推定したユーザが糖尿病に罹患する可能性を示す指標値と、ユーザと同年代であってユーザとは尿pH、喫煙習慣の有無、肥満度のうち少なくともいずれかが異なるユーザの場合の指標値と、から、罹患可能性情報を生成する。 The estimation unit 831 generates morbidity possibility information indicating the estimated possibility that the user will develop diabetes (step S1405). As an example, the estimating unit 831 determines that the estimated index value indicating the possibility that the user will develop diabetes differs from the user who is of the same age as the user and at least one of urine pH, smoking habit, and degree of obesity. The index value for the user and the morbidity probability information are generated.

 また、提案部832は、推定部831から伝達された推定結果に基づき、ユーザが糖尿に罹患する可能性を低減するための提案内容を示す提案情報を生成する(ステップS1406)。 In addition, based on the estimation result transmitted from the estimation unit 831, the proposal unit 832 generates proposal information indicating proposal content for reducing the possibility of the user suffering from diabetes (step S1406).

 制御部830は、推定部831が生成した罹患可能性情報と、提案部832が生成した提案情報と、を通信部810を介して、ユーザ端末1000に送信し(ステップS1407)、処理を終了する。 The control unit 830 transmits the disease probability information generated by the estimation unit 831 and the proposal information generated by the proposal unit 832 to the user terminal 1000 via the communication unit 810 (step S1407), and ends the process. .

 図15は、図12に示すやり取りを実現するためのユーザ端末1000の動作例を示すフローチャートである。 FIG. 15 is a flow chart showing an operation example of the user terminal 1000 for realizing the exchange shown in FIG.

 図15に示すようにユーザ端末1000の通信部1010は、情報処理装置800から送信された罹患可能性情報と、提案情報と、を受信する(ステップS1501)。通信部1010は、受信した罹患可能性情報と、提案情報と、を制御部1030に伝達する。 As shown in FIG. 15, the communication unit 1010 of the user terminal 1000 receives the disease probability information and the proposal information transmitted from the information processing device 800 (step S1501). The communication unit 1010 transmits the received morbidity possibility information and proposal information to the control unit 1030 .

 制御部1030は、通信部1010から罹患可能性情報を受け付けると、受け付けた罹患可能性情報に示される、ユーザ端末1000のユーザが10年後に糖尿病に罹患する可能性を示す情報を出力部850に出力(表示)させる(ステップS1502)。 When the control unit 1030 receives the morbidity possibility information from the communication unit 1010, the control unit 1030 outputs to the output unit 850 information indicating the possibility that the user of the user terminal 1000 will develop diabetes in 10 years, which is indicated in the received morbidity possibility information. Output (display) (step S1502).

 また、制御部1030は、通信部1010から提案情報を受け付けている場合には、受け付けた提案情報に示されるユーザが糖尿病に罹患しないための予防策を表示し(ステップS1503)、処理を終了する。 Further, when the proposal information is received from the communication unit 1010, the control unit 1030 displays preventive measures for the user indicated in the received proposal information to prevent diabetes (step S1503), and ends the process. .

<表示例>
 図16(a)は、ユーザ端末1000における推定結果の表示例を示す図である。また、図16(b)は、ユーザ端末1000における提案情報の表示例を示す図である。なお、ここでは、ユーザ端末1000による表示例としているが、これは、情報処理装置800(100、400)のモニタにおける表示も同様であってよい。
<Display example>
FIG. 16A is a diagram showing a display example of the estimation result on the user terminal 1000. FIG. FIG. 16(b) is a diagram showing a display example of proposal information on the user terminal 1000. As shown in FIG. Note that although the example of the display by the user terminal 1000 is used here, the display on the monitor of the information processing device 800 (100, 400) may be the same.

