[go: up one dir, main page]

WO2022153490A1 - Dielectric constant measurement method - Google Patents

Dielectric constant measurement method Download PDF

Info

Publication number
WO2022153490A1
WO2022153490A1 PCT/JP2021/001303 JP2021001303W WO2022153490A1 WO 2022153490 A1 WO2022153490 A1 WO 2022153490A1 JP 2021001303 W JP2021001303 W JP 2021001303W WO 2022153490 A1 WO2022153490 A1 WO 2022153490A1
Authority
WO
WIPO (PCT)
Prior art keywords
admittance
measured
dielectric constant
measuring
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2021/001303
Other languages
French (fr)
Japanese (ja)
Inventor
昌人 中村
卓郎 田島
倫子 瀬山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Inc
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to PCT/JP2021/001303 priority Critical patent/WO2022153490A1/en
Publication of WO2022153490A1 publication Critical patent/WO2022153490A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables

Definitions

  • the present invention relates to a method for measuring a dielectric constant.
  • electromagnetic waves in the microwave-millimeter wave band are less scattered in the living body than optical methods such as near-infrared light, and the energy of one photon is low.
  • a method using is proposed.
  • Non-Patent Document 1 there is a method using the resonance structure shown in Non-Patent Document 1.
  • a device having a high Q value such as an antenna or a resonator is brought into contact with the measurement sample, and the frequency characteristics around the resonance frequency are measured. Since the resonance frequency is determined by the complex permittivity around the device, the component concentration is estimated from the shift amount of the resonance frequency by predicting the correlation between the shift amount of the resonance frequency and the component concentration in advance.
  • the dielectric spectroscopy shown in Patent Document 1 As another method using electromagnetic waves in the microwave-millimeter wave band, the dielectric spectroscopy shown in Patent Document 1 has been proposed.
  • dielectric spectroscopy an electromagnetic wave is irradiated into the skin, the electromagnetic wave is absorbed according to the interaction between a blood component to be measured, for example, a glucose molecule and water, and the amplitude and phase of the electromagnetic wave are observed.
  • the dielectric relaxation spectrum is calculated from the amplitude and phase of the observed electromagnetic wave with respect to the frequency.
  • the dielectric relaxation spectrum is generally expressed as a linear combination of relaxation curves based on the Core-Cole equation, and the complex permittivity is calculated.
  • the complex permittivity has a correlation with the amount of blood components such as glucose and cholesterol contained in blood, and is measured as an electric signal (amplitude, phase) corresponding to the change.
  • a calibration model is constructed by measuring the correlation between the change in the complex permittivity and the component concentration in advance, and the component concentration is calibrated from the measured change in the dielectric relaxation spectrum. Regardless of which method is used, it is important to measure the change in permittivity in advance by wideband dielectric spectroscopy because the measurement sensitivity can be expected to improve by selecting a frequency band that has a strong correlation with the target component. Is.
  • the method using a coaxial probe as shown in Non-Patent Documents 2 and 3 is a sample in which water or the like is easily available for calibrating the measuring instrument.
  • a coaxial probe Open-end coaxial probe or Open-end coaxial line
  • measurement using a conventional coaxial probe is based on the premise that the substance to be measured has a sufficient thickness, and for thin-layer samples and multilayer materials, the thickness of the material and the dielectric constant of a part of the material are known. Otherwise, there is a problem that the dielectric constant of the layered material cannot be measured.
  • the uniformity according to the present invention is the step of calibrating the measuring device using the standard sample and the measured value of the admittance yi of the probe end face of the measuring device calculated based on the measurement result of the dielectric constant of the standard sample. And the theoretical value of the admitance y i of the probe end face when the object to be measured is the standard sample, and the error component of the theoretical value of the admitance y i with respect to the measured value of the admitance y i is calculated.
  • This is a method for measuring the dielectric constant which comprises a step of calculating the dielectric constant of the substance to be measured by substituting the measured value of the admittance ym corrected as the theoretical value of the admittance ym .
  • the present invention it is possible to provide a method for measuring the dielectric constant capable of accurately measuring the dielectric constant of a MUT having an arbitrary shape.
  • the admittance of the probe end face is calculated using the interface between the coaxial probe and the substance to be measured as the calibration end face using three types of calibration standards as in the conventional coaxial method. It is represented by an equivalent circuit model consisting of capacitance and radiation admittance.
  • the parasitic element component is identified in advance using the measurement result of the calibration standard, and the admittance using the parasitic element component is corrected so that the admittance is equivalent to the analytical formula. Perform an inverse problem analysis on the admittance measurements corrected using the admittance model formula for any single or layered material.
  • the complex permittivity of the MUT can be measured accurately even when measuring a layered material or when measuring a high frequency band such as a millimeter wave or a THz wave.
  • the dielectric constant analysis method has the following steps.
  • Step a Calibrate the measuring device with a standard sample.
  • Step b The measured value of the admittance yi of the probe end face of the measuring device calculated based on the measurement result of the dielectric constant of the standard sample, and the theoretical value of the admittance yi of the probe end face when the object to be measured is the standard sample. And, are used to calculate the error component of the theoretical value of admittance yi with respect to the measured value of admittance yi.
  • Step c The dielectric constant of the substance to be measured is measured with a measuring device.
  • Step d The measured value of the admittance ym of the probe end face of the measuring instrument is calculated based on the measurement result of the dielectric constant of the substance to be measured.
  • Step e The measured value of the admittance ym of the probe end face is corrected by using the error component.
  • Step f Substituting the measured value of admittance ym corrected as the theoretical value of admittance ym into a model formula expressing the relationship between the theoretical value of admittance ym and the permittivity of the substance to be measured, the dielectric constant of the substance to be measured. Calculate the rate.
  • FIG. 1 shows a schematic diagram of the dielectric constant measuring method according to the present embodiment.
  • the measuring instruments include a display that displays the calculation result of the permittivity, a calculator that calculates the permittivity from the measurement results obtained by the measuring instrument, and a measuring instrument for measuring high frequency characteristics.
  • a coaxial probe which is an interface for contacting the MUT.
  • the display may be, for example, a display such as a measuring instrument or a PC.
  • the arithmetic unit may be a device capable of digital data processing such as a PC and a microcomputer.
  • a device capable of measuring high-frequency S-parameters and impedance such as a vector network analyzer or an impedance analyzer, or an IC chip capable of measuring its reflection characteristics by transmitting and receiving high frequencies may be used.
  • a known measuring device may be used.
  • FIG. 2 show a schematic diagram when a general-purpose measuring instrument is used as a measuring instrument and when an IC for measurement is used.
  • the measuring instrument and the coaxial probe are connected using a high-frequency cable, a transmission line formed on a high-frequency substrate, and a high-frequency connector.
  • a coaxial line may be used for the high-frequency cable, and a microstrip line, a coplanar line, a coplanar strip, or the like may be used for the transmission line.
  • a coaxial type connector such as SMA, SMK, SMV, 1 mm connector, a push-on type connector such as SMP, SMPM, or the like may be used.
  • FIG. 8 is a flowchart of a method for measuring the dielectric constant in the conventional method.
  • calibration is generally performed to eliminate the influence of high frequency characteristics such as cables and connectors.
  • the calibration end face becomes the AA'plane in FIG.
  • the relationship between the linear mapping between the reflectance coefficient ⁇ and admittance y when air, metal (metal for shorting), water and MUT used as standard samples is installed is expressed by the following equations (1) and (2). expressed.
  • the subscripts 1 to 3 correspond to the standard sample, and m corresponds to the MUT.
  • the equivalent circuit of admittance on the end face of the coaxial probe, that is, the BB'plane of FIG. 2 is represented by FIG. 8 (b-2).
  • C 0 is a capacitance component that spreads from the probe end face into the vacuum in the vacuum.
  • G 0 is the radiation conductance from the coaxial probe end face to the vacuum.
  • the relational expression of Eq. (3) is derived by regarding the element components other than the capacitance component and the radiation conductance as minute dipoles.
  • the radiation admittance G of the antenna of the medium having a dielectric constant ⁇ has the relation of the equation (4). From equations (3) and (4), a proportional relationship is derived from G 0 and ⁇ to the 2.5th power of the second term on the right side of equation (2).
  • s and w refer to calibration standard air, metal and water.
  • the permittivity is calculated from the ratio of the equivalent circuit assuming that the MUT is a uniform dielectric material. Therefore, when measuring a material such as a layered material whose dielectric constant distribution in the depth direction is not uniform, Since the effective permittivity up to the penetration depth of the probe is measured, the measurement result may differ depending on the measurement probe. For the same reason, even when the thickness of the MUT is less than or equal to the penetration depth of the probe, the dielectric constant of the mechanism for fixing the material such as the microchannel and the sample setting table may affect the measurement result. In addition, in the conventional method, the radiated electromagnetic field from the end face of the coaxial probe is ignored as sufficiently small, or is represented by a model approximated as a minute dipole.
  • the measurement accuracy may decrease in the frequency band above the GHz band. Further, as the measurement frequency becomes higher, the influence of the radiation conductance of the coaxial probe increases, which may cause an error factor used in the approximation of the conventional method.
  • FIG. 3 shows a flowchart of the dielectric spectroscopy method of the present embodiment.
  • calibration is performed by the same method as the conventional method.
  • the calibration of FIG. 3 is step a.
  • the step of calculating the correction element parameter of FIG. 3 is step b.
  • the admittance theoretical formula of the coaxial probe end face at the time of MUT installation is constructed with the variable as the permittivity of the MUT, and the dielectric constant of the MUT is analyzed so as to satisfy the measured value. Is calculated.
  • the theoretical formula of admittance is the mathematical expression of the admittance of the coaxial probe.
  • the integral-admittance model shown in the formula (9) may be used.
  • the step of measuring the reflectance coefficient of the MUT in FIG. 3 is step c.
  • the calculation of the admittance Ymeas in FIG. 3 is the step d.
  • ⁇ c is the permittivity of the insulator of the coaxial line
  • km is the number of waves when propagating the MUT at the measurement frequency
  • ⁇ m and ⁇ m are the permittivity of the MUT and the propagation constant of the electromagnetic wave when propagating the MUT
  • J 0 (x). ) Is a 0th order Vessel function.
  • the variable ⁇ is a variable generated by the Hankel transform.
  • the theoretical formula of admittance The mathematical expression of admittance of the coaxial probe may use a Transmission line model or the like in which the distance between the end face of the coaxial probe and the MUT is expressed by the coupling of propagation constants.
  • the correction of the influence based on the admittance model of FIG. 3 is step e.
  • the electromagnetic wave on the coaxial end face is composed of a reflected wave returning from the MUT to the measuring instrument and a radiated wave radiated into space when the coaxial probe is regarded as a minute antenna. Therefore, in the present embodiment, the admittance model of the coaxial probe is represented by the equivalent circuit shown in FIG. In FIG. 4, both C fcal and C f indicate the fringe capacitance of the electric field generated in the coaxial probe internal insulator.
  • C fcal indicates the capacitance component deembed by the probe end face according to the equation (5) or (8).
  • C 0 indicates the capacitance component extending from the probe end face into the vacuum in vacuum, and Yant indicates radiative admittance.
  • the radiated admittance is modeled as the radiated conductance of a minute dipole as shown in FIG. 8 (b-2).
  • the radiated admittance is expressed by using a series resonance or a parallel resonance circuit.
  • circuit elements may be added to model the radiated admittance as a circuit having more complicated resonance characteristics.
  • the calibration used in Eq. (5) or (8) deembeds the error component assuming that the metal is a short circuit, the air is an open circuit, and the water is an arbitrary load. Therefore, the circuit components included in the calibration end face BB'in FIG. 2 are only C f and ⁇ C 0 in FIG. 4, and there is a possibility that a discrepancy with the circuit components of the theoretical model may occur.
  • the error between the theoretical formula of admittance of the coaxial probe end face and the measured value in the conventional method is the radiation term Yant. It is assumed that it is caused by.
  • the error component Yant ( ⁇ wc ) when measuring water having a dielectric constant ⁇ wc can be expressed by Eq. (11). ..
  • Y measured ( ⁇ wc ) is the admittance of the coaxial probe when MUT is water, which is calculated by using Eq. (5).
  • Yant ( ⁇ wc ) has the waveform shown in FIG. Therefore, Yant ( ⁇ wc ) can be expressed by, for example, an RLC series resonant circuit.
  • Yant ( ⁇ wc ) is the antenna radiation term
  • Yant ( ⁇ wc ) can be expressed as equation (13) using the radiation admittance Yant ( ⁇ 0 ) in vacuum.
  • the radiating element component removed by the deembed is extracted.
  • the model equation of the coaxial probe when the material having an effective dielectric constant ⁇ eff is MUT is the equation (14).
  • the admittance and the permittivity ⁇ r are measured at the time of MUT measurement, and the measured value Y measured ( ⁇ r ) of the admittance is corrected by using the equation (14) to reduce the error from the model equation.
  • the calculation of the complex permittivity by the inverse problem analysis of FIG. 3 is step f.
  • FIG. 7 shows a comparison between the measured values of admittance before and after the correction and the model formula. It can be seen that the error between the measured value and the model formula is reduced by the proposed method, and the admittance model can be corrected so as to match the model formula. Then, ⁇ r that satisfies Eq. (15) is calculated by inverse problem analysis. Y oriented is the admittance corrected by the equation (14), and Y model ( ⁇ r ) is, for example, the equation (9). If the MUT is not a uniform material and its shape is known, a model including the shape of the MUT may be used as the Y model . For example, when the MUT is a layered material composed of two layers, it is shown as in Eq. (16). Here, the subscripts 1 and 2 are the first layer and the second layer of the layered material, and the side in contact with the probe end face is the first layer. Further, the variable d1 indicates the layer thickness of the first layer.
  • the layer thickness d1 of the first layer and the permittivity ⁇ 2 of the second layer are known, they are used as constants, and if they are unknown, they are added as variables and the inverse problem analysis is performed. You may. Further, the theoretical formula Y model may be used as an analysis formula based on electromagnetism for the admittance of the coaxial probe end face at the time of MUT measurement for any shape of MUT such as a multilayer material. This makes it possible to analyze the inverse problem for any shape.
  • equations (9) and (16) are generally non-linear functions
  • the inverse problem represented by equation (15) is an optimization method represented by, for example, the simplex method, the steepest descent method, or particle swarm optimization. , May be calculated using a numerical calculation method such as a neural network. As described above, the influence of radiation admittance is suppressed, and highly accurate dielectric spectroscopy for MUTs of arbitrary shapes becomes possible.
  • the measured admittance is corrected by using the correction formula, and the permittivity is measured by the inverse problem analysis of the correction value and the theoretical model of admittance.
  • the influence of parasitic components is corrected for the admittance measurement value of the coaxial probe at the time of sample measurement, and the inverse problem analysis of the admittance model formula of a single or layered material based on the electromagnetic field theory is performed.
  • the complex permittivity of the substance to be measured (MUT: Material Under the Test) can be measured with higher accuracy.
  • the present invention since it can be applied to a permittivity measuring device for a solution existing in a human or an animal and a permittivity measuring device for a solution collected from a human or an animal, it has high industrial utility value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

One embodiment of the present invention is a dielectric constant measurement method having: a step for performing calibration; a step for calculating a theoretical error component of an admittance yi, with respect to the actual value of the admittance yi; a step for measuring, with a measurement device, the dielectric constant of a substance being measured; a step for calculating, on the basis of the measurement result for the dielectric constant of the substance being measured, the actual value of the admittance ym of the end surface of a probe of the measurement device; a step for correcting the actual value of the admittance ym of the end surface of the probe by using the error component; and a step for calculating the dielectric constant of the substance being measured by substituting the corrected actual value of the admittance ym for the theoretical value of admittance ym in a model formula that expresses the relationship between the theoretical admittance ym and the dielectric constant of the substance being measured.

