[go: up one dir, main page]

WO2022114871A1 - 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차 - Google Patents

배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차 Download PDF

Info

Publication number
WO2022114871A1
WO2022114871A1 PCT/KR2021/017684 KR2021017684W WO2022114871A1 WO 2022114871 A1 WO2022114871 A1 WO 2022114871A1 KR 2021017684 W KR2021017684 W KR 2021017684W WO 2022114871 A1 WO2022114871 A1 WO 2022114871A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
battery
average
voltage
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2021/017684
Other languages
English (en)
French (fr)
Inventor
성용철
안양수
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Energy Solution Ltd
Original Assignee
LG Energy Solution Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Energy Solution Ltd filed Critical LG Energy Solution Ltd
Priority to CN202511449953.0A priority Critical patent/CN121114775A/zh
Priority to EP21898696.6A priority patent/EP4152021A4/en
Priority to CN202180030996.9A priority patent/CN115461634B/zh
Priority to JP2022559439A priority patent/JP7483922B2/ja
Priority to US17/918,774 priority patent/US12422497B2/en
Publication of WO2022114871A1 publication Critical patent/WO2022114871A1/ko
Priority to US18/132,524 priority patent/US11768251B2/en
Anticipated expiration legal-status Critical
Priority to JP2024074186A priority patent/JP2024099795A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/003Measuring mean values of current or voltage during a given time interval
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a technology for diagnosing a voltage abnormality in a battery.
  • the voltage abnormality of a battery cell means a failure state in which a cell voltage abnormally drops and/or rises due to an internal short circuit, an external short circuit, a voltage sensing line failure, a poor connection with a charging/discharging line, or the like.
  • an attempt is made to diagnose a voltage abnormality of each battery cell by comparing a cell voltage that is a voltage across both ends of each battery cell at a specific time point with the average cell voltage of a plurality of battery cells at the specific time point and the same time point.
  • the cell voltage of each battery cell also depends on the temperature, current, and/or state of health (SOH) of the cell of the corresponding battery, simply comparing cell voltages measured for a plurality of battery cells at a specific point in time is It is difficult to accurately diagnose the voltage abnormality of each battery cell only through the process. For example, even in a battery cell having no voltage abnormality, if the temperature deviation or SOH deviation from the remaining battery cells is large, the difference between the cell voltage of the corresponding battery cell and the average cell voltage may also be large.
  • An object of the present invention is to provide a battery diagnosis apparatus, a battery diagnosis method, a battery pack, and a vehicle for efficiently and accurately diagnosing voltage abnormalities of each battery cell based on each moving average of each battery cell.
  • a battery diagnosis device for achieving the above technical problem is a battery diagnosis device for a cell group including a plurality of battery cells connected in series, and a voltage sensing circuit configured to periodically generate a voltage signal representing a cell voltage of each battery cell. ; and a control circuit configured to generate time-series data representing a change in cell voltage of each battery cell with time, based on the voltage signal.
  • control circuit is configured to: (i) determine a first average cell voltage and a second average cell voltage of each battery cell based on the time series data, wherein the first average cell voltage is a short-term moving average; and the second average cell voltage is a long-term moving average], and (ii) detecting a voltage abnormality of each battery cell based on a difference between the first average cell voltage and the second average cell voltage.
  • control circuit determines, for each battery cell, a short-term average difference corresponding to a difference between the first average cell voltage and the second average cell voltage, and for each battery cell, It may be configured to determine a cell diagnosis deviation corresponding to a deviation between the average value of the short-term average difference and the long-term average difference of the battery cells, and detect a battery cell satisfying a condition in which the cell diagnosis deviation exceeds a diagnosis threshold as a voltage abnormal cell.
  • control circuit generates, for each battery cell, time-series data of the cell diagnostic deviation, and determines the number of cell diagnostic deviations from a time when the cell diagnostic deviation exceeds the diagnostic threshold or the number of data of the cell diagnostic deviation that exceeds the diagnostic threshold. It may be configured to detect voltage anomalies.
  • control circuit determines, for each battery cell, a short-term average difference corresponding to a difference between the first average cell voltage and the second average cell voltage, and, for each battery cell, a long-term and short-term average of all battery cells.
  • a statistically variable threshold dependent on the standard deviation for the cell diagnosis deviation of all battery cells is determined, and the cell diagnosis of each battery cell Time-series data on deviations are filtered based on a statistically variable threshold to generate time-series data of filter diagnostic values, It may be configured to detect voltage anomalies.
  • control circuit determines, for each battery cell, a long-term average difference corresponding to a difference between the first average cell voltage and the second average cell voltage, and, for each battery cell, the long-term average difference Determine the normalized value of , as the normalized cell diagnostic deviation, determine a statistically variable threshold dependent on the standard deviation for the normalized cell diagnostic deviation of all battery cells, and calculate time series data for the normalized cell diagnostic deviation of each battery cell. Filtering based on a statistically variable threshold to generate time series data of filter diagnostic values, configured to detect voltage anomalies in battery cells from the time the filter diagnostic value exceeds the diagnostic threshold or the number of data in the filter diagnostic value that exceeds the diagnostic threshold can be
  • control circuit may normalize the short-term average difference by dividing the short-term average difference by the average value of the long-term average difference of all battery cells for each battery cell.
  • control circuit may normalize the short-term average difference through logarithmic operation of the long-term average difference for each battery cell.
  • control circuit is configured to control the change over time of the cell voltage of each battery cell by using a voltage corresponding to the difference between the cell voltage of each battery cell and the average value of the cell voltage of all battery cells measured for each unit time. may be configured to generate time series data representing
  • control circuit determines, for each battery cell, a short-term average difference corresponding to a difference between the first average cell voltage and the second average cell voltage, and for each battery cell , determine the normalized value of the long and short-term mean difference as the normalized cell diagnosis deviation, generate time series data of the normalized cell diagnosis deviation for each battery cell, and perform the following (i) to (iv) at least once or more generate time-series data of normalized cell diagnostic deviations for each battery cell by recursively iterating,
  • a battery diagnosis method for achieving the above technical object is a battery diagnosis method for a cell group including a plurality of battery cells connected in series. periodically generating time series data; (b) determining a first average cell voltage and a second average cell voltage of each battery cell based on the time series data [wherein the first average cell voltage is a short-term moving average, and the second average cell voltage is long-term moving average]; and (c) detecting a voltage abnormality of each battery cell based on a difference between the first average cell voltage and the second average cell voltage.
  • the step (c) may include: (c1) determining a short-term average difference corresponding to a difference between the first average cell voltage and the second average cell voltage for each battery cell; (c2) for each battery cell, determining a cell diagnosis deviation corresponding to a deviation between the average difference between the long-term and short-term average differences of all battery cells and the short-term average difference of the battery cells; and (c3) detecting a battery cell satisfying a condition in which the cell diagnosis deviation exceeds the diagnosis threshold as a voltage abnormal cell.
  • the step (c) comprises: (c1) generating time series data of cell diagnosis deviation for each battery cell; and (c2) detecting a voltage abnormality of the battery cell from a time when the cell diagnosis deviation exceeds the diagnosis threshold or the number of data of the cell diagnosis deviation exceeding the diagnosis threshold.
  • the step (c) may include: (c1) determining a short-term average difference corresponding to a difference between the first average cell voltage and the second average cell voltage for each battery cell; (c2) for each battery cell, determining a cell diagnosis deviation by calculating a deviation between the average difference between the long-term and short-term averages of all battery cells and the long-term average difference of the battery cells; (c3) determining a statistically variable threshold dependent on the standard deviation for the cell diagnostic deviation of all battery cells; (c4) generating time-series data of a filter diagnosis value for each battery cell by filtering the time-series data on the cell diagnosis deviation of each battery cell based on a statistically variable threshold; and (c5) detecting a voltage abnormality of the battery cell from a time when the filter diagnostic value exceeds the diagnostic threshold or the number of data of the filter diagnostic value exceeding the diagnostic threshold.
  • the step (c) may include: (c1) determining, for each battery cell, a short-term average difference corresponding to a difference between the first average cell voltage and the second average cell voltage; (c2) for each battery cell, determining a normalized value of the short-term average difference as a normalized cell diagnosis deviation; (c3) determining a statistically variable threshold dependent on the standard deviation for the normalized cell diagnostic deviation of all battery cells; (c4) generating time series data of filter diagnosis values by filtering time series data on the normalized cell diagnosis deviation of each battery cell based on a statistically variable threshold; and (c6) detecting a voltage abnormality of the battery cell from a time when the filter diagnosis value exceeds the diagnosis threshold or the number of data of the filter diagnosis value exceeding the diagnosis threshold.
  • step (c3) may be a step of normalizing the long-term and short-term average difference by dividing the short-term average difference by the average value of the long- and short-term average differences of all battery cells for each battery cell.
  • the step (c3) may be a step of normalizing the long-term average difference through logarithmic operation of the long-term average difference for each battery cell.
  • the cell voltage of each battery cell is measured according to the time of the cell voltage of each battery cell by using a voltage corresponding to the difference between the average cell voltage of all battery cells and the cell voltage of each battery cell, measured for each unit time. It may be a step of generating time series data representing change.
  • the step (c) may include: (c1) determining, for each battery, a short-term average difference corresponding to a difference between the first average cell voltage and the second average cell voltage; (c2) for each battery, determining a normalized value of the short-term average difference as a normalized cell diagnosis deviation; (c3) generating time series data of normalized cell diagnosis deviation for each battery cell; (c4) generating time series data of normalized cell diagnosis deviation for each battery cell by recursively repeating the following (i) to (iv) at least once;
  • the above technical object may also be achieved by a battery pack including the above-described battery diagnosis apparatus and a vehicle including the same.
  • each battery for each unit time, two moving averages of cell voltages of each battery cell for two different time lengths are determined, and based on a difference between the two moving averages of each of a plurality of battery cells, each battery It can efficiently and accurately diagnose cell voltage abnormalities.
  • the voltage abnormality of each battery cell can be accurately diagnosed by applying an advanced technique such as normalization and/or statistical variable threshold in analyzing the difference in the change trend of the two moving averages of each battery cell. .
  • it is to analyze the time series data of the filter diagnosis value determined based on the statistical variable threshold to precisely detect the time period in which the voltage abnormality of each battery cell occurs and/or the voltage abnormality detection count, etc. It is possible.
  • FIG. 1 is a view exemplarily showing the configuration of an electric vehicle according to an embodiment of the present invention.
  • 2A to 2H are graphs referenced in explaining a process of diagnosing a voltage abnormality of each battery cell from time series data representing a change in cell voltage of each of the plurality of battery cells illustrated in FIG. 1 .
  • FIG. 3 is a flowchart exemplarily illustrating a method for diagnosing a battery according to a first embodiment of the present invention.
  • FIG. 4 is a flowchart exemplarily illustrating a method for diagnosing a battery according to a second embodiment of the present invention.
  • FIG. 5 is a flowchart exemplarily illustrating a method for diagnosing a battery according to a third embodiment of the present invention.
  • FIG. 6 is a flowchart exemplarily illustrating a method for diagnosing a battery according to a fourth embodiment of the present invention.
  • FIG. 7 is a flowchart exemplarily illustrating a method for diagnosing a battery according to a fifth embodiment of the present invention.
  • control unit> means a unit that processes at least one function or operation, and may be implemented as hardware, software, or a combination of hardware and software.
  • FIG. 1 is a view exemplarily showing the configuration of an electric vehicle according to an embodiment of the present invention.
  • an electric vehicle 1 includes a battery pack 2 , an inverter 3 , an electric motor 4 , and a vehicle controller 5 .
  • the battery pack 2 includes a cell group CG, a switch 6 and a battery management system 100 .
  • the cell group CG may be coupled to the inverter 3 through a pair of power terminals provided in the battery pack 2 .
  • the cell group CG includes a plurality of battery cells connected in series (BC 1 to BC N , where N is a natural number equal to or greater than 2).
  • Each battery cell BC i as long as it can be recharged like a lithium ion battery cell, the type is not particularly limited.
  • i is an index for cell identification.
  • i is a natural number from 1 to N.
  • the switch 6 is connected in series to the cell group CG.
  • the switch 6 is provided in a current path for charging and discharging the cell group CG.
  • the switch 6 is controlled on/off in response to a switching signal from the battery management system 100 .
  • the switch 6 may be a mechanical relay turned on and off by a magnetic force of a coil or a semiconductor switch such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • Inverter 3 is provided to convert direct current from cell group CG into alternating current in response to a command from battery management system 100 .
  • the electric motor 4 can be, for example, a three-phase alternating current motor.
  • the electric motor 4 is driven using AC power from the inverter 3 .
  • the battery management system 100 is provided to take charge of overall control related to charging and discharging of the cell group CG.
  • the battery management system 100 includes a battery diagnosis apparatus 200 .
  • the battery management system 100 may further include at least one of a current sensor 310 , a temperature sensor 320 , and an interface unit 330 .
  • the battery diagnosis apparatus 200 is provided to diagnose a voltage abnormality of each of the plurality of battery cells BC 1 to BC N .
  • the battery diagnosis apparatus 200 includes a voltage sensing circuit 210 and a control circuit 220 .
  • the voltage sensing circuit 210 is connected to the positive electrode and the negative electrode of each of the plurality of battery cells BC 1 to BC N through a plurality of voltage sensing lines.
  • the voltage sensing circuit 210 is configured to measure a cell voltage across each battery cell BC and generate a voltage signal representing the measured cell voltage.
  • the current sensor 310 is connected in series to the cell group CG through a current path.
  • the current sensor 310 is configured to detect a battery current flowing through the cell group CG and generate a current signal indicative of the detected battery current.
  • the temperature sensor 320 is configured to detect the temperature of the cell group CG and generate a temperature signal representing the detected temperature.
  • Control circuit 220 in hardware, ASICs (application specific integrated circuits), DSPs (digital signal processors), DSPDs (digital signal processing devices), PLDs (programmable logic devices), FPGAs (field programmable gate arrays), micro It may be implemented using at least one of a processor (microprocessors) and an electrical unit for performing other functions.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • micro It may be implemented using at least one of a processor (microprocessors) and an electrical unit for performing other functions.
  • the control circuit 220 may have a memory unit.
  • the memory unit includes a flash memory type, a hard disk type, a solid state disk type, an SDD type, a silicon disk drive type, a multimedia card micro type, at least one of random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), and programmable read-only memory (PROM) It may include a tangible storage medium.
  • the memory unit may store data and programs required for an arithmetic operation by the control circuit 220 .
  • the memory unit may store data representing a result of an operation performed by the control circuit 220 .
  • the control circuit 220 may write at least one of various parameters calculated for each unit time to be described later in the memory unit.
  • the control circuit 220 may be operatively coupled to the voltage sensing circuit 210 , the temperature sensor 320 , the current sensor 310 , the interface unit 330 and/or the switch 6 .
  • the control circuit 220 may collect sensing signals from the voltage sensing circuit 210 , the current sensor 310 , and the temperature sensor 320 .
  • the sensing signal refers to a synchronously detected voltage signal, a current signal, and/or a temperature signal.
  • the interface unit 330 may include a communication circuit configured to support wired communication or wireless communication between the control circuit 220 and the vehicle controller 5 (eg, an electronic control unit (ECU)).
  • Wired communication may be, for example, CAN (controller area network) communication
  • wireless communication may be, for example, Zigbee or Bluetooth communication.
  • the type of the communication protocol is not particularly limited.
  • the interface unit 330 may be combined with an output device (eg, a display, a speaker) that provides information received from the vehicle controller 5 and/or the control circuit 220 in a user-recognizable form.
  • the vehicle controller 5 may control the inverter 3 based on battery information (eg, voltage, current, temperature, SOC) collected through communication with the battery management system 100 .
  • 2A to 2H are graphs exemplarily illustrating a process of diagnosing a voltage abnormality of each battery cell from time series data indicating a change in cell voltage of each of the plurality of battery cells illustrated in FIG. 1 .
  • FIG. 2A shows voltage curves of each of the plurality of battery cells BC 1 to BC N .
  • the number of battery cells is 14.
  • the control circuit 220 collects the voltage signal from the voltage sensing circuit 210 every unit time, and writes the voltage value of the cell voltage of each battery cell BC i in the memory unit.
  • the unit time may be an integer multiple of the voltage measurement period of the voltage sensing circuit 210 .
  • the control circuit 220 may generate cell voltage time series data representing a history of the cell voltage of each battery cell over time based on the voltage value of the cell voltage of each battery cell BC i recorded in the memory unit. have. Each time the cell voltage is measured, the number of cell voltage time series data increases by one.
  • the plurality of voltage curves illustrated in FIG. 2A are one-to-one related to the plurality of battery cells BC 1 to BC N . Accordingly, each voltage curve represents a change history of a cell voltage of one battery cell BC associated therewith.
  • the control circuit 220 may determine a moving average of each of the plurality of battery cells BC 1 to BC N for each unit time by using one moving window or two moving windows. When using two moving windows, the length of time for one moving window is different from the length of time for the other moving window.
  • the time length of each moving window is an integer multiple of the unit time
  • the end point of each moving window is the current time point
  • the start point of each moving window is a time point ahead of the current time by a predetermined length of time.
  • first moving window the one associated with the shorter time length among the two moving windows
  • second moving window the one associated with the longer time length
  • the control circuit 220 may diagnose the voltage abnormality of each battery cell BC i by using only the first moving window or using both the first moving window and the second moving window.
  • the control circuit 220 based on the cell voltage of the ith battery cell BC i collected per unit time, sets the short-term change trend and the long-term change trend of the cell voltage of the i-th battery cell BC i per unit time. can be compared
  • the control circuit 220 may determine the first average cell voltage, which is the moving average of the i-th battery cell BC i by the first moving window, for each unit time by using Equation 1 or Equation 2 below.
  • Equation 1 is a moving average calculation formula using an arithmetic average method
  • Equation 2 is a moving average calculation formula using a weighted average method.
  • Equations 1 and 2 k is a time index indicating the current time point, SMA i [k] is the first average cell voltage of the i-th battery cell BC i at the current time point, S is the time length of the first moving window A value obtained by dividing by the unit time, V i [k], is the cell voltage of the ith battery cell BC i at the current time. For example, if the unit time is 1 second and the time length of the first moving window is 10 seconds, S is 10.
  • V i [kx] and SMA i [kx] represent the cell voltage and the first average cell voltage of the i-th battery cell BC i when the time index is kx, respectively.
  • the control circuit 220 may be set to increase the time index by 1 for each unit time.
  • the control circuit 220 may determine the second average cell voltage, which is the moving average of the i-th battery cell BC i by the second moving window, for each unit time by using Equation 3 or Equation 4 below.
  • Equation 3 is a moving average calculation formula using an arithmetic average method
  • Equation 4 is a moving average calculation formula using a weighted average method.
  • Equations 3 and 4 k is a time index indicating the current time point, LMA i [k] is the second average cell voltage of the i-th battery cell BC i at the current time point, L is the time length of the second moving window A value obtained by dividing by the unit time, V i [k], is the cell voltage of the ith battery cell BC i at the current time. For example, if the unit time is 1 second and the time length of the second moving window is 100 seconds, L is 100.
  • LMA i [kx] represents the second average cell voltage when the time index is kx.
  • control circuit 220 as V i [k] of Equations 1 to 4, of the cell group CG at the current time, instead of the cell voltage of each battery cell BC i at the current time.
  • a difference between the reference cell voltage and the cell voltage of the battery cell BC i may be input.
  • the reference cell voltage of the cell group CG at the present time is an average value of the voltages of the plurality of cells at the present time determined from the plurality of battery cells BC 1 to BC N .
  • the average value of the voltages of the plurality of cells may be replaced with a median value.
  • control circuit 220 may set VD i [k] of Equation 5 below to V i [k] of Equations 1 to 4 .
  • VD i [k] V av [k] - V i [k]
  • V av [k] is an average value of a plurality of cell voltages as a reference cell voltage of the cell group CG at the present time.
  • the first average cell voltage is referred to as a 'short-term moving average' of the cell voltage
  • the second average cell voltage is referred to as a 'long-term moving average' of the cell voltage.
  • FIG. 2B shows a short-term moving average line and a long-term moving average line with respect to the cell voltage of the ith battery cell BC i determined from the plurality of voltage curves shown in FIG. 2A .
  • the horizontal axis represents time
  • the vertical axis represents a short-term moving average and a long-term moving average of cell voltages.
  • a plurality of moving average lines S i shown as a dotted line are one-to-one related to a plurality of battery cells BC 1 to BC N , and the first average cell voltage SMA of each battery cell BC It represents the change history with time of i [k]).
  • a plurality of moving average lines (L i ) shown as solid lines are one-to-one related to the plurality of battery cells (BC 1 to BC N ), and the second average cell voltage (LMA i [k] of each battery cell BC) ) shows the history of change over time.
  • Equation 2 The dotted line graph and the solid line graph are obtained using Equations 2 and 4, respectively.
  • VD i [k] of Equation 5 was used as V i [k] of Equations 2 and 4
  • V av [k] was set as the average of a plurality of cell voltages.
  • the time length of the first moving window is 10 seconds
  • the time length of the second moving window is 100 seconds.
  • FIG. 2C is a diagram of a long-term and short-term average difference (absolute value) corresponding to the difference between the first average cell voltage SMA i [k] and the second average cell voltage LMA i [k] of each battery cell shown in FIG. 2B . Shows changes over time.
  • the horizontal axis represents time
  • the vertical axis represents the short-term average difference of each battery cell BC i .
  • the short-term average difference of each battery cell BC i is the difference between the first average cell voltage SMA i and the second average cell voltage LMA i of each battery cell BC i per unit time.
  • the short-term average difference of the ith battery cell BC i is obtained by subtracting the other (eg, smaller one) from one (eg, larger) of SMA i [k] and LMA i [k]. may be equal to the value.
  • the short-term average difference of the ith battery cell BC i depends on a short-term change history and a long-term change history of the cell voltage of the ith battery cell BC i .
  • the temperature or SOH of the ith battery cell BC i continuously affects the cell voltage of the ith battery cell BC i in the short term as well as in the long term. Accordingly, if there is no abnormality in the voltage of the ith battery cell BC i , the short-term average difference of the ith battery cell BC i does not have a significant difference from the long-term short-term average difference of the remaining battery cells.
  • the control circuit 220 may determine a short-term average difference (
  • the control circuit 220 also controls the average value of the short-term average difference (
  • control circuit 220 is configured to, when the cell diagnosis deviation (D diag,i [k]) for the i-th battery cell BC i exceeds a preset diagnosis threshold (eg, 0.015), the i-th battery It can be diagnosed that a voltage abnormality has occurred in the cell BC i .
