WO2022082329A1 - Processes of preparing 3-fluoro-5- ( ( (1s, 2ar) -1, 3, 3, 4, 4-pentafluoro-2a-hydroxy-2, 2a, 3, 4-tetrahydro-1h-cyclopenta [cd] inden-7-yl) oxy) -benzonitrile - Google Patents
Processes of preparing 3-fluoro-5- ( ( (1s, 2ar) -1, 3, 3, 4, 4-pentafluoro-2a-hydroxy-2, 2a, 3, 4-tetrahydro-1h-cyclopenta [cd] inden-7-yl) oxy) -benzonitrile Download PDFInfo
- Publication number
- WO2022082329A1 WO2022082329A1 PCT/CN2020/121745 CN2020121745W WO2022082329A1 WO 2022082329 A1 WO2022082329 A1 WO 2022082329A1 CN 2020121745 W CN2020121745 W CN 2020121745W WO 2022082329 A1 WO2022082329 A1 WO 2022082329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- organic solvent
- suitable organic
- agent
- tetrahydrofuran
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C253/00—Preparation of carboxylic acid nitriles
- C07C253/30—Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/49—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
- C07C255/54—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and etherified hydroxy groups bound to the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/36—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
- C07C29/38—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/58—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by elimination of halogen, e.g. by hydrogenolysis, splitting-off
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/62—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by introduction of halogen; by substitution of halogen atoms by other halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C35/00—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
- C07C35/22—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a condensed ring system
- C07C35/23—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a condensed ring system with hydroxy on a condensed ring system having two rings
- C07C35/32—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a condensed ring system with hydroxy on a condensed ring system having two rings the condensed ring system being a (4.3.0) system, e.g. indenols
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C35/00—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
- C07C35/48—Halogenated derivatives
- C07C35/52—Alcohols with a condensed ring system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/40—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with ozone; by ozonolysis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/67—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
- C07C45/673—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by change of size of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/587—Unsaturated compounds containing a keto groups being part of a ring
- C07C49/703—Unsaturated compounds containing a keto groups being part of a ring containing hydroxy groups
- C07C49/723—Unsaturated compounds containing a keto groups being part of a ring containing hydroxy groups polycyclic
- C07C49/727—Unsaturated compounds containing a keto groups being part of a ring containing hydroxy groups polycyclic a keto group being part of a condensed ring system
- C07C49/737—Unsaturated compounds containing a keto groups being part of a ring containing hydroxy groups polycyclic a keto group being part of a condensed ring system having three rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/07—Optical isomers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2602/00—Systems containing two condensed rings
- C07C2602/02—Systems containing two condensed rings the rings having only two atoms in common
- C07C2602/04—One of the condensed rings being a six-membered aromatic ring
- C07C2602/08—One of the condensed rings being a six-membered aromatic ring the other ring being five-membered, e.g. indane
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2603/00—Systems containing at least three condensed rings
- C07C2603/02—Ortho- or ortho- and peri-condensed systems
- C07C2603/04—Ortho- or ortho- and peri-condensed systems containing three rings
- C07C2603/06—Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
- C07C2603/10—Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
Definitions
- Compound (I) is a hypoxia inducible factor-2 ⁇ (HIF-2 ⁇ ) inhibitor and is being developed for treating diseases mediated by aberrant activity of HIF-2 ⁇ including cancer, such as renal cancer, glioblastoma, neuroblastoma, pheochromocytomas and paragangliomas, somatostatinomas, hemangioblastomas, gastrointestinal stromal tumors (GIST) , pituitary tumors, leiomyomas, leiomyosarcomas, polycythaemia, and retinal tumors and non-cancer diseases such as pulmonary artery hypertension (PAH) , reflux esophagitis, hepatic steatosis, NASH, inflammatory disease such as inflammatory bowel disease, autoimmune disease such as Graft-versus-Host-Disease, and iron overload.
- cancer such as renal cancer, glioblastoma, neuroblastoma, pheochromocytomas and paragangliomas,
- the process of the first aspect further comprises converting compound (11) :
- the processes of the first and second aspects further comprise preparing compound (10) :
- the processes of the third and fourth aspects further comprise preparing compound (9) :
- the processes of the fifth and sixth aspects further comprise preparing compound (8) :
- the processes of the seventh and eighth aspects further comprise preparing compound (7) :
- the processes of the ninth and tenth aspects further comprise preparing compound (6) :
- the process of eleventh aspect further comprises preparing compound (5) :
- the process of twelfth aspect further comprises preparing compound (4) :
- the process of thirteenth aspect further comprises preparing compound (3) :
- the process of fourteenth aspect further comprises preparing compound (2) :
- reacting or “treating” when describing a certain process is used as known in the art and generally refers to the bringing together of chemical reagents in such a manner so as to allow their interaction at the molecular level to achieve a chemical or physical transformation.
- the reacting steps of the processes described herein can be conducted for a time and under conditions suitable for preparing the identified product.
- Suitable organic solvent refers to an organic solvent which, under the reaction conditions of the processes disclosed herein, does not enter into any appreciable reaction with either the reactants, intermediates an/or the products at the temperatures at which the reactions are carried out.
- a given reaction disclosed herein can be carried out in one organic solvent or a mixture of two or more organic solvents.
- Suitable organic solvents include: halogenated solvents such as carbon tetrachloride, chloroform, dichloromethane, and the like; ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, l, 3-dioxane, l, 4-dioxane, diethyl ether, methyl t-butyl ether, and the like; alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, n-butyl alcohol, tert-butyl alcohol, 1-, 2-, or 3-pentanol, neo-pentyl alcohol, and the like; hydrocarbons such as benzene, toluene, xylene, cyclohexane, pentane, hexane, heptane, and the like.
- halogenated solvents such as carbon tetrachloride,
- Additional organic solvents that can be used in the reactions described herein include polar organic solvents including, but not limited to, acetonitrile, dimethylformamide, ethyl acetate, alcohols, and the like.
- polar organic solvents e.g., alcohols, acetonitrile, DMF
- solvents that are suitable for the particular reaction step can be readily selected by a person skilled in the art.
- the reaction was also carried out in MTBE, 2-methylTHF, or toluene solvent.
- the reaction was also carried out in THFsolvent.
- the reaction was also carried out in CHCl 3 solvent.
- the reaction was also carried out in 2-methyl THF, n-heptane, or MTBE solvent.
- the reaction was also carried out in DMF, 1, 4-dioxane, THF, 2-methyl THF, toluene, oracetonitrile solvent.
- reaction was also carried out in a mixture of DCM/ACN/water.
- reaction was also carried out in DMF, ACN, 2-methyl THF, or toluene solvent.
- preparation of compound (11) the reaction was also carried out in THF, CH 3 OH, TFA/THF, or HOAc/THF solvent.
- preparation of compound (I) the reaction was also carried out in DCM, CH 3 CN, 2-methyl THF, ethyl acetate, DMF, MTBE or toluene solvent.
- reaction temperatures that were used in the preparation of compound (2) included 20 °C, 40 °C, 60 °C, and refluxing.
- Reaction temperatures that were used in the preparation of compound (3) included 0–15 °C and 15–25 °C.
- Reaction temperatures that were used in the preparation of compound (4) included 0–10 °C, 10–20 °C, 20–30 °C, and 30–40 °C.
- Reaction temperatures that were used in the preparation of compound (5) included-30 to-40 °C, -40 to-50 °C, -50 to-60 °C, and-60 to-70 °C.
- Reaction temperatures that were used in the preparation of compound (6) included 35 °C, 45 °C, and 60 °C.
- Reaction temperatures that were used in the preparation of compound (7) included-100 to-80 °C, -80 to-60 °C, and-60 to-40 °C.
- Reaction temperatures that were used in the preparation of compound (8) included 60 °C, 70 °C and refluxing.
- Reaction temperatures that were used in the preparation of compound (10) included 20 to 30 °C, and 40 °C.
- Reaction temperatures that were used in the preparation of compound (11) included 10 to 20 °C and-5 to 5 °C.
- Reaction temperatures that were used in the preparation of compound (I) included 20 to 30 °C and-5 to 5 °C.
- bases that were used in the preparation of compound (8) included NaOAc, KOAc, and K 2 CO 3 ;
- brominating reagents that were used in the preparation of compound (7) included CBr 4 and CF 2 BrCF 2 Br;
- catalysts that were used in the preparation of compound (8) included Pd (dppf) Cl 2 , Pd 2 (dba) 3 /XPhos, Pd (OAc) 2 /PPh 3 , and Pd (PPh 3 ) Cl 2 ;
- fluorinating reagents that were used in the preparation of compound (4) included DAST, 4-tert-butyl-2, 6-dimethylphenylsulfur trifluoride, and HF/SF 4 ;
- fluorinating reagents that were used in the preparation of compound (I) included DAST, PyFluor, AlkylFluor and SulfoxFluor;
- oxidizing agents that were used in the oxidation of compound (2) to (3) included 2-iodoxybenzoic acid (IBX) , RuCl 3 /NaBrO 3 ; TEMPO/NaClO, MnO 2 , and TPAP/NMO.
- oxidizing agents that were used in the oxidation of compound (8) to (9) included RuCl 3 /NaIO 4 , and O 3 ;
- reducing agents that were used in the reduction of compound (10) to (11) included LiBH 4 and NaBH 4 .
- reactions of the processes described herein can be carried out in air or under an inert atmosphere.
- reactions containing reagents or products that are substantially reactive with air can be carried out using air-sensitive synthetic techniques that are well known to the skilled artisan.
- the processes described herein can be monitored according to any suitable method known in the art.
- product formation can be monitored by spectroscopic means, such as nuclear magnetic resonance spectroscopy (e.g., 1 H or 13 C) , infrared spectroscopy, spectrophotometry, or mass spectrometry; or by chromatography such as high performance liquid chromatography (HPLC) or thin layer chromatography.
- HPLC high performance liquid chromatography
- the compounds obtained by the reactions can be purified by any suitable method known in the art. For example, chromatography (medium pressure) on a suitable adsorbent (e.g., silica gel, alumina and the like) , HPLC, or preparative thin layer chromatography; distillation; sublimation, trituration, or recrystallization.
- the purity of the compounds in general, are determined by physical methods such as measuring the melting point (in case of a solid) , obtaining an NMR spectrum, or performing a HPLC separation.
- Cyclic ether refers to tetrahydrofuran, 2-methyltetrahydrofuran, or 1, 4-dioxane.
- Alcohol refers to an aliphatic hydrocarbon compound that carries a hydroxy group. Representative examples include, but are not limited to, methanol, ethanol, propanol, butanol, and the like.
- “About” as used herein means ⁇ 10%, preferably ⁇ 5%of listed value.
- a reaction carried out at about 10°C includes 9°C, 11°C, and all temperatures contained in between 9°C and 11°C.
- the process of embodiment 2 is wherein the deoxyfluorinating agent is diethylaminosulfur trifluoride, Phenofluor TM , N-tosyl-4-chlorobenzene-sulfonimidoyl fluoride, pyridine-2-sulfonyl fluoride, or AlkylFluor.
- the deoxyfluorinating agent is diethylaminosulfur trifluoride, Phenofluor TM , N-tosyl-4-chlorobenzene-sulfonimidoyl fluoride, pyridine-2-sulfonyl fluoride, or AlkylFluor.
- the process of embodiment 2 or 3 is wherein the organic solvent is halogenated hydrocarbon, cyclic ethers, ethers, aromatic hydrocarbon, or a polar solvent.
- the organic solvent is dichloromethane, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, ethylacetate, dimethylformamide, methyl tert-butylether, or toluene.
- the process of embodiment 2 is wherein the deoxyfluorinating agent is pyridine-2-sulfonyl fluoride and the base is 1, 8-diazabicyclo- [5.4.0] undec-7-ene or 7-methyl-1, 5, 7-triaza-bicyclo [4.4.0] dec-1-ene.
- the process of embodiment 1, is wherein the reduction of the keto group of compound (10) is carried out with sodium borohydride in tetrahydrofuran, 2-methyltetrahydrofuran, a mixture of tetrahydrofuran or 2-methyltetrahydrofuran and methanol, tetrahydrofuran containing acetic acid or trifluoroacetic acid, 2-methyltetrahydrofuran containing acetic acid or trifluoroacetic acid, or methanol containing acetic acid or trifluoroacetic acid.
- the process of embodiment 6, is wherein the organic solvent is a mixture of tetrahydrofuran and methanol and the reaction is carried out at about-5°Cto about 30°C.
- the process of embodiment 6, is wherein the organic solvent is a mixture of tetrahydrofuran and methanol and the reaction is carried out at about-5°Cto about 5°C.
- the process of embodiment 5, is wherein the molar ratio of 1, 8-diazabicyclo [5.4.0] -undec-7-ene to compound (11) is at least about 2 to about 1 and the organic solvent is tetrahydrofuran.
- the process of embodiment 11 or 12, is wherein the base is an inorganic base.
- the process of embodiment 13, is wherein the inorganic base is cesium carbonate or potassium carbonate.
- the process of any one of embodiments 11 to 14, is wherein the organic solvent is tetrahydrofuran, 2-methyltetrahydrofuran, dimethylformamide, acetonitrile, or toluene.
- the process of embodiment 15, is wherein the organic solvent is tetrahydrofuran.
- the process of any one of embodiments 11 to 16 is wherein the reaction is carried out at about 20°C to about 40°C.
- the process of embodiment 18 is wherein compound (10) is crystallized from a mixture of methyl tert-butyl ether and n-heptane.
- the process of embodiment 21, is wherein the oxidative cleavage of the vinylidene is carried out with (i) sodium periodate or in the presence of ruthenium chloride or (ii) Ozone.
- the process of embodiment 21, is wherein the solvent is a mixture of dichloromethane, acetonitrile and water or aqueous acetonitrile.
- the process of any one of embodiments 20 to 23, is wherein the oxidative cleavage of the vinylidene is carried out with sodium periodate in the presence of catalytic amount of ruthenium chloride in aqueous acetonitrile.
- embodiment 24b the process of embodiment 24a, is wherein purification of compound (10) is from a mixture of methyl tert-butyl ether and n-heptane.
- the process of embodiment 25 or 26, is wherein the palladium catalyst is Pd (PPh 3 ) 4, Pd (dppf) Cl 2, Pd (PPh 3 ) 2 Cl 2, Pd (PPh 3 ) 2 (OAc) 2 , Pd 2 (dba) 3 /XPhos, or Pd (1, 2-bis (diphenylphosphino) ethane) (OAc) 2 and the organic solvent is acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, toluene, 1, 4-dioxane, or dimethylformamide .
- the palladium catalyst is Pd (PPh 3 ) 4, Pd (dppf) Cl 2, Pd (PPh 3 ) 2 Cl 2, Pd (PPh 3 ) 2 (OAc) 2 , Pd 2 (dba) 3 /XPhos, or Pd (1, 2-bis (diphenylphosphino) ethane) (OAc) 2 and the organic
- the process of embodiment 27, is wherein the base is sodium acetate, potassium acetate, sodium carbonate, potassium carbonate or cesium carbonate.
- the process of any one of embodiments 25, 26, or 28, is wherein the palladium catalyst is Pd (PPh 3 ) 2 Cl 2 , the base is potassium acetate and the solvent is acetonitrile.
- the process of embodimen 29 is wherein the reaction is carried out between about 60°C to about 80°C.
- the process of embodiment 31 or 32 is wherein the brominating agent is 1, 2-dibromo-1, 1, 2, 2-tetrafluoroethane, the deprotonating agent is lithium diisopropylamide and the solvent is tetrahydrofuran.
- the process of embodiment 36 is wherein the base is sodium tert-butoxide and the organic solvent is a mixture of methanol and toluene.
- the process of claim 38 is wherein the organolithium reagent is n-butyllithium and the organic solvent is tetrahydrofuran, 2-methyltetrahydrofuran, n-heptane and methyl ter-butylether.
- embodiment 40 the process of embodiment 38 or 39, is wherein the solvent is tetrahydrofuran.
- the process of claim 41 is wherein the fluorinating agent is diethylaminosulfur trifluoride, 4-tert-butyl-2, 6-dimethylphenylsulfur trifluoride, or sulfur tetrafluoride and hydrofluoric acid.
- the fluorinating agent is diethylaminosulfur trifluoride, 4-tert-butyl-2, 6-dimethylphenylsulfur trifluoride, or sulfur tetrafluoride and hydrofluoric acid.
- the process of embodiment 42 is wherein the fluorinating agent is sulfur tetrafluoride and hydrofluoric acid and the solvent is dichloromethane.
- the process of embodiment 44 is wherein the oxidizing agent is dimethyl sulfoxide/oxalyl chloride, 2-iodoxybenzoic acid, RuCl 3 /NaBrO 3 , MnO 2 , NaBrO 3 /NaHSO 3, or TPAP/NMO.
- the oxidizing agent is dimethyl sulfoxide/oxalyl chloride, 2-iodoxybenzoic acid, RuCl 3 /NaBrO 3 , MnO 2 , NaBrO 3 /NaHSO 3, or TPAP/NMO.
- the process of embodiment 45 is wherein the oxidizing agent is is TPAP/NMO and reaction is carried in dichloromethane, acetonitrile or tetrahydrofuran, preferably dichloromethane.
- the process of embodiment 47 is wherein the organic solvent is tetrahydrofuran or 2-methyl tetrahydrofuran.
- NMO N-Methylmorpholine N-oxide
- Pd (PPh 3 ) 2 Cl 2 bis (triphenylphosphine) palladium (II) dichloride
- TEMPO (2, 2, 6, 6-Tetramethylpiperidin-1-yl) oxyl or (2, 2, 6, 6-tetramethylpiperidin-1-yl) oxidanyl
- TPAP tetrapropylammonium perruthenate
- Step 1 ethyl 3- (2-bromo-4-fluorophenyl) -2, 2-difluoro-3-hydroxypropanoate
- Step 2 ethyl 3- (2-bromo-4-fluorophenyl) -2, 2-difluoro-3-oxopropanoate
- the resulting mixture was further stirred at 25°C for 2 h under N 2 atmosphere, then was filtered through silica gel pad and the pad cake was washed with MTBE.
- the combined filtrate was washed with 1.0 M aqueous HCl.
- the combined aqueous phase was extracted with MTBE.
- the combined MTBE organic phase was washed with H 2 O, filtered through a silica gel pad and the pad cake was washed with MTBE.
- the combined filtrate was concentrated to give the title compound (561.0 g, 95.1%yield) as a yellow oil, which was used for next step without further purification.
- Step 3 ethyl 3- (2-bromo-4-fluorophenyl) -2, 2, 3, 3-tetrafluoropropanoate
- Step 4 2, 2, 3, 3, 6-pentafluoro-2, 3-dihydro-1H-inden-1-one
- Step 1 (R) -1-allyl-2, 2, 3, 3, 6-pentafluoro-2, 3-dihydro-1H-inden-1-ol
- the organic layer was cooled to 0°C andwashed with 1.0 M aqueous HCl, 0.5 M aqueous NaOH, water and 10%brine. The organic layer was concentrated to give the title compound (146.71g, 73.5%assay purity, 87.9%assay yield, 90.7%e. e. ) .
- Step 2 (R) -1-allyl-7-bromo-2, 2, 3, 3, 6-pentafluoro-2, 3-dihydro-1H-inden-1-ol
- Step 3 (R) -3, 3, 4, 4, 7-pentafluoro-1-methylene-1, 2, 3, 4-tetrahydro-2aH-cyclopenta [cd] inden-2a-ol
- the organic layer was diluted with n-heptane and passed through a silica gel pad (200 g) .
- the eluent was concentrated and exchange the solvent into acetonitrile to give the title compound as a solution in acetonitrile (120.15g, 51.7%assay purity, 81.3%assay yield, 90.6%e. e. ) .
- Step 4 (R) -3, 3, 4, 4, 7-pentafluoro-2a-hydroxy-2, 2a, 3, 4-tetrahydro-1H-cyclopenta [cd] inden-1-one
- Step 1 (R) -3-fluoro-5- ( (3, 3, 4, 4-tetrafluoro-2a-hydroxy-1-oxo-2, 2a, 3, 4-tetrahydro-1H-cyclopenta [cd] inden-7-yl) oxy) benzonitrile
- Step 2 3-fluoro-5- ( ( (1R, 2aR) -3, 3, 4, 4-tetrafluoro-1, 2a-dihydroxy-2, 2a, 3, 4-tetrahydro-1H-cyclopenta [cd] inden-7-yl) oxy) benzonitrile
- the mixture was extracted with MTBE, and the combined organic layer was washed with water and 10%brine.