Description

誘電率の測定手法Permittivity measurement method

 本発明は、誘電率の測定手法に関する。 The present invention relates to a method for measuring a dielectric constant.

 高齢化が進み、成人病に対する対応が大きな課題になっている。血糖値などの検査は血液の採取が必要なために患者にとって大きな負担である。そのため、血液を採取しない非侵襲な成分濃度測定装置が注目されている。 Aging is progressing, and dealing with adult diseases has become a major issue. Testing such as blood glucose level is a heavy burden on the patient because it requires blood sampling. Therefore, a non-invasive component concentration measuring device that does not collect blood is drawing attention.

 非侵襲な成分濃度測定装置としては、近赤外光などの光学的な手法と比べ生体内での散乱が少ない、1フォトンの持つエネルギーが低い、などの理由からマイクロ波-ミリ波帯の電磁波を用いた手法が提案されている。 As a non-invasive component concentration measuring device, electromagnetic waves in the microwave-millimeter wave band are less scattered in the living body than optical methods such as near-infrared light, and the energy of one photon is low. A method using is proposed.

 例えば、非特許文献1に示される共振構造を用いた手法がある。この手法では、アンテナや共振器などのQ値の高いデバイスと測定試料を接触させ、共振周波数周辺の周波数特性を測定する。共振周波数はデバイスの周囲の複素誘電率により決定されるため、共振周波数のシフト量と成分濃度との間の相関を予め予測することにより、共振周波数のシフト量から成分濃度を推定する。 For example, there is a method using the resonance structure shown in Non-Patent Document 1. In this method, a device having a high Q value such as an antenna or a resonator is brought into contact with the measurement sample, and the frequency characteristics around the resonance frequency are measured. Since the resonance frequency is determined by the complex permittivity around the device, the component concentration is estimated from the shift amount of the resonance frequency by predicting the correlation between the shift amount of the resonance frequency and the component concentration in advance.

 マイクロ波-ミリ波帯の電磁波を用いた他の手法としては、特許文献1に示す誘電分光法が提案されている。誘電分光法は、皮膚内に電磁波を照射し、測定対象である血液成分、例えば、グルコース分子と水の相互作用に従い、電磁波を吸収させ、電磁波の振幅及び位相を観測する。観測される電磁波の周波数に対する振幅及び位相から、誘電緩和スペクトルを算定する。誘電緩和スペクトルは、一般的には、Cole-Cole式に基づき緩和カーブの線形結合として表現し、複素誘電率を算定する。生体成分の計測では、例えば血液中に含まれるグルコースやコレステロール等の血液成分の量に複素誘電率は相関があり、その変化に対応した電気信号(振幅、位相)として測定される。複素誘電率変化と成分濃度との相関を予め測定することによって検量モデルを構築し、計測した誘電緩和スペクトルの変化から成分濃度の検量を行う。いずれの手法を用いる場合でも、対象となる成分と相関の強い周波数帯を選定することにより測定感度の向上が期待できるため、あらかじめ広帯域な誘電分光により誘電率の変化を測定しておくことは重要である。 As another method using electromagnetic waves in the microwave-millimeter wave band, the dielectric spectroscopy shown in Patent Document 1 has been proposed. In dielectric spectroscopy, an electromagnetic wave is irradiated into the skin, the electromagnetic wave is absorbed according to the interaction between a blood component to be measured, for example, a glucose molecule and water, and the amplitude and phase of the electromagnetic wave are observed. The dielectric relaxation spectrum is calculated from the amplitude and phase of the observed electromagnetic wave with respect to the frequency. The dielectric relaxation spectrum is generally expressed as a linear combination of relaxation curves based on the Core-Cole equation, and the complex permittivity is calculated. In the measurement of biological components, for example, the complex permittivity has a correlation with the amount of blood components such as glucose and cholesterol contained in blood, and is measured as an electric signal (amplitude, phase) corresponding to the change. A calibration model is constructed by measuring the correlation between the change in the complex permittivity and the component concentration in advance, and the component concentration is calibrated from the measured change in the dielectric relaxation spectrum. Regardless of which method is used, it is important to measure the change in permittivity in advance by wideband dielectric spectroscopy because the measurement sensitivity can be expected to improve by selecting a frequency band that has a strong correlation with the target component. Is.

 誘電分光法の中でも、非特許文献2,3に示すような同軸プローブ(Open-ended coaxial probe,または Open-ended coaxial line)を用いた手法は測定器の校正に水などの入手が容易な試料を用いることができ、また、材料の特殊な加工を必要とせずプローブ端面に被測定試料を接触させることで測定試料の誘電率を測定することが可能であるため、生体や果実,土壌などの加工を避けた上で電気的特性を評価したい試料の測定に適している。 Among the dielectric spectroscopy, the method using a coaxial probe (Open-end coaxial probe or Open-end coaxial line) as shown in Non-Patent Documents 2 and 3 is a sample in which water or the like is easily available for calibrating the measuring instrument. In addition, since it is possible to measure the dielectric constant of the measurement sample by bringing the sample to be measured into contact with the probe end face without the need for special processing of the material, it is possible to measure living organisms, fruits, soil, etc. It is suitable for measuring samples for which electrical characteristics are to be evaluated while avoiding processing.

特開2013-32933号公報Japanese Unexamined Patent Publication No. 2013-32933

M. Hofmann, G. Fischer, R. Weigel, and D. Kissinger, “Microwave-Based Noninvasive Concentration Measurements for Biomedical Applications”, IEEE Trans. Microwave Theory and Techniques, Vol.61, No.5, pp. 2195-2203, 2013M. Hofmann, G. Fischer, R. Weigel, and D. Kissinger, “Microwave-Based Noninvasive Concentration Measurements for Biomedical Applications”, IEEE Trans. Microwave Theory and Techniques, Vol.61, No.5, pp.219 , 2013 J P. Grant, R N. Clarke, G T. SYymm and N M. Spyrou, “A critical study of the open-ended coaxial line sensor technique for RF and microwave complex permittivity measurements”, J. Phys. E: Sci. Instrum, Vol.22, pp. 757-770, 1989JP Grant, R N. Clarke, G T. SYymm and N M. Spyrou, “A critical study of the open-ended coaxial line sensor techniques for RF and microwave complex permittivity measurements”, J. Physci. Instrum, Vol.22, pp. 757-770, 1989 T.P. Marsland, and S. Evans“Dielectric measurements with an open-ended coaxial probe”, IEE Proceedings, Vol. 134, No.4, 1987T.P. Marsland, and S. Evans “Dielectric measurements with an open-ended coaxial probe”, IEE Proceedings, Vol. 134, No. 4, 1987

 しかしながら、従来の同軸プローブを用いた測定には、被測定物質が十分な厚みを有することを前提としており、薄層試料や多層材料については材料の厚みや材料の一部の誘電率などが既知でなければ層状材料の誘電率を測定できないという問題があった。 However, measurement using a conventional coaxial probe is based on the premise that the substance to be measured has a sufficient thickness, and for thin-layer samples and multilayer materials, the thickness of the material and the dielectric constant of a part of the material are known. Otherwise, there is a problem that the dielectric constant of the layered material cannot be measured.

 上述の事情を鑑み、本発明は、任意の形状のMUTの誘電率を精度よく測定できる誘電率の測定方法を提供すること目的としている。 In view of the above circumstances, it is an object of the present invention to provide a method for measuring the dielectric constant capable of accurately measuring the dielectric constant of a MUT having an arbitrary shape.

 本発明に係る一様態は、標準試料を用いて測定機器をキャリブレーションする工程と、前記標準試料の誘電率の測定結果に基づいて算出される前記測定機器のプローブ端面のアドミタンスyの実測値と、測定対象物が前記標準試料である場合の前記プローブ端面の前記アドミタンスyの理論値と、を用いて前記アドミタンスyの実測値に対する前記アドミタンスyの理論値の誤差成分を算出する工程と、前記測定機器で被測定物質の誘電率を測定する工程と、前記被測定物質の誘電率の測定結果に基づいて前記測定機器の前記プローブ端面のアドミタンスyの実測値を算出する工程と、前記誤差成分を用いて前記プローブ端面の前記アドミタンスyの実測値を補正する工程と、前記アドミタンスyの理論値と前記被測定物質の誘電率との関係を表すモデル式に、前記アドミタンスyの理論値として補正された前記アドミタンスyの実測値を代入して前記被測定物質の誘電率を算出する工程と、を有する誘電率の測定手法である。 The uniformity according to the present invention is the step of calibrating the measuring device using the standard sample and the measured value of the admittance yi of the probe end face of the measuring device calculated based on the measurement result of the dielectric constant of the standard sample. And the theoretical value of the admitance y i of the probe end face when the object to be measured is the standard sample, and the error component of the theoretical value of the admitance y i with respect to the measured value of the admitance y i is calculated. A step of measuring the dielectric constant of the substance to be measured with the measuring device, and a step of calculating the measured value of the admittance ym of the probe end face of the measuring device based on the measurement result of the dielectric constant of the substance to be measured. The step of correcting the measured value of the admittance ym of the probe end face using the error component, and the model formula expressing the relationship between the theoretical value of the admittance ym and the dielectric constant of the substance to be measured are described above. This is a method for measuring the dielectric constant, which comprises a step of calculating the dielectric constant of the substance to be measured by substituting the measured value of the admittance ym corrected as the theoretical value of the admittance ym .

 本発明によれば、任意の形状のMUTの誘電率を精度よく測定できる誘電率の測定方法を提供することができる。 According to the present invention, it is possible to provide a method for measuring the dielectric constant capable of accurately measuring the dielectric constant of a MUT having an arbitrary shape.

本実施形態の誘電率の測定手法の模式図である。It is a schematic diagram of the measuring method of the dielectric constant of this embodiment. 測定機器及び同軸プローブ間の模式図である。It is a schematic diagram between a measuring device and a coaxial probe. 本実施形態の誘電率の測定手法のフローチャートである。It is a flowchart of the measuring method of the dielectric constant of this embodiment. 本実施形態の誘電率の測定手法の同軸プローブ端面の等価回路の模式図である。It is a schematic diagram of the equivalent circuit of the coaxial probe end face of the dielectric constant measurement method of this embodiment. 本実施形態の誘電率の測定手法のアンテナアドミタンスの等価回路の模式図である。It is a schematic diagram of the equivalent circuit of the antenna admittance of the dielectric constant measurement method of this embodiment. モデル式と実測値とのアドミタンスの差を示すグラフである。It is a graph which shows the difference of admittance between a model formula and the measured value. 従来手法及び本実施形態のモデル式と実測値との比較を示すグラフである。It is a graph which shows the comparison between the model formula of the conventional method and this embodiment, and the measured value. 従来手法の誘電率の測定手法のフローチャート及び同軸プローブ端面の等価回路の模式図である。It is the flowchart of the dielectric constant measurement method of the conventional method, and the schematic diagram of the equivalent circuit of the coaxial probe end face.

 本実施形態に係る誘電率の分析手法は、従来の同軸法と同様に、3種類の校正標準を用いて同軸プローブと被測定物質との界面を校正端面として、プローブ端面のアドミタンスを算出する。キャパシタンスと放射アドミタンスとからなる等価回路モデルで表現される。校正標準の測定結果を用いて予め寄生素子成分を同定し、解析式と等価なアドミタンスとなるよう寄生素子成分を用いたアドミタンスの補正を行う。任意の単一または層状材料のアドミタンスモデル式を用いて補正されたアドミタンスの測定値に対する逆問題解析を実施する。 In the dielectric constant analysis method according to the present embodiment, the admittance of the probe end face is calculated using the interface between the coaxial probe and the substance to be measured as the calibration end face using three types of calibration standards as in the conventional coaxial method. It is represented by an equivalent circuit model consisting of capacitance and radiation admittance. The parasitic element component is identified in advance using the measurement result of the calibration standard, and the admittance using the parasitic element component is corrected so that the admittance is equivalent to the analytical formula. Perform an inverse problem analysis on the admittance measurements corrected using the admittance model formula for any single or layered material.

 上述の構成とすることで、材料形状や放射電磁界の影響を加味した複素誘電率測定が可能となる。さらに、層状材料の測定時やミリ波、THz波といった高周波帯の測定時においてもMUTの複素誘電率を確度よく測定することが期待できる。 With the above configuration, it is possible to measure the complex permittivity in consideration of the material shape and the influence of the radiated electromagnetic field. Furthermore, it can be expected that the complex permittivity of the MUT can be measured accurately even when measuring a layered material or when measuring a high frequency band such as a millimeter wave or a THz wave.

 本発明の実施形態に係る誘電率の分析手法は以下の工程を有する。(工程a)標準試料を用いて測定機器をキャリブレーションする。(工程b)標準試料の誘電率の測定結果に基づいて算出される測定機器のプローブ端面のアドミタンスyiの実測値と、測定対象物が標準試料である場合のプローブ端面の前記アドミタンスyiの理論値と、を用いてアドミタンスyiの実測値に対するアドミタンスyiの理論値の誤差成分を算出する。(工程c)測定機器で被測定物質の誘電率を測定する。(工程d)被測定物質の誘電率の測定結果に基づいて測定器の前記プローブ端面のアドミタンスymの実測値を算出する。(工程e)誤差成分を用いて前記プローブ端面の前記アドミタンスymの実測値を補正する。(工程f)前記アドミタンスymの理論値と前記被測定物質の誘電率との関係を表すモデル式に、アドミタンスymの理論値として補正されたアドミタンスymの実測値を代入して被測定物質の誘電率を算出する。 The dielectric constant analysis method according to the embodiment of the present invention has the following steps. (Step a) Calibrate the measuring device with a standard sample. (Step b) The measured value of the admittance yi of the probe end face of the measuring device calculated based on the measurement result of the dielectric constant of the standard sample, and the theoretical value of the admittance yi of the probe end face when the object to be measured is the standard sample. And, are used to calculate the error component of the theoretical value of admittance yi with respect to the measured value of admittance yi. (Step c) The dielectric constant of the substance to be measured is measured with a measuring device. (Step d) The measured value of the admittance ym of the probe end face of the measuring instrument is calculated based on the measurement result of the dielectric constant of the substance to be measured. (Step e) The measured value of the admittance ym of the probe end face is corrected by using the error component. (Step f) Substituting the measured value of admittance ym corrected as the theoretical value of admittance ym into a model formula expressing the relationship between the theoretical value of admittance ym and the permittivity of the substance to be measured, the dielectric constant of the substance to be measured. Calculate the rate.

 図1に本実施形態に係る誘電率の測定手法の模式図を示す。図1に示すように、測定機器は、誘電率の算出結果を表示する表示器と、測定器で得た測定結果から誘電率の算出を行う演算器と、高周波特性を測定するための測定器と、MUTを接触させるインターフェースである同軸プローブとを有する。表示器は、例えば測定器やPCなどのディスプレイであってもよい。演算器は、例えばPC及びマイコン等デジタルデータ処理が可能な機器であってもよい。測定器は、例えばベクトルネットワークアナライザやインピーダンスアナライザ、といった高周波のSパラメータやインピーダンスを測定可能な機器や高周波の送受信によりその反射特性が測定可能なICチップなどを用いてもよい。本実施形態に係る誘電率の測定手法において、公知の測定機器を使用すればよい。 FIG. 1 shows a schematic diagram of the dielectric constant measuring method according to the present embodiment. As shown in FIG. 1, the measuring instruments include a display that displays the calculation result of the permittivity, a calculator that calculates the permittivity from the measurement results obtained by the measuring instrument, and a measuring instrument for measuring high frequency characteristics. And a coaxial probe which is an interface for contacting the MUT. The display may be, for example, a display such as a measuring instrument or a PC. The arithmetic unit may be a device capable of digital data processing such as a PC and a microcomputer. As the measuring instrument, for example, a device capable of measuring high-frequency S-parameters and impedance such as a vector network analyzer or an impedance analyzer, or an IC chip capable of measuring its reflection characteristics by transmitting and receiving high frequencies may be used. In the method for measuring the dielectric constant according to the present embodiment, a known measuring device may be used.

 図2の(a)及び(b)に測定器として、汎用測定器を用いる場合、及び測定用のICを用いる場合の模式図を示す。測定器と同軸プローブ間は高周波ケーブルや高周波基板上に形成した伝送線路および高周波コネクタを用いて接続される。高周波ケーブルは同軸線路、伝送線路はマイクロストリップ線路やコプレーナ線路、コプレーナストリップなどを用いてもよい。高周波コネクタはSMA、SMK、SMV、1mmコネクタなどの同軸型コネクタやSMP、SMPMなどのプッシュオン型コネクタなどを用いてもよい。 (A) and (b) of FIG. 2 show a schematic diagram when a general-purpose measuring instrument is used as a measuring instrument and when an IC for measurement is used. The measuring instrument and the coaxial probe are connected using a high-frequency cable, a transmission line formed on a high-frequency substrate, and a high-frequency connector. A coaxial line may be used for the high-frequency cable, and a microstrip line, a coplanar line, a coplanar strip, or the like may be used for the transmission line. As the high frequency connector, a coaxial type connector such as SMA, SMK, SMV, 1 mm connector, a push-on type connector such as SMP, SMPM, or the like may be used.

 図8は、従来手法における誘電率の測定手法のフローチャートである。MUTのアドミタンスを測定する際には、一般的にケーブルやコネクタ等の高周波特性の影響を除去するためにキャリブレーションを実施する。その際、同軸型の校正標準を用いることで校正端面は図2におけるA-A’面となる。このとき、標準試料として用いられる空気、金属(ショート用金属)、水およびMUTを設置した際の反射係数ρとアドミタンスyとの線形写像の関係は下記の(1)式及び(2)式で表される。

Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
FIG. 8 is a flowchart of a method for measuring the dielectric constant in the conventional method. When measuring the admittance of MUT, calibration is generally performed to eliminate the influence of high frequency characteristics such as cables and connectors. At that time, by using the coaxial type calibration standard, the calibration end face becomes the AA'plane in FIG. At this time, the relationship between the linear mapping between the reflectance coefficient ρ and admittance y when air, metal (metal for shorting), water and MUT used as standard samples is installed is expressed by the following equations (1) and (2). expressed.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002

 このとき、添字の1~3は標準試料、mはMUTに対応する。また、同軸プローブ端面、すなわち図2のB-B’面におけるアドミタンスの等価回路は図8(b-2)で表現している。このとき、Cは、真空中においてプローブ端面から真空中へと広がるキャパシタンス成分であり。Gは、同軸プローブ端面から真空への放射コンダクタンスである。キャパシタンス成分及び放射コンダクタンス以外の素子成分を微小ダイポールとしてみなすことにより(3)式の関係式が導出される。

Figure JPOXMLDOC01-appb-M000003
 非特許文献3に記載の通り、誘電率εの媒質のアンテナの放射アドミタンスGには(4)式の関係がある。(3)式及び(4)式により、(2)式の右辺の第2項のGとεの2.5乗に比例関係が導かれる。
Figure JPOXMLDOC01-appb-M000004
At this time, the subscripts 1 to 3 correspond to the standard sample, and m corresponds to the MUT. Further, the equivalent circuit of admittance on the end face of the coaxial probe, that is, the BB'plane of FIG. 2 is represented by FIG. 8 (b-2). At this time, C 0 is a capacitance component that spreads from the probe end face into the vacuum in the vacuum. G 0 is the radiation conductance from the coaxial probe end face to the vacuum. The relational expression of Eq. (3) is derived by regarding the element components other than the capacitance component and the radiation conductance as minute dipoles.
Figure JPOXMLDOC01-appb-M000003
As described in Non-Patent Document 3, the radiation admittance G of the antenna of the medium having a dielectric constant ε has the relation of the equation (4). From equations (3) and (4), a proportional relationship is derived from G 0 and ε to the 2.5th power of the second term on the right side of equation (2).
Figure JPOXMLDOC01-appb-M000004

 同軸プローブ端面からの放射は、プローブ端面の容量成分より小さいので、ωC>>Gとなる。そのため、Gは0に近似できる。この時、等価回路は図8の(b-1)に示す通りである。また、金属を校正標準した場合には同軸プローブは短絡状態となるので、yi=shortは無限大に近似できる。これにより、(1)式及び(2)式は、下記(5)式及び(6)式のように変形できる。

Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Since the radiation from the coaxial probe end face is smaller than the capacitance component of the probe end face, ωC 0 >> G 0 . Therefore, G 0 can be approximated to 0. At this time, the equivalent circuit is as shown in FIG. 8 (b-1). Further, when the metal is calibrated and standardized, the coaxial probe is in a short-circuited state, so that y i = short can be approximated to infinity. As a result, the equations (1) and (2) can be transformed into the following equations (5) and (6).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007

 a、s、wは校正標準の空気、金属、水を指す。(6)式を(5)式に代入することで式(8)が導かれ、MUTの誘電率が導かれる。

Figure JPOXMLDOC01-appb-M000008
a, s and w refer to calibration standard air, metal and water. By substituting Eq. (6) into Eq. (5), Eq. (8) is derived, and the permittivity of MUT is derived.
Figure JPOXMLDOC01-appb-M000008

 従来手法ではMUTを一様な誘電体であると仮定した等価回路の比から誘電率を算出する手法であるので、層状材料などの深さ方向の誘電率分布が一様でない材料の測定時には、プローブの侵入深さまでの実行誘電率が測定されるため測定プローブによって測定結果が異なるおそれがある。同様の理由から、MUTの厚みがプローブの侵入長以下である場合にも、マイクロ流路及び試料設置台といった材料を固定する機構の誘電率が測定結果に影響を及ぼすおそれがある。加えて、従来手法では、同軸プローブ端面からの放射電磁界は、十分小さいとして無視する、あるいは微小ダイポールとして近似したモデルで表現されている。そのため、GHz帯以上の周波数帯において測定確度が低下しうるという課題があった。さらに、測定周波数が高周波になるにつれ同軸プローブの放射コンダクタンスの影響は増加するので、従来手法の近似で用いられている誤差要因となるおそれがある。 In the conventional method, the permittivity is calculated from the ratio of the equivalent circuit assuming that the MUT is a uniform dielectric material. Therefore, when measuring a material such as a layered material whose dielectric constant distribution in the depth direction is not uniform, Since the effective permittivity up to the penetration depth of the probe is measured, the measurement result may differ depending on the measurement probe. For the same reason, even when the thickness of the MUT is less than or equal to the penetration depth of the probe, the dielectric constant of the mechanism for fixing the material such as the microchannel and the sample setting table may affect the measurement result. In addition, in the conventional method, the radiated electromagnetic field from the end face of the coaxial probe is ignored as sufficiently small, or is represented by a model approximated as a minute dipole. Therefore, there is a problem that the measurement accuracy may decrease in the frequency band above the GHz band. Further, as the measurement frequency becomes higher, the influence of the radiation conductance of the coaxial probe increases, which may cause an error factor used in the approximation of the conventional method.