  • a preset diagnosis threshold eg, 0.015
  • the control circuit 220 may normalize the short-term average difference (
  • the normalization reference value is the average value of the long-term and short-term mean differences (
  • control circuit 220 sets the average value (
  • the control circuit 220 also divides the short-term average difference (
  • Equation 6 represents a formula for normalizing the short-term average difference (
  • the value calculated by Equation 6 may be referred to as a normalized cell diagnosis deviation (D * diag,i [k]).
  • Equation 6
  • is the short-term average difference of the i-th battery cell (BC i ) at the present time
  • av is the average value (normalization reference value) of the short-term average differences of all battery cells
  • D * diag,i [k] is the normalized cell diagnosis deviation of the i-th battery cell (BC i ) at the present time.
  • the symbol '*' indicates that the parameter is normalized.
  • Equation 7 It is also possible to normalize the short-term average difference (
  • the value calculated by Equation 7 may also be referred to as the normalized cell diagnosis deviation (D * diag,i [k]).
  • 2D shows the change with time of the normalized cell diagnosis deviation (D * diag,i [k]) of each battery cell (BC i ).
  • the cell diagnosis deviation (D * diag,i [k]) was calculated using Equation 6.
  • the horizontal axis represents time
  • the vertical axis represents the cell diagnosis deviation (D * diag,i [k]) of each battery cell BC i .
  • ) of each battery cell BC i is normalized, so that the change in the short-term average difference of each battery cell BC i is the average value. It can be seen that the amplification is based on Accordingly, the diagnosis of voltage abnormality of the battery cell may be performed more accurately.
  • control circuit 220 compares the normalized cell diagnostic deviation (D * diag,i [k]) of each battery cell (BC i ) with a statistically variable threshold (D threshold [k]) for each battery cell (BC i ) voltage abnormality diagnosis can be performed.
  • control circuit 220 may set the statistical variable threshold D threshold [k] for each unit time using Equation 8 below.
  • Equation 8 Sigma is a function of calculating the standard deviation for the normalized cell diagnosis deviation (D * diag,i [k]) of all battery cells BC at the time index k.
  • is an experimentally determined constant.
  • is a factor determining diagnostic sensitivity.
  • may be appropriately determined by trial and error so that when the present invention is carried out for a cell group including a battery cell having an actual voltage abnormality, the corresponding battery cell can be detected as a voltage abnormality cell.
  • may be set to at least 5 or more, or at least 6 or more, or at least 7 or more, or at least 8 or more, or at least 9 or more. Since the D threshold [k] generated by Equation 8 is plural, it constitutes time series data.
  • a battery cell with a voltage abnormality has a normalized cell diagnosis deviation (D * diag,i [k]) relatively larger than that of a normal battery cell. Therefore, to improve the accuracy and reliability of diagnosis, it is recommended to exclude max(D * diag,i [k]) corresponding to the maximum value in calculating Sigma(D * diag,i [k]) in the time index k. desirable.
  • max is a function that returns a maximum value for a plurality of input variables, and the input variables are normalized cell diagnosis deviations (D * diag,i [k]) of all battery cells.
  • the time series data representing the time change of the statistical variable threshold D threshold [k] corresponds to the profile indicated in the darkest color among all the profiles.
  • the control circuit 220 determines the statistical variable threshold D threshold [k] at the time index k, and then uses Equation 9 below to determine the normalized cell diagnosis deviation (D * diag,i [ k]) to determine the filter diagnostic value (D filter,i [k]).
  • Two values may be assigned to the filter diagnosis value D filter,i [k] for each battery cell BC i . That is, if the cell diagnostic deviation (D * diag,i [k]) is greater than the statistical variable threshold (D threshold [k]), the cell diagnostic deviation (D * diag,i [k]) and the statistical variable threshold (D Threshold [ k]) is assigned to the filter diagnostic value (D filter,i [k]). On the other hand, if the cell diagnosis deviation (D * diag,i [k]) is equal to or less than the statistical variable threshold (D threshold [k]), 0 is assigned to the filter diagnosis value (D filter,i [k]).
  • 2E is a diagram illustrating time series data of a filter diagnosis value (D filter,i [k]) obtained through filtering of a cell diagnosis deviation (D * diag,i [k]) at a time index k.
  • a specific battery cell having an irregular pattern is a battery cell having time series data indicated by A in FIG. 2D .
  • the control circuit 220 determines that the filter diagnostic value (D filter,i [k]) is diagnosed from time series data of the filter diagnostic value (D filter,i [k]) for each battery cell (BC- i )
  • a battery cell in which a time interval greater than a threshold (eg, 0) is integrated and a condition in which the integration time is greater than a preset reference time may be established as a voltage abnormal cell.
  • control circuit 220 may integrate a time interval in which a condition in which the filter diagnosis value D filter,i [k] is greater than the diagnosis threshold is continuously satisfied.
  • the control circuit 220 may independently calculate the integration time for each time period.
  • control circuit 220 determines the filter diagnostic value (D filter,i [k]) from time series data of the filter diagnostic value (D filter,i [k]) for each battery cell (BC- i ).
  • a battery cell in which the number of data included in a time period greater than a threshold value (eg, 0) is integrated and a condition in which the integrated data value is greater than a preset reference count is established may be diagnosed as a voltage abnormal cell.
  • control circuit 220 may accumulate only the number of data included in a time interval in which a condition in which the filter diagnosis value D filter,i [k] is greater than the diagnosis threshold is continuously satisfied.
  • the control circuit 220 may independently accumulate the number of data in each time period.
  • the control circuit 220 replaces V i [k] in Equations 1 to 5 with the normalized cell diagnosis deviation (D * diag,i [k]) of each battery cell BC- i shown in FIG. 2D .
  • the control circuit 220 calculates the short-term average difference (
  • Fig. 2f shows the time change of the long-term mean difference (
  • Equation 2 Equation 4, and Equation 5 used to calculate the long and short-term mean difference (
  • V i [k] is replaced with D * diag,i [k] can be, and V av [k] can be replaced with the average value of D * diag,i [k].
  • 2G is a graph showing time series data of normalized cell diagnosis deviation (D * diag,i [k]) calculated using Equation 6;
  • time series data of a statistically variable threshold corresponds to a profile indicated in the darkest color.
  • 2H is a profile showing time series data of a filter diagnosis value (D filter,i [k]) obtained by filtering time series data of cell diagnosis deviation (D * diag,i [k]) using Equation 9.
  • the control circuit 220 determines that the filter diagnostic value (D filter,i [k]) is diagnosed from time series data of the filter diagnostic value (D filter,i [k]) for each battery cell (BC- i )
  • a battery cell in which a time interval greater than a threshold (eg, 0) is integrated and a condition in which the integration time is greater than a preset reference time may be established as a voltage abnormal cell.
  • control circuit 220 may integrate a time interval in which a condition in which the filter diagnosis value D filter,i [k] is greater than the diagnosis threshold is continuously satisfied.
  • the control circuit 220 may independently calculate the integration time for each time period.
  • control circuit 220 determines the filter diagnostic value (D filter,i [k]) from time series data of the filter diagnostic value (D filter,i [k]) for each battery cell (BC- i ).
  • a battery cell in which the number of data included in a time period greater than a threshold value (eg, 0) is integrated and a condition in which the integrated data value is greater than a preset reference count is established may be diagnosed as a voltage abnormal cell.
  • control circuit 220 may accumulate only the number of data included in a time interval in which a condition in which the filter diagnosis value D filter,i [k] is greater than the diagnosis threshold is continuously satisfied.
  • the control circuit 220 may independently accumulate the number of data in each time period.
  • the control circuit 220 may additionally repeat the above-described recursive operation process for a reference number of times. That is, the control circuit 220 may replace the voltage time series data shown in FIG. 2A with time series data (eg, the data of FIG. 2G ) of the normalized cell diagnosis deviation (D * diag,i [k]).
  • the control circuit 220 calculates a long-term average difference (
  • Equation 8 to calculate the cell diagnostic deviation (D * diag,i Determination of statistical variable threshold (D threshold [k]) for [k]), filter diagnostic value D filter,i [k] through filtering for cell diagnostic deviation (D * diag,i [k]) using Equation 9
  • the voltage abnormality diagnosis of the battery cell may be more precisely performed. That is, referring to FIG. 2E , a positive profile pattern is observed only in two time intervals in the time series data of the filter diagnosis value (D filter,i [k]) of the battery cell in which the voltage abnormality has occurred. However, referring to FIG. 2H , in the time series data of the filter diagnosis value (D filter,i [k]) of the battery cell in which the voltage abnormality has occurred, a positive profile pattern is observed in more time intervals than in FIG. 2E . Accordingly, when the recursive operation process is repeated, it is possible to more accurately detect when the voltage abnormality of the battery cell occurs.
  • FIG. 3 is a flowchart exemplarily illustrating a method for diagnosing a battery according to an embodiment of the present invention.
  • the method of FIG. 3 may be periodically executed every unit time by the control circuit 220 .
  • step S310 the control circuit 220 collects a voltage signal representing the cell voltage of each of the plurality of battery cells BC 1 to BC N from the voltage measurement circuit 210, Time series data of the cell voltage of each battery cell BC is generated (refer to FIG. 2A ). In the time series data of cell voltage, the number of data increases by one whenever a unit time elapses.
  • V i [k] or VD i [k] of Equation 5 may be used as the cell voltage.
  • step S320 the control circuit 220, based on the time series data of the cell voltage of each battery cell (BC i ), the first average cell voltage (SMA i [k] of each battery cell (BC- i ), Equation 1 and Equation 2) and the second average cell voltage (LMA i [k], refer to Equations 3 and 4) are determined (see FIG. 2b ).
  • the first average cell voltage SMA i [k] is a short-term moving average of the cell voltage of each battery cell BC i over a first moving window having a first time length.
  • the second average cell voltage LMA i [k] is a long-term moving average of the cell voltage of each battery cell BC i over a second moving window having a second time length.
  • step S330 the control circuit 220 determines the short-term average difference (
  • step S340 the control circuit 220 determines a cell diagnosis deviation D diag,i [k] of each battery cell BC i .
  • the cell diagnosis deviation (D diag,i [k]) is the average of the short- and long-term average differences for all battery cells (
  • step S350 the control circuit 220 determines whether the diagnosis time has elapsed.
  • the diagnosis time is preset. If the determination in step S350 is YES, step S360 proceeds, and if the determination in step S350 is NO, steps S310 to S340 are repeated again.
  • step S360 the control circuit 220 generates time series data for the cell diagnosis deviation D diag,i [k] of each battery cell BC i collected during the diagnosis time.
  • step S370 the control circuit 220 analyzes the time series data for the cell diagnosis deviation (D diag,i [k]) to diagnose the voltage abnormality of each battery cell (BC i ).
  • the control circuit 220 determines that the cell diagnosis deviation (D diag,i [k]) in the time series data for the cell diagnosis deviation (D diag,i [k]) of each battery cell BC i is a diagnosis threshold. (eg, 0.015) may be integrated, and a battery cell in which a condition in which the integration time is greater than a preset reference time is established may be diagnosed as a voltage abnormal cell.
  • a diagnosis threshold eg, 0.015
  • control circuit 220 may integrate only a time period in which a condition in which the cell diagnosis deviation D diag,i [k] is greater than the diagnosis threshold is continuously satisfied.
  • the control circuit 220 may independently calculate the integration time for each time period.
  • control circuit 220 determines that the cell diagnostic deviation (D diag,i [k]) in the time series data for the cell diagnostic deviation (D diag,i [k]) of each battery cell (BC i ) is a diagnostic threshold
  • a battery cell in which the number of data greater than (eg, 0.015) is accumulated and a condition in which the accumulated data value is greater than a preset reference count is established may be diagnosed as a voltage abnormal cell.
  • control circuit 220 may accumulate only the number of data included in a time period in which a condition in which the cell diagnosis deviation D diag,i [k] is greater than the diagnosis threshold is continuously satisfied.
  • the control circuit 220 may independently accumulate the number of data in each time period.
  • FIG. 4 is a flowchart exemplarily illustrating a method for diagnosing a battery according to a second embodiment of the present invention.
  • the method of FIG. 4 may be periodically executed for each unit time by the control circuit 220 .
  • step S380 proceeds.
  • step S380 the control circuit 220 generates time series data of a statistically variable threshold D threshold [k] using Equation (8).
  • Inputs to the Sigma function of Equation 8 are time series data for the cell diagnosis deviation (D diag,i [k]) of all battery cells generated in step S360.
  • the maximum value of the cell diagnosis deviation (D diag,i [k]) may be excluded from the input value of the Sigma function.
  • the cell diagnosis deviation (D diag,i [k]) is the deviation from the mean for the short-term average difference (
  • step S390 the control circuit 220 filters the cell diagnosis deviation (D diag,i [k]) of each battery cell BC i using Equation 9 to obtain a filter diagnosis value (D filter,i [k]) time series data of
  • D * diag,i [k] may be replaced with D diag,i [k].
  • step S400 the control circuit 220 analyzes the time series data of the filter diagnosis value D filter,i [k] to diagnose the voltage abnormality of each battery cell BC i .
  • the control circuit 220 determines that the filter diagnostic value (D filter,i [k]) is diagnosed from time series data of the filter diagnostic value (D filter,i [k]) for each battery cell (BC- i )
  • a battery cell in which a time interval greater than a threshold (eg, 0) is integrated and a condition in which the integration time is greater than a preset reference time may be established as a voltage abnormal cell.
  • control circuit 220 may integrate only a time period in which a condition in which the filter diagnosis value D filter,i [k] is greater than the diagnosis threshold is continuously satisfied.
  • the control circuit 220 may independently calculate the integration time for each time period.
  • control circuit 220 determines the filter diagnostic value (D filter,i [k]) from time series data of the filter diagnostic value (D filter,i [k]) for each battery cell (BC- i ).
  • a battery cell in which the number of data included in a time period greater than a threshold value (eg, 0) is integrated and a condition in which the integrated data value is greater than a preset reference count is established may be diagnosed as a voltage abnormal cell.
  • control circuit 220 may accumulate only the number of data included in a time interval in which a condition in which the filter diagnosis value D filter,i [k] is greater than the diagnosis threshold is continuously satisfied.
  • the control circuit 220 may independently accumulate the number of data in each time period.
  • FIG. 5 is a flowchart exemplarily illustrating a method for diagnosing a battery according to a third embodiment of the present invention.
  • the method of FIG. 5 may be periodically executed every unit time by the control circuit 220 .
  • the battery diagnosis method according to the third embodiment has substantially the same configuration except that steps S340, S360, and S370 are changed to steps S340', 360', and S370', respectively. Accordingly, only the different configurations will be described with respect to the third embodiment.
  • step S340 ' the control circuit 220 uses Equation 6 to determine the normalized cell diagnosis deviation ( Determine D * diag,i [k]).
  • the normalization reference value is the average value of the short-term average difference (
  • step S360' the control circuit 220 generates time series data for the normalized cell diagnosis deviation (D * diag,i [k]) of each battery cell BC i collected during the diagnosis time (see FIG. 2D ). ).
  • step S370' the control circuit 220 analyzes the time series data for the normalized cell diagnosis deviation (D * diag,i [k]) to diagnose the voltage abnormality of each battery cell BC i .
  • control circuit 220 controls the cell diagnostic deviation (D * diag,i [k]) in the time series data for the normalized cell diagnostic deviation (D * diag,i [ k]) of each battery cell (BC i ) . ) is greater than a diagnostic threshold (eg, 4), and a battery cell in which a condition in which the integration time is greater than a preset reference time is established may be diagnosed as a voltage-abnormal cell.
  • a diagnostic threshold eg, 4
  • control circuit 220 may integrate only a time period in which a condition in which the normalized cell diagnosis deviation (D * diag,i [k]) is greater than the diagnosis threshold is continuously satisfied.
  • the control circuit 220 may independently calculate the integration time for each time period.
  • control circuit 220 determines that the cell diagnostic deviation in the time series data for the normalized cell diagnostic deviation (D * diag,i [k]) of each battery cell BC i is greater than the diagnostic threshold (eg, 4).
  • the diagnostic threshold eg, 4
  • a battery cell in which a large number of data is integrated and a condition in which the integrated data value is greater than the preset reference count is established may be diagnosed as a voltage abnormal cell.
  • control circuit 220 may accumulate only the number of data included in a time interval in which a condition in which the normalized cell diagnosis deviation (D * diag,i [k]) is greater than the diagnosis threshold is continuously satisfied.
  • the control circuit 220 may independently accumulate the number of data in each time period.
  • FIG. 6 is a flowchart exemplarily illustrating a method for diagnosing a battery according to a fourth embodiment of the present invention.
  • the method of FIG. 6 may be periodically executed by the control circuit 220 every unit time.
  • steps S340, S360, S380, S390, and S400 are changed to steps S340', S360', S380', S390' and S400', respectively, except for the point
  • the configuration is substantially the same. Accordingly, only the configuration that is different from the second embodiment will be described with respect to the fourth embodiment.
  • step S340 ' the control circuit 220 uses Equation 6 to determine the normalized cell diagnosis deviation ( Determine D * diag,i [k]).
  • the normalization reference value is the average value of the short-term average difference (
  • step S360' the control circuit 220 generates time series data for the normalized cell diagnosis deviation (D * diag,i [k]) of each battery cell BC i collected during the diagnosis time (see FIG. 2D ). ).
  • step S380' the control circuit 220 generates time series data of a statistically variable threshold D threshold [k] using Equation 8.
  • Inputs to the Sigma function of Equation 8 are time series data for the normalized cell diagnosis deviation (D * diag,i [k]) of all battery cells generated in step S360'.
  • the maximum value of the cell diagnosis deviation (D * diag,i [k]) may be excluded from the input value of the Sigma function.
  • step S390' the control circuit 220 determines the cell diagnosis deviation (D * diag,i [k]) of each battery cell BC i based on the statistical variable threshold D threshold [k] using Equation 9. By filtering , time series data of the filter diagnosis value (D filter,i [k]) are generated.
  • step S400' the control circuit 220 analyzes the time series data of the filter diagnosis value D filter,i [k] to diagnose the voltage abnormality of each battery cell BC i .
  • the control circuit 220 determines that the filter diagnostic value (D filter,i [k]) is diagnosed from time series data of the filter diagnostic value (D filter,i [k]) for each battery cell (BC- i )
  • a battery cell in which a time period greater than a threshold (eg, 0) is accumulated and a condition in which the integration time is greater than a preset reference time may be diagnosed as a voltage abnormal cell.
  • control circuit 220 may integrate a time interval in which a condition in which the filter diagnosis value D filter,i [k] is greater than the diagnosis threshold is continuously satisfied.
  • the control circuit 220 may independently calculate the integration time for each time period.
  • control circuit 220 determines the filter diagnostic value (D filter,i [k]) from time series data of the filter diagnostic value (D filter,i [k]) for each battery cell (BC- i ).
  • a battery cell in which the number of data included in a time period greater than a threshold value (eg, 0) is integrated and a condition in which the integrated data value is greater than a preset reference count is established may be diagnosed as a voltage abnormal cell.
  • control circuit 220 may accumulate only the number of data included in a time interval in which a condition in which the filter diagnosis value D filter,i [k] is greater than the diagnosis threshold is continuously satisfied. If there are a plurality of corresponding time intervals, the control circuit 220 may independently accumulate the number of data in each time interval.
  • FIG. 7 is a flowchart exemplarily illustrating a method for diagnosing a battery according to a fifth embodiment of the present invention.
  • steps S310 to S360' are substantially the same as in the fourth embodiment. Therefore, with respect to the fifth embodiment, only the configuration different from that of the fourth embodiment will be described.
  • step S410 the control circuit 220, the cell diagnosis deviation (D * diag,i [k]) using the normalized cell diagnosis deviation (D * diag ,i [k]) time series data of each battery cell (BC i ) ]) for the first moving average (SMA i [k]) time series data and the second moving average (LMA i [k]) time series data (see FIG. 2F ).
  • step S420 the control circuit 220 performs the first moving average (SMA i [k]) time series data and the second moving average (LMA i [k]) time series data of each battery cell BC i using Equation 6 to generate normalized cell diagnostic deviation (D * diag,i [k]) time series data (see FIG. 2G ).
  • step S430 the control circuit 220 generates time series data of a statistically variable threshold D threshold [k] using Equation 8 (refer to FIG. 2G ).
  • step S440 the control circuit 220 controls the filter diagnosis value D filter,i [k] of each battery cell BC i based on the statistical variable threshold D threshold [k] using Equation 9. Time series data is generated (refer to FIG. 2H).
  • step S450 the control circuit 220 analyzes the time series data of the filter diagnosis value D filter,i [k] of each battery cell BC i to diagnose the voltage abnormality of each battery cell BC i .
  • the control circuit 220 determines that the filter diagnostic value (D filter,i [k]) is diagnosed from time series data of the filter diagnostic value (D filter,i [k]) for each battery cell (BC- i )
  • a battery cell in which a time period greater than a threshold (eg, 0) is accumulated and a condition in which the integration time is greater than a preset reference time may be diagnosed as a voltage abnormal cell.
  • control circuit 220 may integrate a time interval in which a condition in which the filter diagnosis value D filter,i [k] is greater than the diagnosis threshold is continuously satisfied.
  • the control circuit 220 may independently calculate the integration time for each time period.
  • control circuit 220 determines the filter diagnostic value (D filter,i [k]) from time series data of the filter diagnostic value (D filter,i [k]) for each battery cell (BC- i ).
  • a battery cell in which the number of data included in a time period greater than a threshold value (eg, 0) is integrated and a condition in which the integrated data value is greater than a preset reference count is established may be diagnosed as a voltage abnormal cell.
  • control circuit 220 may accumulate only the number of data included in a time interval in which a condition in which the filter diagnosis value D filter,i [k] is greater than the diagnosis threshold is continuously satisfied. If there are a plurality of corresponding time intervals, the control circuit 220 may independently accumulate the number of data in each time interval.
  • the control circuit 220 may recursively perform steps S410 and S420 twice or more. That is, the control circuit 220 uses the normalized cell diagnosis deviation (D * diag,i [k]) time series data generated in step S420 to perform the cell diagnosis deviation (D * diag ,i [k]) in step S410 again. ), the first moving average (SMA i [k]) time series data and the second moving average (LMA i [k]) time series data may be generated. Then, in step S420, the control circuit 220 again receives the first moving average (SMA i [k]) time series data and the second moving average (LMA i [k]) time series data of each battery cell BC i . Using Equation 6, normalized cell diagnosis deviation (D * diag,i [k]) time series data can be generated. Such a recursive algorithm may be repeated a predetermined number of times.
  • steps S410 and S420 are performed according to the recursive algorithm
  • steps S430 to S450 may be performed using the cell diagnosis deviation (D * diag,i [k]) time series data finally calculated through the recursive algorithm. have.
  • the control circuit 220 displays diagnosis result information on a display unit (not shown) can be output through
  • the control circuit 220 may record the identification information (ID) of the battery cell at which the voltage abnormality is diagnosed, the time when the voltage abnormality is diagnosed, and the diagnostic flag in the memory unit.
  • ID identification information
  • the diagnosis result information may include a message indicating that there is a cell with a voltage abnormality in the cell group.
  • the diagnosis result information may include a warning message indicating that detailed inspection of battery cells is required.
  • the display unit may be included in a load device receiving power from the cell group CG.
  • the load device is an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, or the like
  • the diagnosis result information may be output through an integrated information display of the vehicle.
  • the diagnosis result may be output through a display provided in the diagnosis system.
  • the battery diagnosis apparatus 200 may be included in the battery management system 100 or a control system (not shown) of a load device.
  • each battery for each unit time, two moving averages of the cell voltages of each battery cell for two different time lengths are determined, and based on the difference between the two moving averages of each of the plurality of battery cells, each battery It can efficiently and accurately diagnose cell voltage abnormalities.
  • the voltage abnormality of each battery cell may be accurately diagnosed by applying an advanced technique such as normalization and/or a statistical variable threshold.
  • the embodiment of the present invention described above is not implemented only through the apparatus and method, and may be implemented through a program for realizing a function corresponding to the configuration of the embodiment of the present invention or a recording medium in which the program is recorded.
  • the implementation can be easily implemented by those skilled in the art to which the present invention pertains from the description of the above-described embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

