[go: up one dir, main page]

WO2022149383A1 - Autonomous navigation device and autonomous navigation method - Google Patents

Autonomous navigation device and autonomous navigation method Download PDF

Info

Publication number
WO2022149383A1
WO2022149383A1 PCT/JP2021/044411 JP2021044411W WO2022149383A1 WO 2022149383 A1 WO2022149383 A1 WO 2022149383A1 JP 2021044411 W JP2021044411 W JP 2021044411W WO 2022149383 A1 WO2022149383 A1 WO 2022149383A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
determination
unit
moving body
inertial measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2021/044411
Other languages
French (fr)
Japanese (ja)
Inventor
俊 高柳
貴行 築澤
亨宗 白方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of WO2022149383A1 publication Critical patent/WO2022149383A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope

Definitions

  • This disclosure relates to an autonomous navigation system and an autonomous navigation method.
  • Patent Document 1 discloses a technique for adjusting the number of samples for averaging inertial measurement values as a method for reducing an error in inertial measurement values.
  • an allan variance indicating the magnitude of the error of the inertial measurement value for each number of samples to be averaged is obtained based on the inertial measurement values acquired at a plurality of times during the movement of the moving object. calculate. Then, the number of averaged samples with the smallest error of the inertial measurement value is set based on the calculated Allan variance.
  • the inertial measurement value fluctuates greatly depending on the state of the moving body. Therefore, the accuracy of the allan variance calculated based on the inertial measurement value is lowered, and the average number of samples cannot be set correctly. Therefore, in the prior art, the accuracy of estimating the position and posture of the moving body is lowered.
  • the present disclosure provides an autonomous navigation device and an autonomous navigation method capable of accurately estimating the position and posture of a moving body.
  • the autonomous navigation system is a determination unit that acquires an inertial measurement value of a moving body and determines the motion motion of the moving body based on the inertial measurement value acquired by the measurement unit.
  • the unit includes an estimation unit that estimates the position and posture of the moving body based on the inertial measurement value acquired by the measurement unit and the determination result by the determination unit.
  • the autonomous navigation method includes a step of acquiring an inertial measurement value of a moving body and a step of determining the motion motion of the moving body based on the acquired inertial measurement value. It includes a step of estimating the position and orientation of the moving body based on the inertial measurement value and the result of the determination.
  • the position and posture of the moving body can be estimated with high accuracy.
  • FIG. 1 is a diagram showing a configuration of an autonomous navigation system according to an embodiment.
  • FIG. 2 is a block diagram showing a functional configuration of the autonomous navigation system according to the embodiment.
  • FIG. 3 is a block diagram showing a functional configuration of the position / posture estimation unit according to the embodiment.
  • FIG. 4 is a block diagram showing a functional configuration of the averaging period calculation unit according to the embodiment.
  • FIG. 5 is a flowchart showing the operation of the autonomous navigation system according to the embodiment.
  • FIG. 6A is a diagram showing an example of the movement of the moving body on which the IMU according to the embodiment is mounted.
  • FIG. 6B is a diagram showing an example of inertial measurement data of the moving body that has performed the motion shown in FIG. 6A.
  • FIG. 7 is a flowchart showing the motion determination process (step S20) according to the embodiment.
  • FIG. 8 is a flowchart showing the averaging period calculation process (step S40) according to the embodiment.
  • FIG. 9 is a flowchart showing the dispersion characteristic calculation process (step S42) according to the embodiment.
  • FIG. 10 is a flowchart showing a process of determining the number of averaged samples (step S43) according to the embodiment.
  • FIG. 11 is a diagram showing an example of the dispersion characteristic calculated by the dispersion characteristic calculation unit according to the embodiment.
  • FIG. 12 is a diagram showing the relationship between the motion of the moving body and the average number of samples according to the embodiment.
  • IMU and GNSS are used to determine the position and posture of a moving body.
  • the IMU acquires the inertial measurement value of the moving body.
  • the inertial measurement value includes the acceleration (gravitational acceleration) and the angular velocity acting on the moving body.
  • the posture of the moving body is obtained based on the direction of the vector quantity of the angular velocity or the direction of each vector quantity of the acceleration and the angular velocity. Further, by integrating the accelerations, the speed of the moving body, that is, the distance traveled within a predetermined period is calculated, and the current position of the moving body is obtained by using the direction and the distance.
  • a vehicle speedometer mounted on the moving body may be used to estimate the speed of the moving body.
  • GNSS is an abbreviation for Global Navigation Satellite System.
  • the GNSS can directly obtain the posture and the position based on the positioning information of the GNSS receiver mounted on the moving body.
  • the final position and posture of the moving body can be obtained with high accuracy by combining the positions and postures obtained by these IMUs and GNSS, respectively.
  • the IMU In order to estimate the position and posture of the moving body with high accuracy by the IMU alone, it is necessary to reduce the error of the inertial measurement value. As a method of reducing the error, it is known to average the inertial measurement values.
  • the averaging is to calculate the average value of a plurality of inertial measurement values obtained within a certain period of time. This fixed time is called a time interval or an averaging period, and the position and posture of the moving body are estimated for each averaging period.
  • the magnitude of the error of the inertial measurement value differs depending on the number of inertial measurement values included in the averaging period (that is, the number of averaged samples).
  • the number of averaged samples with the smallest error of the inertial measurement value is set based on the allan dispersion (dispersion characteristic) calculated based on the plurality of inertial measurement values.
  • an object of the present disclosure is to provide an autonomous navigation system or the like capable of accurately estimating the position and posture of a moving body.
  • the autonomous navigation system includes a measuring unit that acquires an inertial measurement value of a moving body, and a motion motion of the moving body based on the inertial measurement value acquired by the measuring unit. It is provided with a determination unit for determining the above, and an estimation unit for estimating the position and posture of the moving body based on the inertial measurement value acquired by the measurement unit and the determination result by the determination unit.
  • the position and posture of the moving body are estimated using the determination result of the motion motion of the moving body, so that the estimation accuracy of the position and the posture can be improved.
  • the measurement unit repeatedly acquires the inertial measurement value of the moving body, the determination unit makes the determination for each inertial measurement value acquired by the measurement unit, and the estimation unit performs the measurement.
  • a plurality of data sets are extracted from a storage unit in which a plurality of data sets of the inertial measurement value acquired by the unit and the determination result corresponding to the inertial measurement value are stored, and based on the extracted plurality of data sets, the said The position and orientation of the moving body may be estimated.
  • the inertial measurement value and the judgment result of the motion motion are stored in association with each other. Therefore, among the obtained multiple inertial measurement values, the inertial measurement value that should not be used for estimating the position and posture of the moving body is selected. , It can be determined based on the determination result. Therefore, since the inertial measurement value that causes the deterioration of the estimation accuracy can be excluded, the estimation accuracy of the position and the posture of the moving body can be improved.
  • the autonomous navigation system may further include the storage unit.
  • the inertial measurement value includes the angular velocity of the moving body
  • the determination unit compares the absolute value of the angular velocity with the first threshold value as the determination, and the absolute value is the first threshold value. If it is smaller, the first determination value is output as the determination result, and if the absolute value is larger than the first threshold value, the second determination value different from the first determination value is output as the determination result.
  • the storage unit may store the output determination result and the angular velocity corresponding to the determination result as the data set in association with each other.
  • the estimation unit includes a dispersion characteristic calculation unit that calculates the dispersion values of a plurality of angular velocities included in a plurality of data sets extracted from the storage unit for each candidate of the averaging period, and the dispersion characteristic calculation unit. Based on the variance value for each candidate of the averaging period calculated by, the inertial measurement value using the averaging period determination unit that determines the averaging period and the averaging period determined by the averaging period determination unit. An average value calculation unit for calculating the average value of the moving body and a position / attitude integration unit for estimating the position and posture of the moving body based on the average value calculated by the average value calculation unit may be included.
  • the averaging period can be calculated accurately and an appropriate number of averaging samples can be set. Therefore, the accuracy of estimating the position and posture of the moving body can be improved.
  • the dispersion characteristic calculation unit does not have to extract the data set including the first determination value and not the data set including the second determination value.
  • the averaging period determination unit performs averaging in which the corresponding variance value is minimized from among a plurality of candidates for the averaging period.
  • An averaging period shorter than the period may be selected.
  • the averaging period determination unit selects an averaging period in which the corresponding variance value is minimized from a plurality of candidates for the averaging period. You may.
  • the estimation accuracy of the position and posture of the moving body can be improved by selecting the averaging period having the smallest dispersion value.
  • the determination unit further compares the absolute value with the second threshold value larger than the first threshold value as the determination, and the absolute value is larger than the first threshold value and the second threshold value is larger than the first threshold value.
  • the second determination value is output as the determination result
  • the absolute value is larger than the second threshold value
  • both the first determination value and the second determination value are output as the determination result.
  • a different third determination value may be output.
  • the averaging period determination unit may select the minimum averaging period from a plurality of candidates for the averaging period when the determination result is the third determination value.
  • the inertial measurement value may include at least one of the acceleration and the velocity of the moving body.
  • the autonomous navigation method includes a step of acquiring an inertial measurement value of a moving body and a step of determining the motion motion of the moving body based on the acquired inertial measurement value. , A step of estimating the position and orientation of the moving body based on the acquired inertial measurement value and the result of the determination.
  • the program according to one aspect of the present disclosure is a program for causing a computer to execute the above-mentioned autonomous navigation method.
  • one aspect of the present disclosure can also be realized as a computer-readable non-temporary recording medium in which the program is stored.
  • the position and posture of the moving body are estimated using the determination result of the motion motion of the moving body, so that the estimation accuracy of the position and the posture can be improved.
  • each figure is a schematic diagram and is not necessarily exactly illustrated. Therefore, for example, the scales and the like do not always match in each figure. Further, in each figure, substantially the same configuration is designated by the same reference numeral, and duplicate description will be omitted or simplified.
  • the numerical range is not an expression expressing only a strict meaning, but an expression meaning that a substantially equivalent range, for example, a difference of about several percent is included.
  • FIG. 1 is a diagram showing an example of the configuration of the autonomous navigation system 100 according to the embodiment.
  • the autonomous navigation device 100 is a device that realizes the operation of the autonomous navigation method according to the present embodiment.
  • the autonomous navigation device 100 performs autonomous navigation of a moving body.
  • the moving object here is mainly assumed to be a vehicle, but a flying object such as an airplane or a drone may be assumed.
  • the autonomous navigation system 100 includes an IMU 101, a processor 102, a memory 103, and a signal line 104.
  • the IMU 101, the processor 102 and the memory 103 are connected to each other via the signal line 104.
  • the IMU101 is mounted on a moving body and measures the inertial measurement value of the moving body.
  • the inertial measurement unit includes the angular velocity of the moving body. Further, the inertial measurement value may include at least one of the acceleration and the velocity of the moving body.
  • the IMU 101 corresponds to the inertial measurement unit 110 shown in FIG. 2, and has a gyro sensor 111 and an acceleration sensor 112.
  • the gyro sensor 111 is an example of an angular velocity sensor that measures the angular velocity of a moving body.
  • the gyro sensor 111 is, for example, a MEMS gyro or a ring laser gyro, but other types of angular velocity meters may be used.
  • MEMS is an abbreviation for Micro Electro Mechanical Systems.
  • the acceleration sensor 112 is an example of an acceleration sensor that measures the acceleration of a moving body.
  • the accelerometer 112 is, for example, a MEMS accelerometer or a servo accelerometer, but other types of accelerometers may be used.
  • the processor 102 is an IC that performs arithmetic processing and controls other hardware. Specifically, the processor 102 is a CPU. IC is an abbreviation for Integrated Circuit. CPU is an abbreviation for Central Processing Unit. The processor 102 has a motion determination unit 120 and a position / posture estimation unit 140 shown in FIG. These processing units are realized as software, for example.
  • the memory 103 is a storage device corresponding to the storage unit 130 shown in FIG. 2, and is a ROM, a RAM, a cache memory, an HDD, or the like.
  • ROM is an abbreviation for Read Only Memory.
  • RAM is an abbreviation for Random Access Memory.
  • HDD is an abbreviation for Hard Disk Drive.
  • the memory 103 stores a navigation program for executing the processing of the motion determination unit 120 and the position / attitude estimation unit 140.
  • the navigation program is loaded into memory 103 and executed by processor 102.
  • the OS is further stored in the memory 103.
  • OS is an abbreviation for Operating System. At least a portion of the OS is loaded into memory 103 and executed by processor 102.
  • the processor 102 executes the navigation program while executing the OS.
  • the input / output data of the navigation program is stored in the memory 103.
  • FIG. 2 is a block diagram showing a functional configuration of the autonomous navigation system 100 according to the embodiment.
  • the autonomous navigation device 100 includes an inertial measurement unit 110, a motion determination unit 120, a storage unit 130, and a position / attitude estimation unit 140.
  • These functional components are realized, for example, by, but not limited to, the IMU 101, the memory 103, and the processor 102, as shown in FIG.
  • the functional components of the autonomous navigation system 100 are realized by any combination of hardware and software.
  • the inertial measurement unit 110 acquires the inertial measurement value of the moving body.
  • the inertial measurement unit 110 repeatedly acquires the acceleration and the angular velocity at regular time intervals. This time interval is called the sampling cycle of the inertial measurement unit 110.
  • the inertial measurement unit 110 is realized by the IMU 101 that measures acceleration and angular velocity, but is not limited thereto.
  • the inertial measurement unit 110 may be realized by at least one of a vehicle speedometer, a directional sensor, and a geomagnetic sensor, and may detect acceleration and angular velocity using the obtained sensor values.
  • the motion determination unit 120 determines the motion motion of the moving body based on the inertial measurement value acquired by the inertial measurement unit 110. Specifically, the motion determination unit 120 makes a determination for each inertial measurement value acquired by the inertial measurement unit 110. That is, the motion determination unit 120 determines the motion motion of the moving body corresponding to the time when the inertial measurement value is acquired.
  • the motion motion includes "straight ahead”, “curve (curve motion)", and "stop”. "Curve” includes “curve (sudden)” and “curve (slow)”. The specific processing method performed by the motion determination unit 120 will be described later.
  • the storage unit 130 stores a plurality of data sets of the inertial measurement value acquired by the inertial measurement unit 110 and the determination result corresponding to the inertial measurement value. That is, the storage unit 130 stores a set of the inertial measurement data output at each time and the motion determination value as a data set.
  • the inertial measurement data includes the angular velocity and acceleration acquired at a predetermined time by the inertial measurement unit 110.
  • the motion determination value is a determination result by the motion determination unit 120, and is information indicating the motion motion of the moving body at the time when the corresponding inertial measurement value is acquired.
  • Each of the plurality of data sets may be associated with the time when the inertial measurement value is acquired. For example, a plurality of data sets are stored as time series data. A plurality of data sets stored in the storage unit 130 are referred to as historical data.
  • the position / posture estimation unit 140 estimates the position and posture of the moving body based on the inertial measurement value acquired by the inertial measurement unit 110 and the determination result by the motion determination unit 120. Specifically, the position / posture estimation unit 140 extracts historical data from the storage unit 130, and estimates the position and posture of the moving body based on the extracted historical data. At this time, the position / posture estimation unit 140 changes the extraction target of the history data based on the determination result. Specifically, the position / orientation estimation unit 140 excludes the inertial measurement value data associated with the determination condition satisfying a predetermined condition from the extraction target. Further, the position / posture estimation unit 140 determines the averaging period based on the motion determination value. This makes it possible to estimate the position and posture of the moving body with high accuracy.
  • FIG. 3 is a block diagram showing a functional configuration of the position / orientation estimation unit 140 according to the embodiment.
  • the position / attitude estimation unit 140 includes an averaging period calculation unit 141, an average value calculation unit 142, and a position / attitude integration unit 143.
  • the averaging period calculation unit 141 determines the inertial measurement value appropriate for estimating the position and posture of the moving body based on the motion determination value output from the motion determination unit 120 and the historical data extracted from the storage unit 130. Calculate the averaging period. Further, the averaging period calculation unit 141 calculates the number of averaging samples based on the calculated averaging period.
  • the averaging period is a period for averaging a plurality of inertial measurement values (specifically, angular velocities) obtained at equal time intervals.
  • the calculation of the averaging period is substantially synonymous with the calculation of the number of inertial measurement units to be averaged, that is, the number of averaging samples.
  • FIG. 4 is a block diagram showing a functional configuration of the averaging period calculation unit 141 according to the embodiment.
  • the averaging period calculation unit 141 includes a variance characteristic calculation unit 141a and an averaging period determination unit 141b.
  • the dispersion characteristic calculation unit 141a calculates the dispersion values of a plurality of angular velocities included in the plurality of data sets extracted from the storage unit 130 for each candidate of the averaging period.
  • the relationship between a plurality of candidates for the averaging period (hereinafter, may be referred to as a candidate averaging period) and the dispersion value corresponding to the candidate is referred to as a variance characteristic. That is, the dispersion characteristic calculation unit 141a calculates the dispersion characteristic of the angular velocity obtained by the measurement.
  • the averaging period determination unit 141b determines the averaging period based on the variance value for each candidate of the averaging period calculated by the variance characteristic calculation unit 141a. That is, the averaging period determination unit 141b determines the averaging period (the number of averaging samples) based on the dispersion characteristics. Further, in the present embodiment, the averaging period determination unit 141b further determines the averaging period based on the exercise determination value. Details will be described later.
  • the average value calculation unit 142 outputs the average value of the inertial measurement values based on the historical data output from the storage unit 130 and the average number of samples output from the average period calculation unit 141. do. Specifically, the mean value calculation unit 142 calculates the average value of the inertial measurement values for each averaging period calculated by the averaging period calculation unit 141. More specifically, the average value calculation unit 142 calculates the average value of the angular velocity data for the number of the most recent averaged samples among the angular velocity data stored in the storage unit 130, and outputs the calculated average value. .. As the historical data used by the average value calculation unit 142, the extraction target is not changed depending on the determination result of the motion motion, and the data of all the inertial measurement values are sequentially used.
  • the position / attitude integration unit 143 estimates the position and attitude of the moving body based on the average value of the inertial measurement values calculated by the average value calculation unit 142.
  • the position and attitude may be estimated using various sensor fusion methods such as an extended Kalman filter.
  • FIG. 5 is a flowchart showing the operation of the autonomous navigation system 100 according to the present embodiment.
  • step S10 the inertial measurement unit 110 acquires and outputs the inertial measurement value of the moving body.
  • step S20 the motion determination unit 120 determines the motion motion of the moving body based on the inertial measurement value output from the inertial measurement unit 110.
  • the motion determination unit 120 outputs an exercise determination value indicating a determination result of the exercise motion. The specific operation of step S20 will be described later.
  • step S30 the storage unit 130 stores a data set of the inertial measurement value output from the inertial measurement unit 110 and the motion determination value output from the motion determination unit 120. Each time an inertial measurement value is obtained, the storage unit 130 stores a data set.
  • the time-series data of the data set of the stored inertial measurement value and the motion judgment value is the historical data.
  • step S40 the averaging period calculation unit 141 calculates the averaging period based on the exercise determination value output from the exercise determination unit 120 and the history data extracted from the storage unit 130. Specifically, the averaging period calculation unit 141 calculates the number of averaging samples. The specific operation of step S40 will be described later.
  • the mean value calculation unit 142 averages the inertial measurement values included in the historical data based on the number of averaged samples calculated by the average period calculation unit 141. Specifically, the average value calculation unit 142 averages the inertial measurement values for the number of the latest averaged samples in the historical data, and outputs the inertial measurement average value.
  • the position / attitude integrating unit 143 estimates the attitude and position of the moving body by integrating the inertial measurement average values. Specifically, the position / attitude integrating unit 143 integrates the inertial measurement average value based on the position and attitude estimated immediately before, and estimates the current position and attitude. For example, the position / attitude integrating unit 143 calculates the moving distance and the moving direction of the moving body based on the inertial measurement average value. The position / posture integrating unit 143 estimates the current position and posture by adding the calculated movement distance and movement direction to the position and posture estimated immediately before.
  • step S20 [3-1. Exercise determination process (step S20)] Next, a specific example of the motion determination process (step S20) will be described with reference to FIGS. 6A, 6B, and 7.
  • FIG. 6A is a diagram showing an example of the movement of the moving body 10 on which the IMU 101 according to the embodiment is mounted.
  • FIG. 6B is a diagram showing an example of inertial measurement data of the moving body 10 that has performed the motion shown in FIG. 6A.
  • the absolute value of the angular velocity when the moving body 10 is traveling on a curve is larger than that when traveling in a straight line. Therefore, it is possible to determine whether the motion of the moving body is a "straight line” motion or a "curve” motion based on the angular velocity of the moving body 10. Specifically, it is possible to determine the motion motion of the moving body based on the comparison result between the absolute value of the angular velocity and the threshold value of 1 or more.
  • FIG. 7 is a flowchart showing the motion determination process (step S20) in the present embodiment.
  • step S21 the motion determination unit 120 determines the motion motion of the moving body based on the acceleration output from the inertial measurement unit 110. Specifically, the motion determination unit 120 compares the acceleration with the threshold value X. If the acceleration is within the threshold value X (Yes in step S21), the process proceeds to step S22, and the motion determination unit 120 determines that the motion of the moving body is in the stopped state, and the motion indicating "stop" as the determination result. Output the judgment value. When the acceleration is larger than the threshold value X (No in step S21), the process proceeds to step S23. Since step S21 is a step of determining whether or not the moving body is "stopped", the determination may be made using other information such as a vehicle speedometer.
  • step S23 the motion determination unit 120 determines the motion motion of the moving body based on the angular velocity output from the inertial measurement unit 110. Specifically, the motion determination unit 120 compares the absolute value of the angular velocity with the threshold value Y.
  • the threshold value Y is an example of the first threshold value.
  • the process proceeds to step S24, and the motion determination unit 120 outputs a motion determination value indicating "straight ahead" as a determination result.
  • the motion determination value representing "straight ahead” is an example of the first determination value.
  • the process proceeds to step S25.
  • step S25 the motion determination unit 120 compares the absolute value of the angular velocity output from the inertial measurement unit 110 with the threshold value Z.
  • the threshold value Z is an example of the second threshold value, and is a value larger than the threshold value Y.
  • the process proceeds to step S26, and the motion determination unit 120 outputs a motion determination value representing "curve (slow)" as the determination result.
  • the motion determination value representing "curve (slow)" is an example of the second determination value.
  • step S25 When the absolute value of the angular velocity is larger than the threshold value Z (No in step S25), the process proceeds to step S27, and the motion determination unit 120 outputs a motion determination value representing "curve (steep)" as the determination result.
  • the motion determination value representing "curve (sudden)" is an example of the third determination value.
  • the motion determination unit 120 has 4 of "stop”, “straight ahead”, “curve (slow)” and “curve (sudden)” as the determination result of the motion motion of the moving body. Outputs one of the two judgment values.
  • the four determination values are labeled with a label such as “curve (loose)” for convenience, but the present invention is not limited to this.
  • the absolute value of acceleration or angular velocity may be larger than the threshold value even when strong vibration is applied to the moving body.
  • the determination value of the motion motion may be expressed by the magnitude and the magnitude of the vibration.
  • steps S23 and S25 are steps for determining whether the moving body is "straight ahead” or “curve movement", and the strength of the curve. Therefore, instead of the angular velocity, the steering of the moving body or the like may be detected to make these determinations.
  • step S40 Average period calculation process
  • FIG. 8 is a flowchart showing the averaging period calculation process (step S40) according to the present embodiment.
  • step S41 the dispersion characteristic calculation unit 141a determines the motion representing "curve (sudden)" or “curve (slow)" among the historical data stored in the storage unit 130. Exclude datasets containing values from extraction. That is, the dispersion characteristic calculation unit 141a extracts a data set including a motion determination value representing "stop" or "straight ahead". In other words, the angular velocity data whose absolute value of the angular velocity is smaller than the threshold value Y is the target of extraction.
  • step S42 the dispersion characteristic calculation unit 141a calculates the dispersion characteristics using the extracted plurality of data sets.
  • the averaging period determination unit 141b calculates the number of averaging samples based on the variance characteristics calculated by the variance characteristic calculation unit 141a.
  • FIG. 9 is a flowchart showing a dispersion characteristic calculation process (step S42) according to the present embodiment.
  • the dispersion characteristic calculation unit 141a selects an unselected averaging period from a plurality of candidate averaging periods.
  • the candidate averaging period is a candidate for a period during which the inertial measurement value is averaged. For example, it is a set of about 10 to 100 pieces obtained by multiplying the sampling period of the inertial measurement unit 110 by a constant.
  • step S422 the variance characteristic calculation unit 141a calculates the variance ⁇ 2 ( ⁇ ) corresponding to the candidate averaging period ⁇ selected in step S421 based on (Equation 1) to (Equation 3).
  • ⁇ T is the sampling period of the IMU 101.
  • m is the number of averaged samples.
  • x i represents an inertial measurement value (specifically, an angular velocity) of the i-sample eye other than “curve (sudden)” and “curve (slow)".
  • the motion determination value is calculated based on historical data other than “curve (sudden)" and “curve (slow)" in the calculation of the dispersion characteristic. That is, since the dispersion characteristic is calculated excluding the angular velocity having a large absolute value, the dispersion characteristic of the inertial measurement unit 110 can be estimated with high accuracy.
  • the criteria for determining the historical data used for calculating the dispersion characteristics may follow other criteria.
  • the motion determination unit 120 detects the vibration state of running, and the history data determined to be "high vibration" is not used for the calculation of the dispersion characteristic.
  • step S423 the variance characteristic calculation unit 141a selects an unselected candidate averaging period (that is, a candidate averaging period for which the corresponding variance value has not been calculated) among the plurality of candidate averaging periods in step S421. Determines if is present. If there is an unselected candidate averaging period (Yes in step S423), the process proceeds to step S421, and the selection of the candidate averaging period and the calculation of the corresponding variance value are repeated. If there is no unselected candidate averaging period (No in step S423), that is, if the variance values for all the candidate averaging periods are calculated, the variance characteristic calculation unit 141a may use the plurality of candidate averaging periods. The set with the corresponding variance value is output as a variance characteristic (for example, information corresponding to the graph shown in FIG. 11).
  • a variance characteristic for example, information corresponding to the graph shown in FIG. 11
  • step S43 Calculation process of averaged sample size
  • FIG. 10 is a flowchart showing a process of determining the number of averaged samples (step S43) according to the present embodiment.
  • FIG. 11 is a diagram showing an example of the dispersion characteristic calculated by the dispersion characteristic calculation unit 141a according to the present embodiment.
  • step S431 when the motion determination value output by the motion determination unit 120 represents a “curve (steep)” (Yes in step S431), the process transitions to step S432.
  • step S432 the averaging period determination unit 141b selects the minimum (shortest) averaging period from the plurality of candidate averaging periods. In the example shown in FIG. 11, the smallest averaging period 31 is selected from the candidate averaging periods corresponding to the 13 black circles.
  • step S433 when the motion determination value represents a “curve (slow)” (Yes in step S433), the process transitions to step S434.
  • step S434 the averaging period determination unit 141b selects an averaging period shorter than the averaging period in which the estimated variance value is minimized among the plurality of candidate averaging periods.
  • the averaging period 33 is the averaging period in which the corresponding variance value is minimized. Therefore, in step S434, the averaging period determination unit 141b selects an averaging period shorter than the averaging period 33.
  • the averaging period 32 is selected, but is not limited to this.
  • the minimum averaging period 31 may be selected. In this case, since it is the same as step S432, the determination in step S431 may not be performed.
  • the averaging period selected in steps S432 and S434 may be selected by a different method.
  • the motion determination unit 120 determines the curvature of the curve of the motion of the moving body, and sets the averaging period in inverse proportion to the magnitude of the curvature.
  • step S435 the averaging period determination unit 141b has the variance value among the variance characteristics calculated by the dispersion characteristic calculation unit 141a. Select the minimum averaging period. In the example shown in FIG. 11, the averaging period 33 is selected.
  • the averaging period selected in step S435 may become an unnecessarily long value, so it is possible to set an upper limit value for the averaging period.
  • the averaging period determination unit 141b selects the averaging period in which the variance value is the minimum within the range of the upper limit value or less.
  • the averaging period determination unit 141b determines the selected averaging period ⁇ as represented by the above-mentioned (Equation 1).
  • the value divided by the sampling period ⁇ T of the IMU 101 is output as the average number of samples m.
  • FIG. 12 is a diagram showing the relationship between the motion of the moving body and the average number of samples according to the present embodiment.
  • FIG. 12A shows the estimated position of the moving body by autonomous navigation when the average number of samples is small during linear motion or stoppage.
  • the white circles indicate the estimated positions at each time. Further, the broken line represents the actual movement locus of the moving body. It should be noted that these illustrated methods are the same for (b) to (d).
  • the number of averaged samples is small refers to a period larger and shorter than the average period 33 selected in step S435, for example, a value near the average period 31 selected in step S432.
  • (B) represents the estimated position of the moving body by autonomous navigation when a large number of averaged samples is taken during linear motion and stoppage.
  • the number of averaged samples is large refers to a value near the average period 33 selected in step S435.
  • the dispersion of the inertial measurement value of the inertial measurement unit 110 becomes smaller by lengthening the averaging period, that is, by taking a large number of averaging samples. This makes it possible to reduce the estimation error in autonomous navigation. Further, at this time, the dispersion characteristic used for determining the averaging period is calculated based on the data excluding the data having a large inertial measurement value as described above. Therefore, since the accuracy of the dispersion characteristics is high, the averaging period and the number of averaging samples can be appropriately selected. Therefore, the position and posture of the moving body can be estimated more accurately.
  • FIG. 12 shows the estimated position of the moving body by autonomous navigation when the average number of samples is taken small during the curve motion.
  • FIG. 12D shows the estimated position of the moving body by autonomous navigation when a large number of averaged samples are taken during the curve motion.
  • averaging sample numbers are selected based on the determination result of the motion determination unit 120. This makes it possible to set an appropriate number of averaged samples according to the motion motion of the moving body, so that the estimation accuracy of the position and posture of the moving body can be improved.
  • the autonomous navigation system 100 includes the storage unit 130, but the autonomous navigation system 100 does not have to include the storage unit 130 (memory 103).
  • the storage unit 130 may be provided in an external device (for example, a server device) different from the autonomous navigation system 100.
  • the autonomous navigation device 100 can communicate with an external device including a storage unit 130 by wire or wirelessly, and may transmit inertial measurement values and motion determination values, and may receive historical data.
  • step S21 the speed and the threshold value may be compared.
  • the motion determination unit 120 may output an exercise determination value indicating "stop" as the determination result. If the speed is greater than the threshold (No in step S21), step S23 may be executed.
  • step S21 may be omitted. That is, the motion determination unit 120 does not have to compare the acceleration with the threshold value X, and the determination result may not include "stop".
  • step S25 may be omitted. That is, the motion determination unit 120 does not have to compare the absolute value of the angular velocity with the threshold value Z. That is, the motion determination unit 120 does not have to discriminate between a gentle curve and a sharp curve. In this case, when the absolute value of the angular velocity is equal to or greater than the threshold value Y (No in step S23), the motion determination unit 120 outputs a motion determination value indicating a “curve” as the determination result.
  • step S431 it is determined whether or not the motion determination value is a “curve”, and step S434 is performed. It may be omitted. In this case, if the motion determination value is not a "curve” (No in step S431), any of steps S434 and S435 may be executed.
  • the curve may be divided into three or more stages. In this case, the steeper the curve, the shorter the averaging period is set.
  • the communication method between the devices described in the above embodiment is not particularly limited.
  • the wireless communication method is, for example, short-range wireless communication such as ZigBee (registered trademark), Bluetooth (registered trademark), or wireless LAN (Local Area Network).
  • the wireless communication method may be communication via a wide area communication network such as the Internet.
  • wired communication may be performed between the devices instead of wireless communication.
  • the wired communication is a power line carrier communication (PLC: Power Line Communication) or a communication using a wired LAN.
  • PLC Power Line Communication
  • another processing unit may execute the processing executed by the specific processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel. For example, the components of one device may be included in another device.
  • the processing described in the above embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. good.
  • the number of processors that execute the above program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
  • all or a part of the components such as the control unit may be configured by dedicated hardware, or may be realized by executing a software program suitable for each component. May be good.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as an HDD or a semiconductor memory.
  • a component such as a control unit may be composed of one or a plurality of electronic circuits.
  • the one or more electronic circuits may be general-purpose circuits or dedicated circuits, respectively.
  • One or more electronic circuits may include, for example, a semiconductor device, an IC, an LSI, or the like.
  • the IC or LSI may be integrated on one chip or may be integrated on a plurality of chips.
  • IC or LSI it is called IC or LSI, but the name changes depending on the degree of integration, and it may be called system LSI, VLSI or ULSI.
  • FPGAs programmed after the LSI are manufactured can be used for the same purpose.
  • LSI is an abbreviation for Large Scale Integration.
  • VLSI and ULSI are abbreviations for Very Large Scale Integration and Ultra Large Scale Integration, respectively.
  • FPGA is an abbreviation for Field Programmable Gate Array.
  • the general or specific aspects of the present disclosure may be realized by a system, an apparatus, a method, an integrated circuit or a computer program.
  • a computer-readable non-temporary recording medium such as an optical disk, HDD or semiconductor memory in which the computer program is stored.
  • it may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program and a recording medium.
  • the present disclosure can be used as an autonomous navigation device capable of accurately estimating the position and posture of a moving body, and can be used, for example, for automatic driving of a moving body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

This autonomous navigation device (100) comprises: an inertia measurement unit (110) that acquires an inertia measured value for a moving body; a motion assessment unit (120) that, on the basis of the inertia measured value acquired by the inertia measurement unit (110), assesses a motion action of the moving body; and a position/orientation estimation unit (140) that, on the basis of the inertia measured value acquired by the inertia measurement unit (110) and the result of assessment by the motion assessment unit (120), estimates the position and orientation of the moving body.

Description

自律航法装置および自律航法方法Autonomous navigation system and autonomous navigation method

 本開示は、自律航法装置および自律航法方法に関する。 This disclosure relates to an autonomous navigation system and an autonomous navigation method.

 近年、慣性計測装置(IMU:Inertial Measurement Unit)が取得する慣性計測値を用いて、物体の位置および姿勢を求めることが行われている。例えば、特許文献1では、慣性計測値の誤差を低減する方法として慣性計測値を平均化するサンプル数を調整する技術が開示されている。 In recent years, the position and orientation of an object have been determined using the inertial measurement value acquired by an inertial measurement unit (IMU). For example, Patent Document 1 discloses a technique for adjusting the number of samples for averaging inertial measurement values as a method for reducing an error in inertial measurement values.

 特許文献1に開示された技術では、移動体の運動中の複数の時刻に取得される慣性計測値に基づいて、平均化するサンプル数毎の慣性計測値の誤差の大きさを示すアラン分散を算出する。そして、算出したアラン分散に基づいて慣性計測値の誤差が最も小さくなる平均化サンプル数が設定される。 In the technique disclosed in Patent Document 1, an allan variance indicating the magnitude of the error of the inertial measurement value for each number of samples to be averaged is obtained based on the inertial measurement values acquired at a plurality of times during the movement of the moving object. calculate. Then, the number of averaged samples with the smallest error of the inertial measurement value is set based on the calculated Allan variance.

特開2020-143992号公報Japanese Unexamined Patent Publication No. 2020-14392

 慣性計測値は、移動体の状態によっては、その変動が大きくなる。このため、慣性計測値に基づいて算出されるアラン分散の精度が低下するので、平均化サンプル数を正しく設定することができない。したがって、従来技術では、移動体の位置および姿勢の推定精度が低下する。 The inertial measurement value fluctuates greatly depending on the state of the moving body. Therefore, the accuracy of the allan variance calculated based on the inertial measurement value is lowered, and the average number of samples cannot be set correctly. Therefore, in the prior art, the accuracy of estimating the position and posture of the moving body is lowered.

 そこで、本開示は、移動体の位置および姿勢を精度良く推定することができる自律航法装置および自律航法方法を提供する。 Therefore, the present disclosure provides an autonomous navigation device and an autonomous navigation method capable of accurately estimating the position and posture of a moving body.

 本開示の一態様に係る自律航法装置は、移動体の慣性計測値を取得する計測部と、前記計測部によって取得された慣性計測値に基づいて、前記移動体の運動動作の判定を行う判定部と、前記計測部によって取得された慣性計測値および前記判定部による判定結果に基づいて、前記移動体の位置および姿勢を推定する推定部と、を備える。 The autonomous navigation system according to one aspect of the present disclosure is a determination unit that acquires an inertial measurement value of a moving body and determines the motion motion of the moving body based on the inertial measurement value acquired by the measurement unit. The unit includes an estimation unit that estimates the position and posture of the moving body based on the inertial measurement value acquired by the measurement unit and the determination result by the determination unit.

 本開示の一態様に係る自律航法方法は、移動体の慣性計測値を取得するステップと、取得された慣性計測値に基づいて、前記移動体の運動動作の判定を行うステップと、取得された慣性計測値および前記判定の結果に基づいて、前記移動体の位置および姿勢を推定するステップと、を含む。 The autonomous navigation method according to one aspect of the present disclosure includes a step of acquiring an inertial measurement value of a moving body and a step of determining the motion motion of the moving body based on the acquired inertial measurement value. It includes a step of estimating the position and orientation of the moving body based on the inertial measurement value and the result of the determination.

 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 It should be noted that these comprehensive or specific embodiments may be realized in a system, a method, an integrated circuit, a computer program, or a recording medium, and may be any of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium. It may be realized by various combinations.

 本開示の一態様によれば、移動体の位置および姿勢を精度良く推定することができる。 According to one aspect of the present disclosure, the position and posture of the moving body can be estimated with high accuracy.

図1は、実施の形態に係る自律航法装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of an autonomous navigation system according to an embodiment. 図2は、実施の形態に係る自律航法装置の機能構成を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration of the autonomous navigation system according to the embodiment. 図3は、実施の形態に係る位置姿勢推定部の機能構成を示すブロック図である。FIG. 3 is a block diagram showing a functional configuration of the position / posture estimation unit according to the embodiment. 図4は、実施の形態に係る平均化期間算定部の機能構成を示すブロック図である。FIG. 4 is a block diagram showing a functional configuration of the averaging period calculation unit according to the embodiment. 図5は、実施の形態に係る自律航法装置の動作を示すフローチャートである。FIG. 5 is a flowchart showing the operation of the autonomous navigation system according to the embodiment. 図6Aは、実施の形態に係るIMUが搭載された移動体の運動の一例を示す図である。FIG. 6A is a diagram showing an example of the movement of the moving body on which the IMU according to the embodiment is mounted. 図6Bは、図6Aに示される運動を行った移動体の慣性計測データの一例を示す図である。FIG. 6B is a diagram showing an example of inertial measurement data of the moving body that has performed the motion shown in FIG. 6A. 図7は、実施の形態に係る運動判定処理(ステップS20)を示すフローチャートである。FIG. 7 is a flowchart showing the motion determination process (step S20) according to the embodiment. 図8は、実施の形態に係る平均化期間算定処理(ステップS40)を示すフローチャートである。FIG. 8 is a flowchart showing the averaging period calculation process (step S40) according to the embodiment. 図9は、実施の形態に係る分散特性算定処理(ステップS42)を示すフローチャートである。FIG. 9 is a flowchart showing the dispersion characteristic calculation process (step S42) according to the embodiment. 図10は、実施の形態に係る平均化サンプル数の決定処理(ステップS43)を示すフローチャートである。FIG. 10 is a flowchart showing a process of determining the number of averaged samples (step S43) according to the embodiment. 図11は、実施の形態に係る分散特性計算部が算出した分散特性の一例を示す図である。FIG. 11 is a diagram showing an example of the dispersion characteristic calculated by the dispersion characteristic calculation unit according to the embodiment. 図12は、実施の形態に係る移動体の運動と平均化サンプル数との関係を示す図である。FIG. 12 is a diagram showing the relationship between the motion of the moving body and the average number of samples according to the embodiment.

 (本開示の基礎となった知見)
 近年、自動運転の技術分野では、トンネル内部または高層ビル群の都市部などのGNSS受信状況の悪い環境下において、あるいは、IMU単体での使用も視野に入れて、IMU単体で移動体の位置および姿勢を高精度に求める技術の需要が高まっている。
(Findings underlying this disclosure)
In recent years, in the technical field of autonomous driving, the position of the moving body and the position of the moving body by the IMU alone are considered in the environment where the GNSS reception condition is bad such as inside the tunnel or in the urban area of the skyscrapers, or with the view of using the IMU alone. There is an increasing demand for technology that requires high-precision posture.

 一般的に移動体の位置および姿勢を求めるために、IMUとGNSSとが用いられる。 Generally, IMU and GNSS are used to determine the position and posture of a moving body.

 IMUは、移動体の慣性計測値を取得する。慣性計測値は、具体的には、移動体にはたらく加速度(重力加速度)および角速度を含む。角速度のベクトル量の方向、または、加速度および角速度の各々のベクトル量の方向に基づいて、移動体の姿勢が求められる。また、加速度を積算することで、移動体の速度、すなわち、所定期間内に進む距離を計算し、方向と距離とを用いることで現在の移動体の位置が求められる。なお、移動体の速度の推定は、移動体に搭載された車速計が用いられてもよい。 IMU acquires the inertial measurement value of the moving body. Specifically, the inertial measurement value includes the acceleration (gravitational acceleration) and the angular velocity acting on the moving body. The posture of the moving body is obtained based on the direction of the vector quantity of the angular velocity or the direction of each vector quantity of the acceleration and the angular velocity. Further, by integrating the accelerations, the speed of the moving body, that is, the distance traveled within a predetermined period is calculated, and the current position of the moving body is obtained by using the direction and the distance. A vehicle speedometer mounted on the moving body may be used to estimate the speed of the moving body.

 GNSSは、Global Navigation Satelite Systemの略称である。GNSSは、移動体に搭載されたGNSS受信機の測位情報に基づいて、姿勢および位置を直接求めることができる。 GNSS is an abbreviation for Global Navigation Satellite System. The GNSS can directly obtain the posture and the position based on the positioning information of the GNSS receiver mounted on the moving body.

 そして、最終的な移動体の位置および姿勢は、これらのIMUとGNSSとでそれぞれ求められた位置および姿勢を複合することにより高精度に求められる。 Then, the final position and posture of the moving body can be obtained with high accuracy by combining the positions and postures obtained by these IMUs and GNSS, respectively.

 しかしながら、上述した通り、トンネル内部または高層ビル群の都市部などでは、GNSSによる測位情報が大きく乱れ、あるいは、そもそも受信できない。このため、このような環境下では、GNSSを用いて位置および姿勢の推定を行うことができない。したがって、IMU単体で移動体の位置および姿勢を高精度に推定されることが求められる。 However, as mentioned above, in the inside of a tunnel or in an urban area of skyscrapers, the positioning information by GNSS is greatly disturbed or cannot be received in the first place. Therefore, in such an environment, it is not possible to estimate the position and attitude using GNSS. Therefore, it is required that the position and posture of the moving body be estimated with high accuracy by the IMU alone.

 IMU単体で移動体の位置および姿勢を高精度に推定するためには、慣性計測値の誤差を低減する必要がある。誤差を低減する方法として、慣性計測値を平均化することが知られている。平均化とは、一定時間内に得られた複数の慣性計測値の平均値を算出することである。この一定時間を時間間隔または平均化期間と称し、この平均化期間毎に移動体の位置および姿勢の推定が行われる。 In order to estimate the position and posture of the moving body with high accuracy by the IMU alone, it is necessary to reduce the error of the inertial measurement value. As a method of reducing the error, it is known to average the inertial measurement values. The averaging is to calculate the average value of a plurality of inertial measurement values obtained within a certain period of time. This fixed time is called a time interval or an averaging period, and the position and posture of the moving body are estimated for each averaging period.

 また、平均化期間に含まれる慣性計測値の数(すなわち、平均化サンプル数)に応じて、慣性計測値の誤差の大きさが異なることが知られている。例えば、特許文献1では、複数の慣性計測値に基づいて算出されたアラン分散(分散特性)に基づいて、慣性計測値の誤差が最も小さくなる平均化サンプル数が設定される。 It is also known that the magnitude of the error of the inertial measurement value differs depending on the number of inertial measurement values included in the averaging period (that is, the number of averaged samples). For example, in Patent Document 1, the number of averaged samples with the smallest error of the inertial measurement value is set based on the allan dispersion (dispersion characteristic) calculated based on the plurality of inertial measurement values.

 しかしながら、特許文献1に記載された技術では、カーブ走行時または荒れた路面状況の走行時の慣性計測値を分散特性の算出に用いた場合、これらの慣性計測値は、本来のIMUの分散特性の算定に用いるべき慣性計測値と比較して非常に大きい。このため、分散特性を正しく推定することができない。その結果、IMUの慣性計測値の誤差が最も小さくなる平均化サンプル数を正しく推定することができなくなる。したがって、移動体の位置および姿勢の推定精度が悪化する恐れがある。 However, in the technique described in Patent Document 1, when the inertial measurement values at the time of traveling on a curve or traveling on a rough road surface are used for calculating the dispersion characteristics, these inertial measurement values are the original dispersion characteristics of the IMU. It is very large compared to the inertial measurement value that should be used for the calculation of. Therefore, the dispersion characteristics cannot be estimated correctly. As a result, it becomes impossible to correctly estimate the number of averaged samples having the smallest error in the inertial measurement value of the IMU. Therefore, the accuracy of estimating the position and posture of the moving body may deteriorate.

 そこで、本開示は、移動体の位置および姿勢を精度良く推定することができる自律航法装置などを提供することを目的とする。 Therefore, an object of the present disclosure is to provide an autonomous navigation system or the like capable of accurately estimating the position and posture of a moving body.

 具体的には、本開示の一態様に係る自律航法装置は、移動体の慣性計測値を取得する計測部と、前記計測部によって取得された慣性計測値に基づいて、前記移動体の運動動作の判定を行う判定部と、前記計測部によって取得された慣性計測値および前記判定部による判定結果に基づいて、前記移動体の位置および姿勢を推定する推定部と、を備える。 Specifically, the autonomous navigation system according to one aspect of the present disclosure includes a measuring unit that acquires an inertial measurement value of a moving body, and a motion motion of the moving body based on the inertial measurement value acquired by the measuring unit. It is provided with a determination unit for determining the above, and an estimation unit for estimating the position and posture of the moving body based on the inertial measurement value acquired by the measurement unit and the determination result by the determination unit.

 これにより、移動体の運動動作の判定結果を利用して移動体の位置および姿勢を推定するので、位置および姿勢の推定精度を高めることができる。 As a result, the position and posture of the moving body are estimated using the determination result of the motion motion of the moving body, so that the estimation accuracy of the position and the posture can be improved.

 また、例えば、前記計測部は、前記移動体の慣性計測値を繰り返し取得し、前記判定部は、前記計測部によって取得された慣性計測値毎に前記判定を行い、前記推定部は、前記計測部によって取得された慣性計測値と当該慣性計測値に対応する前記判定結果とのデータセットが複数記憶される記憶部から複数のデータセットを抽出し、抽出した複数のデータセットに基づいて、前記移動体の位置および姿勢を推定してもよい。 Further, for example, the measurement unit repeatedly acquires the inertial measurement value of the moving body, the determination unit makes the determination for each inertial measurement value acquired by the measurement unit, and the estimation unit performs the measurement. A plurality of data sets are extracted from a storage unit in which a plurality of data sets of the inertial measurement value acquired by the unit and the determination result corresponding to the inertial measurement value are stored, and based on the extracted plurality of data sets, the said The position and orientation of the moving body may be estimated.

 これにより、慣性計測値と運動動作の判定結果とが対応付けて記憶されるので、得られた複数の慣性計測値のうち、移動体の位置および姿勢の推定に利用すべきでない慣性計測値を、判定結果に基づいて判別することができる。したがって、推定精度の悪化の要因となる慣性計測値を除外することができるので、移動体の位置および姿勢の推定精度を高めることができる。 As a result, the inertial measurement value and the judgment result of the motion motion are stored in association with each other. Therefore, among the obtained multiple inertial measurement values, the inertial measurement value that should not be used for estimating the position and posture of the moving body is selected. , It can be determined based on the determination result. Therefore, since the inertial measurement value that causes the deterioration of the estimation accuracy can be excluded, the estimation accuracy of the position and the posture of the moving body can be improved.

 また、例えば、本開示の一態様に係る自律航法装置は、さらに、前記記憶部を備えてもよい。 Further, for example, the autonomous navigation system according to one aspect of the present disclosure may further include the storage unit.

 これにより、外部の記憶部を利用する場合に比べて、記憶部に対するデータの読み書きが容易になり、処理速度の高速化および消費電力の低減に貢献することができる。 As a result, it becomes easier to read and write data to and from the storage unit as compared with the case of using an external storage unit, which can contribute to speeding up the processing speed and reducing power consumption.

 また、例えば、前記慣性計測値は、前記移動体の角速度を含み、前記判定部は、前記判定として、前記角速度の絶対値と第1閾値との比較を行い、前記絶対値が前記第1閾値より小さい場合に、前記判定結果として第1判定値を出力し、前記絶対値が前記第1閾値より大きい場合に、前記判定結果として前記第1判定値とは異なる第2判定値を出力し、前記記憶部は、出力された前記判定結果と、当該判定結果に対応する角速度とを対応付けて前記データセットとして記憶してもよい。 Further, for example, the inertial measurement value includes the angular velocity of the moving body, and the determination unit compares the absolute value of the angular velocity with the first threshold value as the determination, and the absolute value is the first threshold value. If it is smaller, the first determination value is output as the determination result, and if the absolute value is larger than the first threshold value, the second determination value different from the first determination value is output as the determination result. The storage unit may store the output determination result and the angular velocity corresponding to the determination result as the data set in association with each other.

 これにより、角速度に基づいて移動体の運動動作を精度良く判定することができる。例えば、角速度が大きい場合には移動体が曲線運動(カーブ)中であると判定し、角速度が小さい場合には移動体が直線運動(直進)中であると判定することができる。 This makes it possible to accurately determine the motion motion of the moving body based on the angular velocity. For example, when the angular velocity is high, it can be determined that the moving body is in a curved motion (curve), and when the angular velocity is low, it can be determined that the moving body is in a linear motion (straight).

 また、例えば、前記推定部は、前記記憶部から抽出した複数のデータセットに含まれる複数の角速度の分散値を、平均化期間の候補毎に計算する分散特性計算部と、前記分散特性計算部によって計算された平均化期間の候補毎の分散値に基づいて、平均化期間を決定する平均化期間決定部と、前記平均化期間決定部によって決定された平均化期間を用いて前記慣性計測値の平均値を算出する平均値算出部と、前記平均値算出部によって算出された平均値に基づいて、前記移動体の位置および姿勢を推定する位置姿勢積算部と、を含んでもよい。 Further, for example, the estimation unit includes a dispersion characteristic calculation unit that calculates the dispersion values of a plurality of angular velocities included in a plurality of data sets extracted from the storage unit for each candidate of the averaging period, and the dispersion characteristic calculation unit. Based on the variance value for each candidate of the averaging period calculated by, the inertial measurement value using the averaging period determination unit that determines the averaging period and the averaging period determined by the averaging period determination unit. An average value calculation unit for calculating the average value of the moving body and a position / attitude integration unit for estimating the position and posture of the moving body based on the average value calculated by the average value calculation unit may be included.

 これにより、平均化期間が精度良く算定され、適切な平均化サンプル数を設定することができる。よって、移動体の位置および姿勢の推定精度を高めることができる。 As a result, the averaging period can be calculated accurately and an appropriate number of averaging samples can be set. Therefore, the accuracy of estimating the position and posture of the moving body can be improved.

 また、例えば、前記分散特性計算部は、前記第1判定値を含むデータセットを抽出し、前記第2判定値を含むデータセットを抽出しなくてもよい。 Further, for example, the dispersion characteristic calculation unit does not have to extract the data set including the first determination value and not the data set including the second determination value.

 これにより、カーブなどの移動体の方向の変化が大きい場合のデータセットを除外することができるので、分散特性の推定精度を高めることができる。分散特性の精度が高まることにより、平均化期間の算定精度が高まり、より適切な平均化サンプル数を設定することができる。よって、移動体の位置および姿勢の推定精度をさらに高めることができる。 This makes it possible to exclude the data set when the change in the direction of the moving body such as a curve is large, so that the estimation accuracy of the dispersion characteristics can be improved. By increasing the accuracy of the dispersion characteristics, the calculation accuracy of the averaging period is improved, and a more appropriate number of averaging samples can be set. Therefore, the accuracy of estimating the position and posture of the moving body can be further improved.

 なお、仮に、特許文献1に記載された技術で正しい分散特性を推定できた場合でも、特許文献1に記載された技術では、平均化サンプル数として、移動体の運動によらず常に一定の値が用いられる。このため、カーブ中の位置および姿勢の推定を行う時間間隔が長くなりすぎてしまい、位置および姿勢の推定精度が悪化する恐れがある。 Even if the correct dispersion characteristics can be estimated by the technique described in Patent Document 1, in the technique described in Patent Document 1, the average number of samples is always constant regardless of the motion of the moving object. Is used. Therefore, the time interval for estimating the position and the posture in the curve becomes too long, and the estimation accuracy of the position and the posture may deteriorate.

 これに対して、例えば、前記平均化期間決定部は、前記判定結果が前記第2判定値である場合に、平均化期間の複数の候補の中から、対応する分散値が最小になる平均化期間より短い平均化期間を選択してもよい。 On the other hand, for example, when the determination result is the second determination value, the averaging period determination unit performs averaging in which the corresponding variance value is minimized from among a plurality of candidates for the averaging period. An averaging period shorter than the period may be selected.

 これにより、カーブなどの移動体の方向の変化が大きい場合には、平均化期間を短くすることで、移動体の位置および姿勢の推定精度を高めることができる。 As a result, when the change in the direction of the moving body such as a curve is large, the estimation accuracy of the position and posture of the moving body can be improved by shortening the averaging period.

 また、例えば、前記平均化期間決定部は、前記判定結果が前記第1判定値である場合に、平均化期間の複数の候補の中から、対応する分散値が最小になる平均化期間を選択してもよい。 Further, for example, when the determination result is the first determination value, the averaging period determination unit selects an averaging period in which the corresponding variance value is minimized from a plurality of candidates for the averaging period. You may.

 これにより、直進などの移動体の方向の変化が小さい場合に、分散値が最も小さい平均化期間を選択することで、移動体の位置および姿勢の推定精度を高めることができる。 As a result, when the change in the direction of the moving body such as going straight is small, the estimation accuracy of the position and posture of the moving body can be improved by selecting the averaging period having the smallest dispersion value.

 また、例えば、前記判定部は、前記判定として、さらに、前記絶対値と前記第1閾値より大きい第2閾値との比較を行い、前記絶対値が前記第1閾値より大きく、かつ、前記第2閾値より小さい場合に、前記判定結果として前記第2判定値を出力し、前記絶対値が前記第2閾値より大きい場合に、前記判定結果として前記第1判定値および前記第2判定値のいずれとも異なる第3判定値を出力してもよい。 Further, for example, the determination unit further compares the absolute value with the second threshold value larger than the first threshold value as the determination, and the absolute value is larger than the first threshold value and the second threshold value is larger than the first threshold value. When it is smaller than the threshold value, the second determination value is output as the determination result, and when the absolute value is larger than the second threshold value, both the first determination value and the second determination value are output as the determination result. A different third determination value may be output.

 これにより、例えば、急カーブと緩やかなカーブとを区別することができるので、それぞれの場合に応じた適切な平均化期間を選択することができ、移動体の位置および姿勢の推定精度を高めることができる。 As a result, for example, it is possible to distinguish between a sharp curve and a gentle curve, so that an appropriate averaging period can be selected according to each case, and the estimation accuracy of the position and posture of the moving body can be improved. Can be done.

 また、例えば、前記平均化期間決定部は、前記判定結果が前記第3判定値である場合に、平均化期間の複数の候補の中から最小の平均化期間を選択してもよい。 Further, for example, the averaging period determination unit may select the minimum averaging period from a plurality of candidates for the averaging period when the determination result is the third determination value.

 これにより、急カーブなどの移動体の方向の変化がかなり大きい場合に、最小の平均化期間を選択することで、移動体の位置および姿勢の推定精度を高めることができる。 This makes it possible to improve the estimation accuracy of the position and posture of the moving body by selecting the minimum averaging period when the change in the direction of the moving body such as a sharp curve is considerably large.

 また、例えば、前記慣性計測値は、前記移動体の加速度および速度の少なくとも一方を含んでもよい。 Further, for example, the inertial measurement value may include at least one of the acceleration and the velocity of the moving body.

 これにより、加速度および速度の少なくとも一方を利用するので、移動体の位置および姿勢の推定精度を高めることができる。 As a result, at least one of acceleration and velocity is used, so that the estimation accuracy of the position and posture of the moving body can be improved.

 また、例えば、本開示の一態様に係る自律航法方法は、移動体の慣性計測値を取得するステップと、取得された慣性計測値に基づいて、前記移動体の運動動作の判定を行うステップと、取得された慣性計測値および前記判定の結果に基づいて、前記移動体の位置および姿勢を推定するステップと、を含む。また、例えば、本開示の一態様に係るプログラムは、上記自律航法方法をコンピュータに実行させるプログラムである。あるいは、本開示の一態様は、当該プログラムを格納したコンピュータ読み取り可能な非一時的な記録媒体として実現することもできる。 Further, for example, the autonomous navigation method according to one aspect of the present disclosure includes a step of acquiring an inertial measurement value of a moving body and a step of determining the motion motion of the moving body based on the acquired inertial measurement value. , A step of estimating the position and orientation of the moving body based on the acquired inertial measurement value and the result of the determination. Further, for example, the program according to one aspect of the present disclosure is a program for causing a computer to execute the above-mentioned autonomous navigation method. Alternatively, one aspect of the present disclosure can also be realized as a computer-readable non-temporary recording medium in which the program is stored.

 これにより、移動体の運動動作の判定結果を利用して移動体の位置および姿勢を推定するので、位置および姿勢の推定精度を高めることができる。 As a result, the position and posture of the moving body are estimated using the determination result of the motion motion of the moving body, so that the estimation accuracy of the position and the posture can be improved.

 以下では、実施の形態について、図面を参照しながら具体的に説明する。 Hereinafter, embodiments will be specifically described with reference to the drawings.

 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Note that all of the embodiments described below are comprehensive or specific examples. The numerical values, shapes, materials, components, arrangement positions and connection forms of the components, steps, the order of steps, and the like shown in the following embodiments are examples, and are not intended to limit the present disclosure. Further, among the components in the following embodiments, the components not described in the independent claims are described as arbitrary components.

 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略または簡略化する。 Also, each figure is a schematic diagram and is not necessarily exactly illustrated. Therefore, for example, the scales and the like do not always match in each figure. Further, in each figure, substantially the same configuration is designated by the same reference numeral, and duplicate description will be omitted or simplified.

 また、本明細書において、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。 Further, in the present specification, the numerical range is not an expression expressing only a strict meaning, but an expression meaning that a substantially equivalent range, for example, a difference of about several percent is included.

 なお、本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施の形態ならびに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。 Further advantages and effects in one aspect of the present disclosure will be clarified from the specification and drawings. Such advantages and / or effects are provided by some embodiments and the features described in the specification and drawings, respectively, but not all are provided in order to obtain one or more identical features. No need.

 (実施の形態)
 以下では、移動体の位置および姿勢を高精度に推定することができる自律航法装置および自律航法方法の実施の形態について、図1から図12に基づいて説明する。
(Embodiment)
Hereinafter, embodiments of an autonomous navigation system and an autonomous navigation method capable of estimating the position and posture of a moving body with high accuracy will be described with reference to FIGS. 1 to 12.

 [1.自律航法装置の構成]
 まず、実施の形態に係る自律航法装置の構成について説明する。
[1. Configuration of autonomous navigation system]
First, the configuration of the autonomous navigation system according to the embodiment will be described.

 図1は、実施の形態に係る自律航法装置100の構成の一例を示す図である。自律航法装置100は、本実施の形態に係る自律航法方法の動作を実現する装置である。自律航法装置100は、移動体の自律航法を行う。ここでいう移動体は、主に車両を想定しているが、飛行機またはドローンなどの飛翔体を想定してもよい。 FIG. 1 is a diagram showing an example of the configuration of the autonomous navigation system 100 according to the embodiment. The autonomous navigation device 100 is a device that realizes the operation of the autonomous navigation method according to the present embodiment. The autonomous navigation device 100 performs autonomous navigation of a moving body. The moving object here is mainly assumed to be a vehicle, but a flying object such as an airplane or a drone may be assumed.

 図1に示されるように、自律航法装置100は、IMU101と、プロセッサ102と、メモリ103と、信号線104と、を備える。IMU101、プロセッサ102およびメモリ103は、信号線104を介して互いに接続されている。 As shown in FIG. 1, the autonomous navigation system 100 includes an IMU 101, a processor 102, a memory 103, and a signal line 104. The IMU 101, the processor 102 and the memory 103 are connected to each other via the signal line 104.

 IMU101は、移動体に搭載されており、移動体の慣性計測値を計測する。慣性計測値は、移動体の角速度を含む。また、慣性計測値は、移動体の加速度および速度の少なくとも一方を含んでもよい。IMU101は、図2に示される慣性計測部110に相当し、ジャイロセンサ111と、加速度センサ112と、を有する。 IMU101 is mounted on a moving body and measures the inertial measurement value of the moving body. The inertial measurement unit includes the angular velocity of the moving body. Further, the inertial measurement value may include at least one of the acceleration and the velocity of the moving body. The IMU 101 corresponds to the inertial measurement unit 110 shown in FIG. 2, and has a gyro sensor 111 and an acceleration sensor 112.

 ジャイロセンサ111は、移動体の角速度を計測する角速度センサの一例である。ジャイロセンサ111は、例えば、MEMSジャイロまたはリングレーザジャイロであるが、その他の種類の角速度計が使用されても構わない。なお、MEMSは、Micro Electro Mechanical Systemsの略称である。 The gyro sensor 111 is an example of an angular velocity sensor that measures the angular velocity of a moving body. The gyro sensor 111 is, for example, a MEMS gyro or a ring laser gyro, but other types of angular velocity meters may be used. MEMS is an abbreviation for Micro Electro Mechanical Systems.

 加速度センサ112は、移動体の加速度を計測する加速度センサの一例である。加速度センサ112は、例えば、MEMS加速度計またはサーボ加速度計であるが、その他の種類の加速度センサが使用されても構わない。 The acceleration sensor 112 is an example of an acceleration sensor that measures the acceleration of a moving body. The accelerometer 112 is, for example, a MEMS accelerometer or a servo accelerometer, but other types of accelerometers may be used.

 プロセッサ102は、演算処理を行うICであり、他のハードウェアを制御する。具体的には、プロセッサ102は、CPUである。なお、ICは、Integrated Circuitの略称である。CPUは、Central Processing Unitの略称である。プロセッサ102は、図2に示される運動判定部120および位置姿勢推定部140を有する。これらの処理部は、例えば、ソフトウェアとして実現される。 The processor 102 is an IC that performs arithmetic processing and controls other hardware. Specifically, the processor 102 is a CPU. IC is an abbreviation for Integrated Circuit. CPU is an abbreviation for Central Processing Unit. The processor 102 has a motion determination unit 120 and a position / posture estimation unit 140 shown in FIG. These processing units are realized as software, for example.

 メモリ103は、図2に示される記憶部130に相当する記憶装置であり、ROM、RAM、キャッシュメモリ、HDDなどである。なお、ROMは、Read Only Memoryの略称である。RAMは、Random Access Memoryの略称である。HDDは、Hard Disk Driveの略称である。 The memory 103 is a storage device corresponding to the storage unit 130 shown in FIG. 2, and is a ROM, a RAM, a cache memory, an HDD, or the like. ROM is an abbreviation for Read Only Memory. RAM is an abbreviation for Random Access Memory. HDD is an abbreviation for Hard Disk Drive.

 メモリ103には、運動判定部120および位置姿勢推定部140の処理を実行するための航法プログラムが記憶されている。航法プログラムは、メモリ103にロードされて、プロセッサ102によって実行される。メモリ103には、さらに、OSが記憶されている。OSは、Operating Systemの略称である。OSの少なくとも一部はメモリ103にロードされて、プロセッサ102によって実行される。プロセッサ102は、OSを実行しながら、航法プログラムを実行する。航法プログラムの入出力データは、メモリ103に記憶される。 The memory 103 stores a navigation program for executing the processing of the motion determination unit 120 and the position / attitude estimation unit 140. The navigation program is loaded into memory 103 and executed by processor 102. The OS is further stored in the memory 103. OS is an abbreviation for Operating System. At least a portion of the OS is loaded into memory 103 and executed by processor 102. The processor 102 executes the navigation program while executing the OS. The input / output data of the navigation program is stored in the memory 103.

 [2.機能構成]
 次に、自律航法装置100の機能構成について、図2から図4を用いて説明する。
[2. Function configuration]
Next, the functional configuration of the autonomous navigation system 100 will be described with reference to FIGS. 2 to 4.

 図2は、実施の形態に係る自律航法装置100の機能構成を示すブロック図である。図2に示されるように、自律航法装置100は、慣性計測部110と、運動判定部120と、記憶部130と、位置姿勢推定部140と、を備える。これらの機能構成要素は、例えば、図1に示したように、IMU101、メモリ103およびプロセッサ102によって実現されるが、これに限定されない。自律航法装置100が備える機能構成要素は、ハードウェアおよびソフトウェアの任意の組み合わせで実現される。 FIG. 2 is a block diagram showing a functional configuration of the autonomous navigation system 100 according to the embodiment. As shown in FIG. 2, the autonomous navigation device 100 includes an inertial measurement unit 110, a motion determination unit 120, a storage unit 130, and a position / attitude estimation unit 140. These functional components are realized, for example, by, but not limited to, the IMU 101, the memory 103, and the processor 102, as shown in FIG. The functional components of the autonomous navigation system 100 are realized by any combination of hardware and software.

 慣性計測部110は、移動体の慣性計測値を取得する。本実施の形態では、慣性計測部110は、加速度および角速度を一定の時間間隔で繰り返し取得する。この時間間隔のことを慣性計測部110のサンプリング周期という。具体的には、慣性計測部110は、加速度および角速度を計測するIMU101で実現されるが、これに限定されない。慣性計測部110は、車速計、方位センサおよび地磁気センサの少なくとも1つで実現されてもよく、得られたセンサ値を用いて加速度および角速度を検知しても構わない。 The inertial measurement unit 110 acquires the inertial measurement value of the moving body. In the present embodiment, the inertial measurement unit 110 repeatedly acquires the acceleration and the angular velocity at regular time intervals. This time interval is called the sampling cycle of the inertial measurement unit 110. Specifically, the inertial measurement unit 110 is realized by the IMU 101 that measures acceleration and angular velocity, but is not limited thereto. The inertial measurement unit 110 may be realized by at least one of a vehicle speedometer, a directional sensor, and a geomagnetic sensor, and may detect acceleration and angular velocity using the obtained sensor values.

 運動判定部120は、慣性計測部110によって取得された慣性計測値に基づいて、移動体の運動動作の判定を行う。具体的には、運動判定部120は、慣性計測部110によって取得された慣性計測値毎に判定を行う。つまり、運動判定部120は、慣性計測値が取得された時刻に対応する移動体の運動動作を判定する。本実施の形態では、運動動作には、「直進」、「カーブ(曲線運動)」および「停止」が含まれる。「カーブ」には、「カーブ(急)」および「カーブ(緩)」が含まれる。運動判定部120が行う具体的な処理方法については後述する。 The motion determination unit 120 determines the motion motion of the moving body based on the inertial measurement value acquired by the inertial measurement unit 110. Specifically, the motion determination unit 120 makes a determination for each inertial measurement value acquired by the inertial measurement unit 110. That is, the motion determination unit 120 determines the motion motion of the moving body corresponding to the time when the inertial measurement value is acquired. In the present embodiment, the motion motion includes "straight ahead", "curve (curve motion)", and "stop". "Curve" includes "curve (sudden)" and "curve (slow)". The specific processing method performed by the motion determination unit 120 will be described later.

 記憶部130は、慣性計測部110によって取得された慣性計測値と当該慣性計測値に対応する判定結果とのデータセットを複数記憶する。つまり、記憶部130は、各時刻に出力される慣性計測データと運動判定値との組をデータセットとして蓄積する。慣性計測データは、慣性計測部110によって所定時刻に取得された角速度および加速度を含む。運動判定値は、運動判定部120による判定結果であり、対応する慣性計測値が取得された時刻における移動体の運動動作を示す情報である。複数のデータセットの各々には、慣性計測値が取得された時刻が対応付けられていてもよい。例えば、複数のデータセットは、時系列データとして記憶されている。記憶部130に記憶された複数のデータセットを履歴データと称する。 The storage unit 130 stores a plurality of data sets of the inertial measurement value acquired by the inertial measurement unit 110 and the determination result corresponding to the inertial measurement value. That is, the storage unit 130 stores a set of the inertial measurement data output at each time and the motion determination value as a data set. The inertial measurement data includes the angular velocity and acceleration acquired at a predetermined time by the inertial measurement unit 110. The motion determination value is a determination result by the motion determination unit 120, and is information indicating the motion motion of the moving body at the time when the corresponding inertial measurement value is acquired. Each of the plurality of data sets may be associated with the time when the inertial measurement value is acquired. For example, a plurality of data sets are stored as time series data. A plurality of data sets stored in the storage unit 130 are referred to as historical data.

 位置姿勢推定部140は、慣性計測部110によって取得された慣性計測値および運動判定部120による判定結果に基づいて、移動体の位置および姿勢を推定する。具体的には、位置姿勢推定部140は、記憶部130から履歴データを抽出し、抽出した履歴データに基づいて、移動体の位置および姿勢を推定する。このとき、位置姿勢推定部140は、判定結果に基づいて履歴データの抽出対象を変更する。具体的には、位置姿勢推定部140は、所定の条件を満たす判定条件に対応付けられた慣性計測値データを抽出の対象から除外する。また、位置姿勢推定部140は、運動判定値に基づいて平均化期間を決定する。これにより、移動体の位置および姿勢の推定を高精度に行うことができる。 The position / posture estimation unit 140 estimates the position and posture of the moving body based on the inertial measurement value acquired by the inertial measurement unit 110 and the determination result by the motion determination unit 120. Specifically, the position / posture estimation unit 140 extracts historical data from the storage unit 130, and estimates the position and posture of the moving body based on the extracted historical data. At this time, the position / posture estimation unit 140 changes the extraction target of the history data based on the determination result. Specifically, the position / orientation estimation unit 140 excludes the inertial measurement value data associated with the determination condition satisfying a predetermined condition from the extraction target. Further, the position / posture estimation unit 140 determines the averaging period based on the motion determination value. This makes it possible to estimate the position and posture of the moving body with high accuracy.

 図3は、実施の形態に係る位置姿勢推定部140の機能構成を示すブロック図である。図3に示されるように、位置姿勢推定部140は、平均化期間算定部141と、平均値算出部142と、位置姿勢積算部143と、を備える。 FIG. 3 is a block diagram showing a functional configuration of the position / orientation estimation unit 140 according to the embodiment. As shown in FIG. 3, the position / attitude estimation unit 140 includes an averaging period calculation unit 141, an average value calculation unit 142, and a position / attitude integration unit 143.

 平均化期間算定部141は、運動判定部120から出力される運動判定値と、記憶部130から抽出される履歴データとに基づいて、移動体の位置および姿勢の推定に適切な慣性計測値の平均化期間を算定する。さらに、平均化期間算定部141は、算定した平均化期間に基づいて平均化サンプル数を算定する。 The averaging period calculation unit 141 determines the inertial measurement value appropriate for estimating the position and posture of the moving body based on the motion determination value output from the motion determination unit 120 and the historical data extracted from the storage unit 130. Calculate the averaging period. Further, the averaging period calculation unit 141 calculates the number of averaging samples based on the calculated averaging period.

 平均化期間は、等しい時間間隔で得られる複数の慣性計測値(具体的には角速度)を平均化する期間である。平均化期間の算定は、慣性計測値を平均化する個数、すなわち、平均化サンプル数の算定と実質的には同義である。平均化サンプル数は、算定された平均化期間をIMU101のサンプリング周期で除した値である。例えば、平均化期間が0.02秒であり、サンプリング周期が0.01秒(サンプリングレート100Hz)である場合、平均化サンプル数は、2個(=0.02÷0.01)になる。 The averaging period is a period for averaging a plurality of inertial measurement values (specifically, angular velocities) obtained at equal time intervals. The calculation of the averaging period is substantially synonymous with the calculation of the number of inertial measurement units to be averaged, that is, the number of averaging samples. The number of averaged samples is a value obtained by dividing the calculated average period by the sampling cycle of IMU101. For example, when the averaging period is 0.02 seconds and the sampling period is 0.01 seconds (sampling rate 100 Hz), the number of averaging samples is 2 (= 0.02 ÷ 0.01).

 図4は、実施の形態に係る平均化期間算定部141の機能構成を示すブロック図である。図4に示されるように、平均化期間算定部141は、分散特性計算部141aと、平均化期間決定部141bと、を含む。 FIG. 4 is a block diagram showing a functional configuration of the averaging period calculation unit 141 according to the embodiment. As shown in FIG. 4, the averaging period calculation unit 141 includes a variance characteristic calculation unit 141a and an averaging period determination unit 141b.

 分散特性計算部141aは、記憶部130から抽出した複数のデータセットに含まれる複数の角速度の分散値を、平均化期間の候補毎に計算する。平均化期間の複数の候補(以下、候補平均化期間と記載する場合がある)と、当該候補に対応する分散値との関係性を分散特性と称する。つまり、分散特性計算部141aは、計測により得られた角速度の分散特性を算出する。 The dispersion characteristic calculation unit 141a calculates the dispersion values of a plurality of angular velocities included in the plurality of data sets extracted from the storage unit 130 for each candidate of the averaging period. The relationship between a plurality of candidates for the averaging period (hereinafter, may be referred to as a candidate averaging period) and the dispersion value corresponding to the candidate is referred to as a variance characteristic. That is, the dispersion characteristic calculation unit 141a calculates the dispersion characteristic of the angular velocity obtained by the measurement.

 平均化期間決定部141bは、分散特性計算部141aによって計算された平均化期間の候補毎の分散値に基づいて、平均化期間を決定する。つまり、平均化期間決定部141bは、分散特性に基づいて平均化期間(平均化サンプル数)を決定する。また、本実施の形態では、平均化期間決定部141bは、運動判定値に更に基づいて平均化期間を決定する。詳細については、後で説明する。 The averaging period determination unit 141b determines the averaging period based on the variance value for each candidate of the averaging period calculated by the variance characteristic calculation unit 141a. That is, the averaging period determination unit 141b determines the averaging period (the number of averaging samples) based on the dispersion characteristics. Further, in the present embodiment, the averaging period determination unit 141b further determines the averaging period based on the exercise determination value. Details will be described later.

 図3に戻り、平均値算出部142は、記憶部130から出力される履歴データと、平均化期間算定部141から出力される平均化サンプル数とに基づいて、慣性計測値の平均値を出力する。具体的には、平均値算出部142は、平均化期間算定部141によって算定された平均化期間毎に慣性計測値の平均値を算出する。より具体的には、平均値算出部142は、記憶部130に記憶されている角速度データのうち、直近の平均化サンプル数分の角速度データの平均値を算出し、算出した平均値を出力する。平均値算出部142が用いる履歴データとしては、運動動作の判定結果による抽出対象の変更はなく、全ての慣性計測値のデータが順次用いられる。 Returning to FIG. 3, the average value calculation unit 142 outputs the average value of the inertial measurement values based on the historical data output from the storage unit 130 and the average number of samples output from the average period calculation unit 141. do. Specifically, the mean value calculation unit 142 calculates the average value of the inertial measurement values for each averaging period calculated by the averaging period calculation unit 141. More specifically, the average value calculation unit 142 calculates the average value of the angular velocity data for the number of the most recent averaged samples among the angular velocity data stored in the storage unit 130, and outputs the calculated average value. .. As the historical data used by the average value calculation unit 142, the extraction target is not changed depending on the determination result of the motion motion, and the data of all the inertial measurement values are sequentially used.

 位置姿勢積算部143は、平均値算出部142によって算出された慣性計測値の平均値に基づいて、移動体の位置および姿勢の推定を行う。位置および姿勢の推定には、拡張カルマンフィルタなどの各種センサフュージョン手法を用いて算出してもよい。 The position / attitude integration unit 143 estimates the position and attitude of the moving body based on the average value of the inertial measurement values calculated by the average value calculation unit 142. The position and attitude may be estimated using various sensor fusion methods such as an extended Kalman filter.

 [3.自律航法装置の動作(自律航法方法)]
 続いて、本実施の形態に係る自律航法装置100の動作(自律航法方法)について説明する。まず、自律航法装置100の全体的な動作について、図5を用いて説明する。図5は、本実施の形態に係る自律航法装置100の動作を示すフローチャートである。
[3. Operation of autonomous navigation system (autonomous navigation method)]
Subsequently, the operation (autonomous navigation method) of the autonomous navigation device 100 according to the present embodiment will be described. First, the overall operation of the autonomous navigation system 100 will be described with reference to FIG. FIG. 5 is a flowchart showing the operation of the autonomous navigation system 100 according to the present embodiment.

 まず、ステップS10において、慣性計測部110は、移動体の慣性計測値を取得して出力する。 First, in step S10, the inertial measurement unit 110 acquires and outputs the inertial measurement value of the moving body.

 次に、ステップS20において、運動判定部120は、慣性計測部110から出力された慣性計測値に基づいて移動体の運動動作を判定する。運動判定部120は、運動動作の判定結果を示す運動判定値を出力する。ステップS20の具体的な動作については、後で説明する。 Next, in step S20, the motion determination unit 120 determines the motion motion of the moving body based on the inertial measurement value output from the inertial measurement unit 110. The motion determination unit 120 outputs an exercise determination value indicating a determination result of the exercise motion. The specific operation of step S20 will be described later.

 次に、ステップS30において、記憶部130は、慣性計測部110から出力された慣性計測値と運動判定部120から出力された運動判定値とのデータセットを記憶する。慣性計測値が得られる度に、記憶部130はデータセットを記憶する。記憶された慣性計測値と運動判定値とのデータセットの時系列データが履歴データである。 Next, in step S30, the storage unit 130 stores a data set of the inertial measurement value output from the inertial measurement unit 110 and the motion determination value output from the motion determination unit 120. Each time an inertial measurement value is obtained, the storage unit 130 stores a data set. The time-series data of the data set of the stored inertial measurement value and the motion judgment value is the historical data.

 次に、ステップS40において、平均化期間算定部141は、運動判定部120から出力された運動判定値と記憶部130から抽出された履歴データとに基づいて、平均化期間を算定する。具体的には、平均化期間算定部141は、平均化サンプル数を算定する。ステップS40の具体的な動作については、後で説明する。 Next, in step S40, the averaging period calculation unit 141 calculates the averaging period based on the exercise determination value output from the exercise determination unit 120 and the history data extracted from the storage unit 130. Specifically, the averaging period calculation unit 141 calculates the number of averaging samples. The specific operation of step S40 will be described later.

 次に、ステップS50において、平均値算出部142は、平均化期間算定部141が算定した平均化サンプル数に基づいて、履歴データに含まれる慣性計測値の平均化を行う。具体的には、平均値算出部142は、履歴データのうち、直近の平均化サンプル数分の慣性計測値を平均化し、慣性計測平均値として出力する。 Next, in step S50, the mean value calculation unit 142 averages the inertial measurement values included in the historical data based on the number of averaged samples calculated by the average period calculation unit 141. Specifically, the average value calculation unit 142 averages the inertial measurement values for the number of the latest averaged samples in the historical data, and outputs the inertial measurement average value.

 次に、ステップS60において、位置姿勢積算部143は、慣性計測平均値を積算することで、移動体の姿勢および位置を推定する。具体的には、位置姿勢積算部143は、直前に推定された位置および姿勢を基準に、慣性計測平均値を積算して現在の位置および姿勢を推定する。例えば、位置姿勢積算部143は、慣性計測平均値に基づいて、移動体の移動距離および移動方向を算出する。位置姿勢積算部143は、直前に推定された位置および姿勢に対して、算出された移動距離および移動方向を加えることによって、現在の位置および姿勢を推定する。 Next, in step S60, the position / attitude integrating unit 143 estimates the attitude and position of the moving body by integrating the inertial measurement average values. Specifically, the position / attitude integrating unit 143 integrates the inertial measurement average value based on the position and attitude estimated immediately before, and estimates the current position and attitude. For example, the position / attitude integrating unit 143 calculates the moving distance and the moving direction of the moving body based on the inertial measurement average value. The position / posture integrating unit 143 estimates the current position and posture by adding the calculated movement distance and movement direction to the position and posture estimated immediately before.

 [3-1.運動判定処理(ステップS20)]
 次に、図6A、図6Bおよび図7に基づいて、運動判定処理(ステップS20)の具体例について説明する。
[3-1. Exercise determination process (step S20)]
Next, a specific example of the motion determination process (step S20) will be described with reference to FIGS. 6A, 6B, and 7.

 図6Aは、実施の形態に係るIMU101が搭載された移動体10の運動の一例を示す図である。図6Bは、図6Aに示される運動を行った移動体10の慣性計測データの一例を示す図である。 FIG. 6A is a diagram showing an example of the movement of the moving body 10 on which the IMU 101 according to the embodiment is mounted. FIG. 6B is a diagram showing an example of inertial measurement data of the moving body 10 that has performed the motion shown in FIG. 6A.

 図6Aでは、移動体10が直線およびカーブを走行している様子を表している。具体的には、時刻t=0およびTでは、移動体10は直線を走行(すなわち直進)しており、t=t1およびt2では、移動体10はカーブを走行している。移動軌跡20は、時刻t=0から時刻t=Tの期間の移動体10の走行経路である。 FIG. 6A shows how the moving body 10 is traveling on a straight line and a curve. Specifically, at time t = 0 and T, the moving body 10 travels on a straight line (that is, goes straight), and at t = t1 and t2, the moving body 10 travels on a curve. The movement locus 20 is a travel route of the moving body 10 during the period from time t = 0 to time t = T.

 図6Bに示されるピーク21および22はそれぞれ、時刻t=t1およびt2の時点での角速度を表す。図6Bに示されるように、移動体10がカーブを走行している時の角速度の絶対値は、直線走行時に比べ大きくなる。このため、移動体10の角速度に基づいて、移動体の運動が「直線」運動であるか「カーブ」運動であるかを判定することができる。具体的には、角速度の絶対値と1以上の閾値との比較結果に基づいて、移動体の運動動作の判定を行うことができる。 Peaks 21 and 22 shown in FIG. 6B represent angular velocities at time t = t1 and t2, respectively. As shown in FIG. 6B, the absolute value of the angular velocity when the moving body 10 is traveling on a curve is larger than that when traveling in a straight line. Therefore, it is possible to determine whether the motion of the moving body is a "straight line" motion or a "curve" motion based on the angular velocity of the moving body 10. Specifically, it is possible to determine the motion motion of the moving body based on the comparison result between the absolute value of the angular velocity and the threshold value of 1 or more.

 以下では、図7を用いて、運動判定処理(ステップS20)の具体的な処理について説明する。図7は、本実施の形態における運動判定処理(ステップS20)を示すフローチャートである。 Hereinafter, a specific process of the motion determination process (step S20) will be described with reference to FIG. 7. FIG. 7 is a flowchart showing the motion determination process (step S20) in the present embodiment.

 図7に示されるように、まず、ステップS21において、運動判定部120は、慣性計測部110から出力された加速度に基づいて移動体の運動動作を判定する。具体的には、運動判定部120は、加速度と閾値Xとを比較する。加速度が閾値X以内であれば(ステップS21でYes)、ステップS22へ遷移し、運動判定部120は、移動体の運動動作が停止状態であると判定し、判定結果として「停止」を表す運動判定値を出力する。加速度が閾値Xより大きい場合(ステップS21でNo)、ステップS23へ遷移する。なお、ステップS21は移動体が「停止」しているかどうかを判定するステップのため、車速計等の他の情報を用いて判定を行っても構わない。 As shown in FIG. 7, first, in step S21, the motion determination unit 120 determines the motion motion of the moving body based on the acceleration output from the inertial measurement unit 110. Specifically, the motion determination unit 120 compares the acceleration with the threshold value X. If the acceleration is within the threshold value X (Yes in step S21), the process proceeds to step S22, and the motion determination unit 120 determines that the motion of the moving body is in the stopped state, and the motion indicating "stop" as the determination result. Output the judgment value. When the acceleration is larger than the threshold value X (No in step S21), the process proceeds to step S23. Since step S21 is a step of determining whether or not the moving body is "stopped", the determination may be made using other information such as a vehicle speedometer.

 次に、ステップS23において、運動判定部120は、慣性計測部110から出力された角速度に基づいて移動体の運動動作を判定する。具体的には、運動判定部120は、角速度の絶対値と閾値Yとを比較する。閾値Yは、第1閾値の一例である。角速度の絶対値が閾値Yより小さい場合(ステップS23でYes)、ステップS24へ遷移し、運動判定部120は、判定結果として「直進」を表す運動判定値を出力する。なお、「直進」を表す運動判定値は、第1判定値の一例である。角速度の絶対値が閾値Yより大きい場合(ステップS23でNo)、ステップS25へ遷移する。 Next, in step S23, the motion determination unit 120 determines the motion motion of the moving body based on the angular velocity output from the inertial measurement unit 110. Specifically, the motion determination unit 120 compares the absolute value of the angular velocity with the threshold value Y. The threshold value Y is an example of the first threshold value. When the absolute value of the angular velocity is smaller than the threshold value Y (Yes in step S23), the process proceeds to step S24, and the motion determination unit 120 outputs a motion determination value indicating "straight ahead" as a determination result. The motion determination value representing "straight ahead" is an example of the first determination value. When the absolute value of the angular velocity is larger than the threshold value Y (No in step S23), the process proceeds to step S25.

 次に、ステップS25において、運動判定部120は、慣性計測部110から出力された角速度の絶対値と閾値Zとを比較する。閾値Zは、第2閾値の一例であり、閾値Yより大きい値である。角速度の絶対値が閾値Zより小さい場合(ステップS25でYes)、ステップS26へ遷移し、運動判定部120は、判定結果として「カーブ(緩)」を表す運動判定値を出力する。なお、「カーブ(緩)」を表す運動判定値は、第2判定値の一例である。角速度の絶対値が閾値Zより大きい場合(ステップS25でNo)、ステップS27へ遷移し、運動判定部120は、判定結果として「カーブ(急)」を表す運動判定値を出力する。なお、「カーブ(急)」を表す運動判定値は、第3判定値の一例である。 Next, in step S25, the motion determination unit 120 compares the absolute value of the angular velocity output from the inertial measurement unit 110 with the threshold value Z. The threshold value Z is an example of the second threshold value, and is a value larger than the threshold value Y. When the absolute value of the angular velocity is smaller than the threshold value Z (Yes in step S25), the process proceeds to step S26, and the motion determination unit 120 outputs a motion determination value representing "curve (slow)" as the determination result. The motion determination value representing "curve (slow)" is an example of the second determination value. When the absolute value of the angular velocity is larger than the threshold value Z (No in step S25), the process proceeds to step S27, and the motion determination unit 120 outputs a motion determination value representing "curve (steep)" as the determination result. The motion determination value representing "curve (sudden)" is an example of the third determination value.

 以上のように、本実施の形態では、運動判定部120は、移動体の運動動作の判定結果として、「停止」、「直進」、「カーブ(緩)」および「カーブ(急)」の4つの判定値のいずれかを出力する。なお、4つの判定値には、便宜上「カーブ(緩)」などのラベルを付しているが、これに限定されない。例えば、移動体が走行する路面状況によっては、移動体に強い振動が加わった場合も、加速度または角速度の絶対値が閾値より大きくなる場合がある。運動動作の判定値は、振動の大および小で表されてもよい。 As described above, in the present embodiment, the motion determination unit 120 has 4 of "stop", "straight ahead", "curve (slow)" and "curve (sudden)" as the determination result of the motion motion of the moving body. Outputs one of the two judgment values. The four determination values are labeled with a label such as "curve (loose)" for convenience, but the present invention is not limited to this. For example, depending on the road surface condition on which the moving body travels, the absolute value of acceleration or angular velocity may be larger than the threshold value even when strong vibration is applied to the moving body. The determination value of the motion motion may be expressed by the magnitude and the magnitude of the vibration.

 なお、ステップS23およびS25は、移動体が「直進」を行っているか、「カーブ運動」を行っているか、および、そのカーブの強弱を判定するステップである。このため、角速度の代わりに、移動体のステアリングなどを検知してこれらの判定を行っても構わない。 Note that steps S23 and S25 are steps for determining whether the moving body is "straight ahead" or "curve movement", and the strength of the curve. Therefore, instead of the angular velocity, the steering of the moving body or the like may be detected to make these determinations.

 [3-2.平均化期間算定処理(ステップS40)]
 次に、平均化期間算定処理(ステップS40)の具体例について、図8から図11を用いて説明する。
[3-2. Average period calculation process (step S40)]
Next, a specific example of the averaging period calculation process (step S40) will be described with reference to FIGS. 8 to 11.

 図8は、本実施の形態に係る平均化期間算定処理(ステップS40)を示すフローチャートである。 FIG. 8 is a flowchart showing the averaging period calculation process (step S40) according to the present embodiment.

 図8に示されるように、まず、ステップS41において、分散特性計算部141aは、記憶部130に保存された履歴データのうち、「カーブ(急)」または「カーブ(緩)」を表す運動判定値を含むデータセットを抽出対象から除外する。つまり、分散特性計算部141aは、「停止」または「直進」を表す運動判定値を含むデータセットを抽出する。言い換えると、角速度の絶対値が閾値Yより小さい角速度データが抽出の対象となる。 As shown in FIG. 8, first, in step S41, the dispersion characteristic calculation unit 141a determines the motion representing "curve (sudden)" or "curve (slow)" among the historical data stored in the storage unit 130. Exclude datasets containing values from extraction. That is, the dispersion characteristic calculation unit 141a extracts a data set including a motion determination value representing "stop" or "straight ahead". In other words, the angular velocity data whose absolute value of the angular velocity is smaller than the threshold value Y is the target of extraction.

 次に、ステップS42において、分散特性計算部141aは、抽出した複数のデータセットを用いて分散特性を算定する。次に、ステップS43において、平均化期間決定部141bは、分散特性計算部141aが算定した分散特性に基づいて、平均化サンプル数を算定する。 Next, in step S42, the dispersion characteristic calculation unit 141a calculates the dispersion characteristics using the extracted plurality of data sets. Next, in step S43, the averaging period determination unit 141b calculates the number of averaging samples based on the variance characteristics calculated by the variance characteristic calculation unit 141a.

 [3-2-1.分散特性の算定処理(ステップS42)]
 次に、図9に基づいて、分散特性の算定処理(ステップS42)の具体的な処理について説明する。図9は、本実施の形態に係る分散特性の算定処理(ステップS42)を示すフローチャートである。
[3-2-1. Dispersion characteristic calculation process (step S42)]
Next, a specific process of the dispersion characteristic calculation process (step S42) will be described with reference to FIG. 9. FIG. 9 is a flowchart showing a dispersion characteristic calculation process (step S42) according to the present embodiment.

 図9に示されるように、まず、ステップS421において、分散特性計算部141aは、複数の候補平均化期間の中から、未選択の平均化期間を選択する。候補平均化期間とは、慣性計測値の平均化処理を行う期間の候補である。例えば、慣性計測部110のサンプリング周期を定数倍した10個から100個程度の集合である。 As shown in FIG. 9, first, in step S421, the dispersion characteristic calculation unit 141a selects an unselected averaging period from a plurality of candidate averaging periods. The candidate averaging period is a candidate for a period during which the inertial measurement value is averaged. For example, it is a set of about 10 to 100 pieces obtained by multiplying the sampling period of the inertial measurement unit 110 by a constant.

 ステップS422において、分散特性計算部141aは、ステップS421で選択した候補平均化期間τに対応する分散σ(τ)を(式1)から(式3)に基づいて計算する。 In step S422, the variance characteristic calculation unit 141a calculates the variance σ 2 (τ) corresponding to the candidate averaging period τ selected in step S421 based on (Equation 1) to (Equation 3).

Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

 (式1)において、ΔTは、IMU101のサンプリング周期である。mは、平均化サンプル数である。また、xは、「カーブ(急)」および「カーブ(緩)」以外のiサンプル目の慣性計測値(具体的には角速度)を表している。 In (Equation 1), ΔT is the sampling period of the IMU 101. m is the number of averaged samples. Further, x i represents an inertial measurement value (specifically, an angular velocity) of the i-sample eye other than "curve (sudden)" and "curve (slow)".

 (式1)から(式3)で示すように、分散特性の計算には、運動判定値が「カーブ(急)」および「カーブ(緩)」以外の履歴データに基づいて計算される。つまり、絶対値が大きい角速度を除外して分散特性の計算を行うので、慣性計測部110の分散特性を高精度に推定することができる。 As shown by (Equation 1) to (Equation 3), the motion determination value is calculated based on historical data other than "curve (sudden)" and "curve (slow)" in the calculation of the dispersion characteristic. That is, since the dispersion characteristic is calculated excluding the angular velocity having a large absolute value, the dispersion characteristic of the inertial measurement unit 110 can be estimated with high accuracy.