 図16(a)に示すように、ユーザ端末1000は、ユーザが糖尿病に罹患する可能性を示す情報1601を表示する。ユーザが糖尿病に罹患する可能性を示す情報1601は、図示するように、他のユーザとの比較情報、即ち、他のユーザと比して、ユーザがどれだけ糖尿病に罹患する可能性が高いかを示す情報となる。ユーザと同年代の他のユーザと比較する情報を表示することで、単純に糖尿病に罹患する可能性を示すパーセンテージ等の情報を表示するよりも、ユーザは、自身がどれだけ糖尿病に罹患しやすいのかを実感しやすい。なお、図16(a)に示すパーセンテージは、ユーザ自身の糖尿病に罹患する可能性を示す指標値と、他の分類(尿pHの分類が異なったり、BMIの分類が異なったり、喫煙習慣の有無が異なることを意味する)の指標値とから、算出することができる。 As shown in FIG. 16(a), the user terminal 1000 displays information 1601 indicating the possibility of the user suffering from diabetes. As illustrated, the information 1601 indicating the likelihood that the user will develop diabetes is comparison information with other users, that is, how high the likelihood that the user will develop diabetes is compared to other users. It becomes information indicating By displaying information that compares the user to other users of the same age, the user can see how likely they are to develop diabetes rather than simply displaying information such as a percentage indicating the likelihood of developing diabetes. easy to feel. Note that the percentages shown in FIG. 16(a) are index values indicating the possibility of the user's own diabetes, and other classifications (different urine pH classifications, different BMI classifications, smoking habits, non-smoking habits, etc.). ) can be calculated from the index value of

 また、ユーザ端末1000は、図16(b)に示すように、ユーザが糖尿病に罹患する可能性を示す情報1601とともに、ユーザが糖尿病に罹患する可能性を低減するための予防策を示す提案情報1602を表示することとしてもよい。図16(b)では、糖尿病に罹患する可能性を示す情報1601と提案情報1602とを並列に表示する例を示しているが、提案情報1602単体で表示されてもよい。
<実施形態3まとめ>
In addition, as shown in FIG. 16B, the user terminal 1000 includes information 1601 indicating the possibility that the user will develop diabetes, as well as proposal information indicating preventive measures for reducing the possibility that the user will develop diabetes. 1602 may be displayed. FIG. 16B shows an example in which information 1601 indicating the possibility of developing diabetes and proposal information 1602 are displayed in parallel, but proposal information 1602 may be displayed alone.
<Summary of Embodiment 3>

 実施形態3に係る情報処理装置800によれば、ユーザから直接、ユーザに関する情報の入力を受け付けることなく、ユーザが糖尿病に罹患する可能性を推定することができる。ユーザは小用をたすだけで、自身が糖尿病に罹患する可能性があるかを認識できるので、ユーザにとって利便性の高い、推定システム、情報処理装置800を提供することができる。 According to the information processing apparatus 800 according to the third embodiment, it is possible to estimate the possibility of the user suffering from diabetes without directly accepting input of information about the user from the user. Since the user can recognize the possibility that he/she will be diagnosed with diabetes just by doing errands, it is possible to provide the estimation system and the information processing apparatus 800 that are highly convenient for the user.

<補足>
 上記各実施形態に示した構成は、一例であり、上記実施形態に限定されるものではない。
<Supplement>
The configurations shown in the above embodiments are examples, and are not limited to the above embodiments.

 上記実施形態3において、情報処理装置800は、対象となるユーザが既に糖尿病に罹患している場合には、推定部831による推定から除外するように構成してもよい。既に糖尿病に罹患している場合には、糖尿病に罹患する可能性を推定しても意味がないからである。ユーザが糖尿病に罹患しているか否かは、例えば、ユーザ情報842に登録されている情報として糖尿病に罹患しているか否かを示す情報が記憶され、当該情報を利用することによって判定することとしてよい。即ち、推定部831は、ユーザが10年後に糖尿病に罹患している可能性を推定する前に、ユーザ情報842を参照して、糖尿病に罹患していないことを確認してから、推定を実行することとしてよい。情報処理装置100、400においても同様である。 In the third embodiment, the information processing apparatus 800 may be configured to exclude from the estimation by the estimation unit 831 if the target user is already suffering from diabetes. This is because it is meaningless to estimate the possibility of developing diabetes when the subject already has diabetes. Whether or not the user has diabetes is determined by, for example, storing information indicating whether or not the user has diabetes as information registered in the user information 842, and using the information. good. That is, before estimating the possibility that the user will have diabetes 10 years from now, the estimation unit 831 refers to the user information 842 to confirm that the user does not have diabetes, and then executes the estimation. It is good to do. The same applies to the information processing apparatuses 100 and 400 as well.

 本発明に係る情報処理装置(100、400、800)は、医療機関等と連動して、遠隔医療の一環として利用することができてもよい。例えば、記憶部840に記憶するユーザ情報842の中に各ユーザが係る医療機関、医師等の情報を記憶し、測定・検査結果DBの更新の際等に当該DBの測定値および検査結果データを上記医療機関等に送信し、医師等は、当該送信されたデータに基づいて、患者が自宅にいても遠隔から健康に関する診察、指導等を行うことができるように情報処理装置800は構成されてもよい。また、ユーザ情報842に含まれるユーザの情報は、医療機関等のサーバから情報を取得したものを用いてもよく、医師等の許可のもと、電子カルテ等を利用することとしてもよい。 The information processing device (100, 400, 800) according to the present invention may be used as part of telemedicine in conjunction with a medical institution or the like. For example, the user information 842 stored in the storage unit 840 stores information on the medical institution, doctor, etc. associated with each user, and when updating the measurement/test result DB, etc., the measured values and test result data of the DB are stored. The information processing apparatus 800 is configured so that the information is transmitted to the medical institution or the like, and the doctor or the like can remotely examine the patient's health based on the transmitted data and provide guidance, etc. even if the patient is at home. good too. Further, the user information included in the user information 842 may be obtained from a server of a medical institution or the like, or may be obtained from an electronic medical chart or the like with the permission of a doctor or the like.

 また、情報処理装置100、400、800、測定装置900およびユーザ端末1000の各機能部は、集積回路(IC(IntegratedCircuit)チップ、LSI(LargeScaleIntegration))等に形成された論理回路(ハードウェア)や専用回路によって実現してもよいし、CPU(CentralProcessingUnit)およびメモリを用いてソフトウェアによって実現してもよい。また、各機能部は、1または複数の集積回路により実現されてよく、複数の機能部の機能を1つの集積回路により実現されることとしてもよい。LSIは、集積度の違いにより、VLSI、スーパーLSI、ウルトラLSIなどと呼称されることもある。なお、ここで「回路」は、コンピュータによるデジタル処理、すなわち、ソフトウェアによる機能的処理としての意味合いを含んでもよい。また、当該回路は、再構築可能な回路(例えば、FPGA:FieldProgrammableGateAway)により実現されてもよい。 Further, each functional unit of the information processing apparatuses 100, 400, 800, the measuring apparatus 900, and the user terminal 1000 includes a logic circuit (hardware) formed in an integrated circuit (IC (Integrated Circuit) chip, LSI (Large Scale Integration)) or the like. It may be implemented by a dedicated circuit, or by software using a CPU (Central Processing Unit) and memory. Further, each functional unit may be implemented by one or more integrated circuits, and the functions of multiple functional units may be implemented by one integrated circuit. LSIs are sometimes called VLSIs, super LSIs, ultra LSIs, etc., depending on the degree of integration. It should be noted that the term "circuit" here may also include the meaning of digital processing by a computer, that is, functional processing by software. Also, the circuit may be realized by a reconfigurable circuit (for example, FPGA: Field ProgrammableGateAway).

 情報処理装置100、400、800、測定装置900およびユーザ端末1000の各機能部をソフトウェアにより実現する場合、情報処理装置100、400、800、測定装置900およびユーザ端末1000の各機能部は、各機能を実現するソフトウェアである推定プログラムの命令を実行するCPU、上記推定プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(ReadOnlyMemory)または記憶装置(これらを「記録媒体」と称する)、上記推定プログラムを展開するRAM(RandomAccessMemory)などを備えている。そして、コンピュータ(またはCPU)が上記推定プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記推定プログラムは、当該推定プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。本発明は、上記推定プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 When the functional units of the information processing devices 100, 400, 800, the measuring device 900, and the user terminal 1000 are realized by software, the functional units of the information processing devices 100, 400, 800, the measuring device 900, and the user terminal 1000 are each A CPU that executes the instructions of the estimation program, which is software that realizes the function, a ROM (Read Only Memory) or storage device in which the estimation program and various data are recorded so that the computer (or CPU) can read them (these are referred to as "recording media") ), a RAM (Random Access Memory) for developing the estimation program, and the like. The object of the present invention is achieved by a computer (or CPU) reading and executing the estimation program from the recording medium. As the recording medium, a "non-temporary tangible medium" such as a tape, disk, card, semiconductor memory, programmable logic circuit, or the like can be used. Also, the estimation program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the estimation program. The invention can also be implemented in the form of a data signal embedded in a carrier wave, in which the estimation program is embodied by electronic transmission.

 なお、上記推定プログラムは、例えば、ActionScript、JavaScript(登録商標)などのスクリプト言語、Objective-C、Java(登録商標)などのオブジェクト指向プログラミング言語、HTML5などのマークアップ言語などを用いて実装できる。 The estimation program can be implemented using, for example, script languages such as ActionScript and JavaScript (registered trademark), object-oriented programming languages such as Objective-C and Java (registered trademark), markup languages such as HTML5, and the like.

100、400、800 情報処理装置
110、410、810、910、1010 通信部
120、420、820、920、1020 入力部
130、430、830、940、1030 制御部
131、431、831 推定部
132、432、832 提案部
140、440、840、950、1040 記憶部
150、450、850、960、1050 出力部
900 測定装置
930 測定部
1000 ユーザ端末
100, 400, 800 information processors 110, 410, 810, 910, 1010 communication units 120, 420, 820, 920, 1020 input units 130, 430, 830, 940, 1030 control units 131, 431, 831 estimation unit 132, 432, 832 proposal units 140, 440, 840, 950, 1040 storage units 150, 450, 850, 960, 1050 output unit 900 measurement device 930 measurement unit 1000 user terminal

Claims (12)

 ユーザに関するユーザ情報として、前記ユーザの年齢と、喫煙習慣の有無と、尿pHとの入力を受け付ける受付部と、
 前記ユーザ情報に基づいて、前記ユーザが糖尿病に罹患する可能性を推定する推定部と、
 前記尿pHの所定範囲ごとに、喫煙習慣の有無に応じて糖尿病に罹患する可能性を示す疾病可能性情報を記憶する記憶部と、
 前記推定部が推定した前記ユーザが糖尿病に罹患する可能性を示す情報を出力する出力部と、を備え、
 前記推定部は、前記ユーザ情報と前記疾病可能性情報とに基づいて、前記ユーザが糖尿病に罹患する可能性を推定する
 情報処理装置。
a reception unit that receives input of the user's age, the presence or absence of a smoking habit, and urine pH as user information about the user;
an estimation unit that estimates the possibility that the user will develop diabetes based on the user information;
a storage unit for storing, for each predetermined range of the urine pH, disease possibility information indicating the possibility of contracting diabetes depending on the presence or absence of a smoking habit;
an output unit that outputs information indicating the possibility that the user will suffer from diabetes estimated by the estimation unit;
Information processing apparatus, wherein the estimation unit estimates a possibility that the user will develop diabetes based on the user information and the disease possibility information.
 前記記憶部は、前記疾病可能性情報を、ユーザの所定範囲の年代ごとに記憶し、
 前記推定部は、前記ユーザの年齢に応じて、前記尿pHの所定範囲ごとに、喫煙習慣の有無に基づいて、前記ユーザが糖尿病に罹患する可能性を推定する
 ことを特徴とする請求項1に記載の情報処理装置。
The storage unit stores the disease possibility information for each user's age within a predetermined range,
2. The estimating unit estimates the possibility that the user will develop diabetes based on the presence or absence of a smoking habit for each predetermined range of the urine pH according to the age of the user. The information processing device according to .
 前記ユーザ情報は、さらに、前記ユーザの肥満度を含み、
 前記疾病可能性情報は、前記尿pHの所定範囲ごとに、肥満度の所定の閾値に対する大小に応じて糖尿病に罹患する可能性を示す情報であり、
 前記推定部は、前記尿pHの所定範囲ごとに、前記肥満度の所定の閾値に対する大小および喫煙習慣の有無に応じて、前記ユーザが糖尿病に罹患する可能性を推定する
 ことを特徴とする請求項1又は2に記載の情報処理装置。
The user information further includes the user's degree of obesity,
The disease possibility information is information indicating the possibility of contracting diabetes according to the magnitude of the degree of obesity with respect to a predetermined threshold value for each predetermined range of the urine pH,
The estimating unit estimates the possibility that the user will develop diabetes according to the obesity level relative to a predetermined threshold value and whether or not the user has a smoking habit, for each predetermined range of the urine pH. Item 3. The information processing device according to Item 1 or 2.
 前記推定部は、前記ユーザの同年代の他のユーザであって、肥満度が前記所定の閾値未満であり、かつ、喫煙習慣がない他のユーザと比較して、前記ユーザが糖尿病に罹患する可能性を示す倍率を、前記ユーザが糖尿病に罹患する可能性として推定する
 ことを特徴とする請求項1~3のいずれか一項に記載の情報処理装置。
The estimating unit compares with other users of the same age as the user, whose obesity degree is less than the predetermined threshold, and who has no smoking habit, and compares the possibility that the user will suffer from diabetes. 4. The information processing apparatus according to any one of claims 1 to 3, characterized in that the multiplier that indicates the likelihood of the user being diagnosed with diabetes is estimated.
 前記推定部は、前記ユーザが所定年数後に糖尿病に罹患する可能性を推定する
 ことを特徴とする請求項1~4のいずれか一項に記載の情報処理装置。
The information processing apparatus according to any one of claims 1 to 4, wherein the estimation unit estimates the possibility that the user will develop diabetes after a predetermined number of years.
 前記推定部により推定された前記ユーザが糖尿病に罹患する可能性に基づいて、前記ユーザが糖尿病を患いにくくするための提案をする提案部を備える
 ことを特徴とする請求項1~5のいずれか一項に記載の情報処理装置。
6. The method according to any one of claims 1 to 5, further comprising: a proposal unit that makes a proposal to prevent the user from developing diabetes based on the possibility that the user will develop diabetes estimated by the estimation unit. The information processing device according to item 1.
 便器に取り付けられ、pHを測定する測定装置と通信する通信部を備え、
 前記受付部は、前記ユーザの前記尿pHとして、前記通信部が受信した前記測定装置により測定されたpHを受け付ける
 ことを特徴とする請求項1~6のいずれか一項に記載の情報処理装置。
A communication unit that is attached to the toilet bowl and communicates with a measuring device that measures pH,
The information processing apparatus according to any one of claims 1 to 6, wherein the reception unit receives, as the urine pH of the user, the pH measured by the measurement device and received by the communication unit. .
 前記通信部は、前記測定装置により測定した尿pHに対応するユーザを特定する特定情報を受信し、
 前記出力部は、前記糖尿病に罹患する可能性を示す情報を前記特定情報が示すユーザの端末に送信する
 ことを特徴とする請求項7に記載の情報処理装置。
The communication unit receives specific information that identifies a user corresponding to the urine pH measured by the measuring device,
The information processing apparatus according to claim 7, wherein the output unit transmits information indicating the possibility of contracting diabetes to a terminal of the user indicated by the specific information.
 前記ユーザは、男性である
 ことを特徴とする請求項1~8のいずれか一項に記載の情報処理装置。
The information processing apparatus according to any one of claims 1 to 8, wherein the user is male.
 前記受付部は、さらに、前記ユーザが糖尿病を罹患したことを示す罹患情報を受け付け、
 前記情報処理装置は、
 前記罹患情報と、前記罹患情報に対応するユーザのユーザ情報と、に基づいて、前記疾病可能性情報を更新する更新部を備える
 ことを特徴とする請求項1~9のいずれか一項に記載の情報処理装置。
The reception unit further receives disease information indicating that the user has diabetes,
The information processing device is
10. The method according to any one of claims 1 to 9, further comprising an updating unit that updates the disease possibility information based on the disease information and user information of a user corresponding to the disease information. information processing equipment.
 コンピュータが、ユーザが糖尿病に罹患する可能性を推定する推定方法であって、
 ユーザに関するユーザ情報として、前記ユーザの年齢と、喫煙習慣の有無と、尿pHとの入力を受け付ける受付ステップと、
 前記ユーザ情報に基づいて、前記ユーザが糖尿病に罹患する可能性を推定する推定ステップと、
 前記推定ステップが推定した前記ユーザが糖尿病に罹患する可能性を示す情報を出力する出力ステップと、を含み、
 前記推定ステップは、前記ユーザ情報と、前記尿pHの所定範囲ごとに、喫煙習慣の有無に応じて糖尿病に罹患する可能性を示す疾病可能性情報を記憶する記憶部に記憶されている前記疾病可能性情報とに基づいて、前記ユーザが糖尿病に罹患する可能性を推定する
 推定方法。
A computer-assisted estimation method for estimating the likelihood that a user will develop diabetes,
a receiving step of receiving input of the user's age, the presence or absence of a smoking habit, and urine pH as user information about the user;
an estimation step of estimating the possibility that the user will develop diabetes based on the user information;
an output step of outputting information indicating the possibility that the user will suffer from diabetes estimated by the estimation step;
In the estimating step, for each predetermined range of the urine pH, the user information and the disease stored in a storage unit that stores disease possibility information indicating a possibility of developing diabetes according to the presence or absence of a smoking habit. An estimation method for estimating the possibility that the user will develop diabetes based on possibility information.
 コンピュータに、
 ユーザに関するユーザ情報として、前記ユーザの年齢と、喫煙習慣の有無と、尿pHとの入力を受け付ける受付機能と、
 前記ユーザ情報に基づいて、前記ユーザが糖尿病に罹患する可能性を推定する推定機能と、
 前記推定機能が推定した前記ユーザが糖尿病に罹患する可能性を示す情報を出力する出力機能と、を実現させ、
 前記推定機能は、前記ユーザ情報と、前記尿pHの所定範囲ごとに、喫煙習慣の有無に応じて糖尿病に罹患する可能性を示す疾病可能性情報を記憶する記憶部に記憶されている前記疾病可能性情報とに基づいて、前記ユーザが糖尿病に罹患する可能性を推定する
 推定プログラム。
to the computer,
a reception function that receives input of the user's age, the presence or absence of a smoking habit, and urine pH as user information about the user;
an estimation function for estimating the possibility that the user will develop diabetes based on the user information;
an output function for outputting information indicating the possibility that the user will develop diabetes estimated by the estimation function;
The estimating function includes the user information and the disease stored in the storage unit that stores disease possibility information indicating the possibility of contracting diabetes according to the presence or absence of a smoking habit for each predetermined range of the urine pH. an estimation program for estimating the likelihood that the user will develop diabetes based on the likelihood information.
PCT/JP2022/017126 2021-05-10 2022-04-05 Information processing device, estimation method, and estimation program Ceased WO2022239579A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021080028A JP7057927B1 (en) 2021-05-10 2021-05-10 Information processing equipment, estimation method, and estimation program
JP2021-080028 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022239579A1 true WO2022239579A1 (en) 2022-11-17

Family

ID=81291827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017126 Ceased WO2022239579A1 (en) 2021-05-10 2022-04-05 Information processing device, estimation method, and estimation program

Country Status (2)

Country Link
JP (1) JP7057927B1 (en)
WO (1) WO2022239579A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070405A (en) * 2009-09-25 2011-04-07 Hisayama Research Institute For Lifestyle Diseases Device and method for analyzing development risk, and computer program
WO2019187018A1 (en) * 2018-03-30 2019-10-03 株式会社ファーストスクリーニング Health facilitation system, sensor, and health facilitation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070405A (en) * 2009-09-25 2011-04-07 Hisayama Research Institute For Lifestyle Diseases Device and method for analyzing development risk, and computer program
WO2019187018A1 (en) * 2018-03-30 2019-10-03 株式会社ファーストスクリーニング Health facilitation system, sensor, and health facilitation method

Also Published As

Publication number Publication date
JP2022173950A (en) 2022-11-22
JP7057927B1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
Pavic et al. Mobile health technologies for continuous monitoring of cancer patients in palliative care aiming to predict health status deterioration: a feasibility study
Cunningham et al. Cancer survival in the context of mental illness: a national cohort study
Breslow Case-control studies
EP3399310B1 (en) Health monitoring system, health monitoring method, and health monitoring program
JP7587804B2 (en) Injury/disease estimation system, injury/disease estimation method, and injury/disease estimation program
Lipsett et al. Development of the novel pneumonia risk score to predict radiographic pneumonia in children
EP4289353A1 (en) Artificial-intelligence-based blood glucose prediction system and method
Van Haute et al. Assessment of a proposed BMI formula in predicting body fat percentage among Filipino young adults
JP6948705B2 (en) Health monitoring system, health monitoring method and health monitoring program
Freise et al. Assessment of patients’ ability to review electronic health record information to identify potential errors: cross-sectional web-based survey
Gu et al. Estimating the capacity for improvement in risk prediction with a marker
Raghu et al. ECG-guided non-invasive estimation of pulmonary congestion in patients with heart failure
Gauss et al. Quality of life is related to fecal calprotectin concentrations in colonic Crohn disease and ulcerative colitis, but not in ileal Crohn disease
Tripathi et al. Risk stratification of breast cancer patients: Integrating epidemiology, risk factors, and prognostic markers for sustainable development
Kim et al. Estimation of C-index for cox proportional hazards model with censored biomarker covariate subject to limits of detection
JP7057927B1 (en) Information processing equipment, estimation method, and estimation program
JP2016532855A (en) Disease screening method, module and computer program using specimen collected from individual
JP2021060221A (en) Health monitoring system, health monitoring method and health monitoring program
JP2017188135A (en) Inspection result management apparatus and inspection result management method
Braun et al. Nonparametric adjustment for measurement error in time-to-event data: application to risk prediction models
US20210134435A1 (en) Behavior modification assistance device, terminal, and server
Steindel et al. Practice patterns of testing waived under the clinical laboratory improvement amendments
KR102035644B1 (en) Blood glucose measurement device and method to determine blood glucose unit automatically
Hammond et al. Protocols for the Examination of Tumors of Diverse Sites
Malik et al. Clinical Validation of Calf Circumference with DEXA Scans as a Measure of Muscle Mass to Assess Sarcopenia in Community Settings in Indian Postmenopausal Women

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807283

Country of ref document: EP

Kind code of ref document: A1