 図3に本実施形態の誘電分光手法のフローチャートを示す。まず、従来手法と同様の方法でキャリブレーションを実施する。本実施形態において、図3のキャリブレーションが、工程aである。 FIG. 3 shows a flowchart of the dielectric spectroscopy method of the present embodiment. First, calibration is performed by the same method as the conventional method. In this embodiment, the calibration of FIG. 3 is step a.

 次に、空気、金属、水の測定値を用いて、MUTを水とした際の誘電率εwcおよびアドミタンスwcを算出する。すなわち、(5)及び(8)式におけるm=wcとした式を作成する。水の測定を1度のみ行った場合には(5)及び(8)式の添え字i=wc=wとして計算を行う。キャリブレーション時に、水の反射係数を2回測定しておき、いずれか一方をi=w、もう一方をi=wcとして計算してもよい。本実施形態において、図3の補正用素子パラメータの算出の工程が、工程bである。 Next, the dielectric constant ε wc and the admittance wc when the MUT is water are calculated using the measured values of air, metal, and water. That is, the equations in equations (5) and (8) with m = wc are created. When the water is measured only once, the calculation is performed with the subscripts i = wc = w in the equations (5) and (8). At the time of calibration, the reflectance coefficient of water may be measured twice, and one of them may be calculated as i = w and the other as i = wc. In the present embodiment, the step of calculating the correction element parameter of FIG. 3 is step b.

 本実施形態である誘電分光手法では、変数をMUTの誘電率としたMUT設置時の同軸プローブ端面のアドミタンス理論式を構築し、実測値を満たすような逆問題解析を行うことによりMUTの誘電率を算出する。アドミタンスの理論式は同軸プローブのアドミタンスの数式表現は、例えば(9)式に示すintegral-admittanceモデルを用いてもよい。本実施形態において、図3のMUTの反射係数の測定の工程が、工程cである。また、図3のアドミタンスYmeasの算出が工程dである。

Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 ここでεは同軸線路の絶縁体の誘電率、kmは測定周波数におけるMUTを伝搬時の波数、ε及びγはMUTの誘電率およびMUT伝搬時の電磁波の伝搬定数、J(x)は0次ベッセル関数である。また、変数ζはHankel変換に伴い生じる変数である。アドミタンスの理論式は同軸プローブのアドミタンスの数式表現は、同軸プローブ端面からMUTの間を伝搬定数の結合で表現したTransmission line Modelなどを用いてもよい。本実施形態において、図3のアドミタンスモデルに基づく影響の補正が、工程eである。 In the dielectric spectroscopy method of the present embodiment, the admittance theoretical formula of the coaxial probe end face at the time of MUT installation is constructed with the variable as the permittivity of the MUT, and the dielectric constant of the MUT is analyzed so as to satisfy the measured value. Is calculated. The theoretical formula of admittance is the mathematical expression of the admittance of the coaxial probe. For example, the integral-admittance model shown in the formula (9) may be used. In the present embodiment, the step of measuring the reflectance coefficient of the MUT in FIG. 3 is step c. Further, the calculation of the admittance Ymeas in FIG. 3 is the step d.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Here, ε c is the permittivity of the insulator of the coaxial line, km is the number of waves when propagating the MUT at the measurement frequency, ε m and γ m are the permittivity of the MUT and the propagation constant of the electromagnetic wave when propagating the MUT, J 0 (x). ) Is a 0th order Vessel function. The variable ζ is a variable generated by the Hankel transform. The theoretical formula of admittance The mathematical expression of admittance of the coaxial probe may use a Transmission line model or the like in which the distance between the end face of the coaxial probe and the MUT is expressed by the coupling of propagation constants. In the present embodiment, the correction of the influence based on the admittance model of FIG. 3 is step e.

 同軸端面の電磁波はMUTから測定器へ戻る反射波と同軸プローブを微小アンテナとみなした際に空間中へ放射される放射波から構成されている。そのため、本実施形態において、同軸プローブのアドミタンスモデルは図4に示す等価回路で表現される。図4において、Cfcal、Cはいずれも同軸プローブ内部絶縁体に生じる電界のフリンジキャパシタンスを示す。Cfcalは(5)式または(8)式によるプローブ端面によりディエンベッドされるキャパシタンス成分を示す。Cは真空中においてプローブ端面から真空中へと広がるキャパシタンス成分、Yantは放射アドミタンスを示す。 The electromagnetic wave on the coaxial end face is composed of a reflected wave returning from the MUT to the measuring instrument and a radiated wave radiated into space when the coaxial probe is regarded as a minute antenna. Therefore, in the present embodiment, the admittance model of the coaxial probe is represented by the equivalent circuit shown in FIG. In FIG. 4, both C fcal and C f indicate the fringe capacitance of the electric field generated in the coaxial probe internal insulator. C fcal indicates the capacitance component deembed by the probe end face according to the equation (5) or (8). C 0 indicates the capacitance component extending from the probe end face into the vacuum in vacuum, and Yant indicates radiative admittance.

 従来手法で、放射アドミタンスは図8の(b-2)に示すような微小ダイポールの放射コンダクタンスとしてモデル化されている。一方、本実施形態では図5に示すように、放射アドミタンスは、直列共振ないし並列共振回路を用いて表現される。図5に示す回路以外にも回路素子を追加し、放射アドミタンスをより複雑な共振特性を持つ回路としてモデル化してもよい。(5)式または(8)式で用いられる校正は、金属を短絡回路、空気をオープン回路及び水を任意の負荷である仮定して誤差成分をディエンベッドしている。そのため、図2における校正端面B-B’に含まれる回路成分は、図4におけるC、εCのみとなり、理論モデルの回路成分との不一致が生じる可能性がある。 In the conventional method, the radiated admittance is modeled as the radiated conductance of a minute dipole as shown in FIG. 8 (b-2). On the other hand, in the present embodiment, as shown in FIG. 5, the radiated admittance is expressed by using a series resonance or a parallel resonance circuit. In addition to the circuit shown in FIG. 5, circuit elements may be added to model the radiated admittance as a circuit having more complicated resonance characteristics. The calibration used in Eq. (5) or (8) deembeds the error component assuming that the metal is a short circuit, the air is an open circuit, and the water is an arbitrary load. Therefore, the circuit components included in the calibration end face BB'in FIG. 2 are only C f and ε C 0 in FIG. 4, and there is a possibility that a discrepancy with the circuit components of the theoretical model may occur.

 本実施形態では、同軸プローブ内側のフリンジキャパシタンスのうち、ディエンベッドで除去される成分は十分小さいものと仮定し、同軸プローブ端面のアドミタンスの理論式と従来手法における測定値との誤差は放射項Yantに起因するものであると仮定する。ここで、水を測定した際のアドミタンスの理論値と実測値との誤差を算出すると、誘電率εwcの水を測定した際の誤差成分Yant(εwc)は(11)式のように表せる。

Figure JPOXMLDOC01-appb-M000011
 ここでYmeasured(εwc)は(5)式を用いて算出したMUTを水とした際の同軸プローブのアドミタンスである。 In this embodiment, it is assumed that the component of the fringe capacitance inside the coaxial probe that is removed by the deembed is sufficiently small, and the error between the theoretical formula of admittance of the coaxial probe end face and the measured value in the conventional method is the radiation term Yant. It is assumed that it is caused by. Here, when the error between the theoretical value of admittance when measuring water and the measured value is calculated, the error component Yant (ε wc ) when measuring water having a dielectric constant ε wc can be expressed by Eq. (11). ..
Figure JPOXMLDOC01-appb-M000011
Here, Y measuredwc ) is the admittance of the coaxial probe when MUT is water, which is calculated by using Eq. (5).

 Yant(εwc)は図6に示す波形となる。そのため、Yant(εwc)を、例えばRLC直列共振回路で表現することができる。ここで、Yant(εwc)がアンテナ放射項であるとすると、真空中の放射アドミタンスと誘電率εの媒質中の放射アドミタンスとの間には(12)式で示される関係がある。

Figure JPOXMLDOC01-appb-M000012
(11)及び(12)式から、Yant(εwc)は真空中の放射アドミタンスYant(ε)を用いて、(13)式と表現できる。
Figure JPOXMLDOC01-appb-M000013
(13)式を満たすように回路素子パラメータYant(ε、ω)を同定することにより、ディエンベッドにより除去された放射素子成分を抽出する。(11)式と(13)式との関係から、実効誘電率εeffの材料をMUTとした場合の同軸プローブのモデル式は(14)式となる。
Figure JPOXMLDOC01-appb-M000014
Yant (ε wc ) has the waveform shown in FIG. Therefore, Yant (ε wc ) can be expressed by, for example, an RLC series resonant circuit. Here, assuming that Yant (ε wc ) is the antenna radiation term, there is a relationship represented by Eq. (12) between the radiation admittance in vacuum and the radiation admittance in the medium having a permittivity ε r .
Figure JPOXMLDOC01-appb-M000012
From equations (11) and (12), Yant (ε wc ) can be expressed as equation (13) using the radiation admittance Yant (ε 0 ) in vacuum.
Figure JPOXMLDOC01-appb-M000013
By identifying the circuit element parameter Yant (ε 0 , ω) so as to satisfy the equation (13), the radiating element component removed by the deembed is extracted. From the relationship between the equations (11) and (13), the model equation of the coaxial probe when the material having an effective dielectric constant ε eff is MUT is the equation (14).
Figure JPOXMLDOC01-appb-M000014

 以降の解析では、MUT測定時にアドミタンスおよび誘電率εを測定し、(14)式を用いてアドミタンスの測定値Ymeasured(ε)を補正することで、モデル式との誤差を低減する。本実施形態において、図3の逆問題解析による複素誘電率の算出が、工程fである。 In the subsequent analysis, the admittance and the permittivity ε r are measured at the time of MUT measurement, and the measured value Y measuredr ) of the admittance is corrected by using the equation (14) to reduce the error from the model equation. In the present embodiment, the calculation of the complex permittivity by the inverse problem analysis of FIG. 3 is step f.

 図7に補正前と補正後のアドミタンスの測定値とモデル式との比較を示す。提案手法により、実測値とモデル式との誤差が低減しており、モデル式と一致するようアドミタンスモデルを補正できていることがわかる。その後、(15)式を満たすようなεを逆問題解析によって算出する。

Figure JPOXMLDOC01-appb-M000015
 Ycorrectedは(14)式により補正したアドミタンス、Ymodel(ε)は例えば(9)式である。MUTが一様な材料ではなく、その形状が既知である場合はMUTの形状を含めたモデルをYmodelとして用いてよい。例えばMUTが2層からなる層状材料である場合は(16)式のように示す。
Figure JPOXMLDOC01-appb-M000016
ここで添え字の1、2は層状材料の第一層、第二層であり、プローブ端面と接する側を第一層とする。また、変数d1は第一層の層厚を示す。 FIG. 7 shows a comparison between the measured values of admittance before and after the correction and the model formula. It can be seen that the error between the measured value and the model formula is reduced by the proposed method, and the admittance model can be corrected so as to match the model formula. Then, ε r that satisfies Eq. (15) is calculated by inverse problem analysis.
Figure JPOXMLDOC01-appb-M000015
Y oriented is the admittance corrected by the equation (14), and Y modelr ) is, for example, the equation (9). If the MUT is not a uniform material and its shape is known, a model including the shape of the MUT may be used as the Y model . For example, when the MUT is a layered material composed of two layers, it is shown as in Eq. (16).
Figure JPOXMLDOC01-appb-M000016
Here, the subscripts 1 and 2 are the first layer and the second layer of the layered material, and the side in contact with the probe end face is the first layer. Further, the variable d1 indicates the layer thickness of the first layer.

 式(13)の逆問題解析については、第一層の層厚d1や第二層の誘電率εが既知な場合はそれらを定数として、未知の場合は変数として加えて逆問題解析を実施してもよい。また、多層材料など任意のMUTの形状に対しMUT測定時の同軸プローブ端面のアドミタンスに対する電磁気学に基づく解析式として理論式Ymodelを用いてもよい。これにより、任意の形状に対する逆問題解析が可能である。(9)式や(16)式は一般に非線形な関数であるので、(15)式で示される逆問題は、例えばシンプレックス法、最急降下法、粒子群最適化などに代表される最適化手法または、ニューラルネットワーク等の数値計算法を用いて算出してもよい。以上により、放射アドミタンスの影響を抑制し、任意の形状のMUTに対する高精度な誘電分光が可能となる。 Regarding the inverse problem analysis of Eq. (13), if the layer thickness d1 of the first layer and the permittivity ε 2 of the second layer are known, they are used as constants, and if they are unknown, they are added as variables and the inverse problem analysis is performed. You may. Further, the theoretical formula Y model may be used as an analysis formula based on electromagnetism for the admittance of the coaxial probe end face at the time of MUT measurement for any shape of MUT such as a multilayer material. This makes it possible to analyze the inverse problem for any shape. Since equations (9) and (16) are generally non-linear functions, the inverse problem represented by equation (15) is an optimization method represented by, for example, the simplex method, the steepest descent method, or particle swarm optimization. , May be calculated using a numerical calculation method such as a neural network. As described above, the influence of radiation admittance is suppressed, and highly accurate dielectric spectroscopy for MUTs of arbitrary shapes becomes possible.

 以上のように、本実施形態は、同軸プローブを用いた測定を実施後、補正式を用いた測定されたアドミタンスの補正を実施し、補正値とアドミタンスの理論モデルの逆問題解析により誘電率測定を実施することで、放射項の影響やMUTの形状の影響を抑制することができる。そのため、一様なMUTだけでなく、層状や薄層のMUTに対しても適用可能である。その結果、より高周波帯での誘電率の測定を可能となる。
 さらに、本実施形態に係る誘電率の分析手法は、従来手法からの測定手順の追加を必要としない。また、試料測定時の同軸プローブのアドミタンス測定値に対し寄生成分の影響を補正し、電磁界理論に基づく単一または層状材料のアドミタンスのモデル式の逆問題解析を実施する。これにより、被測定物質(MUT: Material Under the Test)の複素誘電率をより高い精度で測定することができる。
As described above, in this embodiment, after the measurement using the coaxial probe is performed, the measured admittance is corrected by using the correction formula, and the permittivity is measured by the inverse problem analysis of the correction value and the theoretical model of admittance. By carrying out the above, the influence of the radiation term and the influence of the shape of the MUT can be suppressed. Therefore, it can be applied not only to a uniform MUT but also to a layered or thin layer MUT. As a result, it becomes possible to measure the dielectric constant in a higher frequency band.
Further, the dielectric constant analysis method according to the present embodiment does not require the addition of a measurement procedure from the conventional method. In addition, the influence of parasitic components is corrected for the admittance measurement value of the coaxial probe at the time of sample measurement, and the inverse problem analysis of the admittance model formula of a single or layered material based on the electromagnetic field theory is performed. As a result, the complex permittivity of the substance to be measured (MUT: Material Under the Test) can be measured with higher accuracy.

 本発明によれば、人間又は動物に存在する溶液の誘電率測定装置、及び、人間又は動物から採取した溶液の誘電率測定装置に適用することができるので、産業上の利用価値が高い。 According to the present invention, since it can be applied to a permittivity measuring device for a solution existing in a human or an animal and a permittivity measuring device for a solution collected from a human or an animal, it has high industrial utility value.

Claims (3)

 標準試料を用いて測定機器をキャリブレーションする工程と、
 前記標準試料の誘電率の測定結果に基づいて算出される前記測定機器のプローブ端面のアドミタンスyの実測値と、測定対象物が前記標準試料である場合の前記プローブ端面の前記アドミタンスyの理論値と、を用いて前記アドミタンスyの実測値に対する前記アドミタンスyの理論値の誤差成分を算出する工程と、
 前記測定機器で被測定物質の誘電率を測定する工程と、
 前記被測定物質の誘電率の測定結果に基づいて前記測定機器の前記プローブ端面のアドミタンスyの実測値を算出する工程と、
 前記誤差成分を用いて前記プローブ端面の前記アドミタンスyの実測値を補正する工程と、
 前記アドミタンスyの理論値と前記被測定物質の誘電率との関係を表すモデル式に、前記アドミタンスyの理論値として補正された前記アドミタンスyの実測値を代入して前記被測定物質の誘電率を算出する工程と、
 を有する誘電率の測定手法。
The process of calibrating measuring equipment using standard samples and
The measured value of the admittance y i of the probe end face of the measuring device calculated based on the measurement result of the dielectric constant of the standard sample, and the admittance y i of the probe end face when the object to be measured is the standard sample. A step of calculating an error component of the theoretical value of the admittance y i with respect to the measured value of the admittance y i using the theoretical value and
The process of measuring the dielectric constant of the substance to be measured with the measuring device,
A step of calculating an actually measured value of admittance ym of the probe end face of the measuring device based on the measurement result of the dielectric constant of the substance to be measured, and
A step of correcting the measured value of the admittance ym of the probe end face using the error component, and a step of correcting the measured value.
The measured value of the admittance ym corrected as the theoretical value of the admittance ym is substituted into the model formula expressing the relationship between the theoretical value of the admittance ym and the permittivity of the substance to be measured. And the process of calculating the permittance of
A method for measuring the permittivity.
 前記プローブ端面のアドミタンスは、キャパシタンスと放射アドミタンスとからなる等価回路で表され、前記誤差成分は前記放射アドミタンスの素子パラメータで表される
 請求項1に記載の誘電率の測定手法。
The method for measuring a permittivity according to claim 1, wherein the admittance of the probe end face is represented by an equivalent circuit including capacitance and radiated admittance, and the error component is represented by the element parameter of the radiated admittance.
 前記放射アドミタンスは、並列共振回路又は直列共振回路で表される
 請求項2に記載の誘電率の測定手法。
The method for measuring a permittivity according to claim 2, wherein the radiation admittance is represented by a parallel resonance circuit or a series resonance circuit.
PCT/JP2021/001303 2021-01-15 2021-01-15 Dielectric constant measurement method Ceased WO2022153490A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001303 WO2022153490A1 (en) 2021-01-15 2021-01-15 Dielectric constant measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001303 WO2022153490A1 (en) 2021-01-15 2021-01-15 Dielectric constant measurement method

Publications (1)

Publication Number Publication Date
WO2022153490A1 true WO2022153490A1 (en) 2022-07-21

Family

ID=82448113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001303 Ceased WO2022153490A1 (en) 2021-01-15 2021-01-15 Dielectric constant measurement method

Country Status (1)

Country Link
WO (1) WO2022153490A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070653A1 (en) * 2022-09-30 2024-04-04 ソニーセミコンダクタソリューションズ株式会社 Measurement device and measurement method
WO2024252456A1 (en) * 2023-06-05 2024-12-12 日本電信電話株式会社 Dielectric spectroscopic sensor and method for measuring complex dielectric constant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472885B1 (en) * 2000-10-16 2002-10-29 Christopher Charles Green Method and apparatus for measuring and characterizing the frequency dependent electrical properties of dielectric materials
JP2007263625A (en) * 2006-03-27 2007-10-11 Hokkaido Univ Complex permittivity measuring apparatus and complex permittivity measuring method
US20100064820A1 (en) * 2006-09-08 2010-03-18 Pierre-Yves David Method and device for measuring a multiple-phase fluid flowing through a pipe
JP2011047856A (en) * 2009-08-28 2011-03-10 Institute Of National Colleges Of Technology Japan Apparatus and method for measuring dielectric constant of liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472885B1 (en) * 2000-10-16 2002-10-29 Christopher Charles Green Method and apparatus for measuring and characterizing the frequency dependent electrical properties of dielectric materials
JP2007263625A (en) * 2006-03-27 2007-10-11 Hokkaido Univ Complex permittivity measuring apparatus and complex permittivity measuring method
US20100064820A1 (en) * 2006-09-08 2010-03-18 Pierre-Yves David Method and device for measuring a multiple-phase fluid flowing through a pipe
JP2011047856A (en) * 2009-08-28 2011-03-10 Institute Of National Colleges Of Technology Japan Apparatus and method for measuring dielectric constant of liquid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JULRAT, SAKOL: "Open-ended coplanar waveguide sensor for dielectric permittivity measurement", PROCEEDINGS OF IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, 2018, pages 1 - 5, XP033374386, DOI: 10.1109/I2MTC.2018.8409843 *
MARTENS, H.C.F.: "Measurement of the complex dielectric constant down to helium temperatures. I. Reflection method from 1 MHz to 20 GHz using an open ended coaxial line", REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 71, no. 2, 2000, pages 473 - 477, XP012038000, DOI: 10.1063/1.1150226 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070653A1 (en) * 2022-09-30 2024-04-04 ソニーセミコンダクタソリューションズ株式会社 Measurement device and measurement method
WO2024252456A1 (en) * 2023-06-05 2024-12-12 日本電信電話株式会社 Dielectric spectroscopic sensor and method for measuring complex dielectric constant

Similar Documents

Publication Publication Date Title
Zajicek et al. Broadband measurement of complex permittivity using reflection method and coaxial probes
JP7447990B2 (en) Dielectric spectrometry device and method
CN102508042A (en) Open-ended coaxial probe and method for measuring dielectric spectrum property of biological tissues
WO2019203153A1 (en) Component concentration measurement device and component concentration measurement method
Hasar et al. An accurate complex permittivity method for thin dielectric materials
Julrat et al. Open-ended half-mode substrate-integrated waveguide sensor for complex permittivity measurement
WO2022153490A1 (en) Dielectric constant measurement method
Hasar et al. Noniterative reference-plane-invariant material parameter retrieval method for low-loss solid samples using one-port waveguide measurements
Bidgoli et al. On the sensitivity of bevelled and conical coaxial needle probes for dielectric spectroscopy
JP6908834B2 (en) Dielectric spectroscopy sensor and permittivity measurement method
McLaughlin et al. Miniature open-ended coaxial probes for dielectric spectroscopy applications
Garrett et al. Antenna calibration method for dielectric property estimation of biological tissues at microwave frequencies
JP7680694B2 (en) Dielectric constant measurement method and short circuit standard
US20250102453A1 (en) Dielectric Spectroscopy Sensor
WO2021124393A1 (en) Dielectric spectrometry device
JP7680695B2 (en) Dielectric Spectroscopy Sensor
Havelka et al. Grounded coplanar waveguide-based 0.5–50 GHz sensor for dielectric spectroscopy
US20250189473A1 (en) Permittivity Measurement Method, Permittivity Measurement System, Permittivity Measurement Program
WO2024127573A1 (en) Dielectric spectroscopic sensor, dielectric spectrometry system, and dielectric spectrometry method
US10921274B2 (en) Apparatus for in vivo dielectric spectroscopy
Reinecke et al. Permittivity measurements for the quantification of edema in human brain tissue-Open-ended coaxial and coplanar probes for fast tissue scanning
Sasaki et al. Dielectric methodologies of coaxial sensors for measurement of biological tissues up to 100 GHz
Wagner et al. Robust low cost open-ended coaxial probe for dielectric spectroscopy in laboratory and in-situ applications
Ehtaiba INVESTIGATION THE SENSING DEPTH OF RG405 FLAT-ENDED SENSOR AT LOW MICROWAVE FREQUENCIES
Przesmycki et al. Electrical Properties of Ferrite Absorber in High-Band 5G System Determined by Open Coaxial Probe and Free Space Methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP