[go: up one dir, main page]

WO2022050154A1 - Optical measurement device and optical measurement method - Google Patents

Optical measurement device and optical measurement method Download PDF

Info

Publication number
WO2022050154A1
WO2022050154A1 PCT/JP2021/031238 JP2021031238W WO2022050154A1 WO 2022050154 A1 WO2022050154 A1 WO 2022050154A1 JP 2021031238 W JP2021031238 W JP 2021031238W WO 2022050154 A1 WO2022050154 A1 WO 2022050154A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
beam splitter
light
vacuum field
squeezed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2021/031238
Other languages
French (fr)
Japanese (ja)
Inventor
泰之 小関
富隆 田口
優 宮脇
研一 小口
自聡 徐
由季 佐野
一弘 加藤
ドンウク チョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2022546269A priority Critical patent/JPWO2022050154A1/ja
Publication of WO2022050154A1 publication Critical patent/WO2022050154A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated

Definitions

  • This disclosure relates to optical measurement techniques such as spectroscopy and imaging.
  • Quantum Enhanced spectroscopy and imaging methods are attracting attention because they can obtain a higher signal-to-noise ratio (SNR) than the standard quantum limit (SQL) and can achieve higher sensitivity.
  • SNR signal-to-noise ratio
  • SQL standard quantum limit
  • Non-Patent Document 1-3 So far, several methods of quantum enhancement have been applied to spectroscopy and imaging. For example, entangled photons generated by spontaneous parametric down-conversion (SPDC) are used for transmission imaging [Non-Patent Document 4-7] and differential phase imaging [Non-Patent Document 8]. Tangled photons generated by a double-resonant optical parametric oscillator (OPO) are also used in spectroscopy [Non-Patent Documents 9 and 10].
  • SPDC spontaneous parametric down-conversion
  • OPO optical parametric oscillator
  • Non-Patent Document 11-13 the amplitude squeezed light generated by displacement of the squeezed vacuum field [Non-Patent Document 11-13] or by a seeded Parametric Amplifier (OPA: Optical Parametric Amplifier) [Non-Patent Document 14-16] is spectroscopic. Used for method and imaging.
  • OPA Optical Parametric Amplifier
  • Non-Patent Document 17 used in the gravitational wave detector [Non-Patent Document 18-20], which is used in the unused port of the interferometer to achieve sensitivity exceeding SQL.
  • a squeezed vacuum field is injected.
  • this method is mainly used for phase measurement.
  • a more advanced method can realize simultaneous measurement of amplitude and phase [Non-Patent Document 21], the configuration becomes complicated. Therefore, these methods are not immediately applicable to spectroscopy and imaging, where the intensity of transmitted light is often measured.
  • the present disclosure has been made in such circumstances, and one of the exemplary purposes of that embodiment is to improve the SNR of optical spectroscopy and imaging over SQL, even when the average power of light is high (> 10 mW). To provide a spectroscopic and imaging device and method with balanced detection.
  • the optical measuring device includes a light source that generates coherent light, a squeezed vacuum field generator that generates a squeezed vacuum field, and a beam splitter that receives coherent light at the first input and a squeezed vacuum field at the second input.
  • the first light detector that measures the light obtained as a result of the first output of the beam splitter acting on the sample
  • the second light detector that measures the second output of the beam splitter
  • the output of the first light detector It is provided with a processing unit that processes the output of the second optical detector and acquires the characteristics of the sample.
  • Another aspect of the present disclosure is an optical measurement method.
  • a step to generate coherent light a step to generate a squeezed vacuum field, a step to combine the coherent light and the squeezed vacuum field by a beam splitter, and the first output of the beam splitter act on the sample.
  • the step of balancing the light obtained as a result of the above and the second output of the beam splitter is provided.
  • the SNR of optical spectroscopy or imaging can be improved as compared with SQL.
  • 2 (a) and 2 (b) are diagrams showing a two-mode wave function ⁇ (x a , x b ) at the input and output of the beam splitter BS in the case of balance detection without injecting a squeezed vacuum field.
  • 3 (a) and 3 (b) are diagrams showing a two-mode wave function ⁇ (x a , x b ) at the input and output of the beam splitter BS in the case of balance detection in which a squeezed vacuum field is injected.
  • QE-SRS microscope QE-SRS microscope
  • quantum enhancement QE-SRS microscope
  • the optical measuring device of one aspect of the present disclosure includes a light source that generates coherent light, a squeezed vacuum field generator that generates a squeezed vacuum field, and a squeezed vacuum that receives coherent light at the first input and squeezed vacuum at the second input.
  • a beam splitter that receives a field, a first light detector that measures the light obtained as a result of the first output of the beam splitter acting on the sample, a second light detector that measures the second output of the beam splitter, and a first. It is provided with a processing unit that processes the output of the optical detector and the output of the second optical detector and acquires the characteristics of the sample.
  • sample characteristics include sample transmittance, loss, reflectance, and gain.
  • the processing unit may weight and subtract the output of the first photodetector and the output of the second photodetector.
  • the weighting coefficient for the output of the first photodetector is (1-T 1 ).
  • the weighting factor for the output of the second photodetector may be substantially proportional to T 1 T 2 .
  • the transmittance here is the transmittance from the first input to the first output.
  • the transmittance of the beam splitter may be 0.3 to 0.7.
  • the squeezed vacuum field generator may include a second harmonic generator that produces a second harmonic of coherent light and an optical parametric amplifier in which the second harmonic is seeded.
  • a Stokes pulse generator that generates a Stokes pulse and a dichroic mirror that combines the first output of the beam splitter with the Stokes pulse may be further provided.
  • the first photodetector may measure the pump pulse attenuated by induced Raman scattering (SRS) as a result of irradiating the sample with the output of the dichroic mirror.
  • SRS induced Raman scattering
  • the spectroscopic method includes a step of generating coherent light, a step of generating a squeezed vacuum field, a step of combining coherent light and a squeezed vacuum field by a beam splitter, and a first beam splitter. It comprises a step of balancing the light obtained as a result of the output acting on the sample and the second output of the beam splitter.
  • QBD quantum enhanced balance detection
  • FIG. 1 is a diagram showing an optical measuring device 100 using the principle of QBD.
  • the optical measuring device 100 measures the transmittance of the sample under test (SUT: Sample Under Test) 1.
  • It includes a beam splitter BS, a first photodiode PD1, a second photodiode PD2, and a processing unit 110.
  • the coherent light 2 and the squeezed vacuum field 4 are combined by a beam splitter BS having a transmittance of T1.
  • the transmittance T 1 of the beam splitter BS is the transmittance from the first input 2 to the first output 6, and T 1 : (1-T 1 ) is the split ratio of the beam splitter.
  • the SUT 1 is arranged on the path of one output (first output) 6 of the beam splitter BS, and one of the outputs 6 of the beam splitter BS passes through the SUT 1 (Sample Under Test) having a transmittance of T2.
  • the transmittance T 2 of this SUT 1 includes a minute fluctuation ⁇ T.
  • the transmitted light 8 of SUT1 is detected by the first photodiode PD1, and the other output 10 of the beam splitter BS is detected by the second photodiode PD2.
  • a photodetector photodetector
  • a photoconductive element for example, a photoconductive element
  • the processing unit 110 balance - detects the change amount ⁇ T of the transmittance T2 of the SUT 1 based on the output of the first photodiode PD1 and the output (photocurrent) of the second photodiode PD2.
  • the processing unit 110 includes a gain adjusting unit 112 and a difference detecting unit 114.
  • the gain adjusting unit 112 performs appropriate gain control in consideration of the transmittances T 1 and T 2 of the beam splitter BS and SUT 1, and weights and adds them.
  • the first amplification unit 112a amplifies the output of the first photodiode PD1 with a first gain (weighting factor) G1 determined to be substantially proportional to (1-T 1 ).
  • the second amplification unit 112b amplifies the output of the second photodiode PD2 with a second gain (weighting factor) G 2 determined to be substantially proportional to T 1 T 2 .
  • the difference detection unit 114 generates a QBD output signal I proportional to the fluctuation ⁇ T of the transmittance of SUT1 based on the difference between the output of the first amplification unit 112a and the output of the second amplification unit 112b.
  • the processing in the processing unit 110 may be analog signal processing, digital signal processing, or a combination thereof.
  • 2 (a) and 2 (b) are diagrams showing a two-mode wave function ⁇ (x a , x b ) at the input and output of the beam splitter BS in the case of balance detection without injecting a squeezed vacuum field.
  • the resulting two-dimensional circular Gaussian function can be represented by the product of the wavefunctions x a and x b . This indicates that the two modes are separable and there is no correlation between x a and x b . Therefore, the fluctuations of x a and x b (that is, shot noise) of the two output modes are independent of each other (uncorrelated) and cannot be canceled by balance detection.
  • 3 (a) and 3 (b) are diagrams showing a two-mode wave function ⁇ (x a , x b ) at the input and output of the beam splitter BS in the case of balance detection in which a squeezed vacuum field is injected.
  • the wavefunction of the squeezed vacuum field is compressed along the xb axis, so the two-mode wavefunction is a two-dimensional elliptical Gaussian function.
  • the wave function of the two modes rotates by ⁇ (FIG. 3 (b)).
  • x a and x b are entangled and cannot be separated into independent wave functions of x a and x b (that is, they cannot be represented by the product of the wave functions of x a and x b ). Therefore, the shot noises of light at the two output ports of the beam splitter BS are correlated with each other and can be offset by subtraction by balance detection, and the shot noise can be suppressed to less than SQL.
  • the transmittance T 2 of the SUT 1 is 1, but a case where an arbitrary transmittance T 2 ⁇ 1 can also be described. Therefore, the three-mode wavefunction ⁇ (x a , x b , x c ), which is the product of the wavefunctions of the vacuum field introduced by the coherent light, the squeezed vacuum field, and the interaction with SUT1 (here, the loss). think of. x c represents the position of the harmonic oscillator in the vacuum field introduced by the third mode, the action of SUT1 (here loss).
  • the three-mode wavefunction ⁇ (x a , x b , x c ) constitutes a three-dimensional elliptical Gaussian function.
  • the beam splitter BS rotates the ellipse in the x a -x b plane, and the loss of SUT1 rotates the ellipse in the x b -x c plane.
  • 2 onto the x a ⁇ x b plane it is possible to confirm how the loss of SUT1 affects the SNR.
  • Quantum mechanical calculation of SNR of QBD is performed to compare the performance of QBD with classical balance detection and amplitude squeeze. Appendix A. By the calculation described in 2, a closed form equation (1) representing SNR is obtained.
  • e -2r (r ⁇ 0) represents the squeezing level of the squeezed vacuum field.
  • SNR is defined here as the power ratio between the signal and the noise, not the amplitude ratio. Since ⁇ is the complex amplitude of coherent light,
  • 2 corresponds to the number of photons in the single time-frequency / spatial mode of interest.
  • the SNR can be improved by increasing the squeezing level and is not limited to the transmittance of the beam splitter BS. This is in contrast to the amplitude squeeze based on the displacement of the beam splitter BS.
  • the finite split ratio of the beam splitter BS causes undesired degradation of the squeezed vacuum field, and Appendix A. Limit the achievable squeezing level of 3 (see equation (A32)).
  • the QBD detects both outputs of the beam splitter BS, which allows it to overcome the squeezing level limitation of the beam splitter BS and allows the use of a beam splitter BS with a moderate split ratio. ..
  • Equation (3) suggests that the upper limit of SNR does not depend on T 1 when
  • Non-Patent Documents 13, 15 Quantum enhancement of SRS microscopes has recently been reported [Non-Patent Documents 13, 15], but it is still difficult to exceed the SNR of classical SRS microscopes. Because the quantum enhancement utilizes a displaced squeezed vacuum field [Non-Patent Document 13] or a seeded OPA [Non-Patent Document 15], the optical power used in the imaging experiment is several milliwatts and the SRS. This is because it is an order of magnitude lower than the typical optical power of a microscope [Non-Patent Documents 24 and 27].
  • the SRS microscope uses a two-color sync sequence of picosecond pulses called pump pulses and Stokes pulses. Typical wavelengths for pumps and Stokes pulses range from 0.7 ⁇ m to 1.1 ⁇ m.
  • the Stokes pulse is intensity modulated on the time axis, the pump pulse and the Stokes pulse are combined and focused on the sample.
  • SRS occurs when the molecule in the focal volume has a Raman active oscillation mode and its resonance frequency ⁇ R matches the frequency difference ( ⁇ p ⁇ s ) between the pump pulse and the Stokes pulse. Since the SRS causes the pump pulse to decay and the Stokes pulse to be amplified, the Stokes pulse intensity modulation is transferred to the pump pulse via the SRS.
  • the transmitted beam is focused by another objective lens, the pump pulse is extracted by an optical filter and detected by a photodetector.
  • a typical optical power in a photodiode is 10 to 30 mW.
  • the photocurrent in the photodiode contains a transferred intensity modulation component, and the intensity modulation component is locked in by a lock-in amplifier synchronized with the modulation of the Stokes pulse, and an SRS signal is acquired.
  • One-dimensional or two-dimensional imaging is performed by scanning the position of the laser beam or sample.
  • FIG. 4 is a diagram showing an SRS microscope (also referred to as a QE-SRS microscope) 200 with quantum enhancement.
  • the QE-SRS microscope 200 has a configuration in which a beam splitter BS and a second photodiode PD2 are added to a general SRS microscope 202.
  • the scanning mechanism for one-dimensional or two-dimensional imaging is omitted.
  • the SRS microscope 202 includes a dichroic mirror DM, objective lenses OB1, OB2, a filter F, a first photodiode PD1, and a processing unit 210.
  • SUT1 is arranged between the pair of objective lenses OB1 and OB2.
  • the pump pulse 12 and the pulse squeezed vacuum field 14 are injected into the beam splitter BS and combined.
  • One of 18 of the two outputs of the beam splitter BS is directly detected by the second photodiode PD2, and the other 16 is guided to the SRS microscope 202.
  • the pulse 16 is combined with the Stokes pulse 20, and the combined light 22 is focused on the SUT 1 by the objective lens OB1.
  • the output light (scattered light of induced Raman scattering) 24 of the SUT 1 the light (that is, the pump pulse) 26 after the Stokes pulse 20 is removed by the filter F is detected by the first photodiode PD1.
  • the combined transmittance of the optical system such as the dichroic mirror DM, the objective lenses OB1 and OB2, and the filter F corresponds to the above - mentioned transmittance T2.
  • the change in the transmittance of SUT1 due to the induced Raman loss corresponds to the above-mentioned ⁇ T.
  • Shot noise can be suppressed by subtracting the outputs (photocurrents) of the two first photodiodes PD1 and the second photodiode PD2 after making appropriate gain adjustments in the processing unit 210.
  • the first amplification unit 212a of the processing unit 210 amplifies the output of the first photodiode PD1 with a first gain G1 determined to be substantially proportional to (1-T 1 ).
  • the second amplification unit 212b amplifies the output of the second photodiode PD2 with a second gain G 2 determined to be substantially proportional to T 1 T 2 .
  • the difference detection unit 214 generates a QBD output signal I proportional to the variation ⁇ T of the transmittance of the SUT 1 based on the difference between the output of the first amplification unit 212a and the output of the second amplification unit 212b.
  • the lock-in detector 216 also detects the subtracted photocurrent as lock-in.
  • the lock-in detector 216 can obtain an SRS signal with an SNR higher than that of SQL.
  • FIG. 5 is a diagram showing the setup of the QE-SRS microscope 300.
  • the QE-SRS microscope 300 includes a pump pulse generator 310, a squeezed vacuum field generator 320, and a Stokes pulse generator 330 in addition to the QBD-SRS microscope 200 of FIG.
  • the pump pulse generator 310 generates the pump pulse 12.
  • the pump pulse generator 310 includes a titanium sapphire laser 312, a beam splitter BS1, AOM314, and SLM316.
  • the titanium sapphire laser 312 produces a pump pulse.
  • a part of the pump pulse generated by the titanium sapphire laser 312 passes through the beam splitter BS1 and is incident on the AOM314.
  • the AOM314 is provided to adjust the phase of the pump pulse.
  • the SLM316 beam-shapes the output light of the AOM314 and outputs it as a pump pulse 12.
  • the pump pulse 22 branched by the beam splitter BS1 of the pump pulse generator 310 is input to the squeezed vacuum field generator 320.
  • the mirror M1 guides the pump pulse 22 from the pump pulse generator 310 to the second harmonic generator 322.
  • the second harmonic generator 322 generates the second harmonic 24 of the pump pulse 22.
  • the OPA324 is a squeezer, and only the pump light of the second harmonic 24 is injected into the OPA324, the seed light of the fundamental wave ⁇ is not injected, and the squeezed vacuum field 14 is generated.
  • the OPA324 is constructed using a single-pass periodic polarization inversion constant ratio composition lithium tantalate (PPSLT: Periodically Poled Stoichiometric LiTaO 3 ) waveguide.
  • the Stokes pulse generator 330 includes a Yb fiber laser 332 and a wavelength scanner 334.
  • the wavelength of the Stokes pulse 20 is adjustable over a wavelength adjustment range of about 30 nm.
  • FIG. 5 shows a part thereof in a simplified manner.
  • a home-made balanced photodetector is used to detect the QE-SRS signal, and a high-frequency spectrum analyzer (RFSA: Radio Frequency Spectrum Analyzer) is included.
  • RFSA Radio Frequency Spectrum Analyzer
  • FIG. 6 is a diagram showing the measurement results of the SRS spectrum of dimethyl sulfoxide-d6 (d-DMSO).
  • FIG. 6 shows (i) when the squeezed vacuum field is not injected, (ii) when the squeezed vacuum field is injected, and when the phase of the pump pulse is optimized, (iii) the squeezed vacuum field is used. The case where the injection is made and the phase of the pump pulse is inappropriate is shown.
  • the noise level can be reduced by 2.06 dB as compared with the case where the squeezed vacuum field is not injected.
  • FIG. 7 is a diagram showing the evaluation result of squeezing when the sample is not arranged.
  • FIG. 7 shows (i) noise when the squeezed vacuum field is not injected (shot noise), (ii) noise when the squeezed vacuum field is injected (squeezed noise), and (iii) thermal noise. ..
  • shots noise when the squeezed vacuum field is not injected
  • squeezed noise noise when the squeezed vacuum field is injected
  • thermal noise thermal noise. ..
  • the squeezed noise was pulsating and the squeezed vacuum field could be generated by changing the frequency ⁇ (phase) of the pump pulse with time by AOM314. It can be seen that the difference between the squeezed noise and the shot noise is larger than 3 dB in the optimum phase state (valley of pulsation), and therefore a squeezing level exceeding 3 dB can be realized.
  • the squeezing level is mainly limited by the scattering loss when passing through the sample contained in the cuvette.
  • QBD is advantageous for adopting quantum enhancement in optical measurements using relatively high average power over 10 mW.
  • Previous quantum augmentation spectroscopy used beam splitters with a split ratio of 1-2% [Non-Patent Documents 12, 13], which limits the available optical power of light passing through the sample. rice field. It is possible to use a high power laser source with an average power of several watts to increase the light power through the sample, but such a method is not efficient from a practical point of view.
  • QBD quantum enhancement with QBD, the average power of the light irradiating the sample can be increased while reducing the optical power of the laser light source.
  • the SNR is lower than in the case without balance detection because the two photodiodes contribute to shot noise.
  • the SNR for balance detection without squeeze is 3 dB lower than with a single photodiode. Therefore, the squeezing level needs to be high enough ( ⁇ -3 dB) to achieve quantum enhancement.
  • Using a BS with a lower division ratio (eg, 30:70) can increase the SNR to some extent, but because one photodiode PD2 receives stronger light than it passes through the SUT, the photo The diode PD2 may saturate. Saturation can be mitigated by splitting the light into multiples with an additional beam splitter and receiving all output light in parallel with multiple photodiodes.
  • Non-Patent Documents 14 and 15 Some issues remain in applying QBD to SRS microscopes. The most important thing is to realize a high transmittance optical system. This is because the light loss lowers the squeezing level according to equation (1) and sets the upper limit of SNR. Therefore, it is important to use an objective lens with high transmittance [Non-Patent Documents 14 and 15]. In order to achieve high spatial resolution, it is important to magnify the beam at the input of the objective lens, but since a part of the beam is blocked by the pupil of the lens, unnecessary light loss occurs. To avoid this effect, a pair of beam forming optical systems such as Axicon [Non-Patent Document 30] is useful. Further, in order to avoid a decrease in the squeezing level, it is desirable to adopt a photodiode having high quantum efficiency and low thermal noise.
  • Non-Patent Document 31 the single-pass waveguide OPA
  • Non-Patent Document 32 the synchronous excitation OPO
  • waveguide OPA is the first because the bandwidth of the squeezed vacuum field generated by OPA is wider than the bandwidth generated by OPA and can support a sufficient modulation bandwidth for SRS detection. It becomes an option of.
  • the use of waveguide OPA is essential because it can alleviate the strict restrictions on the squeezing level of bulk OPA due to the mode mismatch between the pump mode and the signal mode [Non-Patent Documents 33, 34]. Nevertheless, careful design of the OPA is important for achieving high squeezing levels. [Non-Patent Document 35].
  • the first photodiode PD1 is used to detect SRS in the traveling direction of the pump pulse, but this is not the case, and backscattered light scattered in the direction opposite to the traveling direction of the pump pulse is emitted. It may be a reflective type to detect.
  • the application of the optical measuring device according to the embodiment is not limited to the SRS microscope.
  • SRS spectroscopic measurement may be performed by sweeping the wavelength of the Stokes pulse with the wavelength scanner 334.
  • the optical measuring device includes photothermal imaging [Non-Patent Document 38], guided emission microspectroscopy [Non-Patent Document 39], and two-photon absorption microscope [Non-Patent Document 40]. It can be applied to various imaging and spectroscopic measurements including.
  • n> (n!) -1/2 (a ⁇ ) n
  • the wave function ⁇ ⁇ (x) is expressed by the following equation.
  • D ⁇ ( ⁇ ) is a displacement operator.
  • the displacement operator D ⁇ (x 0 ) in x notation is used, so that the wave function can be expressed by x 0 .
  • the wavefunction of coherent light changes over time, known as the Gaussian wave packet, which oscillates at the angular frequency ⁇ and has an amplitude of
  • the wave function ⁇ s (x) of the squeezed vacuum field is expressed by the following equation.
  • S ⁇ (r) is a squeezing operator that reduces the wavefunction by an e -r times.
  • the quantum states of the two input modes of the beam splitter are considered by the wave function ⁇ (x a , x b ).
  • x a and x b represent the positions of the harmonic oscillators corresponding to the two modes (indicated by a and b).
  • the quantum states of the two modes are ⁇ a (x a ) and ⁇ b (x b ).
  • the action of the beam splitter can be expressed using the unitary operator as follows.
  • the transmittance of the beam splitter is cos 2 ⁇ .
  • H ⁇ BS is the Hamiltonian of the beam splitter and is defined as follows. It has the same shape as the angular momentum and the Stokes parameter S 3 .
  • A. 2 Calculation of SNR in the QBD method The SNR of the QBD method is derived using the Heisenberg picture.
  • the creation and annihilation operators change with beam splitters, squeezing and loss.
  • the coherent light, the vacuum field to be squeezed, and the vacuum field annihilation operator introduced by the loss of SUT are written as a 1 ⁇ , b 1 ⁇ , and c 1 ⁇ , respectively.
  • the squeezed vacuum field annihilation operator b 2 ⁇ is given by squeezing the real part of b 1 ⁇ with e -r and anti-squeezing the imaginary part with er .
  • the output mode annihilation operator is given by the following equation. Since the loss of the SUT couples a vacuum field to the incident light, the annihilation operator of the output light of the SUT is given by the following equation.
  • b 2 ⁇ ⁇ b 2 ⁇ corresponds to the number of squeezed photons. This is negligible compared to the number of photons of coherent light used in QBD.
  • c 1 ⁇ ⁇ c 1 ⁇ is zero because it is the number of photons in vacuum.
  • b 2 ⁇ ⁇ c 1 ⁇ + b 2 ⁇ c 1 ⁇ ⁇ also does not contain coherent light and can be ignored. Therefore, the main noise source is the interference between the coherent light and the squeezed vacuum field, which is expressed by the following equation.
  • the interference between coherent light and the vacuum field, that is, shot noise is expressed by the following equation.
  • the expected value of the output of QBD is derived as follows by using I ⁇ and the initial quantum state
  • ⁇ I a ⁇ which is a minute change of Ia ⁇ proportional to ⁇ T, is obtained by the following equation.
  • the dominant noise sources of ⁇ I a0 ⁇ are shot noise I a1 ⁇ , coherent light and squeezed light interference I a2 ⁇ , and coherent light and vacuum field interference I a3 ⁇ , which are expressed by the following equations, respectively.
  • the expected value of the signal is given by the following equation.
  • This disclosure can be used for optical measurements such as spectroscopy and imaging.
  • Optical measuring device BS beam splitter PD1 1st photodiode PD2 2nd photodiode 110 Processing unit 112 Gain adjustment unit 114 Difference detection unit 200 QBD-SRS microscope 202 SRS microscope 1 SUT DM Dichroic Mirror OB1, OB2 Objective Lens F Filter PD1 First Photodiode PD2 Second Photodiode 210 Processing Unit 310 Pump Pulse Generator 312 Titanium Sapphire Laser BS1 Beam Splitter 314 AOM 316 SLM 320 Squeezed Vacuum Field Generator M1 Mirror 322 Second Harmonic Generator 324 OPA 330 Stokes Pulse Generator 332 Yb Fiber Laser 334 Wavelength Scanner

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

In the present invention, a beam splitter BS receives coherent light 2 as a first input and a squeezed vacuum field 4 as a second input. A first optical detector PD2 measures light 8 obtained as a result of a first output 6 of the beam splitter BS acting on a sample 1. A second optical detector PD2 measures a second output 10 of the beam splitter BS. A processing part 110 processes an output of the first optical detector PD1 and an output of the second optical detector PD2 and obtains a spectral characteristic of the sample.

Description

光測定装置、光測定方法Light measuring device, light measuring method

 本開示は、分光やイメージングなどの光測定技術に関する。 This disclosure relates to optical measurement techniques such as spectroscopy and imaging.

 量子増強(Quantum Enhanced)分光法およびイメージング法は、標準量子限界(SQL:Standard Quantum Limit)よりも高い信号対雑音比(SNR)を得ることができ、より高い感度を実現できるため、注目を集めている[非特許文献1-3]。これまでに、量子増強のいくつかの方法が分光法とイメージングに適用されている。たとえば、自発的パラメトリックダウンコンバージョン(SPDC:Spontaneous Parametric Down-Conversion)によって生成されたもつれ光子が、透過イメージング[非特許文献4-7]および微分位相イメージング[非特許文献8]に使用されている。また二重共鳴光パラメトリック発振器(OPO:Optical Parametric Oscillator)によって生成されたもつれ光子も、分光法に使用されている[非特許文献9,10]。またスクイーズド真空場[非特許文献11-13]を変位させることにより、あるいはシードされたパラメトリック増幅器(OPA:Optical Parametric Amplifier)[非特許文献14-16]によって生成された振幅スクイーズド光が分光法とイメージングに使用されている。 Quantum Enhanced spectroscopy and imaging methods are attracting attention because they can obtain a higher signal-to-noise ratio (SNR) than the standard quantum limit (SQL) and can achieve higher sensitivity. [Non-Patent Document 1-3]. So far, several methods of quantum enhancement have been applied to spectroscopy and imaging. For example, entangled photons generated by spontaneous parametric down-conversion (SPDC) are used for transmission imaging [Non-Patent Document 4-7] and differential phase imaging [Non-Patent Document 8]. Tangled photons generated by a double-resonant optical parametric oscillator (OPO) are also used in spectroscopy [Non-Patent Documents 9 and 10]. Further, the amplitude squeezed light generated by displacement of the squeezed vacuum field [Non-Patent Document 11-13] or by a seeded Parametric Amplifier (OPA: Optical Parametric Amplifier) [Non-Patent Document 14-16] is spectroscopic. Used for method and imaging.

 しかしながら、古典的な分光法およびイメージングにおいては高いSNRを得るために比較的高い光パワー(10~100mW)が必要とされるため、古典的な分光法およびイメージングにおいて達成されるSNR限界を、量子増強の利用により押し上げることは依然として困難である。実際、量子増強の従来の方法は、非常に弱い光パワー(<~mW)で実証されている。たとえば、SPDCフォトンの一般的な平均電力はピコワット未満である。スクイーズド真空場の変位による振幅スクイーズでは、変位に使用されるビームスプリッタ(BS)が大きな損失をもたらす可能性がある。シードされたOPAを使用した振幅スクイーズも、真空ゆらぎとシード光の両方が、OPAによって減衰するため、大きな損失をもたらす。例外のひとつは、重力波検出器[非特許文献18-20]で使用される量子増強干渉法[非特許文献17]であり、SQLを超える感度を実現するために干渉計の未使用ポートにスクイーズド真空場が注入される。しかし、この方法は主に位相測定に使用される。より高度な方法では振幅と位相の同時測定を実現できる[非特許文献21]ものの、構成が複雑化する。したがって、これらの方法は、透過光の強度が測定されることが多い分光法やイメージングにはただちに適用できない。 However, since relatively high optical power (10-100 mW) is required to obtain high SNR in classical spectroscopy and imaging, the SNR limit achieved in classical spectroscopy and imaging is quantum. It remains difficult to push up with the use of augmentation. In fact, conventional methods of quantum enhancement have been demonstrated with very weak optical power (<~ mW). For example, the typical average power of SPDC photons is less than picowat. In amplitude squeezing due to displacement of a squeezed vacuum field, the beam splitter (BS) used for displacement can result in significant losses. Amplitude squeeze using seeded OPA also results in significant losses as both vacuum fluctuations and seed light are attenuated by the OPA. One exception is the quantum enhanced interferometry [Non-Patent Document 17] used in the gravitational wave detector [Non-Patent Document 18-20], which is used in the unused port of the interferometer to achieve sensitivity exceeding SQL. A squeezed vacuum field is injected. However, this method is mainly used for phase measurement. Although a more advanced method can realize simultaneous measurement of amplitude and phase [Non-Patent Document 21], the configuration becomes complicated. Therefore, these methods are not immediately applicable to spectroscopy and imaging, where the intensity of transmitted light is often measured.

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1 (2016).M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1 (2016). P.-A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett, “Imaging with quantum states of light,” Nat. Rev. Phys. 1, 367 (2019).P.-A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett, “Imaging with quantum states of light,” Nat. Rev. Phys. 1, 367 (2019). B. J. Lawrie, P. D. Lett, A. M. Marino, and R. C. Pooser, “Quantum sensing with squeezed light,” ACS Photonics 6, 1307 (2019).B. J. Lawrie, P. D. Lett, A. M. Marino, and R. C. Pooser, “Quantum sensing with squeezed light,” ACS Photonics 6, 1307 (2019). E. Jakeman and J. Rarity, “The use of pair production processes to reduce quantum noise in transmission measurements,”Opt. Commun. 59, 219 (1986).E. Jakeman and J. Rarity, “The use of pair production processes to reduce quantum noise in transmission measurements,” Opt. Communi. 59, 219 (1986). E. Brambilla, L. Caspani, O. Jedrkiewicz, L. Lugiato, and A. Gatti, “High-sensitivity imaging with multi-mode twin beams,” Phys. Rev. A 77, 053807 (2008).E. Brambilla, L. Caspani, O. Jedrkiewicz, L. Lugiato, and A. Gatti, “High-sensitivity imaging with multi-mode twin beams,” Phys. Rev. A 77, 053807 (2008). G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227 (2010).G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227 (2010). J. Sabines-Chesterking, A. R. McMillan, P. A. Moreau, S. K. Joshi, S. Knauer, E. Johnston, J. G. Rarity, and J. C. F. Matthews, “Twin-beam sub-shot-noise raster-scanning microscope,” Opt. Express 27, 30810 (2019).J. Sabines-Chesterking, A. R. McMillan, P. A. Moreau, S. K. Joshi, S. Knauer, E. Johnston, J. G. Rarity, and J. C. F. Matthews, “Twin- beam sub-shot-noise raster-scanning microscope, ”Opt. Express 27, 30810 (2019). T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Communi. 4, 2426 (2013). A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of quantum noise reduction on twin laser beams,” Phys. Rev. Lett. 59, 2555 (1987).A. Heidmann, R. J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy, “Observation of quantum noise reduction on twin laser beams,” Phys. Rev. Lett. ). C. Nabors and R. Shelby, “Two-color squeezing and sub-shot-noise signal recovery in doubly resonant optical parametric oscillators,” Phys. Rev. A 42, 556 (1990).C. Nabors and R. Shelby, “Two-color squeezing and sub-shot-noise signal recovery in doubly resonance optical parametric oscillators,” Phys. Rev. A 42, 556 (1990). E. Polzik, J. Carri, and H. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Appl. Phys. B 55, 279 (1992).E. Polzik, J. Carri, and H. Kimble, “Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit,” Appl. Phys. B 55, 279 (1992). E. Polzik, J. Carri, and H. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020 (1992).E. Polzik, J. Carri, and H. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020 (1992). R. B. de Andrade, H. Kerdoncuff, K. Berg-Sorensen, T. Gehring, M. Lassen, and U. L. Andersen, “Quantum-enhanced continuous-wave stimulated Raman scattering spectroscopy,” Optica 7, 470 (2020).R. B. de Andrade, H. Kerdoncuff, K. Berg-Sorensen, T. Gehring, M. Lassen, and U. L. Andersen, “Quantum-enhanced continuous-wave stimulated Raman scattering spectroscopy,” 2020). M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229 (2013).M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229 (2013). C. A. Casacio, L. S. Madsen, A. Terrasson, M. Waleed, K. Barnscheidt, B. Hage, M. A. Taylor, and W. P. Bowen,“Quantum-enhanced nonlinear microscopy", Nature 594, 201 (2021).C. A. Casacio, L. S. Madsen, A. Terrasson, M. Waled, K. Barnscheidt, B. Hage, M. A. Taylor, and W. P. Bowen, “Quantum-enhanced non-linear microscopy”, 594, 201 (2021). G. Triginer Garces, H. M. Chrzanowski, S. Daryanoosh, V. Thiel, A. L. Marchant, R. B. Patel, P. C. Humphreys, A. Datta, and I. A. Walmsley, “Quantum-enhanced stimulated emission detection for label-free microscopy,” Appl. Phys. Lett. 117, 024002 (2020).G. Triginer Garces, H. M. Chrzanowski, S. Daryanoosh, V. Thiel, A. L. Marchant, R. B. Patel, P. C. Humphreys, A. Datta, and I. A. Walmsley, -enhanced stimulated emission detection for label-free microscopy, ”Appl. Phys. Lett. 117, 024002 (2020). C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693 (1981).C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693 (1981). J. Aasi, J. Abadie, B. Abbott, R. Abbott, T. Abbott, M. Abernathy, C. Adams, T. Adams, P. Addesso, R. Adhikari et al.,“Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613 (2013).J. Aasi, J. Abadie, B. Abbott, R. Abbott, T. Abbott, M. Abernathy, C. Adams, T. Adams, P. Addesso, R. Adhikari et al., “Enhanced sensitivity of gravitation of the LI” wave detector by using squeezed states of light, ”Nat. Photonics 7, 613 (2013). M. Tse, H. Yu, N. Kijbunchoo, A. Fernandez-Galiana, P. Dupej, L. Barsotti, C. Blair, D. Brown, S. Dwyer, A. Effler et al., “Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy,” Phys. Rev. Lett. 123, 231107 (2019).M. Tse, H. Yu, N. Kijbunchoo, A. Fernandez-Galiana, P. Dupej, L. Barsotti, C. Blair, D. Brown, S. Dwyer, A. Effler et al., “Quantum-enhanced LIGO detectors in the era of gravitational-wave astronomy, ”Phys. Rev. Lett. 123, 231107 (2019). F. Acernese, M. Agathos, L. Aiello, A. Allocca, A. Amato, S. Ansoldi, S. Antier, M. Arene, N. Arnaud, S. Ascenzi et al., “Increasing the astrophysical reach of the advanced Virgo detector via the application of squeezed vacuum states of light,” Phys. Rev. Lett. 123, 231108 (2019).F. Acernese, M. Agathos, L. Aiello, A. Allocca, A. Amato, S. Ansoldi, S. Antier, M. Arene, N. Arnaud, S. Astrophysic et al., “Increasing the astrophysical” advanced Virgo detector via the application of squeezed vacuum states of light, ”Phys. Rev. Lett. 123, 231108 (2019). S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Muller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-dense metrology,” Nat. Photonics 7, 626 (2013).S. Steinlechner, J. Bauchrowitz, M. Meinders, H. Muller-Ebhardt, K. Danzmann, and R. Schnabel, “Quantum-dense metrology,” Nat. Photonics 7, 626 (2013). C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857 (2008).C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “ Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy, ”Science 322, 1857 (2008). Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17, 3651 (2009).Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17, 3651 (2009) Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh,“High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845 (2012).Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Ra , ”Nat. Photonics 6,845 (2012). J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350, aaa8870 (2015).J.-X. Cheng and X. S. Xie, “Vibrational spectroscopy imaging of living systems: An emerging platform for biology and medicine,” Science 350, aaa8870 (2015). F. Hu, L. Shi, and W. Min, “Biological imaging of chemical bonds by stimulated Raman scattering microscopy,” Nat. Methods 16, 830 (2019).F. Hu, L. Shi, and W. Min, “Biological imaging of chemical bonds by stimulated Raman scattering microscopy,” Nat. Methods 16, 830 (2019). Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, “Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser,” IEEE J. Sel. Top. Quantum Electron. 25, 7100211 (2019).Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, “Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser,” IEEE J. Sel. Top. Quantum Electron. 25, 7100211 Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa,W. Umemura, S. S. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express 18, 13708 (2010).Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. S. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity , ”Opt. Express 18, 13708 (2010). X. Audier, S. Heuke, P. Volz, I. Rimke, and H. Rigneault, “Noise in stimulated Raman scattering measurement: From basics to practice,” APL Photonics 5, 011101 (2020).X. Audier, S. Heuke, P. Volz, I. Rimke, and H. Rigneault, “Noise in stimulated Raman scattering measurement: From basics to practice,” APL Photonics 5, 011101 (2020). N. Ochiai, J. Shou, and Y. Ozeki, “Axicon-based beam shaping for low-loss nonlinear microscopic optics,” J. Opt. Soc. Am. B 36, 1342 (2019).N. Ochiai, J. Shou, and Y. Ozeki, “Axicon-based beam shaping for low-loss non-linear microscopic optics,” J. Opt. Soc. Am. B 36, 1342 (2019). Y. Eto, A. Koshio, A. Ohshiro, J. Sakurai, K. Horie, T. Hirano, and M. Sasaki, “Efficient homodyne measurement of picosecond squeezed pulses with pulse shaping technique,” Opt. Lett. 36, 4653 (2011).Y. Eto, A. Koshio, A. Ohshiro, J. Sakurai, K. Horie, T. Hirono, and M. Sasaki, “Efficient homodyne measurement of picosecond squeezed pulses with pulse shaping technique,” Opt (2011). J. Roslund, R. M. De Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109 (2014).J. Roslund, R. M. De Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109 (2014). A. La Porta and R. E. Slusher, “Squeezing limits at high parametric gains,” Phys. Rev. A 44, 2013 (1991).A. La Porta and R. E. Slusher, “Squeezing limits at high parametric gains,” Phys. Rev. A 44, 2013 (1991). U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scripta 91, 053001 (2016).U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scripta 91, 053001 (2016). Y. Taguchi and Y. Ozeki, “Time-domain analysis on the pulsed squeezed vacuum detected with picosecond pulses,” J. Opt. Soc. Am. B 37, 1535 (2020).Y. Taguchi and Y. Ozeki, “Time-domain analysis on the pulsed squeezed vacuum detected with picosecond pulses,” J. Opt. Soc. Am. B 37, 1535 (2020). R. Loudon and P. Knight, “Squeezed light,” J. Mod. Opt. 34, 709 (1987).R. Loudon and P. Knight, “Squeezed light,” J. Mod. Opt. 34, 709 (1987). U. Leonhardt, “Quantum statistics of a lossless beam splitter: SU(2) symmetry in phase space,” Phys. Rev. A 48, 3265 (1993).U. Leonhardt, “Quantum statistics of a lossless beam splitter: SU (2) symmetry in phase space,” Phys. Rev. A 48, 3265 (1993). D. Zhang, C. Li, C. Zhang, M. N. Slipchenko1, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2, e1600521 (2016).D. Zhang, C. Li, C. Zhang, M. N. Slipchenko 1, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial” Sci. Adv. 2, e1600521 (2016). W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461, 1105-1109 (2009).W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromaphores with undetectable fluorescence by stimulated emission microscopy,” Nature 461, 1105-1109 (2009) .. D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12, 054004 (2007).D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12, 054004 (2007).

 本開示は係る状況においてなされたものであり、そのある態様の例示的な目的のひとつは、光の平均パワーが高い場合(>10mW)でも、光学分光法やイメージングのSNRをSQLより向上させることが可能な、バランス検出による分光およびイメージングの装置および方法の提供にある。 The present disclosure has been made in such circumstances, and one of the exemplary purposes of that embodiment is to improve the SNR of optical spectroscopy and imaging over SQL, even when the average power of light is high (> 10 mW). To provide a spectroscopic and imaging device and method with balanced detection.

 本開示のある態様は光測定装置に関する。光測定装置は、コヒーレント光を生成する光源と、スクイーズド真空場を生成するスクイーズド真空場発生器と、第1入力にコヒーレント光を受け、第2入力にスクイーズド真空場を受けるビームスプリッタと、ビームスプリッタの第1出力がサンプルに作用した結果得られる光を測定する第1光検出器と、ビームスプリッタの第2出力を測定する第2光検出器と、第1光検出器の出力と第2光検出器の出力を処理し、サンプルの特性を取得する処理部と、を備える。 One aspect of this disclosure relates to an optical measuring device. The optical measuring device includes a light source that generates coherent light, a squeezed vacuum field generator that generates a squeezed vacuum field, and a beam splitter that receives coherent light at the first input and a squeezed vacuum field at the second input. , The first light detector that measures the light obtained as a result of the first output of the beam splitter acting on the sample, the second light detector that measures the second output of the beam splitter, and the output of the first light detector. It is provided with a processing unit that processes the output of the second optical detector and acquires the characteristics of the sample.

 本開示の別の態様は、光測定方法である。この方法は、コヒーレント光を生成するステップと、スクイーズド真空場を生成するステップと、ビームスプリッタによって、コヒーレント光とスクイーズド真空場を合波するステップと、ビームスプリッタの第1出力がサンプルに作用した結果得られる光とビームスプリッタの第2出力をバランス検出するステップと、を備える。 Another aspect of the present disclosure is an optical measurement method. In this method, a step to generate coherent light, a step to generate a squeezed vacuum field, a step to combine the coherent light and the squeezed vacuum field by a beam splitter, and the first output of the beam splitter act on the sample. The step of balancing the light obtained as a result of the above and the second output of the beam splitter is provided.

 なお、以上の構成要素を任意に組み合わせたもの、構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明あるいは本開示の態様として有効である。さらに、この項目(課題を解決するための手段)の記載は、本発明の欠くべからざるすべての特徴を説明するものではなく、したがって、記載されるこれらの特徴のサブコンビネーションも、本発明たり得る。 It should be noted that an arbitrary combination of the above components and a method in which the components and expressions are mutually replaced between methods, devices, systems and the like are also effective as aspects of the present invention or the present disclosure. Furthermore, the description of this item (means for solving the problem) does not explain all the essential features of the present invention, and therefore subcombinations of these features described may also be the present invention. ..

 本開示によれば、光の平均パワーが高い場合(>10mW)でも、光学分光法やイメージングのSNRをSQLよりも向上させることできる。 According to the present disclosure, even when the average power of light is high (> 10 mW), the SNR of optical spectroscopy or imaging can be improved as compared with SQL.

QBDの原理を利用した装置を示す図である。It is a figure which shows the apparatus which used the principle of QBD. 図2(a),(b)は、スクイーズド真空場を注入しないバランス検出の場合の、ビームスプリッタBSの入力および出力における2モード波動関数Ψ(xa,xb)を示す図である。2 (a) and 2 (b) are diagrams showing a two-mode wave function Ψ (x a , x b ) at the input and output of the beam splitter BS in the case of balance detection without injecting a squeezed vacuum field. 図3(a),(b)は、スクイーズド真空場を注入するバランス検出の場合の、ビームスプリッタBSの入力および出力における2モード波動関数Ψ(xa,xb)を示す図である。3 (a) and 3 (b) are diagrams showing a two-mode wave function Ψ (x a , x b ) at the input and output of the beam splitter BS in the case of balance detection in which a squeezed vacuum field is injected. 量子増強を伴うSRS顕微鏡(QE-SRS顕微鏡)を示す図である。It is a figure which shows the SRS microscope (QE-SRS microscope) with quantum enhancement. QE-SRS顕微鏡のセットアップを示す図である。It is a figure which shows the setup of the QE-SRS microscope. ジメチルスルホキシド-d6(d-DMSO)のSRSスペクトルを示す図である。It is a figure which shows the SRS spectrum of dimethyl sulfoxide-d6 (d-DMSO). サンプルを配置しない場合のスクイージングの評価結果を示す図である。It is a figure which shows the evaluation result of squeezing when the sample is not arranged.

(実施形態の概要)
 本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。この概要は、考えられるすべての実施形態の包括的な概要ではなく、すべての実施形態の重要な要素を特定することも、一部またはすべての態様の範囲を線引きすることも意図していない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
(Outline of Embodiment)
Some exemplary embodiments of the present disclosure will be outlined. This overview simplifies and describes some concepts of one or more embodiments for the purpose of basic understanding of embodiments, as a prelude to the detailed description described below, and is an invention or disclosure. It does not limit the size. This overview is not a comprehensive overview of all possible embodiments and is not intended to identify key elements of all embodiments or to delineate the scope of some or all embodiments. For convenience, "one embodiment" may be used to refer to one embodiment (examples or modifications) or a plurality of embodiments (examples or modifications) disclosed herein.

 本開示のある態様の光測定装置は、コヒーレント光を生成する光源と、スクイーズド真空場を生成するスクイーズド真空場発生器と、第1入力にコヒーレント光を受け、第2入力にスクイーズド真空場を受けるビームスプリッタと、ビームスプリッタの第1出力がサンプルに作用した結果得られる光を測定する第1光検出器と、ビームスプリッタの第2出力を測定する第2光検出器と、第1光検出器の出力と第2光検出器の出力を処理し、サンプルの特性を取得する処理部と、を備える。 The optical measuring device of one aspect of the present disclosure includes a light source that generates coherent light, a squeezed vacuum field generator that generates a squeezed vacuum field, and a squeezed vacuum that receives coherent light at the first input and squeezed vacuum at the second input. A beam splitter that receives a field, a first light detector that measures the light obtained as a result of the first output of the beam splitter acting on the sample, a second light detector that measures the second output of the beam splitter, and a first. It is provided with a processing unit that processes the output of the optical detector and the output of the second optical detector and acquires the characteristics of the sample.

 この構成によると、光の平均パワーが高い場合(>10mW)でも、光学分光法やイメージングのSNRを、SQLよりさらに向上させることできる。サンプルの特性は、サンプルの透過率、損失、反射率、ゲインなどが例示される。 According to this configuration, even when the average power of light is high (> 10 mW), the SNR of optical spectroscopy and imaging can be further improved compared to SQL. Examples of sample characteristics include sample transmittance, loss, reflectance, and gain.

 一実施形態において、処理部は、第1光検出器の出力と第2光検出器の出力を重み付けして減算してもよい。 In one embodiment, the processing unit may weight and subtract the output of the first photodetector and the output of the second photodetector.

 一実施形態において、ビームスプリッタの透過率をT、スプリッタの第2出力の経路の透過率をTとするとき、第1光検出器の出力に対する重み付けの係数は(1-T)に実質的に比例し、第2光検出器の出力に対する重み付けの係数は、Tに実質的に比例してもよい。ここでの透過率は、第1入力から第1出力への透過率である。 In one embodiment, when the transmittance of the beam splitter is T 1 and the transmittance of the path of the second output of the splitter is T 2 , the weighting coefficient for the output of the first photodetector is (1-T 1 ). Substantially proportional, the weighting factor for the output of the second photodetector may be substantially proportional to T 1 T 2 . The transmittance here is the transmittance from the first input to the first output.

 一実施形態において、ビームスプリッタの透過率は0.3~0.7であってもよい。 In one embodiment, the transmittance of the beam splitter may be 0.3 to 0.7.

 一実施形態において、スクイーズド真空場発生器は、コヒーレント光の二次高調波を生成する二次高調波発生器と、二次高調波がシードされる光パラメトリック増幅器と、を含んでもよい。 In one embodiment, the squeezed vacuum field generator may include a second harmonic generator that produces a second harmonic of coherent light and an optical parametric amplifier in which the second harmonic is seeded.

 一実施形態において、ストークスパルスを生成するストークスパルス発生器と、ビームスプリッタの第1出力をストークスパルスと合波するダイクロイックミラーと、をさらに備えてもよい。第1光検出器は、ダイクロイックミラーの出力をサンプルに照射した結果、誘導ラマン散乱(SRS:Stimulated Raman Scattering)により減衰するポンプパルスを測定してもよい。 In one embodiment, a Stokes pulse generator that generates a Stokes pulse and a dichroic mirror that combines the first output of the beam splitter with the Stokes pulse may be further provided. The first photodetector may measure the pump pulse attenuated by induced Raman scattering (SRS) as a result of irradiating the sample with the output of the dichroic mirror.

 一実施形態に係る分光方法は、コヒーレント光を生成するステップと、スクイーズド真空場を生成するステップと、ビームスプリッタによって、コヒーレント光とスクイーズド真空場を合波するステップと、ビームスプリッタの第1出力がサンプルに作用した結果得られる光とビームスプリッタの第2出力をバランス検出するステップと、を備える。 The spectroscopic method according to one embodiment includes a step of generating coherent light, a step of generating a squeezed vacuum field, a step of combining coherent light and a squeezed vacuum field by a beam splitter, and a first beam splitter. It comprises a step of balancing the light obtained as a result of the output acting on the sample and the second output of the beam splitter.

(実施形態)
 以下、本開示を好適な実施形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施形態は、開示あるいは発明を限定するものではなく例示であって、実施形態に記述されるすべての特徴やその組み合わせは、必ずしも開示あるいは発明の本質的なものであるとは限らない。
(Embodiment)
Hereinafter, the present disclosure will be described with reference to the drawings based on the preferred embodiments. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and duplicate description thereof will be omitted as appropriate. Further, the embodiment is not limited to the disclosure or the invention, but is an example, and all the features and combinations thereof described in the embodiment are not necessarily essential to the disclosure or the invention.

 以下では、超高感度透過測定のための量子増強バランス検出(QBD)法について説明する。QBDは、バランス検出の拡張であり、光の平均パワーが高い(> 10 mW)場合でも、光学分光法とイメージングのSNRをSQLを超えて向上させることができる。 Below, the quantum enhanced balance detection (QBD) method for ultrasensitive transmission measurement will be described. QBD is an extension of balance detection and can improve the SNR of optical spectroscopy and imaging beyond SQL even when the average power of light is high (> 10 mW).

 はじめに、QBDの原理について説明し、方法の直感的な図とSNRの閉形式の表現を提供して、光損失の影響について説明する。 First, the principle of QBD will be explained, an intuitive diagram of the method and a closed form representation of the SNR will be provided, and the effect of light loss will be explained.

 図1は、QBDの原理を利用した光測定装置100を示す図である。光測定装置100は、被試験サンプル(SUT:Sample Under Test)1の透過率を測定する。 FIG. 1 is a diagram showing an optical measuring device 100 using the principle of QBD. The optical measuring device 100 measures the transmittance of the sample under test (SUT: Sample Under Test) 1.

 ビームスプリッタBS、第1フォトダイオードPD1、第2フォトダイオードPD2、処理部110を備える。 It includes a beam splitter BS, a first photodiode PD1, a second photodiode PD2, and a processing unit 110.

 コヒーレント光2とスクイーズド真空場4は、透過率TのビームスプリッタBSによって合波される。ビームスプリッタBSの透過率Tは、第1入力2から第1出力6への透過率であり、T:(1-T)が、ビームスプリッタの分割比である。SUT1は、ビームスプリッタBSの一方の出力(第1出力)6の経路上に配置されており、ビームスプリッタBSの出力の一方6は、透過率TのSUT1(Sample Under Test)を通過する。このSUT1の透過率Tは、微小な変動ΔTを含む。なお、ここではSUT1の透過光を測定する場合を説明するが、QBDの適用はそれに限定されず、ビームスプリッタBSの第1出力6が、SUT1に作用して得られる光を測定するさまざまな測定に適用できる。 The coherent light 2 and the squeezed vacuum field 4 are combined by a beam splitter BS having a transmittance of T1. The transmittance T 1 of the beam splitter BS is the transmittance from the first input 2 to the first output 6, and T 1 : (1-T 1 ) is the split ratio of the beam splitter. The SUT 1 is arranged on the path of one output (first output) 6 of the beam splitter BS, and one of the outputs 6 of the beam splitter BS passes through the SUT 1 (Sample Under Test) having a transmittance of T2. The transmittance T 2 of this SUT 1 includes a minute fluctuation ΔT. Although the case of measuring the transmitted light of the SUT1 will be described here, the application of the QBD is not limited to this, and various measurements obtained by the first output 6 of the beam splitter BS acting on the SUT1 are measured. Can be applied to.

 SUT1の透過光8は第1フォトダイオードPD1によって検出され、ビームスプリッタBSの他方の出力10は第2フォトダイオードPD2によって検出される。第1フォトダイオードPD1および第2フォトダイオードPD2に代えて、フォトダイオード以外(たとえば光導電素子など)の光検出器(フォトディテクタ)を用いてもよい。 The transmitted light 8 of SUT1 is detected by the first photodiode PD1, and the other output 10 of the beam splitter BS is detected by the second photodiode PD2. Instead of the first photodiode PD1 and the second photodiode PD2, a photodetector (photodetector) other than the photodiode (for example, a photoconductive element) may be used.

 処理部110は、第1フォトダイオードPD1の出力と第2フォトダイオードPD2の出力(光電流)にもとづいて、SUT1の透過率Tの変化量ΔTをバランス検出する。 The processing unit 110 balance - detects the change amount ΔT of the transmittance T2 of the SUT 1 based on the output of the first photodiode PD1 and the output (photocurrent) of the second photodiode PD2.

 たとえば処理部110は、ゲイン調節部112および差分検出部114を備える。ゲイン調節部112は、ビームスプリッタBSとSUT1の透過率T,Tを考慮して適切なゲイン制御を行い、重み付け加算する。第1増幅部112aは、第1フォトダイオードPD1の出力を、(1-T)に実質的に比例するように定めた第1ゲイン(重み付け係数)Gで増幅する。第2増幅部112bは、第2フォトダイオードPD2の出力を、Tに実質的に比例するように定めた第2ゲイン(重み付け係数)Gで増幅する。 For example, the processing unit 110 includes a gain adjusting unit 112 and a difference detecting unit 114. The gain adjusting unit 112 performs appropriate gain control in consideration of the transmittances T 1 and T 2 of the beam splitter BS and SUT 1, and weights and adds them. The first amplification unit 112a amplifies the output of the first photodiode PD1 with a first gain (weighting factor) G1 determined to be substantially proportional to (1-T 1 ). The second amplification unit 112b amplifies the output of the second photodiode PD2 with a second gain (weighting factor) G 2 determined to be substantially proportional to T 1 T 2 .

 差分検出部114は、第1増幅部112aの出力と第2増幅部112bの出力の差分にもとづいて、SUT1の透過率の変動ΔTに比例するQBDの出力信号Iを生成する。 The difference detection unit 114 generates a QBD output signal I proportional to the fluctuation ΔT of the transmittance of SUT1 based on the difference between the output of the first amplification unit 112a and the output of the second amplification unit 112b.

 処理部110における処理は、アナログ信号処理であってもよいし、デジタル信号処理であってもよいし、それらの組み合わせであってもよい。 The processing in the processing unit 110 may be analog signal processing, digital signal processing, or a combination thereof.

 QBDの動作を説明するために、まずスクイーズド真空場がビームスプリッタBSに注入されない場合を考える。これは古典的なバランス検出であり、入力コヒーレント光の強度ゆらぎが第1フォトダイオードPD1、第2フォトダイオードPD2の出力(光電流)にコモンモード変動(同相成分の変動)を引き起こす。コモンモード変動は、2つの光電流を差し引くことで相殺できる。ただし、ビームスプリッタBSはコヒーレント光の光子を確率的に分割するため、2つのフォトダイオードの光電流のショットノイズは無相関であり、減算によって除去することはでない。 In order to explain the operation of QBD, first consider the case where the squeezed vacuum field is not injected into the beam splitter BS. This is a classical balance detection, in which fluctuations in the intensity of input coherent light cause common mode fluctuations (fluctuations of in-phase components) in the outputs (photocurrents) of the first photodiode PD1 and the second photodiode PD2. Common mode fluctuations can be offset by subtracting the two photocurrents. However, since the beam splitter BS stochastically divides the photons of the coherent light, the shot noise of the photocurrents of the two photodiodes is uncorrelated and cannot be removed by subtraction.

 これに対してQBDでは、適切に制御された位相を持つスクイーズド真空場がビームスプリッタBSに導入され、ショットノイズが互いにもつれ合っている2つの出力モードが生成される。バランス検出によって、もつれ合うショットノイズを含む2つの光電流を差し引くことで、ショットノイズが抑制され、SQLよりも高いSNRで超高感度の透過測定を実現できる。 On the other hand, in QBD, a squeezed vacuum field with an appropriately controlled phase is introduced into the beam splitter BS, and two output modes in which shot noise is entangled with each other are generated. By subtracting two optical currents including entangled shot noise by balance detection, shot noise is suppressed, and ultra-sensitive transmission measurement can be realized with an SNR higher than SQL.

 以上が光測定装置100の構成である。続いてQBDの原理について詳しく説明する。 The above is the configuration of the optical measuring device 100. Next, the principle of QBD will be described in detail.

 QBDの原理は、ビームスプリッタBSの入力モードと出力モードの波動関数を考慮することで直感的に理解できる。一般性を失うことなく、α=x+ipで表されるコヒーレント光の複素振幅が実数(つまり、p=0)であると仮定する。また、簡単にするためにT=1と仮定する。 The principle of QBD can be intuitively understood by considering the wave functions of the input mode and the output mode of the beam splitter BS. Without loss of generality, it is assumed that the complex amplitude of the coherent light represented by α = x 0 + ip 0 is a real number (ie, p 0 = 0). Also, for the sake of simplicity, it is assumed that T 2 = 1.

 図2(a),(b)は、スクイーズド真空場を注入しないバランス検出の場合の、ビームスプリッタBSの入力および出力における2モード波動関数Ψ(xa,xb)を示す図である。 2 (a) and 2 (b) are diagrams showing a two-mode wave function Ψ (x a , x b ) at the input and output of the beam splitter BS in the case of balance detection without injecting a squeezed vacuum field.

 二次元波動関数Ψ(xa,xb)を考える。その絶対値の二乗|Ψ(xa,xb)|は確率密度を与える。ここで、xとxは、ビームスプリッタBSの入力の2つのモードに対応する調和振動子の位置を表す(詳細については、付録A.1を参照)。まず、コヒーレント光と(スクイーズドされていない)真空場がビームスプリッタBSに注入される、スクイーズド真空場なしのケースについて説明する。コヒーレント光と真空場の波動関数は、それぞれxと0を中心とするガウス波動関数であり、分散は同じである(つまり、量子ゆらぎ)。したがって、2モード波動関数は、(xa,xb)=(x,0)を中心とする2次元の円形ガウス関数となる。(図2(a))。ビームスプリッタBSの出力では、波動関数はx-x平面でθ=arccos√Tだけ回転する。(図2(b))。結果として得られる2次元の円形ガウス関数は、xとxの波動関数の積で表すことができる。これは、2つのモードが分離可能であり、xとxの間に相関関係がないことを示している。したがって、2つの出力モードのxとxのゆらぎ(つまり、ショットノイズ)は互いに独立しており(無相関)、バランス検出では相殺できない。 Consider a two-dimensional wavefunction Ψ (x a , x b ). The square of its absolute value | Ψ (x a , x b ) | 2 gives the probability density. Here, x a and x b represent the positions of the harmonic oscillators corresponding to the two modes of input of the beam splitter BS (see Appendix A.1 for details). First, a case without a squeezed vacuum field where coherent light and a (non-squeezed) vacuum field are injected into the beam splitter BS will be described. The wavefunctions of coherent light and vacuum field are Gaussian wavefunctions centered on x0 and 0 , respectively, and the dispersion is the same (that is, quantum fluctuation). Therefore, the two-mode wave function is a two-dimensional circular Gaussian function centered on (x a , x b ) = (x 0 , 0). (FIG. 2 (a)). At the output of the beam splitter BS, the wavefunction rotates by θ = arccos √ T 1 in the x a − x b plane. (FIG. 2 (b)). The resulting two-dimensional circular Gaussian function can be represented by the product of the wavefunctions x a and x b . This indicates that the two modes are separable and there is no correlation between x a and x b . Therefore, the fluctuations of x a and x b (that is, shot noise) of the two output modes are independent of each other (uncorrelated) and cannot be canceled by balance detection.

 図3(a),(b)は、スクイーズド真空場を注入するバランス検出の場合の、ビームスプリッタBSの入力および出力における2モード波動関数Ψ(xa,xb)を示す図である。 3 (a) and 3 (b) are diagrams showing a two-mode wave function Ψ (x a , x b ) at the input and output of the beam splitter BS in the case of balance detection in which a squeezed vacuum field is injected.

 スクイーズド真空場がビームスプリッタBSの入力ポートの1つに注入されると、スクイーズド真空場の波動関数はx軸に沿って圧縮されるため、2モード波動関数は2次元の楕円ガウス関数となる(図3(a))。ビームスプリッタBSの出力では、2モードの波動関数がθだけ回転する(図3(b))。xとxはもつれ合っており、xとxの独立した波動関数に分離できない(つまりxとxの波動関数の積で表すことができない)。したがって、ビームスプリッタBSの2つの出力ポートでの光のショットノイズは互いに相関を有しており、バランス検出による減算によりそれらを相殺することができ、ショットノイズをSQL未満に抑えることができる。 When a squeezed vacuum field is injected into one of the input ports of the beam splitter BS, the wavefunction of the squeezed vacuum field is compressed along the xb axis, so the two-mode wavefunction is a two-dimensional elliptical Gaussian function. (Fig. 3 (a)). At the output of the beam splitter BS, the wave function of the two modes rotates by θ (FIG. 3 (b)). x a and x b are entangled and cannot be separated into independent wave functions of x a and x b (that is, they cannot be represented by the product of the wave functions of x a and x b ). Therefore, the shot noises of light at the two output ports of the beam splitter BS are correlated with each other and can be offset by subtraction by balance detection, and the shot noise can be suppressed to less than SQL.

 ここまでの説明では、SUT1の透過率Tが1であることを仮定したが、任意の透過率T<1の場合についても説明することができる。そのために、コヒーレント光、スクイーズド真空場、およびSUT1との相互作用(ここでは損失)により導入された真空場の波動関数の積である3モード波動関数Ψ(xa,xb,xc)を考える。xは、3つめのモード、すなわちSUT1の作用(ここでは損失)により導入される真空場の調和振動子の位置を表す。 In the description so far, it is assumed that the transmittance T 2 of the SUT 1 is 1, but a case where an arbitrary transmittance T 2 <1 can also be described. Therefore, the three-mode wavefunction Ψ (x a , x b , x c ), which is the product of the wavefunctions of the vacuum field introduced by the coherent light, the squeezed vacuum field, and the interaction with SUT1 (here, the loss). think of. x c represents the position of the harmonic oscillator in the vacuum field introduced by the third mode, the action of SUT1 (here loss).

 xにより、3モード波動関数Ψ(xa,xb,xc)は、3次元の楕円ガウス関数を構成することとなる。ビームスプリッタBSは楕円をxa-xb平面で回転させ、SUT1の損失は楕円をx-x平面で回転させる。|Ψ(xa,xb,xc)|で与えられる確率分布をxaxb平面に投影することにより、SUT1の損失がSNRにどのように影響するかを確認できる。 With x c , the three-mode wavefunction Ψ (x a , x b , x c ) constitutes a three-dimensional elliptical Gaussian function. The beam splitter BS rotates the ellipse in the x a -x b plane, and the loss of SUT1 rotates the ellipse in the x b -x c plane. By projecting the probability distribution given by | Ψ (x a , x b , x c ) | 2 onto the x a − x b plane, it is possible to confirm how the loss of SUT1 affects the SNR.

 QBDのパフォーマンスを、古典的なバランス検出および振幅スクイーズと比較するために、QBDのSNRの量子力学的計算を行う。付録A.2で説明されている計算により、SNRを表す閉形式の式(1)が得られる。 Quantum mechanical calculation of SNR of QBD is performed to compare the performance of QBD with classical balance detection and amplitude squeeze. Appendix A. By the calculation described in 2, a closed form equation (1) representing SNR is obtained.

Figure JPOXMLDOC01-appb-M000001
 ここで、e-2r(r≧0)は、スクイーズド真空場のスクイージングレベルを表す。ここで、SNRは、振幅比ではなく、信号とノイズの間の電力比として定義されていることに注意されたい。αはコヒーレント光の複素振幅であるため、|α|は、注目する単一の時間-周波数/空間モードでの光子の数に対応する。
Figure JPOXMLDOC01-appb-M000001
Here, e -2r (r ≧ 0) represents the squeezing level of the squeezed vacuum field. Note that SNR is defined here as the power ratio between the signal and the noise, not the amplitude ratio. Since α is the complex amplitude of coherent light, | α | 2 corresponds to the number of photons in the single time-frequency / spatial mode of interest.

 SUT1の損失が無視できる場合、つまりT→1であるとき、SNRは式(2)で表される。

Figure JPOXMLDOC01-appb-M000002
When the loss of SUT1 is negligible, that is, T2 → 1, the SNR is expressed by the equation ( 2 ).
Figure JPOXMLDOC01-appb-M000002

 式(2)から以下のことが分かる。
 1. 第1に、SNRは、スクイージングレベルを上げることで改善でき、ビームスプリッタBSの透過率に制限されない。これは、ビームスプリッタBSの変位に基づく振幅スクイーズとは対照的である。ビームスプリッタBSの有限の分割比は、スクイーズド真空場の望ましくない劣化を引き起こし、付録A.3の達成可能なスクイージングレベル(式(A32)を参照)を制限する。対照的に、QBDは、ビームスプリッタBSの両方の出力を検出するため、ビームスプリッタBSによるスクイージングレベルの制限を克服することができ、適度な分割比のビームスプリッタBSを使用することが可能となる。
The following can be seen from equation (2).
1. 1. First, the SNR can be improved by increasing the squeezing level and is not limited to the transmittance of the beam splitter BS. This is in contrast to the amplitude squeeze based on the displacement of the beam splitter BS. The finite split ratio of the beam splitter BS causes undesired degradation of the squeezed vacuum field, and Appendix A. Limit the achievable squeezing level of 3 (see equation (A32)). In contrast, the QBD detects both outputs of the beam splitter BS, which allows it to overcome the squeezing level limitation of the beam splitter BS and allows the use of a beam splitter BS with a moderate split ratio. ..

 2. 第2に、|α|(つまり、SUT1を通過する光パワー)が一定に保たれている場合、SNRは(1-T)に比例する。したがって、SNRはTが減少するにつれて向上する。ただしこのとき|α|を一定にするには、|α|(つまり、コヒーレント光源の光パワー)を増加する必要がある。 2. 2. Second, if | α | 2 T 1 (ie, the optical power passing through SUT 1) is kept constant, the SNR is proportional to (1-T 1 ). Therefore, the SNR increases as T 1 decreases. However, at this time, in order to make | α | 2 T 1 constant, it is necessary to increase | α | 2 (that is, the optical power of the coherent light source).

 次に、SUT1の光損失がスクイージングレベルにどのように影響するかを説明する。実際には不可能であるが、式(1)のr→∞の極限を取ると、式(3)を得る。

Figure JPOXMLDOC01-appb-M000003
Next, how the light loss of SUT1 affects the squeezing level will be described. Although it is not possible in practice, the equation (3) is obtained by taking the limit of r → ∞ in the equation (1).
Figure JPOXMLDOC01-appb-M000003

 式(3)は、|α|が一定に保たれている場合、SNRの上限はTに依存しないことを示唆する。上述のようにSNRは(1-T)に依存するため、これは直感に反する(式(2))が、この点は次のように理解できる。SUT1を通過するスクイーズド真空場の量も小さくなるため、Tが増加するにつれて、スクイージングレベルに対するSUT1の光損失の影響は小さくなる。これにより、TへのSNR依存性が補正されるため、SUT1の光損失によるSNRの制限はTに依存しない。 Equation (3) suggests that the upper limit of SNR does not depend on T 1 when | α | 2 T 1 is kept constant. Since the SNR depends on (1-T 1 ) as described above, this is counterintuitive (Equation (2)), but this point can be understood as follows. Since the amount of squeezed vacuum field passing through SUT 1 is also small, the effect of light loss of SUT 1 on the squeezing level becomes smaller as T 1 increases. As a result, the SNR dependence on T 1 is corrected, so that the SNR limitation due to the optical loss of SUT 1 does not depend on T 1 .

(用途)
 続いて、QBDをSRS(Stimulated Raman Scattering)顕微鏡に適用する方法について説明する。これは、最近、分子振動コントラストを使用した生物学的イメージングの強力な方法と考えられている[非特許文献22-27]。SRS顕微鏡のSNRは、ショットノイズによって制限されることが知られている[非特許文献22,23,28,29]。
(Use)
Subsequently, a method of applying the QBD to an SRS (Stimulated Raman Scattering) microscope will be described. This has recently been considered a powerful method of biological imaging using molecular vibrational contrast [Non-Patent Documents 22-27]. It is known that the SNR of an SRS microscope is limited by shot noise [Non-Patent Documents 22, 23, 28, 29].

 SRS顕微鏡の量子増強が最近報告されたが[非特許文献13,15]、古典的なSRS顕微鏡のSNRを超えることは依然として困難である。なぜなら、その量子増強は、変位したスクイーズド真空場[非特許文献13]またはシードされたOPA[非特許文献15]を利用するため、イメージング実験で使用された光パワーは数ミリワットであり、SRS顕微鏡の典型的な光パワーよりも1桁低いからである[非特許文献24,27]。 Quantum enhancement of SRS microscopes has recently been reported [Non-Patent Documents 13, 15], but it is still difficult to exceed the SNR of classical SRS microscopes. Because the quantum enhancement utilizes a displaced squeezed vacuum field [Non-Patent Document 13] or a seeded OPA [Non-Patent Document 15], the optical power used in the imaging experiment is several milliwatts and the SRS. This is because it is an order of magnitude lower than the typical optical power of a microscope [Non-Patent Documents 24 and 27].

 SRS顕微鏡は、ポンプパルスおよびストークスパルスと呼ばれるピコ秒パルスの2色同期列を使用する。ポンプおよびストークスパルスの典型的な波長は、0.7μmから1.1μmの範囲である。ストークスパルスが時間軸上で強度変調され、ポンプパルスとストークスパルスが合波され、サンプルにフォーカスされる。焦点ボリューム内の分子がラマン活性振動モードを有し、その共鳴周波数ωがポンプパルスとストークスパルスの周波数差(ω-ω)に一致する場合に、SRSが発生する。SRSはポンプパルスの減衰とストークスパルスの増幅を引き起こすため、ストークスパルスの強度変調はSRSを介してポンプパルスに転写される。転写された変調を検出するために、送信されたビームは別の対物レンズによって集光(コリメート)され、ポンプパルスが光学フィルタによって抽出され、光検出器によって検出される。フォトダイオードにおける典型的な光パワーは10~30mWである。フォトダイオードにおける光電流は転写された強度変調成分を含んでおり、強度変調成分が、ストークスパルスの変調と同期したロックインアンプによってロックイン検出され、SRS信号が取得される。1次元あるいは2次元のイメージングは、レーザビームまたはサンプルの位置をスキャンすることによって行われる。 The SRS microscope uses a two-color sync sequence of picosecond pulses called pump pulses and Stokes pulses. Typical wavelengths for pumps and Stokes pulses range from 0.7 μm to 1.1 μm. The Stokes pulse is intensity modulated on the time axis, the pump pulse and the Stokes pulse are combined and focused on the sample. SRS occurs when the molecule in the focal volume has a Raman active oscillation mode and its resonance frequency ω R matches the frequency difference (ω p −ω s ) between the pump pulse and the Stokes pulse. Since the SRS causes the pump pulse to decay and the Stokes pulse to be amplified, the Stokes pulse intensity modulation is transferred to the pump pulse via the SRS. To detect the transferred modulation, the transmitted beam is focused by another objective lens, the pump pulse is extracted by an optical filter and detected by a photodetector. A typical optical power in a photodiode is 10 to 30 mW. The photocurrent in the photodiode contains a transferred intensity modulation component, and the intensity modulation component is locked in by a lock-in amplifier synchronized with the modulation of the Stokes pulse, and an SRS signal is acquired. One-dimensional or two-dimensional imaging is performed by scanning the position of the laser beam or sample.

 図4は、量子増強を伴うSRS顕微鏡(QE-SRS顕微鏡ともいう)200を示す図である。QE-SRS顕微鏡200は、一般的なSRS顕微鏡202に、ビームスプリッタBSおよび第2フォトダイオードPD2を追加した構成を有する。図4では、1次元あるいは2次元のイメージングのためのスキャン機構は省略されている。 FIG. 4 is a diagram showing an SRS microscope (also referred to as a QE-SRS microscope) 200 with quantum enhancement. The QE-SRS microscope 200 has a configuration in which a beam splitter BS and a second photodiode PD2 are added to a general SRS microscope 202. In FIG. 4, the scanning mechanism for one-dimensional or two-dimensional imaging is omitted.

 SRS顕微鏡202は、ダイクロイックミラーDM、対物レンズOB1,OB2,フィルタF、第1フォトダイオードPD1、処理部210を備える。 The SRS microscope 202 includes a dichroic mirror DM, objective lenses OB1, OB2, a filter F, a first photodiode PD1, and a processing unit 210.

 SUT1は、一対の対物レンズOB1,OB2の間に配置される。ポンプパルス12とパルススクイーズド真空場14がビームスプリッタBSに注入され、合波される。ビームスプリッタBSの2つの出力の一方18は、第2フォトダイオードPD2によって直接検出され、他方16は、SRS顕微鏡202に導かれる。 SUT1 is arranged between the pair of objective lenses OB1 and OB2. The pump pulse 12 and the pulse squeezed vacuum field 14 are injected into the beam splitter BS and combined. One of 18 of the two outputs of the beam splitter BS is directly detected by the second photodiode PD2, and the other 16 is guided to the SRS microscope 202.

 SRS顕微鏡202のダイクロイックミラーDMおいて、パルス16がストークスパルス20と合波され、合波された光22が対物レンズOB1によってSUT1に集光される。SUT1の出力光(誘導ラマン散乱の散乱光)24から、ストークスパルス20がフィルタFによって除去された後の光(つまりポンプパルス)26が、第1フォトダイオードPD1によって検出される。ダイクロイックミラーDM、対物レンズOB1,OB2、フィルタFなどの光学系の合成透過率は、上述した透過率Tに対応する。誘導ラマン損失によるSUT1の透過率の変化は、上述のΔTに対応する。 In the dichroic mirror DM of the SRS microscope 202, the pulse 16 is combined with the Stokes pulse 20, and the combined light 22 is focused on the SUT 1 by the objective lens OB1. From the output light (scattered light of induced Raman scattering) 24 of the SUT 1, the light (that is, the pump pulse) 26 after the Stokes pulse 20 is removed by the filter F is detected by the first photodiode PD1. The combined transmittance of the optical system such as the dichroic mirror DM, the objective lenses OB1 and OB2, and the filter F corresponds to the above - mentioned transmittance T2. The change in the transmittance of SUT1 due to the induced Raman loss corresponds to the above-mentioned ΔT.

 処理部210において、適切なゲイン調整を行った後、2つの第1フォトダイオードPD1、第2フォトダイオードPD2の出力(光電流)を差し引くことで、ショットノイズを抑制することができる。処理部210の第1増幅部212aは、第1フォトダイオードPD1の出力を、(1-T)に実質的に比例するように定めた第1ゲインGで増幅する。第2増幅部212bは、第2フォトダイオードPD2の出力を、Tに実質的に比例するように定めた第2ゲインGで増幅する。差分検出部214は、第1増幅部212aの出力と第2増幅部212bの出力の差分にもとづいて、SUT1の透過率の変動ΔTに比例するQBDの出力信号Iを生成する。 Shot noise can be suppressed by subtracting the outputs (photocurrents) of the two first photodiodes PD1 and the second photodiode PD2 after making appropriate gain adjustments in the processing unit 210. The first amplification unit 212a of the processing unit 210 amplifies the output of the first photodiode PD1 with a first gain G1 determined to be substantially proportional to (1-T 1 ). The second amplification unit 212b amplifies the output of the second photodiode PD2 with a second gain G 2 determined to be substantially proportional to T 1 T 2 . The difference detection unit 214 generates a QBD output signal I proportional to the variation ΔT of the transmittance of the SUT 1 based on the difference between the output of the first amplification unit 212a and the output of the second amplification unit 212b.

 またロックイン検出器216は、減算された光電流をロックイン検出する。ロックイン検出器216によって、SQLよりも高いSNRのSRS信号を得ることができる。 The lock-in detector 216 also detects the subtracted photocurrent as lock-in. The lock-in detector 216 can obtain an SRS signal with an SNR higher than that of SQL.

 QE-SRS顕微鏡の実験結果を説明する。 The experimental results of the QE-SRS microscope will be explained.

 図5は、QE-SRS顕微鏡300のセットアップを示す図である。QE-SRS顕微鏡300は、図4のQBD-SRS顕微鏡200に加えて、ポンプパルス発生器310、スクイーズド真空場発生器320、ストークスパルス発生器330を備える。 FIG. 5 is a diagram showing the setup of the QE-SRS microscope 300. The QE-SRS microscope 300 includes a pump pulse generator 310, a squeezed vacuum field generator 320, and a Stokes pulse generator 330 in addition to the QBD-SRS microscope 200 of FIG.

 ポンプパルス発生器310は、ポンプパルス12を生成する。ポンプパルス発生器310は、チタンサファイアレーザ312、ビームスプリッタBS1、AOM314、SLM316を含む。チタンサファイアレーザ312は、ポンプパルスを生成する。チタンサファイアレーザ312が生成したポンプパルスの一部は、ビームスプリッタBS1を通過し、AOM314に入射する。AOM314は、ポンプパルスの位相を調節するために設けられる。SLM316は、AOM314の出力光をビーム整形し、ポンプパルス12として出力する。 The pump pulse generator 310 generates the pump pulse 12. The pump pulse generator 310 includes a titanium sapphire laser 312, a beam splitter BS1, AOM314, and SLM316. The titanium sapphire laser 312 produces a pump pulse. A part of the pump pulse generated by the titanium sapphire laser 312 passes through the beam splitter BS1 and is incident on the AOM314. The AOM314 is provided to adjust the phase of the pump pulse. The SLM316 beam-shapes the output light of the AOM314 and outputs it as a pump pulse 12.

 スクイーズド真空場発生器320には、ポンプパルス発生器310のビームスプリッタBS1によって分岐されたポンプパルス22が入力される。ミラーM1は、ポンプパルス発生器310からのポンプパルス22を、二次高調波発生器322に導く。二次高調波発生器322は、ポンプパルス22の二次高調波24を生成する。 The pump pulse 22 branched by the beam splitter BS1 of the pump pulse generator 310 is input to the squeezed vacuum field generator 320. The mirror M1 guides the pump pulse 22 from the pump pulse generator 310 to the second harmonic generator 322. The second harmonic generator 322 generates the second harmonic 24 of the pump pulse 22.

 OPA324はスクイーザであり、OPA324には二次高調波24のポンプ光のみが注入され、基本波ωのシード光は注入されず、スクイーズド真空場14が生成される。OPA324は、シングルパスの周期分極反転定比組成タンタル酸リチウム(PPSLT:Periodically Poled Stoichiometric LiTaO3)導波路を用いて構成される。 The OPA324 is a squeezer, and only the pump light of the second harmonic 24 is injected into the OPA324, the seed light of the fundamental wave ω is not injected, and the squeezed vacuum field 14 is generated. The OPA324 is constructed using a single-pass periodic polarization inversion constant ratio composition lithium tantalate (PPSLT: Periodically Poled Stoichiometric LiTaO 3 ) waveguide.

 ストークスパルス発生器330は、Ybファイバーレーザ332および波長スキャナ334を含む。ハイパースペクトルSRS測定のために、ストークスパルス20の波長は、約30nmにわたる波長調整範囲で調節可能である。 The Stokes pulse generator 330 includes a Yb fiber laser 332 and a wavelength scanner 334. For hyperspectral SRS measurements, the wavelength of the Stokes pulse 20 is adjustable over a wavelength adjustment range of about 30 nm.

 QBD-SRS顕微鏡200の構成は図4を参照して説明した通りであるが、図5では一部を簡略化して示している。QE-SRS信号の検出には、自家製のバランス型光検出器を使用しており、高周波スペクトラムアナライザ(RFSA:Radio Frequency Spectrum Analyzer)を含む。 The configuration of the QBD-SRS microscope 200 is as described with reference to FIG. 4, but FIG. 5 shows a part thereof in a simplified manner. A home-made balanced photodetector is used to detect the QE-SRS signal, and a high-frequency spectrum analyzer (RFSA: Radio Frequency Spectrum Analyzer) is included.

 続いて実験結果を説明する。 Next, the experimental results will be explained.

 図6は、ジメチルスルホキシド-d6(d-DMSO)のSRSスペクトルの測定結果を示す図である。図6には、(i)スクイーズド真空場を注入しない場合、(ii)スクイーズド真空場を注入した場合であって、ポンプパルスの位相を最適化した場合、(iii)スクイーズド真空場を注入した場合であって、ポンプパルスの位相が不適切な場合を示す。スクイーズド真空場を注入し、ポンプパルスの位相を最適化することにより、スクイーズド真空場を注入しない場合に比べて、ノイズレベルを2.06dB、低下させることができる。 FIG. 6 is a diagram showing the measurement results of the SRS spectrum of dimethyl sulfoxide-d6 (d-DMSO). FIG. 6 shows (i) when the squeezed vacuum field is not injected, (ii) when the squeezed vacuum field is injected, and when the phase of the pump pulse is optimized, (iii) the squeezed vacuum field is used. The case where the injection is made and the phase of the pump pulse is inappropriate is shown. By injecting a squeezed vacuum field and optimizing the phase of the pump pulse, the noise level can be reduced by 2.06 dB as compared with the case where the squeezed vacuum field is not injected.

 図7は、サンプルを配置しない場合のスクイージングの評価結果を示す図である。図7には、(i)スクイーズド真空場を注入しない場合のノイズ(ショットノイズ)、(ii)スクイーズド真空場を注入した場合のノイズ(スクイーズドノイズ)および(iii)熱雑音が示される。測定中、AOM314によってポンプパルスの周波数ω(位相)を時間とともに変化させることにより、スクイーズドノイズは脈動しており、スクイーズド真空場が生成できていることが実証された。位相が最適な状態(脈動の谷)において、スクイーズドノイズとショットノイズの差分は3dBより大きく、したがって、3dBを超えるスクイージングレベルが実現できていることが分かる。 FIG. 7 is a diagram showing the evaluation result of squeezing when the sample is not arranged. FIG. 7 shows (i) noise when the squeezed vacuum field is not injected (shot noise), (ii) noise when the squeezed vacuum field is injected (squeezed noise), and (iii) thermal noise. .. During the measurement, it was demonstrated that the squeezed noise was pulsating and the squeezed vacuum field could be generated by changing the frequency ω (phase) of the pump pulse with time by AOM314. It can be seen that the difference between the squeezed noise and the shot noise is larger than 3 dB in the optimum phase state (valley of pulsation), and therefore a squeezing level exceeding 3 dB can be realized.

 なお、スクイージングレベルは、主にキュベットに収容されるサンプルを通過する際の散乱損失によって制限されている。 The squeezing level is mainly limited by the scattering loss when passing through the sample contained in the cuvette.

 QBDは、10mWを超える比較的高い平均電力を使用する光学測定で量子増強を採用するのに有利である。以前の量子増強分光法では、分割率が1~2%のビームスプリッタが使用されており[非特許文献12,13]、これにより、サンプルを通過する光の利用可能な光パワーが制限されていた。サンプルを通過する光パワーを高めるために、平均出力数ワットの高出力レーザ光源を使用することも可能であるが、そのような方法は実用的な観点から効率的とは言えない。これに対して量子増強をQBDと組み合わせることにより、レーザ光源の光パワーを下げながら、サンプルに照射する光の平均パワーを上げることができる。 QBD is advantageous for adopting quantum enhancement in optical measurements using relatively high average power over 10 mW. Previous quantum augmentation spectroscopy used beam splitters with a split ratio of 1-2% [Non-Patent Documents 12, 13], which limits the available optical power of light passing through the sample. rice field. It is possible to use a high power laser source with an average power of several watts to increase the light power through the sample, but such a method is not efficient from a practical point of view. On the other hand, by combining quantum enhancement with QBD, the average power of the light irradiating the sample can be increased while reducing the optical power of the laser light source.

 式(2)によると、量子増強なしのバランス検出では、2つのフォトダイオードがショットノイズに寄与するため、バランス検出なしの場合よりもSNRが低くなることに留意されたい。たとえば、ビームスプリッタの分割比が50:50の場合、スクイーズなしのバランス検出のSNRは、単一のフォトダイオードの場合よりも3dB低くなる。したがって、スクイージングレベルは、量子増強を実現するために十分に高く(<-3 dB)する必要がある。より低い分割比(たとえば、30:70)のBSを使用すると、SNRがある程度増加する可能性があるが、一方のフォトダイオードPD2には、SUTを通過するよりも強い光が入射するため、フォトダイオードPD2が飽和する可能性がある。飽和は、追加のビームスプリッタによって光を複数に分割し、複数のフォトダイオードですべての出力光を並列に受信することで軽減することができる。 Note that according to equation (2), in balance detection without quantum enhancement, the SNR is lower than in the case without balance detection because the two photodiodes contribute to shot noise. For example, when the beam splitter splits at 50:50, the SNR for balance detection without squeeze is 3 dB lower than with a single photodiode. Therefore, the squeezing level needs to be high enough (<-3 dB) to achieve quantum enhancement. Using a BS with a lower division ratio (eg, 30:70) can increase the SNR to some extent, but because one photodiode PD2 receives stronger light than it passes through the SUT, the photo The diode PD2 may saturate. Saturation can be mitigated by splitting the light into multiples with an additional beam splitter and receiving all output light in parallel with multiple photodiodes.

 QBDをSRS顕微鏡に適用するにはいくつかの課題が残っている。最も重要なのは高透過率の光学系を実現することである。これは、光損失が式(1)に従ってスクイージングレベルを低下させ、またSNRの上限を設定するからである。したがって、高透過率の対物レンズを使用することが重要である[非特許文献14,15]。高い空間分解能を実現するには、対物レンズの入力でビームを拡大することが重要であるが、ビームの一部がレンズの瞳によって遮られるため、不要な光損失が発生する。この影響を回避するには、1対のアキシコン[非特許文献30]などのビーム成形光学系が有用である。さらに、スクイージングレベルの低下を回避するために、高い量子効率と低い熱雑音を有するフォトダイオードを採用することが望ましい。 Some issues remain in applying QBD to SRS microscopes. The most important thing is to realize a high transmittance optical system. This is because the light loss lowers the squeezing level according to equation (1) and sets the upper limit of SNR. Therefore, it is important to use an objective lens with high transmittance [Non-Patent Documents 14 and 15]. In order to achieve high spatial resolution, it is important to magnify the beam at the input of the objective lens, but since a part of the beam is blocked by the pupil of the lens, unnecessary light loss occurs. To avoid this effect, a pair of beam forming optical systems such as Axicon [Non-Patent Document 30] is useful. Further, in order to avoid a decrease in the squeezing level, it is desirable to adopt a photodiode having high quantum efficiency and low thermal noise.

 パルススクイーズ技術に関しては、シングルパス導波路OPA[非特許文献31]または同期励起OPO[非特許文献32]を使用して、これまでに約-6dBの優れたスクイージングレベルが達成されている。SRS顕微鏡への応用では、OPAによって生成されるスクイーズド真空場の帯域幅がOPOによって生成される帯域幅よりも広く、SRS検出に十分な変調帯域幅をサポートできるため、導波路型OPAが最初の選択肢となる。さらに、導波路型OPAの使用は、ポンプモードと信号モード間のモードの不一致によるバルクOPAのスクイージングレベルの厳しい制限を緩和できるため、不可欠である[非特許文献33,34]。それでも、高いスクイージングレベルを実現するには、OPAを注意深く設計することが重要となる。[非特許文献35]。 Regarding the pulse squeeze technology, an excellent squeezing level of about -6 dB has been achieved so far by using the single-pass waveguide OPA [Non-Patent Document 31] or the synchronous excitation OPO [Non-Patent Document 32]. In applications to SRS microscopes, waveguide OPA is the first because the bandwidth of the squeezed vacuum field generated by OPA is wider than the bandwidth generated by OPA and can support a sufficient modulation bandwidth for SRS detection. It becomes an option of. Furthermore, the use of waveguide OPA is essential because it can alleviate the strict restrictions on the squeezing level of bulk OPA due to the mode mismatch between the pump mode and the signal mode [Non-Patent Documents 33, 34]. Nevertheless, careful design of the OPA is important for achieving high squeezing levels. [Non-Patent Document 35].

(変形例)
 上述した実施形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なことが当業者に理解される。以下、こうした変形例について説明する。
(Modification example)
It will be appreciated by those skilled in the art that the embodiments described above are exemplary and that various modifications are possible for each of these components and combinations of processing processes. Hereinafter, such a modification will be described.

 上述のSRS顕微鏡においては、第1フォトダイオードPD1によって、ポンプパルスの進行方向のSRSを検出する透過型としたがその限りでなく、ポンプパルスの進行方向とは逆方向に散乱する後方散乱光を検出する反射型であってもよい。 In the above-mentioned SRS microscope, the first photodiode PD1 is used to detect SRS in the traveling direction of the pump pulse, but this is not the case, and backscattered light scattered in the direction opposite to the traveling direction of the pump pulse is emitted. It may be a reflective type to detect.

 実施形態に係る光測定装置の用途はSRS顕微鏡には限定されない。たとえば図5の構成において、波長スキャナ334によってストークスパルスの波長を掃引することにより、SRS分光測定を行ってもよい。 The application of the optical measuring device according to the embodiment is not limited to the SRS microscope. For example, in the configuration of FIG. 5, SRS spectroscopic measurement may be performed by sweeping the wavelength of the Stokes pulse with the wavelength scanner 334.

 SRS顕微鏡やSRS分光器の他、実施形態に係る光測定装置は、フォトサーマルイメージング[非特許文献38]や誘導放出顕微法[非特許文献39]、二光子吸収顕微鏡[非特許文献40]をはじめとするさまざまなイメージング、分光測定に適用できる。 In addition to the SRS microscope and SRS spectroscope, the optical measuring device according to the embodiment includes photothermal imaging [Non-Patent Document 38], guided emission microspectroscopy [Non-Patent Document 39], and two-photon absorption microscope [Non-Patent Document 40]. It can be applied to various imaging and spectroscopic measurements including.

 実施形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにさまざまな変形例が存在すること、またそうした変形例も本開示または本発明の範囲に含まれることは当業者に理解されるところである。 It will be appreciated by those skilled in the art that embodiments are exemplary and that there are various variations in each of these components and combinations of processing processes, and that such modifications are also within the scope of the present disclosure or the invention. It is about to be.

(付録)
 A.1 QBDにおける波動関数
 ここでは、コヒーレント状態|α>とスクイーズド真空場の波動関数をまとめる[非特許文献36,37]。位置演算子x^と運動量演算子p^は、交換関係[x^,p^] = i/2を満たし、したがって、運動量演算子p^は、xの関数として、
 p^ = -(i/2)(d/dx)
を満たすと仮定する。
(appendix)
A. 1 Wave function in QBD Here, the wave function of the coherent state | α> and the squeezed vacuum field is summarized [Non-Patent Documents 36 and 37]. The position operator x ^ and the momentum operator p ^ satisfy the commutation relation [x ^, p ^] = i / 2, so the momentum operator p ^ is a function of x,
p ^ =-(i / 2) (d / dx)
Suppose it meets.

 [a^,a^] = 1 を満たす消滅演算子a^ = x^ + ipと生成演算子a^ = x^ - ipを使用すると、時間-周波数/空間モードに対応する調和振動子のハミルトニアンは、
 H^ = hbarω(x^2 + p^2) = hbarω(a^a^ + 1/2)
と表される。ここでhbarは換算プランク定数であり、プランク定数hを2πで除した値である。ωは検討中の光の角周波数である。
[a ^, a ^ ] = 1 If you use the annihilation operator a ^ = x ^ + ip and the generation operator a ^ = x ^-ip, the harmonic oscillator corresponding to the time-frequency / spatial mode Hamiltonian
H ^ = h bar ω (x ^ 2 + p ^ 2 ) = h bar ω (a ^ a ^ + 1/2)
It is expressed as. Here, h bar is the converted Planck's constant, which is the value obtained by dividing the Planck's constant h by 2π. ω is the angular frequency of the light under consideration.

 <x|a^|0> = {x - (i/2)(d/dx) e-x^2} = 0および|| |0> ||2 = ∫-∞ | <a|0> |2dx = 1が成り立つから、調和振動子の基底状態<x|0>は、以下の式で表すことができる。
 <x|0> = (2/π)1/4e-x^2
<x | a ^ | 0> = {x-(i / 2) (d / dx) e -x ^ 2 } = 0 and || | 0> || 2 = ∫ -∞ | <a | 0> Since | 2 dx = 1, the ground state <x | 0> of the harmonic oscillator can be expressed by the following equation.
<x | 0> = (2 / π) 1/4 e -x ^ 2

 また、n光子状態は、以下の式で表される。
 |n> = (n!)-1/2 (a)n |a>
The n-photon state is expressed by the following equation.
| n> = (n!) -1/2 (a ) n | a>

 コヒーレント光の複素振幅α = x0 + ip0が実数(つまりp0 = 0)とすると、波動関数Ψα(x)は以下の式で表される。

Figure JPOXMLDOC01-appb-M000004
 ここで、D^(α)は変位演算子である。ここでは、x表記の変位演算子D^(x0)を用い、これにより波動関数をx0で表すことができる。 Assuming that the complex amplitude α = x 0 + ip 0 of coherent light is a real number (that is, p 0 = 0), the wave function Ψ α (x) is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000004
Here, D ^ (α) is a displacement operator. Here, the displacement operator D ^ (x 0 ) in x notation is used, so that the wave function can be expressed by x 0 .

 シュレーディンガー描像では、コヒーレント光の波動関数は時間とともに変化し、これは、角周波数ωで振動し、振幅が|α|であるガウシアン波束として知られる。

Figure JPOXMLDOC01-appb-M000005
In the Schrodinger picture, the wavefunction of coherent light changes over time, known as the Gaussian wave packet, which oscillates at the angular frequency ω and has an amplitude of | α |.
Figure JPOXMLDOC01-appb-M000005

 スクイーズド真空場の波動関数Ψs(x)は、以下の式で表される。S^(r)はスクイージング演算子であり、波動関数をe-r倍に縮小させる。

Figure JPOXMLDOC01-appb-M000006
The wave function Ψ s (x) of the squeezed vacuum field is expressed by the following equation. S ^ (r) is a squeezing operator that reduces the wavefunction by an e -r times.
Figure JPOXMLDOC01-appb-M000006

 これは、以下の式(A4)を考慮し、また、任意の関数φ(x)をスケーリングした関数er/2 φ(er x)が式(A5)を満たすことから理解される。

Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
This is understood from the fact that the following equation (A4) is taken into consideration, and that the function e r / 2 φ (er x) obtained by scaling an arbitrary function φ (x) satisfies the equation (A5).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008

 QBDでは、ビームスプリッタの2つの入力モードの量子状態を波動関数Ψ(xa,xb)で考える。ここで、xaとxbは、2つのモード(aとbで示される)に対応する調和振動子の位置を表す。モードaのコヒーレント状態をψa(xa)として、モードbのスクイーズド状態をψb(xb)として表すと、2つのモードの量子状態はψa(xa)とψb(xb)のテンソル積によって与えられ、これは2つの波動関数の積となる。

Figure JPOXMLDOC01-appb-M000009
In QBD, the quantum states of the two input modes of the beam splitter are considered by the wave function Ψ (x a , x b ). Here, x a and x b represent the positions of the harmonic oscillators corresponding to the two modes (indicated by a and b). Expressing the coherent state of mode a as ψ a (x a ) and the squeezed state of mode b as ψ b (x b ), the quantum states of the two modes are ψ a (x a ) and ψ b (x b ). ) Is given by the tensor product, which is the product of two wavefunctions.
Figure JPOXMLDOC01-appb-M000009

 ビームスプリッタの作用は、以下のようにユニタリ演算子を用いて表すことができる。

Figure JPOXMLDOC01-appb-M000010
 ここで、ビームスプリッタの透過率はcos2θである。H^BSはビームスプリッタのハミルトニアンであり、以下のように定義される。これは、角運動量やストークスパラメータS3と同じ形を有する。
Figure JPOXMLDOC01-appb-M000011
The action of the beam splitter can be expressed using the unitary operator as follows.
Figure JPOXMLDOC01-appb-M000010
Here, the transmittance of the beam splitter is cos 2 θ. H ^ BS is the Hamiltonian of the beam splitter and is defined as follows. It has the same shape as the angular momentum and the Stokes parameter S 3 .
Figure JPOXMLDOC01-appb-M000011

 したがって、U(θ)は回転による位相シフトとして定義される角運動量にしたがった位相シフトを与えるから、U(θ)Ψ(xa,xb)はΨ(xa,xb)を回転したものとなる。あるいは、波動関数の回転は、以下の式を計算することで得ることができる。

Figure JPOXMLDOC01-appb-M000012
 ここで、項-2i(xa^ pb^ - pa^ xb^)は、式(A7)の指数関数に現れるものと同じである。 Therefore, U (θ) Ψ (x a , x b ) rotates Ψ (x a , x b ) because U (θ) gives a phase shift according to the angular momentum defined as the phase shift due to rotation. It becomes a thing. Alternatively, the rotation of the wave function can be obtained by calculating the following equation.
Figure JPOXMLDOC01-appb-M000012
Here, the term -2i (x a ^ p b ^ --p a ^ x b ^) is the same as that appearing in the exponential function of equation (A7).

 A.2 QBD法におけるSNRの計算
 ハイゼンベルグ描像を使用して、QBD法のSNRを導出する。ここでは、生成演算子と消滅演算子が、ビームスプリッタ、スクイージングおよび損失によって変化する。コヒーレント光、スクイーズすべき真空場、SUTの損失によって導入される真空場の消滅演算子をそれぞれ、a1^,b1^,c1^と表記する。
A. 2 Calculation of SNR in the QBD method The SNR of the QBD method is derived using the Heisenberg picture. Here, the creation and annihilation operators change with beam splitters, squeezing and loss. The coherent light, the vacuum field to be squeezed, and the vacuum field annihilation operator introduced by the loss of SUT are written as a 1 ^, b 1 ^, and c 1 ^, respectively.

 スクイーズド真空場の消滅演算子b2^は、b1^の実数部をe-rでスクイーズし、虚数部をerでアンチスクイーズすることによって与えられる。

Figure JPOXMLDOC01-appb-M000013
The squeezed vacuum field annihilation operator b 2 ^ is given by squeezing the real part of b 1 ^ with e -r and anti-squeezing the imaginary part with er .
Figure JPOXMLDOC01-appb-M000013

 光がビームスプリッタを通過した後、出力モードの消滅演算子は、以下の式で与えられる。

Figure JPOXMLDOC01-appb-M000014
 SUTの損失は、入射する光に真空場を結合するから、SUTの出力光の消滅演算子は、以下の式で与えられる。
Figure JPOXMLDOC01-appb-M000015
After the light has passed through the beam splitter, the output mode annihilation operator is given by the following equation.
Figure JPOXMLDOC01-appb-M000014
Since the loss of the SUT couples a vacuum field to the incident light, the annihilation operator of the output light of the SUT is given by the following equation.
Figure JPOXMLDOC01-appb-M000015

 光検出器が入射光の光子数を検出することを考慮すると、QBD出力の演算子I^は次のように得られる。

Figure JPOXMLDOC01-appb-M000016
 ここでは、ΔTが非常に小さいため、I^のノイズへの影響は無視できると仮定する。I^のノイズを計算するには、次のようにI^にΔT= 0を代入してI0^を導出すればよい。
Figure JPOXMLDOC01-appb-M000017
Considering that the photodetector detects the number of photons of the incident light, the operator I ^ of the QBD output is obtained as follows.
Figure JPOXMLDOC01-appb-M000016
Here, it is assumed that the effect of I ^ on noise is negligible because ΔT is very small. To calculate the noise of I ^, substitute ΔT = 0 for I ^ to derive I 0 ^ as follows.
Figure JPOXMLDOC01-appb-M000017

 ここで、b2^b2^は、スクイーズした光子の数に対応する。これは、QBDで使用されるコヒーレント光の光子の数と比較して無視できる。c1^c1^は、真空中の光子の数であるためゼロである。b2^c1^ + b2^c1^もコヒーレント光を含まないため無視できる。したがって、主要なノイズ源は、コヒーレント光とスクイーズド真空場の間の干渉であり、以下の式で表される。

Figure JPOXMLDOC01-appb-M000018
 またコヒーレント光と真空場の干渉、すなわちショットノイズは、以下の式で表される。
Figure JPOXMLDOC01-appb-M000019
Where b 2 ^ b 2 ^ corresponds to the number of squeezed photons. This is negligible compared to the number of photons of coherent light used in QBD. c 1 ^ c 1 ^ is zero because it is the number of photons in vacuum. b 2 ^ c 1 ^ + b 2 ^ c 1 ^ also does not contain coherent light and can be ignored. Therefore, the main noise source is the interference between the coherent light and the squeezed vacuum field, which is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000018
The interference between coherent light and the vacuum field, that is, shot noise, is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000019

 QBDの出力の期待値は、I^と初期量子状態|Ψ>を使用することにより、以下のように導出される。

Figure JPOXMLDOC01-appb-M000020
The expected value of the output of QBD is derived as follows by using I ^ and the initial quantum state | Ψ>.
Figure JPOXMLDOC01-appb-M000020

 I1^とI2^の期待値はゼロであるため、I1^とI2^の分散の期待値はそれぞれ、次の式で与えられる。

Figure JPOXMLDOC01-appb-M000021
Since the expected values of I 1 ^ and I 2 ^ are zero, the expected values of the variances of I 1 ^ and I 2 ^ are given by the following equations, respectively.
Figure JPOXMLDOC01-appb-M000021

 したがって、SNRを、SNR = <I^>2 / (<I1^>2 + <I2^>2)と定義することにより、前出の式(1)を得る。 Therefore, by defining SNR as SNR = <I ^> 2 / (<I 1 ^> 2 + <I 2 ^> 2 ), the above equation (1) is obtained.

A.3 変位したスクイーズド真空場のSNRの計算
 QBDの利点を明らかにするために、変位したスクイーズド真空場を使用した透過率測定におけるSNRを導出する[非特許文献12,13]。ここでは、図1のフォトダイオードPDの1つ(PD1)のみを使用する。前節と同じ消滅演算子を使用して、フォトダイオードPDの出力信号の演算子を次のように表す。

Figure JPOXMLDOC01-appb-M000022
A. 3 Calculation of SNR of displaced squeezed vacuum field In order to clarify the advantage of QBD, the SNR in the transmittance measurement using the displaced squeezed vacuum field is derived [Non-Patent Documents 12 and 13]. Here, only one of the photodiode PDs (PD1) in FIG. 1 is used. Using the same annihilation operator as in the previous section, the operator of the output signal of the photodiode PD is expressed as follows.
Figure JPOXMLDOC01-appb-M000022

 続いて、Ia^にΔT = 0を代入することにより、Ia0^が次式のように得られる。

Figure JPOXMLDOC01-appb-M000023
Then, by substituting ΔT = 0 for I a ^, I a0 ^ is obtained by the following equation.
Figure JPOXMLDOC01-appb-M000023

 また、ΔTに比例するIa^の微小変化であるΔIa^は、次式のように得られる。

Figure JPOXMLDOC01-appb-M000024
Further, ΔI a ^, which is a minute change of Ia ^ proportional to ΔT, is obtained by the following equation.
Figure JPOXMLDOC01-appb-M000024

 ΔIa0^の支配的なノイズ源は、ショットノイズIa1^、コヒーレント光とスクイーズド光の干渉Ia2^およびコヒーレント光と真空場の干渉Ia3^であり、それぞれ次式で表される。

Figure JPOXMLDOC01-appb-M000025
The dominant noise sources of ΔI a0 ^ are shot noise I a1 ^, coherent light and squeezed light interference I a2 ^, and coherent light and vacuum field interference I a3 ^, which are expressed by the following equations, respectively.
Figure JPOXMLDOC01-appb-M000025

 信号の期待値は次の式で与えられる。

Figure JPOXMLDOC01-appb-M000026
The expected value of the signal is given by the following equation.
Figure JPOXMLDOC01-appb-M000026

 ΔIa1^、ΔIa2^およびΔIa3^の分散は次の式で与えられる。

Figure JPOXMLDOC01-appb-M000027
The variances of ΔI a1 ^, ΔI a2 ^ and ΔI a3 ^ are given by:
Figure JPOXMLDOC01-appb-M000027

 したがって、変位したスクイーズド真空場のSNRは、以下の式で表される。

Figure JPOXMLDOC01-appb-M000028
Therefore, the SNR of the displaced squeezed vacuum field is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000028

 T2→1の極限を取ると、SNRDSVは、以下の式となる。

Figure JPOXMLDOC01-appb-M000029
Taking the limit of T 2 → 1, the SNR DSV is given by the following equation.
Figure JPOXMLDOC01-appb-M000029

 分母は、r=0(つまり、スクイージングなし)の場合に1となり、r→∞の極限においてT1となるから、スクージングによるSNRの向上は、ビームスプリッタの透過率によって1/T1に制限される。 Since the denominator is 1 when r = 0 (that is, without squeezing) and T 1 in the limit of r → ∞, the improvement of SNR by squeezing is limited to 1 / T 1 by the transmittance of the beam splitter. To.

 式(1)および式(A32)を用いて、QBDと変位したスクイーズド真空場のSNRを比較でき、具体的には、それらの比率は次の式で与えられる。

Figure JPOXMLDOC01-appb-M000030
Using equations (1) and (A32), the SNRs of the QBD and the displaced squeezed vacuum field can be compared, specifically their ratios are given by:
Figure JPOXMLDOC01-appb-M000030

 この比は、T2→1の極限では次式となる。

Figure JPOXMLDOC01-appb-M000031
 これは、以下の場合に1より大きくなる。
Figure JPOXMLDOC01-appb-M000032
This ratio is given by the following equation in the limit of T 2 → 1.
Figure JPOXMLDOC01-appb-M000031
This is greater than 1 in the following cases:
Figure JPOXMLDOC01-appb-M000032

 これらの式は、スクイージングレベルが式(A35)で与えられる特定の値よりも高い場合に、QBDが有利であることを示している。さらに、QBDは、T1が増加するにつれてさらに有利となる。 These equations show that QBD is advantageous when the squeezing level is higher than the specific value given in equation (A35). Moreover, QBD becomes even more advantageous as T 1 increases.

 実施形態は、本発明の原理、応用を示しているにすぎず、実施形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 The embodiments merely show the principles and applications of the present invention, and many modifications and arrangement changes are permitted in the embodiments without departing from the ideas of the present invention defined in the claims. Will be.

 本開示は、分光やイメージングなどの光測定に利用できる。 This disclosure can be used for optical measurements such as spectroscopy and imaging.

 100 光測定装置
 BS ビームスプリッタ
 PD1 第1フォトダイオード
 PD2 第2フォトダイオード
 110 処理部
 112 ゲイン調節部
 114 差分検出部
 200 QBD-SRS顕微鏡
 202 SRS顕微鏡
 1 SUT
 DM ダイクロイックミラー
 OB1,OB2 対物レンズ
 F フィルタ
 PD1 第1フォトダイオード
 PD2 第2フォトダイオード
 210 処理部
 310 ポンプパルス発生器
 312 チタンサファイアレーザ
 BS1 ビームスプリッタ
 314 AOM
 316 SLM
 320 スクイーズド真空場発生器
 M1 ミラー
 322 二次高調波発生器
 324 OPA
 330 ストークスパルス発生器
 332 Ybファイバーレーザ
 334 波長スキャナ
100 Optical measuring device BS beam splitter PD1 1st photodiode PD2 2nd photodiode 110 Processing unit 112 Gain adjustment unit 114 Difference detection unit 200 QBD-SRS microscope 202 SRS microscope 1 SUT
DM Dichroic Mirror OB1, OB2 Objective Lens F Filter PD1 First Photodiode PD2 Second Photodiode 210 Processing Unit 310 Pump Pulse Generator 312 Titanium Sapphire Laser BS1 Beam Splitter 314 AOM
316 SLM
320 Squeezed Vacuum Field Generator M1 Mirror 322 Second Harmonic Generator 324 OPA
330 Stokes Pulse Generator 332 Yb Fiber Laser 334 Wavelength Scanner

Claims (7)

 コヒーレント光を生成する光源と、
 スクイーズド真空場を生成するスクイーズド真空場発生器と、
 第1入力に前記コヒーレント光を受け、第2入力に前記スクイーズド真空場を受けるビームスプリッタと、
 前記ビームスプリッタの第1出力がサンプルに作用した結果得られる光を測定する第1光検出器と、
 前記ビームスプリッタの第2出力を測定する第2光検出器と、
 前記第1光検出器の出力と前記第2光検出器の出力を処理し、前記サンプルの分光特性を取得する処理部と、
 を備えることを特徴とする光測定装置。
A light source that produces coherent light and
A squeezed vacuum field generator that creates a squeezed vacuum field, and
A beam splitter that receives the coherent light at the first input and the squeezed vacuum field at the second input.
A first photodetector that measures the light obtained as a result of the first output of the beam splitter acting on the sample.
A second photodetector that measures the second output of the beam splitter,
A processing unit that processes the output of the first photodetector and the output of the second photodetector to acquire the spectral characteristics of the sample, and
An optical measuring device characterized by being provided with.
 前記処理部は、前記第1光検出器の出力と前記第2光検出器の出力を重み付けして減算することを特徴とする請求項1に記載の光測定装置。 The optical measuring device according to claim 1, wherein the processing unit weights and subtracts the output of the first photodetector and the output of the second photodetector.  前記ビームスプリッタの透過率をT、前記スプリッタの前記第2出力の経路の透過率をTとするとき、
 前記第1光検出器の出力に対する重み付けの係数は(1-T)に実質的に比例し、
 前記第2光検出器の出力に対する重み付けの係数は、Tに実質的に比例することを特徴とする請求項2に記載の光測定装置。
When the transmittance of the beam splitter is T 1 and the transmittance of the second output path of the splitter is T 2 .
The weighting factor for the output of the first photodetector is substantially proportional to (1-T 1 ).
The optical measuring device according to claim 2, wherein the weighting coefficient for the output of the second photodetector is substantially proportional to T 1 T 2 .
 前記ビームスプリッタの透過率は0.3~0.7であることを特徴とする請求項1から3のいずれかに記載の光測定装置。 The optical measuring device according to any one of claims 1 to 3, wherein the beam splitter has a transmittance of 0.3 to 0.7.  前記スクイーズド真空場発生器は、
 前記コヒーレント光の二次高調波を生成する二次高調波発生器と、
 前記二次高調波がシードされる光パラメトリック増幅器と、
 を含むことを特徴とする請求項1から4のいずれかに記載の光測定装置。
The squeezed vacuum field generator is
A second harmonic generator that generates the second harmonic of the coherent light, and
An optical parametric amplifier in which the second harmonic is seeded, and
The optical measuring device according to any one of claims 1 to 4, wherein the optical measuring device comprises the above.
 ストークスパルスを生成するストークスパルス発生器と、
 前記ビームスプリッタの前記第1出力を前記ストークスパルスと結合するダイクロイックミラーと、
 をさらに備え、
 前記第1光検出器は、前記ダイクロイックミラーの出力をサンプルに照射した結果、誘導ラマン散乱(SRS:Stimulated Raman Scattering)により減衰する前記ポンプパルスを測定することを特徴とする請求項1から5のいずれかに記載の光測定装置。
A Stokes pulse generator that produces Stokes pulses, and
A dichroic mirror that couples the first output of the beam splitter with the Stokes pulse,
Further prepare
13. The optical measuring device according to any one.
 コヒーレント光を生成するステップと、
 スクイーズド真空場を生成するステップと、
 ビームスプリッタによって、前記コヒーレント光と前記スクイーズド真空場を結合するステップと、
 前記ビームスプリッタの第1出力がサンプルに作用した結果得られる光と前記ビームスプリッタの第2出力をバランス検出するステップと、
 を備えることを特徴とする光測定方法。
The steps to generate coherent light and
Steps to create a squeezed vacuum field,
A step of coupling the coherent light and the squeezed vacuum field by a beam splitter,
A step of balancing light obtained as a result of the first output of the beam splitter acting on the sample and the second output of the beam splitter.
A light measurement method comprising.
PCT/JP2021/031238 2020-09-02 2021-08-25 Optical measurement device and optical measurement method Ceased WO2022050154A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022546269A JPWO2022050154A1 (en) 2020-09-02 2021-08-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063073524P 2020-09-02 2020-09-02
US63/073,524 2020-09-02

Publications (1)

Publication Number Publication Date
WO2022050154A1 true WO2022050154A1 (en) 2022-03-10

Family

ID=80490937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031238 Ceased WO2022050154A1 (en) 2020-09-02 2021-08-25 Optical measurement device and optical measurement method

Country Status (2)

Country Link
JP (1) JPWO2022050154A1 (en)
WO (1) WO2022050154A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650329A (en) * 1984-11-29 1987-03-17 The United States Of America As Represented By The Secretary Of The Navy Optical 3-d signature device for detecting chemical agents
JPH0534739A (en) * 1991-08-03 1993-02-12 Fujitsu Ltd Optical squeezer stabilization method
JPH07503800A (en) * 1992-08-27 1995-04-20 マサチューセッツ インスティチュート オブ テクノロジー Squeeze vacuum and reduced guided wave Brillouin scattering noise optical interferometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650329A (en) * 1984-11-29 1987-03-17 The United States Of America As Represented By The Secretary Of The Navy Optical 3-d signature device for detecting chemical agents
JPH0534739A (en) * 1991-08-03 1993-02-12 Fujitsu Ltd Optical squeezer stabilization method
JPH07503800A (en) * 1992-08-27 1995-04-20 マサチューセッツ インスティチュート オブ テクノロジー Squeeze vacuum and reduced guided wave Brillouin scattering noise optical interferometer

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CASACIO CATXERE A.; MADSEN LARS S.; TERRASSON ALEX; WALEED MUHAMMAD; BARNSCHEIDT KAI; HAGE BORIS; TAYLOR MICHAEL A.; BOWEN WARWICK: "Quantum-enhanced nonlinear microscopy", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 594, no. 7862, 9 June 2021 (2021-06-09), London, pages 201 - 206, XP037477022, ISSN: 0028-0836, DOI: 10.1038/s41586-021-03528-w *
DAS SUBIR, KAO FU-JEN: "Synchronized Subharmonic Modulation In Stimulated Emission Microscopy", OPTICS EXPRESS, 8 October 2020 (2020-10-08), XP055906641, DOI: 10.1109/OECC48412.2020.9273735 *
OZEKI YASUYUKI: "Lock-in detection beyond the quantum limit based on the delayed interference of squeezed light and optical pulses", GRANT-IN-AID FOR CHALLENGING RESEARCH (EXPLORATORY); FINAL RESEARCH REPORT ON GRANT-IN-AID FOR SCIENTIFIC RESEARCH, 8 June 2020 (2020-06-08), XP055906633 *
R. B. ANDRADE; H. KERDONCUFF; K. BERG-S{\O}RENSEN; T. GEHRING; M. LASSEN; U. L. ANDERSEN: "Quantum-Enhanced continuous-wave stimulated Raman spectroscopy", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 11 February 2020 (2020-02-11), 201 Olin Library Cornell University Ithaca, NY 14853 , XP081597742 *
TAGUCHI YOSHITAKA, OZEKI YASUYUKI: "Time-domain analysis on the pulsed squeezed vacuum detected with picosecond pulses", JOURNAL OF THE OPTICAL SOCIETY OF AMERICA - B., OPTICAL SOCIETY OF AMERICA, WASHINGTON., US, vol. 37, no. 5, 1 May 2020 (2020-05-01), US , pages 1535, XP055906628, ISSN: 0740-3224, DOI: 10.1364/JOSAB.389039 *
YAMADA, KOICHI: "Spectroscopy with Squeezed Light", JAPANESE JOURNAL OF OPTICS, vol. 23, no. 11, 1 November 1994 (1994-11-01), JP , pages 674 - 679, XP009535040, ISSN: 0389-6625 *

Also Published As

Publication number Publication date
JPWO2022050154A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
Lindner et al. Nonlinear interferometer for Fourier-transform mid-infrared gas spectroscopy using near-infrared detection
Gilaberte Basset et al. Perspectives for applications of quantum imaging
Zhao et al. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser
Embrey et al. Observation of localized multi-spatial-mode quadrature squeezing
CN115135987B (en) Quantum absorption spectroscopic system and quantum absorption spectroscopic method
Stefszky et al. Waveguide cavity resonator as a source of optical squeezing
Remer et al. Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering
Ozeki et al. Quantum-enhanced balanced detection for ultrasensitive transmission measurement
Xu et al. Stimulated Raman scattering spectroscopy with quantum-enhanced balanced detection
Boitier et al. Two-photon-counting interferometry
WO2021215479A1 (en) Light source device and optical tomography system
Lopez-Mago et al. Coherence measurements with the two-photon Michelson interferometer
Wilken et al. Broadband detection of 18 teeth in an 11-dB squeezing comb
Glorieux et al. Strong quantum correlations in four wave mixing in 85Rb vapor
Schnabel et al. The “squeeze laser”
Tian et al. Resource reduction for simultaneous generation of two types of continuous variable nonclassical states
Kaur et al. Spectral domain nonlinear quantum interferometry with pulsed laser excitation
WO2023112909A1 (en) Time-stretch optical measurement instrument and time-stretch spectroscopy
Varga et al. Bandwidth control of the biphoton wavefunction exploiting spatio-temporal correlations
WO2022050154A1 (en) Optical measurement device and optical measurement method
Ćurčić et al. Enhanced intensity difference squeezing with a low gain off-resonant Four-Wave Mixing in potassium vapor
Schünemann et al. Balanced heterodyne Brillouin spectroscopy towards tissue characterization
Cuozzo Quantum Sensing for Low-Light Imaging
US20250389585A1 (en) Spectroscopic device
de Andrade et al. Quantum-enhanced stimulated Raman scattering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546269

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864212

Country of ref document: EP

Kind code of ref document: A1