 なお、分散特性の計算に用いる履歴データの判定基準は、他の基準に従っても構わない。例えば、運動判定部120において、走行の振動状況を検知し、「振動が多い」と判定された履歴データは分散特性の計算に用いないなどが挙げられる。 The criteria for determining the historical data used for calculating the dispersion characteristics may follow other criteria. For example, the motion determination unit 120 detects the vibration state of running, and the history data determined to be "high vibration" is not used for the calculation of the dispersion characteristic.

 次に、ステップS423において、分散特性計算部141aは、ステップS421における複数の候補平均化期間のうち、未選択の候補平均化期間(すなわち、対応する分散値が算出されていない候補平均化期間)が存在するかどうかを判定する。未選択の候補平均化期間が存在する場合(ステップS423でYes)、ステップS421に遷移し、候補平均化期間の選択および対応する分散値の算出を繰り返す。未選択の候補平均化期間が存在しない場合(ステップS423でNo)、すなわち、全ての候補平均化期間に対する分散値が算出された場合、分散特性計算部141aは、複数の候補平均化期間と、対応する分散値との組を分散特性(例えば、図11に示されるグラフに相当する情報)として出力する。 Next, in step S423, the variance characteristic calculation unit 141a selects an unselected candidate averaging period (that is, a candidate averaging period for which the corresponding variance value has not been calculated) among the plurality of candidate averaging periods in step S421. Determines if is present. If there is an unselected candidate averaging period (Yes in step S423), the process proceeds to step S421, and the selection of the candidate averaging period and the calculation of the corresponding variance value are repeated. If there is no unselected candidate averaging period (No in step S423), that is, if the variance values for all the candidate averaging periods are calculated, the variance characteristic calculation unit 141a may use the plurality of candidate averaging periods. The set with the corresponding variance value is output as a variance characteristic (for example, information corresponding to the graph shown in FIG. 11).

 [3-2-2.平均化サンプル数の算定処理(ステップS43)]
 次に、図10、図11および図12に基づいて、平均化サンプル数の算定処理(ステップS43)の説明を行う。
[3-2-2. Calculation process of averaged sample size (step S43)]
Next, the calculation process of the average number of samples (step S43) will be described with reference to FIGS. 10, 11 and 12.

 図10は、本実施の形態に係る平均化サンプル数の決定処理(ステップS43)を示すフローチャートである。図11は、本実施の形態に係る分散特性計算部141aが算定した分散特性の一例を示す図である。 FIG. 10 is a flowchart showing a process of determining the number of averaged samples (step S43) according to the present embodiment. FIG. 11 is a diagram showing an example of the dispersion characteristic calculated by the dispersion characteristic calculation unit 141a according to the present embodiment.

 図10に示されるように、まず、ステップS431において、運動判定部120が出力する運動判定値が「カーブ(急)」を表す場合(ステップS431でYes)、ステップS432に遷移する。ステップS432では、平均化期間決定部141bは、複数の候補平均化期間のうち、最小(最短)の平均化期間を選択する。図11に示される例では、13個の黒丸印に対応する候補平均化期間のうち、最も小さい平均化期間31が選択される。 As shown in FIG. 10, first, in step S431, when the motion determination value output by the motion determination unit 120 represents a “curve (steep)” (Yes in step S431), the process transitions to step S432. In step S432, the averaging period determination unit 141b selects the minimum (shortest) averaging period from the plurality of candidate averaging periods. In the example shown in FIG. 11, the smallest averaging period 31 is selected from the candidate averaging periods corresponding to the 13 black circles.

 運動判定値が「カーブ(急)」を表さない場合(ステップS431でNo)、ステップS433に遷移する。ステップS433において、運動判定値が「カーブ(緩)」を表す場合(ステップS433でYes)、ステップS434に遷移する。ステップS434では、平均化期間決定部141bは、複数の候補平均化期間のうち、推定した分散値が最小になる平均化期間より短い平均化期間を選択する。図11に示される例では、平均化期間33が、対応する分散値が最小になる平均化期間である。したがって、ステップS434では、平均化期間決定部141bは、平均化期間33より短い平均化期間を選択する。例えば、平均化期間32が選択されるが、これに限らない。例えば、最小の平均化期間31が選択されてもよい。この場合、ステップS432と同じであるので、ステップS431の判定が行われなくてもよい。 If the motion determination value does not represent "curve (sudden)" (No in step S431), the process proceeds to step S433. In step S433, when the motion determination value represents a “curve (slow)” (Yes in step S433), the process transitions to step S434. In step S434, the averaging period determination unit 141b selects an averaging period shorter than the averaging period in which the estimated variance value is minimized among the plurality of candidate averaging periods. In the example shown in FIG. 11, the averaging period 33 is the averaging period in which the corresponding variance value is minimized. Therefore, in step S434, the averaging period determination unit 141b selects an averaging period shorter than the averaging period 33. For example, the averaging period 32 is selected, but is not limited to this. For example, the minimum averaging period 31 may be selected. In this case, since it is the same as step S432, the determination in step S431 may not be performed.

 なお、ステップS432およびS434において選択される平均化期間は、異なった方法で選定されても構わない。例えば、ステップS434において、運動判定部120において移動体の運動のカーブの曲率を判定しておき、曲率の大きさに反比例して平均化期間を設定することなどが挙げられる。 The averaging period selected in steps S432 and S434 may be selected by a different method. For example, in step S434, the motion determination unit 120 determines the curvature of the curve of the motion of the moving body, and sets the averaging period in inverse proportion to the magnitude of the curvature.

 運動判定値が「カーブ(緩)」を表さない場合(ステップS433でNo)、ステップS435において、平均化期間決定部141bは、分散特性計算部141aが算定した分散特性のうち、分散値が最小となる平均化期間を選択する。図11に示される例では、平均化期間33が選択される。 When the motion determination value does not represent a "curve (slow)" (No in step S433), in step S435, the averaging period determination unit 141b has the variance value among the variance characteristics calculated by the dispersion characteristic calculation unit 141a. Select the minimum averaging period. In the example shown in FIG. 11, the averaging period 33 is selected.

 なお、ステップS435で選択される平均化期間は不要に長すぎる値となってしまう可能性があるため、平均化期間の上限値を設定しておくことなどが挙げられる。この場合、ステップS435では、平均化期間決定部141bは、上限値以下の範囲内で、分散値が最小となる平均化期間を選択する。 Note that the averaging period selected in step S435 may become an unnecessarily long value, so it is possible to set an upper limit value for the averaging period. In this case, in step S435, the averaging period determination unit 141b selects the averaging period in which the variance value is the minimum within the range of the upper limit value or less.

 ステップS432、S434またはS435で平均化期間が選択された後、ステップS436において、平均化期間決定部141bは、上述した(式1)で表されるように、選択された平均化期間τを、IMU101のサンプリング周期ΔTで除した値を、平均化サンプル数mとして出力する。 After the averaging period is selected in steps S432, S434 or S435, in step S436, the averaging period determination unit 141b determines the selected averaging period τ as represented by the above-mentioned (Equation 1). The value divided by the sampling period ΔT of the IMU 101 is output as the average number of samples m.

 図12は、本実施の形態に係る移動体の運動と平均化サンプル数との関係を示す図である。図12の(a)は、直線運動または停止中において、平均化サンプル数を少なく取った場合の自律航法による移動体の推定位置を表している。白丸印が各時刻における推定位置を表している。また、破線は、移動体の実際の移動軌跡を表している。なお、これらの図示の方法は、(b)から(d)も同様である。また、ここで「平均化サンプル数が少ない」とは、ステップS435で選択された平均化期間33と比較して大きく短い期間、例えばステップS432で選択される平均化期間31付近の値を指す。(b)は、直線運動および停止中において、平均化サンプル数を多く取った場合の自律航法による移動体の推定位置を表している。ここで「平均化サンプル数が多い」とは、ステップS435で選択された平均化期間33付近の値を指す。 FIG. 12 is a diagram showing the relationship between the motion of the moving body and the average number of samples according to the present embodiment. FIG. 12A shows the estimated position of the moving body by autonomous navigation when the average number of samples is small during linear motion or stoppage. The white circles indicate the estimated positions at each time. Further, the broken line represents the actual movement locus of the moving body. It should be noted that these illustrated methods are the same for (b) to (d). Further, here, "the number of averaged samples is small" refers to a period larger and shorter than the average period 33 selected in step S435, for example, a value near the average period 31 selected in step S432. (B) represents the estimated position of the moving body by autonomous navigation when a large number of averaged samples is taken during linear motion and stoppage. Here, "the number of averaged samples is large" refers to a value near the average period 33 selected in step S435.

 このとき、直線運動および停止時においては、平均化期間を長くすることにより、すなわち、平均化サンプル数を多く取ることにより、慣性計測部110の慣性計測値の分散が小さくなる。これにより、自律航法における推定誤差を小さくすることができる。また、このとき、平均化期間の決定に使用される分散特性は、上述したように、慣性計測値が大きいデータを除外したデータに基づいて算出されたものである。このため、分散特性の精度が高いので、平均化期間および平均化サンプル数をそれぞれ適切に選択することができる。よって、移動体の位置および姿勢をより精度良く推定することができる。 At this time, in the case of linear motion and stoppage, the dispersion of the inertial measurement value of the inertial measurement unit 110 becomes smaller by lengthening the averaging period, that is, by taking a large number of averaging samples. This makes it possible to reduce the estimation error in autonomous navigation. Further, at this time, the dispersion characteristic used for determining the averaging period is calculated based on the data excluding the data having a large inertial measurement value as described above. Therefore, since the accuracy of the dispersion characteristics is high, the averaging period and the number of averaging samples can be appropriately selected. Therefore, the position and posture of the moving body can be estimated more accurately.

 図12の(c)は、カーブ運動中において平均化サンプル数を少なく取った場合の自律航法による移動体の推定位置を表している。図12の(d)は、カーブ運動中において平均化サンプル数を多く取った場合の自律航法による移動体の推定位置を表している。 (C) of FIG. 12 shows the estimated position of the moving body by autonomous navigation when the average number of samples is taken small during the curve motion. FIG. 12D shows the estimated position of the moving body by autonomous navigation when a large number of averaged samples are taken during the curve motion.

 カーブ運動中においては、平均化サンプル数を少なく取ることによる、慣性計測値の分散が大きくなることによる自律航法の推定精度の悪化への寄与度よりも、平均化サンプル数を多く取って時間間隔が長くなることによる自律航法の推定精度の悪化への寄与度が大きい。したがって、カーブ時には平均化サンプル数を少なくすることによって、自律航法における移動体の位置および姿勢の推定誤差を小さくすることができる。 During the curve motion, take a large number of averaging samples and take a time interval rather than the contribution to the deterioration of the estimation accuracy of autonomous navigation due to the large variance of the inertial measurement value due to the small number of averaging samples. It contributes greatly to the deterioration of the estimation accuracy of autonomous navigation due to the increase in the length. Therefore, by reducing the number of averaged samples during a curve, it is possible to reduce the estimation error of the position and attitude of the moving body in autonomous navigation.

 このように、本実施の形態によれば、運動判定部120の判定結果に基づいて、異なる平均化サンプル数(平均化期間)が選択される。これにより、移動体の運動動作によって適した平均化サンプル数を設定することが可能になるので、移動体の位置および姿勢の推定精度を高めることができる。 As described above, according to the present embodiment, different averaging sample numbers (averaging period) are selected based on the determination result of the motion determination unit 120. This makes it possible to set an appropriate number of averaged samples according to the motion motion of the moving body, so that the estimation accuracy of the position and posture of the moving body can be improved.

 (他の実施の形態)
 以上、1つまたは複数の態様に係る自律航法装置および自律航法方法について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、および、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
(Other embodiments)
Although the autonomous navigation system and the autonomous navigation method according to one or more embodiments have been described above based on the embodiments, the present disclosure is not limited to these embodiments. As long as the gist of the present disclosure is not deviated, various modifications that can be conceived by those skilled in the art are applied to the present embodiment, and a form constructed by combining components in different embodiments is also included in the scope of the present disclosure. Will be.

 例えば、上記の実施の形態では、自律航法装置100が記憶部130を備える例を示したが、自律航法装置100は、記憶部130(メモリ103)を備えなくてもよい。例えば、記憶部130は、自律航法装置100とは異なる外部の機器(例えば、サーバ装置)に備えられていてもよい。自律航法装置100は、記憶部130を備える外部の機器と有線または無線で通信可能であり、慣性計測値および運動判定値の送信、ならびに、履歴データの受信を行ってもよい。 For example, in the above embodiment, the autonomous navigation system 100 includes the storage unit 130, but the autonomous navigation system 100 does not have to include the storage unit 130 (memory 103). For example, the storage unit 130 may be provided in an external device (for example, a server device) different from the autonomous navigation system 100. The autonomous navigation device 100 can communicate with an external device including a storage unit 130 by wire or wirelessly, and may transmit inertial measurement values and motion determination values, and may receive historical data.

 また、例えば、図7に示される運動判定処理において、ステップS21では、速度と閾値とが比較されてもよい。速度が閾値以下である場合(ステップS21でYes)、運動判定部120は、判定結果として「停止」を示す運動判定値を出力してもよい。速度が閾値より大きい場合(ステップS21でNo)、ステップS23が実行されてもよい。 Further, for example, in the motion determination process shown in FIG. 7, in step S21, the speed and the threshold value may be compared. When the speed is equal to or less than the threshold value (Yes in step S21), the motion determination unit 120 may output an exercise determination value indicating "stop" as the determination result. If the speed is greater than the threshold (No in step S21), step S23 may be executed.

 あるいは、ステップS21は省略されてもよい。つまり、運動判定部120は、加速度と閾値Xとの比較を行わなくてもよく、判定結果には「停止」が含まれていなくてもよい。 Alternatively, step S21 may be omitted. That is, the motion determination unit 120 does not have to compare the acceleration with the threshold value X, and the determination result may not include "stop".

 また、例えば、図7に示される運動判定処理において、ステップS25が省略されてもよい。つまり、運動判定部120は、角速度の絶対値と閾値Zとの比較を行わなくてもよい。すなわち、運動判定部120は、緩やかなカーブと急カーブとを判別しなくてもよい。この場合、角速度の絶対値が閾値Y以上である場合(ステップS23でNo)、運動判定部120は、判定結果として「カーブ」を示す運動判定値を出力する。 Further, for example, in the motion determination process shown in FIG. 7, step S25 may be omitted. That is, the motion determination unit 120 does not have to compare the absolute value of the angular velocity with the threshold value Z. That is, the motion determination unit 120 does not have to discriminate between a gentle curve and a sharp curve. In this case, when the absolute value of the angular velocity is equal to or greater than the threshold value Y (No in step S23), the motion determination unit 120 outputs a motion determination value indicating a “curve” as the determination result.

 このように、カーブの強さの区別がされない場合、図10に示される平均化サンプル数の決定では、ステップS431で、運動判定値が「カーブ」であるか否かを判定し、ステップS434が省略されてもよい。この場合、運動判定値が「カーブ」ではない場合(ステップS431でNo)、ステップS434およびS435のいずれが実行されてもよい。 In this way, when the strength of the curve is not distinguished, in the determination of the average number of samples shown in FIG. 10, in step S431, it is determined whether or not the motion determination value is a “curve”, and step S434 is performed. It may be omitted. In this case, if the motion determination value is not a "curve" (No in step S431), any of steps S434 and S435 may be executed.

 また、例えば、カーブを3段階以上に区分してもよい。この場合、カーブが急である程、平均化期間が短くなるように設定される。 Further, for example, the curve may be divided into three or more stages. In this case, the steeper the curve, the shorter the averaging period is set.

 また、上記実施の形態で説明した装置間の通信方法については特に限定されるものではない。装置間で無線通信が行われる場合、無線通信の方式(通信規格)は、例えば、ZigBee(登録商標)、Bluetooth(登録商標)、または、無線LAN(Local Area Network)などの近距離無線通信である。あるいは、無線通信の方式(通信規格)は、インターネットなどの広域通信ネットワークを介した通信でもよい。また、装置間においては、無線通信に代えて、有線通信が行われてもよい。有線通信は、具体的には、電力線搬送通信(PLC:Power Line Communication)または有線LANを用いた通信などである。 Further, the communication method between the devices described in the above embodiment is not particularly limited. When wireless communication is performed between devices, the wireless communication method (communication standard) is, for example, short-range wireless communication such as ZigBee (registered trademark), Bluetooth (registered trademark), or wireless LAN (Local Area Network). be. Alternatively, the wireless communication method (communication standard) may be communication via a wide area communication network such as the Internet. Further, wired communication may be performed between the devices instead of wireless communication. Specifically, the wired communication is a power line carrier communication (PLC: Power Line Communication) or a communication using a wired LAN.

 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよく、あるいは、複数の処理が並行して実行されてもよい。例えば、一の装置が備える構成要素を他の装置が備えてもよい。 Further, in the above embodiment, another processing unit may execute the processing executed by the specific processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel. For example, the components of one device may be included in another device.

 例えば、上記実施の形態において説明した処理は、単一の装置(システム)を用いて集中処理することによって実現してもよく、または、複数の装置を用いて分散処理することによって実現してもよい。また、上記プログラムを実行するプロセッサは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、または分散処理を行ってもよい。 For example, the processing described in the above embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. good. Further, the number of processors that execute the above program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.

 また、上記実施の形態において、制御部などの構成要素の全部または一部は、専用のハードウェアで構成されてもよく、あるいは、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、HDDまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Further, in the above embodiment, all or a part of the components such as the control unit may be configured by dedicated hardware, or may be realized by executing a software program suitable for each component. May be good. Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as an HDD or a semiconductor memory.

 また、制御部などの構成要素は、1つまたは複数の電子回路で構成されてもよい。1つまたは複数の電子回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。 Further, a component such as a control unit may be composed of one or a plurality of electronic circuits. The one or more electronic circuits may be general-purpose circuits or dedicated circuits, respectively.

 1つまたは複数の電子回路には、例えば、半導体装置、ICまたはLSIなどが含まれてもよい。ICまたはLSIは、1つのチップに集積されてもよく、複数のチップに集積されてもよい。ここでは、ICまたはLSIと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSIまたはULSIと呼ばれるかもしれない。また、LSIの製造後にプログラムされるFPGAも同じ目的で使うことができる。なお、LSIは、Large Scale Integrationの略称である。また、VLSIまたはULSIはそれぞれ、Very Large Scale Integration、Ultra Large Scale Integrationの略称である。また、FPGAは、Field Programmable Gate Arrayの略称である。 One or more electronic circuits may include, for example, a semiconductor device, an IC, an LSI, or the like. The IC or LSI may be integrated on one chip or may be integrated on a plurality of chips. Here, it is called IC or LSI, but the name changes depending on the degree of integration, and it may be called system LSI, VLSI or ULSI. Also, FPGAs programmed after the LSI are manufactured can be used for the same purpose. LSI is an abbreviation for Large Scale Integration. In addition, VLSI and ULSI are abbreviations for Very Large Scale Integration and Ultra Large Scale Integration, respectively. FPGA is an abbreviation for Field Programmable Gate Array.

 また、本開示の全般的または具体的な態様は、システム、装置、方法、集積回路またはコンピュータプログラムで実現されてもよい。あるいは、当該コンピュータプログラムが記憶された光学ディスク、HDDもしくは半導体メモリなどのコンピュータ読み取り可能な非一時的記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 Further, the general or specific aspects of the present disclosure may be realized by a system, an apparatus, a method, an integrated circuit or a computer program. Alternatively, it may be realized by a computer-readable non-temporary recording medium such as an optical disk, HDD or semiconductor memory in which the computer program is stored. Further, it may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program and a recording medium.

 また、上記の各実施の形態は、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Further, in each of the above embodiments, various changes, replacements, additions, omissions, etc. can be made within the scope of claims or the scope thereof.

 本開示は、移動体の位置および姿勢を精度良く推定することができる自律航法装置として利用することができ、例えば、移動体の自動運転などに利用することができる。 The present disclosure can be used as an autonomous navigation device capable of accurately estimating the position and posture of a moving body, and can be used, for example, for automatic driving of a moving body.

10 移動体
20 移動軌跡
21、22 ピーク
31、32、33 平均化期間
100 自律航法装置
101 IMU
102 プロセッサ
103 メモリ
104 信号線
110 慣性計測部
111 ジャイロセンサ
112 加速度センサ
120 運動判定部
130 記憶部
140 位置姿勢推定部
141 平均化期間算定部
141a 分散特性計算部
141b 平均化期間決定部
142 平均値算出部
143 位置姿勢積算部
10 Moving object 20 Moving locus 21, 22 Peak 31, 32, 33 Average period 100 Autonomous navigation device 101 IMU
102 Processor 103 Memory 104 Signal line 110 Inertivity measurement unit 111 Gyro sensor 112 Acceleration sensor 120 Motion determination unit 130 Storage unit 140 Position / orientation estimation unit 141 Averaged period calculation unit 141a Dispersion characteristic calculation unit 141b Averaged period determination unit 142 Mean value calculation Unit 143 Position / posture integration unit

Claims (13)

 移動体の慣性計測値を取得する計測部と、
 前記計測部によって取得された慣性計測値に基づいて、前記移動体の運動動作の判定を行う判定部と、
 前記計測部によって取得された慣性計測値および前記判定部による判定結果に基づいて、前記移動体の位置および姿勢を推定する推定部と、を備える、
 自律航法装置。
The measurement unit that acquires the inertial measurement value of the moving body,
A determination unit that determines the motion motion of the moving body based on the inertial measurement value acquired by the measurement unit, and a determination unit.
It includes an estimation unit that estimates the position and posture of the moving body based on the inertial measurement value acquired by the measurement unit and the determination result by the determination unit.
Inertial navigation system.
 前記計測部は、前記移動体の慣性計測値を繰り返し取得し、
 前記判定部は、前記計測部によって取得された慣性計測値毎に前記判定を行い、
 前記推定部は、前記計測部によって取得された慣性計測値と当該慣性計測値に対応する前記判定結果とのデータセットが複数記憶される記憶部から複数のデータセットを抽出し、抽出した複数のデータセットに基づいて、前記移動体の位置および姿勢を推定する、
 請求項1に記載の自律航法装置。
The measuring unit repeatedly acquires the inertial measurement value of the moving body, and obtains the inertial measurement value.
The determination unit makes the determination for each inertial measurement value acquired by the measurement unit.
The estimation unit extracts a plurality of data sets from a storage unit in which a plurality of data sets of the inertial measurement value acquired by the measurement unit and the determination result corresponding to the inertial measurement value are stored, and a plurality of extracted data sets. Estimate the position and orientation of the moving object based on the data set,
The autonomous navigation system according to claim 1.
 さらに、前記記憶部を備える、
 請求項2に記載の自律航法装置。
Further, the storage unit is provided.
The autonomous navigation system according to claim 2.
 前記慣性計測値は、前記移動体の角速度を含み、
 前記判定部は、
 前記判定として、前記角速度の絶対値と第1閾値との比較を行い、
 前記絶対値が前記第1閾値より小さい場合に、前記判定結果として第1判定値を出力し、
 前記絶対値が前記第1閾値より大きい場合に、前記判定結果として前記第1判定値とは異なる第2判定値を出力し、
 前記記憶部は、出力された前記判定結果と、当該判定結果に対応する角速度とを対応付けて前記データセットとして記憶する、
 請求項2または3に記載の自律航法装置。
The inertial measurement unit includes the angular velocity of the moving body.
The determination unit
As the determination, the absolute value of the angular velocity is compared with the first threshold value.
When the absolute value is smaller than the first threshold value, the first determination value is output as the determination result.
When the absolute value is larger than the first threshold value, a second determination value different from the first determination value is output as the determination result.
The storage unit stores the output determination result and the angular velocity corresponding to the determination result as the data set in association with each other.
The autonomous navigation system according to claim 2 or 3.
 前記推定部は、
 前記記憶部から抽出した複数のデータセットに含まれる複数の角速度の分散値を、平均化期間の候補毎に計算する分散特性計算部と、
 前記分散特性計算部によって計算された平均化期間の候補毎の分散値に基づいて、平均化期間を決定する平均化期間決定部と、
 前記平均化期間決定部によって決定された平均化期間を用いて前記慣性計測値の平均値を算出する平均値算出部と、
 前記平均値算出部によって算出された平均値に基づいて、前記移動体の位置および姿勢を推定する位置姿勢積算部と、を含む、
 請求項4に記載の自律航法装置。
The estimation unit
A dispersion characteristic calculation unit that calculates the dispersion values of a plurality of angular velocities included in the plurality of data sets extracted from the storage unit for each candidate of the averaging period.
An averaging period determination unit that determines the averaging period based on the dispersion value for each candidate of the averaging period calculated by the dispersion characteristic calculation unit.
An average value calculation unit that calculates the average value of the inertial measurement values using the averaging period determined by the averaging period determination unit, and
A position / posture integrating unit that estimates the position and posture of the moving body based on the average value calculated by the average value calculation unit, and the like.
The autonomous navigation system according to claim 4.
 前記分散特性計算部は、前記第1判定値を含むデータセットを抽出し、前記第2判定値を含むデータセットを抽出しない、
 請求項5に記載の自律航法装置。
The dispersion characteristic calculation unit extracts the data set including the first determination value, and does not extract the data set including the second determination value.
The autonomous navigation system according to claim 5.
 前記平均化期間決定部は、前記判定結果が前記第2判定値である場合に、平均化期間の複数の候補の中から、対応する分散値が最小になる平均化期間より短い平均化期間を選択する、
 請求項5または6に記載の自律航法装置。
When the determination result is the second determination value, the averaging period determination unit selects an averaging period shorter than the averaging period in which the corresponding variance value is minimized from among the plurality of candidates for the averaging period. select,
The autonomous navigation system according to claim 5 or 6.
 前記平均化期間決定部は、前記判定結果が前記第1判定値である場合に、平均化期間の複数の候補の中から、対応する分散値が最小になる平均化期間を選択する、
 請求項5から7のいずれか1項に記載の自律航法装置。
When the determination result is the first determination value, the averaging period determination unit selects an averaging period in which the corresponding variance value is minimized from a plurality of candidates for the averaging period.
The autonomous navigation system according to any one of claims 5 to 7.
 前記判定部は、
 前記判定として、さらに、前記絶対値と前記第1閾値より大きい第2閾値との比較を行い、
 前記絶対値が前記第1閾値より大きく、かつ、前記第2閾値より小さい場合に、前記判定結果として前記第2判定値を出力し、
 前記絶対値が前記第2閾値より大きい場合に、前記判定結果として前記第1判定値および前記第2判定値のいずれとも異なる第3判定値を出力する、
 請求項5から8のいずれか1項に記載の自律航法装置。
The determination unit
As the determination, further, the absolute value is compared with the second threshold value larger than the first threshold value.
When the absolute value is larger than the first threshold value and smaller than the second threshold value, the second determination value is output as the determination result.
When the absolute value is larger than the second threshold value, a third determination value different from both the first determination value and the second determination value is output as the determination result.
The autonomous navigation system according to any one of claims 5 to 8.
 前記平均化期間決定部は、前記判定結果が前記第3判定値である場合に、平均化期間の複数の候補の中から最小の平均化期間を選択する、
 請求項9に記載の自律航法装置。
The averaging period determination unit selects the minimum averaging period from a plurality of candidates for the averaging period when the determination result is the third determination value.
The autonomous navigation system according to claim 9.
 前記慣性計測値は、前記移動体の加速度および速度の少なくとも一方を含む、
 請求項1から10のいずれか1項に記載の自律航法装置。
The inertial measurement unit includes at least one of the acceleration and the velocity of the moving body.
The autonomous navigation system according to any one of claims 1 to 10.
 移動体の慣性計測値を取得するステップと、
 取得された慣性計測値に基づいて、前記移動体の運動動作の判定を行うステップと、
 取得された慣性計測値および前記判定の結果に基づいて、前記移動体の位置および姿勢を推定するステップと、を含む、
 自律航法方法。
The step to acquire the inertial measurement value of the moving body,
Based on the acquired inertial measurement value, the step of determining the motion motion of the moving body and
Including a step of estimating the position and posture of the moving body based on the acquired inertial measurement value and the result of the determination.
Autonomous navigation method.
 請求項12に記載の自律航法方法をコンピュータに実行させるプログラム。 A program that causes a computer to execute the autonomous navigation method according to claim 12.
PCT/JP2021/044411 2021-01-07 2021-12-03 Autonomous navigation device and autonomous navigation method Ceased WO2022149383A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-001748 2021-01-07
JP2021001748 2021-01-07

Publications (1)

Publication Number Publication Date
WO2022149383A1 true WO2022149383A1 (en) 2022-07-14

Family

ID=82357659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044411 Ceased WO2022149383A1 (en) 2021-01-07 2021-12-03 Autonomous navigation device and autonomous navigation method

Country Status (1)

Country Link
WO (1) WO2022149383A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057196A (en) * 2014-09-10 2016-04-21 富士通株式会社 Electronic device and correction program of angular velocity detection value
JP2016057205A (en) * 2014-09-10 2016-04-21 富士通株式会社 Electronic device and output program of angular velocity information
WO2020008878A1 (en) * 2018-07-02 2020-01-09 ソニー株式会社 Positioning device, positioning method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057196A (en) * 2014-09-10 2016-04-21 富士通株式会社 Electronic device and correction program of angular velocity detection value
JP2016057205A (en) * 2014-09-10 2016-04-21 富士通株式会社 Electronic device and output program of angular velocity information
WO2020008878A1 (en) * 2018-07-02 2020-01-09 ソニー株式会社 Positioning device, positioning method, and program

Similar Documents

Publication Publication Date Title
JP7287997B2 (en) Positioning method, positioning device, electronic device, vehicle end device, self-driving vehicle, computer readable storage medium and computer program
Collin et al. Inertial sensors and their applications
EP2909582B1 (en) Map-assisted sensor-based positioning of mobile devices
KR101422374B1 (en) Spatial alignment determination for an inertial measurement unit (imu)
US20160097861A1 (en) Method and apparatus for location determination
CN106153069B (en) Attitude rectification device and method in autonomous navigation system
JP5974171B2 (en) Offset estimation apparatus, method, and program
EP2372394A1 (en) Reduced power consumption for portable positioning terminal
US10197396B2 (en) Always on compass calibration system and methods
CN109937341A (en) Estimate of own position
Wang et al. Scenario-dependent ZUPT-aided pedestrian inertial navigation with sensor fusion
RU2018107795A (en) COURSE DETERMINATION SYSTEM AND ANGULAR SPATIAL POSITION COMPLETED WITH THE OPPORTUNITY OF FUNCTIONING IN THE POLAR REGION
CN100430730C (en) Method and device for measuring speed of road vehicles
US20160245924A1 (en) Electronic device and control method
JP5565736B2 (en) COMPUTER DEVICE, COMPUTER DEVICE CONTROL METHOD, CONTROL PROGRAM, AND RECORDING MEDIUM
CN110869808B (en) Azimuth estimation device
CN106441295B (en) Pedestrian advancing direction determining method and device
WO2022149383A1 (en) Autonomous navigation device and autonomous navigation method
JP2016206017A (en) Electronic device and moving speed calculation program
JP6108830B2 (en) Portable information device, program and method capable of evaluating walking stability
JP2020143992A (en) Navigation device and navigation program
CN114543800B (en) Processing method and related device for vehicle movement track estimation
JP7068152B2 (en) Correction device, correction method, and correction program
EP2851652B1 (en) Systems and methods for a limb strike detector
CN106574837B (en) Generation of an estimate of earth gravity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP