[go: up one dir, main page]

WO2021256595A1 - Vision testing device, method, and program stored in computer-readable storage medium - Google Patents

Vision testing device, method, and program stored in computer-readable storage medium Download PDF

Info

Publication number
WO2021256595A1
WO2021256595A1 PCT/KR2020/008225 KR2020008225W WO2021256595A1 WO 2021256595 A1 WO2021256595 A1 WO 2021256595A1 KR 2020008225 W KR2020008225 W KR 2020008225W WO 2021256595 A1 WO2021256595 A1 WO 2021256595A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
module
srgan
pupil
object detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2020/008225
Other languages
French (fr)
Korean (ko)
Inventor
권태현
최용훈
조현수
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pixel Display Inc
Original Assignee
Pixel Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pixel Display Inc filed Critical Pixel Display Inc
Publication of WO2021256595A1 publication Critical patent/WO2021256595A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/042Knowledge-based neural networks; Logical representations of neural networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0475Generative networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/094Adversarial learning
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • An embodiment of the present invention relates to an eye examination apparatus, a method, and a program stored in a computer-readable storage medium.
  • the display unit of the user device displays various texts and images, and accordingly, users are exposed to the display of the user device regardless of time and place. Accordingly, the eyesight of modern people is gradually deteriorated.
  • visual acuity may be measured by a measurer maintaining a certain distance at a hospital, a public health center, an optician's shop, or the like, seeing and responding to a plurality of letters or figures displayed on an optometry table according to an instruction of a subject.
  • This conventional method for measuring acuity has a disadvantage in that the reliability of the measured value for eyesight is low.
  • An object to be solved according to an embodiment of the present invention is an eye examination apparatus capable of calculating vision information (eg, refraction of the eye) from an eye photographed image through a user device, a method, and a method stored in a computer-readable storage medium to provide the program.
  • vision information eg, refraction of the eye
  • a vision test method comprises the steps of receiving a pupil image; inputting the pupil image into an SRGAN (Super-Resolution Generative Adversarial Network) module; obtaining an SR (Super-Resolved) image from the SRGAN module; inputting the SR image to the object detection module; obtaining result box data from the object detection module; inputting the result box data into an eyesight information calculation function module; and obtaining and transmitting the vision information from the vision information calculation function module.
  • SRGAN Super-Resolution Generative Adversarial Network
  • SR Super-Resolved
  • the pupil image receiving step may be performed by receiving a pupil image from a user device including a lighting unit and a photographing unit, and capable of wired or wireless communication.
  • the SRGAN module can output the SR image by removing noise from the received pupil image and increasing the resolution using the learned SRGAN algorithm.
  • the SRGAN module includes a generator network that receives a noise image and generates a fake pupil image, and a discriminator network that receives and predicts an actual pupil image and a fake pupil image. learning can be done.
  • the SRGAN module uses perceptual similarity instead of adversarial loss and pixel space similarity to train a generator network that outputs the SR-imaged perceptual loss including content loss. You can provide a perceptual loss function.
  • the object detection module may perform object detection using deep learning to analyze the size and position of the iris, pupil, and pupil reflection patterns, and correct the object box through a post-processing algorithm.
  • the object detection module may use at least one of a Single Shot MultiBox Detector (SSD), YOLOv3, or EfficientDet.
  • SSD Single Shot MultiBox Detector
  • YOLOv3 YOLOv3
  • EfficientDet EfficientDet
  • the transmitting of the vision information may be performed by transmitting the vision information to a user device capable of wired or wireless communication.
  • the vision information may include eye refraction.
  • a computer program stored in a computer-readable storage medium for eye examination includes: receiving a pupil image; inputting the pupil image to the SRGAN (Super-Resolution Generative Adversarial Network) module; obtaining an SR (Super-Resolved) image from the SRGAN module; inputting the SR image to the object detection module; obtaining result box data from the object detection module; inputting the result box data into the vision information calculation function module; and obtaining and transmitting the vision information from the vision information calculation function module.
  • SRGAN Super-Resolution Generative Adversarial Network
  • An eyesight test apparatus includes: a user device for capturing and transmitting a pupil image; and an SRGAN (Super-Resolution Generative Adversarial Network) module that receives the pupil image received from the user device and acquires an SR (Super-Resolved) image, and an object detection module that receives the SR image and acquires result box data; , a server having an eyesight information calculation function module that receives the result box data and calculates vision information, and the server may transmit the calculated vision information to the user device.
  • SRGAN Super-Resolution Generative Adversarial Network
  • the user device may include a lighting unit and a photographing unit, and may transmit the photographed pupil image to the server through a wired or wireless communication method.
  • the SRGAN module can output the SR image by removing noise from the received pupil image and increasing the resolution using the learned SRGAN algorithm.
  • the SRGAN module includes a generator network that receives a noise image and generates a fake pupil image, and a discriminator network that receives and predicts an actual pupil image and a fake pupil image. learning can be done.
  • the SRGAN module uses perceptual similarity instead of adversarial loss and pixel space similarity to train a generator network that outputs the SR-imaged perceptual loss including content loss. You can provide a perceptual loss function.
  • the object detection module may perform object detection using deep learning to analyze the size and position of the iris, pupil, and pupil reflection patterns, and correct the object box through a post-processing algorithm.
  • the object detection module may use at least one of a Single Shot MultiBox Detector (SSD), YOLOv3, or EfficientDet.
  • SSD Single Shot MultiBox Detector
  • YOLOv3 YOLOv3
  • EfficientDet EfficientDet
  • the vision information may include eye refraction.
  • An embodiment of the present invention provides an apparatus for eye examination, a method, and a program stored in a computer-readable storage medium capable of calculating vision information (eg, refractive index of an eye) from an image taken by an eyeball through a user device.
  • vision information eg, refractive index of an eye
  • FIG. 1 is a schematic diagram showing the configuration of an eye examination apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating the configuration of a user device and/or a server in the vision test apparatus according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating the configuration of program codes stored in a memory of a user device and/or a server among the vision test apparatuses according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating an eyesight examination method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating an image analysis method among the visual acuity testing methods according to an embodiment of the present invention.
  • FIGS. 6A and 6B are block diagrams illustrating a learning algorithm using a Generative Adversarial Network (GAN) and a Super-Resolution Using a Generative Adversarial Network (SRGAN) in an image analysis method according to an embodiment of the present invention.
  • GAN Generative Adversarial Network
  • SRGAN Super-Resolution Using a Generative Adversarial Network
  • FIG. 7 is a block diagram illustrating a learning algorithm using a Single Shot MultiBox Detector (SSD) and YOLO in an image analysis method according to an embodiment of the present invention.
  • SSD Single Shot MultiBox Detector
  • first, second, etc. are used herein to describe various members, parts, regions, layers and/or parts, these members, parts, regions, layers, and/or parts are limited by these terms so that they It is self-evident that These terms are used only to distinguish one member, component, region, layer or portion from another region, layer or portion. Accordingly, a first member, component, region, layer or portion discussed below may refer to a second member, component, region, layer or portion without departing from the teachings of the present invention.
  • control unit (controller) and/or other related devices or components according to the present invention may be implemented using any suitable hardware, firmware (eg, application specific semiconductor), software, or a suitable combination of software, firmware and hardware.
  • firmware eg, application specific semiconductor
  • various components of a control unit (controller) and/or other related devices or parts according to the present invention may be formed on one integrated circuit chip or on separate integrated circuit chips.
  • various components of the control unit (controller) may be implemented on a flexible printed circuit film, a tape carrier package, a printed circuit board, or may be formed on the same substrate as the control unit (controller).
  • control unit in one or more computing devices, may be processes or threads executing in one or more processors, which execute computer program instructions to perform various functions mentioned below. and interact with other components.
  • the computer program instructions are stored in a memory that can be executed in a computing device using a standard memory device, such as, for example, a random access memory.
  • the computer program instructions may also be stored in other non-transitory computer readable media such as, for example, a CD-ROM, flash drive, and the like.
  • control unit (controller) according to the present invention is usually composed of a central processing unit, a mass storage device such as a hard disk or a solid state disk, a volatile memory device, an input device such as a keyboard or mouse, and an output device such as a monitor or printer. It can be run on a commercial computer of
  • FIG. 1 is a schematic diagram illustrating a configuration of an eye examination apparatus 100 according to an exemplary embodiment of the present invention.
  • the vision test apparatus 100 may include a user device 110 , a server 120 , and an Internet network 130 .
  • the user device 110 may basically photograph a pupil image and transmit the photographed pupil image to the server 120 through the Internet network 130 . Also, the user device 110 may receive vision information (eg, the refractive index of the eye) calculated from the server 120 through the Internet network 130 .
  • user device 110 may include a smartphone, tablet, notebook, or desktop computer.
  • the server 120 basically receives the pupil image from the user device 110 and may calculate vision information by analyzing the pupil image using various neural networks.
  • the server 120 may transmit the calculated visual acuity information back to the user device 110 through the Internet network 130 .
  • the server 120 pre-processes using a super resolution technique using Generative Adversarial Networks (GAN) to perform accurate object detection from the received pupil image, and then deep Analyzes the size and position of the iris, pupil, and pupil reflection patterns (crescents) by performing object detection using learning, corrects the object box through a post-processing algorithm, and uses the results to obtain visual acuity information (e.g., For example, visual acuity information (eg, eye refraction) may be calculated by substituting a function (formula) for predicting eye refraction.
  • the deep learning network may be a Single Shot MultiBox Detector (SSD), YOLOv3 or EfficientDet, but may also include other kinds of object detection networks.
  • the Internet network 130 may connect the user device 110 and the server 120 to communicate with each other through wired or wireless communication.
  • Internet network 130 is a Public Switched Telephone Network (PSTN), x Digital Subscriber Line (xDSL), Rate Adaptive DSL (RADSL), Multi Rate DSL (MDSL), Very High Speed DSL (VDSL). ), UADSL (Universal Asymmetric DSL), HDSL (High Bit Rate DSL), and may include various wired communication systems such as local area network (LAN).
  • PSTN Public Switched Telephone Network
  • xDSL Digital Subscriber Line
  • RADSL Rate Adaptive DSL
  • MDSL Multi Rate DSL
  • VDSL Very High Speed DSL
  • UADSL Universal Asymmetric DSL
  • HDSL High Bit Rate DSL
  • LAN local area network
  • the Internet network 130 is a Code Division Multi Access (CDMA), Time Division Multi Access (TDMA), Frequency Division Multi Access (FDMA), Orthogonal Frequency Division Multi Access (OFDMA), Single Carrier-SCFDMA (SCFDMA) FDMA) and other systems.
  • CDMA Code Division Multi Access
  • TDMA Time Division Multi Access
  • FDMA Frequency Division Multi Access
  • OFDMA Orthogonal Frequency Division Multi Access
  • SCFDMA Single Carrier-SCFDMA
  • the Internet network 130 may be configured regardless of its communication aspects, such as wired and wireless, and various communication networks such as a personal area network (PAN) and a wide area network (WAN). may include Also, in some examples, the Internet network 130 may be a well-known World Wide Web (WWW), and a wireless transmission used for short-range communication, such as Infrared Data Assoication (IrDA) or Bluetooth. may include technology.
  • WWW World Wide Web
  • IrDA Infrared Data Assoication
  • FIG. 2 is a block diagram illustrating the configuration of the user device 110 and/or the server 120 of the vision test apparatus 100 according to an embodiment of the present invention.
  • the user device 110 and/or the server 120 may include an input unit 1210 , a control unit 1220 , an output unit 1230 , and a transceiver 1240 in common.
  • the user device 110 may further include a lighting unit 111 and a photographing unit 112 for photographing the eyeball.
  • the input unit 1210 may include a keyboard, a keypad, and the like, and through this, input of various commands or input of setting values is possible.
  • the output unit 1230 may include a monitor, a display, and the like, and through this, various screen configurations or output of result values are possible. In some examples, the input unit 1210 and the output unit 1230 may include one touch screen.
  • the control unit 1220 may include a central processing unit 1221 and a memory 1222 , and a program code 1223 for a main operation of the present invention may be stored in the memory 1222 . That is, the control unit 1220 executes the program code 1223 stored in the memory 1222 through the central processing unit 1221 , and accordingly controls the operation of the user device 110 and/or the server 120 . have.
  • the memory 1222 may be a flash memory type, a hard disk type, a multimedia card micro type, or a card type memory (eg SD or XD memory). etc.), Random Access Memory (RAM), Static Random Access Memory (SRAM), Read-Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Programmable Read-Only Memory (PROM), It may include at least one type of storage medium among a magnetic memory, a magnetic disk, and an optical disk.
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • ROM Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • PROM Programmable Read-Only Memory
  • It may include at least one type of storage medium among a magnetic memory, a magnetic disk, and an optical disk.
  • the transceiver 1240 is used for receiving and transmitting wired/wireless signals, and transmits a signal received from the Internet network 130 to the controller 1220 , and outputs a signal generated by the controller 1220 to the Internet network 130 . can do.
  • transceiver 1240 may include a wired/wireless Internet module for network connection.
  • wireless Internet technologies wireless LAN (WLAN) (Wi-Fi), wireless broadband (Wibro), World Interoperability for Microwave Access (Wimax), High Speed Downlink Packet Access (HSDPA), etc. may be used.
  • WiFi wireless LAN
  • Wibro wireless broadband
  • Wimax World Interoperability for Microwave Access
  • HSDPA High Speed Downlink Packet Access
  • XDSL Digital Subscriber Line
  • FTH Fibers to the home
  • PLC Power Line Communication
  • the transceiver 1240 may additionally include a short-range communication module to transmit/receive data to/from the user device 110 and other user devices 110 including the short-distance communication module located in a relatively short distance from the user device 110 .
  • Bluetooth Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, etc. may be used as short range communication technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • ZigBee ZigBee
  • the user device 110 may be a smartphone, a tablet, a notebook computer, or a desktop
  • the server 120 is used for processing large data in general. It may be a computer.
  • the subject method of the present invention is primarily performed on the server 120 , but may also be performed on the user device 110 .
  • FIG 3 is a block diagram showing the configuration of the program code 1223 stored in the memory 1222 of the user device 110 and/or the server 120 of the vision test apparatus 100 according to an embodiment of the present invention. .
  • the program code 1223 stored in the memory 1222 of the user device 110 and/or the server 120 among the vision test apparatus 100 according to the embodiment of the present invention is a super -Resolution Generative Adversarial Network) module 1224 , an object detection module 1225 , and a vision information calculation function module 1226 may be included.
  • the SRGAN module 1224 may obtain a super-resolved (SR) image by receiving the pupil image received from the user device 110 .
  • the SRGAN module 1224 may output an SR image by removing noise from the received pupil image and increasing the resolution using the SRGAN algorithm that has been trained.
  • the SRGAN module 1224 includes a generator network that receives a noise image and generates a fake pupil image, and a discriminator network that receives a real pupil image and a fake pupil image and makes a prediction, but includes a generator network and a disk
  • the reminator network performs learning alternately with each other, so that the performance of the generator network and the discreminator network can be further improved.
  • the SRGAN module 1224 uses perceptual similarity instead of adversarial loss and pixel space similarity to train a generator network to output the SR imaged content loss.
  • perceptual loss function including
  • the generator network when a low-resolution pupil image is input to the generator network, the generator network performs a prediction, and a loss occurs between the prediction and the high-resolution pupil image. By inputting this loss back to the generator network, the generator network may be updated. At this time, in calculating the loss, the performance of the generator network is improved by providing the above-described perceptual loss function to describe the characteristic part of the image, rather than learning the similarity in units of pixels like the conventional Mean Squared Error (MSE). to improve MSE.
  • MSE Mean Squared Error
  • the object detection module 1225 may receive the image SR by the SRGAN module 1224 and obtain result box data. That is, the object detection module 1225 may perform object detection using deep learning to analyze sizes and positions of the iris, pupil, and pupil reflection patterns, and may correct the object box through a post-processing algorithm. As described above, the object detection module 1225 may use at least one of a Single Shot MultiBox Detector (SSD), YOLOv3, and EfficientDet, but the present invention is not limited thereto. is also possible
  • the eyesight information calculation function module 1226 may receive result box data from the object detection module 1225 and calculate eyesight information.
  • the visual acuity information calculation function module 1226 may include a function (formula) for predicting the degree of refraction of the eyeball, thereby calculating the diopter (degree of refraction) of the eyeball.
  • FIG. 4 is a flowchart illustrating an eyesight examination method according to an embodiment of the present invention.
  • the vision test method includes a first photographing step ( S1 ) through the user device 110 , a first image analysis step ( S2 ) through the server 120 , and , may include a second photographing step (S3) through the user device 110, a second image analysis step (S4) through the server 120, and a result derivation step (S5) through the user device 110 have.
  • the first image analysis step (S2) and the second image analysis step (S4) may be performed in the server 120, and the server 120 includes the above-described SRGAN module 1224, object detection module 1225 and Image analysis is performed through the program code 1223 including the vision information calculation function module 1226 .
  • the result of image analysis is transmitted from the server 120 to the user device 110, and the user device 110 displays it (result derivation step S5).
  • the first image analysis may be an analysis of a pupil image on a 90 degree axis (a pupil image taken by setting the user device 110 at 90 degrees with respect to the ground)
  • the second image analysis may be an analysis of the pupil image on the user device 110 .
  • a pupil image on a 180-degree axis a pupil image photographed by setting the user device 110 at 180 degrees with respect to the ground).
  • FIG. 5 is a flowchart illustrating an image analysis method among the visual acuity testing methods according to an embodiment of the present invention.
  • the image analysis method among the vision test methods includes an image receiving step (S21), an SRGAN operation step (S22), an SR image acquisition step (S23), an object detection step ( S24), the result box data acquisition step (S25), the operation step of the eyesight information calculation function (S26), and the eyesight information acquisition step (S27) may be included.
  • a pupil image photographed from the user device 110 is received through the Internet network 130 .
  • the image receiving step may be performed by receiving a pupil image from the user device 110 including the lighting unit 111 and the photographing unit 112 , and capable of wired or wireless communication.
  • the SRGAN module 1224 removes noise from the pupil image using the SRGAN algorithm that has been trained and increases the resolution to output the SR image.
  • the SRGAN module 1224 includes a generator network that receives a noise image and generates a fake pupil image, and a discriminator network that receives a real pupil image and a fake pupil image and makes a prediction, but includes a generator network and a disk The reminator network can perform learning by taking turns with each other.
  • the SRGAN module 1224 may provide a perceptual loss function including a content loss using perceptual similarity instead of adversarial loss and pixel space similarity to train a generator network that outputs an SR image.
  • the object detection module 1225 performs object detection using deep learning to analyze the size and position of the iris, pupil, and pupil reflection patterns, and post-processing You can calibrate the object box through an algorithm.
  • the object detection module 1225 may use at least one of a Single Shot MultiBox Detector (SSD), YOLOv3, or EfficientDet.
  • the vision information calculation function module 1226 receives and processes the result box data to calculate vision information.
  • the vision information may include eye refraction as described above.
  • FIGS. 6A and 6B are block diagrams illustrating a learning algorithm using a Generative Adversarial Network (GAN) and a Super-Resolution Using a Generative Adversarial Network (SRGAN) in an image analysis method according to an embodiment of the present invention.
  • GAN Generative Adversarial Network
  • SRGAN Super-Resolution Using a Generative Adversarial Network
  • the GAN module includes a generator network that generates a fake image by receiving a noise image, and a discriminator network that receives real images and fake images and makes predictions, a generator network and a discriminator network By cross-progressing mutual learning, the performance of the generator network and the discriminator network is improved over the learning time.
  • This GAN module learns to minimize and maximize the parameter ⁇ D of the discriminator network and the parameter ⁇ G of the generator network, respectively, as shown below.
  • I LR is a low-resolution input image
  • I HR is a high-resolution output image
  • the SRGAN module 1224 also includes a generator network and a discriminator network, and learns like the general GAN module described above. That is, the discriminator network learns to distinguish the original high-resolution image from the image created by SR, so that the generator generates an image that is difficult to distinguish from the high-resolution image.
  • B residual blocks are used in the same shape.
  • the residual block contains two convolutional layers with a 3 x 3 kernel, and batch-normalization is applied and ParametricReLU is used as the activation function. .
  • the delimiter uses the LeakyReLU activation function.
  • Eight convolutional layers using a 3 x 3 kernel are used like the structure of the VGG network, and the number of feature maps increases by a factor of 2 from 64 to 512. 512 feature maps enter the density layer and go through sigmoid activation to determine whether the input is an actual image or an SR image.
  • the SRGAN module 1224 performs SRGAN learning based on a database in which a high-resolution original image and a reduced low-resolution image matching it are stored together during training, so that a clearer image with higher resolution can be obtained.
  • SRGAN learning has been described in the embodiment of the present invention, it is not limited to SRGAN learning.
  • the type of deep learning learning-based SR is not limited to SRGAN, and may be SRCNN (Super-Resolution Convolutional Neural Network). That is, in the present invention, it is also possible to perform learning with a convolutional neural network (CNN)-based SR learning algorithm. Accordingly, since the embodiment of the present invention performs SRGAN learning or SRCNN learning, a clear pupil image with higher resolution can be obtained.
  • CNN convolutional neural network
  • FIG. 7 is a block diagram illustrating a learning algorithm using a Single Shot MultiBox Detector (SSD) and YOLO in an image analysis method according to an embodiment of the present invention.
  • SSD Single Shot MultiBox Detector
  • SSD takes advantage of the fact that the feature map gets smaller and smaller as it undergoes convolution operation.
  • small objects are detected in large feature maps and large objects are detected in small feature maps. can be detected.
  • the category and offset of an object can be predicted only by convolution operation without using a fully connected layer. Therefore, the amount of computation is smaller than that of YOLO, showing better speed.
  • the SSD model adds multiple feature layers at the end of the base network, which predicts the offsets and aspect ratios of default boxes of different scales and their associated confidence. For example, a 300 x 300 input size SSD outperforms its 448 x 448 YOLO counterpart in terms of accuracy and is also fast.
  • the object detection module 1225 performs object detection using deep learning to accurately analyze the size and position of the iris, pupil, and pupil reflection patterns, and accurately analyzes the object box through a post-processing algorithm. By correcting it, it is possible to more accurately calculate the visual acuity information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Ophthalmology & Optometry (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Eye Examination Apparatus (AREA)
  • Image Analysis (AREA)

Abstract

An embodiment of the present invention relates to a vision testing device, method, and program stored in a computer-readable storage medium, and a technical problem to be solved is to provide a vision testing device, method, and program stored in a computer-readable storage medium, capable of calculating vision information (for example, a refractive index of an eye) from an eye-photographed image via a user device. To this end, the present invention provides a vision testing device comprising: a user device for capturing and transmitting a pupil image; and a server which has a super-resolution generative adversarial network (SRGAN) module for receiving a pupil image from the user device and acquiring a super-resolved (SR) image, an object detection module for receiving an SR image and acquiring result box data, and a vision information calculation function module for receiving result box data to calculate vision information, wherein the server transmits the calculated vision information to the user device.

Description

시력 검사 장치, 방법 및 컴퓨터 판독 가능 저장 매체에 저장된 프로그램Vision test apparatus, method, and program stored in a computer-readable storage medium

본 발명의 실시예는 시력 검사 장치, 방법 및 컴퓨터 판독 가능 저장 매체에 저장된 프로그램에 관한 것이다.An embodiment of the present invention relates to an eye examination apparatus, a method, and a program stored in a computer-readable storage medium.

최근 스마트 폰이나 태블릿 PC 등과 같은 사용자 장치의 보급 및 IT 인프라가 급속도로 확산되는 추세이다. 일반적으로 사용자 장치의 디스플레이부는 다양한 텍스트 및 이미지들을 표시하며, 이에 따라 사용자들은 시간과 장소에 구애받지 않고 사용자 장치의 디스플레이에 노출된다. 이에 따라, 현대인들의 시력은 점차 악화되고 있다. Recently, the spread of user devices such as smart phones and tablet PCs and IT infrastructure are rapidly expanding. In general, the display unit of the user device displays various texts and images, and accordingly, users are exposed to the display of the user device regardless of time and place. Accordingly, the eyesight of modern people is gradually deteriorated.

일반적으로, 병원, 보건소, 안경점 등에서 측정자가 일정한 거리를 유지하여 피측정자의 지시에 따라 시력 측정표에 표시된 다수의 글자나 도형을 보고 이에 대해 응답함으로써 시력이 측정될 수 있다. 이러한 종래의 시력 측정 방법은 시력 측정값에 대한 신뢰도가 낮다는 단점이 존재한다. 또한, 자신의 시력을 알기 위해서는 시력을 측정할 수 있는 곳 즉, 병원 등을 방문해야 하는 번거로움이 있다. 이에 따라, 편리하고 정밀한 시력 측정을 위한 요구가 당업계에 존재한다.In general, visual acuity may be measured by a measurer maintaining a certain distance at a hospital, a public health center, an optician's shop, or the like, seeing and responding to a plurality of letters or figures displayed on an optometry table according to an instruction of a subject. This conventional method for measuring acuity has a disadvantage in that the reliability of the measured value for eyesight is low. In addition, in order to know one's own visual acuity, it is inconvenient to visit a place where visual acuity can be measured, that is, a hospital. Accordingly, there is a need in the art for convenient and precise vision measurement.

이러한 발명의 배경이 되는 기술에 개시된 상술한 정보는 본 발명의 배경에 대한 이해도를 향상시키기 위한 것뿐이며, 따라서 종래 기술을 구성하지 않는 정보를 포함할 수도 있다.The above-described information disclosed in the background technology of the present invention is only for improving the understanding of the background of the present invention, and thus may include information that does not constitute the prior art.

본 발명의 실시예에 따른 해결하고자 하는 과제는 사용자 장치를 통한 안구 촬영 영상으로부터 시력 정보(예를 들면, 눈의 굴절도)를 산출할 수 있는 시력 검사 장치, 방법 및 컴퓨터 판독 가능 저장 매체에 저장된 프로그램을 제공하는데 있다.An object to be solved according to an embodiment of the present invention is an eye examination apparatus capable of calculating vision information (eg, refraction of the eye) from an eye photographed image through a user device, a method, and a method stored in a computer-readable storage medium to provide the program.

본 발명의 실시예에 따른 시력 검사 방법은 동공 이미지를 수신하는 단계; 동공 이미지를 SRGAN(Super-Resolution Generative Adversarial Network) 모듈에 입력하는 단계; SRGAN 모듈로부터 SR(Super-Resolved)된 이미지를 획득하는 단계; SR된 이미지를 오브젝트 검출 모듈에 입력하는 단계; 오브젝트 검출 모듈로부터 결과 박스 데이터를 획득하는 단계; 결과 박스 데이터를 시력 정보 산출 함수 모듈에 입력하는 단계; 및 시력 정보 산출 함수 모듈로부터 시력 정보를 획득하여 전송하는 단계를 포함할 수 있다.A vision test method according to an embodiment of the present invention comprises the steps of receiving a pupil image; inputting the pupil image into an SRGAN (Super-Resolution Generative Adversarial Network) module; obtaining an SR (Super-Resolved) image from the SRGAN module; inputting the SR image to the object detection module; obtaining result box data from the object detection module; inputting the result box data into an eyesight information calculation function module; and obtaining and transmitting the vision information from the vision information calculation function module.

동공 이미지 수신 단계는 조명부 및 촬영부를 포함하고, 유선 또는 무선 통신이 가능한 사용자 장치로부터 동공 이미지를 수신하여 이루어질 수 있다.The pupil image receiving step may be performed by receiving a pupil image from a user device including a lighting unit and a photographing unit, and capable of wired or wireless communication.

SRGAN 모듈은 학습이 완료된 SRGAN 알고리즘을 이용하여 수신된 동공 이미지로부터 노이즈를 제거하고 해상도를 높여 SR된 이미지를 출력할 수 있다.The SRGAN module can output the SR image by removing noise from the received pupil image and increasing the resolution using the learned SRGAN algorithm.

SRGAN 모듈은 노이즈 이미지를 입력받아 페이크 동공 이미지를 생성하는 제너레이터 네트워크와, 실제 동공 이미지와 페이크 동공 이미지를 입력받아 프레딕션하는 디스크리미네이터 네트워크를 포함하되, 제너레이터 네트워크와 디스크리미네이터 네트워크는 상호간 번갈아 가며 학습을 수행할 수 있다.The SRGAN module includes a generator network that receives a noise image and generates a fake pupil image, and a discriminator network that receives and predicts an actual pupil image and a fake pupil image. learning can be done.

SRGAN 모듈은 SR된 이미지를 출력하는 제너레이터 네트워크를 학습시키기 위해 애드버서리얼 로스(adversarial loss)와 픽셀 공간의 유사도 대신 퍼셉튜얼 유사도(perceptual similarity)를 이용하는 컨텐트 로스(content loss)를 포함하는 퍼셉튜얼 로스 함수(perceptual loss function)를 제공할 수 있다.The SRGAN module uses perceptual similarity instead of adversarial loss and pixel space similarity to train a generator network that outputs the SR-imaged perceptual loss including content loss. You can provide a perceptual loss function.

오브젝트 검출 모듈은 딥러닝을 이용한 오브젝트 검출을 수행하여 홍채, 동공, 동공 반사 패턴의 크기와 위치를 분석하고, 후처리 알고리즘을 통해 오브젝트 박스를 보정할 수 있다.The object detection module may perform object detection using deep learning to analyze the size and position of the iris, pupil, and pupil reflection patterns, and correct the object box through a post-processing algorithm.

오브젝트 검출 모듈은 SSD(Single Shot MultiBox Detector), YOLOv3 또는 EfficientDet 중 적어도 하나를 이용할 수 있다.The object detection module may use at least one of a Single Shot MultiBox Detector (SSD), YOLOv3, or EfficientDet.

시력 정보를 전송하는 단계는 시력 정보를 유선 또는 무선 통신 가능한 사용자 장치로 전송하여 이루어질 수 있다.The transmitting of the vision information may be performed by transmitting the vision information to a user device capable of wired or wireless communication.

시력 정보는 안구 굴절도를 포함할 수 있다.The vision information may include eye refraction.

본 발명의 실시예에 따른 시력 검사를 위한 컴퓨터 판독 가능 저장 매체에 저장된 컴퓨터 프로그램은 동공 이미지를 수신하는 동작; 동공 이미지를 SRGAN(Super-Resolution Generative Adversarial Network) 모듈에 입력하는 동작; SRGAN 모듈로부터 SR(Super-Resolved)된 이미지를 획득하는 동작; SR된 이미지를 오브젝트 검출 모듈에 입력하는 동작; 오브젝트 검출 모듈로부터 결과 박스 데이터를 획득하는 동작; 결과 박스 데이터를 시력 정보 산출 함수 모듈에 입력하는 동작; 및 시력 정보 산출 함수 모듈로부터 시력 정보를 획득하여 전송하는 동작을 포함할 수 있다.A computer program stored in a computer-readable storage medium for eye examination according to an embodiment of the present invention includes: receiving a pupil image; inputting the pupil image to the SRGAN (Super-Resolution Generative Adversarial Network) module; obtaining an SR (Super-Resolved) image from the SRGAN module; inputting the SR image to the object detection module; obtaining result box data from the object detection module; inputting the result box data into the vision information calculation function module; and obtaining and transmitting the vision information from the vision information calculation function module.

본 발명의 실시예에 따른 시력 검사 장치는 동공 이미지를 촬영하여 전송하는 사용자 장치; 및 사용자 장치로부터 수신한 동공 이미지를 입력받아 SR(Super-Resolved)된 이미지를 획득하는 SRGAN(Super-Resolution Generative Adversarial Network) 모듈과, SR된 이미지를 입력받아 결과 박스 데이터를 획득하는 오브젝트 검출 모듈과, 결과 박스 데이터를 입력받아 시력 정보를 산출하는 시력 정보 산출 함수 모듈을 갖는 서버를 포함할 수 있고, 서버는 산출된 시력 정보를 사용자 장치에 전송할 수 있다.An eyesight test apparatus according to an embodiment of the present invention includes: a user device for capturing and transmitting a pupil image; and an SRGAN (Super-Resolution Generative Adversarial Network) module that receives the pupil image received from the user device and acquires an SR (Super-Resolved) image, and an object detection module that receives the SR image and acquires result box data; , a server having an eyesight information calculation function module that receives the result box data and calculates vision information, and the server may transmit the calculated vision information to the user device.

사용자 장치는 조명부 및 촬영부를 포함하고, 촬영된 동공 이미지를 유선 또는 무선 통신 방식으로 서버에 전송할 수 있다.The user device may include a lighting unit and a photographing unit, and may transmit the photographed pupil image to the server through a wired or wireless communication method.

SRGAN 모듈은 학습이 완료된 SRGAN 알고리즘을 이용하여 수신된 동공 이미지로부터 노이즈를 제거하고 해상도를 높여 SR된 이미지를 출력할 수 있다.The SRGAN module can output the SR image by removing noise from the received pupil image and increasing the resolution using the learned SRGAN algorithm.

SRGAN 모듈은 노이즈 이미지를 입력받아 페이크 동공 이미지를 생성하는 제너레이터 네트워크와, 실제 동공 이미지와 페이크 동공 이미지를 입력받아 프레딕션하는 디스크리미네이터 네트워크를 포함하되, 제너레이터 네트워크와 디스크리미네이터 네트워크는 상호간 번갈아 가며 학습을 수행할 수 있다.The SRGAN module includes a generator network that receives a noise image and generates a fake pupil image, and a discriminator network that receives and predicts an actual pupil image and a fake pupil image. learning can be done.

SRGAN 모듈은 SR된 이미지를 출력하는 제너레이터 네트워크를 학습시키기 위해 애드버서리얼 로스(adversarial loss)와 픽셀 공간의 유사도 대신 퍼셉튜얼 유사도(perceptual similarity)를 이용하는 컨텐트 로스(content loss)를 포함하는 퍼셉튜얼 로스 함수(perceptual loss function)를 제공할 수 있다.The SRGAN module uses perceptual similarity instead of adversarial loss and pixel space similarity to train a generator network that outputs the SR-imaged perceptual loss including content loss. You can provide a perceptual loss function.

오브젝트 검출 모듈은 딥러닝을 이용한 오브젝트 검출을 수행하여 홍채, 동공, 동공 반사 패턴의 크기와 위치를 분석하고, 후처리 알고리즘을 통해 오브젝트 박스를 보정할 수 있다.The object detection module may perform object detection using deep learning to analyze the size and position of the iris, pupil, and pupil reflection patterns, and correct the object box through a post-processing algorithm.

오브젝트 검출 모듈은 SSD(Single Shot MultiBox Detector), YOLOv3 또는 EfficientDet 중 적어도 하나를 이용할 수 있다.The object detection module may use at least one of a Single Shot MultiBox Detector (SSD), YOLOv3, or EfficientDet.

시력 정보는 안구 굴절도를 포함할 수 있다.The vision information may include eye refraction.

본 발명의 실시예는 사용자 장치를 통한 안구 촬영 영상으로부터 시력 정보(예를 들면, 눈의 굴절도)를 산출할 수 있는 시력 검사 장치, 방법 및 컴퓨터 판독 가능 저장 매체에 저장된 프로그램을 제공한다.An embodiment of the present invention provides an apparatus for eye examination, a method, and a program stored in a computer-readable storage medium capable of calculating vision information (eg, refractive index of an eye) from an image taken by an eyeball through a user device.

도 1은 본 발명의 실시예에 따른 시력 검사 장치의 구성을 도시한 개략도이다.1 is a schematic diagram showing the configuration of an eye examination apparatus according to an embodiment of the present invention.

도 2는 본 발명의 실시예에 따른 시력 검사 장치 중 사용자 장치 및/또는 서버의 구성을 도시한 블럭 다이아그램이다.FIG. 2 is a block diagram illustrating the configuration of a user device and/or a server in the vision test apparatus according to an embodiment of the present invention.

도 3은 본 발명의 실시예에 따른 시력 검사 장치 중 사용자 장치 및/또는 서버의 메모리에 저장된 프로그램 코드의 구성을 도시한 블럭 다이아그램이다.3 is a block diagram illustrating the configuration of program codes stored in a memory of a user device and/or a server among the vision test apparatuses according to an embodiment of the present invention.

도 4는 본 발명의 실시예에 따른 시력 검사 방법을 도시한 순서도이다.4 is a flowchart illustrating an eyesight examination method according to an embodiment of the present invention.

도 5는 본 발명의 실시예에 따른 시력 검사 방법 중 이미지 분석 방법을 도시한 순서도이다.5 is a flowchart illustrating an image analysis method among the visual acuity testing methods according to an embodiment of the present invention.

도 6a 및 도 6b는 본 발명의 실시예에 따른 이미지 분석 방법 중 GAN(Generative Adversarial Network) 및 SRGAN(Super-Resolution Using a Generative Adversarial Network)에 의한 학습 알고리즘을 도시한 블럭 다이어그램이다.6A and 6B are block diagrams illustrating a learning algorithm using a Generative Adversarial Network (GAN) and a Super-Resolution Using a Generative Adversarial Network (SRGAN) in an image analysis method according to an embodiment of the present invention.

도 7은 본 발명의 실시예에 따른 이미지 분석 방법 중 SSD(Single Shot MultiBox Detector) 및 YOLO에 의한 학습 알고리즘을 도시한 블럭 다이어그램이다.7 is a block diagram illustrating a learning algorithm using a Single Shot MultiBox Detector (SSD) and YOLO in an image analysis method according to an embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.Examples of the present invention are provided to more completely explain the present invention to those of ordinary skill in the art, and the following examples may be modified in various other forms, and the scope of the present invention is as follows It is not limited to an Example. Rather, these examples are provided so that this disclosure will be more thorough and complete, and will fully convey the spirit of the invention to those skilled in the art.

또한, 이하의 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이며, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다. 또한, 본 명세서에서 "연결된다"라는 의미는 A 부재와 B 부재가 직접 연결되는 경우뿐만 아니라, A 부재와 B 부재의 사이에 C 부재가 개재되어 A 부재와 B 부재가 간접 연결되는 경우도 의미한다.In addition, in the following drawings, the thickness or size of each layer is exaggerated for convenience and clarity of description, and the same reference numerals in the drawings refer to the same elements. As used herein, the term “and/or” includes any one and all combinations of one or more of those listed items. In addition, in the present specification, "connected" means not only when member A and member B are directly connected, but also when member A and member B are indirectly connected with member C interposed between member A and member B. do.

본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise, include)" 및/또는 "포함하는(comprising, including)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및 /또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.The terminology used herein is used to describe specific embodiments, not to limit the present invention. As used herein, the singular form may include the plural form unless the context clearly dictates otherwise. Also, as used herein, “comprise, include” and/or “comprising, including” refer to the referenced shapes, numbers, steps, actions, members, elements, and/or groups thereof. It specifies the presence and does not exclude the presence or addition of one or more other shapes, numbers, movements, members, elements and/or groups.

본 명세서에서 제1, 제2 등의 용어가 다양한 부재, 부품, 영역, 층들 및/또는 부분들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 층들 및/또는 부분들은 이들 용어에 의해 한정되어서는 안 됨은 자명하다. 이들 용어는 하나의 부재, 부품, 영역, 층 또는 부분을 다른 영역, 층 또는 부분과 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제1부재, 부품, 영역, 층 또는 부분은 본 발명의 가르침으로부터 벗어나지 않고서도 제2부재, 부품, 영역, 층 또는 부분을 지칭할 수 있다.Although the terms first, second, etc. are used herein to describe various members, parts, regions, layers and/or parts, these members, parts, regions, layers, and/or parts are limited by these terms so that they It is self-evident that These terms are used only to distinguish one member, component, region, layer or portion from another region, layer or portion. Accordingly, a first member, component, region, layer or portion discussed below may refer to a second member, component, region, layer or portion without departing from the teachings of the present invention.

또한, 본 발명에 따른 제어부(컨트롤러) 및/또는 다른 관련 기기 또는 부품은 임의의 적절한 하드웨어, 펌웨어(예를 들어, 주문형 반도체), 소프트웨어, 또는 소프트웨어, 펌웨어 및 하드웨어의 적절한 조합을 이용하여 구현될 수 있다. 예를 들어, 본 발명에 따른 제어부(컨트롤러) 및/또는 다른 관련 기기 또는 부품의 다양한 구성 요소들은 하나의 집적회로 칩 상에, 또는 별개의 집적회로 칩 상에 형성될 수 있다. 또한, 제어부(컨트롤러)의 다양한 구성 요소는 가요성 인쇄 회로 필름 상에 구현 될 수 있고, 테이프 캐리어 패키지, 인쇄 회로 기판, 또는 제어부(컨트롤러)와 동일한 서브스트레이트 상에 형성될 수 있다. 또한, 제어부(컨트롤러)의 다양한 구성 요소는, 하나 이상의 컴퓨팅 장치에서, 하나 이상의 프로세서에서 실행되는 프로세스 또는 쓰레드(thread)일 수 있고, 이는 이하에서 언급되는 다양한 기능들을 수행하기 위해 컴퓨터 프로그램 명령들을 실행하고 다른 구성 요소들과 상호 작용할 수 있다. 컴퓨터 프로그램 명령은, 예를 들어, 랜덤 액세스 메모리와 같은 표준 메모리 디바이스를 이용한 컴퓨팅 장치에서 실행될 수 있는 메모리에 저장된다. 컴퓨터 프로그램 명령은 또한 예를 들어, CD-ROM, 플래시 드라이브 등과 같은 다른 비-일시적 컴퓨터 판독 가능 매체(non-transitory computer readable media)에 저장될 수 있다. 또한, 본 발명에 관련된 당업자는 다양한 컴퓨팅 장치의 기능이 상호간 결합되거나, 하나의 컴퓨팅 장치로 통합되거나, 또는 특정 컴퓨팅 장치의 기능이, 본 발명의 예시적인 실시예를 벗어나지 않고, 하나 이상의 다른 컴퓨팅 장치들에 분산될 수 될 수 있다는 것을 인식해야 한다.In addition, the control unit (controller) and/or other related devices or components according to the present invention may be implemented using any suitable hardware, firmware (eg, application specific semiconductor), software, or a suitable combination of software, firmware and hardware. can For example, various components of a control unit (controller) and/or other related devices or parts according to the present invention may be formed on one integrated circuit chip or on separate integrated circuit chips. In addition, various components of the control unit (controller) may be implemented on a flexible printed circuit film, a tape carrier package, a printed circuit board, or may be formed on the same substrate as the control unit (controller). In addition, various components of the control unit (controller), in one or more computing devices, may be processes or threads executing in one or more processors, which execute computer program instructions to perform various functions mentioned below. and interact with other components. The computer program instructions are stored in a memory that can be executed in a computing device using a standard memory device, such as, for example, a random access memory. The computer program instructions may also be stored in other non-transitory computer readable media such as, for example, a CD-ROM, flash drive, and the like. In addition, those skilled in the art related to the present invention are skilled in the art that functions of various computing devices are combined with each other, integrated into one computing device, or functions of a specific computing device are one or more other computing devices without departing from the exemplary embodiments of the present invention. It should be recognized that they can be distributed among

일례로, 본 발명에 따른 제어부(컨트롤러)는 중앙처리장치, 하드디스크 또는 고체상태디스크와 같은 대용량 저장 장치, 휘발성 메모리 장치, 키보드 또는 마우스와 같은 입력 장치, 모니터 또는 프린터와 같은 출력 장치로 이루어진 통상의 상용 컴퓨터에서 운영될 수 있다.For example, the control unit (controller) according to the present invention is usually composed of a central processing unit, a mass storage device such as a hard disk or a solid state disk, a volatile memory device, an input device such as a keyboard or mouse, and an output device such as a monitor or printer. It can be run on a commercial computer of

도 1은 본 발명의 실시예에 따른 시력 검사 장치(100)의 구성을 도시한 개략도이다. 1 is a schematic diagram illustrating a configuration of an eye examination apparatus 100 according to an exemplary embodiment of the present invention.

도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 시력 검사 장치(100)는 사용자 장치(110), 서버(120) 및 인터넷 네트워크(130)를 포함할 수 있다.As shown in FIG. 1 , the vision test apparatus 100 according to an embodiment of the present invention may include a user device 110 , a server 120 , and an Internet network 130 .

사용자 장치(110)는 기본적으로 동공 이미지를 촬영하고, 촬영된 동공 이미지를 서버(120)에 인터넷 네트워크(130)를 통해 전송할 수 있다. 또한, 사용자 장치(110)는 서버(120)로부터 산출된 시력 정보(예를 들면, 눈의 굴절도)를 인터넷 네트워크(130)를 통해 수신할 수 있다. 일부 예들에서, 사용자 장치(110)는 스마트폰, 태블릿, 노트북 또는 데스크탑 컴퓨터를 포함할 수 있다.The user device 110 may basically photograph a pupil image and transmit the photographed pupil image to the server 120 through the Internet network 130 . Also, the user device 110 may receive vision information (eg, the refractive index of the eye) calculated from the server 120 through the Internet network 130 . In some examples, user device 110 may include a smartphone, tablet, notebook, or desktop computer.

서버(120)는 기본적으로 사용자 장치(110)로부터 동공 이미지를 수신하고, 다양한 뉴럴 네트워크를 이용하여 동공 이미지를 분석함으로써 시력 정보를 산출할 수 있다. 서버(120)는 산출된 시력 정보를 다시 인터넷 네트워크(130)를 통해 사용자 장치(110)에 전송할 수 있다. The server 120 basically receives the pupil image from the user device 110 and may calculate vision information by analyzing the pupil image using various neural networks. The server 120 may transmit the calculated visual acuity information back to the user device 110 through the Internet network 130 .

아래에서 다시 설명하겠지만, 서버(120)는 수신한 동공 이미지로부터 정확한 오브젝트 검출(Object Detection)을 수행하기 위해 GAN(Generative Adversarial Networks)을 이용한 슈퍼 레졸루션(Super Resolution) 기법을 이용하여 전처리하고, 이어서 딥러닝을 이용한 오브젝트 검출을 수행하여 홍채, 동공, 동공 반사 패턴(크레센트)의 크기와 위치를 분석하며, 후처리 알고리즘을 통해 오브젝트 박스(Object Box)를 보정하고, 그 결과들을 이용해 시력 정보(예를 들면, 안구 굴절도)를 예측하는 함수(공식)에 대입하여 시력 정보(예를 들면, 안구 굴절도)를 산출할 수 있다. 일부 예들에서, 딥러닝 네트워크는 SSD(Single Shot MultiBox Detector), YOLOv3 또는 EfficientDet일 수 있으나, 다른 종류의 오브젝트 검출 네트워크도 포함할 수 있다.As will be described again below, the server 120 pre-processes using a super resolution technique using Generative Adversarial Networks (GAN) to perform accurate object detection from the received pupil image, and then deep Analyzes the size and position of the iris, pupil, and pupil reflection patterns (crescents) by performing object detection using learning, corrects the object box through a post-processing algorithm, and uses the results to obtain visual acuity information (e.g., For example, visual acuity information (eg, eye refraction) may be calculated by substituting a function (formula) for predicting eye refraction. In some examples, the deep learning network may be a Single Shot MultiBox Detector (SSD), YOLOv3 or EfficientDet, but may also include other kinds of object detection networks.

인터넷 네트워크(130)는 사용자 장치(110)와 서버(120)를 유무선으로 상호간 통신 가능하게 연결할 수 있다. 일부 예들에서, 인터넷 네트워크(130)는 공중전화 교환망(PSTN:Public Switiched Telephone Network), xDSL(x Digital Subscriber Line), RADSL(Rate Adaptive DSL), MDSL(Multi Rate DSL), VDSL(Very High Speed DSL), UADSL(Universal Asymmetric DSL), HDSL(High Bit Rate DSL) 및 근거리 통신망(LAN) 등과 같은 다양한 유선 통신 시스템을 포함할 수 있다. 또한, 일부 예들에서, 인터넷 네트워크(130)는 CDMA(Code Division Multi Access), TDMA(Time Division Multi Access), FDMA(Frequency Division Multi Access), OFDMA(Orthogonal Frequency Division Multi Access), SCFDMA(Single Carrier-FDMA) 및 다른 시스템들과 같은 다양한 무선 통신 시스템을 포함할 수 있다. 또한, 일부 예들에서, 인터넷 네트워크(130)는 유선 및 무선 등과 같은 그 통신 양태를 가리지 않고 구성될 수 있으며, 단거리 통신망(PAN:Personal Area Network), 근거리 통신망(WAN:Wide Area Network) 등 다양한 통신망을 포함할 수 있다. 또한, 일부 예들에서, 인터넷 네트워크(130)는 공지의 월드와이드웹(WWW:World Wide Web)일 수 있으며, 적외선(IrDA:Infrared Data Assoication) 또는 블루투스(Bluetooth)와 같이 단거리 통신에 이용되는 무선 전송 기술을 포함할 수 있다.The Internet network 130 may connect the user device 110 and the server 120 to communicate with each other through wired or wireless communication. In some examples, Internet network 130 is a Public Switched Telephone Network (PSTN), x Digital Subscriber Line (xDSL), Rate Adaptive DSL (RADSL), Multi Rate DSL (MDSL), Very High Speed DSL (VDSL). ), UADSL (Universal Asymmetric DSL), HDSL (High Bit Rate DSL), and may include various wired communication systems such as local area network (LAN). Also, in some examples, the Internet network 130 is a Code Division Multi Access (CDMA), Time Division Multi Access (TDMA), Frequency Division Multi Access (FDMA), Orthogonal Frequency Division Multi Access (OFDMA), Single Carrier-SCFDMA (SCFDMA) FDMA) and other systems. In addition, in some examples, the Internet network 130 may be configured regardless of its communication aspects, such as wired and wireless, and various communication networks such as a personal area network (PAN) and a wide area network (WAN). may include Also, in some examples, the Internet network 130 may be a well-known World Wide Web (WWW), and a wireless transmission used for short-range communication, such as Infrared Data Assoication (IrDA) or Bluetooth. may include technology.

도 2는 본 발명의 실시예에 따른 시력 검사 장치(100) 중 사용자 장치(110) 및/또는 서버(120)의 구성을 도시한 블럭 다이아그램이다.FIG. 2 is a block diagram illustrating the configuration of the user device 110 and/or the server 120 of the vision test apparatus 100 according to an embodiment of the present invention.

사용자 장치(110) 및/또는 서버(120)는 공통적으로 입력부(1210), 제어부(1220), 출력부(1230) 및 트랜시버(1240)를 포함할 수 있다. 사용자 장치(110)는 안구 촬영을 위한 조명부(111) 및 촬영부(112)를 더 포함할 수 있다.The user device 110 and/or the server 120 may include an input unit 1210 , a control unit 1220 , an output unit 1230 , and a transceiver 1240 in common. The user device 110 may further include a lighting unit 111 and a photographing unit 112 for photographing the eyeball.

입력부(1210)는 키보드, 키패드 등을 포함할 수 있으며, 이를 통해 다양한 명령의 입력이나 설정값의 입력이 가능하다. 출력부(1230)는 모니터, 디스플레이 등을 포함할 수 있으며, 이를 통해 다양한 화면 구성이나 결과값의 출력이 가능하다. 일부 예들에서, 입력부(1210)와 출력부(1230)는 하나의 터치 스크린을 포함할 수 있다.The input unit 1210 may include a keyboard, a keypad, and the like, and through this, input of various commands or input of setting values is possible. The output unit 1230 may include a monitor, a display, and the like, and through this, various screen configurations or output of result values are possible. In some examples, the input unit 1210 and the output unit 1230 may include one touch screen.

제어부(1220)는 중앙처리장치(1221) 및 메모리(1222)를 포함할 수 있으며, 메모리(1222)에 본 발명의 주요 동작을 위한 프로그램 코드(1223)가 저장될 수 있다. 즉, 제어부(1220)는 중앙처리장치(1221)를 통해 메모리(1222)에 저장된 프로그램 코드(1223)를 실행하고, 그에 따라 사용자 장치(110) 및/또는 서버(120)의 동작을 제어할 수 있다.The control unit 1220 may include a central processing unit 1221 and a memory 1222 , and a program code 1223 for a main operation of the present invention may be stored in the memory 1222 . That is, the control unit 1220 executes the program code 1223 stored in the memory 1222 through the central processing unit 1221 , and accordingly controls the operation of the user device 110 and/or the server 120 . have.

일부 예들에서, 메모리(1222)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램(Random Access Memory, RAM), SRAM(Static Random Access Memory), 롬(Read-Only Memory, ROM), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory), 자기메모리, 자기 디스크, 광디스크 중 적어도 하나의 타입의 저장매체를 포함할 수 있다.In some examples, the memory 1222 may be a flash memory type, a hard disk type, a multimedia card micro type, or a card type memory (eg SD or XD memory). etc.), Random Access Memory (RAM), Static Random Access Memory (SRAM), Read-Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Programmable Read-Only Memory (PROM), It may include at least one type of storage medium among a magnetic memory, a magnetic disk, and an optical disk.

트랜시버(1240)는 유무선 신호의 수신 및 송신에 사용되며, 인터넷 네트워크(130)로부터 수신된 신호를 제어부(1220)에 전달하고, 제어부(1220)에 의해 생성된 신호를 인터넷 네트워크(130)에 출력할 수 있다. 일부 예들에서, 트랜시버(1240)는 네트워크 접속을 위한 유/무선 인터넷 모듈을 포함할 수 있다. 무선 인터넷 기술로는 WLAN(Wireless LAN)(Wi-Fi), Wibro(Wireless broadband), Wimax(World Interoperability for Microwave Access), HSDPA(High Speed Downlink Packet Access) 등이 이용될 수 있다. 유선 인터넷 기술로는 XDSL(Digital Subscriber Line), FTTH(Fibers to the home), PLC(Power Line Communication) 등이 이용될 수 있다. 본 개시의 실시예들에 따른 트랜시버(1240)는 근거리 통신 모듈을 추가적으로 포함하여, 사용자 장치(110)와 비교적 근거리에 위치하고 근거리 통신 모듈을 포함한 다른 사용자 장치(110)와 데이터를 송수신할 수 있다. 근거리 통신(short range communication) 기술로 블루투스(Bluetooth), RFID(Radio Frequency Identification), 적외선 통신(IrDA, infrared Data Association), UWB(Ultra Wideband), ZigBee 등이 이용될 수 있다.The transceiver 1240 is used for receiving and transmitting wired/wireless signals, and transmits a signal received from the Internet network 130 to the controller 1220 , and outputs a signal generated by the controller 1220 to the Internet network 130 . can do. In some examples, transceiver 1240 may include a wired/wireless Internet module for network connection. As wireless Internet technologies, wireless LAN (WLAN) (Wi-Fi), wireless broadband (Wibro), World Interoperability for Microwave Access (Wimax), High Speed Downlink Packet Access (HSDPA), etc. may be used. As the wired Internet technology, Digital Subscriber Line (XDSL), Fibers to the home (FTTH), Power Line Communication (PLC), or the like may be used. The transceiver 1240 according to the embodiments of the present disclosure may additionally include a short-range communication module to transmit/receive data to/from the user device 110 and other user devices 110 including the short-distance communication module located in a relatively short distance from the user device 110 . Bluetooth, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra Wideband (UWB), ZigBee, etc. may be used as short range communication technologies.

여기서 비록 사용자 장치(110) 및 서버(120)를 함께 설명하지만, 상술한 바와 같이 사용자 장치(110)는 스마트폰, 태블릿, 노트북 또는 데스크탑일 수 있으며, 서버(120)는 통상의 대용량 데이터 처리용 컴퓨터일 수 있다. 일부 예들에서, 본 발명의 주요 방법은 주로 서버(120)에서 수행되나 사용자 장치(110)에서도 수행될 수 있다.Although the user device 110 and the server 120 are described together here, as described above, the user device 110 may be a smartphone, a tablet, a notebook computer, or a desktop, and the server 120 is used for processing large data in general. It may be a computer. In some examples, the subject method of the present invention is primarily performed on the server 120 , but may also be performed on the user device 110 .

도 3은 본 발명의 실시예에 따른 시력 검사 장치(100) 중 사용자 장치(110) 및/또는 서버(120)의 메모리(1222)에 저장된 프로그램 코드(1223)의 구성을 도시한 블럭 다이아그램이다.3 is a block diagram showing the configuration of the program code 1223 stored in the memory 1222 of the user device 110 and/or the server 120 of the vision test apparatus 100 according to an embodiment of the present invention. .

도 3에 도시된 바와 같이, 본 발명의 실시예에 따른 시력 검사 장치(100) 중 사용자 장치(110) 및/또는 서버(120)의 메모리(1222)에 저장된 프로그램 코드(1223)는 SRGAN(Super-Resolution Generative Adversarial Network) 모듈(1224), 오브젝트 검출 모듈(1225) 및 시력 정보 산출 함수 모듈(1226)을 포함할 수 있다.As shown in FIG. 3 , the program code 1223 stored in the memory 1222 of the user device 110 and/or the server 120 among the vision test apparatus 100 according to the embodiment of the present invention is a super -Resolution Generative Adversarial Network) module 1224 , an object detection module 1225 , and a vision information calculation function module 1226 may be included.

SRGAN 모듈(1224)은 사용자 장치(110)로부터 수신한 동공 이미지를 입력받아 SR(Super-Resolved)된 이미지를 획득할 수 있다. 일부 예들에서, SRGAN 모듈(1224)은 학습이 완료된 SRGAN 알고리즘을 이용하여 수신된 동공 이미지로부터 노이즈를 제거하고 해상도를 높여 SR된 이미지를 출력할 수 있다.The SRGAN module 1224 may obtain a super-resolved (SR) image by receiving the pupil image received from the user device 110 . In some examples, the SRGAN module 1224 may output an SR image by removing noise from the received pupil image and increasing the resolution using the SRGAN algorithm that has been trained.

일부 예들에서, SRGAN 모듈(1224)은 노이즈 이미지를 입력받아 페이크 동공 이미지를 생성하는 제너레이터 네트워크와, 실제 동공 이미지와 페이크 동공 이미지를 입력받아 프레딕션하는 디스크리미네이터 네트워크를 포함하되, 제너레이터 네트워크와 디스크리미네이터 네트워크는 상호간 번갈아 가며 학습을 수행함으로써, 제너레이터 네트워크와 디스크리미네이터 네트워크의 성능이 더욱 향상되도록 할 수 있다.In some examples, the SRGAN module 1224 includes a generator network that receives a noise image and generates a fake pupil image, and a discriminator network that receives a real pupil image and a fake pupil image and makes a prediction, but includes a generator network and a disk The reminator network performs learning alternately with each other, so that the performance of the generator network and the discreminator network can be further improved.

일부 예들에서, SRGAN 모듈(1224)은 SR된 이미지를 출력하는 제너레이터 네트워크를 학습시키기 위해 애드버서리얼 로스(adversarial loss)와 픽셀 공간의 유사도 대신 퍼셉튜얼 유사도(perceptual similarity)를 이용하는 컨텐트 로스(content loss)를 포함하는 퍼셉튜얼 로스 함수(perceptual loss function)를 제공함으로써, 더욱 선명한 SR된 이미지를 얻을 수 있다.In some examples, the SRGAN module 1224 uses perceptual similarity instead of adversarial loss and pixel space similarity to train a generator network to output the SR imaged content loss. By providing a perceptual loss function including ), it is possible to obtain a clearer SR image.

일례로, 제너레이터 네트워크에 저해상도 동공 이미지가 입력되면 제너레이터 네트워크는 프레딕션을 하게 되는데, 이러한 프레딕션과 고해상도 동공 이미지 사이에 로스가 발생하게 된다. 이러한 로스(loss)가 다시 제너레이터 네트워크에 입력됨으로써, 제너레이터 네트워크가 업데이트될 수 있다. 이때, 로스를 산출함에 있어 종래의 MSE(Mean Squared Error)처럼 픽셀 단위로 유사도를 학습시키는 것이 아니라 이미지의 특징적인 부분을 묘사하기 위해 상술한 퍼셉튜얼 로스 함수를 제공함으로써, 제너레이터 네트워크의 성능이 더욱 향상되도록 한다.For example, when a low-resolution pupil image is input to the generator network, the generator network performs a prediction, and a loss occurs between the prediction and the high-resolution pupil image. By inputting this loss back to the generator network, the generator network may be updated. At this time, in calculating the loss, the performance of the generator network is improved by providing the above-described perceptual loss function to describe the characteristic part of the image, rather than learning the similarity in units of pixels like the conventional Mean Squared Error (MSE). to improve

오브젝트 검출 모듈(1225)은 SRGAN 모듈(1224)에 의해 SR된 이미지를 입력받아 결과 박스 데이터를 획득할 수 있다. 즉, 오브젝트 검출 모듈(1225)은 딥러닝을 이용한 오브젝트 검출을 수행하여 홍채, 동공, 동공 반사 패턴의 크기와 위치를 분석하고, 후처리 알고리즘을 통해 오브젝트 박스를 보정할 수 있다. 상술한 바와 같이, 오브젝트 검출 모듈(1225)은 SSD(Single Shot MultiBox Detector), YOLOv3 또는 EfficientDet 중 적어도 하나를 이용할 수 있으나, 이로서 본 발명이 한정되지 않으며, 다른 종류의 오브젝트 검출 모듈(1225)의 이용도 가능하다The object detection module 1225 may receive the image SR by the SRGAN module 1224 and obtain result box data. That is, the object detection module 1225 may perform object detection using deep learning to analyze sizes and positions of the iris, pupil, and pupil reflection patterns, and may correct the object box through a post-processing algorithm. As described above, the object detection module 1225 may use at least one of a Single Shot MultiBox Detector (SSD), YOLOv3, and EfficientDet, but the present invention is not limited thereto. is also possible

시력 정보 산출 함수 모듈(1226)은 오브젝트 검출 모듈(1225)로부터 결과 박스 데이터를 입력받아 시력 정보를 산출할 수 있다. 일부 예들에서, 시력 정보 산출 함수 모듈(1226)은 안구 굴절 정도를 예측하는 함수(공식)를 포함할 수 있으며, 이에 따라 안구의 디옵터(굴절도)를 산출할 수 있다.The eyesight information calculation function module 1226 may receive result box data from the object detection module 1225 and calculate eyesight information. In some examples, the visual acuity information calculation function module 1226 may include a function (formula) for predicting the degree of refraction of the eyeball, thereby calculating the diopter (degree of refraction) of the eyeball.

도 4는 본 발명의 실시예에 따른 시력 검사 방법을 도시한 순서도이다.4 is a flowchart illustrating an eyesight examination method according to an embodiment of the present invention.

도 4에 도시된 바와 같이, 본 발명의 실시예에 따른 시력 검사 방법은 사용자 장치(110)를 통한 1번째 촬영 단계(S1)와, 서버(120)를 통한 1번째 이미지 분석 단계(S2)와, 사용자 장치(110)를 통한 2번째 촬영 단계(S3)와, 서버(120)를 통한 2번째 이미지 분석 단계(S4)와, 사용자 장치(110)를 통한 결과 도출 단계(S5)를 포함할 수 있다. 여기서, 1번째 이미지 분석 단계(S2)와 2번째 이미지 분석 단계(S4)가 서버(120)에서 수행될 수 있는데, 서버(120)는 상술한 SRGAN 모듈(1224), 오브젝트 검출 모듈(1225) 및 시력 정보 산출 함수 모듈(1226)을 포함하는 프로그램 코드(1223)를 통해 이미지 분석을 수행하게 된다. 또한, 이미지 분석을 통한 결과가 서버(120)로부터 사용자 장치(110)에 전송되며, 사용자 장치(110)가 이를 디스플레이하게 된다(결과 도출 단계(S5)). 일부 예들에서, 1번째 이미지 분석은 90도 축에 대한 동공 이미지의 분석일 수 있고(사용자 장치(110)를 지면에 대해 90도 설정하여 촬영한 동공 이미지), 2번째 이미지 분석은 사용자 장치(110)를 180도 축에 대한 동공 이미지의 분석일 수 있다(사용자 장치(110)를 지면에 대하여 180도 설정하여 촬영한 동공 이미지).As shown in FIG. 4 , the vision test method according to an embodiment of the present invention includes a first photographing step ( S1 ) through the user device 110 , a first image analysis step ( S2 ) through the server 120 , and , may include a second photographing step (S3) through the user device 110, a second image analysis step (S4) through the server 120, and a result derivation step (S5) through the user device 110 have. Here, the first image analysis step (S2) and the second image analysis step (S4) may be performed in the server 120, and the server 120 includes the above-described SRGAN module 1224, object detection module 1225 and Image analysis is performed through the program code 1223 including the vision information calculation function module 1226 . In addition, the result of image analysis is transmitted from the server 120 to the user device 110, and the user device 110 displays it (result derivation step S5). In some examples, the first image analysis may be an analysis of a pupil image on a 90 degree axis (a pupil image taken by setting the user device 110 at 90 degrees with respect to the ground), and the second image analysis may be an analysis of the pupil image on the user device 110 . ) may be an analysis of a pupil image on a 180-degree axis (a pupil image photographed by setting the user device 110 at 180 degrees with respect to the ground).

도 5는 본 발명의 실시예에 따른 시력 검사 방법 중 이미지 분석 방법을 도시한 순서도이다.5 is a flowchart illustrating an image analysis method among the visual acuity testing methods according to an embodiment of the present invention.

도 5에 도시된 바와 같이, 본 발명의 실시예에 따른 시력 검사 방법 중 이미지 분석 방법은 이미지 수신 단계(S21), SRGAN 동작 단계(S22), SR된 이미지 획득 단계(S23), 오브젝트 검출 단계(S24), 결과 박스 데이터 획득 단계(S25), 시력 정보 산출 함수 동작 단계(S26) 및 시력 정보 획득 단계(S27)를 포함할 수 있다.As shown in FIG. 5 , the image analysis method among the vision test methods according to an embodiment of the present invention includes an image receiving step (S21), an SRGAN operation step (S22), an SR image acquisition step (S23), an object detection step ( S24), the result box data acquisition step (S25), the operation step of the eyesight information calculation function (S26), and the eyesight information acquisition step (S27) may be included.

이미지 수신 단계(S21)에서는, 예를 들면, 사용자 장치(110)로부터 촬영된 동공 이미지를 인터넷 네트워크(130)를 통해 수신한다. 일부 예들에서, 이미지 수신 단계는 조명부(111) 및 촬영부(112)를 포함하고, 유선 또는 무선 통신이 가능한 사용자 장치(110)로부터 동공 이미지를 수신하여 이루어질 수 있다.In the image receiving step S21 , for example, a pupil image photographed from the user device 110 is received through the Internet network 130 . In some examples, the image receiving step may be performed by receiving a pupil image from the user device 110 including the lighting unit 111 and the photographing unit 112 , and capable of wired or wireless communication.

SRGAN 동작 단계(S22) 및 SR된 이미지 획득 단계(S23)에서는, 학습이 완료된 SRGAN 알고리즘을 이용하여 SRGAN 모듈(1224)이 동공 이미지로부터 노이즈를 제거하고 해상도를 높여 SR된 이미지를 출력할 수 있다. 일부 예들에서, SRGAN 모듈(1224)은 노이즈 이미지를 입력받아 페이크 동공 이미지를 생성하는 제너레이터 네트워크와, 실제 동공 이미지와 페이크 동공 이미지를 입력받아 프레딕션하는 디스크리미네이터 네트워크를 포함하되, 제너레이터 네트워크와 디스크리미네이터 네트워크는 상호간 번갈아 가며 학습을 수행할 수 있다. 또한, SRGAN 모듈(1224)은 SR된 이미지를 출력하는 제너레이터 네트워크를 학습시키기 위해 애드버서리얼 로스와 픽셀 공간의 유사도 대신 퍼셉튜얼 유사도를 이용하는 컨텐트 로스를 포함하는 퍼셉튜얼 로스 함수를 제공할 수 있다.In the SRGAN operation step (S22) and the SR image acquisition step (S23), the SRGAN module 1224 removes noise from the pupil image using the SRGAN algorithm that has been trained and increases the resolution to output the SR image. In some examples, the SRGAN module 1224 includes a generator network that receives a noise image and generates a fake pupil image, and a discriminator network that receives a real pupil image and a fake pupil image and makes a prediction, but includes a generator network and a disk The reminator network can perform learning by taking turns with each other. In addition, the SRGAN module 1224 may provide a perceptual loss function including a content loss using perceptual similarity instead of adversarial loss and pixel space similarity to train a generator network that outputs an SR image.

오브젝트 검출 단계(S24)와 결과 박스 데이터 획득 단계(S25)에서는, 오브젝트 검출 모듈(1225)이 딥러닝을 이용한 오브젝트 검출을 수행하여 홍채, 동공, 동공 반사 패턴의 크기와 위치를 분석하고, 후처리 알고리즘을 통해 오브젝트 박스를 보정할 수 있다. 일부 예들에서, 오브젝트 검출 모듈(1225)은 SSD(Single Shot MultiBox Detector), YOLOv3 또는 EfficientDet 중 적어도 하나를 이용할 수 있다.In the object detection step (S24) and the result box data acquisition step (S25), the object detection module 1225 performs object detection using deep learning to analyze the size and position of the iris, pupil, and pupil reflection patterns, and post-processing You can calibrate the object box through an algorithm. In some examples, the object detection module 1225 may use at least one of a Single Shot MultiBox Detector (SSD), YOLOv3, or EfficientDet.

시력 정보 산출 함수 동작 단계(S26) 및 시력 정보 획득 단계(S27)에서, 시력 정보 산출 함수 모듈(1226)이 결과 박스 데이터를 입력받아 처리함으로써, 시력 정보를 산출한다. 일부 예들에서, 시력 정보는 상술한 바와 같이 안구 굴절도를 포함할 수 있다.In the vision information calculation function operation step S26 and the vision information acquisition step S27 , the vision information calculation function module 1226 receives and processes the result box data to calculate vision information. In some examples, the vision information may include eye refraction as described above.

도 6a 및 도 6b는 본 발명의 실시예에 따른 이미지 분석 방법 중 GAN(Generative Adversarial Network) 및 SRGAN(Super-Resolution Using a Generative Adversarial Network)에 의한 학습 알고리즘을 도시한 블럭 다이어그램이다.6A and 6B are block diagrams illustrating a learning algorithm using a Generative Adversarial Network (GAN) and a Super-Resolution Using a Generative Adversarial Network (SRGAN) in an image analysis method according to an embodiment of the present invention.

도 6a에 도시된 바와 같이 GAN 모듈은 노이즈 이미지를 입력받아 페이크 이미지를 생성하는 제너레이터 네트워크와, 실제 이미지 및 페이크 이미지를 입력받아 프레딕션하는 디스크리미네이터 네트워크를 포함하며, 제너레이터 네트워크와 디스크리미네이터 네트워크가 상호간 학습을 교차 진행함으로써, 학습 시간이 지남에 따라 제너레이터 네트워크와 디스크리미네이터 네트워크의 성능이 향상된다. 이러한 GAN 모듈은 디스크리미네이터 네트워크의 파라미터 θD와 제너레이터 네트워크의 파라미터 θG가 아래와 같은 식을 각각 최소화하고 최대화하도록 학습한다.As shown in FIG. 6A , the GAN module includes a generator network that generates a fake image by receiving a noise image, and a discriminator network that receives real images and fake images and makes predictions, a generator network and a discriminator network By cross-progressing mutual learning, the performance of the generator network and the discriminator network is improved over the learning time. This GAN module learns to minimize and maximize the parameter θ D of the discriminator network and the parameter θ G of the generator network, respectively, as shown below.

Figure PCTKR2020008225-appb-I000001
Figure PCTKR2020008225-appb-I000001

여기서, ILR은 낮은 해상도의 입력 이미지이고, IHR은 고해상도의 출력 이미지이다.Here, I LR is a low-resolution input image, and I HR is a high-resolution output image.

또한, 도 6b에 도시된 바와 같이, SRGAN 모듈(1224) 역시 제너레이터 네트워크와 디스크리미네이터 네트워크를 포함하고, 상술한 일반적은 GAN 모듈과 같이 학습한다. 즉, 디스크리미네이터 네트워크는 원본 고해상도 이미지와 SR로 만들어낸 이미지를 구분하기 위해 학습함으로써, 제너레이터가 고해상도 이미지와 구분하기 힘든 이미지를 생성하도록 한다.In addition, as shown in FIG. 6B , the SRGAN module 1224 also includes a generator network and a discriminator network, and learns like the general GAN module described above. That is, the discriminator network learns to distinguish the original high-resolution image from the image created by SR, so that the generator generates an image that is difficult to distinguish from the high-resolution image.

한편, 제너레이터 네트워크를 학습하기 위해, B개의 레지듀얼 블럭(Residual Block)을 같은 모양으로 사용한다. 여기서 B=16일 수 있으며, 16개의 블럭이 사용된다. 레지듀얼 블럭은 3 x 3 크기 커널(Kernel)을 가지고 있는 2개의 컨볼루션 레이어(Convolutional Layer)를 포함하고 있으며, 배치-노말리제이션(Batch-Normalization)을 적용하고 활성화 함수로는 ParametricReLU를 사용한다. 디스크리미네이터는 LeakyReLU 활성화 함수를 사용한다. VGG 네트워크의 구조와 같이 3 x 3의 커널을 사용하는 8개의 컨볼루션 레이어를 사용하고, 피처 맵(Feature Map)의 개수는 64부터 512까지 2의 배수로 증가한다. 512개의 피처 맵이 덴스 레이어(Dense layer)로 들어가서 시그모이드 액티베이션(sigmoid activation)을 거쳐 입력이 실제 이미지인지 SR을 거친 이미지인지 판단하게 된다.Meanwhile, to learn the generator network, B residual blocks are used in the same shape. Here, B=16 may be used, and 16 blocks are used. The residual block contains two convolutional layers with a 3 x 3 kernel, and batch-normalization is applied and ParametricReLU is used as the activation function. . The delimiter uses the LeakyReLU activation function. Eight convolutional layers using a 3 x 3 kernel are used like the structure of the VGG network, and the number of feature maps increases by a factor of 2 from 64 to 512. 512 feature maps enter the density layer and go through sigmoid activation to determine whether the input is an actual image or an SR image.

일례로, SRGAN 모듈(1224)은 학습 시 고해상도 원본 이미지와 이와 매칭되는 축소 저해상도 이미지가 함께 저장된 데이터 베이스를 기반으로 SRGAN 학습을 수행하기 때문에 보다 해상도가 높은 선명한 이미지를 획득할 수 있다. 비록, 본 본 발명의 실시예에서는 SRGAN 학습을 설명하였지만, SRGAN 학습에 한정되지 않는다. 구체적으로, 딥러닝 학습 기반 SR(Super-Resolution)의 종류로는 SRGAN에 한정되지 않고, SRCNN(Super-Resolution Convolutional Neural Network)일 수도 있다. 즉, 본 발명에서는 CNN(Convolutional Neural Network) 기반의 SR 학습 알고리즘으로 학습을 수행하는 것도 가능하다. 따라서, 본 발명의 실시예는 SRGAN 학습 또는 SRCNN 학습을 수행하기 때문에 보다 해상도가 높은 선명한 동공 이미지를 획득할 수 있다.For example, the SRGAN module 1224 performs SRGAN learning based on a database in which a high-resolution original image and a reduced low-resolution image matching it are stored together during training, so that a clearer image with higher resolution can be obtained. Although SRGAN learning has been described in the embodiment of the present invention, it is not limited to SRGAN learning. Specifically, the type of deep learning learning-based SR (Super-Resolution) is not limited to SRGAN, and may be SRCNN (Super-Resolution Convolutional Neural Network). That is, in the present invention, it is also possible to perform learning with a convolutional neural network (CNN)-based SR learning algorithm. Accordingly, since the embodiment of the present invention performs SRGAN learning or SRCNN learning, a clear pupil image with higher resolution can be obtained.

도 7은 본 발명의 실시예에 따른 이미지 분석 방법 중 SSD(Single Shot MultiBox Detector) 및 YOLO에 의한 학습 알고리즘을 도시한 블럭 다이어그램이다.7 is a block diagram illustrating a learning algorithm using a Single Shot MultiBox Detector (SSD) and YOLO in an image analysis method according to an embodiment of the present invention.

SSD는 피처 맵(Feature Map)이 컨볼루션 연산을 거치면서 크기가 점점 작아진다는 점을 이용한 것인데, 디폴트 박스(Default Box)를 두고 큰 피처 맵에서는 작은 물체를 검출하고 작은 피처 맵에서는 큰 물체를 검출할 수 있다. 또한, YOLO와 달리 풀리 커넥티드 레이어(Fully Connected Layer)를 사용하지 않고 컨볼루션 연산만으로 객체의 카테고리와 오프셋을 예측할 수 있다. 따라서, 연산량이 YOLO보다 작아 더 나은 속도를 보여준다.SSD takes advantage of the fact that the feature map gets smaller and smaller as it undergoes convolution operation. With a default box, small objects are detected in large feature maps and large objects are detected in small feature maps. can be detected. Also, unlike YOLO, the category and offset of an object can be predicted only by convolution operation without using a fully connected layer. Therefore, the amount of computation is smaller than that of YOLO, showing better speed.

도 7에 도시된 바와 같이, SSD 모델은 베이스 네트워크의 단부에 다수의 피처 레이어를 추가하는데, 이는 다른 스케일의 디폴트 박스의 오프셋과 종횡비 그리고 그들의 연관된 컨피던스(confidence)를 프레딕션한다. 일례로, 300 x 300 입력 크기의 SSD는 정확도 면에서 카운터 파트인 448 x 448 YOLO를 압도하고, 또한 속도 역시 빠르다.As shown in Figure 7, the SSD model adds multiple feature layers at the end of the base network, which predicts the offsets and aspect ratios of default boxes of different scales and their associated confidence. For example, a 300 x 300 input size SSD outperforms its 448 x 448 YOLO counterpart in terms of accuracy and is also fast.

따라서, 본 발명의 실시예에서, 오브젝트 검출 모듈(1225)은 딥러닝을 이용한 오브젝트 검출을 수행하여 홍채, 동공, 동공 반사 패턴의 크기와 위치를 정확하게 분석하고, 후처리 알고리즘을 통해 오브젝트 박스를 정확하게 보정함으로써, 시력 정보를 더욱 정확하게 산출하도록 한다.Therefore, in an embodiment of the present invention, the object detection module 1225 performs object detection using deep learning to accurately analyze the size and position of the iris, pupil, and pupil reflection patterns, and accurately analyzes the object box through a post-processing algorithm. By correcting it, it is possible to more accurately calculate the visual acuity information.

이상에서 설명한 것은 본 발명에 따른 시력 검사 장치, 방법 및 컴퓨터 판독 가능 저장 매체에 저장된 프로그램을 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.What has been described above is only one embodiment for implementing the vision test apparatus, method, and program stored in the computer-readable storage medium according to the present invention, and the present invention is not limited to the above-described embodiment, and the following claims are made. As claimed in the scope, without departing from the gist of the present invention, it will be said that the technical spirit of the present invention exists to the extent that various modifications can be made by anyone with ordinary knowledge in the field to which the invention pertains.

Claims (18)

동공 이미지를 수신하는 단계;receiving a pupil image; 동공 이미지를 SRGAN(Super-Resolution Generative Adversarial Network) 모듈에 입력하는 단계;inputting the pupil image into an SRGAN (Super-Resolution Generative Adversarial Network) module; SRGAN 모듈로부터 SR(Super-Resolved)된 이미지를 획득하는 단계;obtaining an SR (Super-Resolved) image from the SRGAN module; SR된 이미지를 오브젝트 검출 모듈에 입력하는 단계;inputting the SR image to the object detection module; 오브젝트 검출 모듈로부터 결과 박스 데이터를 획득하는 단계;obtaining result box data from the object detection module; 결과 박스 데이터를 시력 정보 산출 함수 모듈에 입력하는 단계; 및inputting the result box data into an eyesight information calculation function module; and 시력 정보 산출 함수 모듈로부터 시력 정보를 획득하여 전송하는 단계를 포함하는, 시력 검사 방법.The vision test method, comprising the step of acquiring and transmitting the vision information from the vision information calculation function module. 제 1 항에 있어서,The method of claim 1, 동공 이미지 수신 단계는 조명부 및 촬영부를 포함하고, 유선 또는 무선 통신이 가능한 사용자 장치로부터 동공 이미지를 수신하여 이루어지는, 시력 검사 방법.The pupil image receiving step includes an illumination unit and a photographing unit, and is made by receiving a pupil image from a user device capable of wired or wireless communication. 제 1 항에 있어서,The method of claim 1, SRGAN 모듈은 학습이 완료된 SRGAN 알고리즘을 이용하여 수신된 동공 이미지로부터 노이즈를 제거하고 해상도를 높여 SR된 이미지를 출력하는, 시력 검사 방법.The SRGAN module uses the learned SRGAN algorithm to remove noise from the received pupil image and to increase the resolution to output the SR image. 제 1 항에 있어서,The method of claim 1, SRGAN 모듈은 노이즈 이미지를 입력받아 페이크 동공 이미지를 생성하는 제너레이터 네트워크와, 실제 동공 이미지와 페이크 동공 이미지를 입력받아 프레딕션하는 디스크리미네이터 네트워크를 포함하되, 제너레이터 네트워크와 디스크리미네이터 네트워크는 상호간 번갈아 가며 학습을 수행하는, 시력 검사 방법.The SRGAN module includes a generator network that receives a noise image and generates a fake pupil image, and a discriminator network that receives and predicts an actual pupil image and a fake pupil image, but the generator network and the discriminator network are alternated with each other. How to do learning, eye exam. 제 4 항에 있어서,5. The method of claim 4, SRGAN 모듈은 SR된 이미지를 출력하는 제너레이터 네트워크를 학습시키기 위해 애드버서리얼 로스(adversarial loss)와 픽셀 공간의 유사도 대신 퍼셉튜얼 유사도(perceptual similarity)를 이용하는 컨텐트 로스(content loss)를 포함하는 퍼셉튜얼 로스 함수(perceptual loss function)를 제공하는, 시력 검사 방법.The SRGAN module uses perceptual similarity instead of adversarial loss and pixel space similarity to train a generator network that outputs the SR image. A method of examining vision, providing a perceptual loss function. 제 1 항에 있어서,The method of claim 1, 오브젝트 검출 모듈은 딥러닝을 이용한 오브젝트 검출을 수행하여 홍채, 동공, 동공 반사 패턴의 크기와 위치를 분석하고, 후처리 알고리즘을 통해 오브젝트 박스를 보정하는, 시력 검사 방법.The object detection module performs object detection using deep learning to analyze the size and position of the iris, pupil, and pupil reflection patterns, and corrects the object box through a post-processing algorithm. 제 1 항에 있어서,The method of claim 1, 오브젝트 검출 모듈은 SSD(Single Shot MultiBox Detector), YOLOv3 또는 EfficientDet 중 적어도 하나를 이용하는, 시력 검사 방법.The object detection module uses at least one of a Single Shot MultiBox Detector (SSD), YOLOv3, or EfficientDet. 제 1 항에 있어서,The method of claim 1, 시력 정보를 전송하는 단계는 시력 정보를 유선 또는 무선 통신 가능한 사용자 장치로 전송하여 이루어지는, 시력 검사 방법.The step of transmitting the vision information is performed by transmitting the vision information to a user device capable of wired or wireless communication. 제 1 항에 있어서,The method of claim 1, 시력 정보는 안구 굴절도를 포함하는, 시력 검사 방법.The visual acuity information includes an eye refractive index. 동공 이미지를 수신하는 동작;receiving a pupil image; 동공 이미지를 SRGAN(Super-Resolution Generative Adversarial Network) 모듈에 입력하는 동작;inputting the pupil image to the SRGAN (Super-Resolution Generative Adversarial Network) module; SRGAN 모듈로부터 SR(Super-Resolved)된 이미지를 획득하는 동작;obtaining an SR (Super-Resolved) image from the SRGAN module; SR된 이미지를 오브젝트 검출 모듈에 입력하는 동작;inputting the SR image to the object detection module; 오브젝트 검출 모듈로부터 결과 박스 데이터를 획득하는 동작;obtaining result box data from the object detection module; 결과 박스 데이터를 시력 정보 산출 함수 모듈에 입력하는 동작; 및inputting the result box data into the vision information calculation function module; and 시력 정보 산출 함수 모듈로부터 시력 정보를 획득하여 전송하는 동작을 포함하는, 시력 검사를 위한 컴퓨터 판독 가능 저장 매체에 저장된 컴퓨터 프로그램.A computer program stored in a computer-readable storage medium for eye examination, comprising the operation of acquiring and transmitting vision information from a vision information calculation function module. 동공 이미지를 촬영하여 전송하는 사용자 장치; 및a user device that captures and transmits a pupil image; and 사용자 장치로부터 수신한 동공 이미지를 입력받아 SR(Super-Resolved)된 이미지를 획득하는 SRGAN(Super-Resolution Generative Adversarial Network) 모듈과, SR된 이미지를 입력받아 결과 박스 데이터를 획득하는 오브젝트 검출 모듈과, 결과 박스 데이터를 입력받아 시력 정보를 산출하는 시력 정보 산출 함수 모듈을 갖는 서버를 포함하고, 서버는 산출된 시력 정보를 사용자 장치에 전송하는, 시력 검사 장치.An SRGAN (Super-Resolution Generative Adversarial Network) module that receives the pupil image received from the user device and acquires an SR (Super-Resolved) image, and an object detection module that receives the SR image and acquires result box data; and a server having an eyesight information calculation function module that receives result box data and calculates vision information, wherein the server transmits the calculated vision information to the user device. 제 11 항에 있어서,12. The method of claim 11, 사용자 장치는 조명부 및 촬영부를 포함하고, 촬영된 동공 이미지를 유선 또는 무선 통신 방식으로 서버에 전송하는, 시력 검사 장치.The user device includes a lighting unit and a photographing unit, and transmits the photographed pupil image to the server through a wired or wireless communication method. 제 11 항에 있어서,12. The method of claim 11, SRGAN 모듈은 학습이 완료된 SRGAN 알고리즘을 이용하여 수신된 동공 이미지로부터 노이즈를 제거하고 해상도를 높여 SR된 이미지를 출력하는, 시력 검사 장치.The SRGAN module removes noise from the received pupil image using the learned SRGAN algorithm and outputs the SR image by increasing the resolution. 제 11 항에 있어서,12. The method of claim 11, SRGAN 모듈은 노이즈 이미지를 입력받아 페이크 동공 이미지를 생성하는 제너레이터 네트워크와, 실제 동공 이미지와 페이크 동공 이미지를 입력받아 프레딕션하는 디스크리미네이터 네트워크를 포함하되, 제너레이터 네트워크와 디스크리미네이터 네트워크는 상호간 번갈아 가며 학습을 수행하는, 시력 검사 장치.The SRGAN module includes a generator network that receives a noise image and generates a fake pupil image, and a discriminator network that receives and predicts an actual pupil image and a fake pupil image, but the generator network and the discriminator network are alternated with each other. A vision test device that performs learning. 제 14 항에 있어서,15. The method of claim 14, SRGAN 모듈은 SR된 이미지를 출력하는 제너레이터 네트워크를 학습시키기 위해 애드버서리얼 로스(adversarial loss)와 픽셀 공간의 유사도 대신 퍼셉튜얼 유사도(perceptual similarity)를 이용하는 컨텐트 로스(content loss)를 포함하는 퍼셉튜얼 로스 함수(perceptual loss function)를 제공하는, 시력 검사 장치.The SRGAN module uses perceptual similarity instead of adversarial loss and pixel space similarity to train a generator network that outputs the SR image. An eye exam device that provides a perceptual loss function. 제 11 항에 있어서,12. The method of claim 11, 오브젝트 검출 모듈은 딥러닝을 이용한 오브젝트 검출을 수행하여 홍채, 동공, 동공 반사 패턴의 크기와 위치를 분석하고, 후처리 알고리즘을 통해 오브젝트 박스를 보정하는, 시력 검사 장치.The object detection module performs object detection using deep learning to analyze the size and position of the iris, pupil, and pupil reflection patterns, and corrects the object box through a post-processing algorithm. 제 11 항에 있어서,12. The method of claim 11, 오브젝트 검출 모듈은 SSD(Single Shot MultiBox Detector), YOLOv3 또는 EfficientDet 중 적어도 하나를 이용하는, 시력 검사 장치.The object detection module uses at least one of a Single Shot MultiBox Detector (SSD), YOLOv3, or EfficientDet. 제 11 항에 있어서,12. The method of claim 11, 시력 정보는 안구 굴절도를 포함하는, 시력 검사 장치.The visual acuity information includes an eye refractive index.
PCT/KR2020/008225 2020-06-17 2020-06-24 Vision testing device, method, and program stored in computer-readable storage medium Ceased WO2021256595A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200073638A KR20210156007A (en) 2020-06-17 2020-06-17 Vision inspection device, method and program stored on computer-readable storage media
KR10-2020-0073638 2020-06-17

Publications (1)

Publication Number Publication Date
WO2021256595A1 true WO2021256595A1 (en) 2021-12-23

Family

ID=79176435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008225 Ceased WO2021256595A1 (en) 2020-06-17 2020-06-24 Vision testing device, method, and program stored in computer-readable storage medium

Country Status (2)

Country Link
KR (1) KR20210156007A (en)
WO (1) WO2021256595A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114732350A (en) * 2022-03-21 2022-07-12 Oppo广东移动通信有限公司 Vision detection method and apparatus, computer readable medium and electronic device
CN116188859A (en) * 2023-02-24 2023-05-30 安徽大学 A UAV remote sensing monitoring method for tea diseases based on super-resolution and detection network
CN117952961A (en) * 2024-03-25 2024-04-30 深圳大学 Image prediction model training and application method, device and readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337236A (en) * 2003-05-13 2004-12-02 Topcon Corp Ophthalmic data measuring device, ophthalmic data measuring program, recording medium storing ophthalmic data measuring program
KR101727615B1 (en) * 2017-02-17 2017-04-17 주식회사 픽셀 디스플레이 User device, server and computer program stored in computer-readable medium for determining vision information
WO2019083129A1 (en) * 2017-10-27 2019-05-02 주식회사 뷰노 Method for supporting reading of fundus image of subject, and device using same
US20190350698A1 (en) * 2017-01-23 2019-11-21 Duke University Systems and methods for psycho-signal processing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337236A (en) * 2003-05-13 2004-12-02 Topcon Corp Ophthalmic data measuring device, ophthalmic data measuring program, recording medium storing ophthalmic data measuring program
US20190350698A1 (en) * 2017-01-23 2019-11-21 Duke University Systems and methods for psycho-signal processing
KR101727615B1 (en) * 2017-02-17 2017-04-17 주식회사 픽셀 디스플레이 User device, server and computer program stored in computer-readable medium for determining vision information
WO2019083129A1 (en) * 2017-10-27 2019-05-02 주식회사 뷰노 Method for supporting reading of fundus image of subject, and device using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RABBI JAKARIA, RAY NILANJAN, SCHUBERT MATTHIAS, CHOWDHURY SUBIR, CHAO DENNIS: "Small-Object Detection in Remote Sensing Images with End-to-End Edge-Enhanced GAN and Object Detector Network", vol. 12, no. 9, 1432, 1 May 2020 (2020-05-01), pages 1 - 25, XP055881792, DOI: 10.3390/rs12091432 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114732350A (en) * 2022-03-21 2022-07-12 Oppo广东移动通信有限公司 Vision detection method and apparatus, computer readable medium and electronic device
CN116188859A (en) * 2023-02-24 2023-05-30 安徽大学 A UAV remote sensing monitoring method for tea diseases based on super-resolution and detection network
CN117952961A (en) * 2024-03-25 2024-04-30 深圳大学 Image prediction model training and application method, device and readable storage medium
CN117952961B (en) * 2024-03-25 2024-06-07 深圳大学 Training and application method and device of image prediction model and readable storage medium

Also Published As

Publication number Publication date
KR20210156007A (en) 2021-12-24

Similar Documents

Publication Publication Date Title
WO2021256595A1 (en) Vision testing device, method, and program stored in computer-readable storage medium
WO2024071995A1 (en) System and method for efficient language model editing using contextual prompt generator
US8559728B2 (en) Image processing apparatus and image processing method for evaluating a plurality of image recognition processing units
EP3586306A1 (en) Method and apparatus for processing histological image captured by medical imaging device
WO2021112382A1 (en) Apparatus and method for dynamic multi-camera rectification using depth camera
CN114722937B (en) Abnormal data detection method and device, electronic equipment and storage medium
WO2022025565A1 (en) System and method for generating bokeh image for dslr quality depth-of-field rendering and refinement and training method for the same
WO2023043116A1 (en) Picture quality-sensitive semantic segmentation for use in training image generation adversarial networks
JP7136955B2 (en) Image display system and image display method
WO2025042021A1 (en) Generative ai-based video aspect ratio enhancement
CN109446627A (en) Endoscopic images recognition methods and device
WO2019190076A1 (en) Eye tracking method and terminal for performing same
WO2022265197A1 (en) Method and device for analyzing endoscopic image on basis of artificial intelligence
WO2013157705A1 (en) Method for inferring interest of user through interests of social neighbors and topics of social activities in sns, and system therefor
WO2015026211A1 (en) Substrate inspection apparatus
WO2023146329A1 (en) Method and electronic device of facial un-distortion in digital images using multiple imaging sensors
WO2023149786A1 (en) Method and electronic device for synthesizing image training data and image processing using artificial intelligence
WO2015080328A1 (en) Colored figures psychological diagnostic apparatus and method
WO2023140421A1 (en) Method and apparatus for noise reduction for blending blurred frames in a multi-frame system
WO2025033585A1 (en) Method, program, and apparatus for constructing test environment
Ekong et al. Prototype telepathology solutions that use the Raspberry Pi and mobile devices
CN114668365A (en) Vision detection method
CN113705546A (en) Interference type recognition model training method, recognition method and device and electronic equipment
WO2022108250A1 (en) Deep learning-based high image quality x-ray image generation method, apparatus, and program
WO2023149703A1 (en) Machine learning model training framework for multi-frame image processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941368

Country of ref document: EP

Kind code of ref document: A1