본 발명에 따른 배터리 진단 장치는, 직렬 연결된 복수의 배터리 셀을 포함하는 셀 그룹의 진단을 위한 것으로서, 주기적으로 각 배터리 셀의 셀 전압을 나타내는 전압 신호를 생성하도록 구성되는 전압 센싱 회로; 및 상기 전압 신호를 기초로, 각 배터리 셀의 셀 전압의 시간에 따른 변화를 나타내는 시계열 데이터를 생성하도록 구성된 제어 회로를 포함한다. 제어 회로는, (i) 상기 시계열 데이터를 기초로 각 배터리 셀의 제1 평균 셀 전압과 제2 평균 셀 전압을 결정하고[여기서, 상기 제1 평균 셀 전압은 단기 이동 평균이고, 상기 제2 평균 셀 전압은 장기 이동 평균임], (ii) 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이를 기초로 각 배터리 셀의 전압 이상을 검출하도록 구성된다.

Description

배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차
본 발명은, 배터리의 전압 이상을 진단하는 기술에 관한 것이다.
본 출원은 2020년 11월 27일 자로 출원된 한국 특허 출원번호 제10-2020-0163366호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 차량, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
최근, 고전압이 요구되는 애플리케이션(예, 에너지 저장 시스템, 전기 차량)이 널리 보급됨에 따라, 배터리 팩 내에 직렬 연결된 복수의 배터리 셀 각각의 전압 이상을 정확하게 검출해내는 진단 기술의 필요성이 증대되고 있다.
배터리 셀의 전압 이상이란, 내부 단락, 외부 단락, 전압 센싱 라인의 고장, 충방전 라인과의 접속 불량 등으로 인하여, 셀 전압이 비정상적으로 강하 및/또는 상승하는 고장 상태를 의미한다.
종래에는, 특정 시점에서의 각 배터리 셀의 양단에 걸친 전압인 셀 전압을 상기 특정 시점과 동일 시점에서의 복수의 배터리 셀의 평균 셀 전압과 비교함으로써, 각 배터리 셀의 전압 이상을 진단하고자 하는 시도가 있다. 그러나, 각 배터리 셀의 셀 전압은 해당 배터리의 셀의 온도, 전류 및/또는 SOH(State Of Health) 등에도 의존하는 것이기 때문에, 단순히 특정 시점에서 복수의 배터리 셀에 대해 측정된 셀 전압들을 비교하는 과정만으로는 각 배터리 셀의 전압 이상을 정확하게 진단해내기 어렵다. 예컨대, 전압 이상이 없는 배터리 셀이더라도 나머지 배터리 셀과의 온도 편차나 SOH 편차가 크다면, 해당 배터리 셀의 셀 전압과 평균 셀 전압 간의 차이 역시 클 수 있다.
이러한 문제를 해결하기 위해, 각 배터리 셀의 전압 이상을 진단함에 있어서, 각 배터리 셀의 셀 전압과 함께, 충방전 전류, 각 배터리 셀의 온도 및/또는 각 배터리 셀의 SOC(State Of Charge) 등과 같은 추가적인 파라미터를 활용하는 것을 상정할 수 있다. 그러나, 추가적인 파라미터를 활용하는 진단 방식은 각 파라미터의 검출 과정 및 상호 비교 과정이 동반되어야 하므로, 셀 전압을 단일 파라미터로서 활용하는 진단 방식에 비하여 상대적으로 복잡하고 긴 시간이 필요하다는 제약이 따른다.
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 단위 시간마다, 미리 주어진 시간 길이를 가지는 적어도 하나의 무빙 윈도우 각각에 대해, 복수의 배터리 셀 각각의 셀 전압의 이동 평균을 결정하고, 각 배터리 셀의 각 이동 평균을 기초로, 각 배터리 셀의 전압 이상을 효율적이면서 정확하게 진단하기 위한 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기 기술적 과제를 달성하기 위한 배터리 진단 장치는, 직렬 연결된 복수의 배터리 셀을 포함하는 셀 그룹을 위한 배터리 진단 장치로서, 주기적으로 각 배터리 셀의 셀 전압을 나타내는 전압 신호를 생성하도록 구성되는 전압 센싱 회로; 및 상기 전압 신호를 기초로, 각 배터리 셀의 셀 전압의 시간에 따른 변화를 나타내는 시계열 데이터를 생성하도록 구성되는 제어 회로를 포함할 수 있다.
바람직하게, 상기 제어 회로는, (i) 상기 시계열 데이터를 기초로 각 배터리 셀의 제1 평균 셀 전압과 제2 평균 셀 전압을 결정하고[여기서, 상기 제1 평균 셀 전압은 단기 이동 평균이고, 상기 제2 평균 셀 전압은 장기 이동 평균임], (ii) 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이를 기초로 각 배터리 셀의 전압 이상을 검출하도록 구성될 수 있다.
일 측면에서, 상기 제어 회로는, 각 배터리 셀에 대해서, 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이에 해당하는 장단기 평균 차이를 결정하고, 각 배터리 셀에 대해서, 전체 배터리 셀의 장단기 평균 차이의 평균값과 배터리 셀의 장단기 평균 차이의 편차에 해당하는 셀 진단 편차를 결정하고, 셀 진단 편차가 진단 임계치를 초과하는 조건을 충족하는 배터리 셀을 전압 이상 셀로 검출하도록 구성될 수 있다.
바람직하게, 상기 제어 회로는, 각 배터리 셀에 대해서, 셀 진단 편차의 시계열 데이터를 생성하고, 셀 진단 편차가 진단 임계치를 초과하는 시간 또는 진단 임계치를 초과하는 셀 진단 편차의 데이터 수로부터 배터리 셀의 전압 이상을 검출하도록 구성될 수 있다.
다른 측면에서, 상기 제어 회로는, 각 배터리 셀 대해서, 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이에 해당하는 장단기 평균 차이를 결정하고, 각 배터리 셀에 대해서, 전체 배터리 셀의 장단기 평균 차이의 평균값과 배터리 셀의 장단기 평균 차이의 편차를 산출하여 셀 진단 편차를 결정하고, 전체 배터리 셀의 셀 진단 편차에 대한 표준편차에 의존하는 통계적 가변 임계치를 결정하고, 각 배터리 셀의 셀 진단 편차에 관한 시계열 데이터를 통계적 가변 임계치를 기준으로 필터링하여 필터 진단 값의 시계열 데이터를 생성하고, 필터 진단 값이 진단 임계치를 초과하는 시간 또는 진단 임계치를 초과하는 필터 진단 값의 데이터 수로부터 배터리 셀의 전압 이상을 검출하도록 구성될 수 있다.
또 다른 측면에서, 상기 제어 회로는, 각 배터리 셀에 대해서, 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이에 해당하는 장단기 평균 차이를 결정하고, 각 배터리 셀에 대해서, 장단기 평균 차이의 정규화 값을 정규화된 셀 진단 편차로서 결정하고, 전체 배터리 셀의 정규화된 셀 진단 편차에 대한 표준편차에 의존하는 통계적 가변 임계치를 결정하고, 각 배터리 셀의 정규화된 셀 진단 편차에 관한 시계열 데이터를 통계적 가변 임계치를 기준으로 필터링하여 필터 진단 값의 시계열 데이터를 생성하고, 필터 진단 값이 진단 임계치를 초과하는 시간 또는 진단 임계치를 초과하는 필터 진단 값의 데이터 수로부터 배터리 셀의 전압 이상을 검출하도록 구성될 수 있다.
바람직하게, 상기 제어 회로는, 각 배터리 셀에 대해서, 장단기 평균 차이를 전체 배터리 셀의 장단기 평균 차이의 평균값으로 나눗셈 연산하여 장단기 평균 차이를 정규화할 수 있다.
대안적으로, 상기 제어 회로는, 각 배터리 셀에 대해서, 장단기 평균 차이의 로그 연산을 통해 장단기 평균 차이를 정규화할 수 있다.
또 다른 측면에서, 상기 제어 회로는, 단위 시간 마다 측정된, 전체 배터리 셀의 셀 전압 평균값과 각 배터리 셀의 셀 전압 차이에 해당하는 전압을 이용하여 각 배터리 셀의 셀 전압의 시간에 따른 변화를 나타내는 시계열 데이터를 생성하도록 구성될 수 있다.
또 다른 측면에서, 제1항에 있어서, 상기 제어 회로는, 각 배터리 셀에 대해서, 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이에 해당하는 장단기 평균 차이를 결정하고, 각 배터리 셀에 대해서, 장단기 평균 차이의 정규화 값을 정규화된 셀 진단 편차로서 결정하고, 각 배터리 셀에 대해서, 정규화된 셀 진단 편차의 시계열 데이터를 생성하고, 다음 (i) 내지 (iv)를 적어도 1회 이상 재귀적으로 반복하여 각 배터리 셀에 대해 정규화된 셀 진단 편차의 시계열 데이터를 생성하고,
(i) 각 배터리 셀의 정규화된 셀 진단 편차의 시계열 데이터에 대해 제1 이동 평균 및 제2 이동 평균을 결정[여기서, 제1 이동 평균은 단기 이동 평균이고, 제2 이동 평균은 장기 이동 평균임], (ii) 각 배터리 셀에 대해, 제1 이동 평균과 제2 이동 평균의 차이에 해당하는 장단기 평균 차이를 결정, (iii) 각 배터리 셀에 대해, 장단기 평균 차이의 정규화 값을 정규화된 셀 진단 편차로 결정, (iv) 각 배터리 셀에 대해 정규화된 셀 진단 편차의 시계열 데이터를 생성
전체 배터리 셀의 정규화된 셀 진단 편차에 대한 표준편차에 의존하는 통계적 가변 임계치를 결정하고, 각 배터리 셀의 셀 진단 편차에 관한 시계열 데이터를 통계적 가변 임계치를 기준으로 필터링하여 필터 진단 값의 시계열 데이터를 생성하고, 필터 진단 값이 진단 임계치를 초과하는 시간 또는 진단 임계치를 초과하는 필터 진단 값의 데이터 수로부터 배터리 셀의 전압 이상을 검출하도록 구성될 수 있다.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 배터리 진단 방법은, 직렬 연결된 복수의 배터리 셀을 포함하는 셀 그룹을 위한 배터리 진단 방법으로서, (a) 각 배터리 셀의 셀 전압의 시간에 따른 변화를 나타내는 시계열 데이터를 주기적으로 생성하는 단계; (b) 상기 시계열 데이터를 기초로 각 배터리 셀의 제1 평균 셀 전압과 제2 평균 셀 전압을 결정하는 단계[여기서, 상기 제1 평균 셀 전압은 단기 이동 평균이고, 상기 제2 평균 셀 전압은 장기 이동 평균임]; 및 (c) 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이를 기초로 각 배터리 셀의 전압 이상을 검출하는 단계;를 포함할 수 있다.
일 측면에서, 상기 (c) 단계는, (c1) 각 배터리 셀에 대해서, 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이에 해당하는 장단기 평균 차이를 결정하는 단계; (c2) 각 배터리 셀에 대해서, 전체 배터리 셀의 장단기 평균 차이의 평균값과 배터리 셀의 장단기 평균 차이의 편차에 해당하는 셀 진단 편차를 결정하는 단계; 및 (c3) 셀 진단 편차가 진단 임계치를 초과하는 조건을 충족하는 배터리 셀을 전압 이상 셀로 검출하는 단계;를 포함할 수 있다.
바람직하게, 상기 (c) 단계는, (c1) 각 배터리 셀에 대해서 셀 진단 편차의 시계열 데이터를 생성하는 단계; 및 (c2) 셀 진단 편차가 진단 임계치를 초과하는 시간 또는 진단 임계치를 초과하는 셀 진단 편차의 데이터 수로부터 배터리 셀의 전압 이상을 검출하는 단계;를 포함할 수 있다.
다른 측면에서, 상기 (c) 단계는, (c1) 각 배터리 셀에 대해서, 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이에 해당하는 장단기 평균 차이를 결정하는 단계; (c2) 각 배터리 셀에 대해서, 전체 배터리 셀의 장단기 평균 차이의 평균값과 배터리 셀의 장단기 평균 차이의 편차를 산출하여 셀 진단 편차를 결정하는 단계; (c3) 전체 배터리 셀의 셀 진단 편차에 대한 표준편차에 의존하는 통계적 가변 임계치를 결정하는 단계; (c4) 각 배터리 셀의 셀 진단 편차에 관한 시계열 데이터를 통계적 가변 임계치를 기준으로 필터링하여 각 배터리 셀에 대해 필터 진단 값의 시계열 데이터를 생성하는 단계; 및 (c5) 필터 진단 값이 진단 임계치를 초과하는 시간 또는 진단 임계치를 초과하는 필터 진단 값의 데이터 수로부터 배터리 셀의 전압 이상을 검출하는 단계;를 포함할 수 있다.
또 다른 측면에서, 상기 (c) 단계는, (c1) 각 배터리 셀에 대해서, 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이에 해당하는 장단기 평균 차이를 결정하는 단계; (c2) 각 배터리 셀에 대해서, 장단기 평균 차이의 정규화 값을 정규화된 셀 진단 편차로서 결정하는 단계; (c3) 전체 배터리 셀의 정규화된 셀 진단 편차에 대한 표준편차에 의존하는 통계적 가변 임계치를 결정하는 단계; (c4) 각 배터리 셀의 정규화된 셀 진단 편차에 관한 시계열 데이터를 통계적 가변 임계치를 기준으로 필터링하여 필터 진단 값의 시계열 데이터를 생성하는 단계; 및 (c6) 필터 진단 값이 진단 임계치를 초과하는 시간 또는 진단 임계치를 초과하는 필터 진단 값의 데이터 수로부터 배터리 셀의 전압 이상을 검출하는 단계;를 포함할 수 있다.
바람직하게, 상기 (c3) 단계는, 각 배터리 셀에 대해서, 장단기 평균 차이를 전체 배터리 셀의 장단기 평균 차이의 평균값으로 나눗셈 연산하여 장단기 평균 차이를 정규화하는 단계일 수 있다.
대안적으로, 상기 (c3) 단계는, 각 배터리 셀에 대해서, 장단기 평균 차이의 로그 연산을 통해 장단기 평균 차이를 정규화하는 단계일 수 있다.
또 다른 측면에서, 상기 (a) 단계는, 단위 시간 마다 측정된, 전체 배터리 셀의 셀 전압 평균값과 각 배터리 셀의 셀 전압 차이에 해당하는 전압을 이용하여 각 배터리 셀의 셀 전압의 시간에 따른 변화를 나타내는 시계열 데이터를 생성하는 단계일 수 있다.
또 다른 측면에서, 상기 (c) 단계는, (c1) 각 배터리에 대해서, 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이에 해당하는 장단기 평균 차이를 결정하는 단계; (c2) 각 배터리에 대해서, 장단기 평균 차이의 정규화 값을 정규화된 셀 진단 편차로서 결정하는 단계; (c3) 각 배터리 셀에 대해서, 정규화된 셀 진단 편차의 시계열 데이터를 생성하는 단계; (c4) 다음 (i) 내지 (iv)를 적어도 1회 이상 재귀적으로 반복하여 각 배터리 셀에 대해 정규화된 셀 진단 편차의 시계열 데이터를 생성하는 단계;
(i) 각 배터리 셀의 정규화된 셀 진단 편차의 시계열 데이터에 대해 제1 이동 평균 및 제2 이동 평균을 결정[여기서, 제1 이동 평균은 단기 이동 평균이고, 제2 이동 평균은 장기 이동 평균임], (ii) 각 배터리 셀에 대해, 제1 이동 평균과 제2 이동 평균의 차이에 해당하는 장단기 평균 차이를 결정, (iii) 각 배터리 셀에 대해, 장단기 평균 차이의 정규화 값을 정규화된 셀 진단 편차로 결정, (iv) 각 배터리 셀에 대해 정규화된 셀 진단 편차의 시계열 데이터를 생성
(c5) 전체 배터리 셀의 정규화된 셀 진단 편차에 대한 표준편차에 의존하는 통계적 가변 임계치를 결정하는 단계; (c6) 각 배터리 셀의 정규화된 셀 진단 편차에 관한 시계열 데이터를 통계적 가변 임계치를 기준으로 필터링하여 필터 진단 값의 시계열 데이터를 생성하는 단계; 및 (c7) 필터 진단 값이 진단 임계치를 초과하는 시간 또는 진단 임계치를 초과하는 필터 진단 값의 데이터 수로부터 배터리 셀의 전압 이상을 검출하는 단계;를 포함할 수 있다.
상기 기술적 과제는 상술한 배터리 진단 장치를 포함하는 배터리 팩과 이를 포함하는 자동차에 의해서도 달성될 수 있다.
본 발명의 일 측면에 따르면, 단위 시간마다, 서로 다른 두 시간 길이에 대한 각 배터리 셀의 셀 전압의 두 이동 평균을 결정하고, 복수의 배터리 셀 각각의 두 이동 평균 간의 차이를 기초로, 각 배터리 셀의 전압 이상을 효율적이면서 정확하게 진단할 수 있다.
본 발명의 다른 측면에 따르면, 각 배터리 셀의 두 이동 평균의 변화 경향 차이를 분석함에 있어서 정규화 및/또는 통계적 가변 임계치 등의 고도화된 기법을 적용함으로써 각 배터리 셀의 전압 이상을 정확하게 진단할 수 있다.
본 발명의 또 다른 측면에 따르면, 통계적 가변 임계치를 기준으로 결정된 필터 진단 값의 시계열 데이터를 분석하여 각 배터리 셀의 전압 이상이 발생된 시간 구간 및/또는 전압 이상 검출 카운트 등을 정밀하게 검출하는 것이 가능하다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 전기 차량의 구성을 예시적으로 나타낸 도면이다.
