WO2021231349A1 - Monomarqueur d'étalonnage à double échelle pour matrice numérique en imagerie 2d - Google Patents
Monomarqueur d'étalonnage à double échelle pour matrice numérique en imagerie 2d Download PDFInfo
- Publication number
- WO2021231349A1 WO2021231349A1 PCT/US2021/031674 US2021031674W WO2021231349A1 WO 2021231349 A1 WO2021231349 A1 WO 2021231349A1 US 2021031674 W US2021031674 W US 2021031674W WO 2021231349 A1 WO2021231349 A1 WO 2021231349A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- distance
- patient
- image
- monomarker
- surgical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
Definitions
- the present disclosure relates generally to methods, systems, and apparatuses for pre-operative joint imaging.
- the disclosed techniques may be applied in advance of, for example, hip arthroplasties as well as other surgical interventions such as arthroscopic procedures, spinal procedures, maxillofacial procedures, rotator cuff procedures, ligament repair and replacement procedures.
- the present disclosure relates to methods, systems, and apparatuses for digital templating and calibration of an internal axis using two-dimensional imaging.
- Orthopaedic implants are used for resurfacing or replacing joints, such as hips, knees, shoulders, ankles, and elbows, that typically experience high levels of stress and wear or traumatic injury.
- Computer assisted systems allow a user to plan an implant procedure, such as a total hip arthroplasty (THA), or an arthroplasty of another joint, and to select or design surgical instruments based on 2D imaging.
- THA total hip arthroplasty
- X-ray images of the joint may be captured and used in digital templating software such as the VISIONAIRE system from SMITH & NEPHEW, INC. or the TRAUMACAD system from BRAINLAB, INC. to select or design a prosthetic implant.
- a method of calibrating a frontal 2D image of a hip joint of a patient positioned on an imaging surface comprises receiving a frontal 2D image of the hip joint captured by an imaging detector, wherein the frontal 2D image comprises a first representation of a fiducial marker positioned on a suprapubic region of the patient during capture; measuring a diameter of the first representation of the fiducial marker in the frontal 2D image; determining, based on the diameter of the first representation and a known diameter of the fiducial marker, a first distance of the fiducial marker from the imaging detector; approximating, based on the first distance, a second distance of a coronal plane of the hip joint from the imaging detector; calculating, based on the second distance, a calibration factor for the frontal 2D image; scaling the frontal 2D image based on the calibration factor; and outputting the scaled frontal 2D image to a computer-readable storage device.
- the method further comprises obtaining a third distance of the imaging surface from the imaging detector, wherein approximating the second distance is further based on the third distance.
- the third distance is substantially equal to a distance of a dorsal surface of the patient from the imaging detector.
- obtaining the third distance comprises obtaining header information associated with the frontal 2D image.
- the header information includes the distance of the imaging surface from the imaging detector.
- the header information includes a model of the imaging detector, wherein the third distance is standardized for the model of the imaging detector.
- approximating the second distance is further based on one or more of empirical data and historical patient data.
- approximating the second distance is further based on demographic information of the patient.
- approximating the second distance based on the first distance and the third distance comprises inputting the demographic information to a regression model.
- the demographic information comprises one or more of gender and body mass index.
- the method further comprises obtaining a third distance of the fiducial marker from the coronal plane, wherein approximating the second distance is further based on the third distance.
- approximating the second distance comprises subtracting the third distance from the first distance.
- obtaining the third distance comprises: receiving a lateral 2D image of the hip joint, wherein the lateral 2D image comprises a second representation of the fiducial marker positioned on the suprapubic region of the patient during capture; measuring a diameter of the second representation of the fiducial marker in the lateral 2D image; and determining, based on the diameter of the second representation and the known diameter of the fiducial marker, the third distance of the fiducial marker from the coronal plane in the lateral 2D image.
- determining the first distance comprises: measuring a horizontal distance of a center of the first representation from a central beam in the frontal 2D image; and calculating the first distance based on the horizontal distance, the diameter of the first representation, and a known diameter of the fiducial marker.
- the frontal 2D image is an anterior- posterior 2D image of the hip joint of the patient.
- a system for calibration of a 2D image of a hip of a patient positioned on an imaging surface comprises a calibration device comprising: a belt configured to be positioned about a waist of the patient; and a single fiducial marker coupled to the belt, where the single fiducial marker is configured to be positioned on the suprapubic region of the patient; at least one processor; and a computer-readable medium in operable communication with the at least one processor, the computer-readable medium comprising instructions that, when executed, cause the at least one processor to: receive a frontal 2D image of the hip joint captured by an imaging detector, wherein the frontal 2D image was captured with the patient wearing the calibration device and comprises a first representation of a fiducial marker; measure a diameter of the first representation of the fiducial marker in the frontal 2D image; determine, based on the diameter of the first representation and a known diameter of the fiducial marker, a first distance of the fiducial marker from the imaging detector; approximate, based on the first distance
- the instructions that cause the at least one processor to determine the first distance comprise instructions that, when executed, cause the at least one processor to: measure a horizontal distance of a center of the first representation from a central beam in the frontal 2D image; and calculate the first distance based on the horizontal distance, the diameter of the first representation, and a known diameter of the fiducial marker.
- the instructions when executed, further cause the at least one processor to obtain a third distance of the imaging surface from the imaging detector, wherein the instructions that cause the at least one processor to approximate the second distance comprise instructions that, when executed, cause the at least one processor to approximate the second distance based further on the third distance.
- the instructions that cause the at least one processor to approximate the second distance comprise instructions that, when executed, cause the at least one processor to approximate the second distance based further on demographic information of the patient.
- the instructions that cause the at least one processor to approximate the second distance comprise instructions that, when executed, cause the at least one processor to input the demographic information to a regression model.
- the demographic information comprises one or more of gender and body mass index.
- the fiducial marker is retained within a pocket of the belt.
- the fiducial marker is removable from the belt and configured for sterilization.
- FIG. 1 depicts an operating theatre including an illustrative computer- assisted surgical system (CASS) in accordance with an embodiment.
- FIG. 2 depicts an example of an electromagnetic sensor device according to some embodiments.
- FIG. 3 A depicts an alternative example of an electromagnetic sensor device, with three perpendicular coils, according to some embodiments.
- FIG. 3B depicts an alternative example of an electromagnetic sensor device, with two nonparallel, affixed coils, according to some embodiments.
- FIG. 5A depicts illustrative control instructions that a surgical computer provides to other components of a CASS in accordance with an embodiment.
- FIG. 5C depicts an illustrative implementation in which a surgical computer is connected to a surgical data server via a network in accordance with an embodiment.
- FIG. 6 depicts an operative patient care system and illustrative data sources in accordance with an embodiment.
- FIG. 7A depicts an illustrative flow diagram for determining a pre-operative surgical plan in accordance with an embodiment.
- FIG. 7B depicts an illustrative flow diagram for determining an episode of care including pre-operative, intraoperative, and post-operative actions in accordance with an embodiment.
- FIG. 7C depicts illustrative graphical user interfaces including images depicting an implant placement in accordance with an embodiment.
- FIG. 8A depicts a conventional supine X-ray imaging system.
- FIG. 8B depicts a conventional standing X-ray imaging system.
- FIG. 8C depicts a conventional multi -fiducial marker system.
- FIGS. 9A-9C depict illustrative views of a dual scale calibration device in accordance with an embodiment.
- FIG. 10 depicts an illustrative dual scale calibration device applied to the waist of a patient in accordance with an embodiment.
- FIG. 11 depicts a flow diagram of an illustrative method of imaging a patient with a dual scale calibration device in accordance with an embodiment.
- FIG. 12 depicts a flow diagram of an illustrative method of scaling a 2D image in accordance with an embodiment.
- FIG. 13 illustrates a block diagram of an illustrative data processing system in which features of the illustrative embodiments are implemented.
- FIGS. 14A-14B depict exemplary diagrams of the projection of a sphere in a radiograph.
- FIG. 15 depicts a flow diagram of an alternate method 1500 of imaging a patient with a dual scale calibration device in accordance with an embodiment.
- FIG. 16 depicts a flow diagram of an alternate method 1600 of scaling a 2D image in accordance with an embodiment.
- FIG. 17 depicts an exemplary setup for imaging an A-P view of a patient with an imaging system in accordance with an embodiment.
- FIG. 18 depicts an exemplary setup for imaging a lateral view of a patient with an imaging system in accordance with an embodiment.
- FIG. 19 depicts a lateral 2D image of a patient in accordance with an embodiment.
- FIG. 20 depicts a flow diagram of an illustrative method of calibrating a measured distance of a monomarker in a 2D image from a central beam of an imaging source in accordance with an embodiment.
- the term “implant” is used to refer to a prosthetic device or structure manufactured to replace or enhance a biological structure.
- a prosthetic acetabular cup (implant) is used to replace or enhance a patients worn or damaged acetabulum.
- implant is generally considered to denote a man-made structure (as contrasted with a transplant), for the purposes of this specification an implant can include a biological tissue or material transplanted to replace or enhance a biological structure.
- real-time is used to refer to calculations or operations performed on-the-fly as events occur or input is received by the operable system.
- real-time is not intended to preclude operations that cause some latency between input and response, so long as the latency is an unintended consequence induced by the performance characteristics of the machine.
- FIG. 1 provides an illustration of an example computer-assisted surgical system (CASS) 100, according to some embodiments.
- the CASS uses computers, robotics, and imaging technology to aid surgeons in performing orthopedic surgery procedures such as total knee arthroplasty (TKA) or total hip arthroplasty (THA).
- TKA total knee arthroplasty
- THA total hip arthroplasty
- surgical navigation systems can aid surgeons in locating patient anatomical structures, guiding surgical instruments, and implanting medical devices with a high degree of accuracy.
- Surgical navigation systems such as the CASS 100 often employ various forms of computing technology to perform a wide variety of standard and minimally invasive surgical procedures and techniques.
- these systems allow surgeons to more accurately plan, track and navigate the placement of instruments and implants relative to the body of a patient, as well as conduct pre-operative and intra-operative body imaging.
- An Effector Platform 105 positions surgical tools relative to a patient during surgery.
- the exact components of the Effector Platform 105 will vary, depending on the embodiment employed.
- the Effector Platform 105 may include an End Effector 105B that holds surgical tools or instruments during their use.
- the End Effector 105B may be a handheld device or instrument used by the surgeon (e.g., a NAVIO® hand piece or a cutting guide or jig) or, alternatively, the End Effector 105B can include a device or instrument held or positioned by a Robotic Arm 105 A. While one Robotic Arm 105 A is illustrated in FIG. 1, in some embodiments there may be multiple devices.
- the Robotic Arm 105 A may be mounted directly to the table T, be located next to the table T on a floor platform (not shown), mounted on a floor-to-ceiling pole, or mounted on a wall or ceiling of an operating room.
- the floor platform may be fixed or moveable.
- the robotic arm 105 A is mounted on a floor-to-ceiling pole located between the patient's legs or feet.
- the End Effector 105B may include a suture holder or a stapler to assist in closing wounds.
- the surgical computer 150 can drive the robotic arms 105 A to work together to suture the wound at closure.
- the surgical computer 150 can drive one or more robotic arms 105 A to staple the wound at closure.
- the Effector Platform 105 can include a Limb Positioner 105C for positioning the patient's limbs during surgery.
- a Limb Positioner 105C is the SMITH AND NEPHEW SPDER2 system.
- the Limb Positioner 105C may be operated manually by the surgeon or alternatively change limb positions based on instructions received from the Surgical Computer 150 (described below). While one Limb Positioner 105C is illustrated in FIG. 1, in some embodiments there may be multiple devices. As examples, there may be one Limb Positioner 105C on each side of the operating table T or two devices on one side of the table T.
- the Limb Positioner 105C may be mounted directly to the table T, be located next to the table T on a floor platform (not shown), mounted on a pole, or mounted on a wall or ceiling of an operating room.
- the Limb Positioner 105C can be used in non-conventional ways, such as a retractor or specific bone holder.
- the Limb Positioner 105C may include, as examples, an ankle boot, a soft tissue clamp, a bone clamp, or a soft-tissue retractor spoon, such as a hooked, curved, or angled blade.
- the Limb Positioner 105C may include a suture holder to assist in closing wounds.
- the Effector Platform 105 may include tools, such as a screwdriver, light or laser, to indicate an axis or plane, bubble level, pin driver, pin puller, plane checker, pointer, finger, or some combination thereof.
- tools such as a screwdriver, light or laser, to indicate an axis or plane, bubble level, pin driver, pin puller, plane checker, pointer, finger, or some combination thereof.
- the Effector Platform 105 can also include a cutting guide or jig 105D that is used to guide saws or drills used to resect tissue during surgery.
- a cutting guide or jig 105D that is used to guide saws or drills used to resect tissue during surgery.
- Such cutting guides 105D can be formed integrally as part of the Effector Platform 105 or Robotic Arm 105 A, or cutting guides can be separate structures that can be matingly and/or removably attached to the Effector Platform 105 or Robotic Arm 105 A.
- the Effector Platform 105 or Robotic Arm 105 A can be controlled by the CASS 100 to position a cutting guide or jig 105D adjacent to the patient's anatomy in accordance with a pre-operatively or intraoperatively developed surgical plan such that the cutting guide or jig will produce a precise bone cut in accordance with the surgical plan.
- the Tracking System 115 uses one or more sensors to collect real-time position data that locates the patient's anatomy and surgical instruments. For example, for TKA procedures, the Tracking System may provide a location and orientation of the End Effector 105B during the procedure. In addition to positional data, data from the Tracking System 115 can also be used to infer velocity/acceleration of anatomy/instrumentation, which can be used for tool control. In some embodiments, the Tracking System 115 may use a tracker array attached to the End Effector 105B to determine the location and orientation of the End Effector 105B.
- the position of the End Effector 105B may be inferred based on the position and orientation of the Tracking System 115 and a known relationship in three- dimensional space between the Tracking System 115 and the End Effector 105B.
- Various types of tracking systems may be used in various embodiments of the present invention including, without limitation, Infrared (IR) tracking systems, electromagnetic (EM) tracking systems, video or image based tracking systems, and ultrasound registration and tracking systems.
- IR Infrared
- EM electromagnetic
- the surgical computer 150 can detect objects and prevent collision.
- the surgical computer 150 can prevent the Robotic Arm 105 A from colliding with soft tissue.
- Any suitable tracking system can be used for tracking surgical objects and patient anatomy in the surgical theatre.
- a combination of IR and visible light cameras can be used in an array.
- Various illumination sources such as an IR LED light source, can illuminate the scene allowing three-dimensional imaging to occur. In some embodiments, this can include stereoscopic, tri-scopic, quad-scopic, etc. imaging.
- additional cameras can be placed throughout the surgical theatre.
- handheld tools or headsets worn by operators/surgeons can include imaging capability that communicates images back to a central processor to correlate those images with images captured by the camera array. This can give a more robust image of the environment for modeling using multiple perspectives.
- imaging devices may be of suitable resolution or have a suitable perspective on the scene to pick up information stored in quick response (QR) codes or barcodes. This can be helpful in identifying specific objects not manually registered with the system.
- the camera may be mounted on the Robotic Arm 105 A.
- EM based tracking devices include one or more wire coils and a reference field generator.
- the one or more wire coils may be energized (e.g., via a wired or wireless power supply). Once energized, the coil creates an electromagnetic field that can be detected and measured (e.g., by the reference field generator or an additional device) in a manner that allows for the location and orientation of the one or more wire coils to be determined.
- a single coil such as is shown in FIG. 2, is limited to detecting five (5) total degrees-of-freedom (DOF).
- sensor 200 may be able to track/determine movement in the X, Y, or Z direction, as well as rotation around the Y-axis 202 or Z-axis 201.
- sensor 200 may be able to track/determine movement in the X, Y, or Z direction, as well as rotation around the Y-axis 202 or Z-axis 201.
- because of the electromagnetic properties of a coil it is not possible to properly track rotational movement around the X axis.
- a three coil system such as that shown in FIG. 3 A is used to enable tracking in all six degrees of freedom that are possible for a rigid body moving in a three-dimensional space (i.e., forward/backward 310, up/down 320, left/right 330, roll 340, pitch 350, and yaw 360).
- the inclusion of two additional coils and the 90° offset angles at which they are positioned may require the tracking device to be much larger.
- less than three full coils may be used to track all 6DOF.
- two coils may be affixed to each other, such as is shown in FIG. 3B. Because the two coils 301B and 302B are rigidly affixed to each other, not perfectly parallel, and have locations that are known relative to each other, it is possible to determine the sixth degree of freedom 303B with this arrangement.
- the sensor device is substantially larger in diameter than a single coil because of the additional coil.
- the practical application of using an EM based tracking system in a surgical environment may require tissue resection and drilling of a portion of the patient bone to allow for insertion of a EM tracker.
- a solution is needed for which the use of an EM tracking system can be restricted to devices small enough to be inserted/embedded using a small diameter needle or pin (i.e., without the need to create a new incision or large diameter opening in the bone).
- a second 5DOF sensor which is not attached to the first, and thus has a small diameter, may be used to track all 6DOF.
- two 5DOF EM sensors may be inserted into the patient (e.g., in a patient bone) at different locations and with different angular orientations (e.g., angle 303C is non-zero).
- first 5DOF EM sensor 401 and a second 5DOF EM sensor 402 are inserted into the patient bone 403 using a standard hollow needle 405 that is typical in most OR(s).
- first sensor 401 and the second sensor 402 may have an angle offset of "?" 404.
- a minimum value may be based on one or more factors, such as, for example, the orientation accuracy of the tracking system, a distance between the first and second EM sensors.
- a pin/needle e.g., a cannulated mounting needle, etc.
- the pin/needle would be a disposable component, while the sensors themselves may be reusable.
- the EM sensors may be affixed to the mounting needle/pin (e.g., using a luer-lock fitting or the like), which can allow for quick assembly and disassembly.
- the EM sensors may utilize an alternative sleeve and/or anchor system that allows for minimally invasive placement of the sensors.
- the above systems may allow for a multi-sensor navigation system that can detect and correct for field distortions that plague electromagnetic tracking systems.
- field distortions may result from movement of any ferromagnetic materials within the reference field.
- a typical OR has a large number of devices (e.g., an operating table, LCD displays, lighting equipment, imaging systems, surgical instruments, etc.) that may cause interference.
- field distortions are notoriously difficult to detect.
- the use of multiple EM sensors enables the system to detect field distortions accurately, and/or to warn a user that the current position measurements may not be accurate.
- relative measurement of sensor positions may be used to detect field distortions.
- the relative distance between the two sensors is known and should remain constant. Thus, any change in this distance could indicate the presence of a field distortion.
- specific objects can be manually registered by a surgeon with the system preoperatively or intraoperatively. For example, by interacting with a user interface, a surgeon may identify the starting location for a tool or a bone structure. By tracking fiducial marks associated with that tool or bone structure, or by using other conventional image tracking modalities, a processor may track that tool or bone as it moves through the environment in a three-dimensional model.
- certain markers such as fiducial marks that identify individuals, important tools, or bones in the theater may include passive or active identifiers that can be picked up by a camera or camera array associated with the tracking system.
- an IR LED can flash a pattern that conveys a unique identifier to the source of that pattern, providing a dynamic identification mark.
- one or two dimensional optical codes can be affixed to objects in the theater to provide passive identification that can occur based on image analysis. If these codes are placed asymmetrically on an object, they can also be used to determine an orientation of an object by comparing the location of the identifier with the extents of an object in an image.
- a QR code may be placed in a comer of a tool tray, allowing the orientation and identity of that tray to be tracked.
- Other tracking modalities are explained throughout.
- augmented reality headsets can be worn by surgeons and other staff to provide additional camera angles and tracking capabilities.
- certain features of objects can be tracked by registering physical properties of the object and associating them with objects that can be tracked, such as fiducial marks fixed to a tool or bone.
- objects such as fiducial marks fixed to a tool or bone.
- a surgeon may perform a manual registration process whereby a tracked tool and a tracked bone can be manipulated relative to one another.
- a three-dimensional surface can be mapped for that bone that is associated with a position and orientation relative to the frame of reference of that fiducial mark.
- a model of that surface can be tracked with an environment through extrapolation.
- the registration process that registers the CASS 100 to the relevant anatomy of the patient can also involve the use of anatomical landmarks, such as landmarks on a bone or cartilage.
- the CASS 100 can include a 3D model of the relevant bone or joint and the surgeon can intraoperatively collect data regarding the location of bony landmarks on the patient's actual bone using a probe that is connected to the CASS.
- Bony landmarks can include, for example, the medial malleolus and lateral malleolus, the ends of the proximal femur and distal tibia, and the center of the hip joint.
- the CASS 100 can compare and register the location data of bony landmarks collected by the surgeon with the probe with the location data of the same landmarks in the 3D model.
- the CASS 100 can construct a 3D model of the bone or joint without pre-operative image data by using location data of bony landmarks and the bone surface that are collected by the surgeon using a CASS probe or other means.
- the registration process can also include determining various axes of a joint.
- the surgeon can use the CASS 100 to determine the anatomical and mechanical axes of the femur and tibia.
- the surgeon and the CASS 100 can identify the center of the hip joint by moving the patient's leg in a spiral direction (i.e., circumduction) so the CASS can determine where the center of the hip joint is located.
- a Tissue Navigation System 120 (not shown in FIG. 1) provides the surgeon with intraoperative, real-time visualization for the patient's bone, cartilage, muscle, nervous, and/or vascular tissues surrounding the surgical area.
- Examples of systems that may be employed for tissue navigation include fluorescent imaging systems and ultrasound systems.
- the Display 125 provides graphical user interfaces (GUIs) that display images collected by the Tissue Navigation System 120 as well other information relevant to the surgery.
- GUIs graphical user interfaces
- the Display 125 overlays image information collected from various modalities (e.g., CT, MRI, X-ray, fluorescent, ultrasound, etc.) collected pre-operatively or intra-operatively to give the surgeon various views of the patient's anatomy as well as real-time conditions.
- the Display 125 may include, for example, one or more computer monitors.
- one or more members of the surgical staff may wear an Augmented Reality (AR) Head Mounted Device (HMD).
- AR Augmented Reality
- FIG. 1 the Surgeon 111 is wearing an AR HMD 155 that may, for example, overlay pre-operative image data on the patient or provide surgical planning suggestions.
- AR HMD 155 may, for example, overlay pre-operative image data on the patient or provide surgical planning suggestions.
- Surgical Computer 150 provides control instructions to various components of the CASS 100, collects data from those components, and provides general processing for various data needed during surgery.
- the Surgical Computer 150 is a general purpose computer.
- the Surgical Computer 150 may be a parallel computing platform that uses multiple central processing units (CPUs) or graphics processing units (GPU) to perform processing.
- the Surgical Computer 150 is connected to a remote server over one or more computer networks (e.g., the Internet).
- the remote server can be used, for example, for storage of data or execution of computationally intensive processing tasks.
- Surgical Computer 150 can connect to the other components of the CASS 100.
- the computers can connect to the Surgical Computer 150 using a mix of technologies.
- the End Effector 105B may connect to the Surgical Computer 150 over a wired (i.e., serial) connection.
- the Tracking System 115, Tissue Navigation System 120, and Display 125 can similarly be connected to the Surgical Computer 150 using wired connections.
- the Tracking System 115, Tissue Navigation System 120, and Display 125 may connect to the Surgical Computer 150 using wireless technologies such as, without limitation, Wi-Fi, Bluetooth, Near Field Communication (NFC), or ZigBee.
- the CASS 100 may include a powered impaction device.
- Impaction devices are designed to repeatedly apply an impaction force that the surgeon can use to perform activities such as implant alignment.
- a surgeon will often insert a prosthetic acetabular cup into the implant host's acetabulum using an impaction device.
- impaction devices can be manual in nature (e.g., operated by the surgeon striking an impactor with a mallet), powered impaction devices are generally easier and quicker to use in the surgical setting.
- Powered impaction devices may be powered, for example, using a battery attached to the device. Various attachment pieces may be connected to the powered impaction device to allow the impaction force to be directed in various ways as needed during surgery. Also in the context of hip surgeries, the CASS 100 may include a powered, robotically controlled end effector to ream the acetabulum to accommodate an acetabular cup implant.
- the patient's anatomy can be registered to the CASS 100 using CT or other image data, the identification of anatomical landmarks, tracker arrays attached to the patient's bones, and one or more cameras.
- Tracker arrays can be mounted on the iliac crest using clamps and/or bone pins and such trackers can be mounted externally through the skin or internally (either posterolaterally or anterolaterally) through the incision made to perform the THA.
- the CASS 100 can utilize one or more femoral cortical screws inserted into the proximal femur as checkpoints to aid in the registration process.
- the CASS 100 can also utilize one or more checkpoint screws inserted into the pelvis as additional checkpoints to aid in the registration process.
- Femoral tracker arrays can be secured to or mounted in the femoral cortical screws.
- the CASS 100 can employ steps where the registration is verified using a probe that the surgeon precisely places on key areas of the proximal femur and pelvis identified for the surgeon on the display 125.
- Trackers can be located on the robotic arm 105 A or end effector 105B to register the arm and/or end effector to the CASS 100.
- the verification step can also utilize proximal and distal femoral checkpoints.
- the CASS 100 can utilize color prompts or other prompts to inform the surgeon that the registration process for the relevant bones and the robotic arm 105 A or end effector 105B has been verified to a certain degree of accuracy (e.g., within lmm).
- the CASS 100 can include a broach tracking option using femoral arrays to allow the surgeon to intraoperatively capture the broach position and orientation and calculate hip length and offset values for the patient. Based on information provided about the patient's hip joint and the planned implant position and orientation after broach tracking is completed, the surgeon can make modifications or adjustments to the surgical plan.
- the CASS 100 can include one or more powered reamers connected or attached to a robotic arm 105 A or end effector 105B that prepares the pelvic bone to receive an acetabular implant according to a surgical plan.
- the robotic arm 105 A and/or end effector 105B can inform the surgeon and/or control the power of the reamer to ensure that the acetabulum is being resected (reamed) in accordance with the surgical plan. For example, if the surgeon attempts to resect bone outside of the boundary of the bone to be resected in accordance with the surgical plan, the CASS 100 can power off the reamer or instruct the surgeon to power off the reamer.
- the CASS 100 can provide the surgeon with an option to turn off or disengage the robotic control of the reamer.
- the display 125 can depict the progress of the bone being resected (reamed) as compared to the surgical plan using different colors.
- the surgeon can view the display of the bone being resected (reamed) to guide the reamer to complete the reaming in accordance with the surgical plan.
- the CASS 100 can provide visual or audible prompts to the surgeon to warn the surgeon that resections are being made that are not in accordance with the surgical plan.
- the CASS 100 can employ a manual or powered impactor that is attached or connected to the robotic arm 105 A or end effector 105B to impact trial implants and final implants into the acetabulum.
- the robotic arm 105 A and/or end effector 105B can be used to guide the impactor to impact the trial and final implants into the acetabulum in accordance with the surgical plan.
- the CASS 100 can cause the position and orientation of the trial and final implants vis-a-vis the bone to be displayed to inform the surgeon as to how the trial and final implant's orientation and position compare to the surgical plan, and the display 125 can show the implant's position and orientation as the surgeon manipulates the leg and hip.
- the CASS 100 can provide the surgeon with the option of re planning and re-doing the reaming and implant impaction by preparing a new surgical plan if the surgeon is not satisfied with the original implant position and orientation.
- the CASS 100 can develop a proposed surgical plan based on a three dimensional model of the hip joint and other information specific to the patient, such as the mechanical and anatomical axes of the leg bones, the epicondylar axis, the femoral neck axis, the dimensions (e.g., length) of the femur and hip, the midline axis of the hip joint, the ASIS axis of the hip joint, and the location of anatomical landmarks such as the lesser trochanter landmarks, the distal landmark, and the center of rotation of the hip joint.
- the mechanical and anatomical axes of the leg bones such as the mechanical and anatomical axes of the leg bones, the epicondylar axis, the femoral neck axis, the dimensions (e.g., length) of the femur and hip, the midline axis of the hip joint, the ASIS axis of the hip joint, and the location of anatomical landmarks such as the lesser trochanter landmark
- the CAS S-devel oped surgical plan can provide a recommended optimal implant size and implant position and orientation based on the three dimensional model of the hip joint and other information specific to the patient.
- the CASS -developed surgical plan can include proposed details on offset values, inclination and anteversion values, center of rotation, cup size, medialization values, superior-inferior fit values, femoral stem sizing and length.
- the CAS S-devel oped surgical plan can be viewed preoperatively and intraoperatively, and the surgeon can modify CASS-developed surgical plan preoperatively or intraoperatively.
- the CASS-developed surgical plan can display the planned resection to the hip joint and superimpose the planned implants onto the hip joint based on the planned resections.
- the CASS 100 can provide the surgeon with options for different surgical workflows that will be displayed to the surgeon based on a surgeon's preference. For example, the surgeon can choose from different workflows based on the number and types of anatomical landmarks that are checked and captured and/or the location and number of tracker arrays used in the registration process.
- a powered impaction device used with the CASS 100 may operate with a variety of different settings.
- the surgeon adjusts settings through a manual switch or other physical mechanism on the powered impaction device.
- a digital interface may be used that allows setting entry, for example, via a touchscreen on the powered impaction device. Such a digital interface may allow the available settings to vary based, for example, on the type of attachment piece connected to the power attachment device.
- the settings can be changed through communication with a robot or other computer system within the CASS 100. Such connections may be established using, for example, a Bluetooth or Wi-Fi networking module on the powered impaction device.
- the impaction device and end pieces may contain features that allow the impaction device to be aware of what end piece (cup impactor, broach handle, etc.) is attached with no action required by the surgeon, and adjust the settings accordingly. This may be achieved, for example, through a QR code, barcode, RFID tag, or other method.
- cup impaction settings e.g., single direction, specified frequency range, specified force and/or energy range
- broach impaction settings e.g., dual direction/oscillating at a specified frequency range, specified force and/or energy range
- femoral head impaction settings e.g., single directi on/single blow at a specified force or energy
- stem impaction settings e.g., single direction at specified frequency with a specified force or energy.
- the powered impaction device includes settings related to acetabular liner impaction (e.g., single direction/single blow at a specified force or energy).
- the powered impaction device may offer settings for different bone quality based on preoperative testing/imaging/knowledge and/or intraoperative assessment by surgeon.
- the powered impactor device may have a dual function. For example, the powered impactor device not only could provide reciprocating motion to provide an impact force, but also could provide reciprocating motion for a broach or rasp.
- the powered impaction device includes feedback sensors that gather data during instrument use, and send data to a computing device such as a controller within the device or the Surgical Computer 150.
- This computing device can then record the data for later analysis and use.
- Examples of the data that may be collected include, without limitation, sound waves, the predetermined resonance frequency of each instrument, reaction force or rebound energy from patient bone, location of the device with respect to imaging (e.g., fluoro, CT, ultrasound, MRI, etc.) registered bony anatomy, and/or external strain gauges on bones.
- the computing device may execute one or more algorithms in real-time or near real-time to aid the surgeon in performing the surgical procedure. For example, in some embodiments, the computing device uses the collected data to derive information such as the proper final broach size (femur); when the stem is fully seated (femur side); or when the cup is seated (depth and/or orientation) for a THA. Once the information is known, it may be displayed for the surgeon's review, or it may be used to activate haptics or other feedback mechanisms to guide the surgical procedure. [0097] Additionally, the data derived from the aforementioned algorithms may be used to drive operation of the device.
- the device may automatically extend an impaction head (e.g., an end effector) moving the implant into the proper location, or turn the power off to the device once the implant is fully seated.
- an impaction head e.g., an end effector
- the derived information may be used to automatically adjust settings for quality of bone where the powered impaction device should use less power to mitigate femoral/acetabular/pelvic fracture or damage to surrounding tissues.
- the CASS 100 includes a robotic arm 105 A that serves as an interface to stabilize and hold a variety of instruments used during the surgical procedure.
- these instruments may include, without limitation, retractors, a sagittal or reciprocating saw, the reamer handle, the cup impactor, the broach handle, and the stem inserter.
- the robotic arm 105 A may have multiple degrees of freedom (like a Spider device), and have the ability to be locked in place (e.g., by a press of a button, voice activation, a surgeon removing a hand from the robotic arm, or other method).
- a tool or an end effector 105B attached or integrated into a robotic arm 105 A may include, without limitation, a burring device, a scalpel, a cutting device, a retractor, a joint tensioning device, or the like.
- the end effector may be positioned at the end of the robotic arm 105 A such that any motor control operations are performed within the robotic arm system.
- the tool may be secured at a distal end of the robotic arm 105 A, but motor control operation may reside within the tool itself.
- the robotic arm 105 A may be motorized internally to both stabilize the robotic arm, thereby preventing it from falling and hitting the patient, surgical table, surgical staff, etc., and to allow the surgeon to move the robotic arm without having to fully support its weight. While the surgeon is moving the robotic arm 105 A, the robotic arm may provide some resistance to prevent the robotic arm from moving too fast or having too many degrees of freedom active at once. The position and the lock status of the robotic arm 105 A may be tracked, for example, by a controller or the Surgical Computer 150.
- the robotic arm 105A can be moved by hand (e.g., by the surgeon) or with internal motors into its ideal position and orientation for the task being performed.
- the robotic arm 105 A may be enabled to operate in a "free" mode that allows the surgeon to position the arm into a desired position without being restricted. While in the free mode, the position and orientation of the robotic arm 105 A may still be tracked as described above. In one embodiment, certain degrees of freedom can be selectively released upon input from user (e.g., surgeon) during specified portions of the surgical plan tracked by the Surgical Computer 150.
- a robotic arm 105 A or end effector 105B can include a trigger or other means to control the power of a saw or drill. Engagement of the trigger or other means by the surgeon can cause the robotic arm 105 A or end effector 105B to transition from a motorized alignment mode to a mode where the saw or drill is engaged and powered on.
- the CASS 100 can include a foot pedal (not shown) that causes the system to perform certain functions when activated.
- the surgeon can activate the foot pedal to instruct the CASS 100 to place the robotic arm 105 A or end effector 105B in an automatic mode that brings the robotic arm or end effector into the proper position with respect to the patient's anatomy in order to perform the necessary resections.
- the CASS 100 can also place the robotic arm 105 A or end effector 105B in a collaborative mode that allows the surgeon to manually manipulate and position the robotic arm or end effector into a particular location.
- the collaborative mode can be configured to allow the surgeon to move the robotic arm 105 A or end effector 105B medially or laterally, while restricting movement in other directions.
- the robotic arm 105 A or end effector 105B can include a cutting device (saw, drill, and burr) or a cutting guide or jig 105D that will guide a cutting device.
- movement of the robotic arm 105 A or robotically controlled end effector 105B can be controlled entirely by the CASS 100 without any, or with only minimal, assistance or input from a surgeon or other medical professional.
- the movement of the robotic arm 105 A or robotically controlled end effector 105B can be controlled remotely by a surgeon or other medical professional using a control mechanism separate from the robotic arm or robotically controlled end effector device, for example using a joystick or interactive monitor or display control device.
- ACL anterior cruciate ligament
- a robotic arm 105 A may be used for holding the retractor.
- the robotic arm 105 A may be moved into the desired position by the surgeon. At that point, the robotic arm 105 A may lock into place.
- the robotic arm 105 A is provided with data regarding the patient's position, such that if the patient moves, the robotic arm can adjust the retractor position accordingly.
- multiple robotic arms may be used, thereby allowing multiple retractors to be held or for more than one activity to be performed simultaneously (e.g., retractor holding & reaming).
- the robotic arm 105 A may also be used to help stabilize the surgeon's hand while making a femoral neck cut.
- control of the robotic arm 105 A may impose certain restrictions to prevent soft tissue damage from occurring.
- the Surgical Computer 150 tracks the position of the robotic arm 105 A as it operates. If the tracked location approaches an area where tissue damage is predicted, a command may be sent to the robotic arm 105 A causing it to stop.
- the robotic arm 105 A is automatically controlled by the Surgical Computer 150, the Surgical Computer may ensure that the robotic arm is not provided with any instructions that cause it to enter areas where soft tissue damage is likely to occur.
- the Surgical Computer 150 may impose certain restrictions on the surgeon to prevent the surgeon from reaming too far into the medial wall of the acetabulum or reaming at an incorrect angle or orientation.
- the robotic arm 105 A may be used to hold a cup impactor at a desired angle or orientation during cup impaction. When the final position has been achieved, the robotic arm 105 A may prevent any further seating to prevent damage to the pelvis.
- the surgeon may use the robotic arm 105 A to position the broach handle at the desired position and allow the surgeon to impact the broach into the femoral canal at the desired orientation.
- the robotic arm 105 A may restrict the handle to prevent further advancement of the broach.
- the robotic arm 105A may also be used for resurfacing applications.
- the robotic arm 105 A may stabilize the surgeon while using traditional instrumentation and provide certain restrictions or limitations to allow for proper placement of implant components (e.g., guide wire placement, chamfer cutter, sleeve cutter, plan cutter, etc.).
- implant components e.g., guide wire placement, chamfer cutter, sleeve cutter, plan cutter, etc.
- the robotic arm 105 A may stabilize the surgeon's handpiece and may impose restrictions on the handpiece to prevent the surgeon from removing unintended bone in contravention of the surgical plan.
- the robotic arm 105 A may be a passive arm.
- the robotic arm 105 A may be a CIRQ robot arm available from Brainlab AG.
- CIRQ is a registered trademark of Brainlab AG, Olof-Palme-Str. 9 81829, Munchen, FED REP of GERMANY.
- the robotic arm 105 A is an intelligent holding arm as disclosed in U.S. Patent Application No. 15/525,585 to Krinninger et ak, U.S. Patent Application No. 15/561,042 to Nowatschin et ak, U.S. Patent Application No. 15/561,048 to Nowatschin et ak, and U.S. Patent No. 10,342,636 to Nowatschin et ak, the entire contents of each of which is herein incorporated by reference.
- the various services that are provided by medical professionals to treat a clinical condition are collectively referred to as an "episode of care.”
- the episode of care can include three phases: pre-operative, intra-operative, and post-operative.
- data is collected or generated that can be used to analyze the episode of care in order to understand various features of the procedure and identify patterns that may be used, for example, in training models to make decisions with minimal human intervention.
- the data collected over the episode of care may be stored at the Surgical Computer 150 or the Surgical Data Server 180 as a complete dataset.
- a dataset exists that comprises all of the data collectively pre-operatively about the patient, all of the data collected or stored by the CASS 100 intra-operatively, and any post operative data provided by the patient or by a healthcare professional monitoring the patient.
- the data collected during the episode of care may be used to enhance performance of the surgical procedure or to provide a holistic understanding of the surgical procedure and the patient outcomes.
- the data collected over the episode of care may be used to generate a surgical plan.
- a high-level, pre-operative plan is refined intra-operatively as data is collected during surgery.
- the surgical plan can be viewed as dynamically changing in real-time or near real-time as new data is collected by the components of the CASS 100.
- pre-operative images or other input data may be used to develop a robust plan preoperatively that is simply executed during surgery.
- the data collected by the CASS 100 during surgery may be used to make recommendations that ensure that the surgeon stays within the pre-operative surgical plan. For example, if the surgeon is unsure how to achieve a certain prescribed cut or implant alignment, the Surgical Computer 150 can be queried for a recommendation.
- the pre operative and intra-operative planning approaches can be combined such that a robust pre operative plan can be dynamically modified, as necessary or desired, during the surgical procedure.
- a biomechanics-based model of patient anatomy contributes simulation data to be considered by the CASS 100 in developing preoperative, intraoperative, and post-operative/rehabilitation procedures to optimize implant performance outcomes for the patient.
- implants can be designed using episode of care data.
- Example data-driven techniques for designing, sizing, and fitting implants are described in U.S. Patent Application No. 13/814,531 filed August 15, 2011 and entitled “Systems and Methods for Optimizing Parameters for Orthopaedic Procedures"; U.S. Patent Application No. 14/232,958 filed July 20, 2012 and entitled “Systems and Methods for Optimizing Fit of an Implant to Anatomy”; and U.S. Patent Application No. 12/234,444 filed September 19, 2008 and entitled “Operatively Tuning Implants for Increased Performance," the entire contents of each of which are hereby incorporated by reference into this patent application.
- the data can be used for educational, training, or research purposes.
- other doctors or students can remotely view surgeries in interfaces that allow them to selectively view data as it is collected from the various components of the CASS 100.
- similar interfaces may be used to "playback" a surgery for training or other educational purposes, or to identify the source of any issues or complications with the procedure.
- pre-surgery patients use a mobile application ("app") to answer questionnaires regarding their current quality of life.
- preoperative data used by the CASS 100 includes demographic, anthropometric, cultural, or other specific traits about a patient that can coincide with activity levels and specific patient activities to customize the surgical plan to the patient. For example, certain cultures or demographics may be more likely to use a toilet that requires squatting on a daily basis.
- FIGS. 5A and 5B provide examples of data that may be acquired during the intra-operative phase of an episode of care. These examples are based on the various components of the CASS 100 described above with reference to FIG. 1; however, it should be understood that other types of data may be used based on the types of equipment used during surgery and their use.
- FIG. 5 A shows examples of some of the control instructions that the Surgical Computer 150 provides to other components of the CASS 100, according to some embodiments. Note that the example of FIG. 5 A assumes that the components of the Effector Platform 105 are each controlled directly by the Surgical Computer 150. In embodiments where a component is manually controlled by the Surgeon 111, instructions may be provided on the Display 125 or AR HMD 155 instructing the Surgeon 111 how to move the component.
- the various components included in the Effector Platform 105 are controlled by the Surgical Computer 150 providing position commands that instruct the component where to move within a coordinate system.
- the Surgical Computer 150 provides the Effector Platform 105 with instructions defining how to react when a component of the Effector Platform 105 deviates from a surgical plan. These commands are referenced in FIG. 5 A as "haptic" commands.
- the End Effector 105B may provide a force to resist movement outside of an area where resection is planned.
- Other commands that may be used by the Effector Platform 105 include vibration and audio cues.
- the end effectors 105B of the robotic arm 105 A are operatively coupled with cutting guide 105D.
- the robotic arm 105 A can move the end effectors 105B and the cutting guide 105D into position to match the location of the femoral or tibial cut to be performed in accordance with the surgical plan. This can reduce the likelihood of error, allowing the vision system and a processor utilizing that vision system to implement the surgical plan to place a cutting guide 105D at the precise location and orientation relative to the tibia or femur to align a cutting slot of the cutting guide with the cut to be performed according to the surgical plan.
- this procedure can be used to make the first distal cut of the femur during a total knee arthroplasty.
- cutting guide 105D can be fixed to the femoral head or the acetabulum for the respective hip arthroplasty resection. It should be understood that any arthroplasty that utilizes precise cuts can use the robotic arm 105 A and/or cutting guide 105D in this manner.
- the Resection Equipment 110 is provided with a variety of commands to perform bone or tissue operations. As with the Effector Platform 105, position information may be provided to the Resection Equipment 110 to specify where it should be located when performing resection. Other commands provided to the Resection Equipment 110 may be dependent on the type of resection equipment. For example, for a mechanical or ultrasonic resection tool, the commands may specify the speed and frequency of the tool. For Radiofrequency Ablation (RFA) and other laser ablation tools, the commands may specify intensity and pulse duration.
- RFA Radiofrequency Ablation
- the commands may specify intensity and pulse duration.
- Some components of the CASS 100 do not need to be directly controlled by the Surgical Computer 150; rather, the Surgical Computer 150 only needs to activate the component, which then executes software locally specifying the manner in which to collect data and provide it to the Surgical Computer 150.
- the Tracking System 115 and the Tissue Navigation System 120.
- the Surgical Computer 150 provides the Display 125 with any visualization that is needed by the Surgeon 111 during surgery.
- the Surgical Computer 150 may provide instructions for displaying images, GUIs, etc. using techniques known in the art.
- the display 125 can include various portions of the workflow of a surgical plan. During the registration process, for example, the display 125 can show a preoperatively constructed 3D bone model and depict the locations of the probe as the surgeon uses the probe to collect locations of anatomical landmarks on the patient.
- the display 125 can include information about the surgical target area. For example, in connection with a TKA, the display 125 can depict the mechanical and anatomical axes of the femur and tibia.
- the display 125 can depict varus and valgus angles for the knee joint based on a surgical plan, and the CASS 100 can depict how such angles will be affected if contemplated revisions to the surgical plan are made. Accordingly, the display 125 is an interactive interface that can dynamically update and display how changes to the surgical plan would impact the procedure and the final position and orientation of implants installed on bone.
- the display 125 can depict the planned or recommended bone cuts before any cuts are performed.
- the surgeon 111 can manipulate the image display to provide different anatomical perspectives of the target area and can have the option to alter or revise the planned bone cuts based on intraoperative evaluation of the patient.
- the display 125 can depict how the chosen implants would be installed on the bone if the planned bone cuts are performed. If the surgeon 111 choses to change the previously planned bone cuts, the display 125 can depict how the revised bone cuts would change the position and orientation of the implant when installed on the bone.
- the display 125 can provide the surgeon 111 with a variety of data and information about the patient, the planned surgical intervention, and the implants. Various patient-specific information can be displayed, including real-time data concerning the patient's health such as heart rate, blood pressure, etc.
- the display 125 can also include information about the anatomy of the surgical target region including the location of landmarks, the current state of the anatomy (e.g., whether any resections have been made, the depth and angles of planned and executed bone cuts), and future states of the anatomy as the surgical plan progresses.
- the display 125 can also provide or depict additional information about the surgical target region.
- the CASS 100 can provide such information for each of the planned bone resections in a TKA or THA.
- the CASS 100 can provide robotic control for one or more of the planned bone resections.
- the CASS 100 can provide robotic control only for the initial distal femur cut, and the surgeon 111 can manually perform other resections (anterior, posterior and chamfer cuts) using conventional means, such as a 4-in-l cutting guide or jig 105D.
- the display 125 can employ different colors to inform the surgeon of the status of the surgical plan. For example, un-resected bone can be displayed in a first color, resected bone can be displayed in a second color, and planned resections can be displayed in a third color. Implants can be superimposed onto the bone in the display 125, and implant colors can change or correspond to different types or sizes of implants.
- the surgical workflow display can be organized into modules, and the surgeon can select which modules to display and the order in which the modules are provided based on the surgeon's preferences or the circumstances of a particular surgery.
- Modules directed to ligament and gap balancing can include pre- and post-resection ligament/gap balancing, and the surgeon 111 can select which modules to include in their default surgical plan workflow depending on whether they perform such ligament and gap balancing before or after (or both) bone resections are performed.
- the Surgical Computer 150 may provide images, text, etc. using the data format supported by the equipment.
- the Display 125 is a holography device such as the Microsoft HoloLensTM or Magic Leap OneTM
- the Surgical Computer 150 may use the HoloLens Application Program Interface (API) to send commands specifying the position and content of holograms displayed in the field of view of the Surgeon 111.
- API HoloLens Application Program Interface
- one or more surgical planning models may be incorporated into the CASS 100 and used in the development of the surgical plans provided to the surgeon 111.
- the term "surgical planning model” refers to software that simulates the biomechanics performance of anatomy under various scenarios to determine the optimal way to perform cutting and other surgical activities. For example, for knee replacement surgeries, the surgical planning model can measure parameters for functional activities, such as deep knee bends, gait, etc., and select cut locations on the knee to optimize implant placement.
- the Surgical Computer 150 may serve as the central point where CASS data is collected. The exact content of the data will vary depending on the source. For example, each component of the Effector Platform 105 provides a measured position to the Surgical Computer 150. Thus, by comparing the measured position to a position originally specified by the Surgical Computer 150 (see FIG. 5B), the Surgical Computer can identify deviations that take place during surgery.
- the Display 125 generally is used for outputting data for presentation to the user, it may also provide data to the Surgical Computer 150.
- the Surgeon 111 may interact with a GUI to provide inputs which are sent to the Surgical Computer 150 for further processing.
- the measured position and displacement of the HMD may be sent to the Surgical Computer 150 so that it can update the presented view as needed.
- Such questionnaires can be administered, for example, by a healthcare professional directly in a clinical setting or using a mobile app that allows the patient to respond to questions directly.
- the patient may be outfitted with one or more wearable devices that collect data relevant to the surgery. For example, following a knee surgery, the patient may be outfitted with a knee brace that includes sensors that monitor knee positioning, flexibility, etc. This information can be collected and transferred to the patient's mobile device for review by the surgeon to evaluate the outcome of the surgery and address any issues.
- one or more cameras can capture and record the motion of a patient's body segments during specified activities postoperatively. This motion capture can be compared to a biomechanics model to better understand the functionality of the patient's joints and better predict progress in recovery and identify any possible revisions that may be needed.
- the post-operative stage of the episode of care can continue over the entire life of a patient.
- the Surgical Computer 150 or other components comprising the CASS 100 can continue to receive and collect data relevant to a surgical procedure after the procedure has been performed.
- This data may include, for example, images, answers to questions, "normal" patient data (e.g., blood type, blood pressure, conditions, medications, etc.), biometric data (e.g., gait, etc.), and objective and subjective data about specific issues (e.g., knee or hip joint pain).
- This data may be explicitly provided to the Surgical Computer 150 or other CASS component by the patient or the patient's physician(s).
- the Surgical Computer 150 or other CASS component can monitor the patient's EMR and retrieve relevant information as it becomes available.
- This longitudinal view of the patient's recovery allows the Surgical Computer 150 or other CASS component to provide a more objective analysis of the patient's outcome to measure and track success or lack of success for a given procedure. For example, a condition experienced by a patient long after the surgical procedure can be linked back to the surgery through a regression analysis of various data items collected during the episode of care. This analysis can be further enhanced by performing the analysis on groups of patients that had similar procedures and/or have similar anatomies.
- data is collected at a central location to provide for easier analysis and use.
- Data can be manually collected from various CASS components in some instances.
- a portable storage device e.g., USB stick
- the data can then be transferred, for example, via a desktop computer to the centralized storage.
- the Surgical Computer 150 is connected directly to the centralized storage via a Network 175 as shown in FIG. 5C.
- FIG. 5C illustrates a "cloud-based" implementation in which the Surgical Computer 150 is connected to a Surgical Data Server 180 via a Network 175.
- This Network 175 may be, for example, a private intranet or the Internet.
- other sources can transfer relevant data to the Surgical Data Server 180.
- the example of FIG. 5C shows 3 additional data sources: the Patient 160, Healthcare Professional(s) 165, and an EMR Database 170.
- the Patient 160 can send pre-operative and post-operative data to the Surgical Data Server 180, for example, using a mobile app.
- the Healthcare Professional(s) 165 includes the surgeon and his or her staff as well as any other professionals working with Patient 160 (e.g., a personal physician, a rehabilitation specialist, etc.). It should also be noted that the EMR Database 170 may be used for both pre-operative and post-operative data. For example, assuming that the Patient 160 has given adequate permissions, the Surgical Data Server 180 may collect the EMR of the Patient pre surgery. Then, the Surgical Data Server 180 may continue to monitor the EMR for any updates post-surgery.
- an Episode of Care Database 185 is used to store the various data collected over a patient's episode of care.
- the Episode of Care Database 185 may be implemented using any technique known in the art.
- a SQL-based database may be used where all of the various data items are structured in a manner that allows them to be readily incorporated in two SQL's collection of rows and columns.
- a No-SQL database may be employed to allow for unstructured data, while providing the ability to rapidly process and respond to queries.
- the term "No-SQL" is used to define a class of data stores that are non-relational in their design.
- No-SQL databases may generally be grouped according to their underlying data model. These groupings may include databases that use column-based data models (e.g., Cassandra), document-based data models (e.g., MongoDB), key-value based data models (e.g., Redis), and/or graph-based data models (e.g., Allego). Any type of No-SQL database may be used to implement the various embodiments described herein and, in some embodiments, the different types of databases may support the Episode of Care Database 185.
- column-based data models e.g., Cassandra
- document-based data models e.g., MongoDB
- key-value based data models e.g., Redis
- graph-based data models e.g., Allego
- Data can be transferred between the various data sources and the Surgical Data Server 180 using any data format and transfer technique known in the art. It should be noted that the architecture shown in FIG. 5C allows transmission from the data source to the Surgical Data Server 180, as well as retrieval of data from the Surgical Data Server 180 by the data sources. For example, as explained in detail below, in some embodiments, the Surgical Computer 150 may use data from past surgeries, machine learning models, etc. to help guide the surgical procedure.
- the Surgical Computer 150 or the Surgical Data Server 180 may execute a de-identification process to ensure that data stored in the Episode of Care Database 185 meets Health Insurance Portability and Accountability Act (HIPAA) standards or other requirements mandated by law.
- HIPAA Health Insurance Portability and Accountability Act
- HIPAA provides a list of certain identifiers that must be removed from data during de-identification.
- the aforementioned de identification process can scan for these identifiers in data that is transferred to the Episode of Care Database 185 for storage.
- the Surgical Computer 150 executes the de-identification process just prior to initiating transfer of a particular data item or set of data items to the Surgical Data Server 180.
- a unique identifier is assigned to data from a particular episode of care to allow for re-identification of the data if necessary.
- FIGS. 5A - 5C discuss data collection in the context of a single episode of care, it should be understood that the general concept can be extended to data collection from multiple episodes of care.
- surgical data may be collected over an entire episode of care each time a surgery is performed with the CASS 100 and stored at the Surgical Computer 150 or at the Surgical Data Server 180.
- a robust database of episode of care data allows the generation of optimized values, measurements, distances, or other parameters and other recommendations related to the surgical procedure.
- the various datasets are indexed in the database or other storage medium in a manner that allows for rapid retrieval of relevant information during the surgical procedure.
- a patient-centric set of indices may be used so that data pertaining to a particular patient or a set of patients similar to a particular patient can be readily extracted. This concept can be similarly applied to surgeons, implant characteristics, CASS component versions, etc.
- the CASS 100 is designed to operate as a self- contained or "closed" digital ecosystem.
- Each component of the CASS 100 is specifically designed to be used in the closed ecosystem, and data is generally not accessible to devices outside of the digital ecosystem.
- each component includes software or firmware that implements proprietary protocols for activities such as communication, storage, security, etc.
- the concept of a closed digital ecosystem may be desirable for a company that wants to control all components of the CASS 100 to ensure that certain compatibility, security, and reliability standards are met.
- the CASS 100 can be designed such that a new component cannot be used with the CASS unless it is certified by the company.
- the CASS 100 is designed to operate as an "open" digital ecosystem.
- components may be produced by a variety of different companies according to standards for activities, such as communication, storage, and security. Thus, by using these standards, any company can freely build an independent, compliant component of the CASS platform. Data may be transferred between components using publicly available application programming interfaces (APIs) and open, shareable data formats.
- APIs application programming interfaces
- optimization in this context means selection of parameters that are optimal based on certain specified criteria.
- optimization can refer to selecting optimal parameter(s) based on data from the entire episode of care, including any pre-operative data, the state of CASS data at a given point in time, and post-operative goals.
- optimization may be performed using historical data, such as data generated during past surgeries involving, for example, the same surgeon, past patients with physical characteristics similar to the current patient, or the like.
- the optimized parameters may depend on the portion of the patient's anatomy to be operated on.
- the surgical parameters may include positioning information for the femoral and tibial component including, without limitation, rotational alignment (e.g., varus/valgus rotation, external rotation, flexion rotation for the femoral component, posterior slope of the tibial component), resection depths (e.g., varus knee, valgus knee), and implant type, size and position.
- the positioning information may further include surgical parameters for the combined implant, such as overall limb alignment, combined tibiofemoral hyperextension, and combined tibiofemoral resection. Additional examples of parameters that could be optimized for a given TKA femoral implant by the CASS 100 include the following:
- the surgical parameters may comprise femoral neck resection location and angle, cup inclination angle, cup anteversion angle, cup depth, femoral stem design, femoral stem size, fit of the femoral stem within the canal, femoral offset, leg length, and femoral version of the implant.
- Shoulder parameters may include, without limitation, humeral resection depth/angle, humeral stem version, humeral offset, glenoid version and inclination, as well as reverse shoulder parameters such as humeral resection depth/angle, humeral stem version, Glenoid tilt/version, glenosphere orientation, glenosphere offset and offset direction.
- the Operative Patient Care System 620 is designed to utilize patient specific data, surgeon data, healthcare facility data, and historical outcome data to develop an algorithm that suggests or recommends an optimal overall treatment plan for the patient's entire episode of care (preoperative, operative, and postoperative) based on a desired clinical outcome. For example, in one embodiment, the Operative Patient Care System 620 tracks adherence to the suggested or recommended plan, and adapts the plan based on patient/care provider performance. Once the surgical treatment plan is complete, collected data is logged by the Operative Patient Care System 620 in a historical database. This database is accessible for future patients and the development of future treatment plans.
- simulation tools e.g., LIFEMOD®
- LIFEMOD® can be used to simulate outcomes, alignment, kinematics, etc. based on a preliminary or proposed surgical plan, and reconfigure the preliminary or proposed plan to achieve desired or optimal results according to a patient's profile or a surgeon's preferences.
- the Operative Patient Care System 6320 ensures that each patient is receiving personalized surgical and rehabilitative care, thereby improving the chance of successful clinical outcomes and lessening the economic burden on the facility associated with near-term revision.
- the Operative Patient Care System 620 employs a data collecting and management method to provide a detailed surgical case plan with distinct steps that are monitored and/or executed using a CASS 100.
- the performance of the user(s) is calculated at the completion of each step and can be used to suggest changes to the subsequent steps of the case plan.
- Case plan generation relies on a series of input data that is stored on a local or cloud-storage database. Input data can be related to both the current patient undergoing treatment and historical data from patients who have received similar treatment(s).
- a Patient 605 provides inputs such as Current Patient Data 310 and Historical Patient Data 615 to the Operative Patient Care System 620.
- Various methods generally known in the art may be used to gather such inputs from the Patient 605.
- the Patient 605 fills out a paper or digital survey that is parsed by the Operative Patient Care System 620 to extract patient data.
- the Operative Patient Care System 620 may extract patient data from existing information sources, such as electronic medical records (EMRs), health history files, and payer/provider historical files.
- EMRs electronic medical records
- the Operative Patient Care System 620 may provide an application program interface (API) that allows the external data source to push data to the Operative Patient Care System.
- API application program interface
- the Patient 605 may have a mobile phone, wearable device, or other mobile device that collects data (e.g., heart rate, pain or discomfort levels, exercise or activity levels, or patient-submitted responses to the patient's adherence with any number of pre-operative plan criteria or conditions) and provides that data to the Operative Patient Care System 620.
- the Patient 605 may have a digital application on his or her mobile or wearable device that enables data to be collected and transmitted to the Operative Patient Care System 620.
- Current Patient Data 610 can include, but is not limited to, activity level, preexisting conditions, comorbidities, prehab performance, health and fitness level, pre operative expectation level (relating to hospital, surgery, and recovery), a Metropolitan Statistical Area (MSA) driven score, genetic background, prior injuries (sports, trauma, etc.), previous joint arthroplasty, previous trauma procedures, previous sports medicine procedures, treatment of the contralateral joint or limb, gait or biomechanical information (back and ankle issues), levels of pain or discomfort, care infrastructure information (payer coverage type, home health care infrastructure level, etc.), and an indication of the expected ideal outcome of the procedure.
- MSA Metropolitan Statistical Area
- Historical Patient Data 615 can include, but is not limited to, activity level, preexisting conditions, comorbidities, prehab performance, health and fitness level, pre operative expectation level (relating to hospital, surgery, and recovery), a MSA driven score, genetic background, prior injuries (sports, trauma, etc.), previous joint arthroplasty, previous trauma procedures, previous sports medicine procedures, treatment of the contralateral joint or limb, gait or biomechanical information (back and ankle issues), levels or pain or discomfort, care infrastructure information (payer coverage type, home health care infrastructure level, etc.), expected ideal outcome of the procedure, actual outcome of the procedure (patient reported outcomes [PROs], survivorship of implants, pain levels, activity levels, etc.), sizes of implants used, position/orientation/alignment of implants used, soft- tissue balance achieved, etc.
- Healthcare Professional(s) 630 conducting the procedure or treatment may provide various types of data 625 to the Operative Patient Care System 620.
- This Healthcare Professional Data 625 may include, for example, a description of a known or preferred surgical technique (e.g., Cruciate Retaining (CR) vs Posterior Stabilized (PS), up- vs down sizing, tourniquet vs tourniquet-less, femoral stem style, preferred approach for THA, etc.), the level of training of the Healthcare Professional(s) 630 (e.g., years in practice, fellowship trained, where they trained, whose techniques they emulate), previous success level including historical data (outcomes, patient satisfaction), and the expected ideal outcome with respect to range of motion, days of recovery, and survivorship of the device.
- a known or preferred surgical technique e.g., Cruciate Retaining (CR) vs Posterior Stabilized (PS), up- vs down sizing, tourniquet vs tourniquet-
- the Healthcare Professional Data 625 can be captured, for example, with paper or digital surveys provided to the Healthcare Professional 630, via inputs to a mobile application by the Healthcare Professional, or by extracting relevant data from EMRs.
- the CASS 100 may provide data such as profile data (e.g., a Patient Specific Knee Instrument Profile) or historical logs describing use of the CASS during surgery.
- Information pertaining to the facility where the procedure or treatment will be conducted may be included in the input data.
- This data can include, without limitation, the following: Ambulatory Surgery Center (ASC) vs hospital, facility trauma level, Comprehensive Care for Joint Replacement Program (CJR) or bundle candidacy, a MSA driven score, community vs metro, academic vs non-academic, postoperative network access (Skilled Nursing Facility [SNF] only, Home Health, etc.), availability of medical professionals, implant availability, and availability of surgical equipment.
- ASC Ambulatory Surgery Center
- CJR Comprehensive Care for Joint Replacement Program
- MSA driven score a MSA driven score
- community vs metro community vs metro
- academic vs non-academic academic vs non-academic
- postoperative network access Skilled Nursing Facility [SNF] only, Home Health, etc.
- These facility inputs can be captured by, for example and without limitation, Surveys (Paper/Digital), Surgery Scheduling Tools (e.g., apps, Websites, Electronic Medical Records [EMRs], etc.), Databases of Hospital Information (on the Internet), etc.
- Input data relating to the associated healthcare economy including, but not limited to, the socioeconomic profile of the patient, the expected level of reimbursement the patient will receive, and if the treatment is patient specific may also be captured.
- the Patient Data 610, 615 and Healthcare Professional Data 625 may be captured and stored in a cloud-based or online database (e.g., the Surgical Data Server 180 shown in FIG. 5C).
- Information relevant to the procedure is supplied to a computing system via wireless data transfer or manually with the use of portable media storage.
- the computing system is configured to generate a case plan for use with a CASS 100. Case plan generation will be described hereinafter. It is noted that the system has access to historical data from previous patients undergoing treatment, including implant size, placement, and orientation as generated by a computer-assisted, patient-specific knee instrument (PSKI) selection system, or automatically by the CASS 100 itself. To achieve this, case log data is uploaded to the historical database by a surgical sales rep or case engineer using an online portal. In some embodiments, data transfer to the online database is wireless and automated.
- PSKI patient-specific knee instrument
- Historical data sets from the online database are used as inputs to a machine learning model such as, for example, a recurrent neural network (RNN) or other form of artificial neural network.
- a machine learning model such as, for example, a recurrent neural network (RNN) or other form of artificial neural network.
- RNN recurrent neural network
- an artificial neural network functions similar to a biologic neural network and is comprised of a series of nodes and connections.
- the machine learning model is trained to predict one or more values based on the input data.
- predictor equations may be optimized to determine the optimal size, position, and orientation of the implants to achieve the best outcome or satisfaction level.
- the predictor equation and associated optimization can be used to generate the resection planes for use with a PSKI system.
- the predictor equation computation and optimization are completed prior to surgery.
- Patient anatomy is estimated using medical image data (X-ray, CT, MRI).
- Global optimization of the predictor equation can provide an ideal size and position of the implant components.
- Boolean intersection of the implant components and patient anatomy is defined as the resection volume.
- PSKI can be produced to remove the optimized resection envelope.
- the surgeon cannot alter the surgical plan intraoperatively.
- the surgeon may choose to alter the surgical case plan at any time prior to or during the procedure.
- the altered size, position, and/or orientation of the component(s) is locked, and the global optimization is refreshed based on the new size, position, and/or orientation of the component s) (using the techniques previously described) to find the new ideal position of the other component(s) and the corresponding resections needed to be performed to achieve the newly optimized size, position and/or orientation of the component(s).
- the femoral implant position is locked relative to the anatomy, and the new optimal position of the tibia will be calculated (via global optimization) considering the surgeon's changes to the femoral implant size, position and/or orientation.
- the surgical system used to implement the case plan is robotically assisted (e.g., as with NAVIO® or the MAKO Rio)
- bone removal and bone morphology during the surgery can be monitored in real time. If the resections made during the procedure deviate from the surgical plan, the subsequent placement of additional components may be optimized by the processor taking into account the actual resections that have already been made.
- FIG. 7A illustrates how the Operative Patient Care System 620 may be adapted for performing case plan matching services.
- data is captured relating to the current patient 610 and is compared to all or portions of a historical database of patient data and associated outcomes 615.
- the surgeon may elect to compare the plan for the current patient against a subset of the historical database.
- Data in the historical database can be filtered to include, for example, only data sets with favorable outcomes, data sets corresponding to historical surgeries of patients with profiles that are the same or similar to the current patient profile, data sets corresponding to a particular surgeon, data sets corresponding to a particular element of the surgical plan (e.g., only surgeries where a particular ligament is retained), or any other criteria selected by the surgeon or medical professional.
- the case plan from the previous patient can be accessed and adapted or adopted for use with the current patient.
- the predictor equation may be used in conjunction with an intra-operative algorithm that identifies or determines the actions associated with the case plan. Based on the relevant and/or preselected information from the historical database, the intra-operative algorithm determines a series of recommended actions for the surgeon to perform. Each execution of the algorithm produces the next action in the case plan. If the surgeon performs the action, the results are evaluated. The results of the surgeon's performing the action are used to refine and update inputs to the intra-operative algorithm for generating the next step in the case plan.
- the system utilizes preoperative, intraoperative, or postoperative modules in a piecewise fashion, as opposed to the entire continuum of care.
- caregivers can prescribe any permutation or combination of treatment modules including the use of a single module.
- the various components of the CASS 100 generate detailed data records during surgery.
- the CASS 100 can track and record various actions and activities of the surgeon during each step of the surgery and compare actual activity to the pre-operative or intraoperative surgical plan.
- a software tool may be employed to process this data into a format where the surgery can be effectively "played-back.”
- one or more GUIs may be used that depict all of the information presented on the Display 125 during surgery. This can be supplemented with graphs and images that depict the data collected by different tools.
- a GUI that provides a visual depiction of the knee during tissue resection may provide the measured torque and displacement of the resection equipment adjacent to the visual depiction to better provide an understanding of any deviations that occurred from the planned resection area.
- the ability to review a playback of the surgical plan or toggle between different phases of the actual surgery vs. the surgical plan could provide benefits to the surgeon and/or surgical staff, allowing such persons to identify any deficiencies or challenging phases of a surgery so that they can be modified in future surgeries.
- the aforementioned GUIs can be used as a teaching tool for training future surgeons and/or surgical staff.
- the data set effectively records many elements of the surgeon's activity, it may also be used for other reasons (e.g., legal or compliance reasons) as evidence of correct or incorrect performance of a particular surgical procedure.
- a rich library of data may be acquired that describes surgical procedures performed for various types of anatomy (knee, shoulder, hip, etc.) by different surgeons for different patients.
- information such as implant type and dimension, patient demographics, etc. can further be used to enhance the overall dataset.
- the dataset Once the dataset has been established, it may be used to train a machine learning model (e.g., RNN) to make predictions of how surgery will proceed based on the current state of the CASS 100.
- a machine learning model e.g., RNN
- Training of the machine learning model can be performed as follows.
- the overall state of the CASS 100 can be sampled over a plurality of time periods for the duration of the surgery.
- the machine learning model can then be trained to translate a current state at a first time period to a future state at a different time period.
- a plurality of machine learning models may be used rather than a single model.
- the machine learning model may be trained not only with the state of the CASS 100, but also with patient data (e.g., captured from an EMR) and an identification of members of the surgical staff. This allows the model to make predictions with even greater specificity. Moreover, it allows surgeons to selectively make predictions based only on their own surgical experiences if desired.
- predictions or recommendations made by the aforementioned machine learning models can be directly integrated into the surgical workflow.
- the Surgical Computer 150 may execute the machine learning model in the background making predictions or recommendations for upcoming actions or surgical conditions.
- a plurality of states can thus be predicted or recommended for each period.
- the Surgical Computer 150 may predict or recommend the state for the next 5 minutes in 30 second increments.
- the surgeon can utilize a "process display" view of the surgery that allows visualization of the future state.
- FIG. 7C depicts a series of images that may be displayed to the surgeon depicting the implant placement interface.
- the process display can be presented in the upper portion of the surgeon's field of view in the AR HMD.
- the process display can be updated in real-time. For example, as the surgeon moves resection tools around the planned resection area, the process display can be updated so that the surgeon can see how his or her actions are affecting the other factors of the surgery.
- the inputs to the model may include a planned future state.
- the surgeon may indicate that he or she is planning to make a particular bone resection of the knee joint.
- This indication may be entered manually into the Surgical Computer 150 or the surgeon may verbally provide the indication.
- the Surgical Computer 150 can then produce a film strip showing the predicted effect of the cut on the surgery.
- Such a film strip can depict over specific time increments how the surgery will be affected, including, for example, changes in the patient's anatomy, changes to implant position and orientation, and changes regarding surgical intervention and instrumentation, if the contemplated course of action were to be performed.
- a surgeon or medical professional can invoke or request this type of film strip at any point in the surgery to preview how a contemplated course of action would affect the surgical plan if the contemplated action were to be carried out.
- various elements of the surgery can be automated such that the surgeon only needs to be minimally involved, for example, by only providing approval for various steps of the surgery.
- robotic control using arms or other means can be gradually integrated into the surgical workflow over time with the surgeon slowly becoming less and less involved with manual interaction versus robot operation.
- the machine learning model in this case can learn what robotic commands are required to achieve certain states of the CASS-implemented plan.
- the machine learning model may be used to produce a film strip or similar view or display that predicts and can preview the entire surgery from an initial state.
- an initial state may be defined that includes the patient information, the surgical plan, implant characteristics, and surgeon preferences.
- the surgeon could preview an entire surgery to confirm that the CASS- recommended plan meets the surgeon's expectations and/or requirements.
- the output of the machine learning model is the state of the CASS 100 itself, commands can be derived to control the components of the CASS to achieve each predicted state. In the extreme case, the entire surgery could thus be automated based on just the initial state information.
- an optically tracked point probe may be used to map the actual surface of the target bone that needs a new implant. Mapping is performed after removal of the defective or worn-out implant, as well as after removal of any diseased or otherwise unwanted bone. A plurality of points is collected on the bone surfaces by brushing or scraping the entirety of the remaining bone with the tip of the point probe. This is referred to as tracing or "painting" the bone. The collected points are used to create a three-dimensional model or surface map of the bone surfaces in the computerized planning system.
- the created 3D model of the remaining bone is then used as the basis for planning the procedure and necessary implant sizes.
- An alternative technique that uses X-rays to determine a 3D model is described in U.S. Patent Application No. 16/387,151, filed April 17, 2019 and entitled “Three-Dimensional Selective Bone Matching” and U.S. Patent Application No. 16/789,930, filed February 13, 2020 and entitled “Three-Dimensional Selective Bone Matching,” the entirety of each of which is incorporated herein by reference.
- the point probe painting can be used to acquire high resolution data in key areas such as the acetabular rim and acetabular fossa. This can allow a surgeon to obtain a detailed view before beginning to ream.
- the point probe may be used to identify the floor (fossa) of the acetabulum.
- the information from the point probe can be used to provide operating guidelines to the acetabular reamer during surgical procedures.
- the acetabular reamer may be configured to provide haptic feedback to the surgeon when he or she reaches the floor or otherwise deviates from the surgical plan.
- the CASS 100 may automatically stop the reamer when the floor is reached or when the reamer is within a threshold distance.
- the thickness of the area between the acetabulum and the medial wall could be estimated. For example, once the acetabular rim and acetabular fossa has been painted and registered to the pre-operative 3D model, the thickness can readily be estimated by comparing the location of the surface of the acetabulum to the location of the medial wall. Using this knowledge, the CASS 100 may provide alerts or other responses in the event that any surgical activity is predicted to protrude through the acetabular wall while reaming.
- the point probe may also be used to collect high resolution data of common reference points used in orienting the 3D model to the patient. For example, for pelvic plane landmarks like the ASIS and the pubic symphysis, the surgeon may use the point probe to paint the bone to represent a true pelvic plane. Given a more complete view of these landmarks, the registration software has more information to orient the 3D model.
- the point probe may also be used to collect high-resolution data describing the proximal femoral reference point that could be used to increase the accuracy of implant placement.
- GT Greater Trochanter
- the alignment is highly dependent on proper location of the GT; thus, in some embodiments, the point probe is used to paint the GT to provide a high resolution view of the area.
- it may be useful to have a high- resolution view of the Lesser Trochanter (LT).
- LT Lesser Trochanter
- the Dorr Classification helps to select a stem that will maximize the ability of achieving a press- fit during surgery to prevent micromotion of femoral components post-surgery and ensure optimal bony ingrowth.
- the Dorr Classification measures the ratio between the canal width at the LT and the canal width 10 cm below the LT. The accuracy of the classification is highly dependent on the correct location of the relevant anatomy. Thus, it may be advantageous to paint the LT to provide a high-resolution view of the area.
- the point probe is used to paint the femoral neck to provide high-resolution data that allows the surgeon to better understand where to make the neck cut.
- the navigation system can then guide the surgeon as they perform the neck cut.
- the femoral neck angle is measured by placing one line down the center of the femoral shaft and a second line down the center of the femoral neck.
- a high-resolution view of the femoral neck (and possibly the femoral shaft as well) would provide a more accurate calculation of the femoral neck angle.
- High-resolution femoral head neck data could also be used for a navigated resurfacing procedure where the software/hardware aids the surgeon in preparing the proximal femur and placing the femoral component.
- the femoral head and neck are not removed; rather, the head is trimmed and capped with a smooth metal covering.
- a 3D model is developed during the pre-operative stage based on 2D or 3D images of the anatomical area of interest.
- registration between the 3D model and the surgical site is performed prior to the surgical procedure.
- the registered 3D model may be used to track and measure the patient's anatomy and surgical tools intraoperatively.
- landmarks are acquired to facilitate registration of this pre-operative 3D model to the patient's anatomy.
- these points could comprise the femoral head center, distal femoral axis point, medial and lateral epicondyles, medial and lateral malleolus, proximal tibial mechanical axis point, and tibial A/P direction.
- these points could comprise the anterior superior iliac spine (ASIS), the pubic symphysis, points along the acetabular rim and within the hemisphere, the greater trochanter (GT), and the lesser trochanter (LT).
- ASIS anterior superior iliac spine
- GT greater trochanter
- LT lesser trochanter
- surgeon may paint certain areas that contain anatomical defects to allow for better visualization and navigation of implant insertion.
- each pre-operative image is compared to a library of images showing "healthy" anatomy (i.e., without defects). Any significant deviations between the patient's images and the healthy images can be flagged as a potential defect. Then, during surgery, the surgeon can be warned of the possible defect via a visual alert on the display 125 of the CASS 100. The surgeon can then paint the area to provide further detail regarding the potential defect to the Surgical Computer 150.
- the surgeon may use a non-contact method for registration of bony anatomy intra-incision. For example, in one embodiment, laser scanning is employed for registration.
- a laser stripe is projected over the anatomical area of interest and the height variations of the area are detected as changes in the line.
- Other non-contact optical methods such as white light interferometry or ultrasound, may alternatively be used for surface height measurement or to register the anatomy.
- ultrasound technology may be beneficial where there is soft tissue between the registration point and the bone being registered (e.g., ASIS, pubic symphysis in hip surgeries), thereby providing for a more accurate definition of anatomic planes.
- 2D images may be captured with one or more fiducial markers in the field of view that may be used to scale the 2D images for implant selection and design.
- the fiducial markers enable location of the hip plane (e.g., coronal plane) based on known dimensions of fiducial markers.
- FIG. 8A depicts a conventional fiducial marker (represented as a filled circle) positioned between the legs of the patient.
- a medical professional may align the fiducial marker with the coronal plane of the patient and the central beam from the imaging source (e.g., approximated by the sagittal plane of the patient) in order to allow for proper scaling of the resulting 2D images based on the size of the fiducial marker in the 2D images.
- precise positioning of the fiducial marker requires a high degree of skill and may also be invasive and uncomfortable for the patient. Placement between the legs is often unpleasant and/or awkward for the patient and the medical professional, resulting in less care and attention being given to proper fiducial marker placement.
- a fiducial marker must be positioned between the legs of the patient at a depth substantially near the hip plane and a lateral position substantially near the sagittal plane (i.e., vertical center line of the anatomy).
- the fiducial marker may be attached to an adjustable or articulable arm resting on an imaging table. The elevation of the fiducial marker from the imaging table surface may be adjusted to align with the hip plane and the lateral position of the fiducial marker may be adjusted to align with the central beam. Positioning of the fiducial marker anterior or posterior of the hip plane may result in inaccurate scaling of the 2D images.
- fiducial markers may be utilized during imaging with supine imaging systems as depicted in FIG. 8A, it should be understood that it may also be advantageous to use fiducial markers with standing X-ray systems.
- FIG. 8B depicts a conventional standing X-ray system.
- conventional fiducial marker systems may use a plurality of fiducial markers to estimate the location of the hip plane for scaling of the 2D images.
- the KINGMARK calibration system from BRAINLAB, INC. is a multi -fiducial marker system that utilizes two fiducial markers placed above and below the patient. Referring now to FIG.
- a multi -fiducial marker system 800 such as the KINGMARK system may include a substantially rigid board 805 comprising one or more first fiducial markers 810 (e.g., radiopaque rods) and a strap 815 affixed to the rigid board 810 and having one or more second fiducial markers 820 (e.g., an array of linked radiopaque spheres) affixed thereto.
- first fiducial markers 810 e.g., radiopaque rods
- second fiducial markers 820 e.g., an array of linked radiopaque spheres
- the patient may lay on the rigid board 810 in a supine position such that a posterior surface of the pelvic region is positioned directly over the rigid board 810.
- the strap 815 may be laid across the patient’s pelvis and the one or more second fiducial markers may be positioned directly over the patient’s suprapubic region.
- the strap 815 may further comprise a weight 825 for pulling the strap 815 taut over the body of the patient and reducing inadvertent movement of the one or more second fiducial markers 820.
- a distance of the first fiducial markers and the second fiducial markers from the imaging detector may be inferred by comparing the dimensions of the fiducial markers in the 2D images to the known dimensions of the fiducial markers.
- the position of the first fiducial markers may correspond to a position of the dorsal surface of the patient and the position of the second fiducial markers may correspond to a position of the ventral surface of the patient.
- a distance of the hip plane from the detector may be calculated based on the dorsal and ventral surface positions.
- the relative location of the hip plane with respect to the dorsal or ventral surfaces may be relatively constant across populations.
- a ratio indicative of the distance to the hip plane from the dorsal or ventral surface compared to an overall pelvic depth may be applied to estimate the distance of the hip plane from the detector.
- the 2D images may be scaled according to the distance of the hip plane.
- multi -fiducial marker systems such as those described may still suffer from several drawbacks. For example, laying upon a board or other fiducial marker may be uncomfortable and may affect the patient during imaging. Additionally, where the second fiducial markers are not properly placed at the central beam from the imaging source, inaccuracies in scaling may result due to projectional effects. Furthermore, such systems are not easily adaptable to use with standing X-ray systems such as the system depicted in FIG.
- the dual scale calibration device 900 may comprise a belt 905 configured to be secured around the waist of a patient and a single fiducial marker 910 (i.e., a monomarker) coupled to the belt 905 and configured for visualization by conventional 2D imaging techniques, such as, for example, X-ray imaging.
- FIG. 8A also depicts a fiducial marker (represented as a hollow circle) as described herein positioned at the waist of the patient.
- FIG. 10 further depicts an exemplary dual scale calibration device as described herein attached to the waist of a patient.
- the belt 905 may include a pocket 915 formed along the loop of the belt 905 configured to retain the monomarker 910 in a secure manner.
- the pocket 915 may have a width that is substantially equal to the diameter of the monomarker 910 to tightly retain the monomarker 910 therein.
- the pocket 915 may have a width that is less than the diameter of the monomarker 910.
- a hole 920 may be formed in the material of the pocket 915 so that the monomarker 910 may extend through the hole 920 and bulge out of the pocket 915, thereby securely retaining the monomarker 910 in the pocket 915.
- the pocket 915 may be formed of an elastic material such that the pocket 915 conforms to the shape of the monomarker 910 to resiliently retain the monomarker 910 within the pocket 905.
- Securing the monomarker 910 within a pocket as shown in FIG. 9B may be particularly advantageous in order to firmly press the monomarker 910 into the soft tissue of the patient. Accordingly, instead of the entire monomarker 910 sitting above the ventral surface of the patient, the monomarker 910 may be pressed into the soft tissue such that the center of the monomarker 910 may be located at the ventral surface of the patient. As further described herein, co-location of the center of the monomarker 910 with the ventral surface of the patient may be advantageous for various calculations. However, in some embodiments, the monomarker 910 may be placed over the ventral surface such that the entire monomarker 910 sits above the ventral surface of the patient.
- the monomarker 910 may be placed over the ventral surface such that the entire monomarker 910 sits above the ventral surface of the patient.
- the monomarker 910 may be secured to a front surface of the belt 905.
- the monomarker 910 may be secured to a rigid or semi-rigid baseplate on a portion of the belt 905.
- the baseplate may be radio-transparent such that it does not interfere with the detection of the monomarker 910.
- the belt 905 is a fixed diameter belt. Accordingly, the belt 905 may be configured to fit patents of a particular size or range of sizes. In some embodiments, the belts 905 may be produced in a variety of sizes to fit patients of different sizes or ranges of sizes.
- the belt 905 is an adjustable diameter belt comprising an adjustment mechanism 925.
- the adjustment mechanism 925 may be an adjustable slide on the belt 905 that may be moved in a first direction to shorten the loop of the belt 905 and in a second direction to lengthen the loop of the belt 905. In this manner, the diameter of the loop may be adjusted to fit patients of various sizes.
- the belt 905 and/or adjustment mechanism 925 includes markings to indicate the diameter of the loop as it is adjusted. Accordingly, the belt 905 and adjustment mechanism may be used to measure a circumference of the pelvis. Additionally or alternatively, the belt 905 may be provided in a plurality of sizes corresponding to different standard waist or belt sizes or ranges thereof.
- the adjustable diameter belt 905 may be adjustable by other means.
- the belt 905 may be formed from an elastic material configured to conform to the shape of the patient (see, e.g., FIG. 10). Accordingly, the belt 905 may pulled apart to be easily placed around the waist of the patient and may shrink to the diameter of the patient upon release.
- the loop of the belt 905 may be selectively opened and closed.
- the belt 905 may include a side release buckle comprising a male component on a first end of the belt 905 and a female component on the second end of the belt 905.
- the male and female components may be selectively fastened to close the belt 905 and released to open the belt 905.
- the loop of the belt 905 may be opened to be placed around the waist of the patient and may be secured thereafter.
- Alternate means of selectively fastening and releasing the ends of the belt 905 to close and open the loop may be provided and implemented as would be known to a person having an ordinary level of skill in the art.
- the loop of the belt may be fixed and may not be opened.
- the monomarker 910 comprises a radiopaque material configured to be imaged through conventional 2D imaging techniques, e.g., X-ray imaging.
- the radiopaque material comprises one or more of titanium, tungsten, barium sulfate, bismuth compounds, zirconium oxide, and/or additional radiopaque materials as would be known to a person having an ordinary level of skill in the art.
- the monomarker 910 has known characteristics including but not limited to a particular shape and/or size (i.e., dimensions). In some embodiments, the monomarker 910 is spherical and has a known diameter. Alternate shapes for the monomarker 910 are contemplated within the scope of this disclosure. In some embodiments, the monomarker 910 has a diameter of about 26 mm to about 36 mm. In additional embodiments, the monomarker 910 has a diameter of 36 mm, 26 mm, 22 mm, 18 mm, 14 mm, 10 mm, less than 10 mm, or individual values or ranges therebetween.
- the diameter of the monomarker 910 is sufficiently small to adequately limit overlay with anatomical structures in the 2D imaging field.
- a smaller monomarker 910 may have a smaller footprint and thus block a smaller portion of the anatomy, thereby providing clearer visualization of the patient anatomy.
- the monomarker 910 is secured within the pocket 915, e.g., resiliently retained by the material of the pocket 915.
- alternate means of fastening and/or retaining the monomarker 910 may be used as would be apparent to a person having an ordinary level of skill in the art.
- the monomarker 910 is secured on a front or back surface of the belt 905.
- the monomarker 910 may be secured to a rigid or semi rigid baseplate on a portion of the belt 905.
- the baseplate may be radio-transparent such that it does not interfere with the detection of the monomarker 910.
- the monomarker 910 is removable such that the belt 905 and monomarker 910 may be individually cleaned or sterilized.
- the monomarker 910 is embedded or otherwise immovably joined within the belt 905.
- the monomarker 910 may be substantially stationary with respect to the belt 905.
- the position of the monomarker 910 may be adjustable. For example, adjusting the position of the monomarker 910 may increase patient comfort during imaging.
- the monomarker 910 may be used as described herein without a belt 905.
- alternate means may be used for securing the monomarker 910 to the patient.
- the monomarker 910 may secured to the patient by a clip (e.g., a three-fingered clip), a spring clip, a band, an adjustable strap (e.g., a hook and loop strap), a strip of fabric or other material (e.g., tightened in a knot to secure to the patient), adhesives, and additional means as would be apparent to a person having an ordinary level of skill in the art.
- the means for securing the monomarker 910 may secure to a patient’s clothing (e.g., an edge of a shirt, an edge of a pair of pants, a belt loop, etc.) in a manner to position the monomarker 910 proximate the pubic symphysis as described herein.
- securing means such as those used in conventional systems may be used to secure the monomarker 910.
- the monomarker 910 may be attached to an adjustable or articulable arm resting on an imaging table such that it may be positioned proximate the pubic symphysis as described herein by a medical professional.
- the monomarker 910 may be attached to a strap affixed to the rigid board on an imaging table.
- the monomarker 910 may be removably or permanently attached to the securing means.
- the monomarker 910 may be positioned with respect to the patient without a securing means. For example, in supine imaging, the monomarker 910 may be placed on top of the patient at or near the pubic symphysis for the duration of imaging.
- the dual scale calibration device 900 as described herein may be simply and comfortably placed in the suprapubic region with little effort required by both the patient and the medical professional. Accordingly, the high degree of skill associated with precise fiducial marker placement in conventional systems is alleviated. Further, the invasiveness and unpleasant nature of placing a marker directly between the legs of a patient is avoided. As such, greater care and attention may be given to proper fiducial marker placement while providing greater comfort to the patient.
- the dual scale calibration device 900 may be designed as disposable and configured for one-time use.
- one or more components of the dual scale calibration device 900 e.g., the belt 905 and/or the monomarker 910) may be designed as disposable and configured for one-time use.
- one or more components of the dual scale calibration device 900 are designed for re-use and configured for washing, sterilizing, and/or autoclaving.
- the belt may be applied 1105 to the waist, and the monomarker may be placed 1110 on the ventral surface of the patient proximate to the pubic symphysis (i.e., in the suprapubic region).
- the monomarker may be aligned in front of the pubic symphysis.
- the patient may be positioned 1115 in an imaging field according to standard procedures.
- the patient may be placed supine on a table (e.g., in supine X-ray imaging) or with their back against a wall bucky stand (e.g., in standing X-ray imaging).
- the patient may be imaged 1120 from a frontal view, e.g., an anterior-posterior (A-P) view (e.g., as shown in FIG. 17).
- A-P anterior-posterior
- P-A posterior-anterior
- the patient anatomy may be considered when applying 1105 the belt and placing 1110 the monomarker.
- the belt position may be adjusted to account for soft tissue of the patient. For example, in the case of an obese patient, fatty tissue in the abdominal region may be present over the suprapubic region. In order to provide greater accuracy in the calculation of the hip plane location as further described herein, it may be preferable to place 1110 the monomarker beneath the fatty tissue in order to be located more proximate to the pubic symphysis (i.e., as opposed to being located over the fatty tissue and thereby at a greater elevation with respect to the pubic symphysis). Accordingly, the belt may be applied 1105 beneath the fatty tissue in the abdominal region and/or slid under the fatty tissue, thereby positioning the monomarker on the ventral surface of the patient proximate to the pubic symphysis.
- placing 1110 the monomarker on the ventral surface of the patient comprises pressing the monomarker into the soft tissue such that the center of the monomarker is located at or near the ventral surface of the patient.
- the belt may be tightly or snugly applied 1105 around the patient such that the monomarker naturally presses into the soft tissue and maintains its position.
- co-location of the center of the monomarker with the ventral surface of the patient may be advantageous for various calculations.
- the monomarker may be placed over the ventral surface such that the entire monomarker sits above the ventral surface of the patient.
- a belt may not be used.
- the monomarker may be placed 1110 on the ventral surface of the patient proximate in the suprapubic region with other securing means as described herein.
- the monomarker may be placed 1110 without securing means may remain relatively stationary during imaging, e.g., during supine x-ray imaging.
- an imaging system used to carry out the method 1100 as described may have known characteristics.
- the imaging system comprises and imaging source and an imaging detector situated about an imaging surface (e.g., an imaging table or a wall bucky stand).
- the imaging detector is located at a predetermined distance from the imaging surface.
- the imaging system has a known make and model with predetermined specifications.
- the distance of the imaging detector from the imaging surface may be standard for the make and model of the imaging system.
- the distance of the imaging source from the imaging surface and/or the imaging detector may be a predetermined and/or standard distance. Exemplary imaging systems that may be used to carry out the method 1100 are depicted in FIGS. 8A-8B.
- the method comprises outputting the 2D image as part of an image file.
- the resulting 2D images may form a portion of a Digital Imaging and Communications in Medicine (DICOM) file.
- DICOM file may include additional information.
- a DICOM file may include header information that identifies or allows for determination of the distance from the relevant surface to the detector.
- the DICOM file may identify the model of the imaging system, which may be used to determine the distance based on the imaging system’s configuration.
- the DICOM file includes information related to the distance of the imaging source (e.g., an X-ray tube/generator) from the detector, which may also be used in furtherance of the calculations described herein as well as additional calculations.
- an illustrative method 1200 of scaling a 2D image is described in accordance with an embodiment.
- the method 1200 may be used, for example, according to a single radiograph calibration approach.
- An A-P image of a patient captured with a dual scale calibration device in the manner described herein is received 1205 by a computing device.
- a diameter of the monomarker in the 2D image is measured 1210 and a distance of the monomarker from the detector of the imaging system is calculated 1215.
- a distance of the imaging surface (i.e., imaging table or wall bucky stand) from the detector is obtained 1220. Such distance corresponds to the distance of the patient’s dorsal surface from the detector.
- a distance of the hip plane from the detector is calculated 1225 based on the distance of the monomarker from the detector and a distance of the imaging surface (i.e., the patient’s dorsal surface) from the detector.
- a hip plane calibration factor, CF hp i.e., an indication of the scale of the image with respect to the true anatomy
- the 2D image may be scaled 1235 accordingly to provide an accurately scaled representation of the patient anatomy.
- the distance of the monomarker from the detector may be calculated 1215 based on known dimensions of the monomarker. In some embodiments, the distance is calculated 1215 by comparing the diameter of the monomarker in the 2D image to the true diameter of the monomarker. The comparison of the diameter of the monomarker in the 2D image to the true diameter of the monomarker provides a magnification factor according to:
- zo generally corresponds to a distance of the center of the monomarker from the detector and is used as an estimation of the distance of the ventral surface of the patient from the detector.
- the calculated distance zo is based on a known distance between the center of the monomarker and the ventral surface of the patient.
- the distance of the monomarker from the detector may be calculated 1215 by more complex methods to account for projectional effects in the 2D image.
- the representation of the monomarker in the 2D image may be distorted based on a distance from the center of the 2D image (i.e., the central beam). For example, a spherical monomarker may appear elliptical.
- FIGS. 14A-14B An exemplary diagram of the tangential projection of a sphere in a radiograph is depicted in FIGS. 14A-14B. With reference to FIGS.
- the major axis of projection of a sphere is defined by: where
- the projectional effects may be corrected by determining a precise horizontal and vertical position of the monomarker in space based on an inverse formula developed from the above equation: where all variables are defined as above and A is equal to
- the distance zo of the monomarker from the detector may be calculated 1215 based on the above formula. In order to perform this calculation, the distance xo must be known or estimated. In some embodiments, the distance xo may be measured from the 2D image and used to calculate 1215 the distance zo of the monomarker from the detector. However, the raw 2D image has not yet been scaled and thus the measured distance xo may be magnified in the horizontal plane, thus causing a degree of error in the measured distance xo.
- this manner of calculating 1215 may yield a calculated distance zo of the monomarker from the detector with an acceptable degree of accuracy that may be used for the subsequent steps of the method 1200 herein.
- the measured value of xo may be calibrated in order to obtain a more accurate calculation 1215 of the distance zo of the monomarker from the detector.
- an illustrative method of calibrating a measured distance xo of a monomarker in a 2D image from a central beam of an imaging source is depicted in accordance with an embodiment. It should be understood that the steps of the method 2000 may be performed as substeps of the calculation 1215 step of the method 1200 as described herein.
- the method 2000 comprises measuring 2005 an uncalibrated distance xo from the 2D image and performing 2010 one or more iterations to refine the value of xo, wherein each iteration comprises calculating 2010A a calibration factor based on x n -i where n is equal to the number of the iteration, scaling 2010B the value of xo based on the calibration factor, and defining the refined distance x n as the scaled value. Iterations may be performed 2010 until an iteration criterion is satisfied. Accordingly, where the iteration criterion is not satisfied, the process may return to step 2010A with the iteration number increased by one. Where the iteration criterion has been satisfied, the method further comprises defining 2015 the calibrated distance x f as the final refined distance x a
- CF X The calibration factor calculated based on x, i.e., CF X , is an approximation of the magnification of the distance xo in the 2D image.
- CF X may be calculated 2010A by entering xo and h into the intercept theorem:
- CF X — ! — (6) h - x 0
- xo is a horizontal distance of the monomarker from the central beam of the imaging source approximated from the 2D image and h is the distance of the imaging source to the imaging detector.
- the resulting value of CF X represents an approximated factor by which xo is magnified.
- the uncalibrated distance xo may be scaled 2010B by the factor CF X in order to arrive at a scaled value for the distance of the monomarker from the central beam.
- a refined distance xi may then be defined 20 IOC as this scaled value, thereby completing a first iteration.
- the refined distance may subsequently be used to perform additional iterations 2010.
- Each iteration n may comprise calculating 2010A a calibration factor CF X based on a refined distance x n -i obtained in the previous iteration and scaling 2010B the uncalibrated distance xo based on CF X. It should be understood that every iteration uses the uncalibrated distance xo in the scaling 2010B step such that the iterations provide progressively refined scaled values based on progressively refined calibration factors.
- the iteration is completed by setting the refined distance x n as the scaled value from the present iteration.
- the value of the refined distance x n and the value of the calibration factor is expected to converge asymptotically towards a limit across the series of iterations.
- the precise limit may be dependent on several variables, including but not limited to the diameter of the monomarker, the distance h of the imaging source to the imaging detector, the length A of the major axis of the projected image, and the distance zo of the monomarker from the detector. Accordingly, it is contemplated that each subsequent iteration will converge further towards the true calibration factor for the distance xo in the 2D image.
- iterations may be performed 2010 until an iteration criterion is satisfied. Accordingly, at the completion of each iteration, the iteration criterion may be evaluated to determine the need for an additional iteration as shown in FIG. 20.
- the iteration criterion may be defined in a variety of manners. In some embodiments, the iteration criterion may be defined by a threshold number of iterations to be performed 2010. In some embodiments, the iteration criterion may be 1 iteration, 2 iterations, 3 iterations, 4 iterations,
- the threshold number of iterations may be selected to provide the degree of accuracy and efficiency in the calculation as desired. For example, due to the asymptotic nature of the iterative process 2010, a predetermined number of iterations may be deemed to provide sufficient accuracy for the calculations herein such that additional iterations may be not be constructive. Accordingly, the predetermined number of iterations may be used as the iteration criterion such that each instance of the method 2000 comprises no more and no less than the predetermined number of iterations.
- the iteration criterion may comprise a threshold amount of correlation between the refined distance x n of the current iteration and the refined distance x n -i of the previous iteration.
- the threshold amount of correlation may comprise a maximum amount of change. For example, due to the asymptotic nature of the process 2010, the threshold amount of correlation may indicate that the change in the refined distance x from the prior iteration to the current iteration is sufficiently small, thereby indicating that the iterative process 1210 has converged on a solution.
- the correlation may be measured based on an absolute amount of change in the value of the refined distance x from the prior iteration to the current iteration.
- the correlation may be measured based on a percent change in the value of the refined distance x from the prior iteration to the current iteration. Additional measures of correlation may be utilized herein as would be known to a person having an ordinary level of skill in the art. Accordingly, a degree of change below a predetermined amount (i.e., a sufficient amount of correlation) indicates sufficient agreement between consecutive iterations. Conversely, where the degree of change is beyond the predetermined amount, there may not be a sufficient amount of correlation indicating the iterative process 1210 has not yet converged sufficiently.
- the iteration criterion may include multiple criteria such that the determination of whether to perform additional iterations is based upon multiple criteria. For example, the iteration criterion may include a minimum number of iterations performed and a threshold amount of correlation between consecutive iterations.
- the calibrated distance x f is defined 2015 as the refined distance x n of the final iteration to complete the process. Thereafter, the calibrated distance x f may then be substituted into the Equation (5) above in place of xo in order to calculate zo based on the calibrated distance x f in the manner described above.
- the distance of the patient’s dorsal surface from the detector may be inferred by obtaining 1220 the distance of the imaging surface upon which the patient’s back is resting during imaging.
- the distance of the table surface from the detector may be used to infer the distance of the patient’s dorsal surface from the detector.
- the distance of the patient contact surface of the wall bucky stand from the detector plate may be used to infer the distance of the patient’s dorsal surface from the detector. While these distances may vary based on the model of the imaging system, in some embodiments, the distance information is included with the 2D image as part of a Digital Imaging and Communications in Medicine (DICOM) file.
- DICOM Digital Imaging and Communications in Medicine
- a DICOM file may include header information that identifies or allows for determination of the distance from the relevant surface to the detector.
- the DICOM file may identify the model of the imaging system, which may be used to determine the distance based on the imaging system’s configuration.
- the DICOM file includes information related to the distance of the imaging source (e.g., an X-ray tube/generator) from the detector, which may also be used in furtherance of the calculations described herein as well as additional calculations.
- the distance of the hip plane from the detector may be calculated 1230 based on the distance of the monomarker from the detector and the distance of the patient’s dorsal surface from the detector. For example, the difference between these two values may be indicative of a patient’s pelvic depth (i.e., distance from the ventral surface to the dorsal surface at the pelvis).
- the location of the hip plane may be calculated based on an average location of the hip plane with respect to the dorsal and ventral surfaces. For example, the distance between the ventral surface and the hip plane as a proportion of the overall pelvic depth of the patient may be substantially constant across populations.
- the distance between the dorsal surface and the hip plane as a proportion of the overall pelvic depth of the patient may be substantially constant across populations.
- a ratio of the distance between the ventral surface and the hip plane compared to the distance between the dorsal surface and the hip plane may be substantially constant across populations. Accordingly, empirical data, historical patient data, and the like may be used to approximate a relative location of the hip plane with respect to the ventral and/or dorsal surfaces.
- the calculated distance zo generally corresponds to a distance of the center of the monomarker from the detector.
- the distance zo of the monomarker from the detector is used as an estimation of the distance of the ventral surface of the patient from the detector.
- the center of the monomarker is pressed into the soft tissue to be substantially co-located with the ventral surface of the patient. Therefore, the distance of the center of the monomarker from the detector may be equal to the distance of the ventral surface from the detector such that zo may be directly used to calculate the distance of the hip plane as described.
- the entire monomarker may sit upon and above the ventral surface of the patient.
- location of the monomarker i.e., the center of the monomarker
- the calculated distance of the monomarker from the detector may be adjusted based on a determined location of the center of the monomarker, i.e., the distance of the center from the ventral surface.
- the value of zo may be decreased by an amount equal to a known radius of the monomarker, i.e., zo - r.
- zo may be decreased by an amount less than the radius of the monomarker. This new value of zo may be used as the distance of the monomarker from the detector for the calculations to calculate the distance of the hip plane as discussed herein, thereby maximizing the clinical relevance.
- the distance to the hip plane with respect to the ventral and/or dorsal surfaces may be more accurately determined by additionally using demographic information for the patient.
- the relationship of the hip plane with the ventral and/or dorsal surfaces may be constant across populations to a greater degree within each gender. Accordingly, the distance of the hip plane from the detector may be calculated 1230 based on empirical data, historical patient data, and the like of individuals of the same gender as the patient.
- the relationship of the hip plane with the ventral and/or dorsal surfaces may track closely with body mass index (BMI). Accordingly, the distance of the hip plane from the detector may be calculated 1230 based on empirical data, historical patient data, and the like of individuals of similar BMI as the patient.
- BMI body mass index
- the relationship of the hip plane to the ventral and/or dorsal surfaces may also relate to age, height, weight, race, ethnicity, and other demographic factors. Accordingly, specific demographic factors may be used individually or in combination to limit the data used to approximate the location of the hip plane.
- the patient’s pelvic depth may be input into a regression model to calculate 1230 the hip plane position.
- the regression model may utilize empirical data based on studies and/or historical patient data.
- the data utilized in a given calculation may relate to the patient’s demographic information, e.g., gender, age, height, weight, BMI, race, and/or ethnicity.
- a system may comprise at least one processor and a computer-readable storage medium comprising instructions configured to, when executed, cause the at least one processor to receive 2D images, measure a diameter of the monomarker in the 2D image, calculate a distance of the monomarker from the detector of the imaging system, obtain a distance of the imaging surface (i.e., imaging table or wall bucky stand) from the detector, calculate a distance of the hip plane from the detector based on the distance of the monomarker from the detector and the distance of the imaging surface from the detector, calculate the CF hp , and scale the 2D image based on the CF hp to provide an accurately scaled representation of the patient anatomy.
- a system may comprise at least one processor and a computer-readable storage medium comprising instructions configured to, when executed, cause the at least one processor to receive 2D images, measure a diameter of the monomarker in the 2D image, calculate a distance of the monomarker from the detector of the imaging system, obtain a distance of the imaging surface (i.e.,
- the instructions may cause the processor to carry out additional or alternative steps as described herein.
- the system may further comprise an input device configured to receive the input related to one or more steps of the method 1200.
- the input device may be implemented in any manner as would be apparent to a person having an ordinary level of skill in the art. It should be understood that the system may prompt a user to provide user input to complete or confirm any number of steps. However, in some embodiments, the process may be further automated by excluding user input.
- a system as described herein may retrieve 2D images from a variety of sources, e.g., a remote device or a local storage medium.
- the system may measure the diameter of the monomarker, calculate and/or obtain distances, calculate the CF hp , and/or scale the 2D image in a semi -automated or entirely automated manner.
- the method 1500 may be used, for example, according to a dual radiograph calibration approach.
- the belt may be applied 1505 to the waist, and the monomarker may be placed 1510 on the ventral surface of the patient proximate to the pubic symphysis (i.e., in the suprapubic region).
- the monomarker may be aligned in front of the pubic symphysis.
- the patient may be positioned 1515 in an imaging field according to standard procedures.
- the patient may be placed supine on a table (e.g., in supine X-ray imaging) or with their back against a wall bucky stand (e.g., in standing X-ray imaging).
- the patient may be imaged 1520 from an anterior-posterior (A-P) view (e.g., as shown in FIG. 17) and may be imaged 1525 from a lateral view (e.g., as shown in FIG. 18).
- A-P anterior-posterior
- a lateral view e.g., as shown in FIG. 18
- the monomarker is maintained in substantially the same position on the patient for capturing the A-P view and lateral view images.
- the patient anatomy may be considered when applying 1505 the belt and placing 1510 the monomarker.
- the belt position may be adjusted to account for soft tissue of the patient. For example, in the case of an obese patient, fatty tissue in the abdominal region may be present over the suprapubic region. In order to provide greater accuracy in the calculation of the hip plane location as further described herein, it may be preferable to place 1510 the monomarker beneath the fatty tissue in order to be located more proximate to the pubic symphysis (i.e., as opposed to being located over the fatty tissue and thereby at a greater elevation with respect to the pubic symphysis). Accordingly, the belt may be applied 1505 beneath the fatty tissue in the abdominal region and/or slid under the fatty tissue, thereby positioning the monomarker on the ventral surface of the patient proximate to the pubic symphysis.
- placing 1510 the monomarker on the ventral surface of the patient comprises pressing the monomarker into the soft tissue such that the center of the monomarker is located at or near the ventral surface of the patient.
- the belt may be tightly or snugly applied 1105 around the patient such that the monomarker naturally presses into the soft tissue and maintains its position
- co-location of the center of the monomarker with the ventral surface of the patient may be advantageous for various calculations.
- the monomarker may be placed 1510 over the ventral surface such that the entire monomarker sits above the ventral surface of the patient.
- a belt may not be used.
- the monomarker may be placed 1510 on the ventral surface of the patient proximate in the suprapubic region with other securing means as described herein.
- the monomarker may be placed 1510 without securing means may remain relatively stationary during imaging, e.g., during supine x-ray imaging.
- an imaging system used to carry out the method 1500 may have known characteristics. Exemplary imaging systems that may be used to carry out the method 1500 are depicted in FIGS. 8A-8B.
- the imaging 1520 from the A-P view and the imaging 1525 from the lateral view may be performed in any order.
- the A-P view is captured before the lateral view.
- the lateral view is captured before the A-P view.
- FIGS. 17-18 depict examples of imaging from an A-P view and imaging from a lateral view, respectively, with an imaging system according to some embodiments.
- the method 1500 comprises outputting the 2D image as part of an image file.
- the resulting 2D images may form a DICOM file.
- the DICOM file may include header information that identifies the model of the imaging system and/or other information associated with the imaging system as described herein with respect to the method 1200.
- an alternate method 1600 of scaling a 2D image is described in accordance with an embodiment.
- the method 1600 may be used, for example, according to a dual radiograph calibration approach.
- 2D images of an A-P view and a lateral view of a patient captured with a dual scale calibration device in the manner described herein are received 1605 by a computing device.
- a diameter of the monomarker 1610 in the lateral 2D image is measured 1610 and a distance of the monomarker from the hip plane (hereinafter referred to as D M-HP ) is calculated 1615 based on the lateral 2D image.
- D M-HP a distance of the monomarker from the hip plane
- a diameter of the monomarker in the A-P 2D image is measured 1620 and a distance of the monomarker from the detector of the imaging system (hereinafter referred to as D M-D ) is calculated 1625.
- a distance of the hip plane from the detector in the A-P 2D image (hereinafter referred to as D HP-D ) is calculated 1630 based on D M-HP and D M-D .
- calculating 1630 the D HP-D may comprise subtracting the D M-HP from D M-D .
- a hip plane calibration factor, CF hp (i.e., an indication of the scale of the A-P 2D image with respect to the true anatomy) may be calculated 1635, and the A-P 2D image may be scaled 1640 accordingly to provide an accurately scaled representation of the patient anatomy.
- the distance of the monomarker from the hip plane in the lateral view may be calculated 1615 based on known dimensions of the monomarker. In some embodiments, the distance is calculated 1615 by comparing the diameter of the monomarker in the lateral 2D image to the true diameter of the monomarker to determine a scale of the lateral 2D image. Based on the scale, the D M-HP may be measured on the lateral 2D image because the hip plane is identifiable in the lateral view. For example. FIG.
- the location of the hip plane may be automatically detected by a computing device, e.g., based on historical imaging data and/or machine learning techniques.
- the location of the hip plane may be determined based on user input, e.g., a user may indicate the location of the hip plane through an input device while viewing the lateral 2D image on a display.
- the D M-HP may be calculated 1615 with respect to a determined location of the center of the monomarker.
- the distance of the monomarker from the detector in the A-P view may be calculated 1625 based on known dimensions of the monomarker.
- the D M-D is calculated 1625 by comparing the diameter of the monomarker in the 2D image to the true diameter of the monomarker.
- the D M-D may be calculated 1625 with respect to a determined location of the center of the monomarker.
- the representation of the monomarker in the 2D image may be distorted based on a distance from the center of the 2D image (i.e., the central beam).
- a spherical monomarker may appear elliptical.
- An exemplary diagram of the projection of a sphere in a radiograph is depicted in FIGS. 14A-14B. The projectional effects may be accounted for by applying one or more of the series of equations (1) to (6) as described with respect to the method 1200 and FIGS. 14A-14B. Accordingly, the systems and methods described herein allow for greater variation in the placement of the fiducial marker with respect to the patient.
- First Distance - - — cos (rotation) wherein the projected distance is the distance between the monomarker and the hip plane in the 2D image and the rotation is the rotation in degrees away from the true lateral view. Accordingly, for a small degree of a rotation, the effect may be negligible. Nonetheless, in some embodiments, further calculations may be performed to account for patient rotation in the lateral 2D image according to the above equation where a degree of rotation is known.
- the distance of the hip plane from the detector in the A-P view (i.e., the DHP- D) may be calculated 1630 based on the DM-HP and the DM-D. For example, the difference between these the DM-HP and the DM-D may be equal to the DHP-D. Accordingly, the DM-HP may be subtracted from the DM-D to arrive at the DHP-D.
- the center of the monomarker is pressed into the soft tissue to be substantially co-located with the ventral surface of the patient. Therefore, the location of the monomarker may be equal to the location of the ventral surface and may be directly used to calculate the DM-HP and the DM-D as described.
- the entire monomarker may sit upon and above the ventral surface of the patient. Therefore, the monomarker (i.e., the center of the monomarker) is offset from the ventral surface of the patient by a distance equal to the radius of the monomarker. Accordingly, the calculated distance of the monomarker from the detector may be adjusted by an amount equal to the distance of the monomarker center from the ventral surface. This new value may be used as the distance of the monomarker from the detector for the calculations herein to calculate the distance of the hip plane as described, thereby maximizing the clinical relevance.
- the calculations may be performed without correcting for the offset.
- the calculation 1615 of the DM-HP in the lateral 2D image and the calculation 1625 of the DM-D in the A-P 2D image may both be performed without correcting for the offset.
- the offset in the DM-HP and the DM-D will cancel one another by subtraction. Accordingly, the result may account for the offset without shifting the values of the DM-HP and DM-D.
- calculating 1630 the DHP-D as such may provide greater accuracy. For example, it may be likely that the monomarker partially presses into the soft tissue and therefore does not sit entirely above the ventral surface. Accordingly, calculating 1630 the DHP-D as such may substantially account for any depression of the monomarker into the soft tissue without need for determining the degree of depression.
- the method 1600 may be implemented in a system configured to perform each of the described steps.
- a system may comprise at least one processor and a computer-readable storage medium comprising instructions configured to, when executed, cause the at least one processor to receive A-P and lateral 2D images, measure a diameter of the monomarker in the lateral 2D image, calculate a distance of the monomarker from the hip plane, measure a diameter of the monomarker in the A-P 2D image, calculate a distance of the monomarker from the detector of the imaging system in the A-P 2D image, calculate a distance of the hip plane from the detector, calculate a CF hp , and scale the 2D image based on the CF hp to provide an accurately scaled representation of the patient anatomy.
- the instructions may cause the processor to carry out additional or alternative steps as described herein.
- the system may further comprise an input device configured to receive the input related to one or more steps of the method 1600.
- the input device may be implemented in any manner as would be apparent to a person having an ordinary level of skill in the art. It should be understood that the system may prompt a user to provide user input to complete or confirm any number of steps. However, in some embodiments, the process may be further automated by excluding user input.
- a system as described herein may retrieve 2D images from a variety of sources, e.g., a remote device or a local storage medium.
- the system may measure the diameter of the monomarker, calculate and/or obtain distances, calculate the CF hp , and/or scale the 2D image in a semi -automated or entirely automated manner.
- the dual scale calibration device 900 may be modified to be secured around an upper leg of a patient (e.g., by using a smaller belt or other securing means) such that the monomarker may be positioned between the legs substantially at an approximate depth of the hip plane as required by conventional methods.
- the known dimensions of the monomarker may be used to determine a distance to the hip plane and scale the 2D image accordingly as would be apparent to a person having an ordinary level of skill in the art.
- the manner of securing the monomarker to the patient around the leg or by other means may provide greater comfort to the patient and eliminate at least some of the invasiveness associated with conventional systems.
- the methods 1200 and/or 1600 may be implemented through a software application on a computing device.
- a user may be able to import 2D images and provide input information to scale the 2D image according to the methods described herein.
- a user may input and or adjust information such as the dimensions of the monomarker, the distance of the imaging surface from the detector, the distance of the monomarker from the image center, demographic information or other patient information for the calculations as described herein, and the like.
- the software application may automatically determine various pieces of information from additional sources (e.g., a database and/or information from the 2D images).
- the software application may be configured to transmit the scaled 2D images to a variety of external systems as described herein, e.g., a bone modeling system, an implant planning system, a simulation system, a storage device, and/or a database.
- the methods as described may be utilized with conventional fiducial marker systems in order to image and scale 2D images of additional anatomical regions.
- the systems and methods may be modified as would be apparent to a person having an ordinary level of skill in the art to imaging a leg, an arm, and/or a thorax.
- the systems and methods may be used to plan surgical procedures and/or design implants related to a shoulder, an elbow, an ankle, a hip, a knee, or the like, within the scope of this disclosure.
- the dual scale calibration device 900 may be modified to be secured around a shoulder, an elbow, an ankle, a hip, a knee, or the like (e.g., by using a smaller belt or other securing means) and may thus be used to image and accurately scale 2D images of these anatomical regions.
- the systems and methods are utilized with supine 2D imaging (e.g. a supine X-ray system depicted in FIG. 8A).
- the systems and methods are utilized with standing 2D imaging (e.g., a standing X- ray system depicted in FIG. 8B).
- the patient may be immobilized during 2D imaging with respect to the detector. For example, in standing 2D imaging, the patient may be strapped or otherwise immobilized against the wall bucky stand.
- additional 2D images may be acquired to improve the accuracy of the calculations.
- a medial-lateral or lateral-medial view of the patient may be additionally captured. This view may provide information related to the position of the hip plane that can be further incorporated into the calculations.
- the scaled 2D images may be used for anatomy modeling, digital templating, and/or surgical planning including but not limited to implant selection and implant design.
- the scaled 2D images may be used to create a patient-specific 3D bone model that can be used in furtherance of surgical planning and/or implant selection.
- the devices, systems and methods described herein may also be integrated and/or used in conjunction with various surgical platforms and/or planning tools.
- a surgical platform or planning tool may be configured to receive 2D images and detect features to scale the 2D images as described herein.
- the devices, systems, and methods described herein may be used in conjunction with a bone modeling system.
- the dual scale calibration device may be used during imaging and the resulting 2D images may be used with a system for constructing three-dimensional bone models as described in U.S. Provisional Patent Application No. 62/951,676, filed on December 20, 2019, entitled “THREE- DIMENSIONAL SELECTIVE BONE MATCHING FROM 2D IMAGE DATA,” which is incorporated herein by reference in its entirety.
- one or more images of a patient bone may be scaled, aligned, and oriented with one or more template bone images and/or historical bone images.
- the 2D images may be scaled by the method described herein.
- historical bone images may include a representation of the monomarker if acquired using the dual scale calibration device as described herein such that the representation of the monomarker in the 2D images may be directly compared to the previously scaled historical bone images.
- the known dimensions of any features within the historical bone images may be compared to the known dimensions of the monomarker to properly scale the 2D images.
- a 3D rendering of a marker may be superimposed on the historical bone images and adjusted to an accurate scale based on the known dimensions of the historical bones for comparison with a monomarker in the 2D images.
- the representation of the monomarker in the 2D images may be used as a reference point to infer various dimensions of the anatomy.
- the monomarker and/or any anatomical features of known or inferred dimensions in the 2D images may be compared to features of known dimensions in the historical bone images.
- the representation of the monomarker in each image may be used to scale the images with respect to one another as described herein.
- the dimensions of the representation of the monomarker in the 2D images may be utilized to identify closely matching historical bone images (e.g., dimensions of the representation of the monomarker in the 2D images may substantially correlate to a size or girth of the patient). Demographic information and additional information as described herein may also be used to identify closely matching historical bone images.
- the bone modeling system may be used with the scaled 2D images to identify closely matching historical 2D images having a treatment plan (e.g., implant sizing information) associated therewith. The treatment plans of closely matching historical 2D images may be predictive of a treatment plan for the current patient.
- the bone modeling system may be configured to scale the 2D images as described herein.
- the bone modeling system may receive the raw 2D images of the patient and may be configured to scale the 2D images based on the representation of the monomarker in the 2D images.
- the bone modeling system may receive user input through a user interface in order to scale the 2D images.
- the bone modeling system may be configured to automatically detect the monomarker in the 2D images and scale the 2D images accordingly by the methods described herein.
- the bone modeling system may compare the 2D images to historical images and/or template images from a library of scaled 2D images.
- the dual calibration device and the resulting information and calculations as described herein may be utilized with a database of historical images and/or bone modeling software in additional manners as would be apparent to a person having an ordinary level of skill in the art.
- additional information from the 2D images may be obtained and used to more accurately produce a three-dimensional model.
- the additional information from the 2D images may include one or more dimensions of one or more features of the patient anatomy in the scaled 2D image.
- the features of the patient anatomy may include the centers of the femoral heads (e.g., approximated as spheres), the pelvic teardrops, the ischial points, and/or the trochanters.
- iliac spines anterior superior iliac spine (ASIS)
- ASIS anterior superior iliac spine
- iliac points the lowest point of the ischiatic bone, the greater trochanter, the lesser trochanter, the acetabulum, the saddle points, the acetabular roof, the obturator foramen, the pubic symphysis, the sacrum, the sacrococcygeal joint, the femoral shaft, the ischial tuberosity, and/or a center of rotation.
- the additional information may include a distance between features of the patient anatomy in the scaled 2D image, e.g., a length of a line between two features, and/or an angle between features of the patient anatomy, e.g., an angle formed between three features or points of interest.
- the additional information may comprise a length of a line between femoral heads, an inter-ischial line, an inter trochanteric line, a teardrop line, a femoral offset, a global offset, a pelvic incidence, and/or an anterior pelvic inclination.
- A-P and lateral views of the hip are imaged, a greater number of features of the patient anatomy, dimensions thereof, and/or distances therebetween may be identified.
- the devices, systems and methods described herein may be used in conjunction with an implant planning system.
- the dual scale calibration device may be used during imaging and the resulting 2D images may be used with PRESTO planning software from SMITH & NEPHEW, INC.
- PRESTO generally uses a combination of demographic information for the patient such as gender, age, height, weight, and body mass index (BMI) to predict an implant size for planning an arthroplasty procedure.
- the implant planning system may receive information from the scaled 2D images (e.g., one or more dimensions of the patient anatomy) as an additional input in the prediction model.
- the implant planning system may receive the scaled 2D images directly and identify information or dimensions therein to determine the additional inputs.
- the planning system may be configured to scale the 2D images as described herein.
- the implant planning system may receive the raw 2D images of the patient and may be configured to scale the 2D images based on the representation of the monomarker in the 2D images.
- the implant planning system may receive user input through a user interface in order to scale the 2D images.
- the implant planning system may be configured to automatically detect the monomarker in the 2D images and scale the 2D images accordingly by the methods described herein.
- the implant planning system may compare the demographic information and additional information from the 2D images to identify historical patients having similar characteristics. Based on the implant selection and outcomes from the similar historical patients, the implant planning system may predict an implant size and/or implant make and model for the patient. Accordingly, precisely scaled images may provide the most accurate dimensions for implant prediction during surgical planning.
- the additional information from the 2D images may include one or more dimensions of one or more features of the patient anatomy in the scaled 2D image.
- the features of the patient anatomy may include the centers of the femoral heads (e.g., approximated as spheres), the pelvic teardrops, the ischial points, the trochanters, and/or additional features as described above with respect to the bone modeling system.
- the additional information may include a distance between features of the patient anatomy in the scaled 2D image, e.g., a length of a line between two features, and/or an angle between features of the patient anatomy, e.g., an angle formed between three features or points of interest as described above with respect to the bone modeling system.
- A-P and lateral views of the hip are imaged, a greater number of features of the patient anatomy, dimensions thereof, and/or distances therebetween may be identified.
- the devices, systems and methods described herein may be used in conjunction with a simulation system.
- the dual scale calibration device may be used during imaging and the resulting 2D images may be used with RI.HIP MODELER simulation and planning software (also referred to as HipPRO) from SMITH & NEPHEW, INC, which is an application that may be implemented on a personal computer, tablet, mobile device, or other computing device.
- RI.HIP MODELER generally uses 2D images to evaluate a patient’s desired range of motion and optimize implant orientation (e.g., acetabular cup orientation) for a selected make, model, and size of implant.
- RI.HIP MODELER may identify one or more landmarks in one or more 2D images (e.g., sitting and standing x-rays) and assess one or more features of the patient anatomy such as one or more dimensions of features and/or one or more angles between landmarks (e.g., a sacral slope).
- RI.HIP MODELER may condition an anatomical model to mimic the mobility of a patient based on the one or more angles and simulate various activities to determine a desired range of motion. Based on the desired range of motion and the selected make, model, and size of the implant, RI.HIP MODELER may evaluate various acetabular cup orientations with respect to the patient anatomy to provide a range of motion encompassing all or portions of the desired range of motion in an optimal manner.
- RI.HIP MODELER may use information associated with the particular selected implant.
- the particular implant set may comprise characteristics and/or a unique range of motion signature (e.g., a specific range and/or specific limitations on the range. Accordingly, information associated with the particular selected implant set may be considered for evaluating acetabular cup orientations in the context of simulated activities.
- the features and functions associated with RI.HIP are described in detail in U.S. Provisional Patent Application No. 63/081,617, filed on September 22, 2020, entitled “SYSTEMS AND METHODS FOR HIP MODELING AND SIMULATION,” which is incorporated herein by reference in its entirety.
- the simulation and planning system may receive the scaled 2D images as described herein and use the scaled 2D images to assess features of the patient anatomy.
- the simulation and planning system may be configured to receive the raw 2D images and scale the 2D images as described herein based on the representation of the monomarker in the 2D images.
- the simulation and planning system may receive user input through a user interface in order to scale the 2D images.
- the simulation and planning system may be configured to automatically detect the monomarker in the 2D images and scale the 2D images accordingly by the methods described herein.
- the simulation and planning system may receive raw or scaled 2D images electronically from a local or remote computing device (e.g., a database).
- the simulation and planning system may receive raw or scaled 2D images by image capture through a camera communicating with the computing device (e.g., a camera of a mobile device).
- a reference marker may be provided on the physical 2D images (e.g., on an X-ray film) with known size to effectuate proper scaling.
- the image captured by the camera may alter the scale of an X-ray image.
- a reference marker of known dimensions included on the X-ray film may be used to correct for scaling from the image capture.
- the 2D image may be scaled as described herein using a fiducial marker to account for the arrangements in the imaging environment, thereby producing accurately scaled 2D images.
- the simulation and planning system may achieve more accurate measurements and refine or condition the simulation model accordingly.
- the simulation and planning system may use measurements from the scaled 2D images to adjust dimensions of the simulation model, limit the movement of the simulation model (i.e., conditioning), and/or select an implant make, model, and/or size.
- the implant planning system may determine a more accurate post-operative range of motion for each implant orientation. Accordingly, precisely scaled images may provide improved assessment and optimization of implant orientation during surgical planning.
- the simulation and planning system may further evaluate various acetabular cup positions.
- the scaled 2D images as described may provide accurate dimensions and measurements of the patient anatomy including the pelvis. Accordingly, in addition to evaluation of acetabular cup orientations as described, the simulation and planning system may evaluate range of motion for one or more acetabular cup positions. In some embodiments, the simulation and planning system may evaluate range of motion for one or more acetabular cup placements, wherein each placement comprises a position and an orientation. The simulation and planning system may suggest an acetabular cup placement based on the determined range of motion as described herein.
- the simulation and planning system may additionally evaluate one or more sizes of a ball head of an implant component. For example, a range of motion may be affected by the size of the ball head. Accordingly, the simulation and planning system may evaluate range of motion based on one or more sizes of the ball head and select a size based the range of motion. In some embodiments, the simulation and planning system may evaluate range of motion for one or more sets of implant parameters, wherein each set comprises an acetabular cup position, an acetabular cup orientation, and a ball head size. The simulation and planning system may suggest a set of implant parameters based on the determined range of motion as described herein.
- the simulation and planning system may additionally suggest a size of a stem of an implant component and/or a size of an acetabular cup.
- the scaled 2D images as described may provide accurate dimensions and measurements of the patient anatomy including the pelvis that facilitate evaluation of stem size and/or acetabular cup size.
- the stem size and the acetabular cup size may be selected based on the dimensions of the patient anatomy and may not affect range of motion.
- the devices, systems and methods described herein may be used in conjunction with a bone modeling system, an implant planning system, and/or a simulation system as part of a unified approach.
- the dual scale calibration device may be used during imaging, and the resulting 2D images may be scaled and used with a bone modeling system as described herein to produce a precisely scaled three- dimensional bone model.
- the scaled 2D images and/or the three-dimensional bone model may be used by an implant planning system as described herein to predict suitable implant parameters (i.e., make, model, and/or size) for the patient.
- the scaled 2D images, the three-dimensional bone model, and/or the predicted implant parameters may be used by a simulation system to condition a simulation model in accordance with the conditions of the patient and evaluate the range of motion for one or more implant orientations. Accordingly, the use of the devices, systems, and methods described herein may yield scaled 2D images that provide anatomical information for use by a combination of tools to holistically plan an arthroplasty procedure.
- the scaled 2D images may be used by a bone modeling system to generate an accurate three-dimensional model of the patient anatomy as described.
- the three dimensional model and information associated therewith may be used by the simulation system to produce an accurate simulation model that accounts for the specific anatomy of the patient.
- the implant planning system may predict an implant size that may be suitable for the patient and the implant information may be incorporated into the simulation model.
- the simulation model may evaluate various implant parameters as described to generate an optimal surgical plan including but not limited to acetabular cup position, acetabular cup orientation, and/or ball head size.
- the implant planning system may be used as a redundant calculation to validate the plan.
- the scaled 2D images may be used by a bone modeling system to generate an accurate three-dimensional model of the patient anatomy and the simulation system may use the information from the three-dimensional model to produce an accurate simulation model that accounts for the specific anatomy of the patient.
- An implant size may also be selected based on the scaled 2D images by one or more of the bone modeling system and the simulation system. In some cases, an implant size may also be selected according to user input based on assessment of the scaled 2D images.
- an implant planning system as described may be used to predict an implant size based on demographic information (i.e., without using information from the scaled 2D images.
- the predicated implant size from the implant planning system may be compared to the selected implant size to validate the selection.
- a selected implant size within one size of the predicted implant size may be sufficient to provide confidence in the selected implant size and the overall surgical plan.
- the system may draw attention to this discrepancy for the user to further assess the selection.
- a large deviation may indicate issues or errors with the capture of the 2D images and therefore the surgical plan may require re-assessment.
- a large deviation may indicate an “abnormal” patient for which the predicated implant size is inaccurate because the patient’s anatomy does not closely align with overall expectations based on demographic information and thus the surgical plan may nonetheless be suitable for the patient.
- the devices, systems, and methods described herein represent a significant advancement over conventional fiducial marker systems and calibration methods associated therewith.
- the technical solution presented herein does not require a secondary marker, thereby allowing patients to be positioned on a standard cushion while laying down, which may result in greater patient comfort.
- the described methods may calculate a calibration factor with increased precision by accounting for projection effects.
- the calibration factor calculated by the method herein may have increased accuracy by accounting for demographic information of the patient.
- one or more features of the present disclosure may be implemented with a conventional fiducial marker system.
- a conventional fiducial marker may be positioned on the ventral surface of the patient during imaging according to the method herein, and the resulting 2D images may be scaled using the methods described herein.
- the dual scale calibration device may be positioned on the patient during imaging as described herein, and the resulting 2D images may be scaled using conventional methods.
- the dual scale calibration device may be secured to the patient in the manner of conventional systems, e.g., an articulating arm and/or a strap extending from a base board, and 2D images may be captured and scaled by the methods described herein.
- a conventional multi- fiducial marker system may be used during imaging and the anterior and posterior fiducial markers may be used to identify a distance between the ventral and dorsal surfaces of the patient. Thereafter, the resulting 2D images may be scaled using the methods described herein. It should be understood that other features of the present disclosure may be implemented, individually or in combination, in conventional systems and methods as would be apparent to a person having an ordinary level of skill in the art.
- FIG. 13 illustrates a block diagram of an illustrative data processing system 1300 in which features of the illustrative embodiments are implemented.
- the data processing system 1300 is an example of a computer, such as a server or client, in which computer usable code or instructions implementing the process for illustrative embodiments of the present invention are located.
- the data processing system 1300 may be a server computing device.
- data processing system 1300 can be implemented in a server or another similar computing device operably connected to a surgical system 100 as described above.
- the data processing system 1300 can be configured to, for example, transmit and receive information related to a patient and/or a related surgical plan with the surgical system 100.
- data processing system 1300 can employ a hub architecture including a north bridge and memory controller hub (NB/MCH) 1301 and south bridge and input/output (I/O) controller hub (SB/ICH) 1302.
- NB/MCH north bridge and memory controller hub
- SB/ICH south bridge and input/output controller hub
- Processing unit 1303, main memory 1304, and graphics processor 1305 can be connected to the NB/MCH 1301.
- Graphics processor 1305 can be connected to the NB/MCH 1301 through, for example, an accelerated graphics port (AGP).
- AGP accelerated graphics port
- a network adapter 1306 connects to the SB/ICH 1302.
- An audio adapter 1307, keyboard and mouse adapter 1308, modem 1309, read only memory (ROM) 1310, hard disk drive (HDD) 1311, optical drive (e.g., CD or DVD) 1312, universal serial bus (USB) ports and other communication ports 1313, and PCI/PCIe devices 1314 may connect to the SB/ICH 1302 through bus system 1316.
- PCI/PCIe devices 1314 may include Ethernet adapters, add-in cards, and PC cards for notebook computers.
- ROM 1310 may be, for example, a flash basic input/output system (BIOS).
- the HDD 1311 and optical drive 1312 can use an integrated drive electronics (IDE) or serial advanced technology attachment (SATA) interface.
- a super EO (SIO) device 1315 can be connected to the SB/ICH 1302.
- An operating system can run on the processing unit 1303.
- the operating system can coordinate and provide control of various components within the data processing system 1300.
- the operating system can be a commercially available operating system.
- An object-oriented programming system such as the JavaTM programming system, may run in conjunction with the operating system and provide calls to the operating system from the object-oriented programs or applications executing on the data processing system 1300.
- the data processing system 1300 can be an IBM® eServerTM System ® running the Advanced Interactive Executive operating system or the Linux operating system.
- the data processing system 1300 can be a symmetric multiprocessor (SMP) system that can include a plurality of processors in the processing unit 1303. Alternatively, a single processor system may be employed.
- SMP symmetric multiprocessor
- a bus system 1316 can be comprised of one or more busses.
- the bus system 1316 can be implemented using any type of communication fabric or architecture that can provide for a transfer of data between different components or devices attached to the fabric or architecture.
- a communication unit such as the modem 1309 or the network adapter 1306 can include one or more devices that can be used to transmit and receive data.
- FIG. 13 may vary depending on the implementation.
- Other internal hardware or peripheral devices such as flash memory, equivalent non-volatile memory, or optical disk drives may be used in addition to or in place of the hardware depicted.
- the data processing system 1300 can take the form of any of a number of different data processing systems, including but not limited to, client computing devices, server computing devices, tablet computers, laptop computers, telephone or other communication devices, personal digital assistants, and the like.
- data processing system 1300 can be any known or later developed data processing system without architectural limitation.
- the X-ray device was a digital AGFA D-D 600 (Model E7869XX, AGFA Healthcare, Mortsel, Belgium).
- the focus-detector distance was 1150 mm and the height of the table surface above the detector was 80 mm.
- the cushion thickness was manually measured to be approximately 16 mm under pressure of a body. Therefore, a patient’s back was assumed to be 96 mm above the detector.
- the anterior spherical marker for DSSM was placed at a “belt- buckle” position in front of the pubic symphysis; the standard external calibration marker (ECM) was placed between the patient’s legs or - if required - laterally on the thigh at the radiology assistant’s discretion.
- the ECM was placed according to internal house standards without changing the established standard protocol. Radiology assistants were trained in the correct use of the DSSM before the start of the study. Marker placement is visualized in FIG. 8A (DSSM represented as a hollow circle; ECM represented as a filled circle). Sex, height in cm, weight in kg and waist circumference at the position of the anterior marker in cm were documented for each patient.
- CF calibration factor
- the anterior marker CF was calculated by identification of the anterior marker height above the detector using the method of Boese et ah; a horizontal distance from the central beam of zero mm was used in the calculation in line with the instructions to centrally place the marker in the central beam. With this position defining the anterior margin of the patient and the posterior margin being at 96 mm above the detector, the patient’s sagittal diameter was calculated. An empirical, sex-specific linear function - based on 400 CT scans - was applied to calculate the individual height of the hip plane above the detector in mm. This value was then transformed into the DSSM calibration factor:
- D Sd is a distance from the imaging source to the imaging detector
- H hc is a height of the hip center.
- FCF The empirical fixed calibration factor
- Type 1 0.000-0.010 (0-1%) - no/minimal effect on template implant size.
- Type 2 0.011-0.030 (0-3%) - small effect on template implant size (ca. 1 size error).
- Type 3 0.031-0.050 (3-5%) - medium effect on template implant size (ca. 2 sizes error).
- Type 4 0.051-0.100 (5-10%) - large effect on template implant size (ca. 3+ sizes error).
- Type 5 >0.100 (>10%) - extreme outlier.
- the mean calibration factors for ICM, ECM and DSSM were 1.200 (SD 0.021; range 1.150-1.280), 1.096 (SD 0.021; range 1.070-1.260), and 1.200 (SD 0.015; range 1.166-1.241), respectively.
- the FCF was therefore set at 1.20.
- the absolute differences for ECM, FCF and DSSM from the reference value (ICM) are shown in Table 1.
- the maximum CF deviation from the reference ICM was 8.2% for the FCF, 18.2% for the ECM and 6.5% for the DSSM.
- the mean absolute calibration error of the FCF method of 1.59% and 1.05% with the DSSM method.
- the dual scale single marker (DSSM) method was superior to all other methods to identify the reference hip plane.
- the number of outliers and the mean error of the ECM method could be reduced significantly.
- the DSSM method showed good results in all WHO BMI categories.
- the absolute calibration factor differences between ECM and ICM were high and, both FCF and DSSM showed small means (1.6% and 1.1%) with lesser maximums. This may seem a small difference.
- the outlier analysis showed that the DSSM method was able to reduce the number of outliers compared to FCF drastically. In particular, the number of type 3+ outliers (>3%) were reduced by 92% from thirteen to one.
- compositions, methods, and devices are described in terms of “comprising” various components or steps (interpreted as meaning “including, but not limited to”), the compositions, methods, and devices can also “consist essentially of’ or “consist of’ the various components and steps, and such terminology should be interpreted as defining essentially closed-member groups.
- a range includes each individual member.
- a group having 1-3 cells refers to groups having 1, 2, or 3 cells.
- a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.
- the term “about,” as used herein, refers to variations in a numerical quantity that can occur, for example, through measuring or handling procedures in the real world; through inadvertent error in these procedures; through differences in the manufacture, source, or purity of compositions or reagents; and the like.
- the term “about” as used herein means greater or lesser than the value or range of values stated by 1/10 of the stated values, e.g., ⁇ 10%.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Surgical Instruments (AREA)
Abstract
L'invention concerne un procédé d'étalonnage d'une image 2D frontale d'une articulation de la hanche d'un patient. L'image 2D frontale est reçue, le patient étant positionné sur une surface d'imagerie avec un marqueur de repère positionné sur la région suprapubique pendant la capture de l'image 2D par un détecteur d'imagerie. Un diamètre d'une représentation du marqueur de référence dans l'image 2D est mesuré et une première distance du marqueur de repère à partir du détecteur d'imagerie est déterminée sur la base du diamètre mesuré et d'un diamètre réel connu du marqueur de référence. Une seconde distance d'un plan coronaire de l'articulation de la hanche à partir du détecteur d'imagerie est approximée sur la base de la première distance, et un facteur d'étalonnage pour l'image 2D est calculé sur la base de la seconde distance. L'image 2D est mise à l'échelle sur la base du facteur d'étalonnage et délivrée à un dispositif de stockage lisible par ordinateur.
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202063022712P | 2020-05-11 | 2020-05-11 | |
| US63/022,712 | 2020-05-11 | ||
| US202063088059P | 2020-10-06 | 2020-10-06 | |
| US63/088,059 | 2020-10-06 | ||
| US202163159248P | 2021-03-10 | 2021-03-10 | |
| US63/159,248 | 2021-03-10 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2021231349A1 true WO2021231349A1 (fr) | 2021-11-18 |
Family
ID=76160053
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2021/031674 Ceased WO2021231349A1 (fr) | 2020-05-11 | 2021-05-11 | Monomarqueur d'étalonnage à double échelle pour matrice numérique en imagerie 2d |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2021231349A1 (fr) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114170299A (zh) * | 2021-11-26 | 2022-03-11 | 深圳市瑞立视多媒体科技有限公司 | 一种获取多人多刚体TPose信息的方法及其装置、设备 |
| US20240173081A1 (en) * | 2021-03-23 | 2024-05-30 | Ostesys | Method for Locating Object(s) in Particular for Optimal Lower Limb Surgery Planning Using X-Ray Images |
| WO2025007985A1 (fr) * | 2023-07-06 | 2025-01-09 | 湖南卓世创思科技有限公司 | Procédé, dispositif et système de positionnement de marqueur fondés sur une fusion de modèle |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10342636B2 (en) | 2015-08-12 | 2019-07-09 | Medineering Gmbh | Medical holding arm having annular LED display means |
| WO2020047051A1 (fr) | 2018-08-28 | 2020-03-05 | Smith & Nephew, Inc. | Mise en place et tension de greffe de ligament assisté par robot |
-
2021
- 2021-05-11 WO PCT/US2021/031674 patent/WO2021231349A1/fr not_active Ceased
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10342636B2 (en) | 2015-08-12 | 2019-07-09 | Medineering Gmbh | Medical holding arm having annular LED display means |
| WO2020047051A1 (fr) | 2018-08-28 | 2020-03-05 | Smith & Nephew, Inc. | Mise en place et tension de greffe de ligament assisté par robot |
Non-Patent Citations (7)
| Title |
|---|
| BAYNE C O ET AL: "Evaluation of the Accuracy and Use of X-Ray Markers in Digital Templating for Total Hip Arthroplasty", THE JOURNAL OF ARTHROPLASTY, AMSTERDAM, NL, vol. 24, no. 3, 1 April 2009 (2009-04-01), pages 407 - 413, XP026017856 * |
| BOESE CKBREDOW JDARGEL JEYSEL PGEIGES HLECHLER P: "Calibration Marker Position in Digital Templating of Total Hip Arthroplasty", JOURNAL OF ARTHROPLASTY, vol. 31, no. 4, 2016, pages 883 - 887, XP029494984, DOI: 10.1016/j.arth.2015.10.009 |
| BOESE CKLECHLER PROSE LDARGEL JOPPERMANN J ET AL.: "Calibration Markers for Digital Templating in Total Hip Arthroplasty", PLOS ONE, vol. 10, no. 7, 2015, pages e0128529 |
| CROOIJMANS HENDRIKUS J. A. ET AL: "A New Digital Preoperative Planning Method for Total Hip Arthroplasties", CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, vol. 467, no. 4, 10 September 2008 (2008-09-10), pages 909 - 916, XP055821049 * |
| GIESELER O ET AL: "Methods to determine the scaling factor in X-ray images for exact preoperative planning in hip surgery", vol. 84, no. 1, 1 January 2017 (2017-01-01), pages 38 - 46, XP009528451, Retrieved from the Internet <URL:https://www.degruyter.com/document/doi/10.1515/teme-2016-0034/xml> [retrieved on 20161220] * |
| SCHUMANN STEFFEN ET AL: "X-ray image calibration and its application to clinical orthopedics", MEDICAL ENGINEERING & PHYSICS, vol. 36, no. 7, 1 July 2014 (2014-07-01), pages 968 - 974, XP055821054 * |
| WIMSEY S ET AL: "Accurate scaling of digital radiographs of the pelvis - A PROSPECTIVE TRIAL OF TWO METHODS", THE JOURNAL OF BONE AND JOINT SURGERY, vol. 88, 1 January 2006 (2006-01-01), pages 1508 - 1512, XP055821050 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20240173081A1 (en) * | 2021-03-23 | 2024-05-30 | Ostesys | Method for Locating Object(s) in Particular for Optimal Lower Limb Surgery Planning Using X-Ray Images |
| CN114170299A (zh) * | 2021-11-26 | 2022-03-11 | 深圳市瑞立视多媒体科技有限公司 | 一种获取多人多刚体TPose信息的方法及其装置、设备 |
| WO2025007985A1 (fr) * | 2023-07-06 | 2025-01-09 | 湖南卓世创思科技有限公司 | Procédé, dispositif et système de positionnement de marqueur fondés sur une fusion de modèle |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11832893B2 (en) | Methods of accessing joints for arthroscopic procedures | |
| US20220346970A1 (en) | Devices, systems and methods for providing instrument orientation feedback | |
| US20250200921A1 (en) | Three-dimensional selective bone matching from two-dimensional image data | |
| US20230329794A1 (en) | Systems and methods for hip modeling and simulation | |
| US20230065449A1 (en) | Improved and cass assisted osteotomies | |
| US12303340B2 (en) | Calibration of 2D images for digital templating using monomarker | |
| US12007292B2 (en) | Methods of measuring force using a tracking system | |
| US12137922B2 (en) | Patient-specific guides for Latarjet procedure | |
| US11931107B1 (en) | Intraoperative three-dimensional bone model generation | |
| US20210393330A1 (en) | Knee imaging co-registration devices and methods | |
| WO2021231349A1 (fr) | Monomarqueur d'étalonnage à double échelle pour matrice numérique en imagerie 2d | |
| US20210346005A1 (en) | Actuated retractor with tension feedback | |
| US20230087709A1 (en) | Fiducial tracking knee brace device and methods thereof | |
| EP4103065A1 (fr) | Système de mise en tension d'articulation | |
| US11786232B1 (en) | Force-sensing joint tensioner | |
| EP4087467B1 (fr) | Outil de tendeur et chaussette avec grille de capteur de pression destinée à être utilisée avec celui-ci | |
| US20250082410A1 (en) | Elastography for ligament characterization | |
| US20250009465A1 (en) | Patella tracking | |
| US12484891B2 (en) | Joint tensioning device and methods of use thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21728404 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 21728404 Country of ref document: EP Kind code of ref document: A1 |