[go: up one dir, main page]

WO2022035440A1 - Dispositifs de capture d'image dynamique thermique rapide - Google Patents

Dispositifs de capture d'image dynamique thermique rapide Download PDF

Info

Publication number
WO2022035440A1
WO2022035440A1 PCT/US2020/046451 US2020046451W WO2022035440A1 WO 2022035440 A1 WO2022035440 A1 WO 2022035440A1 US 2020046451 W US2020046451 W US 2020046451W WO 2022035440 A1 WO2022035440 A1 WO 2022035440A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
measuring devices
thermal imaging
temperature measuring
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2020/046451
Other languages
English (en)
Inventor
Ravindra Pratap Singh
Daniel Maurice Lerner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Temperature Gate IP Holdings LLC
Original Assignee
Temperature Gate IP Holdings LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Temperature Gate IP Holdings LLC filed Critical Temperature Gate IP Holdings LLC
Priority to PCT/US2020/046451 priority Critical patent/WO2022035440A1/fr
Publication of WO2022035440A1 publication Critical patent/WO2022035440A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • G01J5/0025Living bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0275Control or determination of height or distance or angle information for sensors or receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0859Sighting arrangements, e.g. cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies
    • G01J5/532Reference sources, e.g. standard lamps; Black bodies using a reference heater of the emissive surface type, e.g. for selectively absorbing materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging

Definitions

  • the present disclosure includes devices and associated techniques required to provide essentially instantaneous thermal imaging sensing and measurement data in order to manage any abnormalities indicated by such measurements. Due to the current pandemic outbreak associated with COVID-19, the ability to make these measurements on humans that are moving through buildings or into crowded areas has become an urgent need. Disruption of human movement with handheld wireless devices to measure forehead temperature, for instance, will not enable larger populations of people to enter, exit, or exist within confined areas within the time frame necessary to conduct business, attend an event, or be transported from one location to another by any form of public transportation without severe delays.
  • the present disclosure addresses these issues so that dynamic thermal measurements (measurements made while people/animals/objects are moving) of humans on the move can be accomplished without severe delays. These delays already are crippling and/or cancelling out the ability for humans to move freely while simultaneously increasing risk of contamination and overall public health concerns.
  • the present disclosure addresses devices and techniques designed to reduce and in some cases eliminate these risks.
  • thermal sensing and imaging equipment to measure temperature surfaces of objects animals and humans has been developed over at least the last 50 years.
  • the ability to measure these temperatures for humans is well known and understood using thermal imaging equipment such as infrared cameras that are able to deliver both accurate and precise readings for stationary objects - including humans.
  • thermal imaging equipment such as infrared cameras that are able to deliver both accurate and precise readings for stationary objects - including humans.
  • high resolution cameras which are expensive and difficult to mount and deploy due to costs, potential theft, and the number required for populated locations where numerous readings must be accomplished in very short time intervals due to human movement, is essentially impossible.
  • the devices must be capable of capturing the thermal imaging data and reporting the results within a time frame of less than 0.5 seconds (500 ms) for at least one individual and preferably for more than one individual as they pass through these devices or sets of devices.
  • the goal is to keep the flow of traffic of the population of humans (or other animals/objects) continuous and heading toward their public office, retail, restaurant and other popular local buildings or while trying to attend concerts and sporting events, as well as airports, subways, buses, and railway stations. Making these thermal measurements in a dynamic manner is necessary to overcome unwanted delays that have already stymied human activity and disrupted or destroyed entire economies. Due to the recent COVID-19 pandemic, the need to develop devices and techniques that accomplish these tasks in an efficient and cost-effective manner has become urgent. It is clear that if this need can be met, the number of devices accomplishing these techniques will be great and ever increasing as all populations try to protect their citizens as well as those entering and leaving their respective territories and countries.
  • Interfering constituents and variables can introduce significant source of errors that prevent measured biologic parameters from being of clinical value.
  • invasive and semi-invasive techniques have been used. Such techniques have many drawbacks including difficulties in providing continuous monitoring for long periods of time. Non-invasive techniques also failed to deliver the clinical usefulness needed.
  • the placement of a sensor on the measured and core characterized by the presence of interfering constituents does not allow obtaining clinically useful nor accurate signals due to the presence of these interfering constituents and background noise which greatly exceeds the signal related to the physiologic parameter being measured.
  • the most precise, accurate, and clinically useful way of evaluating thermal status of the body in humans and animals is by measuring brain temperature.
  • Brain temperature measurement is the key and universal indicator of both disease and health equally, and is the only vital sign that cannot be artificially changed by emotional states.
  • the other vital signs (heart rate, blood pressure, and respiratory rate) all can be influenced and artificially changed by emotional states or voluntary effort.
  • measured and core temperature of the head region is the next best alternative.
  • Body temperature is determined by the temperature of blood, which emits heat as far-infrared radiation.
  • Adipose tissue fat tissue absorbs far-infrared and the body is virtually completely protected with a layer of adipose tissue adherent to the skin.
  • core temperature internal body temperature
  • An invasive, artificial, inconvenient, and costly process is currently used to measure internal (core) temperature consisting of inserting a catheter with a temperature sensor in the urinary canal, rectum or esophagus.
  • Such methodology is not suitable for routine measurement, as it is painful, has potential fatal complications and of course cannot be used for humans, animals, or other objects on the move. In other words, this would not provide a reliable dynamic temperature reading.
  • thermometer pill can cause diarrhea, measure temperature of the fluid/food ingested and not body temperature, and have fatal complications if the pill obstructs the pancreas or liver ducts. Placement of sensors on the skin do not provide clinically useful measurements because of the presence of many interfering constituents including fat tissue.
  • Fat varies from person to person, fat varies with aging, fat content varies from time to time in the same person, fat attenuates a signal coming from a blood vessel, fat absorbs heat, and fat prevents delivery of undisturbed far-infrared radiation.
  • fat increases the distance traveled by the element being measured inside the body and an external sensor placed on the surface of the skin.
  • BTT brain tunnel scanner
  • the BTT ThermoScan also includes monitoring mass screening of children and people at risk during flu season. With the shortage of nurses an automated screening can greatly enhance the delivery of health care to the ones in need.
  • a conventional digital camera is activated and takes a picture of the student. The picture can be emailed to the school nurse that can identify the student in need of care or automatically by using stored digital pictures.
  • An exemplary lens system for viewing thermal radiation coming from the BTT can include exemplarily 25 sensors for reading at 1 inch from the tip of the sensor to the measured and core at the BTT entrance and 100 sensor array for reading radiation coming from a distance of 3 inches between measured and core at the BTT and sensor tip.
  • a five degree field of view, and most preferably a two to three degree field of view, and yet even a one degree of field view is used to see the main entry point of the BTT.
  • the spot size (view area) of the infrared sensor is preferably between 1 and 20 mm in diameter and most preferably between 3 and 15 mm in diameter which allows the infrared sensor to receive radiation from the BTT entrance area when the sensor is aimed at the BTT entrance area which corresponds to the bright spots in FIG. 1A and the red-yellow area in FIG. IB. It is understood that an infrared device (thermopile) can be placed at any distance and read the temperature of the BTT entrance area, as long as the sensor is positioned in a manner to view the BTT entrance area and a lens is used focus the radiation on to the temperature sensor.
  • One particular application of the present disclosure consists of prevention of a terrorist attack by a terrorist getting infected with a disease (e.g., SARS — Severe Acute Respiratory Syndrome) and deceiving thermometers to avert detection of fever when entering the country target for the terrorist attack.
  • a disease e.g., SARS — Severe Acute Respiratory Syndrome
  • SARS could potentially become a high terrorist threat because it cannot be destroyed.
  • SARS could become a weapon of mass destruction that cannot be eliminated despite use of military force or diplomatic means.
  • a terrorist can get the infection with the purpose of spreading the infection in the target country.
  • any device can be deceived and current devices would measure normal temperature when indeed fever is present.
  • Simple means can be used by a terrorist, such as washing their face with cold water or ice or by immersion in cold water, to manipulate any known device for measuring fever including current infrared imaging systems and thermometers. The thermal physiology of the body can be manipulated and the measurement performed can give a false negative for fever.
  • a terrorist with SARS could easily spread the disease by many ways including individually by shaking hands with clerks on a daily basis on a mass scale by spending time in confined environments such as movie theater, a concert, grocery store, a government building, and others, or by contaminating water or drinking fountains. All of those people infected do not know they caught the disease and start to spread SARS to family members, co-workers, friends and others, who subsequently will infect others, leading to an epidemic situation.
  • the present invention provides one or more devices and associated techniques, methods, apparatus and systems that effectively address the needs described above.
  • the present disclosure describes one or more temperature measuring devices comprising; at least two thermal imaging cameras capable of detection and provision of an exact location of at least one created dynamic image scanned by and triangulated with the at least two thermal imaging cameras, wherein the at least two thermal imaging cameras include a lens, an optical system, and a photodetector, one or more computerized micro-processors, and a gate that provides a constrained targeted pathway through which at least one person must travel so that dynamic thermal data of the at least one person is captured as the at least one person is moving through the gate, wherein the thermal imaging cameras are geometrically arranged in positions such that the thermal imaging cameras field of view on at least one of two possible locations that exist on or within said gate wherein the at least one person is scanned and provides targeted dynamic thermal data that is converted into one or more temperature readings and wherein the temperature measuring devices measure and transmit the temperature readings from one or more photodetectors existing within the thermal imaging cameras that sense thermal radiation naturally emitted by people passing through and defined by both the constrained targeted pathway detected by the thermal imaging
  • Temperature measuring devices are provided, wherein the measured and core temperature values and dynamic location measurements are extracted only after the at least one digital data image has been verified, correlated, and confirmed with a computational capability provided by the at least one computerized microprocessor to exist as a measured and core temperature taken from above a person’s shoulders and within a temperature range of between 90 and 110 degrees Fahrenheit as provided by the computational capability.
  • the gate is a physical gate comprising at least two panels and a connecting top portion, wherein the connecting top portion is attached to a top portion of the at least two panels.
  • Temperature measuring devices are described, wherein the gate is a virtual gate in that the gate constrains the constrained targeted pathway of the at least person as they are scanned by the temperature measuring devices. Temperature measuring devices are provided, wherein the at least one created dynamic image is captured by three or more cameras that includes two or more thermal imaging cameras and at least one video imaging camera or at least one charge coupled (CCDP) camera.
  • CCDP charge coupled
  • Temperature measuring devices are enabeled, wherein the at least one video imaging camera provides an initial target locator along the contrained targeted pathway for the at least one person entering and exiting the temperature measuring devices to provide at least one dynamic location of at least one dynamic image of a bare portion of a human face as the at least one person passes through the gate.
  • Temperature measuring devices are described, wherein the photodetector is a radiation sensor and/or a radiation detector or a long wavelength infrared (LWIR) sensor array.
  • the photodetector is a radiation sensor and/or a radiation detector or a long wavelength infrared (LWIR) sensor array.
  • LWIR long wavelength infrared
  • Temperature measuring devices are provided, wherein the temperature measuring devices capture an instantaneous image of a measured temperature that is taken from an actual size of a person’s body that is located above a shoulder region to at least a hairline region that is a resolved dynamic image of an actual size of a portion of a person’s body is at least 1/2 inch by 1/2 inch.
  • Temperature measuring devices are described, wherein the at least two thermal imaging cameras are low resolution cameras with the lens capable of location and resolution of dynamic images and provision of dynamic temperature readings with at least 64x64 pixels.
  • Temperature measuring devices are presented, wherein the at least two thermal imaging cameras provide an apparent pixel size at a distance wherein apparent pixels are smaller than or equal to !4 inch x !4 inch, wherein the apparent pixel size is determined by pixel resolution of the two or more thermal imaging cameras, a field of view of the two or more thermal imaging camera lens and optics and a distance of the at least one person scanned by the two or more thermal imaging cameras.
  • Temperature measuring devices are disclosed, wherein an angle of view of the cameras is between 1 and 1000 mRad.
  • temperature measuring devices wherein the at least two thermal imaging cameras have sensors capable of measuring a long wave infrared (LWIR) range of 8 to 15 pm. Described herein are temperature measuring devices, wherein the measured and core temperature values and dynamic location measurements are provided as an audio, visual, and/or audio-visual display.
  • LWIR long wave infrared
  • Temperature measuring devices are provided, wherein the measured and core temperature values are provided as readouts in a form of data that is captured and subsequently selected from one or more of a group of data acquisition capabilities including; transmission, storage, analysis, retrieval and display via written, audible, visual and/or audible-visual techniques.
  • Temperature measuring devices are described, wherein a display unit displays a thermal image of the focused three-dimensional volume as viewed by lens(es) of the cameras as the at least one person passes through the gate.
  • temperature measuring devices wherein at least one display unit is included that is an alarm notification device that provides a go/no go signal and wherein a red light is one such signal and wherein said temperature measuring devices also include an alarm notification capability when a temperature reading is outside a specific temperature range and wherein the specified temperature range is between 90 and 110 degrees Fahrenheit.
  • Temperature measuring devices are provided, wherein the devices provide at least four measured and core temperature measurements within a set time interval.
  • Temperature measuring devices are presented, wherein dynamic images and associated temperature readings are rapid in that said temperature reading is performed within a time interval of no greater than 500 ms.
  • Temperature measuring devices are described, wherein the at least two thermal imaging cameras have been pre-calibrated with one or more black bodies so that temperature readings are accurate, precise and reproducible with a range of between 2 and 4 degrees Fahrenheit.
  • Temperature measuring devices are disclosed, wherein an apparent field of view (FOV) exists as a cross-sectional area that defines a size, a shape, and distance scanned by and away from the at least two thermal imaging cameras and requires an alignment of one or more calibrators that are viewed by pixels of images from the one or more thermal imaging cameras that provides at least one reference temperature. Temperature measuring devices are provided, wherein at least one known IR reference temperature calibrator provides a reference data point to make an absolute comparison for thermal imaging camera temperature calibration.
  • FOV apparent field of view
  • At least one calibrator is described, wherein the calibrator provides the thermal imaging cameras a temperature measurement capable of linear interpolation that provides an ability to accurately detect and quantify temperatures that are close to a known reference point and allows for an at least three point calibration and provides temperature measurments above and below a known calibrator temperature known as an OFFSET for camera measurement of thermal flux.
  • At least one calibrator is described, wherein the at least one calibrator includes utilization of a Peltier cell with multiple reference temperatures that provide refeerence ne temperature measurements and readings at discrete temperature intervals that provides an increased capability of precision temperature measurement.
  • Thermal imaging devices are provided wherein the gate is mounted in an airport, library, museum, indoor or outdoor sports arenas, courthouse, restaurant, or other public or private venues.
  • the thermal imaging devices are provided wherein the temperature measuring devices are mounted in a public space to scan multiple individuals passing by.
  • One or more temperature measuring devices comprising two or more thermal imaging cameras that provide digital images processed using a first set of rules with digital image measurement steps that include: data detection which is a rule-based algorithm for locating both measurement target locations and target measured temperatures; and data organization that utilizes a rule-based algorithm for tracking a target in a 3D space over time to produce a 4D targeted path that tracks each target and; temperature measurement data is provided as signals on a communication path to a process section that processes temperature measurement data measures and implements a second set of rules that must be employed to extract a set of data that uses digital image processing steps: wherein first temperature measurement data is extracted using a second set of rules based algorithm that determines measured temperature of each target and an exact location that indicates where each temperature measurement was measured and wherein an additional second set of rules provides an algorithm for conversion of a target measured temperature to a core temperature of at least one person that passes through a targeted pathway of the temperature measuring devices.
  • data detection is a rule-based algorithm for locating both measurement target locations and target measured temperatures
  • data organization that utilize
  • One or more temperature measuring devices are described, wherein a process system provides an output which includes a list of core temperature measurement(s) at corresponding location(s).
  • One or more temperature measuring devices are provided, wherein a temperature measurement portion and a process data portion with a corresponding set of rules are made available to the one or more temperature measuring devices using an internal data channel, wherein the internal data channel communicates data between all internal processes and devices used to manufacture and implement the one or more temperature measuring devices.
  • One or more temperature measuring devices are described, wherein the temperature measurements are sent as data signals along a communication path to an action portion of one or more temperature measurements that utilizes another algorithm to determine specific actions necessary to ensure functionality of the one or more temperature measurement devices.
  • One or more temperature measuring devices are disclosed, wherein the temperature measurements provide core temperatures and corresponding locations from said process data portion according to a third set of rules that includes actions as follows;
  • an impedance capability that utilizes an algorithm that impedes a targeted pathway through said one or more temperature measuring devices that utilizes at least one of a group of devices selected from; locks, doors, gates, turnstiles and man traps.
  • One or more temperature measuring devices are provided, wherein upon completion of said action data that contains decisions are communicated via one or more communication paths back to a temperature measurement portion and requests additional measurements that provide more data eventually transmitted via said communication paths such that a continuously repeating cycle of temperature measurements is provided.
  • One or more temperature measuring devices are disclosed, wherein a local database continuously reads and writes data that provides data on demand to any portion of a process that subsequently provides data to reside in, or be extracted from said local database wherein said data is transmitted through said internal data channel.
  • the present disclosure provides one or more devices with one or more set of sensing devices and systems and one or more recording and reporting capabilities which may be used individually or in combination, which are designed to respond to dynamic movement through a gate to measure thermal parameters.
  • the gate Based on an anatomical and physiological human or animal condition, the gate is placed along a targeted pathway through which the object to be measured must pass.
  • the “temperature gate” or “Tempgate” comprises a direct and undisturbed connection between the source of the function (signal) within the body and an external point at the end of the gate located on the skin.
  • This type of “physiological gate” detects and conveys continuous and integral data that is acquired from the physiology of the body.
  • An undisturbed signal from the body is delivered to an external point which exists within a device that functions as both a gate and an entrance or exit along the targeted pathway through which the object (primarily and normally a human but could be an animal or other object) is passing.
  • Two or more thermal imaging devices are placed in a specific geometric arrangement such that sensing the human’s (primarily brain/head skin) temperature can be accomplished rapidly, accurately, precisely and with two or more relatively low resolution imaging devices. The positioning of the imaging devices are geometrically arranged to ensure optimal signal acquisition without interfering constituents and sources of error.
  • the present disclosure describes devices directed at measuring measured and core head and neck temperature of humans primarily above the shoulder region which may include brain temperature.
  • Measured temperature is the highest temperature that is measured with the current IR cameras and associated sensors which locate the head and neck area above the shoulders.
  • the devices and associated systems of the present disclosure reject readings that are clearly out of a normal measured and core temperature bounds.
  • the measured temperature is correlated with a core temperature, where the core temperature is a temperature that is determined using a clinical grade oral thermometer that is defined by use on a sample set of not less than 20 humans.
  • a correlation factor results that provides a calibration matrix/ curve that is completed in order to more accurately provide a conversion value that correlates the measured temperature with the core temperature.
  • An alarm system can be provided which utilizes the measured temperature value that can be set according to a predetermined temperature that corresponds with human fever temperature data. This data is also useful for patients who have tested positive for COVID- 19 for example.
  • the “Tempgate” device of the present disclosure utilizes an ability to provide multiple viewpoints so that a lower number of false positives as well as improving the number and accuracy of automatic scanning rates is accomplished.
  • Many useful applications can be achieved with the devices of the present disclosure including mass screening for fever, screening for hyperthermia in athletes at the end of a sports event (e.g., marathon), screening for hypothermia or hyperthermia for military personnel so as to select the one best fit physiologically for battle, and any other temperature disturbance in any condition in which the “Tempgate” devices can be installed.
  • the key to prevent the catastrophic effects of a terrorist attack is preparedness.
  • the devices, apparatus and methods described in the present disclosure are helpful in providing rapid, dynamic detection of individuals whose skin temperature (above the shoulders) correlates with a temperature value that is greater than that of humans who are not infected. Placement of the “Tempgate” of the disclosure at the borders, seaports and airports of a country can prevent the artificial manipulation of the temperature measurement as well as possible terrorist attacks.
  • the devices and systems of the present disclosure can help identify at all times and under any circumstances the presence of SARS and other diseases associated with fever.
  • Temperature disturbances such as hyperthermia and hypothermia can impair mental and physical function of any worker. Drivers and pilots in particular can have reduced performance and risk of accidents when affected by temperature disturbances.
  • “Tempgate” can be mounted in the visor of a vehicle or plane to monitor body temperature with the cameras of “Tempgate” capturing a thermal image of the driver or pilot and providing an alert whenever a disturbance is noticed. It is understood that any thermal imaging system can be mounted in a vehicle or airplane to monitor body temperature and alert drivers and pilots, with the current disclosure focusing on providing temperature data for individuals on the move.
  • Tempogate devices systems and associated thermal imaging apparatus in accordance with the present disclosure.
  • the present disclosure includes devices for collecting thermal radiation from the measured and core temperatures of one or more persons preferably from the head region above the shoulders and preferably even above the neck region. Positioning temperature measurement devices to receive thermal radiation from the person(s) is necessary e for converting thermal radiation into skin/head/core temperatures and more specifically into measured and core temperatures .
  • the present disclosure also provides methods for determining skin/head/core vs measured temperature with methods including the steps of collecting the thermal emission from the person(s) , producing a signal corresponding to the thermal emission collected, processing the signal and reporting the core and measured temperature.
  • This disclosure also includes devices and methods for proper positioning of the temperature sensor(s) in a stable position along the “Tempgate” to make dynamic temperature readings as a person moves through the “Tempgate” device without stopping.
  • the present disclosure also allows for transmission of the signal from the “Tempgate” device and supporting structures to watches, pagers, cell phones, computers, and the like.
  • FIG. 1A is a schematic isometric view of one embodiment of a temperature measuring device with a person following a targeted pathway such that the person’s temperature is scanned by the temperature measuring device.
  • FIG. IB is a front view of the same embodiment of the same temperature measuring device.
  • FIG. 1C is a side view of the same embodiment of the same temperature measuring device. .
  • FIG. ID is an additional isometric view of the of the same embodiment of the same temperature measuring device with additional features not shown in FIG 1A,
  • FIG. IE is a top view of the same embodiment of the same temperature measuring device.
  • FIG. IF is another front view of the same embodiment of the same temperature measuring device with additional features not shown in FIG IB.
  • Figure 2A is a schematic detailing the camera field of view and pixel representation for the thermal imaging camera.
  • Figure 2B provides a plan view of the FOV of the thermal imaging cameras.
  • Figure 3A is a cross sectional view of a passive thermal calibrator along with the cross section (310) shown.
  • Figure 3B is a frontal view of a passive thermal calibrator.
  • Figure 4A provides a cross sectional view of the heated thermal calibrator.
  • Figure 4B provides the frontal view of the heated thermal calibrator.
  • Figure 5 A provides a cross sectional view of the Peltier cell thermal calibrator.
  • Figure 5B provides a frontal view of the Peltier cell thermal calibrator.
  • Figure 6 depicts a process flow block diagram that includes a monitoring and control system for the temperature measuring device(s).
  • the present disclosure provides working examples described herein that were developed in order to detect and provide a person’s or object’s body temperature within 500 ms for a person or persons that are moving at approximately three (3) miles per hour (mph) which is a known standard for the rate at which most people walk.
  • mph miles per hour
  • Figures 1A, IB, 1C, ID, IE, and IF all represent different schematic views that are representative of the device(s) and several subcomponents of the “Temperature Gate” or “Tempgate”.
  • Figure 1A is an isometric view (100A) of the “Tempgate” device (110) without any top covering portion that is formed by two panels (left and right side panels) and a connecting top portion housing (130).
  • (120) is the front left edge portion of a left side panel which extends to the left side panel back edge end (122).
  • the front right edge portion of the right side panel (121) extends toward the back right edge of the right panel portion (123).
  • a person (105) (could be an animal or other object as well) is proceeding along a typical targeted pathway (180) with a set of targeted path locations (182, 184, and 186) where (182) is the entrance location of the initial capture of the 3-D volume field of view as the person (105) enters the intersection of the fields of view focal planes.
  • (150) and (151) are IR reference temperature calibrators where (150) is a right-side panel IR reference temperature calibrator located within the field of view of one of the thermal imaging cameras (140).
  • (151) is a left side IR reference temperature calibrator located within the field of view of a second thermal imaging camera (141).
  • the dashed lines from the thermal imaging cameras (140,141) are representations of the fields of view of the thermal imaging cameras directed toward the person that is headed toward the “Tempgate” device along the targeted pathway (180).
  • Figure IB is a front view (100B) of the “Tempgate” device (110) with a top covering portion (132) that includes the same two panels (left and right side panels (115, 116)) and a connecting top portion housing (130).
  • (150) and (151) are IR reference temperature calibrators where (150) is a right-side panel IR reference temperature calibrator located within the field of view of thermal imaging camera (140).
  • (151) is a left side IR reference temperature calibrator located within the field of view of thermal imaging camera (141).
  • dashed lines from the thermal imaging cameras (140,141) are representations of the fields of view that indicate that the IR reference temperature calibrators (150, 151) are at the appropriate elevation and location to be positioned within the field of view of the thermal imaging cameras (140,141).
  • Figure 1C is a side view (100C) of the “Tempgate” device (110) with a top covering portion (132) that also includes two panels (left and right side panels (115, 116 not shown)) and a connecting top portion housing (130).
  • the front right edge portion of the right side panel (121) extends toward the back right edge of the same right panel portion (123).
  • a person (could be an animal or other object as well) is proceeding along a typical targeted pathway (180) with a set of path locations (182, 184, and 186) where (182) is the entrance location of the initial capture of the 3-D volume field of view as the person enters the intersection of the fields of view focal planes.
  • the dashed lines from the thermal imaging camera (141) which shows the vertical angle of the field of view (143) with an upper limit of the field of view (144) and lower limit of the field of view (145) that captures a portion of the image of the person that is heading along the targeted pathway (180).
  • Figure ID is another isometric view (100D) of the “Tempgate” device (110).
  • (120) is the front left edge portion of a left side panel which extends to the same left side panel back edge end (122). Again, the front right edge portion of the right side panel (121) extends toward the back right edge of the right panel portion (123).
  • the dashed lines from the thermal imaging cameras (140,141) are representations of the fields of view directed toward the person that is headed toward the “Tempgate” device along the targeted pathway (180).
  • the solid lines with arrows at each end indicate the vertical field of view angle (148) from camera (141) and the horizontal field of view angle (149) from camera (141) on the left side of the device.
  • Figure IE is a top view (100E) of the “Tempgate” device (110) where again a person (105 from Figure 1A) (could be an animal or other object as well) is proceeding along a typical targeted pathway (180) with a set of path locations (182, 184, and 186) where (182) is the entrance location of the initial capture of the 3-D volume field of view as the person (105 from Figure 1 A) enters the intersection of the fields of view focal planes.
  • the starting location (160) is where the intersection of the focal planes exists and (166) is the ending location of the intersection of the fields of view focal planes.
  • (184) is the location along the targeted pathway of the person (105 as in Figure 1A) that is the last position of capture of the 3-D field of view by the thermal imaging cameras (140) and (141).
  • (186) is an exit location along the targeted pathway of the person (105 see Figure 1 A) where the 3-D field of view is no longer captured by the thermal imaging cameras (140, 141).
  • solid line with arrows at each end indicates an angle that is the horizontal field of view angle (147) from camera (140) on the left top side of the device.
  • the solid line with arrows at each end indicates the horizontal field of view angle (149) from camera (141) on the right top side of the device.
  • the person (105 from Figure 1A) traverses the targeted pathway starting at (182) and ending at (184), the person is simultaneously and instantaneously in an optimal view of the thermal imaging cameras (140, 141). This is the desired position (between 182 and 184) for measuring the person’s skin temperature - specifically measured and core (and possibly the brain) temperature in an instant and where the imaging from the thermal imaging cameras intersect.
  • thermal imaging cameras 140 and 141 which for the purposes of this working example are digital infrared cameras as well as possibly charge coupled cameras (CCD).
  • the starting location (160) is where the intersection of the focal planes exists and (166) is the ending location of the intersection of the fields of view focal planes.
  • (184) is the location along the targeted pathway of the person (105 see Figure 1A) that is the last position of capture of the 3-D field of view by the thermal imaging cameras (140) and (141).
  • (186) is an exit location along the targeted pathway of the person (105 see Figure 1A) where the 3-D field of view is no longer captured by the thermal imaging cameras (140, 141).
  • the person (105 - Figure 1A) traverses the targeted pathway starting at (182) and ending at (184), the person is simultaneously and instantaneously in an optimal view of the thermal imaging cameras (140, 141). This is the desired position (between 182 and 184) for measuring the person’s skin temperature - specifically measured and core (and possibly the brain) temperature in an instant and where the imaging from the thermal imaging cameras intersect.
  • the intersection of the FOV (field of view) of the two thermal imaging cameras (140 and 141) is noted as (160) (shown in Figure IE but not Figure IF) entering the combined FOV, and (166), exiting the combined FOV. It is only within the combined FOV of the two (or more) cameras that it is possible to capture 3D and even 4D features and images.
  • the at least two cameras with overlapping perspectives, which allows for the ability to reduce the "clutter" of background in the individual camera images.
  • the background goes to infinity and may be filled with movement of other objects (people) which can produce false measurements.
  • additional cameras can provide added perspectives for the “Tempgate” device(s) (110). Cameras placed at locations (172) middle left camera, and (173) middle right camera, provide a larger range of height for measuring the people passing through the temperature gate.
  • the lower perspective enhances the opportunity to measure the face temperature of a person passing through the “Tempgate” device (110) who is looking downward, such as reading a book, newspaper, or portable phone. This is very important especially if the person has a hat, head covering, or long hair which is obstructing a large part of the forehead.
  • the lower perspective helps to measure people in wheelchairs, shorter individuals and small children.
  • Additional cameras placed at locations (174) lower left camera, and (175) lower right camera, are useful for providing a larger range of height for measuring people that are taller and passing through the Tempgate device(s). Specifically, this lower perspective may be angled upwards to provide possible needed enhancement of an obstructed forehead.
  • Tempgate can be used to measure other objects, living or not, with proper image recognition. The added perspectives will aid in the accuracy of image recognition.
  • the general issue of a clear view of the face is one of the most important issues for the “Tempgate” operation to reduce false-positive measurements and non-measurement alarms.
  • Utilizing multiple perspectives even a single spot of unobstructed skin larger than a pixel, at the measured distance from the camera, can provide a useful and reliable measurement of temperature. From multiple perspectives, an accurate measurement of the distance from each of the at least two cameras is possible, which then allows an accurate calculation of pixel size at the known distance. With multiple perspectives, the same spot (area) can be measured by multiple cameras, and these measurements correlated and averaged, to provide a quality measurement of temperature even when most of the face is obstructed.
  • Camera position (176) is an example of another useful camera position. As noted earlier, the vertical perspective of the camera to the face is important in order to obtain quality temperature measurements. The same problem occurs if a person is looking left or right while passing through the temperature gate. Placements to the left (140, 142, 174), and right (141, 173, 175) improve the opportunity to make a good quality temperature measurement regardless of facial perspective while passing through the gate. Camera position (176) provides further verification of a person moving through the “Tempgate”.
  • All of these cameras at various positions are based on making temperature measurements in one direction only.
  • a second set of cameras are required, for example cameras (177 and 178) located at the positions shown to measure the temperature of a person passing through the temperature gate in the opposite direction than indicated in Figures 1A-1E with the shown targeted pathways (180, 182, 184, 186).
  • the entire set of cameras (140, 141) and subsequent cameras (172-176) can be duplicated in the reverse direction (as for 177, 178) in order that “Tempgate” can function as a bidirectional device. In other words it is possible that a person could pass through “Tempgate” in an opposite direction than is normally intended and the temperature measurements can be performed equally to that of the person moving in the intended direction.
  • IR temperature reference calibrators (150) and (151) are placed in the field of view (FOV) of the thermal imaging cameras as described earlier, to provide known reference temperatures to insure proper camera temperature calibration. Additional temperature calibration points can likewise be placed in the FOV of the additional cameras.
  • FOV field of view
  • the temperature calibration point of the IR temperature reference calibrator (150) is in the FOV of camera (140).
  • Additional IR temperature reference calibrators (152 - 155) which impart further temperature calibration points are provided.
  • IR reference temperature (151) is in the FOV of the thermal imaging camera (141).
  • IR reference temperature calibrator (152) is in the FOV of camera (172).
  • IR reference temperature calibrator (153) is in the FOV of camera (173).
  • IR reference temperature calibrator (154) is in the FOV of camera (174).
  • IR reference temperature calibrator (155) is in the FOV of camera (175).
  • the vertical field of view angle (146) from thermal imaging camera (140) may have an overlapping FOV with some of these calibration points. Again, it is easily understood that that the entire set of IR reference temperature calibrators (150 through 155) can be duplicated in the reverse direction in order that “Tempgate” function as a bi-directional device.
  • the cameras (140,141) include the ability to provide a pixelated image capture and correlated temperature by use of measuring and imaging capabilities that include defined optics that allow the image to be measured using infrared energy.
  • the cameras must be capable of achieving a focused pixeled image capture by use of an infrared lens (that operates in the infrared energy spectrum).
  • the granularity of the pixilation must be capable of resolution that can resolve small enough pixels to measure the smallest points on the object (person) that is being measured (for temperature and/or other biological parameters).
  • thermal imaging cameras for the present disclosure are focused, multiple pixel, photon sensing devices. That is, for example, cameral (140, 141) includes sensors for IR which also could include the capabilities for visual, and UV emissions sensing devices with sensor detection pairs.
  • Figure 2A is a schematic (200) detailing the camera field of view and pixel representation for the thermal imaging cameras (140, 141) and has an internal array of pixels at the focal plane of a lens.
  • the pixel array is focused at some distance (220) to an apparent Field Of View (FOV), (230).
  • FOV Field Of View
  • the thermal camera (140, 141) has an array of 4x4 pixels, that is four columns by four rows of pixels in a rectilinear arrangement. These are numbered from the lower left as row x, column y. Pixels are denoted by their position in this matrix. For example, the lower left pixel is (0,0) and the lower right pixel is (0,3).
  • Figure 2B provides a plan view (210) of the apparent FOV (230) of the thermal imaging cameras.
  • the apparent FOV (230) which is shown as a rectilinear arrangement there exists a minimum cross sectional area and in three dimensions (3-D) a minimum cross sectional volume (240) that has a minimum size, a specific shape, and requires a proper alignment of any temperature calibration device (including the IR temperature reference calibrators) being viewed by the pixels of the camera at a known and often predetermined distance as shown in Figure 2 A (220).
  • any temperature calibration device including the IR temperature reference calibrators
  • the temperature calibration device must be at least two times the apparent size of a pixel at the distance (220) of the calibration device from the camera (140,141). This minimum size is required so that the temperature calibration completely covers at least one pixel in a “worstcase” alignment scenario for the temperature calibration device and the associated pixels.
  • the pixel of the thermal imaging camera (140, 141) along the apparent field of view FOV (130) at position row 1, column 2 (1,2) is focusing and measuring the temperature of the temperature calibration device. This is necessary to define the overall minimum required size of the temperature calibration device.
  • the temperature calibration device implemented must meet at least this minimum.
  • the calibrator should be directly facing the camera.
  • the emissive coating may have some undesirable “off angle” properties so providing a dimensionally aligned calibrator is the best technique found to date.
  • the calibrator surface must be larger than one pixel just in case the surfaces and images are not perfectly aligned. Normally, this is accomplished by making the calibrator(s) twice as large as a pixel or more. If the calibrator is “off angle” the effective view of the calibrator(s) surface(s) is reduced by the cosine of the angle, so that the calibrator needs to be even larger than two times the pixel size.
  • the IR reference temperature In order for the IR reference temperature to be read to achieve the best accurcy and performance the IR reference temperature must measured at a specific angle directed toward the front of the camera due to a set of thermodynamic/material properties that involve the composition of the emissive coating. If the emissive coating is measured off angle this often provides changes in the measured emissivity.
  • the second purpose involves geometry.
  • FIG. 3 A (300), a cross sectional view (310) of a passive IR reference temperature calibrator with a cross section (310) is shown.
  • the passive IR reference temperature calibrator (301) is comprised of a passive uniform temperature block (320), a known thermal coating (330), a thermal insulator block (340), a precision temperature reference measurement unit (350) that measures and reports the temperature of the passive uniform temperature block (320) via connection(s) (355).
  • the thermal insulator (340) allows the passive uniform temperature block (320) to maintain a more uniform temperature.
  • the passive uniform temperature block (320) is attached to the thermal insulator (340) which in turn insulates the uniform temperature block (320).
  • the passive uniform temperature block (320) includes the thermal coating (330) with a known emissivity as alluded to above.
  • the thermal insulator (340) is attached to a mounting substrate (315).
  • a thermal coating (330) of known emissivity is bonded to or may be integral to the passive uniform temperature block (320).
  • Photons (335) are emitted by the thermal coating (330) according to IR reference temperatures determined using black body standards.
  • the precision temperature reference measurement unit (350) is attached to the back of the passive uniform temperature block (320).
  • the shape and size of the precision temperature reference measurement unit (350) with one or more connections (355) are defined and constrained by the precision temperature reference measurement unit and possess the thermal conductivity of the passive uniform temperature block (320).
  • the dimensions of the height and width shown in the Figure 3B frontal view (370) of the passive uniform temperature block (320) are a minimum of at least two times the effective dimension of a single pixel projected by the camera FOV as described above in Figure 2A and Figure 2B, and specifically referring to the rectilinear volume (240).
  • the frontal portion of the passive uniform temperature block (320) can be larger than the minimum required size.
  • the passive uniform temperature block (320) can be other shapes than the minimum size requirement of a rectangular pixel as shown in Figure 2B - specifically the rectilinear volume (240).
  • the passive uniform temperature block (320) could be round and the emissivity coating, as previously stated, is often of non-uniform thickness.
  • the preferred orientation (330) for the camera field of view (330) is parallel to the focal plane of the camera sensor. This solves two important criteria. One is the need for the emissivity (335) of the coating (330) to be more uniform when an off-angle from the frontal view occurs. The emissive coating does not always have consistent and uniform properties. The second criteria, is the need to provide an effective dimension off-angle increases by the tangent of the angle. This results in increasing the minimum dimensions for the passive uniform temperature block (320) and coating (330) to suit the amount of non-parallelism between the coating (330) and the camera (140,141) sensor.
  • FIG. 4A is a schematic representation (400) for a heated IR reference temperature calibrator (415) shown with a cross-sectional view (410).
  • the calibrator device (415) consists of a heated uniform temperature block (420), a coating (330) of known emissivity, a thermal insulator block (340), and a precision temperature reference measurement unit (350) with a connection (355) from the precision temperature reference measurement unit (350) to equipment which converts the temperature measurement to a useful signal.
  • a mounting substrate (315) to which the IR reference temperature calibrator (415) is attached.
  • a known thermal coating (330) is bonded to or may be integral to the thermally conductive material of the heated uniform temperature block (420). Photons (335) are emitted by the emissivity coating (330) according to IR reference temperatures determined using black body standards.
  • a thermal insulator block (340) allows the heated uniform temperature block (420) to be a more uniform temperature.
  • the heated uniform temperature block (420) is partially embedded in the thermal insulator block (440) which insulates the edges of heated uniform temperature block. (420).
  • the precision temperature reference measurement unit (350) can be any of the following but not limited to, resistance temperature devices, thermocouples, thermistors, fiber optic gratings, crystal oscillators, semiconductors, cavity oscillators, thermal ovens, capacitors, strain measurement devices, bolometers, and thermometers.
  • a connection (355) is made between an appropriate portion of the temperature measurement device to the supporting conversion of temperature to a form useable in the temperature gate device.
  • a heater (460) is attached to the heated uniform temperature block (420).
  • the heater (460) can be selected from one or more and is not limited to; an electric heater, resistance heater, hydronic heater, infra-red heater, radiant heater, incandescent heater, semiconductor heater, Peltier heater, ultrasonic heater, chemical reaction heater, battery, resistor, induction heater, microwave heater, fluid circulating thermal modulator.
  • connection (465) between the heater (460) and the energy supply (not shown) in order to increase the temperature of the heated uniform temperature block (420).
  • the heated uniform temperature block (420) Utilizing a thermal controller (not shown) to supply heating energy from the heater (460) through the second connection to the heater (465), the heated uniform temperature block (420) will increase in temperature, while the temperature is measured by one or more precision temperature reference measurement units (350).
  • a connection (355) exists in order to report the temperature of the heated uniform temperature block (420) and allows for regulation of the amount of power required to keep the heated uniform temperature block (420) within an accurate, precise, known temperature.
  • Figure 4B provides the frontal view (470) of the heated IR reference temperature calibrator sensor (415).
  • the heated uniform temperature block (420) has a known thermal coating (330) as described earlier.
  • the precision temperature reference measurement unit (350) is attached to the back of theheated uniform temperature block (420).
  • the shape and size of the precision temperature reference measurement unit (350) with one or more connections (355) are defined and constrained by the precision temperature reference measurement unit (350) and possess the thermal conductivity of the heated uniform temperature block (420). It is desirable that the dimensions of the height and width shown in the Figure 4B frontal view (405) of theheated uniform temperature block (420) are a minimum of at least two times the effective dimension of a single pixel projected by the camera FOV as described above in Figure 2A and Figure 2B, and specifically referring to the rectilinear volume (240).
  • the heated IR reference temperature calibrator sensor (415) can be located at the positions of IR temperature calibrators (150-155) (shown in Figure IF).
  • FIG. 5A is a schematic representation (500) for a Peltier cell temperature calibration device (515) shown with a cross-sectional view (510).
  • the Peltier cell temperature calibration device (515) consists of a Peltier cell uniform temperature block (520), a coating (330) of known emissivity, a thermal insulator block (340), and a precision temperature reference measurement unit (350) with a connection (355) from the precision temperature reference measurement unit (350) to equipment which converts the temperature measurement to a useful signal.
  • a mounting substrate (315) to which the Peltier cell temperature calibration device (515) is attached.
  • a thermal coating (330) is bonded to or may be integral to Peltier cell uniform temperature block (520). Photons (335) are emitted by the thermal coating (330) according to IR reference temperatures determined using black body standards.
  • the Peltier cell uniform temperature block (520) with thermally conductive material provides a uniform temperature.
  • a thermal insulator block (340) allows the Peltier cell uniform temperature block (520) to maintain a more uniform temperature.
  • the Peltier cell uniform temperature block (520) is partially embedded in the thermal insulator block (340) which insulates the edges of Peltier cell uniform temperature block (520) and the Peltier cell (560) itself.
  • the precision temperature reference measurement unit (350) can be any of the following but not limited to, resistance temperature devices, thermocouples, thermistors, fiber optic gratings, crystal oscillators, semiconductors, cavity oscillators, thermal ovens, capacitors, strain measurement devices, bolometers, and thermometers.
  • a Peltier cell (560) is attached to the Peltier cell uniform temperature block (520).
  • connection (565) between the Peltier cell (560) and the energy supply (not shown) in order to increase the temperature of the Peltier cell uniform temperature block (520).
  • a connection (355) is provided so that the appropriate connection of the temperature measurement device to the supporting conversation of temperature to a signal that is readable exists within the “Tempgate” devices.
  • the Peltier cell (560) is attached to the Peltier cell uniform temperature block (520).
  • the Peltier cell (560) is an electrical semiconducting device that uses electric current to transfer thermal energy from one side of the cell to the other side of the cell, with the heat flow direction and thermal flux controlled by the amount of electrical current that is provided to the cell.
  • Peltier cells are understood and well known by those familiar with their use.
  • a second connection (465) of the Peltier cell (560) to supply current to operate the Peltier cell (560) is shown.
  • Peltier cell thermal controller (not shown) to supply current to the Peltier cell (560) through a second connection (565), it is possible to both heat and cool the Peltier cell uniform temperature block (520). In order to achieve this result, the temperature of the Peltier cell temperature block (520) must be accurately measured.
  • the temperature of the Peltier cell uniform temperature block (520) is measured by the precision temperature reference measurement unit (350), through a connection (355) in order to report the temperature of the Peltier cell uniform temperature block (520) and regulate the amount and direction of electric current required to keep the Peltier cell uniform temperature block (520) within an accurate, precise and known temperature.
  • thermoly insulated well which is formed by a cavity that keeps the heat flux of the Peltier cell (560) flowing directly into the Peltier cell uniform temperature block (520) and also ensures that the heat flux does not flow toward the precision temperature reference measurement unit (350).
  • Figure 5B provides the frontal view (570) of a Peltier cell temperature calibration device (505).
  • a Peltier cell uniform temperature block (520) which has a thermal coating (330) of known emissivity as described earlier also exists. It is desirable that the dimensions height and width shown in the frontal view (570) are at least two times the effective dimension of a single pixel projected by the camera FOV as described in Figures 3A and 3B.
  • the precision temperature reference measurement unit (350) is attached to the back of the Peltier cell uniform temperature block (320).
  • the shape and size of the precision temperature reference measurement unit (350) with one or more connections (355, 465) are defined and constrained by the precision temperature reference measurement unit (350) and possess the thermal conductivity of the Peltier cell uniform temperature block (520) . It is desirable that the dimensions of the height and width shown in the Figure 5B frontal view (505) of the Peltier cell uniform temperature block (520) are a minimum of at least two times the effective dimension of a single pixel projected by the camera FOV as described above in Figure 2 A and Figure 2B, and specifically referring to the rectilinear volume (240).
  • the Peltier cell temperature calibration device (515) can be located at the positions of IR temperature calibrators (150-155) (shown in Figure IF).
  • Temperature can be modulated and adjusted by the “Tempgate” itself to provide full linearization and calibration of the thermal imaging cameras on a continuous basis thru the entire temperature range of interest.
  • the Peltier Cell it is possible to heat and cool and slowly change the temperature of the Peltier cell across a broad range of temperature and calibrate the thermal imaging cameras at multiple points in very small denominations of temperature changes along a temperature range (e.g. 0.1 degree over a 10 degree range). This provides a self- calibrating tool and method capability which greatly enhances the precision and accuracy of the measured and core temperature determined by the “Tempgate” devices of the present disclosure.
  • the Peltier cell temperature calibration device (515) provides a precisely known temperature with a precisely known emissivity in the Field of View (FOV) of the long wavelength IR (LWIR) cameras. This location in the long wavelength (LWIR) cameras is aligned with specific pixels. These pixels measure only the precisely known temperature when an unobstructed view of the desired portion of the individual being measured is available.
  • the “Tempgate” can therefore readjust the entire LWIR cameras using a standard linear approximation to calibrate the entire LWIR cameras continuously to match the Peltier cell temperature calibration device.
  • Figure 6 is a process flow block diagram (600) that includes a monitoring and control system for the temperature measuring device(s) (110), “Tempgate”, of the present disclosure.
  • the two or more thermal imaging cameras detect every possible temperature associated with at least one object (person or animal) that is passing into and out of the field of view of the two or more thermal imaging cameras.
  • the temperatures measured often are those not associated with the targeted persons(s) due to the fact that these temperatures are measured temperatures from one or more pixels from these two or more thermal imaging cameras.
  • the temperature data can include calibrators, clothing, eyeglasses, headwear, etc. in or other words everything in the targeted pathway that is not the targeted pathway target itself.
  • the temperature measurement data is provided as signals on a communication path (681) to the process section (620) that processes the temperature measurement data measurements (from 610) and implements an additional set of rules and specific algorithms (625) that must be employed to extract the proper set of data using the following digital image processing steps: First the temperature measurement data is extracted using the second set of rules based algorithm (625) that determines the measured temperature of each target and the exact location of where the temperature measurement was achieved.
  • the additional second set of rules (625) provides an algorithm for conversion of the target measured temperature to a core temperature of the at least one person (object/animal) passing through the targeted pathway of the “Tempgate”.
  • This process portion (block) (620) of the process system (600) provides an output (from the “Tempgate”) which includes a list of core temperature measurement(s) at the corresponding location(s).
  • the temperature measurement portion (610) and the process data portion (620) with the corresponding set of rules (615 and 625) are made available to the “Tempgate” device(s)” using an internal data channel (680).
  • This internal data channel (680) communicates data between all of the internal processes and devices used to manufacture and implement the “Tempgate” devices described herein.
  • the temperature measurements are sent as data signals along a communication path (682) to the action portion/block (630) that utilizes another algorithm to determine specific actions necessary for proper functionality of the “Tempgate” devices.
  • the local database (640) continuously reads and writes data that provides data on demand to any portion of the process flow system (600) of the “Tempgate” device as needed.
  • the data provided to, residing in, or extracted from the local database (640) is transmitted through the internal data channel (680).
  • the local Database (640) also records the process portion (620) activity which includes a record of the “Tempgate” device’(s) data acquisition.
  • the monitor and control portion (650) provides an ability to monitor and control the “Tempgate” device locally again utilizing data transmission that occurs along the internal data channel (680). Locally monitoring and controlling is performed either where the “Tempgate” devices are located or within close proximity to them.
  • one or more Networks (660) can be implemented and these Networks (660) can be also be accessed and utilized via the internal data channel (680).
  • These networks (660) may be connected via signals that are in the form of energy such as radio signals, light signals, electromagnetic signals, acoustic signals and transmitted via wires, optical fibers, etc. These networks may also utilize various forms of communications security.
  • a New Rules portion represented as block (670) provides an ability to generate and update the first second and third set rules (615, 625, and 635) with corresponding algorithms which can be implemented for data that is eventually transmitted by the internal data channel (680).
  • Rules block (615) is updated via signal pathway (684).
  • Rules block (625) is updated via signal pathway (685).
  • Rules block (635) is updated via signal pathway (686).
  • the thermal sensing devices which include the “Tempgate” portion provide a multi-sensor entrance and exit temperature monitoring of individuals and these devices also include one or more control units.
  • the “Tempgate” portion can act as a stand-alone device which contains enough computational capabilities, memory, inputs and outputs to be fully autonomous. Fully autonomous in this case means that the “Tempgate” devices stand alone and do not require ancillary equipment to operate.
  • the thermal imaging cameras include sensors that are broad wavelength multiple pixel focused array sensors. As previously mentioned, due to cost limitations, a visual spectrum camera is employed that is comparably very inexpensive and still provides high resolution (1080 x768 color pixels). In addition, it is important to note that as the present disclosure and associated invention is to be initially built and deployed in the United States, currently there are no export restrictions on this camera technology. As alluded to above, the LWIR (long wave IR cameras) are very expensive to provide an identical resolution. Therefore, we have arranged for using the lowest useful resolution for the actual thermal imaging sensing devices including the temperature gate for the present disclosure. This resolution should be 80x64 pixels.
  • Pixel size, resolution, FOV (field of view), apparent pixel size at various distances from the LWIR sensor array, thermal integration across the entire area of a thermal pixel, maximum useful pixel size for measuring human temperatures are all important and part of the present disclosure. It is also important to note that the potential use of the visual camera as an initial target locator along the targeted pathway for the person entering and exiting the thermal sensing devices can assist with locating the human face as it passes through the gate portion. Therefore, we are utilizing the visual location to improve the ability to sense, acquire and send the thermal measurement data to the necessary data processing portion of the devices. Further, the visual locating cameras and imaging is capable of providing facial recognition features. This visual location and imaging reduce the number of “false positives” which will be sensed by the thermal imaging cameras including hotter items such as coffee cups, reflections, and clothing hot spots.
  • a rule of thumb to use is to have the pixels to be smaller than a '4 x '4 inch (l/2”xl/2”) sized pixel when it is resolved through the field of view of the camera. Anything smaller than this sized pixel will increase resolution and thereby measurement reading accuracy and precision. The key is that this measurement has to be performed on human measured and core otherwise the measurement has little or no use. Distinguishing the differences between coverings and the measured and core itself must be immediate and accurate.
  • IT AR refers to the International Traffic in Arms Regulations and is a United States regulatory regime to restrict and control the export of defense and military related technologies to safeguard U.S. national security and further U.S. foreign policy objectives.
  • This rate of data capture is enough to provide a reliable measurement of the temperature of a person based upon several trials achieved during development of these devices. It is desirable to capture at least 4 frames of data during that transit time of 400 ms through the field of view from the thermal imaging device (camera) in order to measure the temperature at least 4 times as the person walks along the path. In other words, at 9 frames per second per camera, with two cameras there are 18 frames per second, so in 400 milliseconds there are 7.2 frames of data available. Processing these at least 7 frames of data to locate and cross correlate the moving target (head and neck of a person) and measuring the same temperature four (4) separate times, there is a reasonable certainty that the measurement is both reproducible and precise.
  • 9 frames per second x 2 x 0.400 seconds is 7.2 frames of data capture within 400 ms using this device.
  • Processing 7.2 frames per second is 589,824 bits per second of temperature image data processed to measure one temperature.
  • the angle of the field of view is quite wide and the camera field of view is relatively large regardless of the amount or speed with which you acquire the thermal data.
  • each pixel is 1 /64 th of 6 feet. This translates into approximately 1 square inch of the body in the horizontal and the vertical direction when the person is 10 feet away.
  • each pixel covers one square of that person’s body and everything else within the field of view of the camera(s). This, however, is not adequate to measure brain tunnel temperature or forehead temperature if the person is, for example wearing glasses, a scarf, a hat, etc. in that when the person is relatively far away from the gate it is impossible to measure one square inch of skin.
  • the pixel integrate all of the data acquired of everything that is within the boundaries of the pixel and correlate this with all the temperatures acquired by the IR sensing portion of the camera as the camera will not only be capturing the data emitted from the measured and core temperature of that person.
  • the camera and associated pixels now capture !4 x !4 “squares instead of l”xl” squares so that more and more of the pixels may not capture exposed skin but instead covered portions of the person’s body. In this case, it may be possible to capture on a small portion of useful (skin exposed and skin emitting) pixels from the images captures while the cameras are in operation. With low resolution devices this is not a simple issue to solve.
  • the two thermal imaging cameras preferably are mounted with one on the left and one on the right side of the front portion(s) of the gate.
  • Other arrangements are possible including mounting one camera above and one below each other on the same side of the targeted pathway.
  • calibrators which provide known reference temperatures according to IR reference temperature standards.
  • the calibrators are known IR reference temperature devices that provide a reference temperature capability to improve the factory calibration (of the thermal imaging cameras) in the specific temperature measurement of interest. In other words, the calibrators provide a specific reference data point to make an absolute comparison for general thermal imaging camera temperature calibration.
  • the camera temperature measurement can utilize linear interpolation that provides the ability to accurately detect and quantify temperatures which are close to a known reference point. This changes our ability to make a two point calibration to at least a three point calibration.
  • This third calibration point by linear interpolation temperature determination provides temeprature measurments above and below the known calibrator temperature known as the WhitneyOFFSET“ for the camera measurement of the thermal flux.
  • the use of these calibrators thereby allows for more accurate and precise temeprature readings during the scanning and data acquisition that occurs within the three dimentional volume where one or more person’s data is captured.
  • thermometer By scanning and measuring the body for the skin temperature it is necessary to acquire the actual temperature with a thermal imaging camera which is measured with a contact sensor such as an oral thermometer at a certain reference temperature. This is only possible by correlating the temperatures and emissivity of the two bodies (human and black body) in order to ascertain the actual measured and core temperature of one or more person’s body temperature in question. Ideally the correlation would be with a IR reference temperature with 100% emissivity (which is not available as a perfect IR reference temperature does not exist) but one that reaches a high emissivity value along with a compensation algorithm is common.
  • the measured temperature is energy is emitted or absorbed at the surface of the IR reference temperature and the camera is measuring the IR (and color) temperature of the average energy that hits each pixel. If 100% emissivity is coming from anybody (person or black body) then the temperature reading for that body is perfectly the same or identical. If, however as is always the case, they are not identical and if for example, the emissivity is 50% then the proper temperature measurement is achieved with a calibration curve.
  • the thermal sensing equipment/devices/cameras it is possible to adjust the temperature of the commercial black bodies with heaters that adjust to 35 C or higher. These black bodies do not function well in sunlight and therefore the use of a device which can heat and cool the IR reference temperature (such as a Peltier cell could provide the necessary instantaneous calibration needed to acquire precise and accurate temperature readings within the 500 ms requirement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Radiation Pyrometers (AREA)

Abstract

L'invention concerne un ou plusieurs dispositifs de mesure de température qui comprennent ; des caméras d'imagerie thermique pouvant détecter et fournir un emplacement exact d'au moins une image dynamique créée, balayée par au moins deux caméras d'imagerie thermique et triangulée avec celles-ci, et une porte qui fournit un passage ciblé restreint à travers lequel au moins une personne doit se déplacer de telle sorte que les données thermiques dynamiques de la personne sont captées lorsque la personne traverse la porte, et les caméras d'imagerie thermique étant disposées géométriquement dans des positions telles que leur champ de vue se trouve sur la porte ou à l'intérieur de celle-ci, et la personne étant scannée et fournissant des données thermiques dynamiques ciblées qui sont converties en une ou plusieurs lectures de température qui mesurent et transmettent les lectures de température à partir d'un ou plusieurs photodétecteurs qui détectent le rayonnement thermique naturellement émis par les personnes traversant la porte.
PCT/US2020/046451 2020-08-14 2020-08-14 Dispositifs de capture d'image dynamique thermique rapide Ceased WO2022035440A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2020/046451 WO2022035440A1 (fr) 2020-08-14 2020-08-14 Dispositifs de capture d'image dynamique thermique rapide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2020/046451 WO2022035440A1 (fr) 2020-08-14 2020-08-14 Dispositifs de capture d'image dynamique thermique rapide

Publications (1)

Publication Number Publication Date
WO2022035440A1 true WO2022035440A1 (fr) 2022-02-17

Family

ID=80248047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2020/046451 Ceased WO2022035440A1 (fr) 2020-08-14 2020-08-14 Dispositifs de capture d'image dynamique thermique rapide

Country Status (1)

Country Link
WO (1) WO2022035440A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060193498A1 (en) * 2005-02-25 2006-08-31 Jason Hartlove System and method for detecting thermal anomalies
US20080154138A1 (en) * 2003-05-27 2008-06-26 Mcquilkin Gary L Methods and apparatus for a remote, noninvasive technique to detect core body temperature in a subject via thermal imaging
US20090105605A1 (en) * 2003-04-22 2009-04-23 Marcio Marc Abreu Apparatus and method for measuring biologic parameters
CN208420179U (zh) * 2018-05-29 2019-01-22 浙江双视红外科技股份有限公司 一种闸机单元及闸机系统
CN109827663A (zh) * 2019-02-21 2019-05-31 云南电网有限责任公司昭通供电局 基于红外成像远程测温的电力设备巡检方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090105605A1 (en) * 2003-04-22 2009-04-23 Marcio Marc Abreu Apparatus and method for measuring biologic parameters
US20080154138A1 (en) * 2003-05-27 2008-06-26 Mcquilkin Gary L Methods and apparatus for a remote, noninvasive technique to detect core body temperature in a subject via thermal imaging
US20060193498A1 (en) * 2005-02-25 2006-08-31 Jason Hartlove System and method for detecting thermal anomalies
CN208420179U (zh) * 2018-05-29 2019-01-22 浙江双视红外科技股份有限公司 一种闸机单元及闸机系统
CN109827663A (zh) * 2019-02-21 2019-05-31 云南电网有限责任公司昭通供电局 基于红外成像远程测温的电力设备巡检方法

Similar Documents

Publication Publication Date Title
US11676473B2 (en) Rapid thermal dynamic image capture devices
US11164441B2 (en) Rapid thermal dynamic image capture devices with increased recognition and monitoring capacity
US12400452B2 (en) Non-contact temperature measurement in thermal imaging systems and methods
EP2577242B1 (fr) Procédé et dispositif de mesure de la température corporelle interne d'un patient
US7340293B2 (en) Methods and apparatus for a remote, noninvasive technique to detect core body temperature in a subject via thermal imaging
Ng et al. Analysis of IR thermal imager for mass blind fever screening
US20150182127A1 (en) Systems and devices for real time health status credentialing
US12239419B2 (en) Systems for real time febrility detection and notification
JP2005237861A (ja) 自動検温装置および自動検温方法
Mekjavic et al. Myths and methodologies: Degrees of freedom–limitations of infrared thermographic screening for Covid‐19 and other infections
Sharma et al. Image processing based body temperature estimation using thermal video sequence
Kaushik et al. Characterization of PIR detector for monitoring occupancy patterns and functional health status of elderly people living alone at home
US11961232B2 (en) Automated sensing system for health detection
WO2022035440A1 (fr) Dispositifs de capture d'image dynamique thermique rapide
WO2016085512A1 (fr) Systèmes de détection d'un état fébrile en temps réel et de notification
WO2022226214A1 (fr) Détection d'événements audio dans des systèmes et procédés de dépistage sanitaire
ITMI20100102A1 (it) Metodo ed apparecchiatura per la determinazione della temperatura corporea di almeno un soggetto
Medjeldi et al. Wireless system for detecting human temperature
Bieber et al. Supporting Thermal Imaging for Activity and Health Recognition by a Constant Temperature Device
Khalapure et al. Machine Learning Techniques for Contactless Fast Body Temperature Imaging Portable Device
Vigneshwari et al. Smart Wearable IoT System
Chin Online Decision Analytics with Deep Learning: Non-Invasive Fever Screening
HK1182168B (en) Method and device for measuring the internal body temperature of a patient
HK1182168A (en) Method and device for measuring the internal body temperature of a patient

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949665

Country of ref document: EP

Kind code of ref document: A1