[go: up one dir, main page]

WO2022113222A1 - Transportation route determination method, transportation route determination device, and computer program - Google Patents

Transportation route determination method, transportation route determination device, and computer program Download PDF

Info

Publication number
WO2022113222A1
WO2022113222A1 PCT/JP2020/043930 JP2020043930W WO2022113222A1 WO 2022113222 A1 WO2022113222 A1 WO 2022113222A1 JP 2020043930 W JP2020043930 W JP 2020043930W WO 2022113222 A1 WO2022113222 A1 WO 2022113222A1
Authority
WO
WIPO (PCT)
Prior art keywords
transportation
network
route
node
pallet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2020/043930
Other languages
French (fr)
Japanese (ja)
Inventor
道 酒井
富生 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Business Club Co Ltd
Airbusinessclub
University of Shiga Prefecture
Original Assignee
Air Business Club Co Ltd
Airbusinessclub
University of Shiga Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Business Club Co Ltd, Airbusinessclub, University of Shiga Prefecture filed Critical Air Business Club Co Ltd
Priority to JP2021540039A priority Critical patent/JP7786676B2/en
Priority to PCT/JP2020/043930 priority patent/WO2022113222A1/en
Publication of WO2022113222A1 publication Critical patent/WO2022113222A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance

Definitions

  • the present invention relates to a transportation route determining method, a transportation route determining device, which determines a route for transporting a distribution member on which an article such as a pallet, a small container, or a cardboard box is loaded, in order to improve the distribution efficiency of the article. And computer programs.
  • Patent Document 1 discloses a method for solving a delivery planning problem assuming that a loaded load is transported in one travel of one transport vehicle from a delivery base to a delivery destination. Patent Document 1 uses a plurality of delivery vehicles to deliver a cargo from a distribution base to a plurality of delivery destinations, and a delivery plan is made by a different algorithm so that the mileage to the route returning to the original base is the shortest. By repeating the creation, I try to select the plan that has the shortest total mileage.
  • Patent Document 2 discloses a method using an insertion method in which a step of inserting a delivery destination and selecting the route having the shortest mileage is repeated in a tentatively determined delivery route.
  • Patent Document 2 provides a provisional solution in which a customer is inserted in the middle of a closed route from a distribution base to a plurality of delivery destinations under the constraint conditions that the upper limit of the traveling time and the maximum load capacity of the vehicle are not exceeded. Generate and reduce mileage or travel time.
  • each transport vehicle delivers the goods collected at the base center to the final delivery destination. It is supposed to be. It does not assume that the transport vehicle will transfer the cargo to another vehicle on the way.
  • Designing based on simulations is being promoted in various fields such as production technology, goods or buildings, but it is difficult to design delivery routes in logistics because there are many uncertain conditions.
  • the starting and ending points of goods are not fixed, the starting and ending points of goods are geographically mixed, and the requirements for pickup and delivery times are not fixed, and the transportation equipment The number is also not constant.
  • indefinite conditions overlap. If these indefinite conditions are divided into a plurality of patterns and each is calculated, the amount of calculation becomes enormous. Since the arrival and departure of goods and road conditions change from moment to moment, it becomes unrealistic to automatically derive a delivery route by simulation if the plan is reviewed and recalculated one by one.
  • the present invention has been made in view of such circumstances, and provides a transportation route determination method, a transportation route determination device, and a computer program that enable mechanical derivation of a transportation route to be more practical.
  • the purpose is to do.
  • a predetermined unit pattern cycles between a point where a plurality of articles are collected and delivered, a transportation base via which a transportation device for transporting the articles passes, and each point in a transportation network.
  • a transportation network is defined in which nodes are assigned to nodes arranged in a geometrically repeated geometric pattern, and a route connecting adjacent points or transportation bases is assigned to an edge between the nodes, and transportation connecting the transportation bases of the transportation equipment is defined.
  • the route is determined as a data string of identification data of the node in the transportation network.
  • the transport route determining device has a predetermined unit pattern cycled between a point at which a plurality of articles are collected and delivered, a transportation base via which a transportation device for transporting the articles passes, and each point in a transportation network.
  • a transportation network is defined in which nodes are assigned to nodes arranged in a geometrically repeated geometric pattern, and a route connecting adjacent points or transportation bases is assigned to an edge between the nodes, and transportation connecting the transportation bases of the transportation equipment is defined.
  • a processing unit for determining a route as a data string of identification data of the node in the transportation network is provided.
  • the computer program of the embodiment of the present disclosure has a predetermined unit pattern of a point at which a plurality of articles are collected and delivered to a computer, a transportation base via which a transportation device for transporting the articles passes, and each point in a transportation network.
  • a transportation network is defined in which nodes are assigned to nodes arranged in a periodically repeated geometric pattern, and a route connecting adjacent points or transportation bases is assigned to the edges between the nodes, and the transportation bases of the transportation equipment are connected.
  • a process of determining a transportation route as a data string of identification data of the node in the transportation network is executed.
  • the points and the roads between the points constituting the transportation route are approximated to the transportation network represented by the geometric pattern, and simple data. It is converted to and used.
  • the distance By associating the distance as separate data without reflecting the length that reflects the actual distance in the route connecting the points, it is easy to process agent-based modeling that probabilistically selects the route to the adjacent node. Become.
  • the transportation route in a certain area is converted into a geometric pattern network including a grid and used, network analysis or image analysis becomes possible. It becomes easier to apply existing analysis methods of network analysis or image analysis, learning methods can also be applied, and it becomes possible to narrow down for deriving the optimum transportation route.
  • FIG. 1 A schematic diagram of learning of a transportation network expressed in pixels is shown. It is a figure which shows other representations of a transportation network. It is a figure which shows the transportation network including the bypass edge. It is a figure which shows an example of the pixel representation of the transport network including a bypass edge.
  • FIG. 1 is a schematic diagram of the distribution system 100 of the present disclosure.
  • the distribution system 100 includes a transportation device 1 for transporting goods, for example, agricultural products, a base center (base) 2 which is a transfer center where the transportation device 1 stops, a collection / delivery center 3 which is a distribution center for collecting and delivering goods, and a control center 400. And include.
  • the distribution system 100 is operated based on the route information determined by the transportation route determination device 4.
  • the transportation route determining device 4 can be connected to the transportation device 1, the device in the base center 2, and the device in the collection / delivery center 3 by communication. Further, the transportation route determining device 4 can be connected to a terminal device 5 used by operators at various locations such as a producer or a manufacturer, a base center 2, a collection and delivery center 3, and the like.
  • the transport device 1 is a vehicle such as a transport truck, a train, a transport aircraft, or a ship.
  • the transport device 1 may be a transport robot that travels by automatic operation.
  • the base center 2 is a transit center provided on a so-called trunk line in logistics, and is installed at a place that serves as a base for transportation equipment 1, such as a port, an airport, a freight station, and an interchange (IC) in a road network.
  • the base center 2 is provided, for example, at predetermined distances.
  • the base center 2 is provided with a group of devices for receiving the warehousing of the transport device 1 at the base center 2 and carrying in / out the pallet P from the transport device 1, and a base controller 20 for controlling the device group.
  • the base controller 20 is capable of communication connection with the transportation route determination device 4, and controls the device group based on the instruction from the transportation route determination device 4.
  • the objects to be transported are loaded on the distribution members and transported.
  • the physical distribution members are the pallet P and the small container C.
  • the distribution member may be a flexible container, a so-called flexible container, an iron container, or a cardboard box.
  • bags, plates, and box materials used for placing and accommodating goods in physical distribution are included in physical distribution members.
  • the pallet center 22 should be installed side by side in the base center 2. Pallets P are collected and delivered at the pallet center 22.
  • the pallet center 22 is equipped with a pallet controller 23 that controls a device for carrying in and out the pallet P.
  • the pallet controller 23 is capable of communication connection with the transport route determination device 4, and controls the device group based on the instruction from the transport route determination device 4.
  • the collection and delivery center 3 collects the goods to be transported from the producer or the manufacturer's base and transports them to the base center 2, or conversely, receives and stores the load from the base center 2 and stores the end user. It is a base for transporting goods to.
  • the collection and delivery center 3 corresponds to a wholesale or distribution center.
  • a plurality of collection and delivery centers 3 may be provided for the base center 2.
  • the collection and delivery center 3 may be managed by a consignee who is a retailer.
  • the collection / delivery center 3 collects the goods to be transported to the base center 2, the goods may be loaded on the pallet P at the collection / delivery center 3.
  • the collection / delivery center 3 is equipped with a collection / delivery site device 30 that receives instructions from the transportation route determination device 4.
  • the collection / delivery site device 30 accepts the input of the shipped goods and the pallet P from the operator at the collection / delivery center 3, and accepts the input of the arrived goods.
  • the collection / delivery site device 30 corresponds to the correspondence between the pallet identification information of the pallet P on which the goods to be shipped are loaded and the identification information of the goods, and the identification information of the arriving goods and the pallet identification of the pallets P on which the goods are loaded.
  • the correspondence with the information is stored and transmitted to the transportation route determination device 4.
  • the area is not limited to administrative divisions, but is defined to be divided into arbitrary units, and is stored in latitude / longitude information, identification data of the base center 2 and the collection / delivery center 3, and identification data of the area to which the area belongs. Regions may overlap.
  • the collection and delivery center 3 may belong to different areas.
  • the base center 2 and the collection / delivery center 3 are both collection points and distribution points for transportation within the region (corresponding to "collection / delivery points").
  • Each of the plurality of collection and delivery centers 3 in the area is both a collection point and a distribution point. Any collection and delivery center 3 may function only as a collection point, and similarly any other collection and delivery center 3 may function only as a collection point.
  • the transport route determination device 4 sequentially acquires the position of the transport device 1, and sequentially collects the information of the pallet P housed in the transport device 1 and the information of the pallet P waiting to be shipped at the collection / delivery center 3.
  • the transport route determination device 4 sequentially acquires the position from the transport device 1, the position information including the existence position of each pallet P, the destination information of the collection / delivery center 3 to which each pallet P should be delivered, and the time to be delivered. From the information, the movement route of the pallet P and the transportation route of the transportation device 1 are sequentially determined.
  • the transportation route determination device 4 instructs the transportation equipment 1 to stop at the base center 2 based on the determined transportation routes of the transportation equipment 1 and the movement route of the pallet P.
  • the transport route determining device 4 instructs the base center 2 the pallet P to be carried out from the arrived transport device 1 and the pallet P to be carried into the transport device 1.
  • the transportation route determining device 4 instructs each center to send the pallet P to be shipped from the collection / delivery center 3 and the pallet center 22, and sends the pallet P to be carried out to the transportation equipment 1. Instruct.
  • the pallet P is a physical distribution member having a size of 90 cm square, similar to the pallet widely used in the field of physical distribution, and is more preferably made of resin.
  • the pallet P may be made of various materials such as wood, stainless steel, and corrugated cardboard, and may be provided with a lift hole suitable for transportation by a forklift.
  • As the pallet P it is preferable to use a pallet made of a material conforming to the import / export regulations.
  • a tag storing pallet identification information is attached to the pallet P.
  • the tag is preferably a wireless tag using RFID or the like.
  • the palette identification information of the palette P assigned in advance is readable and stored by the wireless reader.
  • the goods information includes the type and item of the goods, the weight, the date of collection, the delivery number of the goods, the base identification information of the base center 2 that has recently passed through, the base center 2 of the destination, the consignee information, the sender information, etc. Is. It may be a predetermined medium on which a one-dimensional code or a two-dimensional code corresponding to the palette identification information of the palette P given in advance instead of the tag is printed. A one-dimensional code or a two-dimensional code may be printed on the tag.
  • the information of the article is stored in association with the pallet identification information on the transportation route determining device 4 side.
  • the transport device 1 is a transport truck in the present embodiment.
  • 2A and 2B are schematic views showing an example of the transportation device 1.
  • FIG. 2A shows an example of a loading platform having a side-opening door
  • FIG. 2B shows an example of a loading platform having a rear door.
  • the transport device 1 is provided with a pallet frame 11 inside the loading platform in order to transport articles in units of pallets P.
  • the pallet frame 11 is a table that divides the loading platform from the floor surface to the ceiling in half in two stages, upper and lower.
  • the loading platform has an internal dimension that allows two pallets P to be juxtaposed in the vehicle width direction.
  • the accommodation position of the pallet P can be specified by the top and bottom and the left and right divided by the pallet frame 11.
  • the pallet frame 11 may have a configuration in which the entire pallet frame 11 can be pulled out from the rear door of the loading platform.
  • the pallet frame 11 is also managed in a nested state in which a plurality of pallets P are loaded on the pallets as distribution members and a plurality of small containers C are loaded on each of the pallets P. It is also possible to do.
  • the pallet frame 11 may be in the form of a plate laid on the floor of the loading platform, instead of the platform divided into two stages as shown in FIGS. 2A and 2B.
  • the transport device 1 When the transport device 1 is a vehicle such as a train, a transport aircraft, or a ship, a large container having the same structure as the loading platform portion of FIG. 2A or FIG. 2B may be used, and the large container may be configured to include the pallet frame 11.
  • the transportation device 1 includes a reader that reads pallet identification information from the on-board unit 10 and the tag of the pallet P.
  • the on-board unit 10 has a GPS receiver, sequentially acquires the position information of the transportation device 1, and transmits the position information to the transportation route determination device 4.
  • the on-board unit 10 reads the pallet identification information from the tag of the pallet P with a reader.
  • the pallet identification information of the pallet P being accommodated and the accommodation unit identification information for identifying the accommodation position in the pallet frame 11 are transmitted to the transport route determination device 4 in association with the identification information of the transport device 1 stored in advance. ..
  • the on-board unit 10 reads the pallet identification information from the tag of the pallet P carried out from the loading platform of the transport device 1 with a reader, and the pallet identification information of the carried out pallet P is stored in advance as the identification information of the transport device 1. It is associated and transmitted to the transportation route determination device 4.
  • the on-board unit 10 may notify the transport route determination device 4 that the pallet P to be carried out is to be carried out by associating it with the accommodating portion identification information of the accommodating portion in which the pallet P is accommodated.
  • the transport route determination device 4 associates the position information of the transport device 1 transmitted from each transport device 1 with the device identification information of the transport device 1 and stores it as the transport device information 413 (see FIG. 3).
  • the transport route determining device 4 is associated with the pallet identification information of the pallet P, and the device identification information and the accommodating portion identification information of the transport device 1 on which the pallet P is loaded, or the pallet P is placed.
  • the identification information of the base center 2 or the collection / delivery center 3 is stored as pallet information 412 (see FIG. 3).
  • FIG. 3 is a block diagram showing the configuration of the transportation route determination device 4.
  • the transportation route determination device 4 is a server computer, and includes a processing unit 40, a storage unit 41, and a communication unit 42.
  • the transport route determination device 4 may be configured not only by using one server computer (hardware) but also by distributing processing among a plurality of server computers, or a plurality of server computers virtually generated by a large computer. It may be one of (instances).
  • the transportation route determination device 4 may execute the calculation by the quantum computer except for the processing of updating the information of the distribution DB 410 of the storage unit 41.
  • the processing unit 40 is a processor using a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit).
  • the processing unit 40 executes processing using the built-in memory such as ROM (Read Only Memory) and RAM (Random Access Memory).
  • the processing unit 40 can sequentially acquire time information by a built-in timer.
  • the storage unit 41 includes a hard disk or a non-volatile storage medium such as an SSD (Solid State Drive).
  • the storage unit 41 stores the control program 40P.
  • the processing unit 40 executes a process of deriving an optimum route by an operation described later based on the control program 40P stored in the storage unit 41.
  • a Web server program is stored in the storage unit 41, and the processing unit 40 exerts a Web server function, and the terminal device 5 may receive a request for sharing the loading platform of the transportation device 1 or the like from the terminal device 5 by this Web server function. ..
  • a distribution DB (DataBase) 410 is constructed in the storage unit 41 or an external storage device.
  • the processing unit 40 can read / write to / from the distribution DB410 by the database operation module.
  • user information 411, pallet information 412, and transportation equipment information 413 are stored in the distribution DB410, as will be described later.
  • the physical distribution DB 410 stores the transportation route information 414 derived in advance by the calculation described later.
  • the communication unit 42 realizes communication on the public communication network N1 or the carrier network N2.
  • the processing unit 40 can transmit and receive information to and from the terminal device 5 via the public communication network N1 or the carrier network N2 by the communication unit 42. Further, the processing unit 40 can transmit / receive information to / from the in-vehicle device mounted on the transportation device 1 via the carrier network N2 by the communication unit 42.
  • the processing unit 40 can communicate with the base controller 20 of the base center 2 and the collection / delivery area device 30 of the collection / delivery center 3 via the public communication network N1, the carrier network N2, or the leased line by the communication unit 42.
  • FIG. 4 is a block diagram showing the configuration of the terminal device 5 used by the operator.
  • the terminal device 5 uses a desktop type, laptop type, or tablet type personal computer.
  • the terminal device 5 may be a smartphone.
  • the terminal device 5 includes a processing unit 50, a storage unit 51, a communication unit 52, a display unit 53, and an operation unit 54.
  • the processing unit 50 is a processor using a CPU or GPU.
  • the processing unit 50 executes processing based on the program stored in the storage unit 51 using the built-in memory such as ROM and RAM.
  • the storage unit 51 includes a non-volatile storage medium such as a hard disk or SSD.
  • the storage unit 51 stores the terminal program 50P.
  • the processing unit 50 receives an operator's operation based on the terminal program 50P stored in the storage unit 51, and executes a process of displaying data.
  • the communication unit 52 realizes communication in the public communication network N1 or the carrier network N2.
  • the processing unit 50 can transmit and receive information to and from the transportation route determination device 4 via the public communication network N1 or the carrier network N2 by the communication unit 52.
  • the display unit 53 is a display such as a liquid crystal display or an organic EL (ElectroLuminescence) display.
  • the display unit 53 displays a screen based on the data stored in the storage unit 51.
  • the operation unit 54 is a user interface such as a keyboard and a pointing device capable of input / output to / from the processing unit 50.
  • the operation unit 54 may be a voice input unit.
  • the operation unit 54 may be a touch panel of the display unit 53.
  • the transportation route determination device 4 is based on the position of each transportation device 1 and the position of the pallet P, and the delivery conditions such as the shipping schedule and the required arrival time of the goods.
  • the transportation route of 1 and the movement route of the pallet P are determined.
  • the transportation route of the transportation equipment 1 connects the waypoints that sequentially approach for collection or unloading from the base center 2 or collection / delivery center 3 at the departure point (shipping point) to the base center 2 or collection / delivery center 3 at the end point. Contains data.
  • the movement route of the pallet P is the history of the accommodating portion of one or a plurality of transportation devices 1 accommodated during the period from the departure point to the end point of the pallet P.
  • the pallet P may be transported to the final destination by one transport device 1, but from one transport device 1 to another at a transit point which is a collection and delivery center 3 in the base center 2 or the delivery destination area. It is possible to transfer to the transportation equipment 1.
  • the transport route determination device 4 is given actual delivery conditions (position of transport device 1, position of pallet P, shipping schedule and arrival time) when determining the transport route of the transport device 1 and the movement route of the pallet P. In addition to starting the calculation from, the optimum route within the target range is derived in advance. When the actual delivery conditions are given, the transportation route determination device 4 extracts a matching or similar route from the optimum routes derived for various conditions derived in advance, and uses the extracted route as the extracted route. Based on this, a simulation is executed to derive the actual transportation route and movement route. The optimum route may be completed by selecting a partial route for each area.
  • the derivation of the route in advance is first executed from the process of creating a transportation network from the geographical information of the target range. Second, the process of route calculation is performed by simulation of agent-based modeling using the transformed transport network.
  • FIG. 5 is an explanatory diagram of conversion from map data to a transportation network.
  • the image of A in FIG. 5 shows an example of the original map data
  • the image of B shows the transportation network created from the map data
  • the image of C shows the divided transportation network.
  • the transportation network is a grid of intersections, branch points, or waypoints (base center 2, collection and delivery center 3, and pallet P supply area) from a road network that is never in a grid pattern. It is created by assigning it to the vertices (nodes) arranged in a grid pattern.
  • the geographical length between each point does not adapt to the length in the transportation network, and it is better to have it as separate data simply as the distance between the nodes.
  • the transportation network of B is divided into sizes that can be calculated (FIG. 5 (C)).
  • the size that can be calculated may be appropriately set based on the processing capacity of the transport route determining device 4 based on the trial of the calculation time.
  • the edge is eliminated.
  • the transportation route can be represented as a column of node identification data (rows and columns).
  • the transportation route of the transportation device 1 starting from the central point in FIG. 5C can be expressed as a point (i, j) ⁇ a point (i, j + 1) ⁇ a point (i-1, j + 1) ⁇ ...
  • the transportation network shown in FIG. 5 may be automatically created by the processing unit 40 of the transportation route determination device 4 based on the map data acquired from the communication unit 42.
  • the temporarily created transportation network is displayed on the display unit 53 of the terminal device 5 by the processing unit 40 of the transportation route determination device 4 or another arithmetic unit, and the operator of the terminal device 5 deletes the edge or removes the edge. It may be created by accepting additional modifications.
  • the transportation route determination device 4 divides the grid-like transportation network as shown in FIG. 5 as necessary to the extent that calculation can be performed, gives delivery conditions to each transportation network, and executes the second simulation. ..
  • the unit of classification may be set according to the processing capacity of the transport route determining device 4. It is preferable that the divided range partially overlaps, for example, centering on the base center 2. For example, it has been found that when the transportation network grows from a size of 3 ⁇ 3 to a size of 5 ⁇ 5, the calculation time described later increases by 20 times.
  • 6 and 7 are flowcharts showing an example of the processing procedure of the prior route calculation.
  • the transportation route determination device 4 (or another arithmetic unit may be used) repeats the following processing for each transportation network by changing the delivery conditions, and derives the optimum route for each delivery condition.
  • the processing unit 40 sets delivery conditions for the target transportation network, including the initial position and number of the transportation equipment 1, the initial position and number of the pallets P, and the transportation destination in the network of each pallet P (S101).
  • the delivery condition is, for example, that the transportation device 1 is located at the node corresponding to the base center 2 in the transportation network, 100 pallets P exist at the specific node, and the pallets P are transferred to the other three nodes. Transporting 40, 30, and 20 pieces.
  • the number of transport devices 1 may be one or more, or may be a delivery condition that they are located at different nodes.
  • the type of pallet P may be one or more.
  • the processing unit 40 sets the number of executions to the initial value (S102).
  • the processing unit 40 executes the following processes a plurality of times, and among the multiple executions, the pallet P existing at the specific node as the departure point is distributed to the distribution points in the transportation network.
  • the route with the least number of executions (the number of steps from the state where the transport device 1 exists in one node to the state of moving to the next node) required to complete, or the route with the shortest transport travel distance of the transport device 1. Derived.
  • the processing unit 40 sets the number of steps to the initial value (S103). As shown below, the processing unit 40 distributes the processing based on the agent-based modeling using the transportation device 1 as an agent to each transportation destination in the network by the pallet P existing at the specific node as the departure point. Run until is complete.
  • the processing unit 40 acquires the number of pallets P (loaded pallets P) associated with the agent (transport equipment 1) (S104).
  • the processing unit 40 acquires the number of palettes P existing in the node where the agent is located (S105).
  • the processing unit 40 determines and stores the number of pallets P to be stacked at the node where the agent is located (S106).
  • the processing unit 40 determines to load the pallet P existing in the departure point so as to fill the vacant storage section of the transport device 1 which is the agent. do. If the node in which the agent exists is a stopover or a destination, the processing unit 40 compares the number of pallets P accommodated in the accommodation unit with the number of pallets P required for the node, and is required for the node. The number of pallets P is determined so as to reduce the remaining number of pallets P.
  • the processing unit 40 probabilistically selects an edge to the adjacent node to proceed (S107).
  • edges that do not exist in the transportation network are not selected.
  • the processing unit 40 basically selects stochastically by a random number (solution A). As will be described later, it may be selected with a probability based on the weight for the node to be advanced in the next step, or when the number of pallets (loading number) associated with the agent becomes zero, the starting point (or the number of loads) becomes zero. You may select it with the condition that you return to the supply area) (Solution B).
  • the processing unit 40 may learn a weighting coefficient for selecting a node by reinforcement learning that gives a reward such as loading efficiency each time one step is advanced (solution C). In this case, the processing unit 40 is more likely to reach the optimum solution sooner.
  • the processing unit 40 may greatly change the parameter (for example, probability) by one, like any mutation (solution D). This reduces the possibility of falling into a local solution.
  • the processing unit 40 calculates the number of pallets P existing in the node when the pallet P being loaded is dropped onto the node moved via the selected edge (S108). In S108, the processing unit 40 calculates the total of the number of palettes P existing in the node before the movement of the agent and the number associated with the agent.
  • the processing unit 40 adds and stores the number of steps (S109), stores the identification data of the node to which the agent is moved, and stores the number of palettes P in each node (S110).
  • the processing unit 40 may treat and store the state at each node after the movement of the agent as a multidimensional matrix (vector).
  • the processing unit 40 determines whether or not delivery matching the delivery conditions has been completed in the transportation network based on the number of pallets P in each node (S111).
  • the processing unit 40 may add only one of the number of steps and the cumulative movement distance in the execution times.
  • the processing unit 40 stores the history (transport route) of the identification data of the node via which the agent has passed and the number of steps (S113).
  • the processing unit 40 determines whether or not the processing of S104-S113 has been executed a predetermined number of times or more (S114). If it is determined that the number of times is less than the predetermined number (S114: NO), the processing unit 40 adds the number of executions (S115) and returns the processing to S103.
  • the processing unit 40 may not determine whether or not the execution is performed more than a predetermined number of times, but whether or not it is determined that the optimum solution (minimum number of steps or the shortest cumulative distance) has been obtained by the execution up to that point. It may be executed further to determine whether or not the optimum solution can be derived.
  • the processing unit 40 extracts the transportation route having the minimum number of steps or the shortest cumulative travel distance in the predetermined number of times (S116).
  • the processing unit 40 stores the extracted transportation route as the optimum solution under the delivery conditions (S117), and ends the processing.
  • the optimum route for each transportation network derived by the processing procedure shown in the flowcharts of FIGS. 6 and 7 is stored in the storage unit 41 of the transportation route determination device 4 as transportation route information 414 for each delivery condition.
  • FIGS. 8, 9A and 9B are diagrams showing an example of the content of the method for deriving the optimum route.
  • FIG. 8 is a schematic diagram of a transportation network.
  • the identification information of the matrix number is attached to each node.
  • the agent (transport equipment 1) initially located at i and j stochastically selects the adjacent node.
  • the probability is completely random, preset weight, or the number of pallets P remaining at the departure point, the number of pallets P not enough at the destination, the number of pallets loaded by the agent, etc. It may be described by a function in the state described.
  • FIGS. 9A and 9B are schematic views of the transportation network.
  • the transportation networks of FIGS. 9A and 9B are given numerical values for evaluation (reward) for the condition.
  • FIG. 9A shows the initial state
  • FIG. 9B shows the selection history of the node of the agent in the time series.
  • each node is attached with identification information of a matrix number, and it is assumed that the starting point is the node (i + 1, j) and there are two pallets P, respectively, and the nodes (i, j-1). And the delivery conditions to be delivered to the node (i + 1, j + 1).
  • the starting point is given a negative evaluation reward for the number of pallets P
  • the positive evaluation reward is given for the number of pallets P loaded on the agent
  • the pallet P that has arrived at the destination It is assumed that a reward for positive evaluation is given for each number.
  • the transportation route determining device 4 sequentially updates the distribution DB410 based on the information obtained from the vehicle-mounted device 10 by moving the transportation device 1, the shipping of the goods, and the location information of the goods obtained from the base center 2 and the collection / delivery center 3.
  • the transportation route determination device 4 determines the movement routes of the transportation equipment 1 and the pallet P of the transportation equipment 1 together with the update of the distribution DB410, and based on this, the transportation equipment 1, the base center 2, and the collection and delivery center 3 transport, carry in, and carry out. Control carry-out.
  • 10 and 11 are flowcharts showing an example of the transportation route determination processing procedure by the transportation route determination device 4.
  • the processing unit 40 of the transportation route determination device 4 acquires the arrangement of the pallets P from the pallet information 412 and the transportation equipment information 413 (S201).
  • the processing unit 40 acquires a condition indicating where the pallet P must be transported after a predetermined time or at a specific time based on the destination and the desired arrival time of each pallet P (S202). In S202, the processing unit 40 totals the number of pallets P for each base center 2 or collection / delivery center 3, which should be, for example, 3 hours after the processing of S201.
  • the processing unit 40 is based on the current position of the pallet P and the position of the transport device 1 acquired in the process of S201, and the conditions that the pallet P and the transport device 1 after a predetermined time should be acquired in the process of S202. , The transportation conditions in the transportation network are determined (S203).
  • FIG. 12 shows the relationship between the overall pallet P route and the partitioned transport network.
  • the base center 2 is connected in a net shape.
  • each pallet P passes through a plurality of partitioned transportation networks extending from the base center 2 at the departure point to the collection / delivery center 3 at the final destination.
  • one pallet P departs from the base center 2 in Nagano prefecture and destinations at the collection and delivery center 3 in Shiga prefecture.
  • the processing unit 40 selects one transportation network (S204), extracts the optimum route of the delivery condition similar to the transportation condition for the transportation network from the one stored in the storage unit 41, and stores it (S205).
  • the processing unit 40 derives the delivery condition and the Euclidean distance as a vector having the identification information of the node of the departure point that describes the transportation condition, the identification information of the node of the destination, the type of pallet, and the number of pallets as dimensions. Then, those with a shorter distance are extracted as those with a higher degree of similarity.
  • the processing unit 40 executes route calculation (FIGS. 6 and 7) based on agent-based modeling for the optimum route under similar delivery conditions only by the difference from the transportation condition, and derives the optimum route under each condition. do.
  • route calculation FIGS. 6 and 7
  • the simulation may be performed by selecting an edge similar to the optimum route with similar delivery conditions.
  • Reinforcement learning techniques may be incorporated and implemented so that the cumulative travel distance is the shortest.
  • the processing unit 40 determines whether or not all transportation networks have been selected (S206), and if it determines that all networks have not been selected (S206: NO), returns the processing to S204.
  • the processing unit 40 determines the number of transportation devices 1 required for each transportation network, the optimum transportation route for each of the required number of transportation devices, and the optimum transportation route.
  • the delivery conditions type, number of pallets P to be transported, number of pallet accommodating units
  • S207 The delivery conditions
  • the processing unit 40 assigns and stores pallet identification information based on the information of the pallet P already loaded and the information acquired in the processing of S207 to the pallet accommodating unit of the loading platform of the transportation equipment 1 in each place (). S208).
  • the processing unit 40 selects a transportation route in the divided transportation network as a partial route for each transportation device 1 and determines the entire transportation route (S209). In S209, the processing unit 40 may determine the route in the transportation network for the transportation equipment 1 as the entire transportation route.
  • the processing unit 40 determines (updates) the movement route of the pallet P for each pallet P, that is, the pallet accommodating unit of the transportation equipment 1 to be transferred to the destination (S210).
  • the processing unit 40 is based on the movement route of each pallet P, and for each transport device 1, the pallet identification information of the pallet P to be carried out at the base center 2 which is a transit point, and the storage unit in which the pallet P is housed.
  • the storage unit identification information is listed (S211).
  • the processing unit 40 Based on the movement route of each pallet P, the processing unit 40 has pallet identification information of the pallet P to be carried in at the base center 2 which is a transit point, and a pallet storage unit in which the pallet P should be accommodated.
  • the accommodation unit identification information of the above is listed (S212).
  • the processing unit 40 outputs a list of the determined transport route of the transport device 1, the movement route of the pallet P, and the pallet P to be carried in / out at each base center 2 (S213).
  • the processing unit 40 transmits an instruction to the on-board unit 10, the base controller 20, the collection / delivery site device 30, and the pallet controller 23 (S214) based on the output content, and ends the processing.
  • the optimum route derived in advance is not simply selected, but the optimum route with conditions similar to those already derived. It is preferable to add an operation related to the difference condition based on. For example, for delivery conditions that specify the departure point, destination, and type and number of pallets P in a 5x5 transportation network, in addition to the information on the number of transportation equipment and the transportation route for which calculation results have already been calculated, additional collection and delivery Calculate and integrate the number of transport equipment and transport routes that correspond only to the land, destination, and number of pallets. By accumulating the calculation result of the route in advance, the calculation time requires only the time to access the data, and the calculation time can be shortened.
  • FIGS. 13 and 14 are flowcharts showing an example of the processing procedure of the prior route calculation in the second embodiment.
  • the procedures common to the procedures shown in the flowcharts of FIGS. 9 and 10 are designated by the same reference numerals and detailed description thereof will be omitted.
  • the processing unit 40 uses the adjacent base center 2 or collection / delivery center centered on the selected base center 2 as a node, the route between the nodes as an edge, and associates the distance information with the edge.
  • a distance transportation network within the region is defined (S121).
  • the processing unit 40 calculates the number of palettes P existing in the node at the node to which the agent is moved (S108), not only the number of steps is added but also the distance associated with the moved edge is cumulatively moved. It is added and stored as a distance (S129).
  • the processing unit 40 determines that the delivery within the transportation network is completed by the processing of S111 (S111: YES), the processing unit 40 determines the history (transportation route) of the identification data of the node via which the agent has passed, the cumulative travel distance, and the number of steps.
  • the processing unit 40 determines the history (transportation route) of the identification data of the node via which the agent has passed, the cumulative travel distance, and the number of steps.
  • S132 the number of steps required to complete the delivery at each time, the travel distance, and the transportation route are stored.
  • the processing unit 40 adds the number of steps and the cumulative travel distance (S112), and the progress of delivery in the entire transportation network. Calculate the rate (S133). In S133, the processing unit 40 calculates the ratio of the number of pallets P that have reached the destination in the area to the total number of pallets P as the progress rate. In S133, the processing unit 40 may calculate the ratio of the number of undelivered pallets P to the whole as the progress rate as the progress rate.
  • the processing unit 40 may derive a standard for determining the timing for determining whether or not the route being calculated in S137, which will be described later, is likely to derive the shortest path. Therefore, it is not limited to the progress rate, and may be the number of calculations or the time.
  • the processing unit 40 determines whether or not the progress rate calculated in the processing of S133 satisfies the condition (S134). In S134, the processing unit 40 determines, for example, whether or not the progress rate (%) is a multiple of 10. In addition, if it is the number of calculations instead of the progress rate, it may be judged whether it is a multiple of 5, or if it is time, it may be judged whether the elapsed time is a multiple of 5. good.
  • the processing unit 40 If it is determined that the conditions are not satisfied in the processing of S134 (S134: NO), the processing unit 40 returns the processing to S104 and proceeds to the next step.
  • the processing unit 40 stores the travel distance so far this time in association with the progress rate calculated in the processing of S133 (S135).
  • the processing unit 40 gives the memorized travel distance and the transport route with the shortest travel distance among the travel distances for which the calculation of the transport routes is executed a plurality of times, with the distance at the progress rate calculated by the processing of S333 and the width. Compare (S136).
  • the processing unit 40 calculates, for example, as in the following equation (1). Assuming that the travel distance up to that point is k and the travel route at the progress rate (prog) of the shortest transport route among the transport routes obtained so far is kmin prog, the equation (1) is k ⁇ kmin + kmin. ⁇ (1-Progress rate) ... (1) kprog ⁇ kmin prog + kmin prog ⁇ (1-progress rate (prog)) ... (1) Is. The travel distance k10 when the progress rate is 10% is compared with 1.9 times the travel distance kmin 10 at the progress rate of 10% of the shortest transportation route.
  • the travel distance k20 when the progress rate is 20% is compared with 1.8 times the travel distance kmin 20 at the progress rate of 20% of the shortest transportation route.
  • the travel distance k90 is compared with 1.1 times the travel distance kmin 90 at the progress rate 90% of the shortest transportation route.
  • the processing unit 40 determines whether or not there is a possibility that the shortest distance transportation route can be derived by proceeding with the delivery simulation (S137). When it is determined that there is no possibility (S137: NO), the processing unit 40 ends the current calculation in the middle and proceeds to the processing to S114.
  • the calculation can be interrupted and the calculation time can be shortened.
  • the transportation network is further converted into a pixel representation from the aspect shown in FIG. 5 and used for the calculation. Since the hardware configuration of the distribution system 100 in the second embodiment is the same as the configuration of the first embodiment, the common configurations are designated by the same reference numerals and detailed description thereof will be omitted.
  • FIG. 15 is an explanatory diagram of the pixel representation of the transportation network according to the third embodiment.
  • the upper left image in FIG. 15 shows a two-dimensional image corresponding to the pixel representation of the transport network
  • the middle left image in FIG. 15 shows a two-dimensional image showing delivery conditions for the pixel representation.
  • the upper left image and the middle left image of FIG. 15 are checkered images of the same size.
  • the transportation network is represented by a two-dimensional image of a grid pattern. Every other square in the vertical and horizontal directions corresponds to a node in the transportation network.
  • the squares that are vertically and horizontally adjacent to the squares corresponding to the nodes correspond to the edges between the nodes, that is, the roads between the points.
  • the squares corresponding to the nodes and the squares corresponding to the edges are represented by different colors. When there is no road connecting the nodes, it is expressed as transparent or colorless (white). Not limited to color, it is preferable to express it by squares having different attributes such as patterns and marks.
  • the pixel representation of the transportation network consists of a departure point image showing the squares of the starting point under the placement condition shown on the left side of the middle row of FIG. 15 by specific hatching, and a destination showing the distribution point under the placement condition shown on the right side of the middle row of FIG.
  • the image can be separated into a road image corresponding to the geographical information shown in the lower right image of FIG.
  • the pixel range corresponding to the node where the pallet P is first accumulated for example, the collection point such as the base center 2 and the supply point, is represented by specific hatching.
  • a transportation network including a node that is a candidate for a waypoint and an edge that is a road between nodes can be easily created by a pixel representation that combines a departure image, a destination image, and a road image. Can be described.
  • the geographical distance of the edge may be expressed by the shade of color and the brightness in the pixel range
  • the palette is displayed.
  • the number of palettes P may be expressed by the shade or the intensity of the pixel range corresponding to the point where P is arranged.
  • These pixel representations may be displayed on the display unit 53 of the terminal device 5 and used to display the state during the search for the route or the optimum route. Further, it may be used as input data and output data for deep learning for deriving the optimum route. In order for the operator to visually recognize the result of deriving the shortest path in the first embodiment, it may be displayed on the display unit 53 of the terminal device 5.
  • FIG. 16 shows a schematic diagram of learning of a transportation network expressed in pixels.
  • the number of transport devices 1 and the transport route are vectorized (transport devices). It is also possible to output as a sequence of identification data of numbers and vertices of the transportation route).
  • the transportation route determination device 4 separates the departure point image, the destination image, and the road image and inputs each of them into a model using a neural network, and the transportation device 1 is used. It may be learned to output as a vector indicating the number of vehicles and the transportation route.
  • the operator who operates the terminal device 5 can visually recognize the transportation network displayed on the display unit 53 and intuitively understand the transportation network. .. Further, the operator can intuitively determine the delivery conditions of which node the pallet P exists in and which node should be transported by visually recognizing the transportation network as shown in FIG. 15 displayed on the display unit 53. I can understand. Therefore, it becomes easy to judge the validity of the calculation result and to automate at least a part of the correction of the number of transportation devices 1 and the transportation route, which has conventionally relied on the intuition of a skilled person.
  • FIG. 17 is a diagram showing another representation of the transportation network.
  • a transportation network is defined by nodes arranged in a shape in which equilateral triangles are periodically repeated, and edges connecting the nodes. May be assigned.
  • the transport network may be defined not only by the checkered pattern but also by a two-dimensional image including a geometric pattern region. In FIG.
  • the corresponding areas of the nodes arranged at predetermined intervals in arbitrary two directions in the pattern are represented by dark gray (hatching) in the figure, and the areas corresponding to the edges between the nodes correspond to the nodes. It is expressed with a dot pattern that is different from the area to be used.
  • the geometric pattern is not limited to an equilateral triangle, but may be a honeycomb-shaped network consisting of regular hexagons.
  • the transportation network may be represented in a plurality of three dimensions based on the actual condition of the transportation network. What is the actual state of the transportation network? Here, if it is a road, it is a highway network, an automobile-only road, and if transportation by different types of transportation equipment 1 is mixed, there are routes such as railroads, aviation, and ships. These different paths may be defined as bypass edges.
  • FIG. 18 is a diagram showing a transportation network including a bypass edge. In FIG. 18, the bypass edge is shown by a thick dashed line regardless of its type. It may be divided into different layers according to the type of transportation equipment 1 such as railroad, aviation, and ship.
  • the transportation network may include a representation of the bypass edge in layers of the highway network only. By targeting these bypass edges in the selection process of S107, it becomes possible to perform route calculation in a complicated system even in a simplified transportation network.
  • the transportation network including the bypass edge may be defined by superimposing a checkered two-dimensional image.
  • FIG. 19 is a diagram showing an example of pixel representation of a transportation network including a bypass edge.
  • a transportation network is defined by superimposing two checkered two-dimensional images.
  • the image superimposed on the top is the same as the pixel representation of the transport network of FIG.
  • the squares corresponding to the nodes and the squares corresponding to the roads are indicated by pixel representations of attributes such as different colors, patterns or marks.
  • the image shown at the bottom shows an example of an image of the bypass edge.
  • the square corresponding to the node to which the bypass edge is connected is represented by a specific attribute.
  • the bypass edge which is a highway
  • the bypass edge which is a water transport
  • the bypass edge which is a water transport

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Provided are a transportation route determination method, transportation route determination device, and computer program. In this transportation route determination method, a transportation network is defined in which a plurality of goods collection/delivery points, transportation hubs that a transportation device for transporting the goods is to pass through, and each point in a traffic network are assigned to nodes disposed in a geometric pattern having a prescribed unit pattern that repeats periodically and routes connecting adjacent points or transportation hubs are assigned to edges between nodes, and a transportation route connecting the transportation hubs for the transportation device is determined as a data sequence of identification data for the nodes of the transportation network.

Description

輸送経路決定方法、輸送経路決定装置、及びコンピュータプログラムTransport route determination method, transport route determination device, and computer program

 本発明は、物品の流通効率を向上させるために、パレット、小型コンテナ、又は段ボール箱等の物品が積み付けられる物流部材を輸送するための経路を決定する輸送経路決定方法、輸送経路決定装置、及びコンピュータプログラムに関する。 INDUSTRIAL APPLICABILITY The present invention relates to a transportation route determining method, a transportation route determining device, which determines a route for transporting a distribution member on which an article such as a pallet, a small container, or a cardboard box is loaded, in order to improve the distribution efficiency of the article. And computer programs.

 物流全体を効率化させるためには輸送する物品が積み付けられる物流部材、及び物流部材を積載する輸送機器の経路の最適化が必要である。 In order to improve the efficiency of the entire physical distribution, it is necessary to optimize the routes of the physical distribution members on which the goods to be transported are loaded and the transportation equipment on which the physical distribution members are loaded.

 配送のためのルートを設定する方法は、従前から提案されている。特許文献1には、配送拠点から配送先へ、1台の輸送車両の1回の走行で、積載した荷物を輸送することを想定した配送計画問題を解く手法が開示されている。特許文献1は、複数の配送車両を用いて、物流拠点から複数の配送先へ、積み荷を配送し、元の拠点へ戻る経路への走行距離が最短になるように、異なるアルゴリズムで配送計画を作成することを繰り返し、総走行距離が最短となる計画を選択するようにしている。 The method of setting a route for delivery has been proposed for some time. Patent Document 1 discloses a method for solving a delivery planning problem assuming that a loaded load is transported in one travel of one transport vehicle from a delivery base to a delivery destination. Patent Document 1 uses a plurality of delivery vehicles to deliver a cargo from a distribution base to a plurality of delivery destinations, and a delivery plan is made by a different algorithm so that the mileage to the route returning to the original base is the shortest. By repeating the creation, I try to select the plan that has the shortest total mileage.

 特許文献2には、暫定的に決定した配送経路に、配送先を挿入して走行距離の最も短い経路を選択するステップを繰り返す挿入法を用いて手法が開示されている。特許文献2は、物流拠点から複数の配送先を巡って回る閉じた経路にて、走行時間の上限、車両の最大積載量を超過しないという制約条件下で、途中で顧客を挿入した暫定解を生成し、走行距離又は走行時間を少なくする。 Patent Document 2 discloses a method using an insertion method in which a step of inserting a delivery destination and selecting the route having the shortest mileage is repeated in a tentatively determined delivery route. Patent Document 2 provides a provisional solution in which a customer is inserted in the middle of a closed route from a distribution base to a plurality of delivery destinations under the constraint conditions that the upper limit of the traveling time and the maximum load capacity of the vehicle are not exceeded. Generate and reduce mileage or travel time.

特開2001-188984号公報Japanese Unexamined Patent Publication No. 2001-188984 特開2015-038429号公報Japanese Patent Application Laid-Open No. 2015-038429

 特許文献1、2で開示されているような拠点から配送先への配送経路の設定方法はいずれも、各輸送車両は、拠点センターに集荷された物品を、最終配送先まで配送することを前提としている。輸送車両が、荷物を途中で他の車両へ積み換える、といったことを全く想定していない。 In all the methods for setting the delivery route from the base to the delivery destination as disclosed in Patent Documents 1 and 2, it is premised that each transport vehicle delivers the goods collected at the base center to the final delivery destination. It is supposed to be. It does not assume that the transport vehicle will transfer the cargo to another vehicle on the way.

 シミュレーション等に基づく設計は、生産技術、物品又は建築物などの多様な分野で進められているが、物流における配送路の設計については不確定な条件が多いために困難である。物流の場合、物品の出発地点、及び終着地点が一定でなく、物品の出発地点と終着地点とが地理的に混在しており、集荷及び配送の時間に対する要求が定まっていないこと、輸送機器の数も一定でない。また、物品を途中で他の車両へ積み換えることを許容すると、不定の条件が重なる。それらの不定の条件を各々複数パターンに分けて各々計算させようとすると計算量が莫大になる。物品の発着、道路状況は時々刻々と変化するから、逐一計画を見直し再計算すると、自動的に配送ルートをシミュレーションによって導出することは非現実的となる。 Designing based on simulations is being promoted in various fields such as production technology, goods or buildings, but it is difficult to design delivery routes in logistics because there are many uncertain conditions. In the case of logistics, the starting and ending points of goods are not fixed, the starting and ending points of goods are geographically mixed, and the requirements for pickup and delivery times are not fixed, and the transportation equipment The number is also not constant. In addition, if the goods are allowed to be transshipped to another vehicle on the way, indefinite conditions overlap. If these indefinite conditions are divided into a plurality of patterns and each is calculated, the amount of calculation becomes enormous. Since the arrival and departure of goods and road conditions change from moment to moment, it becomes unrealistic to automatically derive a delivery route by simulation if the plan is reviewed and recalculated one by one.

 本発明は、斯かる事情を鑑みてなされたものであり、輸送経路の機械的な導出を、より実用的にすることを可能とする輸送経路決定方法、輸送経路決定装置、及びコンピュータプログラムを提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a transportation route determination method, a transportation route determination device, and a computer program that enable mechanical derivation of a transportation route to be more practical. The purpose is to do.

 本開示の一実施形態の輸送経路決定方法は、複数の物品を集配する地点と、前記物品を輸送する輸送機器が経由する輸送拠点と、交通網における各地点とを、所定の単位パターンが周期的に繰り返される幾何学模様形状に配置されるノードに割り当て、隣接する前記地点又は輸送拠点を結ぶ経路を前記ノード間のエッジに割り当てた輸送ネットワークを定義し、前記輸送機器の輸送拠点を繋ぐ輸送経路を、前記輸送ネットワークにおける前記ノードの識別データのデータ列として決定する。 In the method for determining a transportation route according to an embodiment of the present disclosure, a predetermined unit pattern cycles between a point where a plurality of articles are collected and delivered, a transportation base via which a transportation device for transporting the articles passes, and each point in a transportation network. A transportation network is defined in which nodes are assigned to nodes arranged in a geometrically repeated geometric pattern, and a route connecting adjacent points or transportation bases is assigned to an edge between the nodes, and transportation connecting the transportation bases of the transportation equipment is defined. The route is determined as a data string of identification data of the node in the transportation network.

 本開示の一実施形態の輸送経路決定装置は、複数の物品を集配する地点と、前記物品を輸送する輸送機器が経由する輸送拠点と、交通網における各地点とを、所定の単位パターンが周期的に繰り返される幾何学模様形状に配置されるノードに割り当て、隣接する前記地点又は輸送拠点を結ぶ経路を前記ノード間のエッジに割り当てた輸送ネットワークを定義し、前記輸送機器の輸送拠点を繋ぐ輸送経路を、前記輸送ネットワークにおける前記ノードの識別データのデータ列として決定する処理部を備える。 The transport route determining device according to the embodiment of the present disclosure has a predetermined unit pattern cycled between a point at which a plurality of articles are collected and delivered, a transportation base via which a transportation device for transporting the articles passes, and each point in a transportation network. A transportation network is defined in which nodes are assigned to nodes arranged in a geometrically repeated geometric pattern, and a route connecting adjacent points or transportation bases is assigned to an edge between the nodes, and transportation connecting the transportation bases of the transportation equipment is defined. A processing unit for determining a route as a data string of identification data of the node in the transportation network is provided.

 本開示の一実施形態のコンピュータプログラムは、コンピュータに、複数の物品を集配する地点と、前記物品を輸送する輸送機器が経由する輸送拠点と、交通網における各地点とを、所定の単位パターンが周期的に繰り返される幾何学模様形状に配置されるノードに割り当て、隣接する前記地点又は輸送拠点を結ぶ経路を前記ノード間のエッジに割り当てた輸送ネットワークを定義し、前記輸送機器の輸送拠点を繋ぐ輸送経路を、前記輸送ネットワークにおける前記ノードの識別データのデータ列として決定する処理を実行させる。 The computer program of the embodiment of the present disclosure has a predetermined unit pattern of a point at which a plurality of articles are collected and delivered to a computer, a transportation base via which a transportation device for transporting the articles passes, and each point in a transportation network. A transportation network is defined in which nodes are assigned to nodes arranged in a periodically repeated geometric pattern, and a route connecting adjacent points or transportation bases is assigned to the edges between the nodes, and the transportation bases of the transportation equipment are connected. A process of determining a transportation route as a data string of identification data of the node in the transportation network is executed.

 本開示の輸送経路決定方法、輸送経路決定装置、及びコンピュータプログラムでは、輸送経路を構成する複数の地点及び地点間の道路は、幾何学模様状に表現される輸送ネットワークに近似されて単純なデータに変換されて使用される。地点間を結ぶ経路に、実際の距離を反映した長さを反映させずに、距離は別データとして対応付けることにより、隣のノードへの経路を確率的に選択するエージェントベースモデリングの処理が容易になる。 In the transportation route determination method, the transportation route determination device, and the computer program of the present disclosure, the points and the roads between the points constituting the transportation route are approximated to the transportation network represented by the geometric pattern, and simple data. It is converted to and used. By associating the distance as separate data without reflecting the length that reflects the actual distance in the route connecting the points, it is easy to process agent-based modeling that probabilistically selects the route to the adjacent node. Become.

 本開示によれば、ある地域の輸送経路を、格子を含む幾何学模様状のネットワークに変換して使用するので、ネットワーク分析又は画像分析が可能となる。ネットワーク分析又は画像分析の既存の解析手法を適用し易くなり、学習の手法も適用でき、最適な輸送経路の導出のための絞り込みが可能になる。 According to the present disclosure, since the transportation route in a certain area is converted into a geometric pattern network including a grid and used, network analysis or image analysis becomes possible. It becomes easier to apply existing analysis methods of network analysis or image analysis, learning methods can also be applied, and it becomes possible to narrow down for deriving the optimum transportation route.

本開示の物流システムの概要図である。It is a schematic diagram of the distribution system of this disclosure. 輸送機器の一例を示す模式図である。It is a schematic diagram which shows an example of the transportation equipment. 輸送機器の一例を示す模式図である。It is a schematic diagram which shows an example of the transportation equipment. 輸送経路決定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the transportation route determination apparatus. オペレータが使用する端末装置の構成を示すブロック図である。It is a block diagram which shows the structure of the terminal apparatus used by an operator. 地図データから輸送ネットワークへの変換の説明図である。It is explanatory drawing of conversion from map data to a transportation network. 事前の経路演算の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure of the route calculation in advance. 事前の経路演算の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure of the route calculation in advance. 最適経路の導出方法の内容例を示す図である。It is a figure which shows the content example of the derivation method of the optimum route. 最適経路の導出方法の内容例を示す図である。It is a figure which shows the content example of the derivation method of the optimum route. 最適経路の導出方法の内容例を示す図である。It is a figure which shows the content example of the derivation method of the optimum route. 輸送経路決定装置による輸送経路決定処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the transport route determination processing procedure by a transport route determination apparatus. 輸送経路決定装置による輸送経路決定処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the transport route determination processing procedure by a transport route determination apparatus. 全体的なパレットの経路と、区分された輸送ネットワークとの関係を示す。The relationship between the overall pallet route and the partitioned transportation network is shown. 実施の形態2における事前の経路演算の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure of the prior route calculation in Embodiment 2. 実施の形態2における事前の経路演算の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure of the prior route calculation in Embodiment 2. 実施の形態3における輸送ネットワークの画素表現の説明図である。It is explanatory drawing of the pixel representation of the transportation network in Embodiment 3. FIG. 画素表現された輸送ネットワークの学習の模式図を示す。A schematic diagram of learning of a transportation network expressed in pixels is shown. 輸送ネットワークの他の表現を示す図である。It is a figure which shows other representations of a transportation network. バイパスエッジを含む輸送ネットワークを示す図である。It is a figure which shows the transportation network including the bypass edge. バイパスエッジを含む輸送ネットワークの画素表現の一例を示す図である。It is a figure which shows an example of the pixel representation of the transport network including a bypass edge.

 本開示をその実施の形態を示す図面を参照して具体的に説明する。以下の実施の形態では、本開示の輸送経路決定方法を適用した物流システムについて説明する。 The present disclosure will be specifically described with reference to the drawings showing the embodiments thereof. In the following embodiment, a physical distribution system to which the transportation route determination method of the present disclosure is applied will be described.

 図1は、本開示の物流システム100の概要図である。物流システム100は、物品、例えば農作物を輸送する輸送機器1と、輸送機器1が立ち寄るトランスファーセンターである拠点センター(ベース)2と、物品を集配するディストリビューションセンタである集配センター3、コントロールセンター400とを含む。物流システム100は、輸送経路決定装置4が決定する経路情報に基づいて運用される。輸送経路決定装置4は、輸送機器1、拠点センター2内の装置、集配センター3内の装置と通信接続が可能である。また輸送経路決定装置4は、生産者又は製造者、拠点センター2、及び集配センター3等、各箇所のオペレータが使用する端末装置5と通信接続が可能である。 FIG. 1 is a schematic diagram of the distribution system 100 of the present disclosure. The distribution system 100 includes a transportation device 1 for transporting goods, for example, agricultural products, a base center (base) 2 which is a transfer center where the transportation device 1 stops, a collection / delivery center 3 which is a distribution center for collecting and delivering goods, and a control center 400. And include. The distribution system 100 is operated based on the route information determined by the transportation route determination device 4. The transportation route determining device 4 can be connected to the transportation device 1, the device in the base center 2, and the device in the collection / delivery center 3 by communication. Further, the transportation route determining device 4 can be connected to a terminal device 5 used by operators at various locations such as a producer or a manufacturer, a base center 2, a collection and delivery center 3, and the like.

 輸送機器1は、搬送トラック、列車、輸送機、船舶等の乗り物(vehicle)である。輸送機器1は、自動運転によって走行する搬送ロボットであってもよい。 The transport device 1 is a vehicle such as a transport truck, a train, a transport aircraft, or a ship. The transport device 1 may be a transport robot that travels by automatic operation.

 拠点センター2は、物流における所謂幹線に設けられた通過型センターであり、港、空港、貨物駅、道路網におけるインターチェンジ(IC)等、輸送機器1の拠点となる場所に設置される。拠点センター2は例えば所定の距離ごとに設けられる。拠点センター2には、拠点センター2にて輸送機器1の入庫を受け付け、輸送機器1からパレットPを搬出・搬入する装置群と、装置群を制御する拠点コントローラ20が設けられている。拠点コントローラ20は、輸送経路決定装置4と通信接続が可能であり、輸送経路決定装置4からの指示に基づいて装置群を制御する。 The base center 2 is a transit center provided on a so-called trunk line in logistics, and is installed at a place that serves as a base for transportation equipment 1, such as a port, an airport, a freight station, and an interchange (IC) in a road network. The base center 2 is provided, for example, at predetermined distances. The base center 2 is provided with a group of devices for receiving the warehousing of the transport device 1 at the base center 2 and carrying in / out the pallet P from the transport device 1, and a base controller 20 for controlling the device group. The base controller 20 is capable of communication connection with the transportation route determination device 4, and controls the device group based on the instruction from the transportation route determination device 4.

 拠点センター2を中心とする物流システムでは、輸送対象物は物流部材に積み付けられて搬送される。物流部材は、具体的にはパレットP及び小型コンテナCである。以下の説明ではパレットPに絞って説明するが小型コンテナCも同様に扱われるとよい。物流部材は更に、フレキシブルコンテナ、所謂フレコンであってもよいし、鉄コンテナであってもよいし、段ボール箱であってもよい。その他、物流で物品を載置させたり、収容させたりするために使用される袋、板材、箱材は物流部材に含まれる。 In the distribution system centered on the base center 2, the objects to be transported are loaded on the distribution members and transported. Specifically, the physical distribution members are the pallet P and the small container C. In the following description, the description will be focused on the pallet P, but the small container C may be treated in the same manner. Further, the distribution member may be a flexible container, a so-called flexible container, an iron container, or a cardboard box. In addition, bags, plates, and box materials used for placing and accommodating goods in physical distribution are included in physical distribution members.

 拠点センター2には、パレットセンター22が並設されるとよい。パレットセンター22には、パレットPが集配されている。パレットセンター22には、パレットPを搬出・搬入する装置を制御するパレットコントローラ23が設置されている。パレットコントローラ23は、輸送経路決定装置4と通信接続が可能であり、輸送経路決定装置4からの指示に基づいて装置群を制御する。 The pallet center 22 should be installed side by side in the base center 2. Pallets P are collected and delivered at the pallet center 22. The pallet center 22 is equipped with a pallet controller 23 that controls a device for carrying in and out the pallet P. The pallet controller 23 is capable of communication connection with the transport route determination device 4, and controls the device group based on the instruction from the transport route determination device 4.

 集配センター3は、生産者若しくは製造者の拠点から輸送対象の物品を収集して、拠点センター2へ向けて輸送するか、又は、逆に、拠点センター2から荷を受けて保管し、エンドユーザへ向けて物品を輸送する拠点である。集配センター3は、卸、若しくは配送センターに相当する。集配センター3は、拠点センター2に対して複数設けられるとよい。集配センター3は、小売業者である荷受人によって管理されていてもよい。集配センター3が拠点センター2へ向けて輸送する物品を収集する場合、集配センター3にて物品がパレットPに積み付けられてもよい。集配センター3には、輸送経路決定装置4からの指示を受ける集配地装置30が設置されている。集配地装置30は、集配センター3におけるオペレータからの発送物品及びパレットPの入力を受け付けたり、到着した物品の入力を受け付けたりする。集配地装置30は、発送される物品が積み付けられたパレットPのパレット識別情報と物品の識別情報との対応、及び、到着した物品の識別情報と物品が積み付けられたパレットPのパレット識別情報との対応を記憶して輸送経路決定装置4へ送信する。 The collection and delivery center 3 collects the goods to be transported from the producer or the manufacturer's base and transports them to the base center 2, or conversely, receives and stores the load from the base center 2 and stores the end user. It is a base for transporting goods to. The collection and delivery center 3 corresponds to a wholesale or distribution center. A plurality of collection and delivery centers 3 may be provided for the base center 2. The collection and delivery center 3 may be managed by a consignee who is a retailer. When the collection / delivery center 3 collects the goods to be transported to the base center 2, the goods may be loaded on the pallet P at the collection / delivery center 3. The collection / delivery center 3 is equipped with a collection / delivery site device 30 that receives instructions from the transportation route determination device 4. The collection / delivery site device 30 accepts the input of the shipped goods and the pallet P from the operator at the collection / delivery center 3, and accepts the input of the arrived goods. The collection / delivery site device 30 corresponds to the correspondence between the pallet identification information of the pallet P on which the goods to be shipped are loaded and the identification information of the goods, and the identification information of the arriving goods and the pallet identification of the pallets P on which the goods are loaded. The correspondence with the information is stored and transmitted to the transportation route determination device 4.

 地域には、1又は複数の拠点センター2が存在し、複数の集配センター3が存在する。地域は行政区分に限られず、任意の単位で区分されるように定義され、緯度経度情報及び拠点センター2及び集配センター3の識別データ、所属地域の識別データで記憶される。地域同士は重複してもよい。集配センター3は異なる地域に所属していてもよい。拠点センター2及び集配センター3は、地域内の輸送において集荷地点でもあり配荷地点でもある(「集配地点」に対応する)。地域内の複数の集配センター3は、夫々集荷地点でもあり且つ配荷地点でもある。いずれかの集配センター3は、集荷地点としてのみ機能してもよいし、同様にして他のいずれかの集配センター3は、配荷地点としてのみ機能してもよい。 There is one or more base centers 2 in the area, and there are a plurality of collection and delivery centers 3. The area is not limited to administrative divisions, but is defined to be divided into arbitrary units, and is stored in latitude / longitude information, identification data of the base center 2 and the collection / delivery center 3, and identification data of the area to which the area belongs. Regions may overlap. The collection and delivery center 3 may belong to different areas. The base center 2 and the collection / delivery center 3 are both collection points and distribution points for transportation within the region (corresponding to "collection / delivery points"). Each of the plurality of collection and delivery centers 3 in the area is both a collection point and a distribution point. Any collection and delivery center 3 may function only as a collection point, and similarly any other collection and delivery center 3 may function only as a collection point.

 輸送経路決定装置4は、輸送機器1の位置を逐次取得し、輸送機器1に収容されているパレットPの情報、集配センター3にて発送待ち状態であるパレットPの情報を、逐次収集する。輸送経路決定装置4は、輸送機器1から逐次取得した位置、及び、各パレットPの存在位置を含む位置情報と、各パレットPが届けられるべき集配センター3の目的地情報と、届けられるべき時間情報とから、パレットPの移動経路及び輸送機器1の輸送経路を逐次決定する。 The transport route determination device 4 sequentially acquires the position of the transport device 1, and sequentially collects the information of the pallet P housed in the transport device 1 and the information of the pallet P waiting to be shipped at the collection / delivery center 3. The transport route determination device 4 sequentially acquires the position from the transport device 1, the position information including the existence position of each pallet P, the destination information of the collection / delivery center 3 to which each pallet P should be delivered, and the time to be delivered. From the information, the movement route of the pallet P and the transportation route of the transportation device 1 are sequentially determined.

 輸送経路決定装置4は、決定した輸送機器1夫々の輸送経路及びパレットPの移動経路に基づいて、輸送機器1へ、立ち寄るべき拠点センター2を指示する。輸送経路決定装置4は、拠点センター2へ、到着した輸送機器1から搬出すべきパレットP、輸送機器1へ搬入すべきパレットPを指示する。輸送経路決定装置4は、決定した輸送経路及び移動経路に基づいて、集配センター3、パレットセンター22から発送すべきパレットPを夫々のセンターへ指示し、輸送機器1へ、搬出すべきパレットPを指示する。 The transportation route determination device 4 instructs the transportation equipment 1 to stop at the base center 2 based on the determined transportation routes of the transportation equipment 1 and the movement route of the pallet P. The transport route determining device 4 instructs the base center 2 the pallet P to be carried out from the arrived transport device 1 and the pallet P to be carried into the transport device 1. Based on the determined transportation route and movement route, the transportation route determining device 4 instructs each center to send the pallet P to be shipped from the collection / delivery center 3 and the pallet center 22, and sends the pallet P to be carried out to the transportation equipment 1. Instruct.

 本開示では、輸送経路決定装置4が、輸送すべき物品の情報、輸送機器1の位置情報等から、パレットPの移動経路、及び輸送機器1の輸送経路を逐次最適化していく処理について説明する。 In the present disclosure, a process of sequentially optimizing the movement route of the pallet P and the transportation route of the transportation equipment 1 from the information of the goods to be transported, the position information of the transportation equipment 1, and the like by the transportation route determining device 4 will be described. ..

 パレットPについて説明する。パレットPは物流の現場で広く用いられているパレットと同様に90cm四方の大きさを有した物流部材であり、より好ましくは樹脂製である。パレットPはその他、木製、ステンレス製、段ボール製等多様な材料製でよく、フォークリフトでの運搬に適合したリフト孔が設けられているとよい。パレットPは、輸出入の規制に適合した材料製のパレットを用いるとよい。パレットPには、パレット識別情報を記憶してあるタグが取り付けられている。タグは、RFID等を用いた無線タグであることが好ましい。 The pallet P will be explained. The pallet P is a physical distribution member having a size of 90 cm square, similar to the pallet widely used in the field of physical distribution, and is more preferably made of resin. The pallet P may be made of various materials such as wood, stainless steel, and corrugated cardboard, and may be provided with a lift hole suitable for transportation by a forklift. As the pallet P, it is preferable to use a pallet made of a material conforming to the import / export regulations. A tag storing pallet identification information is attached to the pallet P. The tag is preferably a wireless tag using RFID or the like.

 タグには、予め付与されているパレットPのパレット識別情報が無線リーダにより読み出し可能に記憶されている。なおタグにおけるパレットPのパレット識別情報は書き換え不可であるが、タグには、ライタによってパレットPに積み付けられる一つ又は複数の物品の情報を書き込み可能である。物品の情報とは、物品の種別及び品目、重量、集荷の日付、物品の配送番号、直近に経由した拠点センター2の拠点識別情報、目的地の拠点センター2、荷受人情報、送り元情報等である。タグに代替して予め付与されているパレットPのパレット識別情報に対応する一次元コード、二次元コードが印刷された所定の媒体であってもよい。タグの上に一次元コード、二次元コードが印刷されていてもよい。物品の情報は輸送経路決定装置4側にパレット識別情報に対応付けて記憶されている。 In the tag, the palette identification information of the palette P assigned in advance is readable and stored by the wireless reader. Although the pallet identification information of the pallet P in the tag is not rewritable, information on one or more articles loaded on the pallet P by the writer can be written in the tag. The goods information includes the type and item of the goods, the weight, the date of collection, the delivery number of the goods, the base identification information of the base center 2 that has recently passed through, the base center 2 of the destination, the consignee information, the sender information, etc. Is. It may be a predetermined medium on which a one-dimensional code or a two-dimensional code corresponding to the palette identification information of the palette P given in advance instead of the tag is printed. A one-dimensional code or a two-dimensional code may be printed on the tag. The information of the article is stored in association with the pallet identification information on the transportation route determining device 4 side.

 輸送機器1は、本実施の形態では搬送トラックである。図2A及び図2Bは、輸送機器1の一例を示す模式図である。図2Aは、横開きの扉を有している荷台の例、図2Bは、後方の扉を有している荷台の例を示している。図2A及び図2Bに示す例のどちらの場合も輸送機器1は、パレットP単位で物品を搬送するためにパレットフレーム11を荷台内部に設けている。パレットフレーム11は具体的には、荷台を床面から天井に至る高さを半分に上下二段に分ける台である。荷台は車幅方向にパレットPが2つ並置できる内寸を有している。パレットフレーム11にて区分けされた上下と、左右とでパレットPの収容位置を特定することができる。 The transport device 1 is a transport truck in the present embodiment. 2A and 2B are schematic views showing an example of the transportation device 1. FIG. 2A shows an example of a loading platform having a side-opening door, and FIG. 2B shows an example of a loading platform having a rear door. In both cases of the examples shown in FIGS. 2A and 2B, the transport device 1 is provided with a pallet frame 11 inside the loading platform in order to transport articles in units of pallets P. Specifically, the pallet frame 11 is a table that divides the loading platform from the floor surface to the ceiling in half in two stages, upper and lower. The loading platform has an internal dimension that allows two pallets P to be juxtaposed in the vehicle width direction. The accommodation position of the pallet P can be specified by the top and bottom and the left and right divided by the pallet frame 11.

 パレットフレーム11は、図2Bに示すように、荷台の後部扉から全体引き出すことが可能な構成であってもよい。この場合、パレットフレーム11を巨大なパレットと考えれば、パレットフレーム11も物流部材としてパレット上にパレットPが複数積載され、パレットP夫々の上に複数の小型コンテナCが積載された入れ子状態で管理することも可能である。なおパレットフレーム11は、図2A及び図2Bに示しているように二段に分ける台ではなく、荷台の床面に敷かれた板材状であってもよい。 As shown in FIG. 2B, the pallet frame 11 may have a configuration in which the entire pallet frame 11 can be pulled out from the rear door of the loading platform. In this case, if the pallet frame 11 is considered to be a huge pallet, the pallet frame 11 is also managed in a nested state in which a plurality of pallets P are loaded on the pallets as distribution members and a plurality of small containers C are loaded on each of the pallets P. It is also possible to do. The pallet frame 11 may be in the form of a plate laid on the floor of the loading platform, instead of the platform divided into two stages as shown in FIGS. 2A and 2B.

 輸送機器1が列車、輸送機、船舶等の乗り物である場合、図2A又は図2Bの荷台部分と同様の構造の大型コンテナが用いられ、大型コンテナがパレットフレーム11を備える構成とすればよい。 When the transport device 1 is a vehicle such as a train, a transport aircraft, or a ship, a large container having the same structure as the loading platform portion of FIG. 2A or FIG. 2B may be used, and the large container may be configured to include the pallet frame 11.

 輸送機器1は、車載機10及びパレットPのタグからパレット識別情報を読み取るリーダを備える。車載機10は、GPS受信機を有し、輸送機器1の位置情報を逐次取得し、輸送経路決定装置4へ送信する。車載機10は、輸送機器1の荷台にパレットPが搬入されると、パレットPのタグからパレット識別情報をリーダで読み取る。収容中のパレットPのパレット識別情報と、パレットフレーム11における収容位置を識別する収容部識別情報とを、予め記憶している輸送機器1の識別情報と対応付けて輸送経路決定装置4へ送信する。車載機10は、輸送機器1の荷台から搬出されるパレットPのタグからパレット識別情報をリーダで読み取り、搬出されたパレットPのパレット識別情報を、予め記憶している輸送機器1の識別情報と対応付けて輸送経路決定装置4へ送信する。車載機10は、搬出されるパレットPについて、そのパレットPが収容されていた収容部の収容部識別情報を対応付けて、搬出されることを輸送経路決定装置4へ通知してもよい。 The transportation device 1 includes a reader that reads pallet identification information from the on-board unit 10 and the tag of the pallet P. The on-board unit 10 has a GPS receiver, sequentially acquires the position information of the transportation device 1, and transmits the position information to the transportation route determination device 4. When the pallet P is carried into the loading platform of the transport device 1, the on-board unit 10 reads the pallet identification information from the tag of the pallet P with a reader. The pallet identification information of the pallet P being accommodated and the accommodation unit identification information for identifying the accommodation position in the pallet frame 11 are transmitted to the transport route determination device 4 in association with the identification information of the transport device 1 stored in advance. .. The on-board unit 10 reads the pallet identification information from the tag of the pallet P carried out from the loading platform of the transport device 1 with a reader, and the pallet identification information of the carried out pallet P is stored in advance as the identification information of the transport device 1. It is associated and transmitted to the transportation route determination device 4. The on-board unit 10 may notify the transport route determination device 4 that the pallet P to be carried out is to be carried out by associating it with the accommodating portion identification information of the accommodating portion in which the pallet P is accommodated.

 これにより、パレットPの位置情報が常時的に輸送経路決定装置4で把握できる。輸送経路決定装置4は、各輸送機器1から送信される輸送機器1の位置情報を、輸送機器1の機器識別情報に対応付け、輸送機器情報413として記憶する(図3参照)。輸送経路決定装置4は、パレットPのパレット識別情報に対応付けて、そのパレットPを積載している輸送機器1の機器識別情報及び収容部識別情報、あるいは、そのパレットPが載置されている拠点センター2又は集配センター3の識別情報を、パレット情報412(図3参照)として記憶する。 As a result, the position information of the pallet P can be constantly grasped by the transportation route determination device 4. The transport route determination device 4 associates the position information of the transport device 1 transmitted from each transport device 1 with the device identification information of the transport device 1 and stores it as the transport device information 413 (see FIG. 3). The transport route determining device 4 is associated with the pallet identification information of the pallet P, and the device identification information and the accommodating portion identification information of the transport device 1 on which the pallet P is loaded, or the pallet P is placed. The identification information of the base center 2 or the collection / delivery center 3 is stored as pallet information 412 (see FIG. 3).

 図3は、輸送経路決定装置4の構成を示すブロック図である。輸送経路決定装置4は、サーバコンピュータであり、処理部40、記憶部41、通信部42を備える。輸送経路決定装置4は、1つのサーバコンピュータ(ハードウェア)を用いる構成のみならず、複数のサーバコンピュータで処理を分散する構成としてもよいし、大型コンピュータに仮想的に生成される複数のサーバコンピュータ(インスタンス)の内の1つであってもよい。輸送経路決定装置4は、記憶部41の物流DB410の情報の更新処理を除き、量子コンピュータによって演算を実行してもよい。 FIG. 3 is a block diagram showing the configuration of the transportation route determination device 4. The transportation route determination device 4 is a server computer, and includes a processing unit 40, a storage unit 41, and a communication unit 42. The transport route determination device 4 may be configured not only by using one server computer (hardware) but also by distributing processing among a plurality of server computers, or a plurality of server computers virtually generated by a large computer. It may be one of (instances). The transportation route determination device 4 may execute the calculation by the quantum computer except for the processing of updating the information of the distribution DB 410 of the storage unit 41.

 処理部40はCPU(Central Processing Unit)またはGPU(Graphics Processing Unit)を用いたプロセッサである。処理部40は、内蔵するROM(Read Only Memory)およびRAM(Random Access Memory)等のメモリを用いて処理を実行する。処理部40は、内蔵するタイマーによって逐次、時間情報を取得することができる。 The processing unit 40 is a processor using a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit). The processing unit 40 executes processing using the built-in memory such as ROM (Read Only Memory) and RAM (Random Access Memory). The processing unit 40 can sequentially acquire time information by a built-in timer.

 記憶部41は、ハードディスク又はSSD(Solid State Drive)等の不揮発性の記憶媒体を含む。記憶部41は、制御プログラム40Pを記憶する。処理部40は、記憶部41に記憶されている制御プログラム40Pに基づき、後述する演算によって最適経路を導出する処理を実行する。 The storage unit 41 includes a hard disk or a non-volatile storage medium such as an SSD (Solid State Drive). The storage unit 41 stores the control program 40P. The processing unit 40 executes a process of deriving an optimum route by an operation described later based on the control program 40P stored in the storage unit 41.

 記憶部41にはWebサーバプログラムが記憶されており、処理部40はWebサーバ機能を発揮し、このWebサーバ機能によって端末装置5から、輸送機器1の荷台のシェアの依頼等を受け付けてもよい。 A Web server program is stored in the storage unit 41, and the processing unit 40 exerts a Web server function, and the terminal device 5 may receive a request for sharing the loading platform of the transportation device 1 or the like from the terminal device 5 by this Web server function. ..

 記憶部41又は外部記憶装置に、物流DB(Data Base)410が構築される。処理部40は、データベース操作モジュールにより、物流DB410に対する読み書きが可能である。物流DB410には例えば、後述するようにユーザ情報411、パレット情報412、及び輸送機器情報413が記憶されている。また物流DB410には、予め後述する演算によって導出されてある輸送経路情報414が記憶されている。 A distribution DB (DataBase) 410 is constructed in the storage unit 41 or an external storage device. The processing unit 40 can read / write to / from the distribution DB410 by the database operation module. For example, user information 411, pallet information 412, and transportation equipment information 413 are stored in the distribution DB410, as will be described later. Further, the physical distribution DB 410 stores the transportation route information 414 derived in advance by the calculation described later.

 通信部42は、公衆通信網N1又はキャリアネットワークN2における通信を実現する。処理部40は、通信部42により、公衆通信網N1又はキャリアネットワークN2を介して端末装置5との間で情報の送受信が可能である。また処理部40は、通信部42により、キャリアネットワークN2を介して輸送機器1に搭載されている車載機との間で情報の送受信が可能である。処理部40は、通信部42により、公衆通信網N1、キャリアネットワークN2、又は専用線を介し、拠点センター2の拠点コントローラ20、集配センター3の集配地装置30と通信接続が可能である。 The communication unit 42 realizes communication on the public communication network N1 or the carrier network N2. The processing unit 40 can transmit and receive information to and from the terminal device 5 via the public communication network N1 or the carrier network N2 by the communication unit 42. Further, the processing unit 40 can transmit / receive information to / from the in-vehicle device mounted on the transportation device 1 via the carrier network N2 by the communication unit 42. The processing unit 40 can communicate with the base controller 20 of the base center 2 and the collection / delivery area device 30 of the collection / delivery center 3 via the public communication network N1, the carrier network N2, or the leased line by the communication unit 42.

 図4は、オペレータが使用する端末装置5の構成を示すブロック図である。端末装置5は、デスクトップ型、ラップトップ型、又はタブレット型のパーソナルコンピュータを用いる。端末装置5は、スマートフォンであってもよい。端末装置5は、処理部50、記憶部51、通信部52、表示部53及び操作部54を備える。 FIG. 4 is a block diagram showing the configuration of the terminal device 5 used by the operator. The terminal device 5 uses a desktop type, laptop type, or tablet type personal computer. The terminal device 5 may be a smartphone. The terminal device 5 includes a processing unit 50, a storage unit 51, a communication unit 52, a display unit 53, and an operation unit 54.

 処理部50は、CPUまたはGPUを用いたプロセッサである。処理部50は、内蔵するROM及びRAM等のメモリを用いて記憶部51に記憶してあるプログラムに基づいて処理を実行する。 The processing unit 50 is a processor using a CPU or GPU. The processing unit 50 executes processing based on the program stored in the storage unit 51 using the built-in memory such as ROM and RAM.

 記憶部51は、ハードディスク又はSSD等の不揮発性の記憶媒体を含む。記憶部51は、端末用プログラム50Pを記憶する。処理部50は、記憶部51に記憶された端末用プログラム50Pに基づいてオペレータの操作を受け付け、データを表示する処理を実行する。 The storage unit 51 includes a non-volatile storage medium such as a hard disk or SSD. The storage unit 51 stores the terminal program 50P. The processing unit 50 receives an operator's operation based on the terminal program 50P stored in the storage unit 51, and executes a process of displaying data.

 通信部52は、公衆通信網N1又はキャリアネットワークN2における通信を実現する。処理部50は、通信部52により、公衆通信網N1又はキャリアネットワークN2を介して輸送経路決定装置4との間で情報の送受信が可能である。 The communication unit 52 realizes communication in the public communication network N1 or the carrier network N2. The processing unit 50 can transmit and receive information to and from the transportation route determination device 4 via the public communication network N1 or the carrier network N2 by the communication unit 52.

 表示部53は、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等のディスプレイである。表示部53は、記憶部51に記憶されているデータに基づく画面を表示する。 The display unit 53 is a display such as a liquid crystal display or an organic EL (ElectroLuminescence) display. The display unit 53 displays a screen based on the data stored in the storage unit 51.

 操作部54は、処理部50との間で入出力が可能なキーボード及びポインティングデバイス等のユーザインタフェースである。操作部54は、音声入力部であってもよい。操作部54は、表示部53のタッチパネルであってもよい。 The operation unit 54 is a user interface such as a keyboard and a pointing device capable of input / output to / from the processing unit 50. The operation unit 54 may be a voice input unit. The operation unit 54 may be a touch panel of the display unit 53.

 このように構成される物流システム100では、輸送経路決定装置4が、各輸送機器1の位置、及びパレットPの位置と、物品の発送予定及び必須到着時刻等の配送条件とに基づいて輸送機器1の輸送経路と、パレットPの移動経路とを決定する。輸送機器1の輸送経路は、出発地(発送地点)の拠点センター2又は集配センター3から、終着地の拠点センター2又は集配センター3までに集荷又は積み降ろしのために順に寄る経由地点を繋いだデータを含む。パレットPの移動経路は、パレットPが出発地から終着地まで届けられるまでの間に収容される1又は複数の輸送機器1の収容部の履歴である。パレットPは、1台の輸送機器1にて終着地まで輸送されてもよいが、拠点センター2や、配送先の地域で集配センター3である経由地点にて、一の輸送機器1から他の輸送機器1へ乗り換えることが可能である。 In the distribution system 100 configured in this way, the transportation route determination device 4 is based on the position of each transportation device 1 and the position of the pallet P, and the delivery conditions such as the shipping schedule and the required arrival time of the goods. The transportation route of 1 and the movement route of the pallet P are determined. The transportation route of the transportation equipment 1 connects the waypoints that sequentially approach for collection or unloading from the base center 2 or collection / delivery center 3 at the departure point (shipping point) to the base center 2 or collection / delivery center 3 at the end point. Contains data. The movement route of the pallet P is the history of the accommodating portion of one or a plurality of transportation devices 1 accommodated during the period from the departure point to the end point of the pallet P. The pallet P may be transported to the final destination by one transport device 1, but from one transport device 1 to another at a transit point which is a collection and delivery center 3 in the base center 2 or the delivery destination area. It is possible to transfer to the transportation equipment 1.

 輸送経路決定装置4は、輸送機器1の輸送経路及びパレットPの移動経路を決定するに際し、実際の配送条件(輸送機器1の位置、パレットPの位置、発送予定及び到着時刻)を与えられてから演算を開始するだけではなく、事前に、対象範囲内での最適な経路を導出しておく。輸送経路決定装置4は、実際の配送条件が与えられた場合に、事前に導出してある多様な条件に対して導出された最適経路から、合致又は類似する経路を抽出し、抽出した経路に基づいてシミュレーションを実行して実際の輸送経路及び移動経路を導出する。最適経路は、区域ごとの部分経路を選択して完成されるとよい。 The transport route determination device 4 is given actual delivery conditions (position of transport device 1, position of pallet P, shipping schedule and arrival time) when determining the transport route of the transport device 1 and the movement route of the pallet P. In addition to starting the calculation from, the optimum route within the target range is derived in advance. When the actual delivery conditions are given, the transportation route determination device 4 extracts a matching or similar route from the optimum routes derived for various conditions derived in advance, and uses the extracted route as the extracted route. Based on this, a simulation is executed to derive the actual transportation route and movement route. The optimum route may be completed by selecting a partial route for each area.

 事前に実行する最適な経路の導出について説明する。事前の経路の導出は、まず第1に、対象となる範囲の地理情報から、輸送ネットワークを作成しておく処理から実行される。第2に、変換された輸送ネットワークを用いてエージェントベースモデリングのシミュレーションにより、経路計算の処理が実行される。 Explain the derivation of the optimum route to be executed in advance. The derivation of the route in advance is first executed from the process of creating a transportation network from the geographical information of the target range. Second, the process of route calculation is performed by simulation of agent-based modeling using the transformed transport network.

 図5は、地図データから輸送ネットワークへの変換の説明図である。図5中のAの画像は元となる地図データの例を示し、Bの画像は、地図データから作成された輸送ネットワーク、Cの画像は、区分された輸送ネットワークを示す。輸送ネットワークは、A及びBに示すように、碁盤の目状では決してない道路網から、交差点、分岐点、又は経由地点(拠点センター2又は集配センター3、さらにパレットPの補給地)を、碁盤目状に配置される頂点(ノード)に割り当てて作成される。各地点間の地理的な長さは、輸送ネットワークにおける長さには適応せず、単にノード間の距離として別のデータとして持つとよい。Bの輸送ネットワークは、演算ができる程度のサイズに区分される(図5(C))。演算ができる程度のサイズは、後述するように演算時間の試行に基づき、輸送経路決定装置4の処理能力に基づいて適切に設定されるとよい。B及びCの画像に示すように、地図上に該当する道路がない場合にはエッジをなくす。このような輸送ネットワークへ変換することで、道路交通網を標準データ化することができる。 FIG. 5 is an explanatory diagram of conversion from map data to a transportation network. The image of A in FIG. 5 shows an example of the original map data, the image of B shows the transportation network created from the map data, and the image of C shows the divided transportation network. As shown in A and B, the transportation network is a grid of intersections, branch points, or waypoints (base center 2, collection and delivery center 3, and pallet P supply area) from a road network that is never in a grid pattern. It is created by assigning it to the vertices (nodes) arranged in a grid pattern. The geographical length between each point does not adapt to the length in the transportation network, and it is better to have it as separate data simply as the distance between the nodes. The transportation network of B is divided into sizes that can be calculated (FIG. 5 (C)). As will be described later, the size that can be calculated may be appropriately set based on the processing capacity of the transport route determining device 4 based on the trial of the calculation time. As shown in the images of B and C, if there is no corresponding road on the map, the edge is eliminated. By converting to such a transportation network, the road transportation network can be converted into standard data.

 輸送経路は、ノードの識別データ(行及び列)の列として表すことができる。例えば図5Cにおける中央の地点を出発地とする輸送機器1の輸送経路は、地点(i,j)→地点(i,j+1)→地点(i-1,j+1)→…のように表現できる。 The transportation route can be represented as a column of node identification data (rows and columns). For example, the transportation route of the transportation device 1 starting from the central point in FIG. 5C can be expressed as a point (i, j) → a point (i, j + 1) → a point (i-1, j + 1) → ...

 図5に示した輸送ネットワークは、輸送経路決定装置4の処理部40によって、通信部42から取得した地図データに基づいて自動的に作成されるものであってもよい。あるいは、輸送経路決定装置4の処理部40又は他の演算装置によって、一時的に作成された輸送ネットワークを端末装置5の表示部53に表示させ、端末装置5のオペレータによってエッジの削除又はエッジの追加の修正を受け付けることで作成されてもよい。 The transportation network shown in FIG. 5 may be automatically created by the processing unit 40 of the transportation route determination device 4 based on the map data acquired from the communication unit 42. Alternatively, the temporarily created transportation network is displayed on the display unit 53 of the terminal device 5 by the processing unit 40 of the transportation route determination device 4 or another arithmetic unit, and the operator of the terminal device 5 deletes the edge or removes the edge. It may be created by accepting additional modifications.

 輸送経路決定装置4は、図5に示したような格子状の輸送ネットワークを、演算ができる程度に必要に応じて区分し、輸送ネットワークごとに、配送条件を与えて第2のシミュレーションを実行する。区分の単位は、輸送経路決定装置4の処理能力に応じて設定されるとよい。区分される範囲は、一部、例えば拠点センター2を中心に重複しているとよい。例えば輸送ネットワークが3×3のサイズから、5×5のサイズへ大きくなると、後述の演算時間は、20倍増大することが分かった。 The transportation route determination device 4 divides the grid-like transportation network as shown in FIG. 5 as necessary to the extent that calculation can be performed, gives delivery conditions to each transportation network, and executes the second simulation. .. The unit of classification may be set according to the processing capacity of the transport route determining device 4. It is preferable that the divided range partially overlaps, for example, centering on the base center 2. For example, it has been found that when the transportation network grows from a size of 3 × 3 to a size of 5 × 5, the calculation time described later increases by 20 times.

 次に、事前に、輸送ネットワークを用いたエージェントベースモデリングシミュレーションによる経路の演算について説明する。図6及び図7は、事前の経路演算の処理手順の一例を示すフローチャートである。輸送経路決定装置4(又は他の演算装置でもよい)が、輸送ネットワークごとに、以下に示す処理を、配送条件を変更して繰り返し、配送条件別の最適経路を導出する。 Next, the route calculation by agent-based modeling simulation using the transportation network will be explained in advance. 6 and 7 are flowcharts showing an example of the processing procedure of the prior route calculation. The transportation route determination device 4 (or another arithmetic unit may be used) repeats the following processing for each transportation network by changing the delivery conditions, and derives the optimum route for each delivery condition.

 処理部40は、対象の輸送ネットワークに対し、輸送機器1の初期位置及び数、パレットPの初期位置及び数、各パレットPのネットワーク内の輸送先を含む配送条件を設定する(S101)。配送条件は例えば、輸送ネットワークにおける拠点センター2に対応するノードに輸送機器1が位置し、100個のパレットPがその特定のノードに存在し、それらのパレットPを、他の3箇所のノードに40個、30個、20個輸送すること、である。輸送機器1の数は1又は複数でよいし、異なるノードに位置しているという配送条件でもよい。パレットPの種類は1つでも複数でもよい。 The processing unit 40 sets delivery conditions for the target transportation network, including the initial position and number of the transportation equipment 1, the initial position and number of the pallets P, and the transportation destination in the network of each pallet P (S101). The delivery condition is, for example, that the transportation device 1 is located at the node corresponding to the base center 2 in the transportation network, 100 pallets P exist at the specific node, and the pallets P are transferred to the other three nodes. Transporting 40, 30, and 20 pieces. The number of transport devices 1 may be one or more, or may be a delivery condition that they are located at different nodes. The type of pallet P may be one or more.

 処理部40は、実行回数を初期値に設定する(S102)。処理部40は、以下に示す処理を、複数回実行し、複数回実行した中で、出発地である特定のノードに存在していたパレットPが、輸送ネットワーク内での配荷地点へ分配が完了するまでに要した実行回数(輸送機器1があるノードに存在する状態から次のノードに移動する状態へのステップ数)が最も少ない、又は最も輸送機器1の輸送移動距離が最も少ない経路を導出する。 The processing unit 40 sets the number of executions to the initial value (S102). The processing unit 40 executes the following processes a plurality of times, and among the multiple executions, the pallet P existing at the specific node as the departure point is distributed to the distribution points in the transportation network. The route with the least number of executions (the number of steps from the state where the transport device 1 exists in one node to the state of moving to the next node) required to complete, or the route with the shortest transport travel distance of the transport device 1. Derived.

 処理部40は、ステップ数を初期値に設定する(S103)。処理部40は、以下に示すように輸送機器1をエージェントとするエージェントベースモデリングに基づく処理を、出発地である特定のノードに存在していたパレットPが、ネットワーク内での各輸送先へ分配が完了するまで実行する。 The processing unit 40 sets the number of steps to the initial value (S103). As shown below, the processing unit 40 distributes the processing based on the agent-based modeling using the transportation device 1 as an agent to each transportation destination in the network by the pallet P existing at the specific node as the departure point. Run until is complete.

 処理部40は、そのステップにて、エージェント(輸送機器1)に対応付けられたパレットP(積載されたパレットP)の数を取得する(S104)。処理部40は、エージェントが位置するノードに存在するパレットPの数を取得する(S105)。処理部40は、エージェントが位置するノードで積み上げるパレットPの数を決定し、記憶する(S106)。 In that step, the processing unit 40 acquires the number of pallets P (loaded pallets P) associated with the agent (transport equipment 1) (S104). The processing unit 40 acquires the number of palettes P existing in the node where the agent is located (S105). The processing unit 40 determines and stores the number of pallets P to be stacked at the node where the agent is located (S106).

 S106において処理部40は、エージェントが存在するノードが出発地であれば、エージェントである輸送機器1の空いている収容部を埋めるように、出発地に存在するパレットPを荷積みするように決定する。エージェントが存在するノードが経由地又は目的地であれば、処理部40は、収容部に収容しているパレットPの数と、ノードに必要なパレットPの数とを比較し、ノードに必要なパレットPの残数を減らすように、パレットPの数を決定する。 In S106, if the node in which the agent is located is the departure point, the processing unit 40 determines to load the pallet P existing in the departure point so as to fill the vacant storage section of the transport device 1 which is the agent. do. If the node in which the agent exists is a stopover or a destination, the processing unit 40 compares the number of pallets P accommodated in the accommodation unit with the number of pallets P required for the node, and is required for the node. The number of pallets P is determined so as to reduce the remaining number of pallets P.

 処理部40は、次に進むべき隣接ノードへのエッジを確率的に選択する(S107)。ここで輸送ネットワークにおいて存在しないエッジは、勿論選択されない。 The processing unit 40 probabilistically selects an edge to the adjacent node to proceed (S107). Here, of course, edges that do not exist in the transportation network are not selected.

 S107の選択処理において処理部40は、基本的に乱数によって確率的に選択する(解A)。後述するように、次のステップで進むべきノードに対する重みに基づく確率で選択してもよいし、エージェントに対応づけられているパレット数(積載数)がゼロになった場合には出発地(又は補給地)へ戻る、という条件付きで選択するようにしてもよい(解B)。処理部40は、1つステップが進む都度に、積載効率等の報酬を与える強化学習により、ノードを選択する重み係数を学習してもよい(解C)。この場合、処理部40は、より早く最適解にたどり着く可能性が高まる。処理部40は、その他、何突然変異のように、パラメータ(例えば確率)を1つ大きく変えてもよい(解D)。これにより、局所解に陥る可能性が低下する。 In the selection process of S107, the processing unit 40 basically selects stochastically by a random number (solution A). As will be described later, it may be selected with a probability based on the weight for the node to be advanced in the next step, or when the number of pallets (loading number) associated with the agent becomes zero, the starting point (or the number of loads) becomes zero. You may select it with the condition that you return to the supply area) (Solution B). The processing unit 40 may learn a weighting coefficient for selecting a node by reinforcement learning that gives a reward such as loading efficiency each time one step is advanced (solution C). In this case, the processing unit 40 is more likely to reach the optimum solution sooner. In addition, the processing unit 40 may greatly change the parameter (for example, probability) by one, like any mutation (solution D). This reduces the possibility of falling into a local solution.

 処理部40は、選択したエッジを経由して移動した先のノードに、積載中のパレットPを降ろした場合の、そのノードに存在するパレットPの数を算出する(S108)。S108において処理部40は、エージェントの移動前にそのノードに存在していたパレットPの数と、エージェントに対応付けられていた数との合計を算出する。 The processing unit 40 calculates the number of pallets P existing in the node when the pallet P being loaded is dropped onto the node moved via the selected edge (S108). In S108, the processing unit 40 calculates the total of the number of palettes P existing in the node before the movement of the agent and the number associated with the agent.

 処理部40は、ステップ数を加算して記憶し(S109)、エージェントの移動先のノードの識別データ、各ノードにおけるパレットPの数を記憶する(S110)。処理部40は、エージェントの移動後の、各ノードにおける状態を、多次元の行列(ベクトル)として扱って記憶するとよい。 The processing unit 40 adds and stores the number of steps (S109), stores the identification data of the node to which the agent is moved, and stores the number of palettes P in each node (S110). The processing unit 40 may treat and store the state at each node after the movement of the agent as a multidimensional matrix (vector).

 処理部40は、各ノードにおけるパレットPの数に基づき、輸送ネットワーク内で、配送条件に合致した配送が完了したか否かを判断する(S111)。 The processing unit 40 determines whether or not delivery matching the delivery conditions has been completed in the transportation network based on the number of pallets P in each node (S111).

 配送が完了していないと判断された場合(S111:NO)、ステップ数及びエッジに対応付けられている距離を累積移動距離に加算し(S112)、処理をS104へ戻す。S112において処理部40は、その実行回でのステップ数と累積移動距離とのいずれか一方のみを加算していってもよい。 If it is determined that the delivery has not been completed (S111: NO), the number of steps and the distance associated with the edge are added to the cumulative travel distance (S112), and the process is returned to S104. In S112, the processing unit 40 may add only one of the number of steps and the cumulative movement distance in the execution times.

 配送が完了したと判断された場合(S111:YES)、処理部40は、エージェントが経由したノードの識別データの履歴(輸送経路)及びステップ数を記憶する(S113)。 When it is determined that the delivery is completed (S111: YES), the processing unit 40 stores the history (transport route) of the identification data of the node via which the agent has passed and the number of steps (S113).

 処理部40は、S104-S113の処理を所定回数以上実行したか否か判断する(S114)。所定回数未満であると判断された場合(S114:NO)、処理部40は、実行回数を加算して(S115)、処理をS103へ戻す。 The processing unit 40 determines whether or not the processing of S104-S113 has been executed a predetermined number of times or more (S114). If it is determined that the number of times is less than the predetermined number (S114: NO), the processing unit 40 adds the number of executions (S115) and returns the processing to S103.

 S114において処理部40は、所定回数以上実行したか否かではなく、それまでの実行によって、最適解(最小ステップ数、又は最短累積距離)が得られたと判断されるか否かでもよいし、それ以上実行して最適解を導出できるか否かを判断してもよい。 In S114, the processing unit 40 may not determine whether or not the execution is performed more than a predetermined number of times, but whether or not it is determined that the optimum solution (minimum number of steps or the shortest cumulative distance) has been obtained by the execution up to that point. It may be executed further to determine whether or not the optimum solution can be derived.

 S114で所定回数以上実行したと判断された場合(S114:YES)、処理部40は、所定回数の中での最小のステップ数、又は最短の累積移動距離の輸送経路を抽出する(S116)。処理部40は、抽出した輸送経路を、その配送条件での最適解として記憶し(S117)、処理を終了する。 When it is determined in S114 that the execution has been performed a predetermined number of times or more (S114: YES), the processing unit 40 extracts the transportation route having the minimum number of steps or the shortest cumulative travel distance in the predetermined number of times (S116). The processing unit 40 stores the extracted transportation route as the optimum solution under the delivery conditions (S117), and ends the processing.

 図6及び図7のフローチャートに示した処理手順によって導出された輸送ネットワークごとの最適経路は、輸送経路決定装置4の記憶部41に、輸送経路情報414として、配送条件別に記憶される。 The optimum route for each transportation network derived by the processing procedure shown in the flowcharts of FIGS. 6 and 7 is stored in the storage unit 41 of the transportation route determination device 4 as transportation route information 414 for each delivery condition.

 図8、図9A及び図9Bは、最適経路の導出方法の内容例を示す図である。図8は、輸送ネットワークの模式図である。各ノードには、行列番号の識別情報が付されている。最初にi,jに位置していたエージェント(輸送機器1)は、隣のノードを確率的に選択する。ここで確率は、完全にランダムか、予め設定されている重みか、又は、出発地に残っているパレットPの数、目的地に足りていないパレットPの数、エージェントの積載パレット数、等で記述される状態の関数で記述されてもよい。 FIGS. 8, 9A and 9B are diagrams showing an example of the content of the method for deriving the optimum route. FIG. 8 is a schematic diagram of a transportation network. The identification information of the matrix number is attached to each node. The agent (transport equipment 1) initially located at i and j stochastically selects the adjacent node. Here, the probability is completely random, preset weight, or the number of pallets P remaining at the departure point, the number of pallets P not enough at the destination, the number of pallets loaded by the agent, etc. It may be described by a function in the state described.

 強化学習的な手法を適用する場合の例を示す。図9A及び図9Bは、輸送ネットワークの模式図である。図9A及び図9Bの輸送ネットワークには、状態に対する評価(報酬)を数値が付されている。図9Aは、初期状態を示し、図9Bは、時系列のエージェントのノードの選択履歴を示す。図9A及び図9Bにおいて各ノードには、行列番号の識別情報が付されてあり、出発地はノード(i+1,j)に、パレットPが2つあるとし、それぞれノード(i,j-1)及びノード(i+1,j+1)へ配送されるべき配送条件であるとする。 An example of applying a reinforcement learning method is shown. 9A and 9B are schematic views of the transportation network. The transportation networks of FIGS. 9A and 9B are given numerical values for evaluation (reward) for the condition. FIG. 9A shows the initial state, and FIG. 9B shows the selection history of the node of the agent in the time series. In FIGS. 9A and 9B, each node is attached with identification information of a matrix number, and it is assumed that the starting point is the node (i + 1, j) and there are two pallets P, respectively, and the nodes (i, j-1). And the delivery conditions to be delivered to the node (i + 1, j + 1).

 図9Aでは、初期状態に出発地にはパレットPの個数分だけマイナス評価の報酬を与え、エージェントへ積み込んだパレットPの個数だけプラス評価の報酬を与え、また、目的地に届いたパレットPの個数分だけプラス評価の報酬を与えるとする。収益を、報酬の和として強化学習を実行することによって、各エッジの選択の学習が実現される。 In FIG. 9A, in the initial state, the starting point is given a negative evaluation reward for the number of pallets P, the positive evaluation reward is given for the number of pallets P loaded on the agent, and the pallet P that has arrived at the destination. It is assumed that a reward for positive evaluation is given for each number. By executing reinforcement learning with profit as the sum of rewards, learning of selection of each edge is realized.

 次に、実際の物品の発注、輸送依頼に基づいてパレットPの移動経路及び輸送機器1の輸送経路を決定する際の処理手順について説明する。輸送経路決定装置4は、輸送機器1の移動、物品の発送によって車載機10から得られる情報、拠点センター2、集配センター3から得られる物品の在所情報に基づき物流DB410を逐次、更新する。輸送経路決定装置4は、物流DB410の更新と共に、輸送機器1の輸送機器1及びパレットPの移動経路を決定し、これに基づいて輸送機器1、拠点センター2、集配センター3における輸送、搬入及び搬出をコントロールする。 Next, the processing procedure for determining the movement route of the pallet P and the transportation route of the transportation equipment 1 based on the actual ordering of goods and the transportation request will be described. The transportation route determining device 4 sequentially updates the distribution DB410 based on the information obtained from the vehicle-mounted device 10 by moving the transportation device 1, the shipping of the goods, and the location information of the goods obtained from the base center 2 and the collection / delivery center 3. The transportation route determination device 4 determines the movement routes of the transportation equipment 1 and the pallet P of the transportation equipment 1 together with the update of the distribution DB410, and based on this, the transportation equipment 1, the base center 2, and the collection and delivery center 3 transport, carry in, and carry out. Control carry-out.

 図10及び図11は、輸送経路決定装置4による輸送経路決定処理手順の一例を示すフローチャートである。 10 and 11 are flowcharts showing an example of the transportation route determination processing procedure by the transportation route determination device 4.

 輸送経路決定装置4の処理部40は、パレットPの配置をパレット情報412及び輸送機器情報413から取得する(S201)。 The processing unit 40 of the transportation route determination device 4 acquires the arrangement of the pallets P from the pallet information 412 and the transportation equipment information 413 (S201).

 処理部40は、各パレットPの目的地及び到着希望時刻に基づき、所定時間後、又は特定の時点に、どこへ輸送されていなければならないかを示す条件を取得する(S202)。処理部40はS202において、S201の処理の時点から例えば3時間後にあるべき、拠点センター2又は集配センター3ごとのパレットPの数を集計する。 The processing unit 40 acquires a condition indicating where the pallet P must be transported after a predetermined time or at a specific time based on the destination and the desired arrival time of each pallet P (S202). In S202, the processing unit 40 totals the number of pallets P for each base center 2 or collection / delivery center 3, which should be, for example, 3 hours after the processing of S201.

 処理部40は、S201の処理で取得した、現状のパレットPの位置及び輸送機器1の位置、並びに、S202の処理で取得した、所定時間後のパレットP及び輸送機器1のあるべき条件に基づき、輸送ネットワークにおける輸送条件を決定する(S203)。 The processing unit 40 is based on the current position of the pallet P and the position of the transport device 1 acquired in the process of S201, and the conditions that the pallet P and the transport device 1 after a predetermined time should be acquired in the process of S202. , The transportation conditions in the transportation network are determined (S203).

 S203の処理において処理部40は、時間帯別に、輸送ネットワークでどこにパレットPがいて、どこまで到達しているべきかの輸送条件を求める。図12は、全体的なパレットPの経路と、区分された輸送ネットワークとの関係を示す。拠点センター2はネット状に接続されている。図12に示すように、各パレットPは、出発地の拠点センター2から、最終的な目的地の集配センター3までの間に跨る複数の区分された輸送ネットワークを経由する。図12の例では、1つのパレットPは、長野県の拠点センター2を出発し、滋賀県内の集配センター3を目的地とする。各時点におけるパレットPの位置から、以後どこへ輸送されるべきか決定し、複数のパレットP分を重ね合わせることで、区分された輸送ネットワークごとに、拠点センター2にパレットPがいくつ集まり、他の拠点センター2又は集配センター3へ輸送されていなければならないか、の輸送条件が決定できる。 In the processing of S203, the processing unit 40 obtains the transportation conditions of where the pallet P is located and how far it should be reached in the transportation network for each time zone. FIG. 12 shows the relationship between the overall pallet P route and the partitioned transport network. The base center 2 is connected in a net shape. As shown in FIG. 12, each pallet P passes through a plurality of partitioned transportation networks extending from the base center 2 at the departure point to the collection / delivery center 3 at the final destination. In the example of FIG. 12, one pallet P departs from the base center 2 in Nagano prefecture and destinations at the collection and delivery center 3 in Shiga prefecture. From the position of the pallet P at each time point, it is decided where to be transported thereafter, and by superimposing multiple pallet Ps, how many pallets P are gathered in the base center 2 for each divided transportation network, and others. It is possible to determine the transportation conditions of whether or not the material must be transported to the base center 2 or the collection and delivery center 3.

 処理部40は、1つの輸送ネットワークを選択し(S204)、その輸送ネットワークに対する輸送条件と類似する配送条件の最適経路を記憶部41に記憶してあるものから抽出し、記憶する(S205)。処理部40はS205において、輸送条件を記述する出発地のノードの識別情報、目的地のノードの識別情報、パレットの種類、パレットの個数を夫々次元として持つベクトルとして、配送条件とユークリッド距離を導出して距離がより短いものを、類似度がより高いものとして抽出する。 The processing unit 40 selects one transportation network (S204), extracts the optimum route of the delivery condition similar to the transportation condition for the transportation network from the one stored in the storage unit 41, and stores it (S205). In S205, the processing unit 40 derives the delivery condition and the Euclidean distance as a vector having the identification information of the node of the departure point that describes the transportation condition, the identification information of the node of the destination, the type of pallet, and the number of pallets as dimensions. Then, those with a shorter distance are extracted as those with a higher degree of similarity.

 S205において処理部40は、類似する配送条件の最適経路に対し、輸送条件との差分だけ、エージェントベースモデリングに基づく経路計算(図6及び図7)を実行し、個々の条件における最適経路を導出する。このとき確率的にノードを選択する場合に、類似する配送条件の最適経路と類似するエッジを選択するようにしてシミュレーションを行なってもよい。より最短の累積移動距離となるように、強化学習手法を取り入れて実行してもよい。 In S205, the processing unit 40 executes route calculation (FIGS. 6 and 7) based on agent-based modeling for the optimum route under similar delivery conditions only by the difference from the transportation condition, and derives the optimum route under each condition. do. At this time, when selecting a node stochastically, the simulation may be performed by selecting an edge similar to the optimum route with similar delivery conditions. Reinforcement learning techniques may be incorporated and implemented so that the cumulative travel distance is the shortest.

 処理部40は、すべての輸送ネットワークを選択したか否かを判断し(S206)、すべてのネットワークを選択していないと判断した場合(S206:NO)、処理をS204へ戻す。 The processing unit 40 determines whether or not all transportation networks have been selected (S206), and if it determines that all networks have not been selected (S206: NO), returns the processing to S204.

 すべての輸送ネットワークを選択したと判断された場合(S206:YES)、処理部40は、輸送ネットワークそれぞれに必要な輸送機器1の台数、必要とされた台数の輸送機器それぞれの最適な輸送経路、その配送条件(輸送すべきパレットPの種類、個数、パレット収容部の数)を取得し、記憶する(S207)。 When it is determined that all the transportation networks have been selected (S206: YES), the processing unit 40 determines the number of transportation devices 1 required for each transportation network, the optimum transportation route for each of the required number of transportation devices, and the optimum transportation route. The delivery conditions (type, number of pallets P to be transported, number of pallet accommodating units) are acquired and stored (S207).

 処理部40は、各所の輸送機器1の荷台のパレット収容部に対し、既に積載されているパレットPの情報、及び、S207の処理で取得した情報に基づき、パレット識別情報を割り当てて記憶する(S208)。 The processing unit 40 assigns and stores pallet identification information based on the information of the pallet P already loaded and the information acquired in the processing of S207 to the pallet accommodating unit of the loading platform of the transportation equipment 1 in each place (). S208).

 処理部40は、輸送機器1ごとに、区分された輸送ネットワークにおける輸送経路を部分経路として選択して全体の輸送経路を決定する(S209)。S209において処理部40は、輸送機器1に輸送ネットワーク内の経路を全体の輸送経路として決定してもよい。 The processing unit 40 selects a transportation route in the divided transportation network as a partial route for each transportation device 1 and determines the entire transportation route (S209). In S209, the processing unit 40 may determine the route in the transportation network for the transportation equipment 1 as the entire transportation route.

 処理部40は、パレットPごとのパレットPの移動経路、即ち、目的地までに乗り継ぐべき輸送機器1のパレット収容部を決定(更新)する(S210)。 The processing unit 40 determines (updates) the movement route of the pallet P for each pallet P, that is, the pallet accommodating unit of the transportation equipment 1 to be transferred to the destination (S210).

 処理部40は、各パレットPの移動経路に基づき、輸送機器1ごとに、経由地点である拠点センター2で搬出すべきパレットPのパレット識別情報と、そのパレットPが収容されている収容部の収容部識別情報とをリスト化する(S211)。 The processing unit 40 is based on the movement route of each pallet P, and for each transport device 1, the pallet identification information of the pallet P to be carried out at the base center 2 which is a transit point, and the storage unit in which the pallet P is housed. The storage unit identification information is listed (S211).

 処理部40は、各パレットPの移動経路に基づき、輸送機器1ごとに、経由地点である拠点センター2で搬入すべきパレットPのパレット識別情報と、そのパレットPが収容されるべきパレット収容部の収容部識別情報をリスト化する(S212)。 Based on the movement route of each pallet P, the processing unit 40 has pallet identification information of the pallet P to be carried in at the base center 2 which is a transit point, and a pallet storage unit in which the pallet P should be accommodated. The accommodation unit identification information of the above is listed (S212).

 処理部40は、決定した輸送機器1の輸送経路、パレットPの移動経路、各拠点センター2で搬出・搬入すべきパレットPのリストを出力する(S213)。処理部40は、出力内容に基づいて、車載機10、拠点コントローラ20、集配地装置30、及びパレットコントローラ23へ指示を送信し(S214)、処理を終了する。 The processing unit 40 outputs a list of the determined transport route of the transport device 1, the movement route of the pallet P, and the pallet P to be carried in / out at each base center 2 (S213). The processing unit 40 transmits an instruction to the on-board unit 10, the base controller 20, the collection / delivery site device 30, and the pallet controller 23 (S214) based on the output content, and ends the processing.

 このように、区分された輸送ネットワークにて演算済みの最適経路を参照し、輸送機器1の輸送経路及びパレットPの移動経路を決定し、これに基づきパレットP全体の移動をコントロールできる。 In this way, it is possible to refer to the optimum route calculated in the divided transportation network, determine the transportation route of the transportation equipment 1 and the movement route of the pallet P, and control the movement of the entire pallet P based on this.

 図10及び図11のフローチャートに示した処理手順の内、S205の処理にて、事前に導出しておいた最適経路を単に選択するのではなく、既に導出済みの経路と類似する条件の最適経路を基にして、その差分の条件に関する演算を追加することが好ましい。例えば5×5の輸送ネットワークにおける出発地と目的地とパレットPの種類及び個数とを指定した配送条件について、既に計算結果のある輸送機器の台数及び輸送経路の情報に加えて、追加分の集配地と目的地とパレット個数だけに対応する輸送機器の台数及び輸送経路の計算を行なって統合する。経路の演算結果を事前に蓄積しておくことで、計算時間はデータにアクセスする時間しか必要とならず、演算時間を短縮することができる。 Of the processing procedures shown in the flowcharts of FIGS. 10 and 11, in the processing of S205, the optimum route derived in advance is not simply selected, but the optimum route with conditions similar to those already derived. It is preferable to add an operation related to the difference condition based on. For example, for delivery conditions that specify the departure point, destination, and type and number of pallets P in a 5x5 transportation network, in addition to the information on the number of transportation equipment and the transportation route for which calculation results have already been calculated, additional collection and delivery Calculate and integrate the number of transport equipment and transport routes that correspond only to the land, destination, and number of pallets. By accumulating the calculation result of the route in advance, the calculation time requires only the time to access the data, and the calculation time can be shortened.

 (実施の形態2)
 実施の形態2では、エージェント及びパレットPの配置を初期状態から1ステップずつ確率的に移動させる処理を所定回数繰り返していく内に、これまでの最短のステップ数での輸送経路よりもよりよい経路を導出できそうにない状況になったタイミングで探索を終了させる。
(Embodiment 2)
In the second embodiment, the process of probabilistically moving the arrangement of the agent and the pallet P one step at a time from the initial state is repeated a predetermined number of times, and the route is better than the transportation route with the shortest number of steps so far. The search is terminated at the timing when it is unlikely that the search can be derived.

 図13及び図14は、実施の形態2における事前の経路演算の処理手順の一例を示すフローチャートである。図13及び図14のフローチャートに示す処理手順の内、図9及び図10のフローチャートに示した手順と共通する手順については同一の符号を付して詳細な説明を省略する。 13 and 14 are flowcharts showing an example of the processing procedure of the prior route calculation in the second embodiment. Of the processing procedures shown in the flowcharts of FIGS. 13 and 14, the procedures common to the procedures shown in the flowcharts of FIGS. 9 and 10 are designated by the same reference numerals and detailed description thereof will be omitted.

 実施の形態2では、処理部40は、選択中の拠点センター2を中心とした隣接する拠点センター2又は集配センターをノード、ノード間の経路をエッジとし、且つエッジに距離の情報を対応付けた地域内の距離付き輸送ネットワークを定義する(S121)。 In the second embodiment, the processing unit 40 uses the adjacent base center 2 or collection / delivery center centered on the selected base center 2 as a node, the route between the nodes as an edge, and associates the distance information with the edge. A distance transportation network within the region is defined (S121).

 処理部40は、エージェントの移動先のノードで、ノードに存在するパレットPの数を算出すると(S108)、ステップ数の加算のみならず、移動したエッジに対応付けられている距離を、累積移動距離として加算して記憶する(S129)。 When the processing unit 40 calculates the number of palettes P existing in the node at the node to which the agent is moved (S108), not only the number of steps is added but also the distance associated with the moved edge is cumulatively moved. It is added and stored as a distance (S129).

 処理部40は、S111の処理にて輸送ネットワーク内の配送が完了したと判断した場合(S111:YES)、エージェントが経由したノードの識別データの履歴(輸送経路)、累積移動距離及びステップ数を記憶する(S132)。これにより、各回での配送完了までに要したステップ数、移動距離、及び輸送経路が記憶される。 When the processing unit 40 determines that the delivery within the transportation network is completed by the processing of S111 (S111: YES), the processing unit 40 determines the history (transportation route) of the identification data of the node via which the agent has passed, the cumulative travel distance, and the number of steps. Remember (S132). As a result, the number of steps required to complete the delivery at each time, the travel distance, and the transportation route are stored.

 S111の処理にて輸送ネットワーク内の配送が完了していないと判断した場合(S111:NO)、処理部40は、ステップ数及び累積移動距離を加算し(S112)、輸送ネットワーク全体における配送の進捗率を算出する(S133)。S133において処理部40は、パレットPの数全体に対し、地域内の目的地に到達したパレットPの数の割合を、進捗率として算出する。S133において処理部40は進捗率として、未配送のパレットPの数の全体に対する割合等を進捗率として算出してもよい。 When it is determined in the processing of S111 that the delivery within the transportation network is not completed (S111: NO), the processing unit 40 adds the number of steps and the cumulative travel distance (S112), and the progress of delivery in the entire transportation network. Calculate the rate (S133). In S133, the processing unit 40 calculates the ratio of the number of pallets P that have reached the destination in the area to the total number of pallets P as the progress rate. In S133, the processing unit 40 may calculate the ratio of the number of undelivered pallets P to the whole as the progress rate as the progress rate.

 処理部40はS133の処理において、後述のS137における計算中の経路が最短経路を導出する見込みがあるか否かを判断するタイミングを決定する基準を導出すればよい。したがって、進捗率に限られず、計算回数であってもよいし、時間であってもよい。 In the processing of S133, the processing unit 40 may derive a standard for determining the timing for determining whether or not the route being calculated in S137, which will be described later, is likely to derive the shortest path. Therefore, it is not limited to the progress rate, and may be the number of calculations or the time.

 処理部40は、S133の処理で算出した進捗率が、条件を満たすか否かを判断する(S134)。S134で処理部40は例えば、進捗率(%)が10の倍数であるか否かで判断する。その他、進捗率に代替されて計算回数であれば、5の倍数であるか否か等で判断してもよいし、時間であれば経過時間が5の倍数であるか等で判断してもよい。 The processing unit 40 determines whether or not the progress rate calculated in the processing of S133 satisfies the condition (S134). In S134, the processing unit 40 determines, for example, whether or not the progress rate (%) is a multiple of 10. In addition, if it is the number of calculations instead of the progress rate, it may be judged whether it is a multiple of 5, or if it is time, it may be judged whether the elapsed time is a multiple of 5. good.

 S134の処理で条件を満たさないと判断された場合(S134:NO)、処理部40は、処理をS104に戻し、次に進める。 If it is determined that the conditions are not satisfied in the processing of S134 (S134: NO), the processing unit 40 returns the processing to S104 and proceeds to the next step.

 S134で条件を満たすと判断された場合(S134:YES)、処理部40は、今回のこれまでの移動距離を、S133の処理で算出した進捗率と対応付けて記憶する(S135)。処理部40は記憶した移動距離と、複数回輸送経路の計算を実行した移動距離の内、最短の移動距離の輸送経路を、S333の処理で算出した進捗率における距離と、幅を持たせて比較する(S136)。 When it is determined in S134 that the condition is satisfied (S134: YES), the processing unit 40 stores the travel distance so far this time in association with the progress rate calculated in the processing of S133 (S135). The processing unit 40 gives the memorized travel distance and the transport route with the shortest travel distance among the travel distances for which the calculation of the transport routes is executed a plurality of times, with the distance at the progress rate calculated by the processing of S333 and the width. Compare (S136).

 S136において処理部40は、例えば以下の式(1)のように計算する。それまでの移動距離をk、それまでに得られている輸送経路の内の最短距離の輸送経路のその進捗率(prog)における移動経路をkmin progとすると、式(1)は
  k<kmin +kmin ×(1-進捗率)…(1)
  kprog<kmin prog+kmin prog×(1-進捗率(prog))…(1)
 である。進捗率が10%のときの移動距離k10は、最短距離の輸送経路の進捗率10%における移動距離kmin 10の1.9倍と比較される。進捗率が20%のときの移動距離k20は、最短距離の輸送経路の進捗率20%における移動距離kmin 20の1.8倍と比較される。進捗率が90%のとき、移動距離k90は、最短距離の輸送経路の進捗率90%における移動距離kmin 90の1.1倍と比較される。それまでに得られた移動距離kが、比較値以上である場合、より最短距離の輸送経路を導出できる見込みはないと判断できる。
In S136, the processing unit 40 calculates, for example, as in the following equation (1). Assuming that the travel distance up to that point is k and the travel route at the progress rate (prog) of the shortest transport route among the transport routes obtained so far is kmin prog, the equation (1) is k <kmin + kmin. × (1-Progress rate) ... (1)
kprog <kmin prog + kmin prog × (1-progress rate (prog)) ... (1)
Is. The travel distance k10 when the progress rate is 10% is compared with 1.9 times the travel distance kmin 10 at the progress rate of 10% of the shortest transportation route. The travel distance k20 when the progress rate is 20% is compared with 1.8 times the travel distance kmin 20 at the progress rate of 20% of the shortest transportation route. When the progress rate is 90%, the travel distance k90 is compared with 1.1 times the travel distance kmin 90 at the progress rate 90% of the shortest transportation route. When the travel distance k obtained so far is equal to or greater than the comparison value, it can be determined that there is no possibility that the shortest transportation route can be derived.

 処理部40は、S136の比較処理の結果、以後配送のシミュレーションを進めて最短距離の輸送経路を導出できる見込みがあるのか否かを判断する(S137)。見込みなしと判断された場合(S137:NO)、処理部40は、今回の計算を途中で終了して処理をS114へ進める。 As a result of the comparison processing in S136, the processing unit 40 determines whether or not there is a possibility that the shortest distance transportation route can be derived by proceeding with the delivery simulation (S137). When it is determined that there is no possibility (S137: NO), the processing unit 40 ends the current calculation in the middle and proceeds to the processing to S114.

 S137で見込みありと判断された場合(S137:YES)、処理部40は計算を続行して処理をS104へ戻す。 If it is determined in S137 that there is a possibility (S137: YES), the processing unit 40 continues the calculation and returns the processing to S104.

 これにより、それ以上計算を進めても最短経路を導出する見込みのない場合には計算を中断して、計算時間を短縮させることができる。 As a result, if it is unlikely that the shortest path will be derived even if the calculation is further advanced, the calculation can be interrupted and the calculation time can be shortened.

 (実施の形態3)
 実施の形態3では、輸送ネットワークを、図5に示したような態様から更に、画素表現へ変換して演算に用いる。実施の形態2における物流システム100のハードウェア構成は、実施の形態1の構成と同様であるから、共通する構成については同一の符号を付して詳細な説明を省略する。
(Embodiment 3)
In the third embodiment, the transportation network is further converted into a pixel representation from the aspect shown in FIG. 5 and used for the calculation. Since the hardware configuration of the distribution system 100 in the second embodiment is the same as the configuration of the first embodiment, the common configurations are designated by the same reference numerals and detailed description thereof will be omitted.

 図15は、実施の形態3における輸送ネットワークの画素表現の説明図である。図15中の左上の画像は、輸送ネットワークの画素表現に対応する二次元画像を示し、図15中の中段左側の画像は、その画素表現に対する配送条件を示す二次元画像を示す。図15の左上の画像及び中段左側の画像は、同一の大きさの市松模様状の画像である。 FIG. 15 is an explanatory diagram of the pixel representation of the transportation network according to the third embodiment. The upper left image in FIG. 15 shows a two-dimensional image corresponding to the pixel representation of the transport network, and the middle left image in FIG. 15 shows a two-dimensional image showing delivery conditions for the pixel representation. The upper left image and the middle left image of FIG. 15 are checkered images of the same size.

 図15の左上の画像に示すように、実施の形態2では、輸送ネットワークは、格子柄の二次元画像で表現される。縦横に1つ置きのマス目が、輸送ネットワークにおけるノードに対応する。ノードに対応するマス目に対して縦横に隣り合うマス目が、ノード間のエッジ、即ち地点間の道路に対応する。ノードに対応するマス目と、エッジに対応するマス目とは、異なる色で表現されている。ノード間を結ぶ道路が存在しない場合には、透明又は無色(白色)で表現される。色に限らず、模様、マーク等の異なる属性を有したマス目で表現されるとよい。輸送ネットワークの画素表現は、図15の中段左側に示す配置条件における出発地点のマス目を特定のハッチングで示す出発地画像と、図15の中段右側に示す配置条件における配荷地点を示す目的地画像と、図15の右下の画像に示す地理情報に対応する道路画像とに分別することができる。出発地画像は、最初にパレットPが集積されている地点、例えば拠点センター2等の集荷地点、補給地点のノードに対応する画素範囲を特定のハッチングで表現している。 As shown in the upper left image of FIG. 15, in the second embodiment, the transportation network is represented by a two-dimensional image of a grid pattern. Every other square in the vertical and horizontal directions corresponds to a node in the transportation network. The squares that are vertically and horizontally adjacent to the squares corresponding to the nodes correspond to the edges between the nodes, that is, the roads between the points. The squares corresponding to the nodes and the squares corresponding to the edges are represented by different colors. When there is no road connecting the nodes, it is expressed as transparent or colorless (white). Not limited to color, it is preferable to express it by squares having different attributes such as patterns and marks. The pixel representation of the transportation network consists of a departure point image showing the squares of the starting point under the placement condition shown on the left side of the middle row of FIG. 15 by specific hatching, and a destination showing the distribution point under the placement condition shown on the right side of the middle row of FIG. The image can be separated into a road image corresponding to the geographical information shown in the lower right image of FIG. In the departure place image, the pixel range corresponding to the node where the pallet P is first accumulated, for example, the collection point such as the base center 2 and the supply point, is represented by specific hatching.

 図15の左上の画像に示すように、出発地画像、目的地画像及び道路画像を併せた画素表現により、経由地点の候補であるノード、ノード間の道路であるエッジを含む輸送ネットワークを簡易に記述することができる。 As shown in the upper left image of FIG. 15, a transportation network including a node that is a candidate for a waypoint and an edge that is a road between nodes can be easily created by a pixel representation that combines a departure image, a destination image, and a road image. Can be described.

 更に、図15の左上の二次元画像では、エッジの地理的な距離を、画素範囲における色の濃淡、輝度の高低で表現してもよいし、図15の中段左側の二次元画像では、パレットPが配置されている地点に対応する画素範囲の、その濃淡又は輝度の高低でパレットPの数を表現してもよい。 Further, in the two-dimensional image on the upper left of FIG. 15, the geographical distance of the edge may be expressed by the shade of color and the brightness in the pixel range, and in the two-dimensional image on the left side of the middle of FIG. 15, the palette is displayed. The number of palettes P may be expressed by the shade or the intensity of the pixel range corresponding to the point where P is arranged.

 このようにデータを標準化することにより、異なる地域における輸送ネットワークに対する処理を、同一のコンピュータプログラムで実施することが容易になる。地図上の位置に関する地理情報が、輸送ネットワークの頂点位置で近似される。輸送ネットワークのエッジとして、地理情報に存在する道路を表現する。斜めに走る道路、三差路、分岐点、曲がり角等も輸送ネットワークの縦横で近似してよい。このような標準化で、後述する用法での扱いが容易になる。 By standardizing the data in this way, it becomes easy to carry out processing for transportation networks in different regions with the same computer program. Geographical information about the location on the map is approximated at the top of the transport network. Represents a road that exists in geographic information as the edge of a transportation network. Diagonal roads, three-way junctions, junctions, corners, etc. may also be approximated in the vertical and horizontal directions of the transportation network. Such standardization facilitates handling in the usage described below.

 図15に示した画素表現の用法について説明する。これらの画素表現は、端末装置5の表示部53に表示されて、経路の探索中の状態や、最適経路を表示するために用いられてもよい。また、最適な経路を導出するための深層学習の入力データ及び出力データとして用いられてもよい。実施の形態1にて最短経路を導出した結果をオペレータに視認させるために、端末装置5の表示部53に表示されるとよい。 The usage of the pixel expression shown in FIG. 15 will be described. These pixel representations may be displayed on the display unit 53 of the terminal device 5 and used to display the state during the search for the route or the optimum route. Further, it may be used as input data and output data for deep learning for deriving the optimum route. In order for the operator to visually recognize the result of deriving the shortest path in the first embodiment, it may be displayed on the display unit 53 of the terminal device 5.

 深層学習を採用した場合の最適な経路の導出について説明する。図15に示すように輸送ネットワーク、その配送条件を画像データとして扱うことができる。したがって、画像処理に関して実績を有する畳み込みニューラルネットワークを用いた学習によって、選択されるべきエッジの重み付け等を表すデータを出力するといった学習が可能になる(図16)。 Explain the derivation of the optimum route when deep learning is adopted. As shown in FIG. 15, the transportation network and its delivery conditions can be handled as image data. Therefore, learning using a convolutional neural network that has a proven track record in image processing enables learning such as outputting data representing weighting of edges to be selected (FIG. 16).

 図16は、画素表現された輸送ネットワークの学習の模式図を示す。例えば図16に示すように、ニューラルネットワークを用いたモデルに、画素表現された輸送ネットワークの画像(図15の左上画像)を入力した場合に、輸送機器1の台数及び輸送経路をベクトル(輸送機器番号及び輸送経路の頂点の識別データの列)として出力することも可能になる。 FIG. 16 shows a schematic diagram of learning of a transportation network expressed in pixels. For example, as shown in FIG. 16, when an image of a transport network represented by pixels (upper left image in FIG. 15) is input to a model using a neural network, the number of transport devices 1 and the transport route are vectorized (transport devices). It is also possible to output as a sequence of identification data of numbers and vertices of the transportation route).

 図15に示したように、輸送経路決定装置4は、出発地画像、目的地画像、及び道路画像の3つに分離してそれぞれを、ニューラルネットワークを用いたモデルに入力し、輸送機器1の台数及び輸送経路を示すベクトルとして出力するように学習してもよい。 As shown in FIG. 15, the transportation route determination device 4 separates the departure point image, the destination image, and the road image and inputs each of them into a model using a neural network, and the transportation device 1 is used. It may be learned to output as a vector indicating the number of vehicles and the transportation route.

 このように、配送条件及び道路の状況を、画素表現で表した輸送ネットワークを用いることによって、画像認識、パターン認識等のニューラルネットワークで培われてきた技術に、適用することも可能である。 In this way, by using a transportation network that expresses delivery conditions and road conditions in pixel representation, it is possible to apply it to the techniques cultivated in neural networks such as image recognition and pattern recognition.

 また、図15に示したような画素表現とすることにより、端末装置5を操作するオペレータは、表示部53に表示された輸送ネットワークを視認して、輸送ネットワークを直感的に理解することができる。また、オペレータは、表示部53に表示された図15に示したような輸送ネットワークを視認することにより、どのノードにパレットPが存在し、どのノードへ輸送するべきかの配送条件を直感的に理解することができる。したがって、計算結果の妥当性の判断や、従来熟練者の勘に頼ってきた輸送機器1の台数及び輸送経路の補正を少なくとも一部自動化することが容易になる。 Further, by using the pixel representation as shown in FIG. 15, the operator who operates the terminal device 5 can visually recognize the transportation network displayed on the display unit 53 and intuitively understand the transportation network. .. Further, the operator can intuitively determine the delivery conditions of which node the pallet P exists in and which node should be transported by visually recognizing the transportation network as shown in FIG. 15 displayed on the display unit 53. I can understand. Therefore, it becomes easy to judge the validity of the calculation result and to automate at least a part of the correction of the number of transportation devices 1 and the transportation route, which has conventionally relied on the intuition of a skilled person.

 上述の実施の形態1から3では、輸送ネットワークは碁盤目状、格子状、市松模様状であった。しかしながら輸送ネットワークの定義は、これらの縦横の格子状に限られない。図17は、輸送ネットワークの他の表現を示す図である。輸送ネットワークは、図17に示すように正三角形を周期的に繰り返した形状に配置されるノードと、ノード間を結ぶエッジとで定義され、ノードに集配地点、輸送拠点、及び交通網における各地点を割り当てたものでもよい。また、図17に示すように、市松模様状に限られず、幾何学模様状の領域を含む二次元画像で輸送ネットワークが定義されてもよい。図17では、模様における任意の二方向に所定の間隔で配置されたノードの対応する領域を、図中の濃いグレー(ハッチング)で表現し、ノード間のエッジに対応する領域を、ノードに対応する領域と異なるドット柄の模様で表現している。このように単純な形状で輸送ネットワークを定義することにより、経路計算の処理が容易になる。幾何学模様状のパターンは正三角形に限らず、正六角形からなるハニカム状のネットワークでもよい。 In the above-mentioned embodiments 1 to 3, the transportation network had a grid pattern, a grid pattern, and a checkered pattern. However, the definition of transportation network is not limited to these vertical and horizontal grids. FIG. 17 is a diagram showing another representation of the transportation network. As shown in FIG. 17, a transportation network is defined by nodes arranged in a shape in which equilateral triangles are periodically repeated, and edges connecting the nodes. May be assigned. Further, as shown in FIG. 17, the transport network may be defined not only by the checkered pattern but also by a two-dimensional image including a geometric pattern region. In FIG. 17, the corresponding areas of the nodes arranged at predetermined intervals in arbitrary two directions in the pattern are represented by dark gray (hatching) in the figure, and the areas corresponding to the edges between the nodes correspond to the nodes. It is expressed with a dot pattern that is different from the area to be used. By defining the transportation network with such a simple shape, the processing of route calculation becomes easy. The geometric pattern is not limited to an equilateral triangle, but may be a honeycomb-shaped network consisting of regular hexagons.

 輸送ネットワークは、交通網の実状を踏まえて、複数の三次元的に表現されてもよい。交通網の実状とはここでは、道路であれば高速道路網、自動車専用道路、また異なる種類の輸送機器1での輸送を混在させるとすれば鉄道、航空、船舶等の経路の存在である。これらの異なる経路は、バイパスエッジとして定義されるとよい。図18は、バイパスエッジを含む輸送ネットワークを示す図である。図18では、バイパスエッジを、その種類によらず太破線で示す。鉄道、航空、船舶等の輸送機器1の種別に異なるレイヤに分別して表現してもよい。輸送ネットワークは、高速道路網のみのレイヤにてバイパスエッジを表現したものを含んでもよい。これらのバイパスエッジもS107の選択処理の対象とすることにより、単純化した輸送ネットワークであっても、複雑な系における経路計算を実行することが可能になる。 The transportation network may be represented in a plurality of three dimensions based on the actual condition of the transportation network. What is the actual state of the transportation network? Here, if it is a road, it is a highway network, an automobile-only road, and if transportation by different types of transportation equipment 1 is mixed, there are routes such as railroads, aviation, and ships. These different paths may be defined as bypass edges. FIG. 18 is a diagram showing a transportation network including a bypass edge. In FIG. 18, the bypass edge is shown by a thick dashed line regardless of its type. It may be divided into different layers according to the type of transportation equipment 1 such as railroad, aviation, and ship. The transportation network may include a representation of the bypass edge in layers of the highway network only. By targeting these bypass edges in the selection process of S107, it becomes possible to perform route calculation in a complicated system even in a simplified transportation network.

 バイパスエッジを含む輸送ネットワークは、市松模様状の二次元画像を重畳して定義してもよい。図19は、バイパスエッジを含む輸送ネットワークの画素表現の一例を示す図である。図19に示すように、輸送ネットワークは、2つの市松模様状の二次元画像を重畳して定義される。図19では、上部に重畳されている画像は、図15の輸送ネットワークの画素表現と同一である。ノードに対応するマス目と、道路に対応するマス目とを、異なる色、模様又はマーク等の属性の画素表現で示す。図19では、下部に示されている画像は、バイパスエッジの画像の一例を示す。バイパスエッジの画素表現では、バイパスエッジが接続されているノードに対応するマス目が、特定の属性で表現される。バイパスエッジの画像では、高速道路であるバイパスエッジは道路と同一の属性のマス目で表現され、水上輸送であるバイパスエッジは、道路と異なる属性のマス目で表現される。このように、異なる種類の交通網についても画素表現をすることにより、表示部53でオペレータが単純化された状態で視認できると共に、画像認識、パターン認識等のニューラルネットワークで培われてきた技術を適用して経路の計算等に利用することができる。 The transportation network including the bypass edge may be defined by superimposing a checkered two-dimensional image. FIG. 19 is a diagram showing an example of pixel representation of a transportation network including a bypass edge. As shown in FIG. 19, a transportation network is defined by superimposing two checkered two-dimensional images. In FIG. 19, the image superimposed on the top is the same as the pixel representation of the transport network of FIG. The squares corresponding to the nodes and the squares corresponding to the roads are indicated by pixel representations of attributes such as different colors, patterns or marks. In FIG. 19, the image shown at the bottom shows an example of an image of the bypass edge. In the pixel representation of the bypass edge, the square corresponding to the node to which the bypass edge is connected is represented by a specific attribute. In the image of the bypass edge, the bypass edge, which is a highway, is represented by a grid having the same attribute as the road, and the bypass edge, which is a water transport, is represented by a grid having a different attribute from the road. In this way, by expressing pixels for different types of transportation networks, the operator can visually recognize them in a simplified state on the display unit 53, and the techniques cultivated in neural networks such as image recognition and pattern recognition can be used. It can be applied and used for route calculation, etc.

 上述のように開示された実施の形態は全ての点で例示であって、制限的なものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれる。 The embodiments disclosed as described above are exemplary in all respects and are not restrictive. The scope of the present invention is indicated by the scope of claims and includes all modifications within the meaning and scope equivalent to the scope of claims.

 1 輸送機器
 P パレット
 4 輸送経路決定装置
 40 処理部
 41 記憶部
 410 物流DB
 414 輸送経路情報
 40P 制御プログラム
 
1 Transportation equipment P pallet 4 Transportation route determination device 40 Processing unit 41 Storage unit 410 Logistics DB
414 Transport route information 40P control program

Claims (14)

 複数の物品を集配する地点と、前記物品を輸送する輸送機器が経由する輸送拠点と、交通網における各地点とを、所定の単位パターンが周期的に繰り返される幾何学模様形状に配置されるノードに割り当て、隣接する前記地点又は輸送拠点を結ぶ経路を前記ノード間のエッジに割り当てた輸送ネットワークを定義し、
 前記輸送機器の輸送拠点を繋ぐ輸送経路を、前記輸送ネットワークにおける前記ノードの識別データのデータ列として決定する
 輸送経路決定方法。
A node in which a point for collecting and delivering a plurality of articles, a transportation base via which a transportation device for transporting the article passes, and each point in a transportation network are arranged in a geometric pattern in which a predetermined unit pattern is periodically repeated. Define a transportation network that assigns to the edge between the nodes with a route connecting the adjacent points or transportation bases.
A transportation route determination method for determining a transportation route connecting transportation bases of the transportation equipment as a data string of identification data of the node in the transportation network.
 前記輸送ネットワークは、碁盤の目状に配置されるノード及びエッジで定義される
 請求項1に記載の輸送経路決定方法。
The transportation route determination method according to claim 1, wherein the transportation network is defined by nodes and edges arranged in a grid pattern.
 前記交通網における各地点は、交通網における分岐点を含む
 請求項1又は2に記載の輸送経路決定方法。
The transportation route determination method according to claim 1 or 2, wherein each point in the transportation network includes a branch point in the transportation network.
 前記輸送ネットワークを表示し、
 表示された輸送ネットワークに対し前記ノード又はエッジの削除又は追加の補正を受け付け、
 補正後の輸送ネットワーク上で前記輸送経路を決定する
 請求項1から請求項3のいずれか1項に記載の輸送経路決定方法。
Display the transportation network and
Accepts deletion or additional correction of the node or edge for the displayed transport network,
The transportation route determination method according to any one of claims 1 to 3, wherein the transportation route is determined on the corrected transportation network.
 前記エッジにはそれぞれ、地理的な距離データが対応付けられている
 請求項1から請求項4のいずれか1項に記載の輸送経路決定方法。
The transportation route determination method according to any one of claims 1 to 4, wherein geographical distance data is associated with each of the edges.
 前記輸送ネットワークは、幾何学模様状の二次元画像として定義され、
 前記輸送ネットワークのノードは、前記幾何学模様における任意の二方向に所定の間隔で配置された所定の色、模様又はマークを含む属性を有する領域で表現され、前記ノード間のエッジは、前記所定の属性の領域間に位置し、前記所定の属性と異なる属性の領域で表現される
 請求項1から請求項5のいずれか1項に記載の輸送経路決定方法。
The transport network is defined as a two-dimensional image of a geometric pattern.
The nodes of the transport network are represented by regions in the geometric pattern having attributes containing predetermined colors, patterns or marks arranged at predetermined intervals in any two directions, and the edges between the nodes are the predetermined. The transportation route determination method according to any one of claims 1 to 5, which is located between the regions of the attribute of the above and is represented by the region of the attribute different from the predetermined attribute.
 前記輸送ネットワークは、格子柄の二次元画像として定義され、
 前記輸送ネットワークのノードは、前記二次元画像における縦横1つおきに所定の色、模様又はマークを含む属性のマス目で表現され、前記ノード間のエッジは、前記所定の属性のマス目の縦又は横に隣り合い、前記所定の属性と異なる属性のマス目で表現される
 請求項1から請求項5のいずれか1項に記載の輸送経路決定方法。
The transport network is defined as a two-dimensional image of a grid pattern.
The nodes of the transport network are represented by the grids of attributes including a predetermined color, pattern, or mark every other vertical and horizontal direction in the two-dimensional image, and the edges between the nodes are the vertical rows of the squares of the predetermined attributes. The transportation route determination method according to any one of claims 1 to 5, which is next to each other and is represented by squares having attributes different from the predetermined attributes.
 前記輸送ネットワークの二次元画像は、前記物品の集荷地点のノードに対応するマス目を特定の属性で表現した出発地画像と、前記物品の配荷地点のノードに対応するマス目を前記所定の属性で表現した目的地画像と、前記エッジに対応するマス目を前記異なる属性で表現した道路画像とを重ね合わせたものである
 請求項7に記載の輸送経路決定方法。
In the two-dimensional image of the transportation network, the starting point image representing the square corresponding to the node of the pick-up point of the article with a specific attribute and the square corresponding to the node of the delivery point of the article are defined as the predetermined squares. The transportation route determination method according to claim 7, wherein the destination image represented by the attribute and the road image representing the squares corresponding to the edges with the different attributes are superimposed.
 前記輸送ネットワークは、特定のノード間を接続する前記エッジと異なるバイパスエッジを含む
 請求項1から請求項8のいずれか1項に記載の輸送経路決定方法。
The transportation route determination method according to any one of claims 1 to 8, wherein the transportation network includes a bypass edge different from the edge connecting specific nodes.
 前記輸送ネットワークは、複数の幾何学模様状の二次元画像を重畳して定義され、
 前記輸送ネットワークのノードは、一の二次元画像内の前記幾何学模様における任意の二方向に所定の間隔で配置された所定の色、模様又はマークを含む属性を要する領域で表現され、前記ノード間のエッジは、前記所定の属性の領域間に位置し、前記所定の属性と異なる属性の領域で表現され、
 前記バイパスエッジは、他の二次元画像内の特定のノードに対応する領域間の特定の属性の領域で表現される
 請求項9に記載の輸送経路決定方法。
The transportation network is defined by superimposing two-dimensional images of a plurality of geometric patterns.
A node of the transport network is represented by a region in a two-dimensional image that requires an attribute containing predetermined colors, patterns, or marks arranged at predetermined intervals in any two directions in the geometric pattern. The edge between them is located between the regions of the predetermined attribute and is represented by the region of the attribute different from the predetermined attribute.
The transport route determination method according to claim 9, wherein the bypass edge is represented by a region having a specific attribute between regions corresponding to a specific node in another two-dimensional image.
 地図データに基づいて前記輸送ネットワークを定義し、
 定義された前記輸送ネットワークのノードに対応する輸送拠点又は集荷地点から、輸送機器が次に経由する輸送拠点又は配荷地点のノードを順次、確率的に選択する選択処理を、物品の配荷地点への輸送を完了するまで繰り返すシミュレーション工程、
 前記シミュレーション工程で得られる輸送経路に対する所定の評価量を算出する工程、並びに、
 前記シミュレーション工程及び前記所定の評価量の算出工程を所定の範囲内で繰り返して得られる複数の輸送経路の中から、前記所定の評価量に基づいて輸送経路を決定する工程
 を含む請求項1から10のいずれか1項に記載の輸送経路決定方法。
Define the transportation network based on the map data,
From the transportation base or collection point corresponding to the node of the defined transportation network, the selection process of sequentially and probabilistically selecting the node of the transportation base or distribution point to which the transportation equipment passes next is performed at the distribution point of the goods. Simulation process that repeats until transportation to is completed,
A step of calculating a predetermined evaluation amount for a transportation route obtained in the simulation step, and a step of calculating a predetermined evaluation amount, and
From claim 1 including a step of determining a transport route based on the predetermined evaluation amount from a plurality of transport routes obtained by repeating the simulation step and the calculation step of the predetermined evaluation amount within a predetermined range. The transportation route determination method according to any one of 10.
 前記輸送ネットワークの画像データを入力した場合に、前記輸送ネットワークにおける前記物品の輸送経路を示すベクトルデータを出力するように学習される学習モデルを作成し、
 前記物品の集荷地点及び配荷地点を示す画像を入力した場合に前記学習モデルから出力されたベクトルデータに基づいて前記輸送経路を決定する
 請求項7又は8に記載の輸送経路決定方法。
When the image data of the transportation network is input, a learning model that is trained to output vector data indicating the transportation route of the article in the transportation network is created.
The transportation route determination method according to claim 7 or 8, wherein the transportation route is determined based on the vector data output from the learning model when an image showing the collection point and the distribution point of the article is input.
 複数の物品を集配する地点と、前記物品を輸送する輸送機器が経由する輸送拠点と、交通網における各地点とを、所定の単位パターンが周期的に繰り返される幾何学模様形状に配置されるノードに割り当て、隣接する前記地点又は輸送拠点を結ぶ経路を前記ノード間のエッジに割り当てた輸送ネットワークを定義し、
 前記輸送機器の輸送拠点を繋ぐ輸送経路を、前記輸送ネットワークにおける前記ノードの識別データのデータ列として決定する
 処理部を備える輸送経路決定装置。
A node in which a point for collecting and delivering a plurality of articles, a transportation base via which a transportation device for transporting the article passes, and each point in a transportation network are arranged in a geometric pattern in which a predetermined unit pattern is periodically repeated. Define a transportation network that assigns to the edge between the nodes with a route connecting the adjacent points or transportation bases.
A transportation route determination device including a processing unit that determines a transportation route connecting transportation bases of the transportation equipment as a data string of identification data of the node in the transportation network.
 コンピュータに、
 複数の物品を集配する地点と、前記物品を輸送する輸送機器が経由する輸送拠点と、交通網における各地点とを、所定の単位パターンが周期的に繰り返される幾何学模様形状に配置されるノードに割り当て、隣接する前記地点又は輸送拠点を結ぶ経路を前記ノード間のエッジに割り当てた輸送ネットワークを定義し、
 前記輸送機器の輸送拠点を繋ぐ輸送経路を、前記輸送ネットワークにおける前記ノードの識別データのデータ列として決定する
 処理を実行させるコンピュータプログラム。
 
On the computer
A node in which a point for collecting and delivering a plurality of articles, a transportation base via which a transportation device for transporting the article passes, and each point in a transportation network are arranged in a geometric pattern in which a predetermined unit pattern is periodically repeated. Define a transportation network that assigns to the edge between the nodes with a route connecting the adjacent points or transportation bases.
A computer program that executes a process of determining a transportation route connecting transportation bases of the transportation equipment as a data string of identification data of the node in the transportation network.
PCT/JP2020/043930 2020-11-26 2020-11-26 Transportation route determination method, transportation route determination device, and computer program Ceased WO2022113222A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021540039A JP7786676B2 (en) 2020-11-26 Transportation route determination method, transportation route determination device, and computer program
PCT/JP2020/043930 WO2022113222A1 (en) 2020-11-26 2020-11-26 Transportation route determination method, transportation route determination device, and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/043930 WO2022113222A1 (en) 2020-11-26 2020-11-26 Transportation route determination method, transportation route determination device, and computer program

Publications (1)

Publication Number Publication Date
WO2022113222A1 true WO2022113222A1 (en) 2022-06-02

Family

ID=81755393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043930 Ceased WO2022113222A1 (en) 2020-11-26 2020-11-26 Transportation route determination method, transportation route determination device, and computer program

Country Status (1)

Country Link
WO (1) WO2022113222A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024179245A (en) * 2023-06-14 2024-12-26 株式会社日立製作所 Collection and delivery relay point determination device and collection and delivery relay point determination method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504724A (en) * 1999-07-02 2003-02-04 ピーアールアイ オートメーション インコーポレイテッド Dynamic route calculation method based on traffic volume
JP2014054151A (en) * 2012-09-10 2014-03-20 Toshiba Corp Graph structure building device of transport network, graph structure building system, graph structure building method and graph structure building program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504724A (en) * 1999-07-02 2003-02-04 ピーアールアイ オートメーション インコーポレイテッド Dynamic route calculation method based on traffic volume
JP2014054151A (en) * 2012-09-10 2014-03-20 Toshiba Corp Graph structure building device of transport network, graph structure building system, graph structure building method and graph structure building program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024179245A (en) * 2023-06-14 2024-12-26 株式会社日立製作所 Collection and delivery relay point determination device and collection and delivery relay point determination method
JP7624477B2 (en) 2023-06-14 2025-01-30 株式会社日立製作所 Collection and delivery relay point determination device and collection and delivery relay point determination method

Also Published As

Publication number Publication date
JPWO2022113222A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
Ostermeier et al. Cost‐optimal truck‐and‐robot routing for last‐mile delivery
EP3797393B1 (en) Systems, apparatuses, and methods of efficient route planning for e-commerce fulfillment
US10380534B2 (en) Autonomous supply and distribution chain
Bräysy et al. Vehicle routing problem with time windows, Part I: Route construction and local search algorithms
Desrochers et al. A new optimization algorithm for the vehicle routing problem with time windows
Clarke et al. Scheduling of vehicles from a central depot to a number of delivery points
Gendreau et al. A tabu search algorithm for a routing and container loading problem
US8626540B2 (en) Method and apparatus for transportation planning based on mission-specific vehicle capacity constraints
CA2971191C (en) Cross-dock management system, method and apparatus
RU2571580C2 (en) Method and device enabling use of objects with predetermined coordinates for locating industrial vehicles
JP6362229B1 (en) Logistics system
Van der Meer Operational control of internal transport
JP7072959B2 (en) Information processing methods, information processing devices, and computer programs
JP7561350B2 (en) Transportation route determination method, computer program, and transportation route determination device
Ellithy et al. AGV and Industry 4.0 in warehouses: a comprehensive analysis of existing literature and an innovative framework for flexible automation
Jucha Use of artificial intelligence in last mile delivery
CN114912704A (en) Method, system and computer readable recording medium for optimizing warehouse layout
US11537977B1 (en) Method and system for optimizing delivery of consignments
JP2020083548A (en) Transport system, transport control unit and logistics layout
KR101955892B1 (en) System and method for optimizing loading plan of car carrier ships
WO2022113222A1 (en) Transportation route determination method, transportation route determination device, and computer program
JP2005043974A (en) Transportation schedule creation method and system
JP7786676B2 (en) Transportation route determination method, transportation route determination device, and computer program
Saha et al. Prioritization of AI-based material handling approaches for smart logistics in sustainable warehouses: A q-rung orthopair fuzzy CoCoSo methodology with consensus reaching: A. Saha et al
Fang et al. Research on configuration and scheduling model of aerial disaster response system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021540039

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963487

Country of ref document: EP

Kind code of ref document: A1