- the organic layer is concentrated and the solvent was exchanged to THF to obtain a THF solution of the title compound (286.66 g, 16.6%assay purity, 94.7%assay yield, 97.7%e. e. ) .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Disclosed herein are processes for preparing 3-fluoro-5-(((1S,2aR)-1,3,3,4,4- pentafluoro-2a-hydroxy-2,2a,3,4-tetrahydro-1H-cyclopenta[cd]inden-7-yl)oxy)benzonitrile (hereinafter as compound (I) having the following structure).
Description
Field of the disclosure
Disclosed herein are processes for preparing 3-fluoro-5- ( ( (1S, 2aR) -1, 3, 3, 4, 4-pentafluoro-2a-hydroxy-2, 2a, 3, 4-tetrahydro-1H-cyclopenta [cd] inden-7-yl) oxy) benzonitrile (hereinafter Compound (I) ) having the structure:
or a pharmaceutically acceptable salt thereof.
Compound (I) is a hypoxia inducible factor-2α (HIF-2α) inhibitor and is being developed for treating diseases mediated by aberrant activity of HIF-2αincluding cancer, such as renal cancer, glioblastoma, neuroblastoma, pheochromocytomas and paragangliomas, somatostatinomas, hemangioblastomas, gastrointestinal stromal tumors (GIST) , pituitary tumors, leiomyomas, leiomyosarcomas, polycythaemia, and retinal tumors and non-cancer diseases such as pulmonary artery hypertension (PAH) , reflux esophagitis, hepatic steatosis, NASH, inflammatory disease such as inflammatory bowel disease, autoimmune disease such as Graft-versus-Host-Disease, and iron overload.
Synthesis of Compound (I) is disclosed in Example 5 of PCT Application No. PCT/US20/28579, filed on April 16, 2020. There is a need for alternative processes that allow for large scale synthesis of Compound (I) in a cost-effective manner. The processes disclosed herein fullfill this and related needs.
Summary
Provided herein is a process that make it feasible to produce Compound (I) in high purity, including enantiomeric purity, and yield in a cost-effective manner and that is suitable for use on a commercial scale. Also, provided are processes for preparing certain intermediates used in such process.
In one aspect, provided is a process of preparing compound (11)
comprising reducing the keto moiety of compound (10) :
with:
(a) sodium borohydride in an organic solvent selected from a group consisting of (i) an alcohol containing acetic acid or trifluoroacetic acid, (ii) a cyclic ether, and (iii) a mixture of a cyclic ether and an alcohol wherein the cyclic ether of (ii) and the mixture of a cyclic ether and an alcohol of (iii) optionally contain acetic acid or trifluoroacetic acid; or
(b) lithium borohydride in a suitable organic solvent optionally containing acetic acid or trifluoroacetic acid.
In a second aspect, the process of the first aspect, further comprises converting compound (11) :
to Compound (I) :
by reacting compound (11) with a deoxyfluorinating agent in the presence of an organic base in a suitable organic solvent.
In a third aspect, provided is a process of preparing compound (10) :
comprising reacting compound (9) :
with 3-fluoro-5-hydroxybenzonitrile in the presence of a base in a suitable organic solvent other than dimethylformamide.
In a fourth aspect, the processes of the first and second aspects, further comprise preparing compound (10) :
by reacting compound (9) :
with 3-fluoro-5-hydroxybenzonitrile in the presence of a base in a suitable organic solvent.
In a fifth aspect, provided is a process for preparing compound (9) :
comprising carrying out oxidative cleavage of the vinylidene moiety of (8) :
with (i) sodium periodate in the presence of ruthenium chloride in aqueous acetonitrile, (ii)
in the presence of ruthenium chloride in a suitable organic solvent, or (iii)
in a suitable organic solvent.
In a sixth aspect, the processes of the third and fourth aspects, further comprise preparing compound (9) :
by carrying out oxidative cleavage of the vinylidene moiety of compound (8) :
with a suitable oxidizing agent in a suitable organic or aqueous organic solvent.
In a seventh aspect, provided is a process for preparing compound (8) :
comprising performing intramolecular cyclization between the alkene and bromo groups in compound (7) :
by treating compound (7) with a palladium catalyst in the presence of a base in a suitable organic solvent other than dimethylformamide.
In an eighth aspect, the processes of the fifth and sixth aspects, further comprise preparing compound (8) :
by performing intramolecular cyclization between the alkene and bromo groups in compound (7) :
with a palladium catalyst in the presence of a base in a suitable organic solvent.
In a ninth aspect, provided is a process for preparing compound (7) :
comprising brominating compound (6) :
with 1, 2-dibromo-1, 1, 2, 2-tetrafluoroethane in the presence of a deprotonating agent in a suitable organic solvent.
In a tenth aspect, the processes of the seventh and eighth aspects, further comprise preparing compound (7) :
by treating compound (6) :
with a brominating agent in the presence of a deprotonating agent in a suitable organic solvent.
In an eleventh aspect, the processes of the ninth and tenth aspects, further comprise preparing compound (6) :
by treating compound (5) :
with 4, 4, 5, 5-tetramethyl-2- (prop-2-en-1-yl) -1, 3, 2-dioxaborolane in the presence of (S) -2- ( (3- (tert-butyl) -2-hydroxybenzyl) amino) -N, N, 3-trimethylbutanamide and a base in a suitable organic solvent.
In a twelfth aspect, the process of eleventh aspect, further comprises preparing compound (5) :
by treating compound (4) :
with an organolithium reagent in a suitable organic solvent.
In a thirteenth aspect, the process of twelfth aspect, further comprises preparing compound (4) :
by treating compound (3) :
with a fluorinating agent in a suitable organic solvent.
In a fourteenth aspect, the process of thirteenth aspect, further comprises preparing compound (3) :
by treating compound (2) :
with an oxidizing agent in a suitable organic solvent.
In a fifteenth aspect, the process of fourteenth aspect, further comprises preparing compound (2) :
by treating compound (1) :
with ethyl bromodifluoroacetate in the presence of zinc metal, trimethylsilyl chloride, and 1, 2-dibromoethane in a suitable organic solvent.
Definitions:
Unless otherwise stated, the following terms used in the specification and claims are defined for the purposes of this Application and have the following meaning:
As used herein, the term “reacting” or “treating” when describing a certain process is used as known in the art and generally refers to the bringing together of chemical reagents in such a manner so as to allow their interaction at the molecular level to achieve a chemical or physical transformation. The reacting steps of the processes described herein can be conducted for a time and under conditions suitable for preparing the identified product.
“Suitable organic solvent” refers to an organic solvent which, under the reaction conditions of the processes disclosed herein, does not enter into any appreciable reaction with either the reactants, intermediates an/or the products at the temperatures at which the reactions are carried out. A given reaction disclosed herein can be carried out in one organic solvent or a mixture of two or more organic solvents. Examples of suitable organic solvents that can be used in the reactions described herein include: halogenated solvents such as carbon tetrachloride, chloroform, dichloromethane, and the like; ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, l, 3-dioxane, l, 4-dioxane, diethyl ether, methyl t-butyl ether, and the like; alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, n-butyl alcohol, tert-butyl alcohol, 1-, 2-, or 3-pentanol, neo-pentyl alcohol, and the like; hydrocarbons such as benzene, toluene, xylene, cyclohexane, pentane, hexane, heptane, and the like. Additional organic solvents that can be used in the reactions described herein include polar organic solvents including, but not limited to, acetonitrile, dimethylformamide, ethyl acetate, alcohols, and the like. When polar organic solvents (e.g., alcohols, acetonitrile, DMF) contain water they are referred to herein as aqueous organic solvent. Depending on the reaction step, solvents that are suitable for the particular reaction step can be readily selected by a person skilled in the art.
For example, in the preparation of compound (2) , besides, THF, the reaction was also carried out in MTBE, 2-methylTHF, or toluene solvent. In the preparation of compound (3) , the reaction was also carried out in THFsolvent. In the preparation of compound (4) , the reaction was also carried out in CHCl
3 solvent. In the preparation of compound (5) , the reaction was also carried out in 2-methyl THF, n-heptane, or MTBE solvent. In the preparation of compound (8) , the reaction was also carried out in DMF, 1, 4-dioxane, THF, 2-methyl THF, toluene, oracetonitrile solvent. In the preparation of compound (9) , the reaction was also carried out in a mixture of DCM/ACN/water. In the preparation of compound (10) , the reaction was also carried out in DMF, ACN, 2-methyl THF, or toluene solvent. In the preparation of compound (11) , the reaction was also carried out in THF, CH
3OH, TFA/THF, or HOAc/THF solvent. In the preparation of compound (I) , the reaction was also carried out in DCM, CH
3CN, 2-methyl THF, ethyl acetate, DMF, MTBE or toluene solvent.
In addition, the reactions were carried out at various temperatures. Reaction temperatures that were used in the preparation of compound (2) included 20 ℃, 40 ℃, 60 ℃, and refluxing. Reaction temperatures that were used in the preparation of compound (3) included 0–15 ℃ and 15–25 ℃. Reaction temperatures that were used in the preparation of compound (4) included 0–10 ℃, 10–20 ℃, 20–30 ℃, and 30–40 ℃. Reaction temperatures that were used in the preparation of compound (5) included-30 to-40 ℃, -40 to-50 ℃, -50 to-60 ℃, and-60 to-70 ℃. Reaction temperatures that were used in the preparation of compound (6) included 35 ℃, 45 ℃, and 60 ℃. Reaction temperatures that were used in the preparation of compound (7) included-100 to-80 ℃, -80 to-60 ℃, and-60 to-40 ℃. Reaction temperatures that were used in the preparation of compound (8) included 60 ℃, 70 ℃ and refluxing. Reaction temperatures that were used in the preparation of compound (10) included 20 to 30 ℃, and 40 ℃. Reaction temperatures that were used in the preparation of compound (11) included 10 to 20 ℃ and-5 to 5 ℃. And Reaction temperatures that were used in the preparation of compound (I) included 20 to 30 ℃ and-5 to 5 ℃.
Additionally, bases that were used in the preparation of compound (8) included NaOAc, KOAc, and K
2CO
3;
brominating reagents that were used in the preparation of compound (7) included CBr
4 and CF
2BrCF
2Br;
catalysts that were used in the preparation of compound (8) included Pd (dppf) Cl
2, Pd
2 (dba)
3/XPhos, Pd (OAc)
2/PPh
3, and Pd (PPh
3) Cl
2;
fluorinating reagents that were used in the preparation of compound (4) included DAST, 4-tert-butyl-2, 6-dimethylphenylsulfur trifluoride, and HF/SF
4;
fluorinating reagents that were used in the preparation of compound (I) included DAST, PyFluor, AlkylFluor and SulfoxFluor;
oxidizing agents that were used in the oxidation of compound (2) to (3) included 2-iodoxybenzoic acid (IBX) , RuCl
3/NaBrO
3; TEMPO/NaClO, MnO
2, and TPAP/NMO.
oxidizing agents that were used in the oxidation of compound (8) to (9) included RuCl
3/NaIO
4,
and O
3; and
reducing agents that were used in the reduction of compound (10) to (11) included LiBH
4 and NaBH
4.
The reactions of the processes described herein can be carried out in air or under an inert atmosphere. Typically, reactions containing reagents or products that are substantially reactive with air can be carried out using air-sensitive synthetic techniques that are well known to the skilled artisan.
The processes described herein can be monitored according to any suitable method known in the art. For example, product formation can be monitored by spectroscopic means, such as nuclear magnetic resonance spectroscopy (e.g.,
1H or
13C) , infrared spectroscopy, spectrophotometry, or mass spectrometry; or by chromatography such as high performance liquid chromatography (HPLC) or thin layer chromatography. The compounds obtained by the reactions can be purified by any suitable method known in the art. For example, chromatography (medium pressure) on a suitable adsorbent (e.g., silica gel, alumina and the like) , HPLC, or preparative thin layer chromatography; distillation; sublimation, trituration, or recrystallization. The purity of the compounds, in general, are determined by physical methods such as measuring the melting point (in case of a solid) , obtaining an NMR spectrum, or performing a HPLC separation.
“Cyclic ether” refers to tetrahydrofuran, 2-methyltetrahydrofuran, or 1, 4-dioxane.
“Alcohol” refers to an aliphatic hydrocarbon compound that carries a hydroxy group. Representative examples include, but are not limited to, methanol, ethanol, propanol, butanol, and the like.
“About” as used herein means±10%, preferably±5%of listed value. For example, a reaction carried out at about 10℃ includes 9℃, 11℃, and all temperatures contained in between 9℃ and 11℃.
Embodiments:
1. In embodiment 1, provided is a process of preparing compound (11)
comprising reducing the keto moiety of compound (10) :
with:
(a) sodium borohydride in an organic solvent selected from a group consisting of (i) an alcohol containing acetic acid or trifluoroacetic acid, (ii) a cyclic ether, and (iii) a mixture of a cyclic ether and an alcohol; wherein the cyclic ether of (ii) and the mixture of a cyclic ether and an alcohol of (iii) optionally contain acetic acid or trifluoroacetic acid; or
(b) lithium borohydride in a suitable organic solvent optionally containing acetic acid or trifluoroacetic acid.
2. In embodiment 2, the process of embodiment 1, further comprising converting compound (11) :
to Compound (I) :
by reacting compound (11) with a deoxyfluorinating agent in the presence of an organic base in a suitable organic solvent.
3. In embodiment 3, the process of embodiment 2, is wherein the deoxyfluorinating agent is diethylaminosulfur trifluoride, Phenofluor
TM, N-tosyl-4-chlorobenzene-sulfonimidoyl fluoride, pyridine-2-sulfonyl fluoride, or AlkylFluor.
4. In embodiment 4, the process of embodiment 2 or 3, is wherein the organic solvent is halogenated hydrocarbon, cyclic ethers, ethers, aromatic hydrocarbon, or a polar solvent. Preferably, the organic solvent is dichloromethane, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, ethylacetate, dimethylformamide, methyl tert-butylether, or toluene.
5. In embodiment 5, the process of embodiment 2, is wherein the deoxyfluorinating agent is pyridine-2-sulfonyl fluoride and the base is 1, 8-diazabicyclo- [5.4.0] undec-7-ene or 7-methyl-1, 5, 7-triaza-bicyclo [4.4.0] dec-1-ene.
6. In embodiment 6, the process of embodiment 1, is wherein the reduction of the keto group of compound (10) is carried out with sodium borohydride in tetrahydrofuran, 2-methyltetrahydrofuran, a mixture of tetrahydrofuran or 2-methyltetrahydrofuran and methanol, tetrahydrofuran containing acetic acid or trifluoroacetic acid, 2-methyltetrahydrofuran containing acetic acid or trifluoroacetic acid, or methanol containing acetic acid or trifluoroacetic acid.
7. In embodiment 7, the process of embodiment 6, is wherein the organic solvent is a mixture of tetrahydrofuran and methanol and the reaction is carried out at about-5℃to about 30℃.
8. In embodiment 8, the process of embodiment 6, is wherein the organic solvent is a mixture of tetrahydrofuran and methanol and the reaction is carried out at about-5℃to about 5℃.
9. In embodiment 9, the process of embodiment 5, is wherein the molar ratio of 1, 8-diazabicyclo [5.4.0] -undec-7-ene to compound (11) is at least about 2 to about 1 and the organic solvent is tetrahydrofuran.
10. In embodiment 10, the process of embodiment 5 or 9, is wherein the reaction is carried out at 20℃to about 30℃
11. In embodiment 11, provided is process of preparing compound (10) :
comprising reacting compound (9) :
with 3-fluoro-5-hydroxybenzonitrile in the presence of a base in a suitable organic solvent other than dimethylformamide.
12. In embodiment 12, the process of any one of embodiments 1 to 10, further comprising preparing compound (10) :
by reacting compound (9) :
with 3-fluoro-5-hydroxybenzonitrile in the presence of a base in a suitable organic solvent.
13. In embodiment 13, the process of embodiment 11 or 12, is wherein the base is an inorganic base.
14. In embodiment 14, the process of embodiment 13, is wherein the inorganic base is cesium carbonate or potassium carbonate.
15. In embodiment 15, the process of any one of embodiments 11 to 14, is wherein the organic solvent is tetrahydrofuran, 2-methyltetrahydrofuran, dimethylformamide, acetonitrile, or toluene.
16. In embodiment 16, the process of embodiment 15, is wherein the organic solvent is tetrahydrofuran.
17. In embodiment 17, the process of any one of embodiments 11 to 16, is wherein the reaction is carried out at about 20℃ to about 40℃.
18. In embodiment 17, the process of any one of embodiments 11 to 17, further comprising crystallizing compound (10) from a mixture of an ether and an alkane solvent.
19. In embodiment 19, the process of embodiment 18 is wherein compound (10) is crystallized from a mixture of methyl tert-butyl ether and n-heptane.
20. In embodiment 20, provided is a process for preparing compound (9) :
comprising carrying out oxidative cleavage of the vinylidene moiety of compound (8) :
with (i) sodium periodate in the presence of ruthenium chloride in aqueous acetonitrile, (ii)
in the presence of ruthenium chloride in a suitable organic or aqueous organic solvent, or (iii) Ozone in a suitable organic or aqueous organic solvent.
21. In embodiment 21, the process of any one of embodiments 11 to 19, further comprising preparing compound (9) :
by carrying out oxidative cleavage of the vinylidene moiety of compound (8) :
with a suitable oxidizing agent agent in a suitable organic or aqueous organic solvent.
22. In embodiment 22, the process of embodiment 21, is wherein the oxidative cleavage of the vinylidene is carried out with (i) sodium periodate or
in the presence of ruthenium chloride or (ii) Ozone.
23. In embodiment 23, the process of embodiment 21, is wherein the solvent is a mixture of dichloromethane, acetonitrile and water or aqueous acetonitrile.
24. In embodiment 24, the process of any one of embodiments 20 to 23, is wherein the oxidative cleavage of the vinylidene is carried out with sodium periodate in the presence of catalytic amount of ruthenium chloride in aqueous acetonitrile.
24a. In embodiment 24a, the process of any one of embodiments 20 to 24, further comprising purification of compound (10) from a mixture of an ether and an alkane solvent.
24b. In embodiment 24b, the process of embodiment 24a, is wherein purification of compound (10) is from a mixture of methyl tert-butyl ether and n-heptane.
25. In embodiment 25, provided is a process for preparing compound (8) :
comprising performing intramolecular cyclization between the alkene and bromo groups in compound (7) :
by treating compound (7) with a palladium catalyst in the presence of a base in a suitable organic solvent other than dimethylformamide.
26. In embodiment 26, the process of any one of embodiments 20 to 24, further comprising preparing compound (8) :
by performing intramolecular cyclization between the alkene and bromo groups in compound (7) :
with a palladium catalyst in the presence of a base in a suitable organic solvent.
27. In embodiment 27, the process of embodiment 25 or 26, is wherein the palladium catalyst is Pd (PPh
3)
4, Pd (dppf) Cl
2, Pd (PPh
3)
2Cl
2, Pd (PPh
3)
2 (OAc)
2, Pd
2 (dba)
3/XPhos, or Pd (1, 2-bis (diphenylphosphino) ethane) (OAc)
2 and the organic solvent is acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, toluene, 1, 4-dioxane, or dimethylformamide
.
28. In embodiment 28, the process of embodiment 27, is wherein the base is sodium acetate, potassium acetate, sodium carbonate, potassium carbonate or cesium carbonate.
29. In embodiment 29, the process of any one of embodiments 25, 26, or 28, is wherein the palladium catalyst is Pd (PPh
3)
2Cl
2, the base is potassium acetate and the solvent is acetonitrile.
30. In embodiment 30, the process of embodimen 29, is wherein the reaction is carried out between about 60℃ to about 80℃.
31. In embodiment 31, provided is a process for preparing compound (7) :
comprising brominating compound (6) :
with 1, 2-dibromo-1, 1, 2, 2-tetrafluoroethane in the presence of a deprotonating agent in a suitable organic solvent.
32. In embodiment 32, the process of any one of embodiments 25 to 30, further comprising preparing compound (7) :
by treating compound (6) :
with a brominating agent in the presence of a deprotonating agent in a suitable organic solvent.
33. In embodiment 33, the process of embodiment 32, wherein the brominating agent is carbon tetrabromide or 1, 2-dibromo-1, 1, 2, 2-tetrafluoroethane.
34. In embodiment 34, the process of embodiment 31 or 32, is wherein the brominating agent is 1, 2-dibromo-1, 1, 2, 2-tetrafluoroethane, the deprotonating agent is lithium diisopropylamide and the solvent is tetrahydrofuran.
35. In embodiment 35, the process of embodiment 34, is wherein the reaction is carried at out at about-100℃ to about-20℃.
36. In embodiment 36, the process of any one of embodiments 31 to 35, further comprising preparing compound (6) :
by treating compound (5) :
with 4, 4, 5, 5-tetramethyl-2- (prop-2-en-1-yl) -1, 3, 2-dioxaborolane in the presence of (S) -2- ( (3- (tert-butyl) -2-hydroxybenzyl) amino) -N, N, 3-trimethylbutanamide and a base in a suitable organic solvent.
37. In embodiment 37, the process of embodiment 36, is wherein the base is sodium tert-butoxide and the organic solvent is a mixture of methanol and toluene.
38. In embodiment 38, the process of claim 36 or 37, further comprising preparing compound (5) :
by treating compound (4) :
with an organolithium reagent in a suitable organic solvent.
39. In embodiment 39, the process of claim 38, is wherein the organolithium reagent is n-butyllithium and the organic solvent is tetrahydrofuran, 2-methyltetrahydrofuran, n-heptane and methyl ter-butylether.
40. In embodiment 40, the process of embodiment 38 or 39, is wherein the solvent is tetrahydrofuran.
41. In embodiment 41, the process of any one of embodiments 38 to 40, further comprising preparing compound (4) :
by treating compound (3) :
with a fluorinating agent in a suitable organic solvent.
42. In embodiment 42, the process of claim 41, is wherein the fluorinating agent is diethylaminosulfur trifluoride, 4-tert-butyl-2, 6-dimethylphenylsulfur trifluoride, or sulfur tetrafluoride and hydrofluoric acid.
43. In embodiment 43, the process of embodiment 42, is wherein the fluorinating agent is sulfur tetrafluoride and hydrofluoric acid and the solvent is dichloromethane.
44. In embodiment 44, the process of any one of embodiments 41 to 43, further comprising preparing compound (3) :
by treating compound (2) :
with an oxidizing agent in a suitable organic solvent.
45. In embodiment 45, the process of embodiment 44, is wherein the oxidizing agent is dimethyl sulfoxide/oxalyl chloride, 2-iodoxybenzoic acid, RuCl
3/NaBrO
3, MnO
2, NaBrO
3/NaHSO
3, or TPAP/NMO.
46. In embodiment 46, the process of embodiment 45, is wherein the oxidizing agent is is TPAP/NMO and reaction is carried in dichloromethane, acetonitrile or tetrahydrofuran, preferably dichloromethane.
47. In embodiment 47, the process of any one of embodiments 44 to 46, further comprising preparing compound (2) :
by treating compound (1) :
with ethyl bromodifluoroacetate in the presence of zinc metal, trimethylsilyl chloride, and 1, 2-dibromoethane in a suitable organic solvent.
48. In embodiment 48, the process of embodiment 47, is wherein the organic solvent is tetrahydrofuran or 2-methyl tetrahydrofuran.
EXAMPLES
Abbreviations:
ACN: acetonitrile
AcOH or HOAc: acetic acid
AlkylFluor: CAS Registry No. 2043361-32-4
Cs
2CO
3: cesium carbonate
DAST: diethylaminosulfur trifluoride
DCM: dichloromethane
HF: hydrofluoric acid
HCl: hydrochloric acid
KOAc: potassium acetate
LDA: Lithium diisopropylamide
MTBE: methyl tert-butyl ether
NMO: N-Methylmorpholine N-oxide
MeOH: methanol
NaBH
4: sodium borohydride
NaIO
4: sodium perodiate
n-BuLi: n-butyllithium
Pd (PPh
3)
2 (OAc)
2: bis (acetato) bis (triphenylphosphine) palladium (II)
Pd (PPh
3)
2Cl
2: bis (triphenylphosphine) palladium (II) dichloride
Pd
2 (dba)
3: tris (dibenzylideneacetone) dipalladium (0)
PyFluor: 2-pyridinesulfonyl Fluoride
RuCl
3·3H
2O: ruthenium (III) chloride hydrate
SF
4: sulfur tetrafluoride
SulfoxFluor: [methyl (oxo) {1- [6- (trifluoromethyl) -3-pyridyl] ethyl} -λ
6-sulfanylidene] cyanamide
TEMPO: (2, 2, 6, 6-Tetramethylpiperidin-1-yl) oxyl or (2, 2, 6, 6-tetramethylpiperidin-1-yl) oxidanyl
TFA: trifluoroacetic acid
THF: tetrahydronfuran
TPAP: tetrapropylammonium perruthenate
t-BuONa: sodium tert-butoxide
XPhos: 2-dicyclohexylphosphino-2', 4', 6'-triisopropylbiphenyl
Example 1
Synthesis of 2, 2, 3, 3, 6-pentafluoro-2, 3-dihydro-1H-inden-1-one
Step 1: ethyl 3- (2-bromo-4-fluorophenyl) -2, 2-difluoro-3-hydroxypropanoate
To a mixture of zinc (211.36 g, 3.23 mol, 1.31 eq. ) in THF (1.50 L) was added 1, 2-dibromoethane (13.88 g, 73.89 mmol, 0.030 eq. ) and TMSCl (53.52 g, 492.59 mmol, 0.20 eq. ) in one portion. The mixture was stirred at 25℃ for 0.5 h, then a solution of 2-bromo-4-fluoro-benzaldehyde (500 g, 2.46 mol, 1.00 eq. ) and ethyl 2-bromo-2, 2-difluoro-acetate (549.93 g, 2.71 mol, 1.10 eq. ) in THF (1.50 L) was added to the mixture dropwise over 1 h under refluxing, and the reaction mixture was stirred continually under refluxing for 1 h. The reaction mixture was cooled, then filtered, and the cake was washed with ethyl acetate. The filtrate was quenched with 1.0 M aqueous HCl (800 mL) , then adjusted to pH=5–6 and the mixture was extracted with ethyl acetate. The combined organic phase was washed with 10%brine, dried with Na
2SO
4, concentrated in vacuum to give the title compound (857.0 g, , 88.8%assay purity, 94.5%assay yield) as a yellow oil, which was used for next step without further purification.
Step 2: ethyl 3- (2-bromo-4-fluorophenyl) -2, 2-difluoro-3-oxopropanoate
A mixture of NMO (297.86 g, 2.54 mol, 1.40 eq. ) , TPAP (15.96 g, 45.41 mmol, 0.025 eq. ) and
MS (94.0 g) in DCM (1000 mL) was degassed and purged with N
2 and a solution of ethyl 3- (2-bromo-4-fluorophenyl) -2, 2-difluoro-3-hydroxypropanoate (669.00 g, 1.82 mol, 88.8%assay, 1.00 eq. ) in DCM (1000 mL) was added dropwise at 0-5℃ over 1.5 h. The resulting mixture was further stirred at 25℃ for 2 h under N
2 atmosphere, then was filtered through silica gel pad and the pad cake was washed with MTBE. The combined filtrate was washed with 1.0 M aqueous HCl. The combined aqueous phase was extracted with MTBE. The combined MTBE organic phase was washed with H
2O, filtered through a silica gel pad and the pad cake was washed with MTBE. The combined filtrate was concentrated to give the title compound (561.0 g, 95.1%yield) as a yellow oil, which was used for next step without further purification.
Step 3: ethyl 3- (2-bromo-4-fluorophenyl) -2, 2, 3, 3-tetrafluoropropanoate
To an autoclave was charged ethyl 3- (2-bromo-4-fluorophenyl) -2, 2-difluoro-3-oxopropanoate (550.00 g, 1.69 mol, 1.00 eq. ) and DCM (55.5 mL) . The mixture was cooled to-78℃ and HF (33.85 g, 1.69 mol, 1.00 eq. ) was charged, followed by SF
4 (202.00 g, 1.87 mol, 1.11 eq. ) . The reaction mixture was warmed to room temperature and stirred at this temperature for 16 h. The reaction mixture was quenched by added slowly into saturated aqueous Na
2CO
3 (2.5 L) and then extracted with petroleum ether. The combined organic layer was washed with 10%brine, dried over Na
2SO
4, filtered and concentrated. The residue was further purified by vacuum distillation to afford the title compound (474.0 g, 81.1%yield) as yellow oil.
Step 4: 2, 2, 3, 3, 6-pentafluoro-2, 3-dihydro-1H-inden-1-one
A stirred solution of ethyl 3- (2-bromo-4-fluorophenyl) -2, 2, 3, 3-tetrafluoropropanoate (100.0. g, 288.11 mol, 1.00 eq. ) in THF (1.0 L) was cooled to-65℃, and n-BuLi (2.5 M, 138.0 mL, 345.0 mol, 1.20 eq. ) was added dropwise at-60 to-70℃ over 1 h under nitrogen atmosphere. The resulting mixture was stirred further at-65℃ for 1 h, then was quenched with saturated aqueous NH
4Cl at-30 to-40℃, followed by dilution with ethyl acetate and H
2O. After phase separation, the aqueous phase was extracted with ethyl acetate and the combined organic layer was washed with 10%brine, dried over Na
2SO
4, filtered and concentrated to give a residue. The residue was purified by vacuum distillation, and the distillate was triturated with petroleum ether at low temperature to give the title compound (41.0 g, 64.1%yield) as a white solid.
Example 2
Synthesis of (R) -3, 3, 4, 4, 7-pentafluoro-2a-hydroxy-2, 2a, 3, 4-tetrahydro-1H-cyclopenta [cd] inden-1-one
Step 1: (R) -1-allyl-2, 2, 3, 3, 6-pentafluoro-2, 3-dihydro-1H-inden-1-ol
To a dry 3-neck flask were added 2-allyl-4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaborolane (94.57 g, 562.78 mmol, 1.21 eq. ) , (S) -2- ( (3- (tert-butyl) -2-hydroxybenzyl) amino) -N, N, 3-trimethyl-butanamide (36.51 g, 119.14 mmol, 0.26 eq. ) , t-BuONa (4.33 g, 45.06 mmol, 0.097 eq. ) , toluene (900 mL) and MeOH (28.8 g, 898.88 mmol, 1.94 eq. ) . The mixture was stirred at 20℃ under nitrogen atmosphere until a clear solution formed. The reaction mixture was heated to 60 ℃, and a solution of 2, 2, 3, 3, 6-pentafluoro-2, 3-dihydro-1H-inden-1-one (103.09 g, 464.14 mmol, 1.00 eq. ) in toluene (100 mL) was added slowly over 2 h at 60℃. The resulting mixture was stirred continually for 16 h at 60 ℃, then cooled to room temperature, quenched with water, and extracted with MTBE. The organic layer was cooled to 0℃ andwashed with 1.0 M aqueous HCl, 0.5 M aqueous NaOH, water and 10%brine. The organic layer was concentrated to give the title compound (146.71g, 73.5%assay purity, 87.9%assay yield, 90.7%e. e. ) .
Step 2: (R) -1-allyl-7-bromo-2, 2, 3, 3, 6-pentafluoro-2, 3-dihydro-1H-inden-1-ol
To a dry 3-neck flask were added THF (500 mL) and LDA (356.82g, 25%, 832.76 mmol, 2.21 eq. ) and then the solution was cooled to-50℃ under nitrogen atmosphere. A solution of (R) -1-allyl-2, 2, 3, 3, 6-pentafluoro-2, 3-dihydro-1H-inden-1-ol (100.00 g, 378.50 mmol, 1.00 eq. ) in THF(200 mL) was added slowly at-50℃. The resulting mixture was stirred at-50℃ for 1h, then cooled to-80℃ to form solution A.
To another dry 3-neck flask were added dibromotetrafluoroethane (196.66 g, 756.91 mmol, 2.00 eq. ) and THF (100 mL) , and the solution was cooled to-80℃. Solution A was slowly added with stirring and while maintaining the reaction temperature at about-80 ℃. The mixture was stirred at-80℃ for additional 30 min and then slowly quenched by slowly adding a solution of AcOH (75.00 g, 1248.96 mmol, 3.30 eq. ) in THF (75 mL) at temperature below-60℃. The mixture was warmed slowly to room temperature anddiluted with water. The mixture was extracted with MTBE, and the combined organic layer was washed with water and 10%brine. The organic layer was concentrated to give the title compound as a solution in THF (204.40g, 50.4%assay purity, 79.3%assay yield) .
Step 3: (R) -3, 3, 4, 4, 7-pentafluoro-1-methylene-1, 2, 3, 4-tetrahydro-2aH-cyclopenta [cd] inden-2a-ol
Into a solution of (R) -1-allyl-7-bromo-2, 2, 3, 3, 6-pentafluoro-2, 3-dihydro-1H-inden-1-ol (100.00 g, 291.47 mmol, 1.00 eq. ) in acetonitrile (1.50 L) were added KOAc (86.50g, 881.39 mmol, 3.03 eq. ) and Pd (PPh
3)
2Cl
2 (10.30 g, 14.67 mmol, 0.050 eq. ) under N
2 atmosphere. The mixture was stirred for 4 h at 80℃ and then concentrated under vacuum to about 1/3 volume. The residue was diluted with MTBE and washed with water. The organic layer was diluted with n-heptane and passed through a silica gel pad (200 g) . The pad was rinsed with MTBE/n-heptane=1/3 to wash out the product. The eluent was concentrated and exchange the solvent into acetonitrile to give the title compound as a solution in acetonitrile (120.15g, 51.7%assay purity, 81.3%assay yield, 90.6%e. e. ) .
Step 4: (R) -3, 3, 4, 4, 7-pentafluoro-2a-hydroxy-2, 2a, 3, 4-tetrahydro-1H-cyclopenta [cd] inden-1-one
To a stirred mixture of (R) -3, 3, 4, 4, 7-pentafluoro-1-methylene-1, 2, 3, 4-tetrahydro-2aH-cyclopenta [cd] inden-2a-ol (80.00 g, 305.13 mmol, 1.00 eq. ) in ACN (1200 mL) and H
2O (3200 mL) was added RuCl
3·3H
2O (4.00 g, 15.30 mmol, 0.050 eq. ) , followed by NaIO
4 (456.87 g, 2.14 mol, 7.01 eq. ) in portions while maintaining the reaction temperature at 10 to20℃. After stirring further at 10 to 20℃ for 1 h, MTBE (800 mL) was added to the mixture and the mixture was filtered through a Celite layer. The Celite solid cake was washed with MTBE. The organic layer was separated from the combined filtrate, and the aqueous layer was extracted with MTBE. The combined organic layer was washed with 5%aqueous Na
2SO
3 and 10%aqueous Na
2SO
4. The organic layer was concentrated, and the residue was dissolved in MTBE and n-heptane. The solution was filtered through a silica gel pad (200 g) and the pad solid cake was rinsed with MTBE/n-heptane=1/3. The combined eluent was concentrated to about 3V to precipitate out the product which was filtered and dried to give the title compound as a white solid (70.62 g, 88.4%assay purity, 77.5%assay yield, ~91.7%e. e. ) .
Example 3
Synthesis of 3-fluoro-5- ( ( (1R, 2aR) -3, 3, 4, 4-tetrafluoro-1, 2a-dihydroxy-2, 2a, 3, 4-tetrahydro-1H-cyclopenta [cd] inden-7-yl) oxy) benzonitrile
Step 1: (R) -3-fluoro-5- ( (3, 3, 4, 4-tetrafluoro-2a-hydroxy-1-oxo-2, 2a, 3, 4-tetrahydro-1H-cyclopenta [cd] inden-7-yl) oxy) benzonitrile
To a stirred mixture of (R) -3, 3, 4, 4, 7-pentafluoro-2a-hydroxy-2, 2a, 3, 4-tetrahydro-1H-cyclopenta [cd] inden-1-one (100.00 g, after assay adjustment, 378.57 mmol, 1.00 eq. ) in THF (500 mL) were added 3-fluoro-5-hydroxybenzonitrile (57.10 g, 416.45 mmol, 1.10 eq. ) and Cs
2CO
3 (74.01 g, 227.15 mmol, 0.60 eq. ) at room temperature. The resulting mixture was stirred at 40℃ for 20 h. The mixture was cooled to room temperature and MTBE was added, followed by water. After layer separation, the aqueous layer was extracted with MTBE and the combined organic layer was washed with 5%aqueous Na
2CO
3 and then 10%brine. The organic layer was concentrated and the residue was recrystallized from MTBE/n-heptane=3/20 to give the title compound as a yellow solid (145.78 g, 84.4%assay purity, 85.2%assay yield, 98.4%e. e. ) .
Step 2: 3-fluoro-5- ( ( (1R, 2aR) -3, 3, 4, 4-tetrafluoro-1, 2a-dihydroxy-2, 2a, 3, 4-tetrahydro-1H-cyclopenta [cd] inden-7-yl) oxy) benzonitrile
To a stirred solution of (R) -3-fluoro-5- ( (3, 3, 4, 4-tetrafluoro-2a-hydroxy-1-oxo-2, 2a, 3, 4-tetrahydro-1H-cyclopenta [cd] inden-7-yl) oxy) benzonitrile (50.00 g, after assay adjustment, 131.14 mmol, 1.00 eq. ) in MeOH (53.0 mL, 1.31 mol, 10.00 eq. ) and THF (500 mL) was added NaBH
4 (1.84 g, 48.64 mmol, 0.37 eq. ) in portions at-5 to 0℃. The reaction mixture was stirred at-5 to 0℃ for an additional hour, then quenched with 2.0 M aqueous HCl (about 30.0 g) below 5℃ to pH=5–7 and diluted with water. The mixture was extracted with MTBE, and the combined organic layer was washed with water and 10%brine. The organic layer is concentrated and the solvent was exchanged to THF to obtain a THF solution of the title compound (286.66 g, 16.6%assay purity, 94.7%assay yield, 97.7%e. e. ) .
1H NMR (400MHz, CDCl
3) δ=7.55 (d, 1H) , 7.18-7.16 (m, 2H) , 7.13 (d, 1H) , 7.08 (d, 1H) , 5.89–5.84 (m, 1H) , 3.06 (s, 1H) , 2.83–2.78 (m, 1H) , 2.47–2.42 (m, 1H) , 2.35 (d, 1H) .
Example 4
Synthesis of 3-fluoro-5- ( ( (1S, 2aR) -1, 3, 3, 4, 4-pentafluoro-2a-hydroxy-2, 2a, 3, 4-tetrahydro-1H-cyclopenta [cd] inden-7-yl) oxy) benzonitrile
To a stirred solution of 3-fluoro-5- ( ( (1R, 2aR) -3, 3, 4, 4-tetrafluoro-1, 2a-dihydroxy-2, 2a, 3, 4-tetrahydro-1H-cyclopenta [cd] inden-7-yl) oxy) benzonitrile (54.30 g, 141.68 mmol, 1.00 eq. ) and DBU (43.14 g, 283.37 mmol, 2.00 eq. ) in THF (1200 mL) was added a solution of pyridine-2-sulfonyl fluoride (32.00 g, 198.57 mmol, 1.40 eq. ) in THF (200 mL) dropwise at 20-30℃ over 2 h under nitrogen atmosphere. The resulting mixture was stirred further for 20 h at 20-30℃, quenched with 0.5N aqueous NaOH (600 mL) . After stirring at 20-30 ℃ for 30 min, the layers were separated. The aqueous layer was extracted with MTBE. The combined organic layers were concentrated, and the residue was dissolved in MTBE. The organic layer was washed with water, 0.5 N aqueous HCl, water and 10%brine. The organic layer is concentrated and the residue was purified with a silica gel column, eluted with n-heptane/ethyl acetate=4/1, to obtain crude product (49.0g) , which was further recrystallized from MTBE/n-heptane=1/9 to give the title product (42.0g, 76.9%yield) .
1H NMR (400MHz, CDCl
3) δ=7.71-7.67 (m, 1H) , 7.29-7.26 (m, 2H) , 7.25-7.09 (m, 2H) , 6.60-5.80 (ddd, 1H) , 2.87 (s, 1H) , 2.91-2.57 (m, 2H) .
Claims (36)
- A process of preparing compound (11)comprising reducing the keto moiety of compound (10) :with:(a) sodium borohydride in an organic solvent selected from a group consisting of (i) an alcohol containing acetic acid or trifluoroacetic acid, (ii) a cyclic ether, and (iii) a mixture of a cyclic ether and an alcohol; wherein the cyclic ether of (ii) and the mixture of a cyclic ether and an alcohol of (iii) optionally contain acetic acid or trifluoroacetic acid; or(b) lithium borohydride in a suitable organic solvent optionally containing acetic acid or trifluoroacetic acid.
- The process of claim 2, wherein the deoxyfluorinating agent is pyridine-2-sulfonyl fluoride and the base is 1, 8-diazabicyclo- [5.4.0] undec-7-ene or 7-methyl-1, 5, 7-triaza-bicyclo- [4.4.0] dec-1-ene.
- The process of claim 1, wherein the reduction of the keto group of compound (10) is carried out with sodium borohydride in tetrahydrofuran, 2-methyltetrahydrofuran, a mixture of tetrahydrofuran or 2-methyltetrahydrofuran and methanol, tetrahydrofuran containing acetic acid or trifluoroacetic acid, 2-methyltetrahydrofuran containing acetic acid or trifluoroacetic acid, or methanol containing acetic acid or trifluoroacetic acid.
- The process of claim 4, wherein the organic solvent is a mixture of tetrahydrofuran and methanol and the reaction is carried out at about-5℃to about 30℃.
- The process of claim 3, wherein the molar ratio of 1, 8-diazabicyclo [5.4.0] -undec-7-ene to compound (11) is at least about 2 to about 1 and the organic solvent is tetrahydrofuran.
- The process of claim 7 or 8, wherein the base is an inorganic base.
- The process of claim 9, wherein the inorganic base is cesium carbonate or potassium carbonate
- The process of claim 7 to 10, wherein the organic solvent is tetrahydrofuran.
- The process of any one of claims 7 to 11, further comprising crystallizing compound (10) from a mixture of an ether and an alkane solvent.
- The process of claim 12, wherein compound (10) is crystallized from a mixture of methyl tert-butyl ether and n-heptane.
- A process for preparing compound (9) :comprising carrying out oxidative cleavage of the vinylidene moiety of compound (8) :
- The process of claim 14 or 15, wherein the oxidative cleavage of the vinylidene is carried out with sodium periodate in the presence of catalytic amount of ruthenium chloride in aqueous acetonitrile.
- The process of claim 16 or 17, wherein the palladium catalyst is Pd (PPh 3) 4, Pd (dppf) Cl 2, Pd (PPh 3) 2Cl 2, Pd (PPh 3) 2 (OAc) 2, Pd 2 (dba) 3/XPhos, or Pd (1, 2-bis (diphenylphosphino) -ethane) (OAc) 2 and the organic solvent is acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, toluene, 1, 4-dioxane, or dimethylformamide .
- The process of claim 19, wherein the palladium catalyst is Pd (PPh 3) 2Cl 2, the base is potassium acetate, and the solvent is acetonitrile.
- The process of claim 21 or 22, wherein the deprotenating agent is lithium diisopropylamide.
- The process of claim 21 or 22, wherein the brominating agent is 1, 2-dibromo-1, 1, 2, 2-tetrafluoroethane, the deprotenating agent is lithium diisopropylamide and the solvent is tetrahydrofuran.
- The process of any one of claims 21 to 24, further comprising preparing compound (6) :by treating compound (5) :with 4, 4, 5, 5-tetramethyl-2- (prop-2-en-1-yl) -1, 3, 2-dioxaborolane in the presence of (S) -2- ( (3- (tert-butyl) -2-hydroxybenzyl) amino) -N, N, 3-trimethylbutanamide and a base in a suitable organic solvent.
- The process of claim 25, wherein the base is sodium tert-butoxide and the organic solvent is a mixture of methanol and toluene.
- The process of claim 27, wherein the organolithium reagent is n-butyllithium and the organic solvent is tetrahydrofuran.
- The process of claim 29, wherein the fluorinating agent is diethylaminosulfur trifluoride, 4-tert-butyl-2, 6-dimethylphenylsulfur trifluoride, or sulfur tetrafluoride and hydrofluoric acid.
- The process of claim 30, wherein the fluorinating agent is sulfur tetrafluoride and hydrofluoric acid and the solvent is dichloromethane.
- The process of claim 32, wherein the oxidizing agent is DMSO/oxalyl chloride, 2-iodoxybenzoic acid, RuCl 3/NaBrO 3, MnO 2, NaBrO 3/NaHSO 3 or TPAP/NMO.
- The process of claim 33, wherein the oxidizing agent is is TPAP/NMO and reaction is carried in dichloromethane.
- The process of claim 35, wherein the organic solvent is tetrahydrofuran.
Priority Applications (10)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CN2020/121745 WO2022082329A1 (en) | 2020-10-19 | 2020-10-19 | Processes of preparing 3-fluoro-5- ( ( (1s, 2ar) -1, 3, 3, 4, 4-pentafluoro-2a-hydroxy-2, 2a, 3, 4-tetrahydro-1h-cyclopenta [cd] inden-7-yl) oxy) -benzonitrile |
| JP2023522392A JP2023548666A (en) | 2020-10-19 | 2021-10-15 | 3-Fluoro-5-(((1S,2aR)-1,3,3,4,4-pentafluoro-2a-hydroxy-2,2a,3,4-tetrahydro-1H-cyclopenta[cd]indene-7 Method of preparing -yl)oxy)-benzonitrile |
| AU2021364337A AU2021364337A1 (en) | 2020-10-19 | 2021-10-15 | Processes of preparing 3-fluoro-5-(((1s,2ar)-1,3,3,4,4-pentafluoro-2a-hydroxy-2,2a,3,4-tetrahydro-1h-cyclopenta[cd]inden-7-yl)oxy)-benzonitrile |
| KR1020237015120A KR20230092936A (en) | 2020-10-19 | 2021-10-15 | 3-Fluoro-5-(((1S,2aR)-1,3,3,4,4-pentafluoro-2a-hydroxy-2,2a,3,4-tetrahydro-1H-cyclopenta[ Process for producing cd]inden-7-yl)oxy)-benzonitrile |
| PCT/US2021/055295 WO2022086822A1 (en) | 2020-10-19 | 2021-10-15 | Processes of preparing 3-fluoro-5-(((1s,2ar)-1,3,3,4,4-pentafluoro-2a-hydroxy-2,2a,3,4-tetrahydro-1h-cyclopenta[cd]inden-7-yl)oxy)-benzonitrile |
| IL301897A IL301897A (en) | 2020-10-19 | 2021-10-15 | Preparation processes of 3-FLUORO-5-(((1S,2AR)-1,3,3,4,4-PENTAFLUORO-2A-HYDROXY-2,2A,3,4-TETRAHYDRO-1H-CYCLOPENTA[CD]INDEN -7-YL)OXY)-benzonitrile |
| EP21805779.2A EP4229033A1 (en) | 2020-10-19 | 2021-10-15 | Processes of preparing 3-fluoro-5-(((1s,2ar)-1,3,3,4,4-pentafluoro-2a-hydroxy-2,2a,3,4-tetrahydro-1h-cyclopenta[cd]inden-7-yl)oxy)-benzonitrile |
| CA3197932A CA3197932A1 (en) | 2020-10-19 | 2021-10-15 | Processes of preparing 3-fluoro-5-(((1s,2ar)-1,3,3,4,4-pentafluoro-2a-hydroxy-2,2a,3,4-tetrahydro-1h-cyclopenta[cd]inden-7-yl)oxy)-benzonitrile |
| CN202180070640.8A CN116507601A (en) | 2020-10-19 | 2021-10-15 | Preparation of 3-fluoro-5-(((1S,2aR)-1,3,3,4,4-pentafluoro-2a-hydroxy-2,2a,3,4-tetrahydro-1H-cyclopenta[cd] Inden-7-yl)oxy)benzonitrile method |
| TW110138778A TW202233569A (en) | 2020-10-19 | 2021-10-19 | Processes of preparing 3-fluoro-5-(((1s,2ar)-1,3,3,4,4-pentafluoro-2a-hydroxy-2,2a,3,4-tetrahydro-1h-cyclopenta[cd]inden-7-yl)oxy)-benzonitrile |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CN2020/121745 WO2022082329A1 (en) | 2020-10-19 | 2020-10-19 | Processes of preparing 3-fluoro-5- ( ( (1s, 2ar) -1, 3, 3, 4, 4-pentafluoro-2a-hydroxy-2, 2a, 3, 4-tetrahydro-1h-cyclopenta [cd] inden-7-yl) oxy) -benzonitrile |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2022082329A1 true WO2022082329A1 (en) | 2022-04-28 |
Family
ID=78536649
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2020/121745 Ceased WO2022082329A1 (en) | 2020-10-19 | 2020-10-19 | Processes of preparing 3-fluoro-5- ( ( (1s, 2ar) -1, 3, 3, 4, 4-pentafluoro-2a-hydroxy-2, 2a, 3, 4-tetrahydro-1h-cyclopenta [cd] inden-7-yl) oxy) -benzonitrile |
| PCT/US2021/055295 Ceased WO2022086822A1 (en) | 2020-10-19 | 2021-10-15 | Processes of preparing 3-fluoro-5-(((1s,2ar)-1,3,3,4,4-pentafluoro-2a-hydroxy-2,2a,3,4-tetrahydro-1h-cyclopenta[cd]inden-7-yl)oxy)-benzonitrile |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2021/055295 Ceased WO2022086822A1 (en) | 2020-10-19 | 2021-10-15 | Processes of preparing 3-fluoro-5-(((1s,2ar)-1,3,3,4,4-pentafluoro-2a-hydroxy-2,2a,3,4-tetrahydro-1h-cyclopenta[cd]inden-7-yl)oxy)-benzonitrile |
Country Status (9)
| Country | Link |
|---|---|
| EP (1) | EP4229033A1 (en) |
| JP (1) | JP2023548666A (en) |
| KR (1) | KR20230092936A (en) |
| CN (1) | CN116507601A (en) |
| AU (1) | AU2021364337A1 (en) |
| CA (1) | CA3197932A1 (en) |
| IL (1) | IL301897A (en) |
| TW (1) | TW202233569A (en) |
| WO (2) | WO2022082329A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2023060431A1 (en) * | 2021-10-12 | 2023-04-20 | Nikang Therapeutics, Inc. | Processes of making 3-fluoro-5- ( ( (1s, 2ar) -1, 3, 3, 4, 4-pentafluoro-2a-hydroxy-2, 2a, 3, 4-tetrahydro-1h-cyclopenta [cd] inden-7-yl) oxy) -benzonitrile and polymorphs thereof |
| US12415779B2 (en) | 2021-10-12 | 2025-09-16 | Nikang Therapeutics, Inc. | Processes of making 3-fluoro-5-(((1S,2aR)-1,3,3,4,4-pentafluoro-2a-hydroxy-2,2a,3,4-tetrahydro-1H-cyclopenta[cd]inden-7-yl)oxy)-benzonitrile and polymorphs thereof |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MX2021012549A (en) | 2019-04-18 | 2022-01-18 | Nikang Therapeutics Inc | Tetrahydro-1h-cyclopenta[cd]indene derivatives as hypoxia inducible factor-2(alpha) inhibitors. |
| WO2022082337A1 (en) | 2020-10-19 | 2022-04-28 | Nikang Therapeutics, Inc. | Process of preparing 3-fluoro-5 ( ( (1r, 2ar) -3, 3, 4, 4-tetrafluoro-1, 2a-dihydroxy-2, 2a, 3, 4-tetrahydro-1h-cyclopenta [cd] inden-7-yl) oxy) benzonitrile |
| WO2025038857A1 (en) * | 2023-08-16 | 2025-02-20 | Arcus Biosciences, Inc. | TETRALINS TARGETING MUTANT HIF-2α |
| WO2025235034A1 (en) | 2024-05-04 | 2025-11-13 | Nikang Therapeutics, Inc. | 3-fluoro-5-(((ls,2ar)-1,3,3,4, 4-pentafluoro-2a-hydroxy-2,2a, 3,4-tetrahydro-lh-cyclopenta[cd]inden-7- yl)oxy)- benzonitrile dosing regimen for use in the treatment of cancer |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016057242A1 (en) * | 2014-10-10 | 2016-04-14 | The Board Of Regents Of The University Of Texas System | HIF-2α INHIBITORS FOR TREATING IRON OVERLOAD DISORDERS |
| CN105530923A (en) * | 2013-09-09 | 2016-04-27 | 佩洛通治疗公司 | Aryl ethers and their uses |
| WO2016145032A1 (en) * | 2015-03-11 | 2016-09-15 | Peloton Therapeutics, Inc. | Compositions for use in treating pulmonary arterial hypertension |
| WO2016168510A1 (en) * | 2015-04-17 | 2016-10-20 | Peloton Therapeutics, Inc. | Combination therapy of a hif-2-alpha inhibitor and an immunotherapeutic agent and uses thereof |
| US20160362390A1 (en) * | 2015-06-12 | 2016-12-15 | Peloton Therapeutics, Inc. | Tricyclic inhibitors of hif-2-alpha and uses thereof |
| WO2017053192A1 (en) * | 2015-09-21 | 2017-03-30 | The Board Of Regents Of The University Of Texas System | Biomarkers of response to hif-2-alpha inhibition in cancer and methods for the use thereof |
| WO2018031680A1 (en) * | 2016-08-10 | 2018-02-15 | Fronthera U.S. Pharmaceuticals Llc | Novel compounds, uses and methods for their preparation |
| WO2019191227A1 (en) * | 2018-03-28 | 2019-10-03 | Peloton Therapeutics, Inc. | Methods of reducing inflammation of the digestive system with inhibitors of hif-2-alpha |
| WO2020081695A1 (en) * | 2018-10-17 | 2020-04-23 | Nikang Therapeutics, Inc. | Indane derivatives as hypoxia inducible factor-2(alpha) inhibitors |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MX2021012549A (en) | 2019-04-18 | 2022-01-18 | Nikang Therapeutics Inc | Tetrahydro-1h-cyclopenta[cd]indene derivatives as hypoxia inducible factor-2(alpha) inhibitors. |
| US20220274914A1 (en) * | 2019-07-22 | 2022-09-01 | Nikang Therapeutics, Inc. | Tricyclic derivatives as hypoxia inducible factor-2(alpha) inhibitors |
| US20210187130A1 (en) * | 2019-12-19 | 2021-06-24 | The Board Of Regents Of The University Of Texas System | PET RADIOPHARMACEUTICALS FOR NON-INVASIVE EVALUATION OF HIF-2alpha |
| AU2021256998A1 (en) * | 2020-04-16 | 2022-10-20 | Nikang Therapeutics, Inc. | Hypoxia Inducible Factor-2(alpha) inhibitors and their use in the treatment of diseases |
-
2020
- 2020-10-19 WO PCT/CN2020/121745 patent/WO2022082329A1/en not_active Ceased
-
2021
- 2021-10-15 IL IL301897A patent/IL301897A/en unknown
- 2021-10-15 KR KR1020237015120A patent/KR20230092936A/en active Pending
- 2021-10-15 CN CN202180070640.8A patent/CN116507601A/en active Pending
- 2021-10-15 JP JP2023522392A patent/JP2023548666A/en active Pending
- 2021-10-15 AU AU2021364337A patent/AU2021364337A1/en active Pending
- 2021-10-15 WO PCT/US2021/055295 patent/WO2022086822A1/en not_active Ceased
- 2021-10-15 CA CA3197932A patent/CA3197932A1/en active Pending
- 2021-10-15 EP EP21805779.2A patent/EP4229033A1/en active Pending
- 2021-10-19 TW TW110138778A patent/TW202233569A/en unknown
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105530923A (en) * | 2013-09-09 | 2016-04-27 | 佩洛通治疗公司 | Aryl ethers and their uses |
| WO2016057242A1 (en) * | 2014-10-10 | 2016-04-14 | The Board Of Regents Of The University Of Texas System | HIF-2α INHIBITORS FOR TREATING IRON OVERLOAD DISORDERS |
| WO2016145032A1 (en) * | 2015-03-11 | 2016-09-15 | Peloton Therapeutics, Inc. | Compositions for use in treating pulmonary arterial hypertension |
| WO2016168510A1 (en) * | 2015-04-17 | 2016-10-20 | Peloton Therapeutics, Inc. | Combination therapy of a hif-2-alpha inhibitor and an immunotherapeutic agent and uses thereof |
| US20160362390A1 (en) * | 2015-06-12 | 2016-12-15 | Peloton Therapeutics, Inc. | Tricyclic inhibitors of hif-2-alpha and uses thereof |
| WO2017053192A1 (en) * | 2015-09-21 | 2017-03-30 | The Board Of Regents Of The University Of Texas System | Biomarkers of response to hif-2-alpha inhibition in cancer and methods for the use thereof |
| WO2018031680A1 (en) * | 2016-08-10 | 2018-02-15 | Fronthera U.S. Pharmaceuticals Llc | Novel compounds, uses and methods for their preparation |
| WO2019191227A1 (en) * | 2018-03-28 | 2019-10-03 | Peloton Therapeutics, Inc. | Methods of reducing inflammation of the digestive system with inhibitors of hif-2-alpha |
| WO2020081695A1 (en) * | 2018-10-17 | 2020-04-23 | Nikang Therapeutics, Inc. | Indane derivatives as hypoxia inducible factor-2(alpha) inhibitors |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2023060431A1 (en) * | 2021-10-12 | 2023-04-20 | Nikang Therapeutics, Inc. | Processes of making 3-fluoro-5- ( ( (1s, 2ar) -1, 3, 3, 4, 4-pentafluoro-2a-hydroxy-2, 2a, 3, 4-tetrahydro-1h-cyclopenta [cd] inden-7-yl) oxy) -benzonitrile and polymorphs thereof |
| US12415779B2 (en) | 2021-10-12 | 2025-09-16 | Nikang Therapeutics, Inc. | Processes of making 3-fluoro-5-(((1S,2aR)-1,3,3,4,4-pentafluoro-2a-hydroxy-2,2a,3,4-tetrahydro-1H-cyclopenta[cd]inden-7-yl)oxy)-benzonitrile and polymorphs thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2023548666A (en) | 2023-11-20 |
| KR20230092936A (en) | 2023-06-26 |
| TW202233569A (en) | 2022-09-01 |
| EP4229033A1 (en) | 2023-08-23 |
| AU2021364337A1 (en) | 2023-06-01 |
| CA3197932A1 (en) | 2022-04-28 |
| IL301897A (en) | 2023-06-01 |
| CN116507601A (en) | 2023-07-28 |
| WO2022086822A1 (en) | 2022-04-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2022082329A1 (en) | Processes of preparing 3-fluoro-5- ( ( (1s, 2ar) -1, 3, 3, 4, 4-pentafluoro-2a-hydroxy-2, 2a, 3, 4-tetrahydro-1h-cyclopenta [cd] inden-7-yl) oxy) -benzonitrile | |
| EP2044076B1 (en) | Process for the preparation of asenapine and intermediate products used in said process. | |
| CA3115570C (en) | Process for the preparation of a pde4 inhibitor | |
| CN115417802A (en) | Preparation method of sepiatinib and intermediate thereof | |
| EP4126862B1 (en) | Process for preparing a cot inhibitor compound | |
| CN109928906A (en) | 1,6- enyne compounds regioselectivity Azide/cyclization method | |
| US12435034B2 (en) | Process of preparing 3-fluoro-5(((1R,2AR)-3,3,4,4-tetrafluoro-1,2A-dihydroxy-2,2A,3,4-tetrahydro-1H-cyclopenta[cd]inden-7-yl)-oxy)benzonitrile | |
| IL111851A (en) | Intermediates useful in the synthesis of bisindolylmaleimides and process for their preparation | |
| CN113754674A (en) | A kind of synthetic method of natural products Pancratinine B and C | |
| JPS6247190B2 (en) | ||
| EP3915977A1 (en) | 1,2,3,4-tetrahydroquinoxaline derivative, preparation method therefor and application thereof | |
| JP5960130B2 (en) | Preparation of tesetaxel and related compounds and corresponding synthetic intermediates | |
| CN113336703B (en) | Synthesis of 1,3,4, 5-tetrasubstituted 1H-pyrazole derivatives | |
| CN113024592A (en) | Synthetic method of azetidine silicon precursor compound and method for synthesizing six-membered silicon nitrogen heterocyclic compound by using same | |
| CN116396209B (en) | Alkyl perfluoroalkyl ketone compound and preparation method thereof | |
| CN109384734B (en) | Preparation method of Selsemipa intermediate | |
| CN116143713B (en) | 1,4-Diazacycloheptane series derivatives and preparation methods thereof | |
| US6051717A (en) | Convergent process for the preparation of a morpholine compound | |
| CN101747268B (en) | Method for synthesizing 4-substituted-3-bromo-2-quinolone | |
| JP4097287B2 (en) | 2-Azabicyclo [2.2.1] heptane derivatives, their preparation and their use | |
| CA2301074A1 (en) | Crystalline 10,10-bis((2-fluoro-4-pyridinyl)methyl)-9(10h)-anthracenone and an improved process for preparing the same | |
| HK40030840B (en) | Process for preparing btk inhibitors | |
| CN113248419A (en) | Synthesis method of novel HuR inhibitor 1-benzenesulfonyl-3-phenylindole-4, 5-dione | |
| JPH05247056A (en) | Indolocarbazole derivative | |
| IT202000019897A1 (en) | PROCEDURE FOR THE PREPARATION OF A KEY INTERMEDIATE OF THE SIPONIMOD |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20957919 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 20957919 Country of ref document: EP Kind code of ref document: A1 |