도 2a 내지 도 2h는 도 1에 도시된 복수의 배터리 셀 각각의 셀 전압의 시간에 따른 변화를 나타내는 시계열 데이터로부터 각 배터리 셀의 전압 이상을 진단하는 과정을 설명하는 데에 참조되는 그래프들이다.
도 3은 본 발명의 제1 실시예에 따른 배터리 진단 방법을 예시적으로 보여주는 순서도이다.
도 4는 본 발명의 제2 실시예에 따른 배터리 진단 방법을 예시적으로 보여주는 순서도이다.
도 5는 본 발명의 제3 실시예에 따른 배터리 진단 방법을 예시적으로 보여주는 순서도이다.
도 6는 본 발명의 제4 실시예에 따른 배터리 진단 방법을 예시적으로 보여주는 순서도이다.
도 7은 본 발명의 제5 실시예에 따른 배터리 진단 방법을 예시적으로 보여주는 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. 또한, 명세서에 기재된 <제어부>와 같은 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 하드웨어, 소프트웨어, 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
도 1은 본 발명의 일 실시예에 따른 전기 차량의 구성을 예시적으로 나타낸 도면이다.
도 1을 참조하면, 전기 차량(1)은, 배터리 팩(2), 인버터(3), 전기 모터(4) 및 차량 컨트롤러(5)를 포함한다.
배터리 팩(2)은, 셀 그룹(CG), 스위치(6) 및 배터리 관리 시스템(100)을 포함한다.
셀 그룹(CG)은, 배터리 팩(2)에 마련된 한 쌍의 전원 단자를 통해 인버터(3)에 결합될 수 있다. 셀 그룹(CG)은, 직렬 연결된 복수의 배터리 셀(BC1~BCN, N은 2 이상의 자연수)을 포함한다. 각 배터리 셀(BCi)은, 리튬 이온 배터리 셀과 같이 재충전이 가능한 것이라면, 그 종류는 특별히 제한되지 않는다. i는 셀 식별을 위한 인덱스이다. i는 자연수로서 1 내지 N이다.
스위치(6)는, 셀 그룹(CG)에 직렬로 연결된다. 스위치(6)는, 셀 그룹(CG)의 충방전을 위한 전류 경로에 설치된다. 스위치(6)는, 배터리 관리 시스템(100)으로부터의 스위칭 신호에 응답하여, 온오프 제어된다. 스위치(6)는, 코일의 자기력에 의해 온오프되는 기계식 릴레이이거나 MOSFET(Metal Oxide Semiconductor Field Effect transistor)과 같은 반도체 스위치일 수 있다.
인버터(3)는, 배터리 관리 시스템(100)로부터의 명령에 응답하여, 셀 그룹(CG)로부터의 직류 전류를 교류 전류로 변환하도록 제공된다. 전기 모터(4)는, 예컨대 3상 교류 모터일 수 있다. 전기 모터(4)는, 인버터(3)로부터의 교류 전력을 이용하여 구동한다.
배터리 관리 시스템(100)은, 셀 그룹(CG)의 충방전과 관련된 전반적인 제어를 담당하도록 제공된다.
배터리 관리 시스템(100)은, 배터리 진단 장치(200)를 포함한다. 배터리 관리 시스템(100)은, 전류 센서(310), 온도 센서(320) 및 인터페이스부(330) 중 적어도 하나를 더 포함할 수 있다.
배터리 진단 장치(200)는, 복수의 배터리 셀(BC1~BCN) 각각의 전압 이상을 진단하도록 제공된다. 배터리 진단 장치(200)는, 전압 센싱 회로(210) 및 제어 회로(220)를 포함한다.
전압 센싱 회로(210)는, 복수의 전압 센싱 라인을 통해, 복수의 배터리 셀(BC1~BCN) 각각의 양극 및 음극에 연결된다. 전압 센싱 회로(210)는, 각 배터리 셀(BC)의 양단에 걸친 셀 전압을 측정하고, 측정된 셀 전압을 나타내는 전압 신호를 생성하도록 구성된다.
전류 센서(310)는, 전류 경로를 통해 셀 그룹(CG)에 직렬로 연결된다. 전류 센서(310)는, 셀 그룹(CG)를 통해 흐르는 배터리 전류를 검출하고, 검출된 배터리 전류를 나타내는 전류 신호를 생성하도록 구성된다.
온도 센서(320)는, 셀 그룹(CG)의 온도를 검출하고, 검출된 온도를 나타내는 온도 신호를 생성하도록 구성된다.
제어 회로(220)는, 하드웨어적으로, ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.
제어 회로(220)는, 메모리부를 가질 수 있다. 메모리부는, 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), SSD 타입(Solid State Disk type), SDD 타입(Silicon Disk Drive type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 램(random access memory; RAM), SRAM(static random access memory), 롬(read-only memory; ROM), EEPROM(electrically erasable programmable read-only memory), PROM(programmable read-only memory) 중 적어도 하나의 타입의 저장매체를 포함할 수 있다. 메모리부는, 제어 회로(220)에 의한 연산 동작에 요구되는 데이터 및 프로그램을 저장할 수 있다. 메모리부는, 제어 회로(220)에 의한 연산 동작의 결과를 나타내는 데이터를 저장할 수 있다. 특히, 제어 회로(220)는, 후술할 단위 시간마다 연산되는 여러 가지 파라미터들 중 적어도 한가지를 메모리부에 기록할 수 있다.
제어 회로(220)는, 전압 센싱 회로(210), 온도 센서(320), 전류 센서(310), 인터페이스부(330) 및/또는 스위치(6)에 동작 가능하게 결합될 수 있다. 제어 회로(220)는, 센싱 신호를 전압 센싱 회로(210), 전류 센서(310) 및 온도 센서(320)로부터 수집할 수 있다. 센싱 신호는, 동기 검출된 전압 신호, 전류 신호 및/또는 온도 신호를 지칭한다.
인터페이스부(330)는, 제어 회로(220)와 차량 컨트롤러(5)(예, ECU: Electronic Control Unit) 간의 유선 통신 또는 무선 통신을 지원하도록 구성되는 통신 회로를 포함할 수 있다. 유선 통신은 예컨대 캔(CAN: contoller area network) 통신일 수 있고, 무선 통신은 예컨대 지그비나 블루투스 통신일 수 있다. 물론, 제어 회로(220)와 차량 컨트롤러(5) 간의 유무선 통신을 지원하는 것이라면, 통신 프토토콜의 종류는 특별히 한정되는 것은 아니다.
인터페이스부(330)는, 차량 컨트롤러(5) 및/또는 제어 회로(220)로부터 수신된 정보를 사용자가 인식 가능한 형태로 제공하는 출력 디바이스(예, 디스플레이, 스피커)와 결합될 수 있다. 차량 컨트롤러(5)는, 배터리 관리 시스템(100)과의 통신을 통해 수집되는 배터리 정보(예, 전압, 전류, 온도, SOC)를 기초로, 인버터(3)를 제어할 수 있다.
도 2a 내지 도 2h는 도 1에 도시된 복수의 배터리 셀 각각의 셀 전압의 시간에 따른 변화를 나타내는 시계열 데이터로부터 각 배터리 셀의 전압 이상을 진단하는 과정을 예시적으로 보여주는 그래프들이다.
도 2a는, 복수의 배터리 셀(BC1~BCN) 각각의 전압 커브를 보여준다. 배터리 셀의 수량은 14개이다. 제어 회로(220)는, 단위 시간마다, 전압 센싱 회로(210)로부터의 전압 신호를 수집하여, 각 배터리 셀(BCi)의 셀 전압의 전압값을 메모리부에 기록한다. 단위 시간은, 전압 센싱 회로(210)의 전압 측정 주기의 정수배일 수 있다.
제어 회로(220)는, 메모리부에 기록된 각 배터리 셀(BCi)의 셀 전압의 전압값을 기초로, 각 배터리 셀의 셀 전압의 시간에 따른 이력을 나타내는 셀 전압 시계열 데이터를 생성할 수 있다. 셀 전압이 측정될 때마다 셀 전압 시계열 데이터의 수는 1씩 증가한다.
도 2a에 도시된 복수의 전압 커브는 복수의 배터리 셀(BC1~BCN)에 일대일로 연관된 것이다. 따라서, 각 전압 커브는 그에 연관된 어느 한 배터리 셀(BC)의 셀 전압의 변화 이력을 나타낸다.
제어 회로(220)는, 1개의 무빙 윈도우 또는 2개의 무빙 윈도우를 이용하여, 복수의 배터리 셀(BC1~BCN) 각각의 이동 평균을 단위 시간마다 결정할 수 있다. 2개의 무빙 윈도우를 이용하는 경우, 어느 한 무빙 윈도우에 대한 시간 길이는 다른 무빙 윈도우에 대한 시간 길이와 상이하다.
여기서, 각 무빙 윈도우의 시간 길이는 단위 시간의 정수 배이고, 각 무빙 윈도우의 종료점은 현 시점이고, 각 무빙 윈도우의 시작점은 현 시점으로부터 미리 주어진 시간 길이만큼 앞선 시점이다.
이하에서는, 설명의 편의를 위해, 두 무빙 윈도우 중 더 짧은 시간 길이에 연관된 것을 제1 무빙 윈도우라고 칭하고, 더 긴 시간 길이에 연관된 것을 제2 무빙 윈도우라고 칭하기로 한다.
제어 회로(220)는, 제1 무빙 윈도우만을 이용하거나, 제1 무빙 윈도우 및 제2 무빙 윈도우를 둘 다 이용하여, 각 배터리 셀(BCi)의 전압 이상을 진단할 수 있다.
제어 회로(220)는, 단위 시간마다 수집되는 제i 배터리 셀(BCi)의 셀 전압을 기초로, 제i 배터리 셀(BCi)의 셀 전압의 단기적 변화 경향 및 장기적 변화 경향을 단위 시간마다 비교할 수 있다.
제어 회로(220)는, 다음의 수식 1 또는 수식 2를 이용하여, 제1 무빙 윈도우에 의한 제i 배터리 셀(BCi)의 이동 평균인 제1 평균 셀 전압을 단위 시간마다 결정할 수 있다.
수식 1은 산술 평균 방식에 의한 이동 평균 계산식이고, 수식 2는 가중 평균 방식에 의한 이동 평균 계산식이다.
<수식 1>
Figure PCTKR2021017684-appb-img-000001
<수식 2>
Figure PCTKR2021017684-appb-img-000002
수식 1 및 수식 2에 있어서, k는 현 시점을 나타내는 시간 인덱스, SMAi[k]는 현 시점의 제i 배터리 셀(BCi)의 제1 평균 셀 전압, S는 제1 무빙 윈도우의 시간 길이를 단위 시간으로 나눈 값, Vi[k]는 현 시점의 제i 배터리 셀(BCi)의 셀 전압이다. 일 예로, 단위 시간이 1초이고, 제1 무빙 윈도우의 시간 길이가 10초이면, S는 10이다. x가 k 이하의 자연수라고 할 때, Vi[k-x]와 SMAi[k-x]는 각각 시간 인덱스가 k-x였을 때의 제i 배터리 셀(BCi)의 셀 전압과 제1 평균 셀 전압을 나타낸다. 참고로, 제어 회로(220)는, 단위 시간마다, 시간 인덱스를 1씩 증가시키도록 설정되어 있을 수 있다.
제어 회로(220)는, 다음의 수식 3 또는 수식 4를 이용하여, 제2 무빙 윈도우에 의한 제i 배터리 셀(BCi)의 이동 평균인 제2 평균 셀 전압을 단위 시간마다 결정할 수 있다.
수식 3은 산술 평균 방식에 의한 이동 평균 계산식이고, 수식 4는 가중 평균 방식에 의한 이동 평균 계산식이다.
<수식 3>
Figure PCTKR2021017684-appb-img-000003
<수식 4>
Figure PCTKR2021017684-appb-img-000004
수식 3 및 수식 4에 있어서, k는 현 시점을 나타내는 시간 인덱스, LMAi[k]는 현 시점의 제i 배터리 셀(BCi)의 제2 평균 셀 전압, L는 제2 무빙 윈도우의 시간 길이를 단위 시간으로 나눈 값, Vi[k]는 현 시점의 제i 배터리 셀(BCi)의 셀 전압이다. 일 예로, 단위 시간이 1초이고, 제2 무빙 윈도우의 시간 길이가 100초이면, L는 100이다. x가 k 이하의 자연수라고 할 때, LMAi[k-x]는 시간 인덱스가 k-x였을 때의 제2 평균 셀 전압을 나타낸다.
일 실시예에서, 제어 회로(220)는, 수식 1 내지 4의 Vi[k]로서, 현 시점에서의 각 배터리 셀(BCi)의 셀 전압 대신, 현 시점에서의 셀 그룹(CG)의 기준 셀 전압과 배터리 셀(BCi)의 셀 전압 간의 차이를 입력할 수 있다.
현 시점에서의 셀 그룹(CG)의 기준 셀 전압은, 복수의 배터리 셀(BC1~BCN)로부터 결정된 현 시점의 복수의 셀 전압의 평균값이다. 변형예에서, 복수의 셀 전압의 평균값은 중앙값으로 대체 가능하다.
구체적으로, 제어 회로(220)는, 다음의 수식 5의 VDi[k]를 수식 1 내지 4의 Vi[k]로 설정할 수 있다.
<수식 5>
VDi[k] = Vav[k] - Vi[k]
수식 5에서, Vav[k]는, 현 시점에서의 셀 그룹(CG)의 기준 셀 전압으로서 복수의 셀 전압의 평균값이다.
제1 무빙 윈도우의 시간 길이가 제2 무빙 윈도우의 시간 길이보다 짧은 경우, 제1 평균 셀 전압을 셀 전압의 '단기 이동 평균'이라고 칭하고, 제2 평균 셀 전압을 셀 전압의 '장기 이동 평균'이라고 칭할 수 있다.
도 2b는, 도 2a에 도시된 복수의 전압 커브로부터 결정되는 제i 배터리 셀(BCi)의 셀 전압에 대한 단기 이동 평균선과 장기 이동 평균선을 보여준다. 도 2b에 있어서, 가로축은 시간을 나타내고, 세로축은 셀 전압의 단기 이동 평균과 장기 이동 평균을 나타낸다.
도 2b를 참조하면, 점선으로 도시된 복수의 이동 평균선(Si)은 복수의 배터리 셀(BC1~BCN)에 일대일로 연관된 것으로서, 각 배터리 셀(BC)의 제1 평균 셀 전압(SMAi[k])의 시간에 따른 변화 이력을 나타낸다. 또한, 실선으로 도시된 복수의 이동 평균선(Li)은 복수의 배터리 셀(BC1~BCN)에 일대일로 연관된 것으로서, 각 배터리 셀(BC)의 제2 평균 셀 전압(LMAi[k])의 시간에 따른 변화 이력을 나타낸다.
점선 그래프와 실선 그래프는 각각 수식 2 및 수식 4를 이용하여 얻은 것이다. 또한, 수식 2 및 수식 4의 Vi[k]로서 수식 5의 VDi[k]를 사용하였고, Vav[k]는 복수의 셀 전압의 평균으로 설정하였다. 제1 무빙 윈도우의 시간 길이는 10초이고, 제2 무빙 윈도우의 시간 길이는 100초이다.
도 2c는 도 2b에 도시된 각 배터리 셀의 제1 평균 셀 전압(SMAi[k])과 제2 평균 셀 전압(LMAi[k])의 차이에 해당하는 장단기 평균 차이(절대값)의 시간에 따른 변화를 나타낸다. 도 2c에 있어서, 가로축은 시간을 나타내고, 세로축은 각 배터리 셀(BCi)의 장단기 평균 차이를 나타낸다.
각 배터리 셀(BCi)의 장단기 평균 차이는, 단위 시간마다의, 각 배터리 셀(BCi)의 제1 평균 셀 전압(SMAi)과 제2 평균 셀 전압(LMAi) 간의 차이이다. 일 예로, 제i 배터리 셀(BCi)의 장단기 평균 차이는, SMAi[k]과 LMAi[k] 중 하나(예, 더 큰 것)로부터 다른 하나(예, 더 작은 것)를 차감한 값과 동일할 수 있다.
제i 배터리 셀(BCi)의 장단기 평균 차이는, 제i 배터리 셀(BCi)의 셀 전압의 단기적인 변화 이력 및 장기적인 변화 이력에 의존한다.
제i 배터리 셀(BCi)의 온도나 SOH는, 단기적으로는 물론 장기적으로 꾸준히 제i 배터리 셀(BCi)의 셀 전압에 영향을 준다. 따라서, 제i 배터리 셀(BCi)의 전압 이상이 없다면, 제i 배터리 셀(BCi)의 장단기 평균 차이는, 나머지 배터리 셀들의 장단기 평균 차이와는 유의미한 차이를 띄지 않는다.
반면, 제i 배터리 셀(BCi)에 내부 단락 및/또는 외부 단락 등으로 인해 갑자기 발생된 전압 이상은, 제2 평균 셀 전압(LMAi[k])보다 제1 평균 셀 전압(SMAi[k])에 많은 영향을 준다. 그 결과, 제i 배터리 셀(BCi)의 장단기 평균 차이는 전압 이상이 없는 나머지 배터리 셀들의 장단기 평균 차이와는 큰 편차를 가진다.
제어 회로(220)는, 단위 시간마다, 각 배터리 셀(BCi)의 장단기 평균 차이(|SMAi[k]-LMAi[k]|)를 결정할 수 있다. 또한, 제어 회로(220)는 장단기 평균 차이(|SMAi[k]-LMAi[k]|)의 평균값을 결정할 수 있다. 이하, 평균값은 |SMAi[k]-LMAi[k]|av로 나타낸다. 제어 회로(220)는 또한 장단기 평균 차이의 평균값(|SMAi[k]-LMAi[k]|av) 대비 장단기 평균 차이(|SMAi[k]-LMAi[k]|)에 대한 편차를 셀 진단 편차(Ddiag,i[k])로 결정할 수 있다. 또한, 제어 회로(220)는 셀 진단 편차(Ddiag,i[k])를 기초로 각 배터리 셀(BCi)의 전압 이상을 진단할 수 있다.
일 실시예에서, 제어 회로(220)는 제i 배터리 셀(BCi)에 대한 셀 진단 편차(Ddiag,i[k])가 미리 설정된 진단 임계치(예컨대, 0.015)를 넘으면, 해당 제i 배터리 셀(BCi)에 전압 이상이 생긴 것으로 진단할 수 있다.
바람직하게, 제어 회로(220)는 전압 이상 진단을 위해 각 배터리 셀(BCi)의 장단기 평균 차이(|SMAi[k]-LMAi[k]|)를 정규화 기준값을 이용하여 정규화할 수 있다. 바람직하게, 정규화 기준값은 장단기 평균 차이의 평균값(|SMAi[k]-LMAi[k]|av)이다.
구체적으로, 제어 회로(220)는 제1 내지 제N 배터리 셀(BCi-BCN)의 장단기 평균 차이의 평균값(|SMAi[k]-LMAi[k]|av)을 정규화 기준값으로 설정할 수 있다. 제어 회로(220)는 또한 각 배터리 셀(BCi)의 장단기 평균 차이(|SMAi[k]-LMAi[k]|)를 정규화 기준값으로 나눗셈 연산하여 장단기 평균 차이(|SMAi[k]-LMAi[k]|)를 정규화할 수 있다.
하기 수식 6은 각 배터리 셀(BCi)의 장단기 평균 차이(|SMAi[k]-LMAi[k]|)를 정규화하는 수식을 나타낸다. 실시예에서, 수식 6에 의해 산출되는 값은 정규화된 셀 진단 편차(D* diag,i[k])라고 명명할 수 있다.
<수식 6>
D* diag,i[k] = (|SMAi[k]-LMAi[k]|)÷(|SMAi[k]-LMAi[k]|av)
수식 6에서, |SMAi[k]-LMAi[k]|는 현 시점의 제i 배터리 셀(BCi)의 장단기 평균 차이, |SMAi[k]-LMAi[k]|av는 전체 배터리 셀의 장단기 평균 차이의 평균값(정규화 기준값), D* diag,i[k]는 현 시점의 제i 배터리 셀(BCi)의 정규화된 셀 진단 편차다. 기호 '*'는 파라미터가 정규화되었음을 나타낸다.
각 배터리 셀(BCi)의 장단기 평균 차이(|SMAi[k]-LMAi[k]|)는 하기 수식 7의 로그 연산을 통해 정규화하는 것도 가능하다. 실시예에서, 수식 7에 의해 산출되는 값 또한 정규화된 셀 진단 편차(D* diag,i[k])라고 명명할 수 있다.
<수식 7>
D* diag,i[k] = Log|SMAi[k]-LMAi[k]|
도 2d는 각 배터리 셀(BCi)의 정규화된 셀 진단 편차(D* diag,i[k])의 시간에 따른 변화를 보여준다. 셀 진단 편차(D* diag,i[k])는 수식 6을 이용하여 산출하였다. 도 2d에 있어서, 가로축은 시간을 나타내고, 세로축은 각 배터리 셀(BCi)의 셀 진단 편차(D* diag,i[k])를 나타낸다.
도 2d를 참조하면, 각 배터리 셀(BCi)의 장단기 평균 차이(|SMAi[k]-LMAi[k]|)가 정규화됨으로써 각 배터리 셀(BCi)의 장단기 평균 차이의 변화가 평균값을 기준으로 증폭되었음을 알 수 있다. 이로써, 배터리 셀의 전압 이상 진단이 보다 정확하게 이루어질 수 있다.
바람직하게, 제어 회로(220)는, 각 배터리 셀(BCi)의 정규화된 셀 진단 편차(D* diag,i[k])와 통계적 가변 임계치(Dthreshold[k])를 비교하여 각 배터리 셀(BCi)의 전압 이상 진단을 수행할 수 있다.
바람직하게, 제어 회로(220)는 하기 수식 8을 이용하여 단위 시간 마다 통계적 가변 임계치(Dthreshold[k])를 설정할 수 있다.
<수식 8>
Dthreshold[k] = β*Sigma(D* diag,i[k])
수식 8에서, Sigma는 시간 인덱스 k에서 전체 배터리 셀(BC)의 정규화된 셀 진단 편차(D* diag,i[k])에 대한 표준 편차를 연산하는 함수이다. 그리고, β는 실험적으로 결정되는 상수이다. β는 진단 감도를 결정하는 팩터이다. β는 실제 전압 이상이 생긴 배터리 셀을 포함하고 있는 셀 그룹을 대상으로 본 발명을 실시했을 때, 해당 배터리 셀이 전압 이상 셀로서 검출될 수 있도록 시행착오에 의해 적절하게 결정될 수 있다. 일 예에서, β는 적어도 5 이상, 또는 적어도 6 이상, 또는 적어도 7 이상, 또는 적어도 8 이상, 또는 적어도 9 이상으로 설정될 수 있다. 수식 8에 의해 생성되는 Dthreshold[k]는 복수이므로 시계열 데이터를 구성한다.
한편, 전압 이상이 있는 배터리 셀은 정규화된 셀 진단 편차(D* diag,i[k])가 정상 배터리 셀보다 상대적으로 크다. 따라서, 진단의 정확도와 신뢰성을 향상시키기 위해 시간 인덱스 k에서 Sigma(D* diag,i[k])를 연산함에 있어서 최대값에 해당하는 max(D* diag,i[k])는 제외시키는 것이 바람직하다. 여기서, max는 복수의 입력 변수에 대한 최대값을 반환하는 함수로서, 입력 변수는 전체 배터리 셀들의 정규화된 셀 진단 편차(D* diag,i[k])들이다.
도 2d에 있어서, 통계적 가변 임계치(Dthreshold[k])의 시간 변화를 나타내는 시계열 데이터는 전체 프로파일들 중에서 가장 짙은 색으로 표시한 프로파일에 해당한다.
제어 회로(220)는, 시간 인덱스 k에서 통계적 가변 임계치(Dthreshold[k])를 결정한 후 하기 수식 9를 이용하여 각 배터리 셀(BCi)의 정규화된 셀 진단 편차(D* diag,i[k])를 필터링함으로써 필터 진단 값(Dfilter,i[k])을 결정할 수 있다.
각 배터리 셀(BCi)에 대한 필터 진단 값(Dfilter,i[k])에는 2가지 값이 할당될 수 있다. 즉, 셀 진단 편차(D* diag,i[k])가 통계적 가변 임계치(Dthreshold[k])보다 크면, 셀 진단 편차(D* diag,i[k])와 통계적 가변 임계치(DThreshold[k])의 차이 값이 필터 진단 값(Dfilter,i[k])에 할당된다. 반면, 셀 진단 편차(D* diag,i[k])가 통계적 가변 임계치(Dthreshold[k])보다 같거나 작으면, 0이 필터 진단 값(Dfilter,i[k])에 할당된다.
<수식 9>
Dfilter,i[k] = D* diag,i[k] - Dthreshold[k] (IF D* diag,i[k] > Dthreshold[k])
Dfilter,i[k] = 0 (IF D* diag,i[k] ≤ Dthreshold[k])
도 2e는 시간 인덱스 k에서 셀 진단 편차(D* diag,i[k])의 필터링을 통해 얻은 필터 진단 값(Dfilter,i[k])의 시계열 데이터를 나타낸 도면이다.
도 2e를 참조하면, 특정 배터리 셀의 필터 진단 값(Dfilter,i[k])이 3000초를 전후로 하여 양수 값을 가지는 불규칙한 패턴이 확인된다. 참고로, 불규칙한 패턴을 가지는 특정 배터리 셀은 도 2d에서 A로 지시된 시계열 데이터를 가지는 배터리 셀이다.
일 예에서, 제어 회로(220)는 각 배터리 셀(BC-i)에 대한 필터 진단 값(Dfilter,i[k])의 시계열 데이터에서 필터 진단 값(Dfilter,i[k])이 진단 임계치(예컨대, 0)보다 큰 시간 구간을 적산하고, 적산 시간이 미리 설정된 기준 시간보다 큰 조건이 성립되는 배터리 셀을 전압 이상 셀로 진단할 수 있다.
바람직하게, 제어 회로(220)는 필터 진단 값(Dfilter,i[k])이 진단 임계치보다 큰 조건이 연속적으로 충족되는 시간 구간을 적산할 수 있다. 해당 시간 구간이 복수이면, 제어 회로(220)는 각 시간 구간마다 적산 시간을 독립적으로 산출할 수 있다.
다른 예에서, 제어 회로(220)는 각 배터리 셀(BC-i)에 대한 필터 진단 값(Dfilter,i[k])의 시계열 데이터에서 필터 진단 값(Dfilter,i[k])이 진단 임계치(예컨대, 0)보다 큰 시간 구간에 포함된 데이터 수를 적산하고, 데이터 적산치가 미리 설정된 기준 카운트보다 큰 조건이 성립되는 배터리 셀을 전압 이상 셀로 진단할 수 있다.
바람직하게, 제어 회로(220)는 필터 진단 값(Dfilter,i[k])이 진단 임계치보다 큰 조건이 연속적으로 충족되는 시간 구간에 포함된 데이터 수만을 적산할 수 있다. 해당 시간 구간이 복수이면, 제어 회로(220)는 각 시간 구간의 데이터 수를 독립적으로 적산할 수 있다.
한편, 제어 회로(220)는 수식 1 내지 5의 Vi[k]를 도 2d에 나타낸 각 배터리 셀(BC-i)의 정규화된 셀 진단 편차(D* diag,i[k])로 대체할 수 있다. 또한, 제어 회로(220)는, 시간 인덱스 k에서, 셀 진단 편차(D* diag,i[k])의 장단기 평균 차이(|SMAi[k]-LMAi[k]|) 계산, 셀 진단 편차(D* diag,i[k])의 장단기 평균 차이(|SMAi[k]-LMAi[k]|)의 평균값 계산, 장단기 평균 차이(|SMAi[k]-LMAi[k]|)의 평균값 대비 차이에 해당하는 셀 진단 편차(Ddiag,i[k]) 계산, 수식 6을 이용한 장단기 평균 차이(|SMAi[k]-LMAi[k]|)에 대한 정규화된 셀 진단 편차(D* diag,i[k]) 계산, 수식 8을 이용하여 정규화된 셀 진단 편차(D* diag,i[k])에 대한 통계적 가변 임계치(Dthreshold[k]) 결정, 수식 9를 이용하여 셀 진단 편차(D* diag,i[k])의 필터링을 통한 필터 진단 값 Dfilter,i[k] 결정, 및 필터 진단 값 Dfilter,i[k]의 시계열 데이터를 이용한 배터리 셀의 전압 이상 진단을 재귀적으로 실행할 수 있다.
도 2f는 정규화된 셀 진단 편차(D* diag,i[k])의 시계열 데이터(도 2d)에 대한 장단기 평균 차이(|SMAi[k]-LMAi[k]|)의 시간 변화를 나타낸 그래프이다. 장단기 평균 차이(|SMAi[k]-LMAi[k]|)의 계산에 사용되는 수식2, 수식4 및 수식5에 있어서, Vi[k]는 D* diag,i[k]로 대체될 수 있고, Vav[k]는 D* diag,i[k]의 평균값으로 대체될 수 있다.
도 2g는 수식 6을 이용하여 계산된 정규화된 셀 진단 편차(D* diag,i[k])의 시계열 데이터를 나타낸 그래프이다. 도 2g에 있어서, 통계적 가변 임계치(Dthreshold[k])의 시계열 데이터는 가장 짙은 색으로 표시한 프로파일에 해당한다.
도 2h는 수식 9를 이용하여 셀 진단 편차(D* diag,i[k])의 시계열 데이터를 필터링함으로써 얻은 필터 진단 값(Dfilter,i[k])의 시계열 데이터를 나타낸 프로파일이다.
일 예에서, 제어 회로(220)는 각 배터리 셀(BC-i)에 대한 필터 진단 값(Dfilter,i[k])의 시계열 데이터에서 필터 진단 값(Dfilter,i[k])이 진단 임계치(예컨대, 0)보다 큰 시간 구간을 적산하고, 적산 시간이 미리 설정된 기준 시간보다 큰 조건이 성립되는 배터리 셀을 전압 이상 셀로 진단할 수 있다.
바람직하게, 제어 회로(220)는 필터 진단 값(Dfilter,i[k])이 진단 임계치보다 큰 조건이 연속적으로 충족되는 시간 구간을 적산할 수 있다. 해당 시간 구간이 복수이면, 제어 회로(220)는 각 시간 구간마다 적산 시간을 독립적으로 산출할 수 있다.
다른 예에서, 제어 회로(220)는 각 배터리 셀(BC-i)에 대한 필터 진단 값(Dfilter,i[k])의 시계열 데이터에서 필터 진단 값(Dfilter,i[k])이 진단 임계치(예컨대, 0)보다 큰 시간 구간에 포함된 데이터 수를 적산하고, 데이터 적산치가 미리 설정된 기준 카운트보다 큰 조건이 성립되는 배터리 셀을 전압 이상 셀로 진단할 수 있다.
바람직하게, 제어 회로(220)는 필터 진단 값(Dfilter,i[k])이 진단 임계치보다 큰 조건이 연속적으로 충족되는 시간 구간에 포함된 데이터 수만을 적산할 수 있다. 해당 시간 구간이 복수이면, 제어 회로(220)는 각 시간 구간의 데이터 수를 독립적으로 적산할 수 있다.
제어 회로(220)는, 전술한 재귀적 연산 과정을 기준 횟수만큼 추가로 반복할 수 있다. 즉, 제어 회로(220)는 도 2a에 나타낸 전압 시계열 데이터를 정규화된 셀 진단 편차(D* diag,i[k])의 시계열 데이터(예를 들어 도 2g의 데이터)로 대체할 수 있다. 또한, 제어 회로(220)는, 시간 인덱스 k에서, 장단기 평균 차이(|SMAi[k]-LMAi[k]|) 계산, 장단기 평균 차이(|SMAi[k]-LMAi[k]|)의 평균값 계산, 장단기 평균 차이(|SMAi[k]-LMAi[k]|)의 평균값 대비 차이에 해당하는 셀 진단 편차(Ddiag,i[k]) 계산, 수식 6을 이용한 장단기 평균 차이(|SMAi[k]-LMAi[k]|)에 대한 정규화된 셀 진단 편차(D* diag,i[k]) 계산, 수식 8을 이용하여 셀 진단 편차(D* diag,i[k])에 대한 통계적 가변 임계치(Dthreshold[k]) 결정, 수식 9를 이용한 셀 진단 편차(D* diag,i[k])에 대한 필터링을 통한 필터 진단 값 Dfilter,i[k] 결정, 및 필터 진단 값 Dfilter,i[k]의 시계열 데이터를 이용한 배터리 셀의 전압 이상 진단을 재귀적으로 실행할 수 있다.
상기와 같은 재귀적 연산 과정이 반복되면, 배터리 셀의 전압 이상 진단이 보다 정밀하게 이루어질 수 있다. 즉, 도 2e를 참조하면, 전압 이상이 생긴 배터리 셀의 필터 진단 값(Dfilter,i[k])의 시계열 데이터에서 2개의 시간 구간에서만 양의 프로파일 패턴이 관찰된다. 하지만, 도 2h를 참조하면, 전압 이상이 생긴 배터리 셀의 필터 진단 값(Dfilter,i[k])의 시계열 데이터에서 도 2e에서보다 많은 시간 구간에서 양의 프로파일 패턴이 관찰된다. 따라서 재귀적 연산 과정이 반복되면, 배터리 셀의 전압 이상이 발생된 시점을 보다 정확하게 검출할 수 있다.
이하에서는, 상술한 본 발명의 배터리 진단 장치(200)를 이용한 배터리 진단 방법을 상세히 설명한다. 제어 회로(220)의 동작은 배터리 진단 방법의 다양한 실시예(들)에서 보다 구체적으로 설명될 것이다.
도 3은 본 발명의 일 실시예에 따른 배터리 진단 방법을 예시적으로 보여주는 순서도이다. 도 3의 방법은, 제어 회로(220)에 의해 단위 시간마다 주기적으로 실행될 수 있다.
도 1 내지 도 3을 참조하면, 단계 S310에서, 제어 회로(220)는, 전압 측정 회로(210)로부터 복수의 배터리 셀(BC1~BCN) 각각의 셀 전압을 나타내는 전압 신호를 수집하여, 각 배터리 셀(BC)의 셀 전압의 시계열 데이터를 생성한다(도 2a 참조). 셀 전압의 시계열 데이터는 단위 시간이 경과될 때마다 데이터의 수가 1씩 증가한다.
바람직하게, 셀 전압으로서 Vi[k] 또는 수식 5의 VDi[k]가 사용될 수 있다.
단계 S320에서, 제어 회로(220)는, 각 배터리 셀(BCi)의 셀 전압의 시계열 데이터를 기초로, 각 배터리 셀(BC-i)의 제1 평균 셀 전압(SMAi[k], 수식 1 및 수식 2 참조) 및 제2 평균 셀 전압(LMAi[k], 수식 3 및 수식 4 참조)을 결정한다(도 2b 참조). 제1 평균 셀 전압(SMAi[k])은, 제1 시간 길이를 가지는 제1 무빙 윈도우에 걸친 각 배터리 셀(BCi)의 셀 전압의 단기 이동 평균이다. 제2 평균 셀 전압(LMAi[k])은, 제2 시간 길이를 가지는 제2 무빙 윈도우에 걸친 각 배터리 셀(BCi)의 셀 전압의 장기 이동 평균이다. 제1 평균 셀 전압(SMAi[k]) 및 제2 평균 셀 전압(LMAi[k])의 산출 시 Vi[k] 또는 VDi[k]가 사용될 수 있다.
단계 S330에서, 제어 회로(220)는 각 배터리 셀(BCi)의 장단기 평균 차이(|SMAi[k]- LMAi[k]|)를 결정한다(도 2c 참조).
단계 S340에서, 제어 회로(220)는 각 배터리 셀(BCi)의 셀 진단 편차(Ddiag,i[k])를 결정한다. 셀 진단 편차(Ddiag,i[k])는 전체 배터리 셀에 대한 장단기 평균 차이의 평균값(|SMAi[k]- LMAi[k]|av)과 제i 배터리 셀(BCi)의 장단기 평균 차이(|SMAi[k]- LMAi[k]|)의 편차이다.
단계 S350에서, 제어 회로(220)는 진단 시간이 경과되었는지 판단한다. 진단 시간은 미리 설정된다. 단계 S350의 판단이 YES이면 단계 S360이 진행되고, 단계 S350의 판단이 NO이면, 단계 S310 내지 단계 S340이 다시 반복된다.
단계 S360에서, 제어 회로(220)는 진단 시간 동안 수집된 각 배터리 셀(BCi)의 셀 진단 편차(Ddiag,i[k])에 대한 시계열 데이터를 생성한다.
단계 S370에서, 제어 회로(220)는 셀 진단 편차(Ddiag,i[k])에 대한 시계열 데이터를 분석하여 각 배터리 셀(BCi)의 전압 이상을 진단한다.
일 예에서, 제어 회로(220)는 각 배터리 셀(BCi)의 셀 진단 편차(Ddiag,i[k])에 대한 시계열 데이터에서 셀 진단 편차(Ddiag,i[k])가 진단 임계치(예컨대, 0.015)보다 큰 시간 구간을 적산하고, 적산 시간이 미리 설정된 기준 시간보다 큰 조건이 성립되는 배터리 셀을 전압 이상 셀로 진단할 수 있다.
바람직하게, 제어 회로(220)는 셀 진단 편차(Ddiag,i[k])가 진단 임계치보다 큰 조건이 연속적으로 충족되는 시간 구간만을 적산할 수 있다. 해당 시간 구간이 복수이면, 제어 회로(220)는 각 시간 구간마다 적산 시간을 독립적으로 산출할 수 있다.
다른 예에서, 제어 회로(220)는 각 배터리 셀(BCi)의 셀 진단 편차(Ddiag,i[k])에 대한 시계열 데이터에서 셀 진단 편차(Ddiag,i[k])가 진단 임계치(예컨대,0.015)보다 큰 데이터 수를 적산하고, 데이터 적산치가 미리 설정된 기준 카운트보다 큰 조건이 성립되는 배터리 셀을 전압 이상 셀로 진단할 수 있다.
바람직하게, 제어 회로(220)는 셀 진단 편차(Ddiag,i[k])가 진단 임계치보다 큰 조건이 연속적으로 충족되는 시간 구간에 포함된 데이터 수만을 적산할 수 있다. 해당 시간 구간이 복수이면, 제어 회로(220)는 각 시간 구간의 데이터 수를 독립적으로 적산할 수 있다.
도 4은 본 발명의 제2 실시예에 따른 배터리 진단 방법을 예시적으로 보여주는 순서도이다. 도 4의 방법은, 제어 회로(220)에 의해 단위 시간마다 주기적으로 실행될 수 있다.
제2 실시예의 배터리 진단 방법에 있어서, 단계 S310 내지 단계 S360은 제1 실시예와 실질적으로 동일하므로 이에 대한 설명은 생략한다. 단계 S360 이후에, 단계 S380이 진행된다.
단계 S380에서, 제어 회로(220)는 수식 8을 이용하여 통계적 가변 임계치(Dthreshold[k])의 시계열 데이터를 생성한다. 수식 8의 Sigma 함수의 입력은 단계 S360에서 생성된 전체 배터리 셀의 셀 진단 편차(Ddiag,i[k])에 대한 시계열 데이터들이다. 바람직하게, 셀 진단 편차(Ddiag,i[k])의 최대값은 Sigma 함수의 입력 값에서 제외될 수 있다. 셀 진단 편차(Ddiag,i[k])는 장단기 평균 차이(|SMAi[k]-LMAi[k]|)에 대한 평균값 대비 편차이다.
단계 S390에서, 제어 회로(220)는 수식 9를 이용하여 각 배터리 셀(BCi)의 셀 진단 편차(Ddiag,i[k])를 필터링함으로써 필터 진단 값(Dfilter,i[k])의 시계열 데이터를 생성한다.
수식 9를 이용함에 있어서, D* diag,i[k]는 Ddiag,i[k]로 대체될 수 있다.
단계 S400에서, 제어 회로(220)는 필터 진단 값(Dfilter,i[k])의 시계열 데이터를 분석하여 각 배터리 셀(BCi)의 전압 이상을 진단한다.
일 예에서, 제어 회로(220)는 각 배터리 셀(BC-i)에 대한 필터 진단 값(Dfilter,i[k])의 시계열 데이터에서 필터 진단 값(Dfilter,i[k])이 진단 임계치(예컨대, 0)보다 큰 시간 구간을 적산하고, 적산 시간이 미리 설정된 기준 시간보다 큰 조건이 성립되는 배터리 셀을 전압 이상 셀로 진단할 수 있다.
바람직하게, 제어 회로(220)는 필터 진단 값(Dfilter,i[k])이 진단 임계치보다 큰 조건이 연속적으로 충족되는 시간 구간만을 적산할 수 있다. 해당 시간 구간이 복수이면, 제어 회로(220)는 각 시간 구간마다 적산 시간을 독립적으로 산출할 수 있다.
다른 예에서, 제어 회로(220)는 각 배터리 셀(BC-i)에 대한 필터 진단 값(Dfilter,i[k])의 시계열 데이터에서 필터 진단 값(Dfilter,i[k])이 진단 임계치(예컨대, 0)보다 큰 시간 구간에 포함된 데이터 수를 적산하고, 데이터 적산치가 미리 설정된 기준 카운트보다 큰 조건이 성립되는 배터리 셀을 전압 이상 셀로 진단할 수 있다.
바람직하게, 제어 회로(220)는 필터 진단 값(Dfilter,i[k])이 진단 임계치보다 큰 조건이 연속적으로 충족되는 시간 구간에 포함된 데이터 수만을 적산할 수 있다. 해당 시간 구간이 복수이면, 제어 회로(220)는 각 시간 구간의 데이터 수를 독립적으로 적산할 수 있다.
도 5는 본 발명의 제3 실시예에 따른 배터리 진단 방법을 예시적으로 보여주는 순서도이다. 도 5의 방법은, 제어 회로(220)에 의해 단위 시간마다 주기적으로 실행될 수 있다.
제3 실시예에 따른 배터리 진단 방법은 제 1실시예와 비교하여 단계 S340, S360 및 S370이 각각 단계 S340', 360' 및 단계 S370'으로 변경된 점만 제외하고 나머지 구성은 실질적으로 동일하다. 따라서, 제3 실시예에 대해서는 차이가 있는 구성에 대해서만 설명한다.
단계 S340'에서, 제어 회로(220)는 수식 6을 이용하여 각 배터리 셀(BCi)의 장단기 평균 차이(|SMAi[k]- LMAi[k]|)에 대한 정규화된 셀 진단 편차(D* diag,i[k])를 결정한다. 정규화 기준값은 장단기 평균 차이(|SMAi[k]- LMAi[k]|)의 평균값이다. 수식 6은 수식 7로 대체 가능하다.
단계 S360'에서, 제어 회로(220)는 진단 시간 동안 수집된 각 배터리 셀(BCi)의 정규화된 셀 진단 편차(D* diag,i[k])에 대한 시계열 데이터를 생성한다(도 2d 참조).
단계 S370'에서, 제어 회로(220)는 정규화된 셀 진단 편차(D* diag,i[k])에 대한 시계열 데이터를 분석하여 각 배터리 셀(BCi)의 전압 이상을 진단한다.
일 예에서, 제어 회로(220)는 각 배터리 셀(BCi)의 정규화된 셀 진단 편차(D* diag,i[k])에 대한 시계열 데이터에서 셀 진단 편차(D* diag,i[k])가 진단 임계치(예컨대, 4)보다 큰 시간 구간을 적산하고, 적산 시간이 미리 설정된 기준 시간보다 큰 조건이 성립되는 배터리 셀을 전압 이상 셀로 진단할 수 있다.
바람직하게, 제어 회로(220)는 정규화된 셀 진단 편차(D* diag,i[k])가 진단 임계치보다 큰 조건이 연속적으로 충족되는 시간 구간만을 적산할 수 있다. 해당 시간 구간이 복수이면, 제어 회로(220)는 각 시간 구간마다 적산 시간을 독립적으로 산출할 수 있다.
다른 예에서, 제어 회로(220)는 각 배터리 셀(BCi)의 정규화된 셀 진단 편차(D* diag,i[k])에 대한 시계열 데이터에서 셀 진단 편차가 진단 임계치(예컨대, 4)보다 큰 데이터 수를 적산하고, 데이터 적산치가 미리 설정된 기준 카운트보다 큰 조건이 성립되는 배터리 셀을 전압 이상 셀로 진단할 수 있다.
바람직하게, 제어 회로(220)는 정규화된 셀 진단 편차(D* diag,i[k])가 진단 임계치보다 큰 조건이 연속적으로 충족되는 시간 구간에 포함된 데이터 수만을 적산할 수 있다. 해당 시간 구간이 복수이면, 제어 회로(220)는 각 시간 구간의 데이터 수를 독립적으로 적산할 수 있다.
도 6은 본 발명의 제4 실시예에 따른 배터리 진단 방법을 예시적으로 보여주는 순서도이다. 도 6의 방법은, 제어 회로(220)에 의해 단위 시간마다 주기적으로 실행될 수 있다.
제4 실시예에 따른 배터리 진단 방법은 제 2실시예와 비교하여 단계 S340, S360, S380, S390 및 S400이 각각 단계 S340', S360', S380', S390' 및 S400'으로 변경된 점만 제외하고 나머지 구성은 실질적으로 동일하다. 따라서, 제4 실시예에 대해서는 제2 실시예와 차이가 있는 구성에 대해서만 설명한다.
단계 S340'에서, 제어 회로(220)는 수식 6을 이용하여 각 배터리 셀(BCi)의 장단기 평균 차이(|SMAi[k]- LMAi[k]|)에 대한 정규화된 셀 진단 편차(D* diag,i[k])를 결정한다. 정규화 기준값은 장단기 평균 차이(|SMAi[k]- LMAi[k]|)의 평균값이다. 수식 6은 수식 7로 대체 가능하다.
단계 S360'에서, 제어 회로(220)는 진단 시간 동안 수집된 각 배터리 셀(BCi)의 정규화된 셀 진단 편차(D* diag,i[k])에 대한 시계열 데이터를 생성한다(도 2d 참조).
단계 S380'에서, 제어 회로(220)는 수식 8을 이용하여 통계적 가변 임계치(Dthreshold[k])의 시계열 데이터를 생성한다. 수식 8의 Sigma 함수의 입력은 단계 S360'에서 생성된 전체 배터리 셀의 정규화된 셀 진단 편차(D* diag,i[k])에 대한 시계열 데이터들이다. 바람직하게, 각 시간 인덱스에서, 셀 진단 편차(D* diag,i[k])의 최대값은 Sigma 함수의 입력 값에서 제외될 수 있다.
단계 S390'에서, 제어 회로(220)는 수식 9를 이용하여 통계적 가변 임계치(Dthreshold[k])를 기준으로 각 배터리 셀(BCi)의 셀 진단 편차(D* diag,i[k])를 필터링함으로써 필터 진단 값(Dfilter,i[k])의 시계열 데이터를 생성한다.
단계 S400'에서, 제어 회로(220)는 필터 진단 값(Dfilter,i[k])의 시계열 데이터를 분석하여 각 배터리 셀(BCi)의 전압 이상을 진단한다.
일 예에서, 제어 회로(220)는 각 배터리 셀(BC-i)에 대한 필터 진단 값(Dfilter,i[k])의 시계열 데이터에서 필터 진단 값(Dfilter,i[k])이 진단 임계치(예컨대, 0)보다 큰 시간 구간을 적산하고, 적산 시간이 미리 설정된 기준 시간보다 큰 조건이 성립되는 배터리 셀을 전압 이상 셀로 진단할 수 있다.
바람직하게, 제어 회로(220)는 필터 진단 값(Dfilter,i[k])이 진단 임계치보다 큰 조건이 연속적으로 충족되는 시간 구간을 적산할 수 있다. 해당 시간 구간이 복수이면, 제어 회로(220)는 각 시간 구간마다 적산 시간을 독립적으로 산출할 수 있다.
다른 예에서, 제어 회로(220)는 각 배터리 셀(BC-i)에 대한 필터 진단 값(Dfilter,i[k])의 시계열 데이터에서 필터 진단 값(Dfilter,i[k])이 진단 임계치(예컨대, 0)보다 큰 시간 구간에 포함된 데이터 수를 적산하고, 데이터 적산치가 미리 설정된 기준 카운트보다 큰 조건이 성립되는 배터리 셀을 전압 이상 셀로 진단할 수 있다.
바람직하게, 제어 회로(220)는 필터 진단 값(Dfilter,i[k])이 진단 임계치보다 큰 조건이 연속적으로 충족되는 시간 구간에 포함된 데이터 수만을 적산할 수 있다. 해당 시간 구간이 복수이면, 제어 회로(220)는 각 시간 구간의 데이터 수를 독립적으로 적산할 수 있다.
도 7은 본 발명의 제5 실시예에 따른 배터리 진단 방법을 예시적으로 보여주는 순서도이다.
제5 실시예에 있어서, 단계 S310 내지 단계 S360'까지는 제4실시예와 실질적으로 동일하다. 따라서, 제5 실시예에 대해서는 제4 실시예와 차이가 있는 구성에 대해서만 설명한다.
단계 S410에서, 제어 회로(220)는, 각 배터리 셀(BCi)의 정규화된 셀 진단 편차(D* diag,i[k]) 시계열 데이터를 이용하여 셀 진단 편차(D* diag,i[k])에 대한 제1 이동 평균(SMAi[k]) 시계열 데이터 및 제2 이동 평균(LMAi[k]) 시계열 데이터를 생성한다(도 2f 참조).
단계 S420에서, 제어 회로(220)는 수식 6을 이용하여 각 배터리 셀(BCi)의 제1 이동 평균(SMAi[k]) 시계열 데이터 및 제2 이동 평균(LMAi[k]) 시계열 데이터를 이용하여 정규화된 셀 진단 편차(D* diag,i[k]) 시계열 데이터를 생성한다(도 2g 참조).
단계 S430에서, 제어 회로(220)는 수식 8을 이용하여 통계적 가변 임계치(Dthreshold[k])의 시계열 데이터를 생성한다(도 2g 참조).
단계 S440에서, 제어 회로(220)는 수식 9를 이용하여 통계적 가변 임계치(Dthreshold[k])를 기준으로 각 배터리 셀(BCi)의 필터 진단 값(Dfilter,i[k])에 대한 시계열 데이터 생성한다(도 2h 참조).
단계 S450에서, 제어 회로(220)는 각 배터리 셀(BCi)의 필터 진단 값(Dfilter,i[k])의 시계열 데이터를 분석하여 각 배터리 셀(BCi)의 전압 이상을 진단한다.
일 예에서, 제어 회로(220)는 각 배터리 셀(BC-i)에 대한 필터 진단 값(Dfilter,i[k])의 시계열 데이터에서 필터 진단 값(Dfilter,i[k])이 진단 임계치(예컨대, 0)보다 큰 시간 구간을 적산하고, 적산 시간이 미리 설정된 기준 시간보다 큰 조건이 성립되는 배터리 셀을 전압 이상 셀로 진단할 수 있다.
바람직하게, 제어 회로(220)는 필터 진단 값(Dfilter,i[k])이 진단 임계치보다 큰 조건이 연속적으로 충족되는 시간 구간을 적산할 수 있다. 해당 시간 구간이 복수이면, 제어 회로(220)는 각 시간 구간마다 적산 시간을 독립적으로 산출할 수 있다.
다른 예에서, 제어 회로(220)는 각 배터리 셀(BC-i)에 대한 필터 진단 값(Dfilter,i[k])의 시계열 데이터에서 필터 진단 값(Dfilter,i[k])이 진단 임계치(예컨대, 0)보다 큰 시간 구간에 포함된 데이터 수를 적산하고, 데이터 적산치가 미리 설정된 기준 카운트보다 큰 조건이 성립되는 배터리 셀을 전압 이상 셀로 진단할 수 있다.
바람직하게, 제어 회로(220)는 필터 진단 값(Dfilter,i[k])이 진단 임계치보다 큰 조건이 연속적으로 충족되는 시간 구간에 포함된 데이터 수만을 적산할 수 있다. 해당 시간 구간이 복수이면, 제어 회로(220)는 각 시간 구간의 데이터 수를 독립적으로 적산할 수 있다.
제5 실시예에 있어서, 제어 회로(220)는 단계 S410 및 단계 S420을 2회 이상 재귀적으로 실시할 수 있다. 즉, 제어 회로(220)는 단계 S420에서 생성된 정규화된 셀 진단 편차(D* diag,i[k]) 시계열 데이터를 이용하여 또 다시 단계 S410에서 셀 진단 편차(D* diag,i[k])에 대한 제1 이동 평균(SMAi[k]) 시계열 데이터 및 제2 이동 평균(LMAi[k]) 시계열 데이터를 생성할 수 있다. 그런 다음, 제어 회로(220)는 단계 S420에서 또 다시 각 배터리 셀(BCi)의 제1 이동 평균(SMAi[k]) 시계열 데이터 및 제2 이동 평균(LMAi[k]) 시계열 데이터를 이용하여 수식 6을 기초로 정규화된 셀 진단 편차(D* diag,i[k]) 시계열 데이터 생성할 수 있다. 이러한 재귀적 알고리즘은 정해진 횟수만큼 반복될 수 있다.
재귀적 알고리즘에 따라 단계 S410 및 단계 S420이 실시될 때, 단계 S430 내지 단계 S450은 재귀적 알고리즘을 통해 최종 산출된 셀 진단 편차(D* diag,i[k]) 시계열 데이터를 이용하여 실시될 수 있다.
본 발명의 실시예에 있어서, 제어 회로(220)는 전체 배터리 셀들에 대한 전압 이상 진단을 실시한 후, 특정 배터리 셀(들)에서 전압 이상이 진단되면, 진단 결과 정보를 디스플레이부(미도시)를 통해 출력할 수 있다. 또한, 제어 회로(220)는 전압 이상이 진단된 배터리 셀의 식별정보(ID), 전압 이상이 진단된 시점 및 진단 flag를 메모리부에 기록할 수 있다.
바람직하게, 진단 결과 정보는 셀 그룹에서 전압 이상이 생긴 셀이 있음을 나타내는 메시지를 포함할 수 있다. 선택적으로, 진단 결과 정보는 배터리 셀들의 정밀 점검이 필요하다는 내용의 경고 메시지를 포함할 수 있다.
일 예에서, 디스플레이부는 셀 그룹(CG)으로부터 전력을 공급 받는 부하장치에 포함될 수 있다. 부하장치가 전기 자동차, 하이브리드 자동차, 플러그인 하이브리드 자동차 등인 경우, 진단 결과 정보는 자동차의 통합정보 디스플레이를 통해 출력될 수 있다. 다른 예에서, 본 발명에 따른 배터리 진단 장치(200)가 진단 시스템에 포함될 때, 진단 결과는 진단 시스템에 구비된 디스플레이를 통해 출력될 수 있다.
바람직하게, 본 발명의 실시예에 따른 배터리 진단 장치(200)는 배터리 관리 시스템(100) 또는 부하장치의 제어 시스템(미도시)에 포함될 수 있다.
상술한 실시예들에 따르면, 단위 시간마다, 서로 다른 두 시간 길이에 대한 각 배터리 셀의 셀 전압의 두 이동 평균을 결정하고, 복수의 배터리 셀 각각의 두 이동 평균 간의 차이를 기초로, 각 배터리 셀의 전압 이상을 효율적이면서 정확하게 진단할 수 있다.
다른 측면에 따르면, 각 배터리 셀의 두 이동 평균의 변화 경향 차이를 분석함에 있어서 정규화 및/또는 통계적 가변 임계치 등의 고도화된 기법을 적용함으로써 각 배터리 셀의 전압 이상을 정확하게 진단할 수 있다.
또 다른 측면에 따르면, 통계적 가변 임계치를 기준으로 결정된 필터 진단 값의 시계열 데이터를 분석하여 각 배터리 셀의 전압 이상이 발생된 시간 구간 및/또는 전압 이상 검출 카운트 등을 정밀하게 검출하는 것이 가능하다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.

Claims (20)

  1. 직렬 연결된 복수의 배터리 셀을 포함하는 셀 그룹을 위한 배터리 진단 장치에 있어서,
    주기적으로 각 배터리 셀의 셀 전압을 나타내는 전압 신호를 생성하도록 구성되는 전압 센싱 회로; 및
    상기 전압 신호를 기초로, 각 배터리 셀의 셀 전압의 시간에 따른 변화를 나타내는 시계열 데이터를 생성하도록 구성되는 제어 회로를 포함하고,
    상기 제어 회로는,
    (i) 상기 시계열 데이터를 기초로 각 배터리 셀의 제1 평균 셀 전압과 제2 평균 셀 전압을 결정하고[여기서, 상기 제1 평균 셀 전압은 단기 이동 평균이고, 상기 제2 평균 셀 전압은 장기 이동 평균임],
    (ii) 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이를 기초로 각 배터리 셀의 전압 이상을 검출하도록 구성되는 것을 특징으로 하는 배터리 진단 장치.
  2. 제1항에 있어서, 상기 제어 회로는,
    각 배터리 셀에 대해서, 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이에 해당하는 장단기 평균 차이를 결정하고,
    각 배터리 셀에 대해서, 전체 배터리 셀의 장단기 평균 차이의 평균값과 배터리 셀의 장단기 평균 차이의 편차에 해당하는 셀 진단 편차를 결정하고,
    셀 진단 편차가 진단 임계치를 초과하는 조건을 충족하는 배터리 셀을 전압 이상 셀로 검출하도록 구성된 것을 특징으로 하는 배터리 진단 장치.
  3. 제2항에 있어서, 상기 제어 회로는,
    각 배터리 셀에 대해서, 셀 진단 편차의 시계열 데이터를 생성하고, 셀 진단 편차가 진단 임계치를 초과하는 시간 또는 진단 임계치를 초과하는 셀 진단 편차의 데이터 수로부터 배터리 셀의 전압 이상을 검출하도록 구성된 것을 특징으로 한하는 배터리 진단 장치.
  4. 제1항에 있어서, 상기 제어 회로는,
    각 배터리 셀에 대해서, 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이에 해당하는 장단기 평균 차이를 결정하고,
    각 배터리 셀에 대해서, 전체 배터리 셀의 장단기 평균 차이의 평균값과 배터리 셀의 장단기 평균 차이의 편차를 산출하여 셀 진단 편차를 결정하고,
    전체 배터리 셀의 셀 진단 편차에 대한 표준편차에 의존하는 통계적 가변 임계치를 결정하고,
    각 배터리 셀의 셀 진단 편차에 관한 시계열 데이터를 통계적 가변 임계치를 기준으로 필터링하여 필터 진단 값의 시계열 데이터를 생성하고,
    필터 진단 값이 진단 임계치를 초과하는 시간 또는 진단 임계치를 초과하는 필터 진단 값의 데이터 수로부터 배터리 셀의 전압 이상을 검출하도록 구성된 것을 특징으로 한하는 배터리 진단 장치.
  5. 제1항에 있어서, 상기 제어 회로는,
    각 배터리 셀에 대해서, 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이에 해당하는 장단기 평균 차이를 결정하고,
    각 배터리 셀에 대해서, 장단기 평균 차이의 정규화 값을 정규화된 셀 진단 편차로서 결정하고,전체 배터리 셀의 정규화된 셀 진단 편차에 대한 표준편차에 의존하는 통계적 가변 임계치를 결정하고,
    각 배터리 셀의 정규화된 셀 진단 편차에 관한 시계열 데이터를 통계적 가변 임계치를 기준으로 필터링하여 필터 진단 값의 시계열 데이터를 생성하고,
    필터 진단 값이 진단 임계치를 초과하는 시간 또는 진단 임계치를 초과하는 필터 진단 값의 데이터 수로부터 배터리 셀의 전압 이상을 검출하도록 구성된 것을 특징으로 한하는 배터리 진단 장치.
  6. 제5항에 있어서, 상기 제어 회로는,
    각 배터리 셀에 대해서, 장단기 평균 차이를 전체 배터리 셀의 장단기 평균 차이의 평균값으로 나눗셈 연산하여 장단기 평균 차이를 정규화하는 것을 특징으로 하는 배터리 진단 장치.
  7. 제5항에 있어서, 상기 제어 회로는,
    각 배터리 셀에 대해서, 장단기 평균 차이의 로그 연산을 통해 장단기 평균 차이를 정규화하도록 구성된 것을 특징으로 하는 배터리 진단 장치.
  8. 제1항에 있어서, 상기 제어 회로는,
    단위 시간 마다 측정된, 전체 배터리 셀의 셀 전압 평균값과 각 배터리 셀의 셀 전압 차이에 해당하는 전압을 이용하여 각 배터리 셀의 셀 전압의 시간에 따른 변화를 나타내는 시계열 데이터를 생성하도록 구성되는 것을 특징으로 하는 배터리 진단 장치.
  9. 제1항에 있어서, 상기 제어 회로는,
    각 배터리 셀에 대해서, 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이에 해당하는 장단기 평균 차이를 결정하고,
    각 배터리 셀에 대해서, 장단기 평균 차이의 정규화 값을 정규화된 셀 진단 편차로서 결정하고,각 배터리 셀에 대해서, 정규화된 셀 진단 편차의 시계열 데이터를 생성하고,
    다음 (i) 내지 (iv)를 적어도 1회 이상 재귀적으로 반복하여 각 배터리 셀에 대해 정규화된 셀 진단 편차의 시계열 데이터를 생성하고,
    (i) 각 배터리 셀의 정규화된 셀 진단 편차의 시계열 데이터에 대해 제1 이동 평균 및 제2 이동 평균을 결정[여기서, 제1 이동 평균은 단기 이동 평균이고, 제2 이동 평균은 장기 이동 평균임], (ii) 각 배터리 셀에 대해, 제1 이동 평균과 제2 이동 평균의 차이에 해당하는 장단기 평균 차이를 결정, (iii) 각 배터리 셀에 대해, 장단기 평균 차이의 정규화 값을 정규화된 셀 진단 편차로 결정, (iv) 각 배터리 셀에 대해 정규화된 셀 진단 편차의 시계열 데이터를 생성
    전체 배터리 셀의 정규화된 셀 진단 편차에 대한 표준편차에 의존하는 통계적 가변 임계치를 결정하고,
    각 배터리 셀의 셀 진단 편차에 관한 시계열 데이터를 통계적 가변 임계치를 기준으로 필터링하여 필터 진단 값의 시계열 데이터를 생성하고,
    필터 진단 값이 진단 임계치를 초과하는 시간 또는 진단 임계치를 초과하는 필터 진단 값의 데이터 수로부터 배터리 셀의 전압 이상을 검출하도록 구성된 것을 특징으로 하는 배터리 진단 장치.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 상기 배터리 진단 장치를 포함하는 배터리 팩.
  11. 제10항에 따른 상기 배터리 팩을 포함하는 자동차.
  12. 직렬 연결된 복수의 배터리 셀을 포함하는 셀 그룹을 위한 배터리 진단 방법에 있어서,
    (a) 각 배터리 셀의 셀 전압의 시간에 따른 변화를 나타내는 시계열 데이터를 주기적으로 생성하는 단계;
    (b) 상기 시계열 데이터를 기초로 각 배터리 셀의 제1 평균 셀 전압과 제2 평균 셀 전압을 결정하는 단계[여기서, 상기 제1 평균 셀 전압은 단기 이동 평균이고, 상기 제2 평균 셀 전압은 장기 이동 평균임]; 및
    (c) 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이를 기초로 각 배터리 셀의 전압 이상을 검출하는 단계;를 포함하는 것을 특징으로 하는 배터리 진단 방법.
  13. 제12항에 있어서, 상기 (c) 단계는,
    (c1) 각 배터리 셀에 대해서, 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이에 해당하는 장단기 평균 차이를 결정하는 단계;
    (c2) 각 배터리 셀에 대해서, 전체 배터리 셀의 장단기 평균 차이의 평균값과 배터리 셀의 장단기 평균 차이의 편차에 해당하는 셀 진단 편차를 결정하는 단계; 및
    (c3) 셀 진단 편차가 진단 임계치를 초과하는 조건을 충족하는 배터리 셀을 전압 이상 셀로 검출하는 단계;를 포함하는 것을 특징으로 하는 배터리 진단 방법.
  14. 제13항에 있어서, 상기 (c) 단계는,
    (c1) 각 배터리 셀에 대해서 셀 진단 편차의 시계열 데이터를 생성하는 단계; 및
    (c2) 셀 진단 편차가 진단 임계치를 초과하는 시간 또는 진단 임계치를 초과하는 셀 진단 편차의 데이터 수로부터 배터리 셀의 전압 이상을 검출하는 단계;를 포함하는 것을 특징으로 한하는 배터리 진단 방법.
  15. 제12항에 있어서, 상기 (c) 단계는,
    (c1) 각 배터리 셀에 대해서, 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이에 해당하는 장단기 평균 차이를 결정하는 단계;
    (c2) 각 배터리 셀에 대해서, 전체 배터리 셀의 장단기 평균 차이의 평균값과 배터리 셀의 장단기 평균 차이의 편차를 산출하여 셀 진단 편차를 결정하는 단계;
    (c3) 전체 배터리 셀의 셀 진단 편차에 대한 표준편차에 의존하는 통계적 가변 임계치를 결정하는 단계;
    (c4) 각 배터리 셀의 셀 진단 편차에 관한 시계열 데이터를 통계적 가변 임계치를 기준으로 필터링하여 각 배터리 셀에 대해 필터 진단 값의 시계열 데이터를 생성하는 단계; 및
    (c5) 필터 진단 값이 진단 임계치를 초과하는 시간 또는 진단 임계치를 초과하는 필터 진단 값의 데이터 수로부터 배터리 셀의 전압 이상을 검출하는 단계;를 포함하는 것을 특징으로 하는 배터리 진단 방법.
  16. 제12항에 있어서, 상기 (c) 단계는,
    (c1) 각 배터리 셀에 대해서, 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이에 해당하는 장단기 평균 차이를 결정하는 단계;
    (c2) 각 배터리 셀에 대해서, 장단기 평균 차이의 정규화 값을 정규화된 셀 진단 편차로서 결정하는 단계;
    (c3) 전체 배터리 셀의 정규화된 셀 진단 편차에 대한 표준편차에 의존하는 통계적 가변 임계치를 결정하는 단계;
    (c4) 각 배터리 셀의 정규화된 셀 진단 편차에 관한 시계열 데이터를 통계적 가변 임계치를 기준으로 필터링하여 필터 진단 값의 시계열 데이터를 생성하는 단계; 및
    (c5) 필터 진단 값이 진단 임계치를 초과하는 시간 또는 진단 임계치를 초과하는 필터 진단 값의 데이터 수로부터 배터리 셀의 전압 이상을 검출하는 단계;를 포함하는 것을 특징으로 한하는 배터리 진단 방법.
  17. 제16항에 있어서, 상기 (c2) 단계는,
    각 배터리 셀에 대해서, 장단기 평균 차이를 전체 배터리 셀의 장단기 평균 차이의 평균값으로 나눗셈 연산하여 장단기 평균 차이를 정규화하는 단계임을 특징으로 하는 배터리 진단 방법.
  18. 제16항에 있어서, 상기 (c2) 단계는,
    각 배터리 셀에 대해서, 장단기 평균 차이의 로그 연산을 통해 장단기 평균 차이를 정규화하는 단계임을 특징으로 하는 배터리 진단 방법.
  19. 제12항에 있어서, 상기 (a) 단계는,
    단위 시간 마다 측정된, 전체 배터리 셀의 셀 전압 평균값과 각 배터리 셀의 셀 전압 차이에 해당하는 전압을 이용하여 각 배터리 셀의 셀 전압의 시간에 따른 변화를 나타내는 시계열 데이터를 생성하는 단계임을 특징으로 하는 배터리 진단 방법.
  20. 제1항에 있어서, 상기 (c) 단계는,
    (c1) 각 배터리에 대해서, 상기 제1 평균 셀 전압과 상기 제2 평균 셀 전압의 차이에 해당하는 장단기 평균 차이를 결정하는 단계;
    (c2) 각 배터리에 대해서, 장단기 평균 차이의 정규화 값을 정규화된 셀 진단 편차로서 결정하는 단계;
    (c3) 각 배터리 셀에 대해서, 정규화된 셀 진단 편차의 시계열 데이터를 생성하는 단계;
    (c4) 다음 (i) 내지 (iv)를 적어도 1회 이상 재귀적으로 반복하여 각 배터리 셀에 대해 정규화된 셀 진단 편차의 시계열 데이터를 생성하는 단계;
    (i) 각 배터리 셀의 정규화된 셀 진단 편차의 시계열 데이터에 대해 제1 이동 평균 및 제2 이동 평균을 결정[여기서, 제1 이동 평균은 단기 이동 평균이고, 제2 이동 평균은 장기 이동 평균임], (ii) 각 배터리 셀에 대해, 제1 이동 평균과 제2 이동 평균의 차이에 해당하는 장단기 평균 차이를 결정, (iii) 각 배터리 셀에 대해, 장단기 평균 차이의 정규화 값을 정규화된 셀 진단 편차로 결정, (iv) 각 배터리 셀에 대해 정규화된 셀 진단 편차의 시계열 데이터를 생성
    (c5) 전체 배터리 셀의 정규화된 셀 진단 편차에 대한 표준편차에 의존하는 통계적 가변 임계치를 결정하는 단계;
    (c6) 각 배터리 셀의 정규화된 셀 진단 편차에 관한 시계열 데이터를 통계적 가변 임계치를 기준으로 필터링하여 필터 진단 값의 시계열 데이터를 생성하는 단계; 및
    (c7) 필터 진단 값이 진단 임계치를 초과하는 시간 또는 진단 임계치를 초과하는 필터 진단 값의 데이터 수로부터 배터리 셀의 전압 이상을 검출하는 단계;를 포함하는 것을 특징으로 하는 배터리 진단 방법.
PCT/KR2021/017684 2020-11-27 2021-11-26 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차 Ceased WO2022114871A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202511449953.0A CN121114775A (zh) 2020-11-27 2021-11-26 电池诊断装置、电池诊断方法、电池组及车辆
EP21898696.6A EP4152021A4 (en) 2020-11-27 2021-11-26 BATTERY DIAGNOSTIC DEVICE, BATTERY DIAGNOSTIC METHOD, BATTERY PACK AND VEHICLE
CN202180030996.9A CN115461634B (zh) 2020-11-27 2021-11-26 电池诊断装置、电池诊断方法、电池组及车辆
JP2022559439A JP7483922B2 (ja) 2020-11-27 2021-11-26 バッテリ診断装置、バッテリ診断方法、バッテリパック及び自動車
US17/918,774 US12422497B2 (en) 2020-11-27 2021-11-26 Battery diagnosis apparatus, battery diagnosis method, battery pack, and vehicle
US18/132,524 US11768251B2 (en) 2020-11-27 2023-04-10 Battery diagnosis apparatus, battery diagnosis method, battery pack, and vehicle
JP2024074186A JP2024099795A (ja) 2020-11-27 2024-05-01 バッテリ診断装置、バッテリ診断方法、バッテリパック及び自動車

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0163366 2020-11-27
KR20200163366 2020-11-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/918,774 A-371-Of-International US12422497B2 (en) 2020-11-27 2021-11-26 Battery diagnosis apparatus, battery diagnosis method, battery pack, and vehicle
US18/132,524 Continuation US11768251B2 (en) 2020-11-27 2023-04-10 Battery diagnosis apparatus, battery diagnosis method, battery pack, and vehicle

Publications (1)

Publication Number Publication Date
WO2022114871A1 true WO2022114871A1 (ko) 2022-06-02

Family

ID=81755829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017684 Ceased WO2022114871A1 (ko) 2020-11-27 2021-11-26 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차

Country Status (6)

Country Link
US (2) US12422497B2 (ko)
EP (1) EP4152021A4 (ko)
JP (2) JP7483922B2 (ko)
KR (3) KR102684286B1 (ko)
CN (2) CN121114775A (ko)
WO (1) WO2022114871A1 (ko)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112379281B (zh) * 2020-11-26 2025-05-02 蔚来汽车科技(安徽)有限公司 车辆低压电池的监控方法、装置、系统、服务器以及介质
JP7483922B2 (ja) * 2020-11-27 2024-05-15 エルジー エナジー ソリューション リミテッド バッテリ診断装置、バッテリ診断方法、バッテリパック及び自動車
KR20230010545A (ko) * 2021-07-12 2023-01-19 주식회사 엘지에너지솔루션 배터리 진단 장치, 배터리 팩, 전기 차량 및 배터리 진단 방법
WO2023224414A1 (ko) * 2022-05-18 2023-11-23 주식회사 엘지에너지솔루션 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차
KR20240000841A (ko) * 2022-06-24 2024-01-03 주식회사 엘지에너지솔루션 배터리 하자 진단 방법 및 그 방법을 제공하는 서버
CN119256237A (zh) * 2022-09-16 2025-01-03 株式会社Lg新能源 电池诊断设备、电池诊断方法、电池组及车辆
KR102690387B1 (ko) * 2022-09-22 2024-08-05 주식회사 엘지에너지솔루션 배터리 관리 장치 및 그것의 동작 방법
WO2024063600A1 (ko) * 2022-09-22 2024-03-28 주식회사 엘지에너지솔루션 배터리 관리 장치 및 그것의 동작 방법
KR20240043846A (ko) * 2022-09-27 2024-04-04 주식회사 엘지에너지솔루션 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차
AU2023378169A1 (en) * 2022-11-11 2025-05-22 Lg Energy Solution, Ltd. Battery management apparatus and operating method thereof
KR20240069504A (ko) * 2022-11-11 2024-05-20 주식회사 엘지에너지솔루션 배터리 팩 관리 장치 및 그것의 동작 방법
EP4614167A1 (en) * 2022-12-08 2025-09-10 LG Energy Solution, Ltd. Battery management device, and operation method thereof
KR20240134684A (ko) * 2023-03-02 2024-09-10 주식회사 엘지에너지솔루션 배터리 관리 장치 및 그것의 동작 방법
KR20240162236A (ko) * 2023-05-08 2024-11-15 주식회사 엘지에너지솔루션 배터리 관리 장치 및 그것의 동작 방법
KR20240166274A (ko) * 2023-05-17 2024-11-26 주식회사 엘지에너지솔루션 배터리 진단 장치 및 그것의 동작 방법
KR20240170303A (ko) * 2023-05-26 2024-12-03 주식회사 엘지에너지솔루션 배터리 관리 장치 및 그것의 동작 방법
KR20250010435A (ko) * 2023-07-12 2025-01-21 주식회사 엘지에너지솔루션 배터리 관리 장치 및 그것의 동작 방법
KR20250010974A (ko) * 2023-07-13 2025-01-21 주식회사 엘지에너지솔루션 배터리 관리 장치 및 그것의 동작 방법
KR102844353B1 (ko) * 2023-07-25 2025-08-08 주식회사 엘지에너지솔루션 배터리 진단 장치 및 그의 동작 방법
WO2025023572A1 (ko) * 2023-07-25 2025-01-30 주식회사 엘지에너지솔루션 배터리 진단 장치 및 그의 동작 방법
KR20250015476A (ko) * 2023-07-25 2025-02-03 주식회사 엘지에너지솔루션 배터리 진단 장치, 배터리 진단 방법 및 배터리 진단 시스템
US20250035692A1 (en) * 2023-07-27 2025-01-30 GM Global Technology Operations LLC Internal short circuit prediction generation
CN116819378B (zh) * 2023-08-29 2023-12-26 中国华能集团清洁能源技术研究院有限公司 储能电池异常检测方法及装置
KR20250035093A (ko) * 2023-09-04 2025-03-12 현대자동차주식회사 차량용 배터리 진단 장치, 이의 배터리 진단 방법, 및 이를 포함하는 차량 시스템
KR20250039729A (ko) * 2023-09-14 2025-03-21 주식회사 엘지에너지솔루션 배터리 진단 장치 및 이의 동작 방법
CN117368765B (zh) * 2023-10-07 2024-11-29 福建时代星云科技有限公司 一种电动汽车电池容量保持率异常检测的方法与终端
KR20250092893A (ko) * 2023-12-15 2025-06-24 주식회사 엘지에너지솔루션 배터리 진단 장치 및 그것의 동작 방법
CN120233244A (zh) * 2023-12-29 2025-07-01 台达电子工业股份有限公司 应用于电池机柜的故障检测方法及故障检测系统
EP4585943A1 (en) * 2024-01-11 2025-07-16 Volvo Car Corporation Advanced fault detection in battery cells
EP4585942A1 (en) * 2024-01-11 2025-07-16 Volvo Car Corporation Advanced fault detection in battery cells
CN117726195B (zh) * 2024-02-07 2024-05-07 创意信息技术股份有限公司 城市管理事件数量变化预测方法、装置、设备及存储介质
KR20250125662A (ko) * 2024-02-15 2025-08-22 주식회사 엘지에너지솔루션 배터리 관리 장치 및 그것의 동작 방법
KR20250148284A (ko) * 2024-04-05 2025-10-14 주식회사 엘지에너지솔루션 배터리 진단 장치 및 그의 동작 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027663A (ja) * 1999-07-14 2001-01-30 Daikin Ind Ltd 組み電池における電池不良検出方法およびその装置
KR101619657B1 (ko) * 2014-12-03 2016-05-11 현대오트론 주식회사 배터리 모니터링 장치 및 이를 실행하는 방법
JP2017156268A (ja) * 2016-03-03 2017-09-07 株式会社東芝 電池ユニットおよび電流測定器の故障検出方法
JP2019039825A (ja) * 2017-08-25 2019-03-14 矢崎総業株式会社 バッテリ状態診断装置、及びバッテリ状態診断方法
JP2020119712A (ja) * 2019-01-22 2020-08-06 株式会社東芝 蓄電池評価装置、蓄電池評価方法及び蓄電池評価システム

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206578A (en) * 1991-10-15 1993-04-27 Norvik Technologies Inc. Monitoring system for batteries during charge and discharge
FR2769095B1 (fr) * 1997-10-01 1999-11-26 Siemens Automotive Sa Procede de detection de defaillance d'une batterie de vehicule automobile
US7705602B2 (en) * 1997-11-03 2010-04-27 Midtronics, Inc. Automotive vehicle electrical system diagnostic device
JPH11203382A (ja) * 1997-11-17 1999-07-30 Olympus Optical Co Ltd コード読取装置
JP4339423B2 (ja) * 1998-02-13 2009-10-07 ソニー株式会社 バッテリパック、バッテリシステム及びバッテリシステムの充電制御方法
JP3771526B2 (ja) * 2002-10-21 2006-04-26 株式会社日立製作所 二次電池評価方法および蓄電装置
JP4103781B2 (ja) * 2003-11-19 2008-06-18 トヨタ自動車株式会社 負荷駆動回路における異常監視装置
DE112004002939B4 (de) * 2004-09-22 2020-09-03 Toyota Jidosha Kabushiki Kaisha Gerät und Verfahren zur Überwachung einer Lastansteuerungsschaltung bezüglich einer Anomalie
JP5343299B2 (ja) 2005-09-22 2013-11-13 日産自動車株式会社 電池故障検出装置
JP2007280935A (ja) * 2006-03-15 2007-10-25 Sanyo Electric Co Ltd 一次電池の寿命判定方法
JP4389910B2 (ja) * 2006-08-01 2009-12-24 ソニー株式会社 電池パックおよび劣化度の算出方法
EP2120310B1 (en) * 2007-03-07 2015-01-21 Toyota Jidosha Kabushiki Kaisha Secondary battery control device and vehicle
US20100169030A1 (en) * 2007-05-24 2010-07-01 Alexander George Parlos Machine condition assessment through power distribution networks
JP5250230B2 (ja) * 2007-09-28 2013-07-31 株式会社日立製作所 車両用電源システムおよび電池セル制御用集積回路
KR20100084935A (ko) 2009-01-19 2010-07-28 주식회사 대우일렉트로닉스 배터리 잔량 표시 장치 및 방법
JP4816743B2 (ja) * 2009-02-17 2011-11-16 ソニー株式会社 電池パックおよび検出方法
JP5221468B2 (ja) * 2009-02-27 2013-06-26 株式会社日立製作所 電池監視装置
JP5133926B2 (ja) * 2009-03-26 2013-01-30 株式会社日立製作所 車両用電池システム
KR101256952B1 (ko) 2010-03-05 2013-04-25 주식회사 엘지화학 셀 밸런싱부의 고장 진단 장치 및 방법
JP5786324B2 (ja) * 2010-11-17 2015-09-30 日産自動車株式会社 組電池の制御装置
KR101349022B1 (ko) * 2011-02-23 2014-01-09 현대자동차주식회사 연료전지 스택의 촉매 열화 진단 방법
US10536007B2 (en) * 2011-03-05 2020-01-14 Powin Energy Corporation Battery energy storage system and control system and applications thereof
JP5743634B2 (ja) * 2011-03-25 2015-07-01 Necエナジーデバイス株式会社 劣化測定装置、二次電池パック、劣化測定方法、およびプログラム
KR101856663B1 (ko) * 2011-06-03 2018-05-10 에스케이이노베이션 주식회사 다중팩 병렬 구조의 정보 교환을 위한 2차 전지 관리 시스템 및 방법
JP2014134467A (ja) * 2013-01-10 2014-07-24 Toyota Motor Corp 二次電池の状態診断方法
JP6033155B2 (ja) * 2013-03-29 2016-11-30 日立オートモティブシステムズ株式会社 電池制御装置
JP2014204571A (ja) * 2013-04-05 2014-10-27 株式会社マキタ 電動機器システム及びバッテリパック
EP3040732B1 (en) 2013-08-30 2020-12-09 NGK Insulators, Ltd. Device, method, and program for specifying abnormality-occurrence area of secondary battery system
JP6462214B2 (ja) 2014-01-28 2019-01-30 帝人ファーマ株式会社 電池容量の残量検出方法
WO2015151848A1 (ja) * 2014-04-01 2015-10-08 古河電気工業株式会社 二次電池状態検出装置および二次電池状態検出方法
WO2016042678A1 (ja) * 2014-09-19 2016-03-24 株式会社 東芝 蓄電池装置および蓄電池システム
JP2016126894A (ja) * 2014-12-26 2016-07-11 株式会社東芝 蓄電池、蓄電池評価装置および蓄電池評価方法
FR3039283B1 (fr) * 2015-07-20 2017-07-21 Continental Automotive France Procede de detection d'un defaut de commande de couple d'un moteur electrique d'un systeme de direction assistee d'un vehicule automobile
US10254350B2 (en) * 2015-08-06 2019-04-09 Powin Energy Corporation Warranty tracker for a battery pack
IT201600068348A1 (it) * 2016-07-01 2018-01-01 Octo Telematics Spa Procedimento per la determinazione dello stato di un veicolo mediante il rilevamento della tensione di batteria del veicolo.
US20180225891A1 (en) * 2017-02-08 2018-08-09 Automatic Labs, Inc. Automated vehicle discovery after connecting to an automotive diagnostic port
KR20180101823A (ko) 2017-03-06 2018-09-14 주식회사 엘지화학 배터리 셀 전압 데이터 처리 장치 및 방법
JP6831281B2 (ja) * 2017-03-27 2021-02-17 株式会社デンソーテン 電池監視システムおよび電池監視装置
WO2018225416A1 (ja) * 2017-06-08 2018-12-13 パナソニックIpマネジメント株式会社 蓄電システム、管理装置
US11221373B2 (en) 2017-06-23 2022-01-11 Pacesetter, Inc. Method and device for detecting early battery depletion condition
JP7001700B2 (ja) * 2017-10-04 2022-01-20 株式会社エンビジョンAescジャパン バッテリパックの検査方法および検査装置
US10804712B2 (en) * 2017-10-26 2020-10-13 Sunfield Semiconductor, Inc. Wireless management system for energy storage systems
KR102150068B1 (ko) * 2017-12-21 2020-08-31 주식회사 엘지화학 통신 진단 장치 및 방법
WO2019138286A1 (ja) * 2018-01-11 2019-07-18 株式会社半導体エネルギー研究所 二次電池の異常検知装置、異常検知方法、及びプログラム
EP3770618B1 (en) * 2018-03-20 2023-07-26 GS Yuasa International Ltd. Energy storage device degradation determination apparatus and method
JP6963358B2 (ja) * 2018-03-26 2021-11-10 株式会社エンビジョンAescジャパン 電源装置
GB2574593B (en) * 2018-06-07 2021-01-13 Oxis Energy Ltd Battery Management
US11035904B2 (en) 2018-07-23 2021-06-15 Samsung Sdi Co., Ltd. Battery control apparatus and method for detecting internal short of battery
CN112470326B (zh) * 2018-07-25 2024-04-26 松下知识产权经营株式会社 管理装置以及电源系统
WO2020021888A1 (ja) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
KR102627843B1 (ko) * 2018-09-10 2024-01-19 주식회사 엘지에너지솔루션 배터리 관리 장치
JP7022050B2 (ja) 2018-12-07 2022-02-17 株式会社デンソー 絶縁抵抗検出装置
JP7231657B2 (ja) 2019-01-31 2023-03-01 ビークルエナジージャパン株式会社 電池制御装置
US10921378B2 (en) * 2019-02-25 2021-02-16 Ford Global Technologies, Llc System for measuring voltage differences between battery cells and for obtaining battery cell voltages using the voltage differences
KR102586460B1 (ko) * 2019-03-07 2023-10-06 현대자동차주식회사 배터리 사용 습관 및 배터리 방전 경향 예측 시스템
KR102819970B1 (ko) * 2019-05-03 2025-06-13 주식회사 엘지에너지솔루션 배터리셀 진단 장치 및 방법
KR102711207B1 (ko) * 2019-06-14 2024-09-27 현대자동차주식회사 차량용 배터리 진단 장치 및 그의 배터리 진단 방법과 그를 포함하는 차량
KR102715869B1 (ko) * 2019-09-11 2024-10-14 주식회사 엘지에너지솔루션 배터리 진단 장치 및 방법
KR102267785B1 (ko) * 2019-10-10 2021-06-21 삼성에스디아이 주식회사 배터리 시스템 및 배터리 시스템의 제어 방법
CN113795964A (zh) * 2019-10-28 2021-12-14 株式会社Lg新能源 电池诊断设备及方法
KR102781341B1 (ko) * 2019-11-05 2025-03-12 주식회사 엘지에너지솔루션 배터리 진단을 위한 장치, 그것을 포함하는 에너지 저장 시스템 및 그 방법
DE102019135313A1 (de) * 2019-12-19 2021-06-24 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betrieb einer Batterie
KR102896289B1 (ko) * 2020-01-20 2025-12-08 에스케이온 주식회사 셀 스크리닝 장치 및 셀 스크리닝 방법
JP7207343B2 (ja) * 2020-01-29 2023-01-18 トヨタ自動車株式会社 電池システムおよびリチウムイオン電池の劣化評価方法
KR102861413B1 (ko) * 2020-02-13 2025-09-17 주식회사 엘지에너지솔루션 배터리 제어 시스템, 배터리 팩, 전기 차량 및 상기 배터리 제어 시스템을 위한 제어 방법
US20210265674A1 (en) * 2020-02-25 2021-08-26 Samsung Sdi Co., Ltd. Method and detector for detecting inhomogeneous cell performance of a battery system
US12095056B2 (en) * 2020-09-07 2024-09-17 Hyundai Motor Company Battery management apparatus and energy storage system having the same
US11621573B2 (en) * 2020-10-30 2023-04-04 GM Global Technology Operations LLC Drooping cell detection and state of cell health monitoring
CN112379281B (zh) * 2020-11-26 2025-05-02 蔚来汽车科技(安徽)有限公司 车辆低压电池的监控方法、装置、系统、服务器以及介质
JP7483922B2 (ja) * 2020-11-27 2024-05-15 エルジー エナジー ソリューション リミテッド バッテリ診断装置、バッテリ診断方法、バッテリパック及び自動車
KR20220093843A (ko) * 2020-12-28 2022-07-05 주식회사 엘지에너지솔루션 배터리 진단 장치 및 방법
KR20230010545A (ko) 2021-07-12 2023-01-19 주식회사 엘지에너지솔루션 배터리 진단 장치, 배터리 팩, 전기 차량 및 배터리 진단 방법
KR102791127B1 (ko) * 2021-07-26 2025-04-02 주식회사 엘지에너지솔루션 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
KR20230052763A (ko) * 2021-10-13 2023-04-20 주식회사 엘지에너지솔루션 배터리 진단 장치, 배터리 팩, 전기 차량, 및 배터리 진단 방법
US12372587B2 (en) * 2022-05-26 2025-07-29 Lg Energy Solution, Ltd. Battery cell diagnosing apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027663A (ja) * 1999-07-14 2001-01-30 Daikin Ind Ltd 組み電池における電池不良検出方法およびその装置
KR101619657B1 (ko) * 2014-12-03 2016-05-11 현대오트론 주식회사 배터리 모니터링 장치 및 이를 실행하는 방법
JP2017156268A (ja) * 2016-03-03 2017-09-07 株式会社東芝 電池ユニットおよび電流測定器の故障検出方法
JP2019039825A (ja) * 2017-08-25 2019-03-14 矢崎総業株式会社 バッテリ状態診断装置、及びバッテリ状態診断方法
JP2020119712A (ja) * 2019-01-22 2020-08-06 株式会社東芝 蓄電池評価装置、蓄電池評価方法及び蓄電池評価システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4152021A4

Also Published As

Publication number Publication date
CN115461634B (zh) 2025-10-28
KR102684286B1 (ko) 2024-07-11
CN115461634A (zh) 2022-12-09
EP4152021A1 (en) 2023-03-22
US12422497B2 (en) 2025-09-23
KR20240109971A (ko) 2024-07-12
KR20250112219A (ko) 2025-07-23
EP4152021A4 (en) 2024-01-03
CN121114775A (zh) 2025-12-12
KR102837694B1 (ko) 2025-07-23
JP7483922B2 (ja) 2024-05-15
KR20220074797A (ko) 2022-06-03
US11768251B2 (en) 2023-09-26
JP2023519949A (ja) 2023-05-15
JP2024099795A (ja) 2024-07-25
US20230152388A1 (en) 2023-05-18
US20230243895A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
WO2022114871A1 (ko) 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차
WO2023224414A1 (ko) 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차
WO2021246655A1 (ko) 배터리 상태 진단 장치 및 방법
WO2023068899A1 (ko) 배터리 팩 내의 이상 징후 셀 검출 장치 및 방법
WO2021049882A1 (ko) 배터리 관리 장치 및 방법
WO2021118118A1 (ko) 배터리 퇴화도 진단 장치 및 방법
WO2020189914A1 (ko) 배터리 상태 추정 장치
WO2021230642A1 (ko) 배터리를 진단하기 위한 장치 및 그 방법
WO2021085836A1 (ko) 배터리 진단 장치 및 방법
WO2021080161A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2019199064A1 (ko) 배터리 진단 장치 및 방법
WO2020214000A1 (ko) 비파괴 저항 분석을 이용한 배터리 관리 장치 및 방법
WO2020189919A1 (ko) 배터리 상태 추정 장치
WO2018038383A1 (ko) 배터리 셀의 성능 테스트 장치 및 방법
WO2022145822A1 (ko) 배터리 관리 장치 및 방법
WO2021060900A1 (ko) 배터리 관리 장치 및 방법
WO2022215962A1 (ko) 배터리 진단 장치 및 방법
WO2022149917A1 (ko) 배터리 관리 장치 및 방법
WO2022080837A1 (ko) 배터리 진단 장치 및 방법
WO2018194225A1 (ko) 배터리 모니터링 및 보호 시스템
WO2021194133A1 (ko) 배터리 파라미터 설정 장치 및 방법
WO2024063600A1 (ko) 배터리 관리 장치 및 그것의 동작 방법
WO2022071776A1 (ko) 배터리 진단 장치, 방법 및 시스템
WO2024049211A1 (ko) 배터리 진단 장치, 배터리 검사 시스템 및 배터리 진단 방법
WO2021230639A1 (ko) 충전 심도 설정 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559439

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 21898696.6

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202217074277

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021898696

Country of ref document: EP

Effective date: 20221215

NENP Non-entry into the national phase

Ref country code: DE

WWG Wipo information: grant in national office

Ref document number: 17918774

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 202180030996.9

Country of ref document: CN