WO2021256339A1 - Skin wrinkle evaluation method - Google Patents
Skin wrinkle evaluation method Download PDFInfo
- Publication number
- WO2021256339A1 WO2021256339A1 PCT/JP2021/021888 JP2021021888W WO2021256339A1 WO 2021256339 A1 WO2021256339 A1 WO 2021256339A1 JP 2021021888 W JP2021021888 W JP 2021021888W WO 2021256339 A1 WO2021256339 A1 WO 2021256339A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wrinkle
- skin
- value
- subject
- age
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/442—Evaluating skin mechanical properties, e.g. elasticity, hardness, texture, wrinkle assessment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
Definitions
- the present invention relates to a method for evaluating skin wrinkles and the like.
- wrinkles on the skin are more likely to occur on the forehead, between the eyebrows, mouth, and corners of the eyes with aging, but the condition of wrinkles on the skin varies greatly among individuals. Therefore, for the purpose of anti-aging and the like, in the fields of makeup, cosmetology, medicine and the like, techniques for preventing, improving or treating wrinkles on the skin have been proposed for each individual. For this purpose, there is a need for a method for accurately evaluating the state of wrinkles on the skin.
- a visual evaluation method for evaluating the state of the skin for example, a device measuring method for measuring the state of the skin, and the like have been used.
- a visual evaluation method by a professional evaluator is known in accordance with the wrinkle grade standard table (0 to 7) of the guideline (Non-Patent Document 1) published by the Japan Cosmetic Industry Association.
- a measuring instrument method for evaluating the state of wrinkles for example, a two-dimensional image analysis method using oblique illumination with a replica of a wrinkle portion, a three-dimensional measurement method using a replica, and the like are known.
- Patent Document 1 a step of performing image processing including cross binarization processing and / or short straight line matching processing on a skin image to obtain a physical amount of skin, and a step of obtaining a physical amount of skin obtained in the above step are described.
- a method for distinguishing skin texture and / or wrinkles has been proposed, which comprises a step of substituting into a prediction formula prepared in advance and discriminating the obtained evaluation value from the skin texture and / or wrinkle evaluation value.
- the present inventor can evaluate skin wrinkles more accurately and more easily for each individual, thereby making it more suitable for each individual for prevention, improvement, or treatment of skin wrinkles. I thought it would be easier to propose good skin care technology. Therefore, it is a main object of the present invention to provide a technique capable of evaluating skin wrinkles more accurately and more easily for each individual.
- the present inventor can estimate the index value of skin wrinkles for each individual based on the accumulation of device evaluation results over a long period of time and the examination results by multivariate analysis, age and skin condition. We were able to find a new optimal combination with and, and we were also able to find a new wrinkle prediction model that fits well. As a result, the present inventor has completed the present invention as follows.
- the present invention provides a method for evaluating skin wrinkles, which estimates an index value of skin wrinkles of a subject based on at least two of a subject's age and a measured value of skin brightness.
- the method for evaluating skin wrinkles estimates the index value of skin wrinkles of a subject based on the above two and one or two of the measured values of redness of the skin and / or the measured value of the amount of sebum on the skin. You may.
- an index value of skin wrinkles of a subject may be estimated by using two measured values of the subject's age and skin brightness in the wrinkle prediction model.
- the method for evaluating skin wrinkles is to use the wrinkle prediction model as two measurement values of the subject's age and skin brightness, and one of the measurement values of skin redness and / or the amount of sebum of the skin.
- the index value of wrinkles on the skin of the subject may be estimated.
- the wrinkle prediction model is obtained by deriving using a linear mixed-effects model in which the wrinkle index value of one individual is used as an objective variable and the measured values of the age and skin brightness of the individual are included in at least the explanatory variables. It may be a model.
- the parameters of the linear mixed-effects model may be obtained by using a maximum likelihood method or a limited maximum likelihood method.
- the step of estimating the wrinkle index value of the skin of the subject to whom the test substance is administered by using the wrinkle evaluation method, and the estimated wrinkle index value of the skin are the skin of the subject before administration. It is possible to provide a method for evaluating or searching for a wrinkle improving composition, which comprises a step of determining a test substance for wrinkle improving when the wrinkle is improved lower than the wrinkle index value of.
- the present invention can provide a technique for evaluating skin wrinkles more accurately and more easily for each individual.
- the effects described here are not necessarily limited, and may be any of the effects described in the present invention.
- the present invention provides a method for evaluating skin wrinkles, which estimates an index value of skin wrinkles of a subject based on at least these two values of a subject's age value and a measured value of skin brightness. It is something to do. As a result, wrinkles on the skin can be evaluated more accurately and more easily for each individual.
- the present invention combines the above two values (age value, skin brightness measurement value) with one or two values of skin redness measurement value and / or skin sebum amount measurement value. Therefore, it is preferable to estimate the index value of wrinkles on the skin of the subject based on these values. As a result, wrinkles on the skin can be evaluated more accurately and more easily for each individual.
- the present invention uses a wrinkle prediction model, and by using the two values (age value, skin brightness measurement value) of the subject in the wrinkle prediction model, or by using the four values of the subject. It is more preferable to estimate the wrinkle index value of the skin of the subject by using two or more kinds of values selected from the values.
- the wrinkle prediction model has high model performance, can use device evaluation, and can also provide a wrinkle prediction model that fits well and is suitable for each individual. As a result, wrinkles on the skin can be evaluated more accurately and more easily for each individual.
- the wrinkles on the skin of the subject can be evaluated by comparing the index value of the wrinkles on the skin with the reference value of the skin condition.
- the reference value of the skin condition may be a value that can be obtained by using the wrinkle prediction model, and specifically, a value preset in the wrinkle prediction model (age value, skin brightness). It can be obtained by using (for example, substituting) the value, the value of redness of the skin, the value of the amount of sebum, etc.
- the reference value of the skin condition may be a reference value of a general skin condition (for example, an average value of each skin condition of the age or age corresponding to the age or age of the subject).
- Subject is not particularly limited, and humans are preferable, regardless of age or sex, but the gender of the subject is more preferably female from the viewpoint of good wrinkle prediction accuracy.
- the race of the subject is not particularly limited, but is preferably a Caucasian race (white), a Mongoloid race (yellow), and preferably a Mongoloid race (preferably Mongoloid A, B, C).
- the ethnic lineage of the subject is preferably one or more selected from Chinese, Korean, and Japanese, and more preferably Japanese.
- the "subject" means a person who receives an estimation of a wrinkle index value by using the evaluation method of the present invention.
- the age group of the subject is not particularly limited, but the lower limit is preferably 18 years or older, more preferably 20 years or older, still more preferably 22 years or older, and the upper limit thereof is not particularly limited. For example, it can be 80 years old or younger, 70 years old or younger, 60 years old or younger, and the like.
- the preferred numerical range is more preferably 18 to 70 years old, still more preferably 22 to 60 years old, from the viewpoint of good wrinkle prediction accuracy.
- the value of a certain age of the subject and the measured value of the skin condition at that age (measured value of skin brightness, measured value of skin redness, (Measured value of the amount of skin oil, etc.) and is used.
- the value of a certain age of the subject and the measured value of each skin condition at that age may be interrelated or linked.
- Age value is not particularly limited, but is preferably the actual age value of the subject when evaluating the current skin wrinkles.
- the "age” in the present specification can be expressed by the full age + "the number of months elapsed from the month of birth” or the full age + “the number of months elapsed from the month of birth / 12 months". For example, if the age is 30 years and 6 months, it can be expressed as 30.5. Further, the "age” may be converted into a "month age” of "the number of months elapsed since the birthday”.
- the skin brightness is "brightness L *" when the skin color is expressed by the L * a * b * color system.
- the lightness is L *
- the hue and saturation are indicated by a *, b * (a * and b * are indicated by the color direction, and a * is indicated by the color direction).
- Red direction, -a * indicates green direction
- b * indicates yellow direction
- -b * indicates blue direction).
- the measured values of skin color such as skin brightness and redness used in the present invention are not limited to the values by a measuring device capable of measuring the L * a * b * color system, and other color systems can be used.
- the value converted from the measured value by a measurable measuring device for example, the value of the XYZ color system, the RGB color system, etc.
- a measurable measuring device for example, the value of the XYZ color system, the RGB color system, etc.
- L * a * b * color system is used as the skin brightness, redness of the skin, etc. It may be used as a measurement value of (for example, Kiyoshi Chaki, “Measurement of Color", Color Material, 57 [10], p558-568, 1984; Hiroshi Kodera, "Development of Color Space", Journal of the Imaging Society of Japan. , Vol. 43, No. 2, p73-81, 2004).
- the measured value of the brightness of the skin can be obtained by using a measuring device capable of measuring the L * a * b * color system or the like, or an imaging device.
- a measuring device capable of measuring the L * a * b * color system or the like, or an imaging device.
- the "brightness L *" of the value converted from the value of another color system such as the XYZ color system and the RGB color system to the value of the L * a * b * color system is described above. It may be used as a measurement value of skin brightness.
- the part of the skin to be measured is not particularly limited, but the skin on the face is preferable, and the cheek (more specifically, the upper part of the cheek) is more preferable.
- the operator or the control unit selects a color scheme panel (image, etc.) that is the same as or similar to the skin brightness of the subject, so that the control unit associates with the data of the selected color scheme panel.
- a color scheme panel image, etc.
- the control unit associates with the data of the selected color scheme panel. It may be configured so that the measured value data of the skin brightness of the subject can be selected as the measured value of the skin brightness of the subject. It is preferable to store in advance the measured value data of the skin brightness corresponding to the color tone (value of the color scheme) of each color scheme panel and the color tone (value of the color scheme) of each color scheme panel, and the measurement thereof. It is preferable that the value data is set and stored as the measured value data of the skin brightness associated with the data of the color scheme panel, so that the two can be easily converted to each other. Note that "associating and storing” includes, but is not limited to, storing specific data and other data in association with each other.
- a measuring device capable of measuring the L * a * b * color system (for example, a handy color difference meter compliant with the JIS standard, a spectrocolorimeter, etc.) is generally used.
- an image pickup device for example, a camera, a video camera, a mobile terminal, etc.
- the color difference meter is not particularly limited, but it is preferable that the color difference meter complies with the JIS standard.
- the spectrophotometer an integrating sphere type, for example, a spectrophotometer CM-700d (manufactured by Konica Minolta) can be used. It is also possible to use a color scheme panel.
- the skin redness is the "chromaticity a *" when the skin color is expressed by the L * a * b * color system.
- the "L * a * b * color system”, “measuring device capable of measuring the L * a * b * color system”, and “imaging device” are described in the above "measured value of skin brightness”. Since it overlaps with the above, it is omitted.
- the measured value of redness of the skin can be obtained by using a measuring device capable of measuring the L * a * b * color system or the like, or an imaging device.
- a measuring device capable of measuring the L * a * b * color system or the like, or an imaging device.
- the value converted from the value of other color system such as XYZ color system and RGB color system to the value of L * a * b * color system.
- the "chromaticity a *" of the above may be used as the measured value of the redness of the skin.
- the part of the skin to be measured is not particularly limited, but the skin on the face is preferable, and the cheek (more specifically, the upper part of the cheek) is more preferable.
- the operator or the control unit selects a color scheme panel (image, etc.) that is the same as or similar to the redness of the skin of the subject, so that the control unit associates with the data of the selected color scheme panel.
- a color scheme panel image, etc.
- the control unit associates with the data of the selected color scheme panel. It may be configured so that the measured value data of the skin redness of the subject can be selected as the measured value of the redness of the skin of the subject. It is preferable that the measured value data of the redness of the skin corresponding to the color tone (value of the color scheme) of each color scheme panel and the color tone (value of the color scheme) of each color scheme panel is stored in advance, and the measured value is concerned. It is preferable that the data is set and stored as the measured value data of the redness of the skin associated with the data of the color scheme panel, which makes it possible to easily convert between the two.
- the amount of sebum on the skin is the amount of sebum secreted on the surface of the skin.
- the measured value of the amount of sebum on the skin can be obtained by using a measuring device or an imaging device capable of measuring the amount of sebum.
- the part of the skin to be measured is not particularly limited, but the skin on the face is preferable, and more preferably, the forehead (more specifically, the center of the forehead) from the viewpoint that a stable amount of sebum can be collected within a short measurement time. Part) is more preferable.
- a measuring device for example, a Sebumeter
- an image pickup device for example, a camera, etc.
- a video camera, mobile terminal, etc. may be used.
- the sebum amount measuring device for example, a spectrophotometer Sebumeter SM 815 (manufactured by Course + Khazaka) can be used.
- the measured value of the sebum amount can be obtained by adhering the sebum secreted on the skin surface to the tape and measuring the light transmission.
- the measured value of the brightness of the skin, the measured value of the redness of the skin, and the measured value of the amount of sebum are measured by a measuring device or a skin condition measuring device such as an imaging device. It can be done and it is not necessary to perform human sensory evaluation.
- a skin condition measuring device such as an imaging device.
- each skin condition for example, skin brightness, skin redness, skin sebum
- an image pickup device each skin condition (for example, skin brightness, skin redness, skin sebum) can be converted into a measured value of each skin condition by using an image pickup data or an image data. It may be converted into a measured value (for example, WO2013 / 0944442, Japanese Patent Application Laid-Open No. 8-308634, etc.).
- the makeup state (presence / absence, etc.) of the subject is not particularly limited, and the subject may be in a state of wearing makeup. More preferably, it is preferable that the subject has a bare skin (more preferably a bare face) from the viewpoint of more accurate evaluation of wrinkles, and more preferably, the subject uses a skin cleanser such as a face wash. It is preferable to perform the measurement after washing the skin (face) to make it in the state of bare skin (bare face). Further, the portion to be measured may be bare skin or skin after washing.
- bare skin (bare face) as used herein means "undressed, untouched skin (face)".
- the face it is preferable to wash the face with a face wash to make it look like a real face, and then perform the measurement after acclimatizing for 20 minutes or more and 60 minutes or less in an indoor environment. .. More specifically, it is preferable to carry out the measurement after washing the face and acclimatizing for 30 minutes in an environment controlled at 20 to 22 ° C. and 50 ⁇ 5%.
- the present invention comprises the age value, the measured value of the skin brightness, the measured value of the redness of the skin, and the measured value of the amount of sebum in the subject. Based on two or more values selected from the group, the index value of wrinkles on the skin of the subject can be estimated. Preferably, it contains at least two values, an age value and a skin brightness measurement.
- the above-mentioned "index value of skin wrinkles" is a guideline published by the Japan Cosmetic Industry Association (Journal of the Japan Cosmetic Society, "Report of the Cosmetic Function Evaluation Method Review Committee: Cosmetic Function”.
- the “index value of wrinkles on the skin” can correspond to the "wrinkle grade standard table” which has been conventionally used as a standard without any particular conversion. Therefore, it can be said that the index value of skin wrinkles of the present invention has high wrinkle prediction accuracy and high reliability.
- the index value of skin wrinkles of the present invention can be regarded as the wrinkle grade in the above-mentioned "wrinkle grade standard table” and used. Further, in the skin wrinkle evaluation method of the present invention, it is easy to utilize information such as documents that employ the "wrinkle grade standard table".
- the "wrinkle grade standard table" (wrinkle grade) based on the guidelines announced by the Japan Cosmetic Industry Association is a visual sensory evaluation, so it is an advanced evaluation to become a professional evaluator in order to ensure the accuracy of wrinkle evaluation. It took some proficiency. Further, in the case of sensory evaluation, as the number of subjects increases, the discrimination tends to be blurred, and there is a risk that the accuracy of wrinkle evaluation deteriorates.
- the measured value of the skin condition is an instrument evaluation using a device such as a measuring device or an imaging device, the measurer who measures the skin condition is required to have an advanced level in the sensory evaluation. Does not require any proficiency.
- the measured value used in the present invention is an instrument evaluation using a measuring device
- the variation in the value can be reduced as compared with the variation in the sensory evaluation.
- the measuring device by using the measuring device, it is possible to homogenize the ability of the measurer and the homogenization of the measuring method. Therefore, even if a plurality of measurements or long-term measurements are performed, the reliability of the obtained measured value data is high.
- the device evaluation can be used in the present invention, it is possible to evaluate the wrinkles on the skin of the subject more easily and more accurately.
- the wrinkle prediction model is a linear mixture in which the wrinkle index value of one individual is used as an objective variable and the age (age value) and skin brightness (measured value of skin brightness) of the one individual are included in at least the explanatory variables. It is preferable that the model is obtained by deriving using an effect model. Further, the parameters (variables) of the linear mixed-effects model are preferably those obtained by using the maximum likelihood method or the limited maximum likelihood method.
- the maximum likelihood method is a method of point estimation of the population parameter of the probability distribution to which it follows from given data in statistics.
- the limited maximum likelihood method is a method for estimating parameters related to the variance of a linear mixed model, and is a maximum likelihood method for a likelihood function limited to "error contrast" rather than the data itself.
- explanatory variables in addition to the above-mentioned age value and skin brightness measurement value, one of skin redness (measurement value of redness) and / or skin oil content (measurement value of skin oil content) or It is more preferable to further include two, and it is further preferable that these four explanatory variables are used.
- the skin wrinkle evaluation method of the present invention it is more preferable to use at least two values (age value and skin brightness measurement value) described above for the wrinkle prediction model. Even more preferably, in the wrinkle prediction model, one or two of the two values of the age value and the measured value of the skin brightness, and the measured value of the redness of the skin and / or the measured value of the amount of sebum of the skin. Use the value. Thereby, wrinkles on the skin can be evaluated more easily and more accurately.
- the wrinkle evaluation method of the present invention as described above, in the wrinkle prediction model, the subject's "age value”, “skin brightness measurement value”, “skin redness measurement value”, and “skin redness measurement value” are used.
- the current index value By using a value of 2 or more selected from “measured value of the amount of sebum on the skin”, the current index value (wrinkle grade) of wrinkles can be estimated.
- the values for predicting the future wrinkle condition of the subject (“age”, “skin brightness”, “skin redness”, “skin sebum amount”) are appropriately selected and selected.
- the future wrinkle reference value can be obtained.
- the current wrinkle prediction model for obtaining this future wrinkle reference value, the current wrinkle prediction model can be used. Furthermore, by comparing and examining the current wrinkle reference value and the future wrinkle reference value (prediction), it is possible to propose skin care for the subject.
- the past wrinkle index value can be obtained as the wrinkle reference value in the same manner as described above.
- the past wrinkle prediction model may be used, or the current wrinkle prediction model may be used.
- a wrinkle prediction model composed of specific wrinkle prediction factors is suitable.
- the number of the specific wrinkle predictors is not particularly limited, but is preferably 2 to 5 (specifically 2, 3, 4, 5), more preferably 3 to 5, still more preferably 4 to 5, and more. More preferably, it is 5.
- Examples of the specific wrinkle predictor include "age”, “skin brightness”, “skin redness”, “skin sebum amount”, “interaction term between sebum amount and skin redness” and the like. ..
- the interaction is preferably a multiplication interaction.
- the two wrinkle predictors are associated with “skin redness”, “skin sebum amount”, and “skin oil amount and skin redness”.
- a wrinkle prediction model including one or more wrinkle predictors selected from the group consisting of "terms” and composed of these wrinkle predictors is more preferable from the viewpoint of more accurate wrinkle evaluation. More specifically, two wrinkle predictors of "age” and “skin brightness”, and one or two wrinkle predictors of "skin redness” and / or “skin sebum amount”.
- a wrinkle prediction model composed of is more preferable.
- the wrinkle prediction model composed of the three or four, the subject's three or four values (specifically, “age value”, “skin brightness measurement value”, and “skin redness” By using “measured value of” and “measured value of sebum amount of skin”), the wrinkle index value can be obtained easily and more accurately.
- the above five wrinkle predictors (specifically, “age”, “skin brightness”, “skin redness”, “skin sebum amount”, and “sebum amount”
- a wrinkle prediction model composed of "skin redness interaction term” is even more preferable from the viewpoint of particularly good wrinkle prediction accuracy.
- the wrinkle prediction model includes the subject's values (subject's "age value”, “skin brightness measurement value”, “skin redness measurement value”, “skin sebum amount measurement value”). By using four, the wrinkle index value can be obtained easily and more accurately.
- wrinkle predictors other than the above-mentioned five wrinkle predictors are included in the configuration of the wrinkle prediction model of the present invention.
- the wrinkle prediction model using the above five wrinkle prediction factors is the best model.
- wrinkle prediction formula examples include, but are not limited to, wrinkle prediction formulas 1 to 7, which will be described later.
- the wrinkle prediction formula 1 and the wrinkle prediction formula 2 are preferable because the wrinkle prediction accuracy is better and can be used as a standard for the target person, and further, the wrinkle prediction formula is suitable. Equation 1 is more suitable because the wrinkle prediction accuracy is better.
- Wrinkle grade i 0.1469 ⁇ Age + 0.7540 ⁇ Ln (sebum) + 0.3270 ⁇ Skin color a * + 0.1654 ⁇ Mean [Skin color L *] - 0.1044 ⁇ [Ln (sebum) ⁇ Skin color a *] - 15.90 + b 0, i (Equation 1) b 0, i ⁇ N (0, 0.4847) Final equation for prediction of wrinkle grade in Japanese women aged 22-60 years
- Wrinkle grade i 0.1200 ⁇ 0.2053 ⁇ Age + 0.2200 ⁇ 1.280 ⁇ Ln (sebum) +0.050 ⁇ 0.5710 ⁇ Skin color a * + 0.050 ⁇ 0.4000 ⁇ Mean [Skin color L *] - 0.030 ⁇ 0.1800 ⁇ [Ln (sebum) ⁇ Skin color a *] - 25.00-7.600 (Equation 2)
- the index value of wrinkles on the skin of the subject can be estimated, and this index value is a "wrinkle grade standard table" visually by a professional evaluator. Since it has a high correlation with the sensory evaluation of, it can be used as an evaluation value of skin wrinkles to the same extent as the "wrinkle grade standard table". Therefore, a subject selects two or more from the group consisting of measured values of age, skin color (brightness, redness), and measured values of sebum amount, and applies them to the wrinkle prediction model or wrinkle prediction formula of the present invention. By doing so, the index value of the skin wrinkles of the subject can be estimated, and further, the skin wrinkles can be evaluated based on the index value. Therefore, the wrinkle evaluation method of the present invention can easily and accurately provide an index value of wrinkles having a high positive correlation with the wrinkle evaluation derived by a professional evaluator according to the "wrinkle grade standard table". can.
- a skin condition measuring device such as a measuring device or an imaging device
- a skin condition measuring device such as a measuring device or an imaging device
- evaluation of skin wrinkles can be performed more easily, more accurately, and more. It can be evaluated objectively. Therefore, it is possible to reduce the decrease in the accuracy of wrinkle evaluation due to the skill level of the measurer and the difference between individuals.
- the wrinkle prediction model of the present invention the index value of future wrinkles for each individual can be easily and accurately predicted. Furthermore, it will be possible to propose skin care for this future wrinkle.
- the method for evaluating skin wrinkles in the present invention may be used for non-therapeutic purposes, or the evaluation results may be finally utilized for therapeutic purposes.
- the present invention can be applied not to the direct medical practice of a doctor, but to, for example, a method of assisting the diagnosis of wrinkles on the skin.
- the "non-therapeutic purpose” is a concept that does not include a medical practice, that is, a treatment action on the human body by treatment, and the non-therapeutic purpose includes, for example, a cosmetic purpose, provision of a skin care product, and the like.
- An advantage of the present invention is that the above-mentioned measurement of age and skin condition can be evaluated or measured by a device such as a measuring device or an imaging device without a doctor performing any of the above-mentioned measurements.
- prevention means preventing or delaying the onset of a symptom or disease in an application target, or reducing the risk of developing a symptom or disease in an application target.
- improvement means improvement or maintenance of a disease, symptom or condition in an application; prevention or delay of exacerbation; reversal, prevention or delay of progression.
- the wrinkle prediction model of the present invention can be produced according to the flow described later [Example], and an example thereof is shown below, but the wrinkle prediction model of the present invention is not limited thereto.
- the number of participants in creating the wrinkle prediction model is, for example, 40 to 60, but is not limited to this.
- participants will be evaluated for skin characteristics at least once a year.
- the test period is not particularly limited, but is preferably 4 to 6 years.
- participants washed their face with a face wash to make their skin bare, and after acclimatizing for 30 minutes in an environment controlled at 20 to 22 ° C. and 50 ⁇ 5%, the measured values of each skin condition were measured. obtain.
- a more specific test method can be carried out with reference to the description in [Example] below.
- a generalized linear mixed-effects model can be used for statistical analysis for creating a wrinkle prediction model.
- the stepwise method based on the variable reduction method is used to select the wrinkle predictor, and the model with the minimum AIC (Akaike Information Criterion) is determined as the best model.
- a sensitivity analysis is performed using the obtained wrinkle predictors. It is preferable to use R ver.3.5.2 statistical software for the analysis, but the analysis is not limited to this as long as the statistical analysis for creating a wrinkle prediction model can be performed.
- the skin wrinkle evaluation method, the skin wrinkle evaluation device, the skin wrinkle evaluation system, etc. according to the present invention can be described with reference to FIGS. 1 to 7. However, the present invention is not limited to these figures.
- 2-1. Skin wrinkle evaluation device and evaluation system It is also possible to realize the skin wrinkle evaluation method of the present invention by a control unit including a CPU (Central Processing Unit) in a skin wrinkle evaluation device (for example, a computer or the like). (See, for example, FIGS. 4-6).
- the present invention causes a computer to execute a skin wrinkle evaluation method (wrinkle prediction model, wrinkle evaluation procedure, program, etc.) according to the present invention to perform a computer-based skin wrinkle evaluation method or skin wrinkle evaluation.
- the method of the present invention is stored as a program in a hardware resource including a recording medium (nonvolatile memory (USB memory, etc.), HDD, CD, DVD, Blu-ray (registered trademark) Disc, network server, etc.). It can also be realized by a control unit that discriminates the evaluation of wrinkles on the skin. Alternatively, by providing or using the control unit, it is also possible to provide a skin wrinkle evaluation system, an evaluation or search system for a wrinkle improving composition, or an apparatus thereof.
- the recording medium is preferably a computer-readable recording medium.
- the device or system related to wrinkle evaluation includes an input unit such as a keyboard, a communication unit such as a network, an output unit such as a display, a storage unit such as an HDD, and a measurement unit that measures skin conditions such as the above-mentioned measuring device or imaging device.
- the device or system preferably includes an input unit, an output unit, and a storage unit, and more preferably includes a communication unit and / or a measurement unit.
- the input unit can accept user operations by an operator who uses the wrinkle evaluation method.
- the input unit may include, for example, a mouse and / or a keyboard.
- the display surface of the display device may be configured as an input unit that accepts touch operations.
- the output unit can output the obtained wrinkle evaluation of the skin and information related thereto (for example, a table, a figure, an explanatory text, etc.).
- Examples of the output unit include, but are not limited to, a display device for displaying an image, a speaker for outputting sound, a printing device for printing on a printing medium such as paper, and the like.
- the storage unit can store data input by the operator and data set in advance for wrinkle evaluation (for example, a wrinkle prediction model).
- the storage unit may include, for example, a recording medium.
- the skin wrinkle evaluation device are not particularly limited as long as they are equipped with a CPU, but for example, a mobile terminal (for example, a notebook computer, a smartphone, a tablet terminal, etc.), a desktop computer, a server, or cloud computing. However, it is not limited to these.
- the skin wrinkle evaluation device is preferably a device further including a measuring unit, and for example, a mobile terminal equipped with a camera (for example, a Web camera) is preferable.
- the wrinkle evaluation data such as the program related to the skin wrinkle evaluation method of the present invention, the wrinkle prediction model, the wrinkle evaluation result obtained by the wrinkle evaluation method, and the data for executing each step of the present invention can be obtained. It may be stored in a storage unit, a server, or a cloud located inside the device related to the wrinkle evaluation or outside the device.
- the skin wrinkle evaluation device and evaluation system of the present invention can be carried out by utilizing a program and hardware.
- An embodiment of the computer 1 according to the embodiment of the present invention will be described below with reference to FIGS. 4 to 6, but the present invention is not limited thereto.
- a component of the computer 1 at least a CPU can be provided, and one or two types selected from a RAM, a storage unit, an output unit, an input unit, a communication unit, a ROM, a measurement unit, and the like can be provided.
- a RAM random access memory
- a storage unit storage unit
- an output unit output unit
- an input unit input unit
- at least one communication unit measurement unit, ROM, and the like.
- Each component is connected, for example, by a bus as a data transmission path (see FIG. 4).
- the CPU is realized by a microcomputer, for example, and controls each component of the computer 1.
- a control unit capable of performing data acquisition, data processing, determination of evaluation, and the like can be used. These data acquisitions and the like can be realized or executed by, for example, a program, and can function by reading this program by the CPU.
- the ROM can store control data such as programs and calculation parameters used by the CPU.
- the RAM can temporarily store, for example, a program executed by the CPU.
- the storage unit can store various data, and can store all or part of the data related to the execution of the present invention.
- the data is not particularly limited, and examples thereof include personal data for each subject, wrinkle evaluation data, product proposal data, calculation parameters, programs, and the like.
- the storage unit can function as a database existing inside or outside the device.
- the storage unit can be realized by using, for example, a storage device.
- the output unit is an individual for each target person, such as items that identify the target person (for example, name, reference number, etc.), age value of the target person, measured value of the skin condition of the target person, etc. for the operator or the target person.
- Data; wrinkle index value, wrinkle evaluation result, best wrinkle risk, future wrinkle prediction, wrinkle evaluation data such as charts such as these figures / tables / graphs or images of wrinkle parts; ⁇
- Information such as product proposal data such as display columns for single or multiple recommended products (product name, product image, etc.) such as "recommended items from the age” and "recommended items with a wider range” than these. Can be output.
- the output unit can output, for example, each measurement value input field (numerical value input, color scheme panel selection, etc.), each index value, wrinkle evaluation result, recommended product, etc. to the operator or the target person.
- the output unit can be realized by, for example, a display unit such as an LCD (Liquid Crystal Display) or an OLED (Organic Light-Emitting Diode).
- the input unit can acquire information such as an item for specifying the target person, an age value of the target person, and a measured value of the skin condition of the target person, which is input by the operator or the target person.
- the input unit can be realized by, for example, a microphone, a touch sensor, a keyboard, a mouse, a camera, or the like.
- the input unit can acquire data for evaluating skin wrinkles from, for example, each measurement value input, each color scheme panel image selection, each level selection, each index value selection, and the like.
- the communication unit may have a function of communicating via an information communication network by using communication technology such as Wi-Fi, Bluetooth (registered trademark), and LTE (LongTermEvolution).
- Computer example 1 may include a communication I / F (interface).
- the computer 1 may be, for example, a PC (Personal Computer) 1a, a server 1b, a smartphone terminal 1c, a tablet terminal, a mobile phone terminal, a PDA (Personal Digital Assistant), a wearable terminal (HMD: Head Mounted Display, glasses). It may be a type HMD, a band type terminal, etc. (see FIG. 5). These may be standalone or may be connected via a network.
- PC Personal Computer
- server 1b a smartphone terminal 1c
- a tablet terminal a mobile phone terminal
- PDA Personal Digital Assistant
- HMD Head Mounted Display, glasses
- the program that executes the method of the present invention may be stored in a computer device or computer system other than the computer 1.
- the computer can use the cloud service that provides the functions of this program (see FIG. 5).
- this cloud service include SaaS (Software as a Service), IaaS (Infrastructure as a Service), and PaaS (Platform as a Service).
- This program is stored using a recording medium that can be read by various types of computers and can be supplied to the computer.
- Computer-readable recording media include, for example, magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical disks), CompactDiscReadOnlyMemory (CD-ROM), CD-R. , CD-R / W, including semiconductor memory (eg, mask ROM, Programmable ROM (PROM), Erasable PROM (EPROM), flash ROM, Random Access Memory (RAM)).
- the program may also be supplied to the computer by various types of computer recording media.
- the computer 1 can select the above-mentioned configuration or change it to another configuration as appropriate.
- the operator or the subject has at least these two values, that is, the value of the subject's age and the measured value of the skin brightness, and the measured value of the redness of the skin and / or the skin oil.
- the control unit may select and input such data, and at this time, the control unit may access the storage unit and cause the storage unit to transmit data related to these data to the control unit.
- the selected image data For example, in the case of skin brightness, by selecting an image that most closely matches or has the same color as the subject's skin brightness from the brightness color scheme panel images, it is linked to the selected image data.
- the measured value of the existing brightness is used as the measured value data of the brightness of the subject.
- skin redness it is associated with the selected image by selecting an image that most closely resembles or has the same color as the subject's skin redness from the redness color scheme panel images.
- the measured value of redness is used as the data of the measured value of redness of the subject.
- the numerical value of the selected level is used as the data of the measured value of the amount of sebum of the subject.
- the data of each measured value may be transmitted from the measurement unit to the control unit and input. Further, the measured value data obtained by measuring the target person by the measuring device 2 existing outside the computer 1 may be transmitted to the computer 1 or the control unit thereof via the network and input (see FIG. 5). ).
- the computer 1 estimates the index value of the skin wrinkle of the subject from these data by using the skin wrinkle evaluation method of the present invention, obtains the wrinkle evaluation result of the subject, and manipulates this evaluation result. It can be provided as wrinkle information to a person or a target person. Further, the computer 1 can output wrinkle evaluation data, personal data, etc. obtained based on the wrinkle evaluation result of the skin to the output unit. Further, the computer 1 may output a recommended product based on the skin wrinkle evaluation result to the output unit.
- the computer 1 can output, for example, the wrinkle risk of the target person as the wrinkle evaluation data of the target person, and can provide this information to the operator or the target person. More specifically, for example, the current wrinkle risk and the best wrinkle risk pattern in the subject (eg, a graph of a linear function), the degree of reduction in the target's risk (eg, the subject's past, present, and future faces). Image) etc. can be output. Further, the computer 1 can output one or more recommended products (for example, cosmetics, external skin preparations, etc.) for the subject as recommended items. As items of "recommended items”, “currently recommended items” for presenting products suitable for the current situation, "...
- target people "Recommended items with a wider range” can be mentioned to expand the range of product selection, but it is not limited to this, and the items of "Recommended items” output by the operator or the target person can be switched as appropriate. You can choose.
- the data of these results can be stored in the storage unit as personal data of the target person by associating or attaching to the data of the item that identifies the target person.
- the control unit can appropriately access the storage unit and use the data of these results in the storage unit for various purposes.
- the proposal or provision of the recommended product will be described later in "3. Method for evaluating or searching for a composition for improving wrinkles according to the present invention.
- Example of skin wrinkle evaluation according to the present invention The procedure for skin wrinkle evaluation according to the present invention will be described more specifically, but the skin wrinkle evaluation of the present invention is not limited thereto.
- the description of the procedure for evaluating skin wrinkles can also be used as a description of the operation of the skin wrinkle evaluation method, the skin wrinkle evaluation device, and the evaluation system of the present invention.
- the operator who evaluates wrinkles on the skin has various items such as the age value of the subject, the measured value of the brightness of the skin, and the items for identifying the subject (for example, name, identification number, etc.) at the input unit. You may enter the data of. As a result, these data are transmitted from the input unit to the control unit.
- the data of the item (for example, name, reference number, etc.) that identifies the target person and the measured value of the skin condition of the target person and / or the data of the age are linked in advance in the storage unit by the input of the operator. It may be configured to be attached and stored.
- the control unit may be configured to control so that the data associated with the input specific item of the target person is transmitted from the storage unit to the control unit.
- the measurement unit may be configured to transmit the measured value data to the control unit.
- the control unit may be configured to store these data together with the specific item of the target person in the storage unit.
- Embodiments 1 and 2 relating to the evaluation of wrinkles on the skin of the present invention the skin of the subject is based on the four values of the age of the subject, the measured value of the brightness of the skin, the measured value of the redness of the skin, and the measured value of the amount of sebum of the skin.
- the index value of wrinkles can be estimated (see, for example, FIG. 1).
- step 101 four are transmitted to the control unit: a value of the age of the subject, a measured value of skin brightness, a measured value of skin redness, and a measured value of skin sebum amount.
- step 102 the control unit determines the skin of the subject based on the four values of the age of the subject, the measured value of the brightness of the skin, the measured value of the redness of the skin, and the measured value of the amount of sebum of the skin. Estimate the wrinkle index value.
- the control unit outputs an index value of wrinkles of the target person.
- the index value of wrinkles on the skin of the subject can be estimated (see, for example, FIG. 2).
- the index value of the wrinkles on the skin of the subject can be estimated in the same manner as in the present embodiment 1a except that the wrinkle prediction formula 1 is replaced with the wrinkle prediction formula 2 (for example, FIG. 2).
- the wrinkle prediction formula 1 shown in the following formula 1 has five five elements: “age”, “skin brightness”, “skin redness”, “skin sebum amount”, and “interaction term between sebum amount and skin redness”. It is a wrinkle prediction formula composed of wrinkle predictors.
- the control unit uses the wrinkle prediction model (wrinkle prediction formula 1 below) to apply the subject's "age value”, “skin brightness measurement value”, “skin redness measurement value”, and “skin redness measurement value”.
- the index value (wrinkle grade) of wrinkles can be estimated (see, for example, FIG. 2).
- a wrinkle reference value can also be obtained based on a preset value for predicting the future wrinkle state of the subject and the wrinkle prediction formula 1 (see, for example, FIG. 2).
- the preset value is one, two, or three or more selected from the group consisting of age value, skin brightness value, skin redness value, and skin sebum amount value.
- the control unit can obtain the wrinkle reference value by substituting the selected value into the wrinkle prediction formula 1.
- the operator may appropriately substitute a value for predicting the future wrinkle state of the subject.
- step 103a by comparing the wrinkle index value with the wrinkle reference value, it is possible to propose skin care for the subject.
- the time when the wrinkle reference value is reached is output to the subject as the start time of using the wrinkle improving composition.
- the wrinkle index value is equal to or higher than the wrinkle reference value, an output is output to the subject to start using the wrinkle improving composition.
- the operator can also propose skin care based on the wrinkle index value and the wrinkle reference value output from the control unit.
- Wrinkle grade i 0.1469 ⁇ Age + 0.7540 ⁇ Ln (sebum) + 0.3270 ⁇ Skin color a * + 0.1654 ⁇ Mean [Skin color L *] - 0.1044 ⁇ [Ln (sebum) ⁇ Skin color a *] - 15.90 + b 0, i (Equation 1) b 0, i ⁇ N (0, 0.4847) Final equation for prediction of wrinkle grade in Japanese women aged 22-60 years
- ⁇ Wrinkle prediction formula 2 (Formula 2)>
- the wrinkle prediction formula 2 shown in the following formula 2 has five formulas: "age”, “skin brightness”, “skin redness”, “skin sebum amount”, and “interaction term between sebum amount and skin redness”. It is a wrinkle prediction formula composed of wrinkle predictors. The points that overlap with those already described in the first and first embodiments of the present embodiment will be omitted as appropriate.
- the wrinkles The index value (wrinkle grade) can be estimated (see, for example, FIG. 2).
- a wrinkle reference value can also be obtained by substituting two values (see, for example, FIG. 2).
- the present embodiment 2a similarly to the present embodiment 1a adopting the wrinkle prediction formula 1 described above, the future wrinkle state of the subject can be predicted, and skin care of the subject can also be proposed.
- Wrinkle grade i 0.1200 ⁇ 0.2053 ⁇ Age + 0.2200 ⁇ 1.280 ⁇ Ln (sebum) +0.050 ⁇ 0.5710 ⁇ Skin color a * + 0.050 ⁇ 0.4000 ⁇ Mean [Skin color L *] - 0.030 ⁇ 0.1800 ⁇ [Ln (sebum) ⁇ Skin color a *] - 25.00-7.600 (Equation 2)
- Embodiment 3 relating to the evaluation of wrinkles on the skin of the present invention
- the figure of the step flow of the embodiment itself is omitted, the flow can be understood by referring to FIGS. 1 and 2.
- step 301 at least two values, an age value of the subject and a measured value of skin brightness, are transmitted to the control unit.
- the control unit estimates the index value of wrinkles on the skin of the subject based on the value of the age of the subject and the measured value of the brightness of the skin.
- the control unit outputs an index value of wrinkles of the target person.
- an index value of wrinkles on the skin of the subject is based on these two values of the age value of the subject and the measured value of the brightness of the skin and a wrinkle prediction model (wrinkle prediction formula 3 below).
- the wrinkle prediction formula 3 shown in the following formula 3 is a wrinkle prediction formula composed of two wrinkle prediction factors, "age” and "skin brightness". It should be noted that the parts that overlap with those already described in the above-described first to second embodiments will be omitted as appropriate.
- the control unit substitutes these two values of the subject's "age value” and "skin brightness measurement value” into the wrinkle prediction model (wrinkle prediction formula 3 below).
- the index value (wrinkle grade) of wrinkles can be estimated (see, for example, FIG. 2).
- the wrinkle reference value can be obtained by substituting the two values of the preset values (“age value” and “skin brightness value”) into the wrinkle prediction formula 3 (“wrinkle reference value”). For example, see FIG. 2).
- the future wrinkle state of the subject can be predicted, and skin care of the subject can be proposed.
- Embodiment 4 relating to the evaluation of wrinkles on the skin of the present invention
- the figure of the step flow of the embodiment itself is omitted, the flow can be understood by referring to FIGS. 1 and 2.
- step 401 at least three values of the age value of the subject, the measured value of the skin brightness, and the measured value of the amount of sebum of the skin are transmitted to the control unit.
- the control unit estimates the index value of the skin wrinkles of the subject based on the three values of the age value of the subject, the measured value of the skin brightness, and the measured value of the sebum amount of the skin. ..
- the control unit outputs an index value of wrinkles of the target person.
- the target is based on these three values of the age value of the subject, the measured value of the skin brightness, the measured value of the sebum amount of the skin, and the wrinkle prediction model (wrinkle prediction formula 4 below). It is possible to estimate the index value of wrinkles on a person's skin (see, for example, FIG. 2).
- the wrinkle prediction formula 4 shown in the following formula 4 is a wrinkle prediction formula composed of three wrinkle prediction factors of "age”, "skin brightness", and "skin sebum amount". It should be noted that the parts that overlap with those already described in the above-described first to third embodiments will be omitted as appropriate.
- step 401a the control unit uses the wrinkle prediction model (wrinkle prediction formula 3 below) to indicate the subject's "age value”, “skin brightness value”, and “skin sebum amount value”.
- the wrinkle index value (wrinkle grade) can be estimated.
- the wrinkle prediction formula 4 is substituted.
- a wrinkle reference value can also be obtained (see, for example, FIG. 2). Similar to the above-described first to third embodiments, the future wrinkle state of the subject can be predicted, and skin care of the subject can be proposed.
- Embodiment 5 relating to the evaluation of wrinkles on the skin of the present invention
- wrinkles on the skin of the subject are based on these four values of the age of the subject, the measured value of the brightness of the skin, the measured value of the amount of sebum of the skin, and the measured value of the redness of the skin.
- the index value of can be estimated (see, for example, FIG. 1).
- step 501 four transmissions are transmitted to the control unit: the age value of the subject, the measured value of the skin brightness, the measured value of the sebum amount of the skin, and the measured value of the redness of the skin.
- step 502 the control unit determines the skin of the subject based on the four values of the age of the subject, the measured value of the brightness of the skin, the measured value of the amount of sebum of the skin, and the measured value of the redness of the skin. Estimate the wrinkle index value.
- the control unit outputs an index value of wrinkles of the target person.
- these four values of the subject's age value, a measured value of skin brightness, a measured value of sebum amount of skin, and a measured value of redness of skin and a wrinkle prediction model (the following wrinkle prediction model).
- the index value of the wrinkles on the skin of the subject can be estimated (see, for example, FIG. 2).
- the wrinkle prediction formula 5 shown in the following formula 5 is a wrinkle prediction formula composed of four wrinkle prediction factors of "age”, “skin oil content”, “skin redness", and "skin brightness”. It should be noted that the parts that overlap with those already described in the above-described first to fourth embodiments will be omitted as appropriate.
- the control unit uses the wrinkle prediction model (wrinkle prediction formula 5 below) to indicate the subject's "age value”, “skin sebum amount measurement value”, “skin redness measurement value”, and “skin redness measurement value”.
- the index value By substituting these four values of "measured value of skin brightness”, the index value (wrinkle grade) of wrinkles can be estimated (see, for example, FIG. 2).
- 4 of the preset values (“age value”, “skin sebum amount value”, “skin redness value”, “skin brightness value”) in the wrinkle prediction formula 5.
- a wrinkle reference value can also be obtained by substituting two values (see, for example, FIG. 2). Similar to the above-described first to fourth embodiments, the future wrinkle state of the subject can be predicted, and skin care of the subject can be proposed.
- Embodiment 6 relating to the evaluation of wrinkles on the skin of the present invention
- wrinkles on the skin of the subject are based on these four values of the age of the subject, the measured value of the brightness of the skin, the measured value of the amount of sebum of the skin, and the measured value of the redness of the skin.
- the index value of can be estimated (see, for example, FIGS. 1 to 3).
- the index value of the wrinkles of the skin of the subject can be estimated.
- the sixth embodiment it is determined whether the skin is light or dark based on the measured value of the skin brightness of the subject, and the state of the brightness of the skin of the subject (bright and dark).
- the state of the brightness of the skin of the subject (bright and dark).
- step 601 the control unit determines whether the subject's skin is light or dark based on the measured value of the skin brightness. Specifically, the control unit compares the measured value of the skin brightness of the subject with the reference value of the skin brightness.
- the reference value of the skin brightness can be appropriately set, for example, even if it is the average value of the skin brightness of a general human (preferably a female, particularly a yellow race (Mongoloid race)). good. If the subject's skin brightness is equal to or higher than the skin brightness reference value (Yes), it is determined that the subject's skin is bright, and otherwise (that is, if it is less than the predetermined value) (No). ), The subject's skin can be determined to be dark (see, for example, FIG. 3).
- step 602 when the control unit determines that the skin of the subject is bright (Yes), the wrinkle prediction formula 6 is selected.
- the control unit uses the wrinkle prediction formula 6 to indicate the subject's "age value”, “skin redness measurement value”, and “skin sebum amount measurement value”. By substituting the three values, the wrinkle index value (wrinkle grade) can be estimated.
- the control unit can obtain a wrinkle reference value for bright skin based on the value for predicting the future wrinkle state and the wrinkle prediction formula 6 separately from step 602. Specifically, the value of each skin condition for predicting the future wrinkle condition of the subject can be selected, and the selected value can be substituted into the wrinkle prediction formula 6. The operator may input each value.
- the control unit may obtain a standard skin wrinkle reference value based on the value for predicting the future wrinkle state and the wrinkle prediction formula 1 or wrinkle prediction formula 2. can. Specifically, using the wrinkle prediction formula 1 representing a standard human being, the value for predicting the future wrinkle state and the wrinkle prediction formula 1 in the same manner as in the above-described embodiments 1 and 2. Alternatively, a standard skin wrinkle reference value can be obtained based on 2. The operator may input each value.
- step 603 may be skipped. In this case, the control unit compares the wrinkle index value with the standard skin wrinkle reference value. If there is step 603, step 604 may be skipped. In this case, the control unit compares the wrinkle index value with the wrinkle reference value of bright skin.
- step 605 the control unit compares the bright wrinkle reference value and / or the standard wrinkle reference value with the wrinkle index value. This makes it possible to propose skin care for subjects with bright skin. Specifically, in step 606, when the wrinkle index value is less than the wrinkle reference value, the time when the wrinkle reference value is reached for the subject is set as the start time of using the wrinkle improving composition. Output. In step 607, when the wrinkle index value is equal to or higher than the wrinkle reference value, an output is output to the subject to start using the wrinkle improving composition.
- the operator can also propose skin care based on the wrinkle index value and the wrinkle reference value output from the control unit.
- step 608 when the control unit determines that the subject does not have light skin (No) (that is, the subject's skin is dark), the wrinkle prediction formula 7 is selected.
- the control unit uses the wrinkle prediction formula 7 to indicate the subject's "age value”, “skin redness measurement value”, and “skin sebum amount measurement value”. By substituting the three values, the wrinkle index value (wrinkle grade) can be estimated.
- the control unit can obtain a wrinkle reference value for dark skin based on the value for predicting the future wrinkle state of the subject and the wrinkle prediction formula 7 separately from step 608. Specifically, the value of each skin condition for predicting the future wrinkle condition of the subject can be selected, and the selected value can be substituted into the wrinkle prediction formula 7. The operator may input each value.
- step 610 the control unit can perform the same operation as step 603 described above separately from step 609 to obtain a standard skin wrinkle reference value.
- step 610 may be skipped. In this case, the control unit compares the wrinkle index value with the standard skin wrinkle reference value. If there is step 610, step 609 may be skipped. In this case, the control unit compares the wrinkle index value with the wrinkle reference value of bright skin.
- step 611 the control unit compares the dark wrinkle reference value and / or the standard wrinkle reference value with the wrinkle index value. This makes it possible to propose skin care for subjects with dark skin. Specifically, in step 612, when the wrinkle index value is less than the wrinkle reference value, the time when the wrinkle reference value is reached for the subject is set as the start time of using the wrinkle improving composition. Output. In step 613, when the wrinkle index value is equal to or higher than the wrinkle reference value, an output is output to the subject to start using the wrinkle improving composition.
- the wrinkle prediction formula 6 that can be applied to the subject with light skin is the "age”, “skin redness”, “skin sebum amount”, and “interaction term between sebum amount and skin redness”. It is desirable to consist of four wrinkle predictors.
- the wrinkle prediction formula 7 is composed of three wrinkle predictors of "age”, “skin redness”, and “skin sebum amount”.
- the subject has a value of "age” and a measured value of "skin lightening", “skin redness”, and “skin sebum amount” at that age. ..
- Each wrinkle prediction formula is ⁇ 1-4-2. It can be obtained by the method for producing a wrinkle prediction model>, and can also be obtained by using the data obtained in Test Example 1 described later [Example].
- the present invention uses the wrinkle evaluation method described in "1.” and "2.” above to estimate the wrinkle index value of the skin of the subject to whom the test substance is administered, and the estimated subject.
- a method for evaluating or searching for a wrinkle-improving composition which comprises a step of determining a test substance for wrinkle-improving when the skin wrinkle index value of the subject is lower than the skin wrinkle index value of a subject before administration. Can be provided.
- the wrinkle index value of the subject can be estimated easily and accurately, so that the wrinkle improving composition suitable for each subject can be evaluated or searched more easily and accurately.
- the test substance is not particularly limited, but may be a commercially available product commercially available as a composition for preventing, improving or treating wrinkles. Even if it is a commercially available product, the degree of efficacy varies between individuals. Therefore, according to the present invention, a commercially available product suitable for an individual can be selected.
- the test substance may be a new or known substance that can be expected to prevent, improve or treat wrinkles, whereby a more suitable substance for preventing, improving or treating wrinkles can be searched for and selected. can.
- the administration may be either oral administration or parenteral administration (for example, injection, application, etc.), but application is preferable.
- the administration time can be appropriately selected, and may be administered once a day, divided into multiple times a day, or once every few days or weeks. May be good.
- the present invention uses the wrinkle evaluation method described in "1.” and “2.” above to estimate the wrinkle index value of the skin of the subject, and the estimated wrinkle of the skin of the subject. It is possible to provide a method for providing a wrinkle improving composition, which comprises a step of discriminating a single or a plurality of wrinkle improving compositions based on an index value. Thereby, the wrinkle improving composition corresponding to the wrinkle index value can be discriminated, and the wrinkle improving composition suitable for the subject can be proposed or provided. Further, it is preferable to further include a step of outputting the determined wrinkle improving composition at the output unit. The operator may propose or provide the output wrinkle improving composition to the subject, or the control unit may perform it.
- the composition for improving wrinkles may be a composition for preventing wrinkles or treating wrinkles, and may be a commercial product without particular limitation.
- the data of the wrinkle index value of the skin corresponding to each wrinkle improving composition may be associated with or attached to the specific data.
- the corresponding skin wrinkle index value can be obtained based on the known efficacy of the wrinkle improving composition or based on the result of the evaluation or searching method for the wrinkle improving composition of the present invention.
- For wrinkle improvement corresponding to the wrinkle state (for example, wrinkle index value, wrinkle grade, etc.) of the subject's skin by associating or attaching the data of the wrinkle index value of the skin corresponding to the data of the composition for wrinkle improvement.
- the composition can be searched more easily and accurately, and the searched information on the wrinkle-improving composition can be provided more easily and accurately to the subject. Thereby, it is possible to propose or provide information on a wrinkle improving composition more suitable for the wrinkle condition of the skin of the subject.
- each wrinkle improving composition may be grouped by a predetermined range based on the wrinkle index value data of the skin that can be dealt with by each wrinkle improving composition.
- the control unit may group based on the data of the corresponding wrinkle index values attached to the data of each wrinkle improving composition. Grouping by predetermined range can be performed according to the division of the wrinkle grade standard table, for example, wrinkle grades 3 to 4: wrinkle improving compositions A, B, C, etc., wrinkle grades 4 to 5: wrinkle composition. Wrinkle grades 5 to 6: wrinkle improving compositions G, H, i, J and the like, wrinkle grades 6 to 7: wrinkle improving compositions O and P, etc., and data of each composition.
- the interval for each predetermined range is not particularly limited, and may be an interval of 1 or 0.5, for example, in 8 steps of 0, 1, 2, 3, 4, 5, 6, and 7. There may be.
- grouping it is possible to propose or provide information on a single group or a plurality of groups including a composition for improving wrinkles corresponding to the wrinkle state of the skin of the subject to the operator or the subject more easily and accurately. ..
- Various data related to the wrinkle improving composition such as wrinkle improving composition data, compatible wrinkle index value data, and group data may be stored in the storage unit.
- the wrinkle improving composition proposed or provided to the operator or the target person may be a wrinkle improving composition corresponding to the current or future wrinkle grade of the target person.
- the control unit may use a single or multiple wrinkle-improving compositions or groups equal to or higher than this (more preferably equivalent or one step higher) based on the wrinkle index value of the subject's skin. And can output, propose or provide to the operator or subject the information of the identified single or multiple wrinkle-relieving compositions or groups. The control unit can propose or provide the information of the identified wrinkle improving composition or group as the "currently recommended item" of the subject.
- control unit obtains the future skin wrinkle index value of the subject based on the skin wrinkle index value and the wrinkle prediction model of the subject, and in the same manner as before, the future skin wrinkle index value of the subject. Based on, the information of the wrinkle improving composition or group equal to or higher than this future wrinkle index value (more preferably equal to or one step higher) is used as the future wrinkle improving composition. It can be output, proposed or provided to the operator or the target person.
- the control unit can use the identified wrinkle-improving composition or group as a "future recommended item" such as a "... switching item from the age of" of the subject.
- control unit further raises the stage from one step above to one step below for "equal to or higher than the wrinkle index value of the skin of the subject (more preferably equivalent or one step higher than that)".
- the range of information on the wrinkle-reducing composition proposed or provided can be expanded, and the number of products can be increased.
- a “recommended item” it can be proposed or provided to the operator or the target person.
- Example 1 a method for providing a composition for preventing, improving or treating wrinkles using the wrinkle prediction model of the present invention is shown as Example 1 and Example 2.
- the wrinkle prediction model the wrinkle prediction model or the wrinkle prediction formula of the above “1.” and “2.” can be appropriately used.
- step 701 the control unit inputs four values of the subject's skin, a measured value of brightness, a measured value of redness, and a measured value of sebum amount, into the wrinkle prediction model.
- the wrinkle prediction formula a for one individual subject can be set.
- step 702 the control unit inputs a value of the age of the target person into the wrinkle prediction formula a, so that the index value of the current wrinkle of the target person is output. This allows the operator or the target person to understand the current wrinkle risk (wrinkle grade) of the target person.
- step 703 the control unit can output the wrinkle reference value and the age at this time by inputting the wrinkle grades 3 to 5 as the best wrinkle risk value in the wrinkle prediction formula a.
- the output is not particularly limited to screen display, audio display, and the like.
- the operator of the wrinkle prediction model is not particularly limited to a product salesperson, a counselor, an operator, a target person, and the like.
- the operator will be responsible for the data of the measured values of each skin condition of the subject (measured value of brightness, measured value of redness, measured value of sebum amount). It may be obtained by inputting a measured value in a numerical value input field.
- the input screen has an input field for selecting the image of the color scheme panel or the level, the operator or the target person has the same or similar to the skin condition of the target person from the images or levels of the multiple color scheme panels. By selecting the color scheme panel or level to be used, each measured value data associated with or attached to each of these data is selected by the control unit, whereby the control unit may obtain the measured value data.
- the operator may select a color scheme panel or the like that is the same as or similar to the skin condition of the subject by visual comparison with the skin condition or the captured image data, or the control unit captures the image.
- a color scheme panel that is the same as or most similar to the color tone of the image data of the subject's skin may be selected.
- step 704 when the index value of the current wrinkle of the subject is equal to or higher than the wrinkle reference value (Yes), the control unit compares it with the efficacy of the wrinkle improving composition currently used by the subject. However, one or more of the recommended wrinkle improving compositions having stronger efficacy are output.
- step 705 when the current wrinkle index value of the subject is not greater than or equal to the wrinkle reference value (No) (that is, less than the wrinkle reference value), the control unit is best based on the wrinkle prediction model a. Outputs the expected age when reaching the wrinkle grade (3 to 5) set as the wrinkle risk value of. Output one or more wrinkle-reducing compositions recommended for use after this expected age.
- step 801 the control unit inputs three values, a measured value of the skin brightness of the subject, a measured value of the redness of the skin, and a measured value of the amount of sebum of the skin, into the wrinkle prediction model. This makes it possible to set the wrinkle prediction formula b for one individual subject.
- step 802 the control unit outputs one or more wrinkle improving compositions capable of dealing with the current wrinkle grade, in addition to the wrinkle improving agent currently used, while outputting the current wrinkle index value. Output.
- Example 3 From the image (image, video, etc.) on which the operator selects the color scheme panel or level of each skin condition (measured value of brightness, measured value of redness, measured value of sebum amount) of the subject on the input screen. Select a color scheme panel or level that is the same as or similar to the subject (see Figure 6). Further, the control unit may obtain measured value data of each skin condition of the subject based on personal data such as image data of the subject. The age value of the target person may be directly input by the operator or may be read by the control unit from personal data. Based on the selected color scheme panel or level (for example, the measured value data associated with the data of the color scheme panel), the control unit can obtain the data of each measured value corresponding to these.
- step 901 the control unit can input four values of the subject's skin, a measured value of brightness, a measured value of redness, and a measured value of sebum amount, into the wrinkle prediction model.
- the wrinkle prediction formula a for one individual subject can be set.
- step 902 the control unit inputs the age value of the target person into the wrinkle prediction formula a, so that the index value of the current wrinkle of the target person is output.
- the control unit can output or provide the current wrinkle risk (wrinkle grade) of the target person to the operator or the target person.
- the control unit can output the wrinkle reference value and the age at this time in the same manner as in step 703 of the above ⁇ Example 1>.
- the wrinkle risk of the subject can be output as the wrinkle evaluation data of the subject. For example, the output of the current wrinkle risk and the best wrinkle risk pattern in the subject, and the present and future facial images of the subject showing the degree of reduction of the risk aimed at by the subject.
- the control unit attaches or attaches a wrinkle index value equal to or higher than the wrinkle index value equal to or higher than the current wrinkle index value of the subject to a single or a plurality of wrinkle improvement compositions.
- the determined and identified wrinkle improving composition or group can be output to the output unit to the operator or the target person as a recommended item to be proposed or provided.
- the control unit can allow the operator or the target person to select one or more wrinkle-improving compositions from the recommended items output to the input unit, whereby the control unit can select the selected wrinkle-improving composition.
- the composition can be provided to the target person as a product by selling or shipping.
- Example 3 of the present invention can also provide the following configurations.
- the present invention estimates a subject's skin wrinkle index value based on the subject's age value, skin brightness measurement value, skin redness measurement value, and sebum amount measurement value.
- the process of estimating the wrinkle index value of the subject's skin and Provided is a method for providing information on a wrinkle improving composition suitable for a subject, including a step of determining a wrinkle improving composition suitable for the subject based on the estimated wrinkle index value of the skin of the subject. can do.
- the data of the wrinkle improving composition is associated with or attached to the data of the wrinkle index value of the corresponding skin, and the data of the wrinkle index value of the corresponding skin is selected.
- the control unit can determine the wrinkle improving composition or the group suitable for the subject.
- the output unit further outputs, proposes, or provides information on the identified single or a plurality of wrinkle improving compositions or the group thereof.
- a color scheme panel that is the same as or similar to the skin brightness of the subject is selected, so that the measured value data of the skin brightness associated with the data of the color scheme panel is selected.
- the selected measurement value data is linked to the data of the color arrangement panel. It is more preferable that the attached skin redness measurement value data is selected, and the selected measurement value data is used as the skin redness measurement value.
- the wrinkle prediction model of the subject can be derived by applying the measured values of the age and skin condition of the subject to the wrinkle prediction model. Further, the control unit can estimate the wrinkle index value of the skin of the subject based on the actual age of the subject. On the other hand, by setting the future age of the subject, the control unit estimates this future wrinkle index value.
- the future age may be the age desired by the subject, or may be the actual age of the subject + ⁇ -year or the like and a future age preset in the memory unit or the like. This makes it possible to predict the wrinkle condition of the subject in the future.
- control unit can determine when to start using the composition for improving wrinkles by comparing the wrinkle index value with the set wrinkle reference value.
- control unit preferably compares the wrinkle index value with the wrinkle grade "3 to 5" of the set wrinkle reference value, whereby the control unit uses the composition for improving wrinkles.
- the start time can be determined.
- the wrinkle reference value to be set may be stored in advance in a storage unit or the like and set.
- the control unit can estimate the wrinkle index value from the actual age of the subject using the wrinkle prediction model.
- the control unit can estimate the age of the subject when the set wrinkle reference value, for example, "3 to 5", is estimated by using the same wrinkle prediction model, and is estimated from this reference value. Determine the age as the time to start using the wrinkle improving composition.
- the control unit determines the age at which the wrinkle index value is reached as the start time of use of the wrinkle improving composition. be able to.
- the measured value is a measured value by a measuring device or a measuring device for a skin condition such as an imaging device (for example, a digital camera, a video camera, a moving image, a still image).
- an imaging device for example, a digital camera, a video camera, a moving image, a still image.
- the wrinkle evaluation system of the present invention is Determining that the wrinkle index value estimated by the prediction model has reached the preset wrinkle reference value, It is preferable to include determining the age at which this is reached as the time to start using the composition for improving wrinkles. More preferably, the preset wrinkle reference value is a standard wrinkle reference value of the same age of the subject + 5 years old.
- a function to input the age value of the subject and the measured value of the skin condition The function of estimating the index value of wrinkles on the skin of the subject by using the value of the age and the measured value of the skin condition in the wrinkle prediction model, and By comparing the estimated wrinkle index value with the preset wrinkle reference value, When the estimated wrinkle evaluation value reaches a preset wrinkle reference value, the function of determining the age at which the estimated wrinkle evaluation value is reached as the start time of use of the wrinkle improving composition, and A skin wrinkle evaluation program that makes a computer realize.
- the wrinkle prediction model used in the present invention may be a wrinkle prediction model generated by a method for generating a trained model, and the above-mentioned explanation of "1-4-2. Method for producing a wrinkle prediction model” is adopted. It is preferable to do so.
- the specialized AI is a large framework in which the result is obtained by applying arbitrary input data to a trained model constructed by incorporating training data (teacher data) into an algorithm that functions as a learning program. It is a mechanism that can be obtained.
- the subject in the learning data can include the participants in the above-mentioned "1-4-2.
- Method for producing a wrinkle prediction model The control unit acquires at least two values, a value of the age of the subject and a measured value of the brightness of the skin, as learning data (teacher data) for a plurality of people as data. It is preferable that at least two values, an age value of the same subject and a measured value of skin brightness, are set as one data set.
- the teacher data for example, the above "1-4-1.
- Predictor factor of wrinkle prediction model can be adopted, and age, skin brightness, skin redness, skin sebum amount, sebum amount and skin. Two or three or more selected from the redness interaction term and the like are preferable.
- control unit further acquires the two values and one or two values of the measured value of redness of the skin and / or the measured value of the amount of sebum of the skin as data.
- the control unit can read out the teacher data selected from these two or more from the storage unit.
- the storage unit stores the age value and the measured value acquired from a plurality of subjects as data in advance.
- control unit can construct a wrinkle prediction model (learned model) by incorporating the learning data read from the storage unit into a preset algorithm.
- the control unit has a configuration having a wrinkle prediction model.
- a trained model wrinkle prediction model
- the above-mentioned algorithm can function as, for example, a machine learning algorithm.
- the type of machine learning algorithm is not particularly limited, and is an algorithm using a neural network such as RNN (Recurrent Neural Network), CNN (Convolutional Neural Network) or MLP (Multilayer Perceptron). It may be any algorithm.
- the control unit relates to the wrinkle evaluation for outputting from the display by inputting the input data from the operator ((4) input data (input layer) into the constructed wrinkle prediction model (trained model)).
- Data ((5) result (output layer)) can be generated.
- the trained model may be, for example, a trained model generated by deep learning.
- the trained model may be a multi-layer neural network, for example, a deep neural network (DNN), and more specifically, a convolutional neural network (CNN). You may.
- a multi-layer neural network may be used as the trained model, and the multi-layer neural network includes an input layer for inputting an age value and a measured value by the subject, an output layer for outputting the wrinkle evaluation result of the subject, and the like. It may have at least one intermediate layer provided between the input layer and the output layer.
- the control unit can realize the following method of generating a trained model, a method of evaluating skin wrinkles for a subject using the trained model, or a method of providing an evaluation of skin wrinkles.
- A Acquiring a plurality of teacher data including at least these two values of the age value of the subject and the measured value of the skin brightness, and (b) each subject using the teacher data. Enter at least these two values, the age value of the person and the measured value of the skin brightness, and (c) the wrinkle prediction for estimating the index value of the skin wrinkles of the subject from these input data.
- a trained model generation method including generating a trained model that outputs a model.
- a method of providing an assessment of wrinkles on the skin is selected from the operator, the provider of the evaluation result to a third party, the target person, the end user, the product purchaser, the person in the business (counselor, operator, product salesperson, etc.). It is preferable to use one kind or two or more kinds.
- the method according to [1] may be a method for assisting the evaluation of wrinkles on the skin, which comprises presenting, displaying or providing the estimation result of the index value of the wrinkles.
- the method described in [1] above may be a method of causing a computer to execute the method.
- [2] Estimate the index value of skin wrinkles of the subject based on the above two values and one or two values of the measured value of redness of the skin and / or the measured value of the amount of sebum of the skin. , The evaluation method or the evaluation providing method according to the above [1].
- the index value of wrinkles on the skin of the subject is estimated by using two values, the age value of the subject and the measured value of the skin brightness, in the wrinkle prediction model. The evaluation method described or the method of providing the evaluation.
- the wrinkle prediction model shall be derived using a linear mixed effect model in which the wrinkle index value of one individual is used as the objective variable and the measured values of the age and skin brightness of the individual are included in at least the explanatory variables.
- a method for evaluating or searching for a composition for improving wrinkles which comprises a step of determining a test substance for wrinkle improvement when the wrinkle index value of the skin is lower than the wrinkle index value of the skin of a subject before administration. , Or a method of providing evaluation or search results.
- the wrinkle index value of the skin of the subject which estimates the index value of the wrinkle of the skin of the subject based on at least these two values of the age value of the subject and the measured value of the brightness of the skin.
- a method for providing information on a wrinkle-improving composition suitable for a subject which comprises a step of estimating the wrinkle and a step of determining a wrinkle-improving composition based on the estimated wrinkle index value of the skin of the subject.
- the estimation step may be estimated using the wrinkle evaluation method according to any one of the above [1] to [6].
- a skin wrinkle evaluation device that causes a computer to execute the method for evaluating skin wrinkles or the method for providing skin wrinkle evaluation according to any one of the above [1] to [6].
- the wrinkle evaluation device is configured to perform any one of the above methods [1] to [6], (a) a skin wrinkle evaluation program, and / or (b) a recording of the program.
- the wrinkle evaluation device accesses the program or the medium existing outside the device to execute the method according to any one of the above [1] to [6].
- the recording medium may be a computer recording medium having instructions that can be executed by a computer.
- a wrinkle prediction model that estimates the index value of wrinkles on the skin of a subject by inputting at least these two values, an age value of each subject and a measured value of skin brightness, using the teacher data.
- a trained model generation method that generates a trained model that outputs. It is preferable that the data further includes one or two values of the measured value of redness of the skin and / or the measured value of the amount of sebum of the skin. -[12] Obtain at least these two values, the age value of the subject and the measured value of the skin brightness, as data.
- teacher data input at least these two values, the age value of each subject and the measured value of skin brightness, and output a wrinkle prediction model that estimates the index value of wrinkles on the skin of the subject.
- a skin wrinkle evaluation device or a skin wrinkle evaluation system including the program and the recording medium.
- test examples and the like described below show an example of a representative test example and the like of the present invention, and the scope of the present invention is not narrowly interpreted by this.
- Example 1 Wrinkle prediction model> Test Example 1-1.
- Participants in the study A total of 48 Japanese females who participated in the wrinkle and skin condition evaluation study conducted from 2011 to 2013 at Kose Research Institute Co., Ltd. were selected as participants in this study. All subjects signed a written consent prepared by the Kose Laboratory under the Helsinki Convention. This study was a repetitive study over time, and wrinkles and skin characteristics of participants were evaluated annually from 2011 to 2017. The age of participants (female) ranged from 22 to 60 years throughout the survey period. The age composition at the end of 2017 was 20s: 6 people, 30s: 15 people, 40s: 13 people, 50s: 13 people, 60s 1 person. Participants participated in the test up to 6 times, at least 3 times, and most of the subjects participated in the survey 5 times.
- Test Example 1-2 Evaluation of wrinkles and evaluation of each device of skin condition Participants washed their face with the same facial cleanser, and after acclimatizing for 30 minutes in an environment controlled at 20 to 22 ° C and 50 ⁇ 5%, the following All evaluations (wrinkles, cleansing water content, transepidermal water evaporation amount, sebum amount, skin color, etc.) were performed. Each evaluation other than the wrinkle evaluation was measured with a general measuring device and measuring site as described below.
- the wrinkle condition of the participants is the guideline published by the Japan Cosmetic Industry Association (Journal of Japanese Cosmetic Science Society), "Cosmetic Function Evaluation Method Review Committee Report: Cosmetic Function Evaluation Method Guideline", According to Vol. 30, No. 4, pp.316-332 (2006).), A visual evaluation was carried out by a trained expert.
- the wrinkle condition of the right outer corner of the eye was evaluated as the wrinkle grade for every 0.25 points up to "0,1,2,3,4,5,6,7".
- the wrinkle grade standard table for example, in the case of grade 0, "no wrinkles" and in the case of grade 7, "significantly deep wrinkles are observed".
- Participant's stratum corneum water content was indexed by the stratum corneum capacitance measured by using SKICON-200EX (manufactured by IBS) on the upper right cheek of the participant.
- the transepidermal water loss was measured on the right cheek in the same manner using a Vapometer (manufactured by Delfin technologies).
- the amount of sebum of the participants was measured using a Sebumeter (Courage + manufactured by Khazaka electronic GmbH) at the center of the forehead.
- Spectrophotometer CM-700d manufactured by KONICA MINOLTA was used, and the L * value (index of brightness), a * value (index of redness), and b * value (index of redness) on the right cheek of the participants. The index of yellowness) was measured.
- Test Example 1-3 Statistical analysis for wrinkle prediction model development The following wrinkle prediction models (Equations 1 to 7) were obtained using the data obtained in "Test Examples 1-1.” And “Test Examples 1-2.”.
- the stepwise method based on the variable reduction method was used to select the wrinkle predictor, and the model with the smallest AIC (Akaike Information Criterion) was determined to be the best model.
- Algorithm Mallows (1973) Technometrics 15, 661-675 .; Steyerberg (2009) Statistics in Medicine 19 (8), 1059-1079 .; Akaike (1973) In 2nd International Symposium on Information Theory and an Extension of the Maximum Likelihood Principle, BN Petrov, and F. Csaki (eds), 267-281.
- the full model using all the wrinkle predictors was examined in order.
- a sensitivity analysis was performed using the obtained wrinkle predictors. All analyzes were performed using R ver.3.5.2 statistical software (R Foundation for Statistical Computing, Vienna, Austria).
- Test Example 1-4 Results and discussion [Test Example 1-4.1 Participants] The average age of participants during the study period ranged from 38.64 years (95% CI: 35.47-41.81) at the start of the study to 44.24 years (95% CI: 41.47-47.34) at the end of the study. ). Next, regarding the change over time in the wrinkle grade for each individual, a strong linear relationship such that the wrinkle grade increased with increasing age and a large individual difference in the average wrinkle value for each individual were observed. For this reason, we selected a linear mixed-effects model that introduces a variable effect into the intercept as the wrinkle prediction model in this study.
- Wrinkle grade i 0.1469 ⁇ Age + 0.7540 ⁇ Ln (sebum) + 0.3270 ⁇ Skin color a * + 0.1654 ⁇ Mean [Skin color L *] - 0.1044 ⁇ [Ln (sebum) ⁇ Skin color a *] - 15.90 + b 0, i (Equation 1) b 0, i ⁇ N (0, 0.4847) Final equation for prediction of wrinkle grade in Japanese women aged 22-60 years
- the wrinkle grade increases with age, but it is said that moisturizing is good to prevent this wrinkle.
- age and measured values related to moisturization for example, skin water content, transepidermal water evaporation amount
- the wrinkle prediction model which consists of five wrinkle predictors of age, skin brightness, skin redness, skin sebum amount, and the interaction term between sebum amount and skin redness, has particularly good prediction accuracy. I was also able to confirm that it would be.
- the "age value” is 35 years old
- the “skin brightness measurement value” is 68
- the skin redness measurement value is 8.3
- the skin oil content measurement value is 6. If it is 0, these are “age value” in “Age” of the above (Equation 1), "measured value of skin brightness” in “Skin color L *", and “skin” in “Skin color a *".
- the result is as follows, and the wrinkle grade of the skin is 3.0.
- the wrinkle grade can be quantified by using the camera function and the video function of a smartphone or a personal computer with a Web camera, so that the present invention is a simpler operation regardless of time and place. Instead, wrinkles can be evaluated objectively and more accurately. Then, by executing the wrinkle prediction model of the present invention on a computer including a CPU, it is possible to easily use wrinkle evaluation with better prediction accuracy for each individual on a mobile terminal or the like. Is. Therefore, the present invention can provide a technique for evaluating skin wrinkles more accurately and more easily for each individual.
- Wrinkle grade i 0.1200 ⁇ 0.2053 ⁇ Age + 0.2200 ⁇ 1.280 ⁇ Ln (sebum) +0.050 ⁇ 0.5710 ⁇ Skin color a * + 0.050 ⁇ 0.4000 ⁇ Mean [Skin color L *] - 0.030 ⁇ 0.1800 ⁇ [Ln (sebum) ⁇ Skin color a *] - 25.00-7.600 (Equation 2)
- ⁇ Test Example 3 Number of wrinkle predictors> Using the data obtained in Test Example 1, the device evaluation of the skin condition was performed in addition to the values (age, sebum amount, skin redness, skin brightness) adopted for the above wrinkle predictors. For example, device evaluations such as skin water content, transepidermal water evaporation, and skin yellowing were performed. However, as a result of comparing the wrinkle grade predicted using all the measured values as predictors with the best model, the prediction accuracy was as large as about 60%, or the RMSE value was as large as about 1.5, so good prediction accuracy was obtained. Not shown.
- the index value of the wrinkles on the skin of the subject is determined based on the three values of the age value, the measured value of the skin brightness, and the measured value of the amount of sebum. It can be estimated more accurately and more easily.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Cell Biology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Food Science & Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Analytical Chemistry (AREA)
- Biotechnology (AREA)
- General Physics & Mathematics (AREA)
- Dermatology (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Toxicology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
本発明は、皮膚のシワの評価方法などに関する。 The present invention relates to a method for evaluating skin wrinkles and the like.
一般に、皮膚のシワは、加齢に伴って、顔の額、眉間、口元、及び目尻などの部位に多く発生しやすくなるが、皮膚のシワの状態は個人間差も大きい。このため、アンチエイジングなどを目的として、化粧、美容、医薬などの分野において、皮膚のシワの予防、改善、又は治療の技術を、個人ごとに提案するようになってきている。このためには、皮膚のシワの状態を精度よく評価する方法が求められている。 In general, wrinkles on the skin are more likely to occur on the forehead, between the eyebrows, mouth, and corners of the eyes with aging, but the condition of wrinkles on the skin varies greatly among individuals. Therefore, for the purpose of anti-aging and the like, in the fields of makeup, cosmetology, medicine and the like, techniques for preventing, improving or treating wrinkles on the skin have been proposed for each individual. For this purpose, there is a need for a method for accurately evaluating the state of wrinkles on the skin.
従来、皮膚のシワの状態を評価するために、皮膚の状態を評価する目視評価方法、皮膚の状態を測定する機器計測方法などが用いられている。
例えば、シワの状態を評価するため、例えば、日本化粧品工業連合会が発表したガイドライン(非特許文献1)のシワグレード標準表(0~7)に従い、専門評価者による目視評価方法が知られている。
例えば、シワの状態を評価するための計測機器方法として、例えば、シワ部位のレプリカによる斜光照明を用いた二次元画像解析法、レプリカによる三次元測定法などが知られている。
Conventionally, in order to evaluate the state of wrinkles on the skin, a visual evaluation method for evaluating the state of the skin, a device measuring method for measuring the state of the skin, and the like have been used.
For example, in order to evaluate the state of wrinkles, for example, a visual evaluation method by a professional evaluator is known in accordance with the wrinkle grade standard table (0 to 7) of the guideline (Non-Patent Document 1) published by the Japan Cosmetic Industry Association. There is.
For example, as a measuring instrument method for evaluating the state of wrinkles, for example, a two-dimensional image analysis method using oblique illumination with a replica of a wrinkle portion, a three-dimensional measurement method using a replica, and the like are known.
さらに、皮膚のシワの状態を精度良く評価する方法が、種々検討されている。
例えば、特許文献1では、肌画像に対して十字二値化処理及び/又は短直線マッチング処理を含む画像処理を行い、肌の物理量を得る工程と、前記工程で得られた肌の物理量を、予め用意した予測式に代入し、得られた評価値を皮膚のキメ及び/又はシワの評価値と鑑別する工程とを含む、肌のキメ及び/又はシワの鑑別法が提案されている。
Further, various methods for accurately evaluating the state of wrinkles on the skin have been studied.
For example, in
さらに、本発明者は、個人ごとに、皮膚のシワを、精度良く、より簡便に評価できるようになることで、個人ごとに適した、皮膚のシワの予防、改善、又は治療のためのより良いスキンケア技術を提案しやすくなると考えた。
そこで、本発明は、個人ごとに、皮膚のシワを、精度良く、より簡便に評価できる技術を提供することを主な目的とする。
Furthermore, the present inventor can evaluate skin wrinkles more accurately and more easily for each individual, thereby making it more suitable for each individual for prevention, improvement, or treatment of skin wrinkles. I thought it would be easier to propose good skin care technology.
Therefore, it is a main object of the present invention to provide a technique capable of evaluating skin wrinkles more accurately and more easily for each individual.
本発明者は、鋭意検討した結果、長期にわたる個人ごとの経時的な機器評価結果の集積と多変量解析による検討結果に基づき、個人ごとの皮膚のシワの指標値を推定できる、年齢と皮膚状態との最適な組み合わせを、新たに見出すことができ、さらに当てはまり良いシワ予測モデルを新たに見出すこともできた。これにより、本発明者は、以下のように本発明を完成させた。 As a result of diligent studies, the present inventor can estimate the index value of skin wrinkles for each individual based on the accumulation of device evaluation results over a long period of time and the examination results by multivariate analysis, age and skin condition. We were able to find a new optimal combination with and, and we were also able to find a new wrinkle prediction model that fits well. As a result, the present inventor has completed the present invention as follows.
本発明は、対象者の年齢と、皮膚の明るさの測定値との少なくとも2つに基づき、対象者の皮膚のシワの指標値を推定する、皮膚のシワの評価方法を提供する。
前記皮膚のシワの評価方法は、前記2つと、皮膚の赤みの測定値及び/又は皮膚の皮脂量の測定値の1つ又は2つと、に基づき、対象者の皮膚のシワの指標値を推定してもよい。
前記皮膚のシワの評価方法は、シワ予測モデルに、対象者の年齢及び皮膚の明るさの測定値の2つを用いることにより、対象者の皮膚のシワの指標値を推定してもよい。
前記皮膚のシワの評価方法は、シワ予測モデルに、対象者の年齢及び皮膚の明るさの測定値の2つと、かつ、皮膚の赤みの測定値及び/又は皮膚の皮脂量の測定値の1つ又は2つとを用いることにより、対象者の皮膚のシワの指標値を推定してもよい。
前記シワ予測モデルは、1個人のシワ指標値を目的変数とした、当該1個人の年齢及び皮膚の明るさの測定値を少なくとも説明変数に含む線形混合効果モデルを用いて導き出すことにより、得られたモデルであってもよい。
前記シワ予測モデルは、前記線形混合効果モデルのパラメータは最尤法もしくは制限付き最尤法を用いて得られるものであってもよい。
The present invention provides a method for evaluating skin wrinkles, which estimates an index value of skin wrinkles of a subject based on at least two of a subject's age and a measured value of skin brightness.
The method for evaluating skin wrinkles estimates the index value of skin wrinkles of a subject based on the above two and one or two of the measured values of redness of the skin and / or the measured value of the amount of sebum on the skin. You may.
In the method for evaluating skin wrinkles, an index value of skin wrinkles of a subject may be estimated by using two measured values of the subject's age and skin brightness in the wrinkle prediction model.
The method for evaluating skin wrinkles is to use the wrinkle prediction model as two measurement values of the subject's age and skin brightness, and one of the measurement values of skin redness and / or the amount of sebum of the skin. By using one or two, the index value of wrinkles on the skin of the subject may be estimated.
The wrinkle prediction model is obtained by deriving using a linear mixed-effects model in which the wrinkle index value of one individual is used as an objective variable and the measured values of the age and skin brightness of the individual are included in at least the explanatory variables. It may be a model.
In the wrinkle prediction model, the parameters of the linear mixed-effects model may be obtained by using a maximum likelihood method or a limited maximum likelihood method.
本発明は、前記シワ評価方法を用いて、被験物質を投与された対象者の皮膚のシワ指標値を推定する工程、及び
当該推定された皮膚のシワ指標値が、投与前の対象者の皮膚のシワ指標値よりも、低くシワを改善していた場合に、被験物質をシワ改善用と判別する工程、を含む、シワ改善用組成物の評価又は探索方法を提供することができる。
In the present invention, the step of estimating the wrinkle index value of the skin of the subject to whom the test substance is administered by using the wrinkle evaluation method, and the estimated wrinkle index value of the skin are the skin of the subject before administration. It is possible to provide a method for evaluating or searching for a wrinkle improving composition, which comprises a step of determining a test substance for wrinkle improving when the wrinkle is improved lower than the wrinkle index value of.
本発明は、個人ごとに、皮膚のシワを、精度良く、より簡便に評価できる技術を提供することができる。なお、ここに記載された効果は、必ずしも限定されるものではなく、本発明中に記載されたいずれかの効果であってもよい。 The present invention can provide a technique for evaluating skin wrinkles more accurately and more easily for each individual. The effects described here are not necessarily limited, and may be any of the effects described in the present invention.
以下、本発明を実施するための好適な実施形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。また、本明細書において百分率は特に断りのない限り質量による表示である。また、各数値範囲(~)の上限値と下限値は、所望により、任意に組み合わせることができる。 Hereinafter, suitable embodiments for carrying out the present invention will be described. It should be noted that the embodiments described below show an example of a typical embodiment of the present invention, and the scope of the present invention is not narrowly interpreted by this. Further, in the present specification, the percentage is expressed by mass unless otherwise specified. Further, the upper limit value and the lower limit value of each numerical value range (to) can be arbitrarily combined as desired.
1.本発明に関する皮膚のシワの評価方法 1. 1. Method for evaluating skin wrinkles according to the present invention
本発明は、対象者の年齢の値と、皮膚の明るさの測定値との少なくともこれら2つの値に基づき、対象者の皮膚のシワの指標値を推定する、皮膚のシワの評価方法を提供するものである。これにより、個人ごとに、皮膚のシワを、精度良く、より簡便に評価できる。 The present invention provides a method for evaluating skin wrinkles, which estimates an index value of skin wrinkles of a subject based on at least these two values of a subject's age value and a measured value of skin brightness. It is something to do. As a result, wrinkles on the skin can be evaluated more accurately and more easily for each individual.
さらに、本発明は、前記2つの値(年齢の値、皮膚の明るさの測定値)に、皮膚の赤みの測定値及び/又は皮膚の皮脂量の測定値の1つ又は2つの値を組み合わせて、これら値に基づき、対象者の皮膚のシワの指標値を推定することが好適である。これにより、個人ごとに、皮膚のシワを、より精度良く、より簡便に評価できる。 Furthermore, the present invention combines the above two values (age value, skin brightness measurement value) with one or two values of skin redness measurement value and / or skin sebum amount measurement value. Therefore, it is preferable to estimate the index value of wrinkles on the skin of the subject based on these values. As a result, wrinkles on the skin can be evaluated more accurately and more easily for each individual.
さらに、本発明は、シワ予測モデルを用い、当該シワ予測モデルに、対象者の前記2つの値(年齢の値、皮膚の明るさの測定値)を用いることにより、又は対象者の前記4つの値から選択される2種以上の値を用いることにより、対象者の皮膚のシワ指標値を推定することがより好適である。当該シワ予測モデルは、モデルパフォーマンスが高く、機器評価を用いることができ、しかも当てはまり良く個人ごとに適したシワ予測モデルを提供することもできる。これにより、個人ごとに、皮膚のシワを、より精度良く、より簡便に評価できる。 Further, the present invention uses a wrinkle prediction model, and by using the two values (age value, skin brightness measurement value) of the subject in the wrinkle prediction model, or by using the four values of the subject. It is more preferable to estimate the wrinkle index value of the skin of the subject by using two or more kinds of values selected from the values. The wrinkle prediction model has high model performance, can use device evaluation, and can also provide a wrinkle prediction model that fits well and is suitable for each individual. As a result, wrinkles on the skin can be evaluated more accurately and more easily for each individual.
さらに、本発明は、前記皮膚のシワの指標値と、皮膚状態の基準値との対比により、対象者の皮膚のシワを評価することができる。これにより、より簡便に、より精度良く、対象者に適したスキンケア(特にシワのスキンケア)を提案することができる。
前記皮膚状態の基準値は、前記シワ予測モデルを用いて得ることができる値でもよく、具体的には、前記シワ予測モデルに、予め設定されている値(年齢の値、皮膚の明るさの値、皮膚の赤みの値、皮脂量の値など)を用いる(例えば、代入することなど)で得ることができる。当該基準値を得るための値として、年齢の値と、皮膚状態(皮膚の明るさ、皮膚の赤み、皮脂量など)の値とは、紐付けられていることが好ましい。
また、前記皮膚状態の基準値は、一般的な皮膚状態の基準値(例えば、対象者の年齢もしくは年代に対応する、年齢もしくは年代の各皮膚状態の平均値など)であってもよい。
Further, according to the present invention, the wrinkles on the skin of the subject can be evaluated by comparing the index value of the wrinkles on the skin with the reference value of the skin condition. This makes it possible to propose skin care (particularly wrinkle skin care) that is more convenient, more accurate, and suitable for the subject.
The reference value of the skin condition may be a value that can be obtained by using the wrinkle prediction model, and specifically, a value preset in the wrinkle prediction model (age value, skin brightness). It can be obtained by using (for example, substituting) the value, the value of redness of the skin, the value of the amount of sebum, etc. As a value for obtaining the reference value, it is preferable that the value of age and the value of skin condition (skin brightness, skin redness, amount of sebum, etc.) are associated with each other.
Further, the reference value of the skin condition may be a reference value of a general skin condition (for example, an average value of each skin condition of the age or age corresponding to the age or age of the subject).
以下、本発明について、より具体的に説明する。 Hereinafter, the present invention will be described in more detail.
1-1.対象者
前記対象者は、特に限定されず、ヒトが好適であり、老若男女を問わないが、対象者の性別は、シワの予測精度が良好である観点から、女性がより好ましい。
前記対象者の人種は、特に限定されないが、コーカソイド人種(白色系)、モンゴロイド人種(黄色系)が好ましく、好ましくはモンゴロイド人種(好適にはモンゴロイドA、B、C)である。前記対象者の民族の系統は、好ましくは、中国系、朝鮮系、日本系から選択される1種又は2種以上であり、より好ましくは日本系である。
本明細書において、「対象者」とは、本発明の評価方法を用いて、シワ指標値の推定を受ける者をいう。
1-1. Subject The subject is not particularly limited, and humans are preferable, regardless of age or sex, but the gender of the subject is more preferably female from the viewpoint of good wrinkle prediction accuracy.
The race of the subject is not particularly limited, but is preferably a Caucasian race (white), a Mongoloid race (yellow), and preferably a Mongoloid race (preferably Mongoloid A, B, C). The ethnic lineage of the subject is preferably one or more selected from Chinese, Korean, and Japanese, and more preferably Japanese.
In the present specification, the "subject" means a person who receives an estimation of a wrinkle index value by using the evaluation method of the present invention.
前記対象者の年齢層は、特に限定されないが、その下限値は、好ましくは18歳以上、より好ましくは20歳以上、さらに好ましくは22歳以上であり、また、その上限値は特に限定されないが、例えば、80歳以下、70歳以下又は60歳以下などとすることができる。当該好適な数値範囲としては、シワの予測精度が良好である観点から、より好ましくは18~70歳であり、さらに好ましくは22~60歳である。 The age group of the subject is not particularly limited, but the lower limit is preferably 18 years or older, more preferably 20 years or older, still more preferably 22 years or older, and the upper limit thereof is not particularly limited. For example, it can be 80 years old or younger, 70 years old or younger, 60 years old or younger, and the like. The preferred numerical range is more preferably 18 to 70 years old, still more preferably 22 to 60 years old, from the viewpoint of good wrinkle prediction accuracy.
1-2.対象者の年齢、皮膚状態の評価
本発明の評価方法では、対象者のある年齢の値と、その年齢のときの皮膚状態の測定値(皮膚の明るみの測定値、皮膚の赤みの測定値、皮膚の皮脂量の測定値など)とを用いる。対象者のある年齢の値と、その年齢のときの各皮膚状態の測定値とは、相互に関連づけたり、連結してもよい。
1-2. Evaluation of subject's age and skin condition In the evaluation method of the present invention, the value of a certain age of the subject and the measured value of the skin condition at that age (measured value of skin brightness, measured value of skin redness, (Measured value of the amount of skin oil, etc.) and is used. The value of a certain age of the subject and the measured value of each skin condition at that age may be interrelated or linked.
1-2-1.年齢の値
前記年齢の値は、特に限定されないが、現状の皮膚のシワの評価を行う場合には、対象者の実年齢の値であることが好ましい。
なお、本明細書における「年齢」は、満年齢+「誕生月からの経過した月数」、又満年齢+「誕生月からの経過した月数/12ヶ月」にて、表すことができる。例えば、年齢が30歳6ヶ月の場合、30.5と表すこともできる。また、当該「年齢」は、「誕生日からの経過した月数」の「月齢」に変換してもよい。
1-2-1. Age value The age value is not particularly limited, but is preferably the actual age value of the subject when evaluating the current skin wrinkles.
The "age" in the present specification can be expressed by the full age + "the number of months elapsed from the month of birth" or the full age + "the number of months elapsed from the month of birth / 12 months". For example, if the age is 30 years and 6 months, it can be expressed as 30.5. Further, the "age" may be converted into a "month age" of "the number of months elapsed since the birthday".
1-2-2.皮膚の明るさの測定値
前記皮膚の明るさは、皮膚色をL*a*b*表色系で表すときの「明度L*」のことである。
なお、L*a*b*表色系では、明度をL*、色相と彩度を示す色度をa*、b*(a*、b*は色の方向を示しており、a*は赤方向、-a*は緑方向、そしてb*は黄方向、-b*は青方向を示す)で表す。
また、本発明で用いる皮膚の明るさ、赤みなどの皮膚色の測定値は、当該L*a*b*表色系を測定可能な計測機器による値に限らず、これ以外の表色系を測定可能な計測機器による測定値(例えば、XYZ表色系、RGB表色系などの値)からL*a*b*表色系に変換された値を、前記皮膚の明るさや皮膚の赤みなどの測定値として、用いてもよい(例えば、茶木清,”色の測定”,色材,57[10],p558-568,1984;小寺宏曄,”色空間の発展”,日本画像学会誌,第43巻第2号,p73-81,2004)。
1-2-2. Measured value of skin brightness The skin brightness is "brightness L *" when the skin color is expressed by the L * a * b * color system.
In the L * a * b * color system, the lightness is L *, the hue and saturation are indicated by a *, b * (a * and b * are indicated by the color direction, and a * is indicated by the color direction). Red direction, -a * indicates green direction, b * indicates yellow direction, and -b * indicates blue direction).
Further, the measured values of skin color such as skin brightness and redness used in the present invention are not limited to the values by a measuring device capable of measuring the L * a * b * color system, and other color systems can be used. The value converted from the measured value by a measurable measuring device (for example, the value of the XYZ color system, the RGB color system, etc.) to the L * a * b * color system is used as the skin brightness, redness of the skin, etc. It may be used as a measurement value of (for example, Kiyoshi Chaki, "Measurement of Color", Color Material, 57 [10], p558-568, 1984; Hiroshi Kodera, "Development of Color Space", Journal of the Imaging Society of Japan. , Vol. 43, No. 2, p73-81, 2004).
前記皮膚の明るさの測定値は、L*a*b*表色系などを計測可能な計測機器、又は撮像装置を用いて得ることができる。上記で述べたように、XYZ表色系、RGB表色系などの他の表色系の値からL*a*b*表色系の値に変換した値の「明度L*」を、前記皮膚の明るさの測定値として、用いてもよい。
測定する皮膚の部位は、特に限定されないが、顔面の皮膚が好ましく、頬(より具体的には頬上部)であることがより好ましい。
The measured value of the brightness of the skin can be obtained by using a measuring device capable of measuring the L * a * b * color system or the like, or an imaging device. As described above, the "brightness L *" of the value converted from the value of another color system such as the XYZ color system and the RGB color system to the value of the L * a * b * color system is described above. It may be used as a measurement value of skin brightness.
The part of the skin to be measured is not particularly limited, but the skin on the face is preferable, and the cheek (more specifically, the upper part of the cheek) is more preferable.
また、本発明は、操作者又は制御部が、対象者の皮膚の明るさと同じ又は近似する配色パネル(画像など)を選択することで、制御部が、選択された配色パネルのデータに紐付けされている皮膚の明るさの測定値データを、対象者の皮膚の明るさの測定値として選択できるように、構成されていてもよい。各配色パネルの色調(表色系の値)、及び、各配色パネルの色調(表色系の値)に対応する皮膚の明るさの測定値データを予め記憶していることが好ましく、当該測定値データは、配色パネルのデータに紐付けられた皮膚の明るさの測定値データとして設定し記憶されていることが好ましく、これにより両者を容易に相互変換できるようになる。
なお、「紐付けて記憶させる」とは、特定のデータと別のデータとを相互に関連付けてこれらデータを記憶させることなどが挙げられるが、これに特に限定されない。
Further, in the present invention, the operator or the control unit selects a color scheme panel (image, etc.) that is the same as or similar to the skin brightness of the subject, so that the control unit associates with the data of the selected color scheme panel. It may be configured so that the measured value data of the skin brightness of the subject can be selected as the measured value of the skin brightness of the subject. It is preferable to store in advance the measured value data of the skin brightness corresponding to the color tone (value of the color scheme) of each color scheme panel and the color tone (value of the color scheme) of each color scheme panel, and the measurement thereof. It is preferable that the value data is set and stored as the measured value data of the skin brightness associated with the data of the color scheme panel, so that the two can be easily converted to each other.
Note that "associating and storing" includes, but is not limited to, storing specific data and other data in association with each other.
前記皮膚の明るさの測定には、一般的にL*a*b*表色系を計測可能な計測機器(例えば、JIS規格に準拠したハンディ型の色差計、分光測色計など)を用いることが好ましいが、これらに限定されず、撮像装置(例えば、カメラ、ビデオカメラ、モバイル端末など)を用いてもよい。また、配色パネルを用いることも可能である。 For the measurement of the brightness of the skin, a measuring device capable of measuring the L * a * b * color system (for example, a handy color difference meter compliant with the JIS standard, a spectrocolorimeter, etc.) is generally used. However, the present invention is not limited to these, and an image pickup device (for example, a camera, a video camera, a mobile terminal, etc.) may be used. It is also possible to use a color scheme panel.
前記色差計は、特に制限されないが、JIS規格に準拠しているものが好ましい。前記分光測色計として、積分球型の、例えば分光測色計CM-700d(コニカミノルタ社製)を使用することができる。また、配色パネルを用いることも可能である。 The color difference meter is not particularly limited, but it is preferable that the color difference meter complies with the JIS standard. As the spectrophotometer, an integrating sphere type, for example, a spectrophotometer CM-700d (manufactured by Konica Minolta) can be used. It is also possible to use a color scheme panel.
1-2-3.皮膚の赤みの測定値
前記皮膚の赤みは、皮膚色をL*a*b*表色系で表すときの「色度a*」のことである。
なお、「L*a*b*表色系」、「L*a*b*表色系を計測可能な計測機器」及び「撮像装置」は、上記「皮膚の明るさの測定値」で述べたことと重複するので、省略する。
1-2-3. Measured value of skin redness The skin redness is the "chromaticity a *" when the skin color is expressed by the L * a * b * color system.
The "L * a * b * color system", "measuring device capable of measuring the L * a * b * color system", and "imaging device" are described in the above "measured value of skin brightness". Since it overlaps with the above, it is omitted.
前記皮膚の赤みの測定値は、L*a*b*表色系などを計測可能な計測機器、又は撮像装置を用いて得ることができる。上記「皮膚の明るさの測定値」で述べたように、XYZ表色系、RGB表色系などの他の表色系の値からL*a*b*表色系の値に変換した値の「色度a*」を、前記皮膚の赤みの測定値として、用いてもよい。
測定する皮膚の部位は、特に限定されないが、顔面の皮膚が好ましく、頬(より具体的には頬上部)であることがより好ましい。
The measured value of redness of the skin can be obtained by using a measuring device capable of measuring the L * a * b * color system or the like, or an imaging device. As described in the above "Measured value of skin brightness", the value converted from the value of other color system such as XYZ color system and RGB color system to the value of L * a * b * color system. The "chromaticity a *" of the above may be used as the measured value of the redness of the skin.
The part of the skin to be measured is not particularly limited, but the skin on the face is preferable, and the cheek (more specifically, the upper part of the cheek) is more preferable.
また、本発明は、操作者又は制御部が、対象者の皮膚の赤みと同じ又は近似する配色パネル(画像など)を選択することで、制御部が、選択された配色パネルのデータに紐付けされている皮膚の赤みの測定値データを、対象者の皮膚の赤みの測定値として選択できるように、構成されていてもよい。各配色パネルの色調(表色系の値)、及び、各配色パネルの色調(表色系の値)に対応する皮膚の赤みの測定値データを予め記憶されていることが好ましく、当該測定値データは、配色パネルのデータに紐付けられた皮膚の赤みの測定値データとして設定し記憶されていることが好ましく、これにより両者を容易に相互変換できるようになる。 Further, in the present invention, the operator or the control unit selects a color scheme panel (image, etc.) that is the same as or similar to the redness of the skin of the subject, so that the control unit associates with the data of the selected color scheme panel. It may be configured so that the measured value data of the skin redness of the subject can be selected as the measured value of the redness of the skin of the subject. It is preferable that the measured value data of the redness of the skin corresponding to the color tone (value of the color scheme) of each color scheme panel and the color tone (value of the color scheme) of each color scheme panel is stored in advance, and the measured value is concerned. It is preferable that the data is set and stored as the measured value data of the redness of the skin associated with the data of the color scheme panel, which makes it possible to easily convert between the two.
1-2-4.皮膚の皮脂量の測定値
前記皮膚の皮脂量は、皮膚表面に分泌された皮脂量である。
前記皮膚の皮脂量の測定値は、皮脂量を計測可能な計測機器、又は撮像装置を用いて得ることができる。このとき、測定する皮膚の部位は、特に限定されないが、顔面の皮膚が好ましく、より好ましくは、短い測定時間内に安定した皮脂量を採取できる観点から、額(より具体的には額の中央部)であることがより好ましい。
1-2-4. Measured value of the amount of sebum on the skin The amount of sebum on the skin is the amount of sebum secreted on the surface of the skin.
The measured value of the amount of sebum on the skin can be obtained by using a measuring device or an imaging device capable of measuring the amount of sebum. At this time, the part of the skin to be measured is not particularly limited, but the skin on the face is preferable, and more preferably, the forehead (more specifically, the center of the forehead) from the viewpoint that a stable amount of sebum can be collected within a short measurement time. Part) is more preferable.
前記皮膚の皮脂量の測定には、一般的に皮膚表面の皮脂量を計測可能な計測機器(例えば、Sebumeterなど)を用いることが好ましいが、これらに限定されず、撮像装置(例えば、カメラ、ビデオカメラ、モバイル端末など)を用いてもよい。 For the measurement of the amount of sebum on the skin, it is generally preferable to use a measuring device (for example, a Sebumeter) capable of measuring the amount of sebum on the skin surface, but the measurement is not limited to these, and an image pickup device (for example, a camera, etc.) is used. A video camera, mobile terminal, etc.) may be used.
前記皮脂量計測機器として、例えば分光測色計Sebumeter SM 815(Courage+Khazaka社製)を使用することができる。皮脂量計測機器では、皮膚表面に分泌された皮脂をテープに付着させて、光の透過度を測定することで皮脂量の測定値を得ることができる。 As the sebum amount measuring device, for example, a spectrophotometer Sebumeter SM 815 (manufactured by Course + Khazaka) can be used. In the sebum amount measuring device, the measured value of the sebum amount can be obtained by adhering the sebum secreted on the skin surface to the tape and measuring the light transmission.
本発明であれば、上述のように、前記皮膚の明るさの測定値、前記皮膚の赤みの測定値、前記皮脂量の測定値は、計測機器又は撮像装置などの皮膚状態の測定装置にて行うことができ、ヒトの官能評価を行わなくともよい。なお、撮像装置の場合には、撮像した撮像データ又は画像データを、各皮膚状態の測定値に変換可能なプログラムにて、各皮膚状態(例えば、皮膚の明るさ、皮膚の赤み、皮膚の皮脂量など)の測定値に変換してもよい(例えば、WO2013/094442、特開平8-308634号公報など)。このように皮膚状態の測定装置から得られる測定値を用いることで、ヒトによる官能評価に比べ、より簡便に、より精度良く、値のばらつきが少ない、皮膚状態の測定値を得ることができる。 In the present invention, as described above, the measured value of the brightness of the skin, the measured value of the redness of the skin, and the measured value of the amount of sebum are measured by a measuring device or a skin condition measuring device such as an imaging device. It can be done and it is not necessary to perform human sensory evaluation. In the case of an image pickup device, each skin condition (for example, skin brightness, skin redness, skin sebum) can be converted into a measured value of each skin condition by using an image pickup data or an image data. It may be converted into a measured value (for example, WO2013 / 0944442, Japanese Patent Application Laid-Open No. 8-308634, etc.). By using the measured values obtained from the skin condition measuring device in this way, it is possible to obtain the measured values of the skin condition more easily, more accurately, and with less variation in the values, as compared with the sensory evaluation by humans.
前記測定を実施する際には、対象者の化粧状態(有無など)は特に限定されず、化粧をしている状態であってもよい。より好適には、対象者は素膚(より好適には素顔)であることがより精度良くシワの評価ができる観点から好ましく、より好ましくは対象者が洗顔料などの皮膚用洗浄剤を用いて皮膚(顔)を洗浄し、素膚(素顔)の状態にした後に測定を実施することが好ましい。また、測定を実施する部分が、素膚又は洗浄後の皮膚であってもよい。なお、本明細書における「素膚(素顔)」とは、「化粧をしていない、地のままの膚(顔)」をいう。
より具体的には、洗顔料を用いて洗顔し素顔の状態にした後に、室内環境下において20分以上60分以下馴化した後に測定を実施することが、シワ評価の精度向上の観点から、好ましい。より具体的には、前記洗顔後、20~22℃、50±5%に制御された環境下で30分間馴化した後に、測定を実施することが、好ましい。
When carrying out the measurement, the makeup state (presence / absence, etc.) of the subject is not particularly limited, and the subject may be in a state of wearing makeup. More preferably, it is preferable that the subject has a bare skin (more preferably a bare face) from the viewpoint of more accurate evaluation of wrinkles, and more preferably, the subject uses a skin cleanser such as a face wash. It is preferable to perform the measurement after washing the skin (face) to make it in the state of bare skin (bare face). Further, the portion to be measured may be bare skin or skin after washing. The term "bare skin (bare face)" as used herein means "undressed, untouched skin (face)".
More specifically, from the viewpoint of improving the accuracy of wrinkle evaluation, it is preferable to wash the face with a face wash to make it look like a real face, and then perform the measurement after acclimatizing for 20 minutes or more and 60 minutes or less in an indoor environment. .. More specifically, it is preferable to carry out the measurement after washing the face and acclimatizing for 30 minutes in an environment controlled at 20 to 22 ° C. and 50 ± 5%.
1-3.対象者の皮膚のシワの指標値の推定
本発明は、上述のように、対象者における、年齢の値、皮膚の明るさの測定値、皮膚の赤みの測定値、皮脂量の測定値からなる群から選択される2種以上の値に基づき、対象者の皮膚のシワの指標値を推定できる。好適には、年齢の値、皮膚の明るさの測定値の2つの値を少なくとも含むことである。
前記「皮膚のシワの指標値」は、後記〔実施例〕で示したように、日本化粧品工業連合会が発表したガイドライン(日本香粧品学会誌, ”化粧品機能評価法検討委員会報告:化粧品機能評価法ガイドライン”, Vol. 30, No. 4, pp.316~332 (2006).)による「シワグレード標準表(0,1,2,3,4,5,6,7)」と高い正の相関関係を示す。このように、前記「皮膚のシワの指標値」は、特に変換しなくとも、従来、標準的に使用されている「シワグレード標準表」に対応できている。このため、本発明の皮膚のシワの指標値は、シワの予測精度が高く信頼性が高い値といえる。また、本発明の皮膚のシワの指標値は、前記「シワグレード標準表」のシワグレードとみなして使用することもできる。さらに、本発明の皮膚のシワ評価方法では、「シワグレード標準表」を採用している文献などの情報を活用しやすい。
1-3. Estimating the index value of skin wrinkles of the subject As described above, the present invention comprises the age value, the measured value of the skin brightness, the measured value of the redness of the skin, and the measured value of the amount of sebum in the subject. Based on two or more values selected from the group, the index value of wrinkles on the skin of the subject can be estimated. Preferably, it contains at least two values, an age value and a skin brightness measurement.
As shown in the following [Example], the above-mentioned "index value of skin wrinkles" is a guideline published by the Japan Cosmetic Industry Association (Journal of the Japan Cosmetic Society, "Report of the Cosmetic Function Evaluation Method Review Committee: Cosmetic Function". "Wrinkle grade standard table (0,1,2,3,4,5,6,7)" according to the evaluation method guideline ", Vol. 30, No. 4, pp.316-332 (2006)." The correlation of is shown. As described above, the "index value of wrinkles on the skin" can correspond to the "wrinkle grade standard table" which has been conventionally used as a standard without any particular conversion. Therefore, it can be said that the index value of skin wrinkles of the present invention has high wrinkle prediction accuracy and high reliability. In addition, the index value of skin wrinkles of the present invention can be regarded as the wrinkle grade in the above-mentioned "wrinkle grade standard table" and used. Further, in the skin wrinkle evaluation method of the present invention, it is easy to utilize information such as documents that employ the "wrinkle grade standard table".
従来、日本化粧品工業連合会が発表したガイドラインによる「シワグレード標準表」(シワグレード)では、目視による官能評価であるため、シワ評価の精度を担保するために専門評価者になるまでの高度な習熟が必要であった。また、官能評価の場合、対象者の数が多くなるほど、判別にブレが生じやすくなり、シワ評価の精度が落ちるリスクがある。
しかし、本発明であれば、皮膚状態の測定値は、計測機器又は撮像装置などの装置を用いる機器評価であるため、皮膚状態を測定する測定者は、官能評価において必要とされるような高度な習熟を必要としない。さらに、本発明で用いる測定値は、測定装置を用いる機器評価であるため、官能評価のときのばらつきよりも、値のばらつきが低減できる。そして、本発明では、測定装置を用いることで、測定者の能力の均質化、測定方法の均質化を図ることができる。このため、複数回数の測定や長期にわたる測定を行っても、得られる測定値のデータの信頼性が高い。
このように、本発明は、機器評価を用いることができるので、より簡便に、より精度良く、対象者の皮膚のシワを評価できる。
Conventionally, the "wrinkle grade standard table" (wrinkle grade) based on the guidelines announced by the Japan Cosmetic Industry Association is a visual sensory evaluation, so it is an advanced evaluation to become a professional evaluator in order to ensure the accuracy of wrinkle evaluation. It took some proficiency. Further, in the case of sensory evaluation, as the number of subjects increases, the discrimination tends to be blurred, and there is a risk that the accuracy of wrinkle evaluation deteriorates.
However, in the present invention, since the measured value of the skin condition is an instrument evaluation using a device such as a measuring device or an imaging device, the measurer who measures the skin condition is required to have an advanced level in the sensory evaluation. Does not require any proficiency. Further, since the measured value used in the present invention is an instrument evaluation using a measuring device, the variation in the value can be reduced as compared with the variation in the sensory evaluation. Then, in the present invention, by using the measuring device, it is possible to homogenize the ability of the measurer and the homogenization of the measuring method. Therefore, even if a plurality of measurements or long-term measurements are performed, the reliability of the obtained measured value data is high.
As described above, since the device evaluation can be used in the present invention, it is possible to evaluate the wrinkles on the skin of the subject more easily and more accurately.
1-4.シワ予測モデル
本発明の皮膚のシワ評価方法では、シワ予測モデルを用いることが好ましい。
前記シワ予測モデルは、1個人のシワ指標値を目的変数とした、当該1個人の年齢(年齢の値)及び皮膚の明るさ(皮膚の明るさの測定値)を少なくとも説明変数に含む線形混合効果モデルを用いて導き出すことにより、得られたモデルであることが好適である。
さらに、前記線形混合効果モデルのパラメータ(変数)は、最尤法もしくは制限付き最尤法を用いて得られるものが好適である。なお、最尤法とは、統計学において、与えられたデータからそれが従う確率分布の母数を点推定する方法である。制限付き最尤法は、線型混合モデルの分散に関するパラメータの推定法で、データそのものではなく、「誤差対比」に制限した尤度関数に対する最尤法である。
1-4. Wrinkle prediction model In the skin wrinkle evaluation method of the present invention, it is preferable to use a wrinkle prediction model.
The wrinkle prediction model is a linear mixture in which the wrinkle index value of one individual is used as an objective variable and the age (age value) and skin brightness (measured value of skin brightness) of the one individual are included in at least the explanatory variables. It is preferable that the model is obtained by deriving using an effect model.
Further, the parameters (variables) of the linear mixed-effects model are preferably those obtained by using the maximum likelihood method or the limited maximum likelihood method. The maximum likelihood method is a method of point estimation of the population parameter of the probability distribution to which it follows from given data in statistics. The limited maximum likelihood method is a method for estimating parameters related to the variance of a linear mixed model, and is a maximum likelihood method for a likelihood function limited to "error contrast" rather than the data itself.
前記説明変数としては、上述した、年齢の値及び皮膚の明るさの測定値以外に、皮膚の赤み(赤みの測定値)及び/又は皮膚の皮脂量(皮脂量の測定値)の1つ又は2つをさらに含むことがより好適であり、説明変数がこれら4つであることがさらに好適である。 As the explanatory variables, in addition to the above-mentioned age value and skin brightness measurement value, one of skin redness (measurement value of redness) and / or skin oil content (measurement value of skin oil content) or It is more preferable to further include two, and it is further preferable that these four explanatory variables are used.
本発明の皮膚のシワ評価方法では、前記シワ予測モデルに、上述した、少なくとも2つの値(年齢の値及び皮膚の明るさの測定値)を用いることが、さらに好ましい。よりさらに好ましくは、前記シワ予測モデルに、年齢の値及び皮膚の明るさの測定値の2つの値と、皮膚の赤みの測定値及び/又は皮膚の皮脂量の測定値の1つ又は2つの値を用いることである。これにより、皮膚のシワを、より簡便に、より精度良く、評価することができる。 In the skin wrinkle evaluation method of the present invention, it is more preferable to use at least two values (age value and skin brightness measurement value) described above for the wrinkle prediction model. Even more preferably, in the wrinkle prediction model, one or two of the two values of the age value and the measured value of the skin brightness, and the measured value of the redness of the skin and / or the measured value of the amount of sebum of the skin. Use the value. Thereby, wrinkles on the skin can be evaluated more easily and more accurately.
また、本発明のシワ評価方法では、上述のように、前記シワ予測モデルに、対象者の「年齢の値」、「皮膚の明るさの測定値」、「皮膚の赤みの測定値」、「皮膚の皮脂量の測定値」から選択される2以上の値を用いることにより、現状のシワの指標値(シワグレード)を推定することができる。これとは別に、対象者の将来のシワの状態を予測するための値(「年齢」、「皮膚の明るさ」、「皮膚の赤み」、「皮膚の皮脂量」)を適宜選択し、選択し将来のシワを予測するための値を用いることで、将来のシワ基準値を得ることができる。この将来のシワ基準値を得るときのシワ予測モデルは、現状のシワ予測モデルを用いることができる。
さらに、前記現状のシワ基準値と、将来のシワの基準値(予測)とを対比検討することで、対象者のスキンケアを提案することができる。
Further, in the wrinkle evaluation method of the present invention, as described above, in the wrinkle prediction model, the subject's "age value", "skin brightness measurement value", "skin redness measurement value", and "skin redness measurement value" are used. By using a value of 2 or more selected from "measured value of the amount of sebum on the skin", the current index value (wrinkle grade) of wrinkles can be estimated. Separately, the values for predicting the future wrinkle condition of the subject (“age”, “skin brightness”, “skin redness”, “skin sebum amount”) are appropriately selected and selected. By using the value for predicting future wrinkles, the future wrinkle reference value can be obtained. As the wrinkle prediction model for obtaining this future wrinkle reference value, the current wrinkle prediction model can be used.
Furthermore, by comparing and examining the current wrinkle reference value and the future wrinkle reference value (prediction), it is possible to propose skin care for the subject.
なお、対象者の過去の年齢とこのときの過去の皮膚状態の測定値を用いて、上述と同様にして、過去のシワ指標値をシワ基準値として得ることができる。これにより、現状のシワ指標値、過去のシワ指標値、将来のシワの基準値(予測)などに基づき、これらを比較検討することで、対象者のスキンケアを提案することもできる。過去のシワ指標値を得る際に、過去のシワ予測モデルを用いてもよいし、現状のシワ予測モデルを用いてもよい。 Using the past age of the subject and the measured values of the past skin condition at this time, the past wrinkle index value can be obtained as the wrinkle reference value in the same manner as described above. As a result, it is possible to propose skin care for the subject by comparing and examining these based on the current wrinkle index value, the past wrinkle index value, the future wrinkle standard value (prediction), and the like. When obtaining the past wrinkle index value, the past wrinkle prediction model may be used, or the current wrinkle prediction model may be used.
1-4-1.シワ予測モデルの予測因子
前記シワ予測モデルは、特定のシワ予測因子から構成されているシワ予測モデルが好適である。
前記特定のシワ予測因子の数は、特に限定されないが、2~5(具体的には2、3、4、5)が好ましいが、より好ましくは3~5、さらに好ましくは4~5、よりさらに好ましくは5である。
1-4-1. Predictor Factors for Wrinkle Prediction Model As the wrinkle prediction model, a wrinkle prediction model composed of specific wrinkle prediction factors is suitable.
The number of the specific wrinkle predictors is not particularly limited, but is preferably 2 to 5 (specifically 2, 3, 4, 5), more preferably 3 to 5, still more preferably 4 to 5, and more. More preferably, it is 5.
前記特定のシワ予測因子として、例えば、「年齢」、「皮膚の明るさ」、「皮膚の赤み」、「皮膚の皮脂量」、「皮脂量と皮膚の赤みの交互作用項」などが挙げられる。なお、交互作用として、掛け算交互作用が好ましい。 Examples of the specific wrinkle predictor include "age", "skin brightness", "skin redness", "skin sebum amount", "interaction term between sebum amount and skin redness" and the like. .. The interaction is preferably a multiplication interaction.
このうち、「年齢」、「皮膚の明るさ」、「皮膚の赤み」、「皮膚の皮脂量」、「皮脂量と皮膚の赤みの交互作用項」のこれら5つのシワ予測因子から選択される2種以上が好ましい。
これら5つのシワ予測因子のうちから、少なくとも2つのシワ予測因子(具体的には、「年齢」及び「皮膚の明るさ」)が、シワの予測精度が良好である観点から、本発明のシワ予測モデルにおいて重要である。このため、本発明のシワ評価方法において、これら2つを少なくとも含むシワ予測因子から構成されるシワ予測モデルが、好ましい。当該シワ予測モデルに、対象者の「年齢の値」及び「皮膚の明るさの測定値」の2つを用いることにより、シワ指標値を、簡便に、より精度良く得ることができる。
Of these, it is selected from these five wrinkle predictors of "age", "skin brightness", "skin redness", "skin sebum amount", and "interaction term between sebum amount and skin redness". Two or more are preferable.
Of these five wrinkle predictors, at least two wrinkle predictors (specifically, "age" and "skin brightness") have good wrinkle prediction accuracy, and thus the wrinkles of the present invention. It is important in the prediction model. Therefore, in the wrinkle evaluation method of the present invention, a wrinkle prediction model composed of wrinkle predictors containing at least these two is preferable. By using the subject's "age value" and "skin brightness measurement value" for the wrinkle prediction model, the wrinkle index value can be obtained easily and more accurately.
さらに、前記2つのシワ予測因子(具体的には、「年齢」及び「皮膚の明るさ」)に、「皮膚の赤み」、「皮膚の皮脂量」、「皮脂量と皮膚の赤みの交互作用項」からなる群から選択される1種又は2種以上を含むシワ予測因子を含み、これらシワ予測因子から構成されるシワ予測モデルが、シワ評価をより精度良くできる観点から、より好ましい。
より具体的には、「年齢」及び「皮膚の明るさ」の2つのシワ予測因子と、さらに「皮膚の赤み」及び/又は「皮膚の皮脂量」の1つ又は2つのシワ予測因子と、から構成されるシワ予測モデルが、より好ましい。当該3つ又は4つから構成されるシワ予測モデルに、対象者の3つ又は4つの値(具体的には、「年齢の値」、「皮膚の明るさの測定値」、「皮膚の赤みの測定値」、「皮膚の皮脂量の測定値」)を用いることにより、シワ指標値を、簡便に、より精度良く得ることができる。
Furthermore, the two wrinkle predictors (specifically, "age" and "skin brightness") are associated with "skin redness", "skin sebum amount", and "skin oil amount and skin redness". A wrinkle prediction model including one or more wrinkle predictors selected from the group consisting of "terms" and composed of these wrinkle predictors is more preferable from the viewpoint of more accurate wrinkle evaluation.
More specifically, two wrinkle predictors of "age" and "skin brightness", and one or two wrinkle predictors of "skin redness" and / or "skin sebum amount". A wrinkle prediction model composed of is more preferable. In the wrinkle prediction model composed of the three or four, the subject's three or four values (specifically, "age value", "skin brightness measurement value", and "skin redness" By using "measured value of" and "measured value of sebum amount of skin"), the wrinkle index value can be obtained easily and more accurately.
さらに、本発明のシワ予測モデルにおいて、上記5つのシワ予測因子(具体的には、「年齢」、「皮膚の明るさ」、「皮膚の赤み」、「皮膚の皮脂量」、「皮脂量と皮膚の赤みの交互作用項」)から構成されるシワ予測モデルが、シワの予測精度が特に良好である観点から、よりさらに好ましい。当該シワ予測モデルに、対象者の値(対象者の「年齢の値」、「皮膚の明るさの測定値」、「皮膚の赤みの測定値」、「皮膚の皮脂量の測定値」)の4つを用いることにより、シワ指標値を、簡便に、より精度良く得ることができる。 Further, in the wrinkle prediction model of the present invention, the above five wrinkle predictors (specifically, "age", "skin brightness", "skin redness", "skin sebum amount", and "sebum amount" A wrinkle prediction model composed of "skin redness interaction term") is even more preferable from the viewpoint of particularly good wrinkle prediction accuracy. The wrinkle prediction model includes the subject's values (subject's "age value", "skin brightness measurement value", "skin redness measurement value", "skin sebum amount measurement value"). By using four, the wrinkle index value can be obtained easily and more accurately.
なお、本発明のシワ予測モデルにおいて、上述したこれら5つのシワ予測因子以外のシワ予測因子(例えば、皮膚の水分量、経表皮水分蒸散量など)が、本発明のシワ予測モデルの構成に含まれていてもよいが、上述のようにシワの予測精度の観点からは、前記5つのシワ予測因子を用いるシワ予測モデルが、最も良好なモデルである。 In the wrinkle prediction model of the present invention, wrinkle predictors other than the above-mentioned five wrinkle predictors (for example, skin water content, transecutaneous water evaporation amount, etc.) are included in the configuration of the wrinkle prediction model of the present invention. However, as described above, from the viewpoint of wrinkle prediction accuracy, the wrinkle prediction model using the above five wrinkle prediction factors is the best model.
本発明のシワ予測モデルの式(以下、「シワ予測式」ともいう)として、後述するシワ予測式1~7を挙げることができるが、これらに限定されない。
シワ予測式1~7のうち、シワの予測精度がより良好であり、対象者に対して標準的に用いることができるので、シワ予測式1及びシワ予測式2が好適であり、さらにシワ予測式1が、シワの予測精度がより良好であるので、より好適である。
Examples of the formula for the wrinkle prediction model of the present invention (hereinafter, also referred to as “wrinkle prediction formula”) include, but are not limited to,
Of the
<シワ予測式1(式1)> <Wrinkle prediction formula 1 (Formula 1)>
Wrinkle grade i =0.1469×Age
+ 0.7540×Ln(sebum)
+ 0.3270×Skin color a*
+ 0.1654×Mean[Skin color L*]
- 0.1044×[Ln(sebum)×Skin color a*]
- 15.90
+ b0,i
(式1)
b0,i ~N(0, 0.4847)
Final equation for prediction of wrinkle grade in Japanese women aged 22-60 years
Wrinkle grade i = 0.1469 × Age
+ 0.7540 × Ln (sebum)
+ 0.3270 × Skin color a *
+ 0.1654 × Mean [Skin color L *]
- 0.1044 × [Ln (sebum) × Skin color a *]
- 15.90
+ b 0, i
(Equation 1)
b 0, i ~ N (0, 0.4847)
Final equation for prediction of wrinkle grade in Japanese women aged 22-60 years
<シワ予測式2(式2)> <Wrinkle prediction formula 2 (Formula 2)>
Wrinkle grade i= 0.1200~0.2053×Age
+ 0.2200~1.280×Ln(sebum)
+ 0.050~0.5710×Skin color a*
+ 0.050~0.4000×Mean[Skin color L*]
- 0.030~0.1800×[Ln(sebum)×Skin color a*]
- 25.00~7.600
(式2)
Wrinkle grade i = 0.1200 ~ 0.2053 × Age
+ 0.2200 ~ 1.280 × Ln (sebum)
+0.050 ~ 0.5710 × Skin color a *
+ 0.050 ~ 0.4000 × Mean [Skin color L *]
- 0.030 ~ 0.1800 × [Ln (sebum) × Skin color a *]
- 25.00-7.600
(Equation 2)
本発明の方法において、本発明の各ステップを実行することによって、対象者の皮膚のシワの指標値を推定することができ、この指標値は、専門評価者の目視による「シワグレード標準表」の官能評価と高い相関関係を有するので、「シワグレード標準表」と同等程度の皮膚のシワの評価値として、使用することができる。
このため、ある対象者が、年齢、皮膚色(明るさ、赤み)の測定値、皮脂量の測定値からなる群から2つ以上を選択し、本発明のシワ予測モデル又はシワ予測式に適用することにより、対象者の皮膚のシワの指標値を推定することができ、さらにその指標値に基づき皮膚のシワの評価を行うことができる。
よって、本発明のシワ評価方法であれば、簡便に、精度良く、専門評価者が「シワグレード標準表」に従って導き出したシワ評価と高い正の相関関係を有するシワの指標値を提供することができる。
In the method of the present invention, by performing each step of the present invention, the index value of wrinkles on the skin of the subject can be estimated, and this index value is a "wrinkle grade standard table" visually by a professional evaluator. Since it has a high correlation with the sensory evaluation of, it can be used as an evaluation value of skin wrinkles to the same extent as the "wrinkle grade standard table".
Therefore, a subject selects two or more from the group consisting of measured values of age, skin color (brightness, redness), and measured values of sebum amount, and applies them to the wrinkle prediction model or wrinkle prediction formula of the present invention. By doing so, the index value of the skin wrinkles of the subject can be estimated, and further, the skin wrinkles can be evaluated based on the index value.
Therefore, the wrinkle evaluation method of the present invention can easily and accurately provide an index value of wrinkles having a high positive correlation with the wrinkle evaluation derived by a professional evaluator according to the "wrinkle grade standard table". can.
本発明の方法であれば、官能評価に頼らず、計測機器又は撮像装置などの皮膚状態の測定装置による機器評価を利用できるので、皮膚のシワの評価を、より簡便に、より精度良く、より客観的に評価することができる。このため、測定者の熟練度や個人間差に起因する、シワ評価の精度の低下も低減できる。さらに、本発明のシワ予測モデルを用いることで、個人ごとの将来のシワの指標値も、容易に、精度良く、予測することができる。さらにこの将来のシワに対応する、スキンケアを提案することも可能となる。 With the method of the present invention, device evaluation by a skin condition measuring device such as a measuring device or an imaging device can be used without relying on sensory evaluation, so that evaluation of skin wrinkles can be performed more easily, more accurately, and more. It can be evaluated objectively. Therefore, it is possible to reduce the decrease in the accuracy of wrinkle evaluation due to the skill level of the measurer and the difference between individuals. Furthermore, by using the wrinkle prediction model of the present invention, the index value of future wrinkles for each individual can be easily and accurately predicted. Furthermore, it will be possible to propose skin care for this future wrinkle.
本発明における皮膚のシワの評価方法は、非治療目的に使用してもよいし、その評価結果を最終的に治療目的に役立ててもよい。本発明は、医師の直接的な医療行為ではなく、例えば、皮膚のシワの診断を補助する方法等に適用することが可能である。ここで、「非治療目的」とは、医療行為、すなわち、治療による人体への処置行為を含まない概念であり、非治療目的とは、例えば、美容目的、スキンケア商品の提供等が挙げられる。本発明の利点として、上述した年齢、皮膚状態の測定はいずれも医師が行わなくとも、計測機器又は撮像装置などの装置によって評価又は測定することができることにある。
本発明において、「予防」とは、適用対象における症状若しくは疾患の発症の防止若しくは発症の遅延、又は適用対象における症状若しくは疾患の発症の危険性を低下させること等をいう。本技術において、「改善」とは、適用対象における疾患、症状又は状態の好転又は維持;悪化の防止又は遅延;進行の逆転、防止又は遅延をいう。
The method for evaluating skin wrinkles in the present invention may be used for non-therapeutic purposes, or the evaluation results may be finally utilized for therapeutic purposes. The present invention can be applied not to the direct medical practice of a doctor, but to, for example, a method of assisting the diagnosis of wrinkles on the skin. Here, the "non-therapeutic purpose" is a concept that does not include a medical practice, that is, a treatment action on the human body by treatment, and the non-therapeutic purpose includes, for example, a cosmetic purpose, provision of a skin care product, and the like. An advantage of the present invention is that the above-mentioned measurement of age and skin condition can be evaluated or measured by a device such as a measuring device or an imaging device without a doctor performing any of the above-mentioned measurements.
In the present invention, "prevention" means preventing or delaying the onset of a symptom or disease in an application target, or reducing the risk of developing a symptom or disease in an application target. In the present art, "improvement" means improvement or maintenance of a disease, symptom or condition in an application; prevention or delay of exacerbation; reversal, prevention or delay of progression.
1-4-2.シワ予測モデルの作製方法
本発明のシワ予測モデルは、後記〔実施例〕の流れに従って作製することができ、この一例として、以下に示すが、本発明のシワ予測モデルはこれに限定されない。
シワ予測モデルを作製する際の参加者人数は、例えば、40~60名などが挙げられるが、これに限定されない。試験回数として、参加者に対して少なくとも年1回の皮膚特性評価を実施する。試験期間は、特に限定されないが、4~6年が、好ましい。試験方法として、参加者は、洗顔料にて洗顔して素膚にした後、20~22℃、50±5%に制御した環境下で30分間馴化させた後に、各皮膚状態の測定値を得る。より具体的な試験方法は、後記〔実施例〕の記載を参照して行うことができる。
シワ予測モデルの作製のための統計解析は、一般化線形混合効果モデルを用いることができる。シワ予測因子の選択には、変数減少法によるステップワイズ法を用い、AIC(Akaike Information Criterion)が最小になったモデルを最善モデルと決定する。得られたシワ予測因子を用いて感度解析を実施する。解析には、R ver.3.5.2 statistical softwareを用いることが好ましいが、シワ予測モデルの作製のための統計解析ができればこれに限定されない。
1-4-2. Method for Producing Wrinkle Prediction Model The wrinkle prediction model of the present invention can be produced according to the flow described later [Example], and an example thereof is shown below, but the wrinkle prediction model of the present invention is not limited thereto.
The number of participants in creating the wrinkle prediction model is, for example, 40 to 60, but is not limited to this. As the number of tests, participants will be evaluated for skin characteristics at least once a year. The test period is not particularly limited, but is preferably 4 to 6 years. As a test method, participants washed their face with a face wash to make their skin bare, and after acclimatizing for 30 minutes in an environment controlled at 20 to 22 ° C. and 50 ± 5%, the measured values of each skin condition were measured. obtain. A more specific test method can be carried out with reference to the description in [Example] below.
A generalized linear mixed-effects model can be used for statistical analysis for creating a wrinkle prediction model. The stepwise method based on the variable reduction method is used to select the wrinkle predictor, and the model with the minimum AIC (Akaike Information Criterion) is determined as the best model. A sensitivity analysis is performed using the obtained wrinkle predictors. It is preferable to use R ver.3.5.2 statistical software for the analysis, but the analysis is not limited to this as long as the statistical analysis for creating a wrinkle prediction model can be performed.
2.本発明に関する皮膚のシワの評価方法の適用例
本発明に関する皮膚のシワの評価方法、皮膚のシワ評価装置、皮膚のシワ評価システムなどは、図1~図7を参照して説明することができるが、本発明はこれら図に限定されない。
2-1.皮膚のシワ評価装置及び評価システム
本発明の皮膚のシワの評価方法を、皮膚のシワ評価装置(例えば、コンピュータ等)におけるCPU(Central Processing Unit)等を含む制御部によって実現させることも可能である(例えば、図4~6など参照)。例えば、本発明は、コンピュータに、本発明に関する皮膚のシワの評価方法(シワ予測モデル、シワ評価手順、プログラムなど)を実行させて、コンピュータによる皮膚のシワの評価方法又は皮膚のシワの評価の提供方法であってもよい(例えば、図1~3、図7など参照)。
また、本発明の方法を、記録媒体(不揮発性メモリ(USBメモリ等)、HDD、CD、DVD、Blu-ray(登録商標) Disc、ネットワークサーバ等)等を備えるハードウェア資源にプログラムとして格納し、皮膚のシワ評価の判別を行う制御部によって実現させることも可能である。又は、当該制御部を備えること又は用いることによって、皮膚のシワ評価システム、シワ改善用組成物の評価又は探索システム、又はこれら装置を提供することも可能である。当該記録媒体は、コンピュータが可読可能な記録媒体であることが好適である。
2. 2. Application example of the skin wrinkle evaluation method according to the present invention The skin wrinkle evaluation method, the skin wrinkle evaluation device, the skin wrinkle evaluation system, etc. according to the present invention can be described with reference to FIGS. 1 to 7. However, the present invention is not limited to these figures.
2-1. Skin wrinkle evaluation device and evaluation system It is also possible to realize the skin wrinkle evaluation method of the present invention by a control unit including a CPU (Central Processing Unit) in a skin wrinkle evaluation device (for example, a computer or the like). (See, for example, FIGS. 4-6). For example, the present invention causes a computer to execute a skin wrinkle evaluation method (wrinkle prediction model, wrinkle evaluation procedure, program, etc.) according to the present invention to perform a computer-based skin wrinkle evaluation method or skin wrinkle evaluation. It may be provided (see, for example, FIGS. 1 to 3, FIG. 7, etc.).
Further, the method of the present invention is stored as a program in a hardware resource including a recording medium (nonvolatile memory (USB memory, etc.), HDD, CD, DVD, Blu-ray (registered trademark) Disc, network server, etc.). It can also be realized by a control unit that discriminates the evaluation of wrinkles on the skin. Alternatively, by providing or using the control unit, it is also possible to provide a skin wrinkle evaluation system, an evaluation or search system for a wrinkle improving composition, or an apparatus thereof. The recording medium is preferably a computer-readable recording medium.
前記シワ評価に関する装置又はシステムは、キーボードなどの入力部、ネットワークなどの通信部、ディスプレイなどの出力部、HDDなどの記憶部、上述した計測機器又は撮像装置など皮膚状態の測定を行う測定部などを備えることができる。当該装置又はシステムは、入力部、出力部、記憶部を備えることが好ましく、さらに、通信部及び/又は測定部を備えることが好ましい。
前記入力部は、シワ評価方法を用いる操作者によって、ユーザ操作を受け付けることができる。当該入力部は、例えばマウス及び/又はキーボードなどを含むことができる。また、表示装置のディスプレイ面がタッチ操作を受け付ける入力部として構成されてもよい。
前記出力部は、得られた皮膚のシワ評価及びこれに関連する情報(例えば、表、図、説明文など)などを出力することができる。当該出力部は、例えば、画像を表示する表示装置、音を出力するスピーカー、紙などの印刷媒体に印刷する印刷装置などを挙げることができるが、これらに限定されない。
前記記憶部は、操作者が入力したデータ、予めシワ評価のために設定されているデータ(例えば、シワ予測モデルなど)を記憶することができる。当該記憶部は、例えば記録媒体を含んでよい。
The device or system related to wrinkle evaluation includes an input unit such as a keyboard, a communication unit such as a network, an output unit such as a display, a storage unit such as an HDD, and a measurement unit that measures skin conditions such as the above-mentioned measuring device or imaging device. Can be provided. The device or system preferably includes an input unit, an output unit, and a storage unit, and more preferably includes a communication unit and / or a measurement unit.
The input unit can accept user operations by an operator who uses the wrinkle evaluation method. The input unit may include, for example, a mouse and / or a keyboard. Further, the display surface of the display device may be configured as an input unit that accepts touch operations.
The output unit can output the obtained wrinkle evaluation of the skin and information related thereto (for example, a table, a figure, an explanatory text, etc.). Examples of the output unit include, but are not limited to, a display device for displaying an image, a speaker for outputting sound, a printing device for printing on a printing medium such as paper, and the like.
The storage unit can store data input by the operator and data set in advance for wrinkle evaluation (for example, a wrinkle prediction model). The storage unit may include, for example, a recording medium.
前記皮膚のシワ評価装置の具体例として、CPUを備えるものであれば特に限定されないが、例えば、モバイル端末(例えば、ノートパソコン、スマートフォン、タブレット型端末など)、デスクトップ型パソコン、サーバ、クラウトコンピューティングなどが挙げられるが、これらに限定されない。皮膚のシワ評価装置は、測定部をさらに備える装置が好ましく、例えばカメラ(例えば、Webカメラ)付きのモバイル端末が好ましい。 Specific examples of the skin wrinkle evaluation device are not particularly limited as long as they are equipped with a CPU, but for example, a mobile terminal (for example, a notebook computer, a smartphone, a tablet terminal, etc.), a desktop computer, a server, or cloud computing. However, it is not limited to these. The skin wrinkle evaluation device is preferably a device further including a measuring unit, and for example, a mobile terminal equipped with a camera (for example, a Web camera) is preferable.
また、本発明の皮膚のシワの評価方法に関するプログラム、シワ予測モデル、及び当該シワ評価方法によって得られたシワ評価結果、本発明の各ステップを実行するためのデータなどのシワ評価に関するデータは、前記シワ評価に関する装置の内部、又は、当該装置の外部にある記憶部もしくはサーバ上あるいはクラウド上に記憶されていてもよい。 In addition, the wrinkle evaluation data such as the program related to the skin wrinkle evaluation method of the present invention, the wrinkle prediction model, the wrinkle evaluation result obtained by the wrinkle evaluation method, and the data for executing each step of the present invention can be obtained. It may be stored in a storage unit, a server, or a cloud located inside the device related to the wrinkle evaluation or outside the device.
<本発明の皮膚のシワ評価装置及び評価システムのハードウェア構成の例>
本発明の皮膚のシワ評価装置及び評価システムは、プログラム及びハードウェアを利用することによって実行することができる。本発明の一実施形態に係るコンピュータ1の一実施形態を、図4~図6を参照して、以下に説明するが、本発明はこれに限定されない。コンピュータ1の構成要素として、CPUを少なくとも備え、さらに、RAM、記憶部、出力部、入力部、通信部、ROM、及び測定部などから選択される1種又は2種を備えることができ、このうちRAM、記憶部、出力部及び入力部を備えることが好適であり、さらに、通信部、測定部、ROMなどを少なくとも1つ備えることが好適である。それぞれの構成要素は、例えばデータの伝送路としてのバスで接続されている(図4参照)。
<Example of hardware configuration of skin wrinkle evaluation device and evaluation system of the present invention>
The skin wrinkle evaluation device and evaluation system of the present invention can be carried out by utilizing a program and hardware. An embodiment of the
CPUは、例えばマイクロコンピュータにより実現され、コンピュータ1のそれぞれの構成要素を制御する。CPUは、例えば、データ取得、データ処理、評価などの判別などを行うことができる制御部を用いることができる。これらデータ取得などは、例えばプログラムによって実現又は実行でき、このプログラムをCPUが読み込むことによって機能しうる。ROMは、CPUが使用するプログラムや演算パラメータなどの制御用データなどを記憶することができる。RAMは、例えば、CPUにより実行されるプログラムなどを一時的に記憶することができる。
The CPU is realized by a microcomputer, for example, and controls each component of the
記憶部は、様々なデータを記憶することができ、本発明の実行に関与するデータを全て又は一部記憶することができる。データとして、特に限定されず、例えば対象者ごとの個人データ、シワ評価データ、商品提案データなど、演算パラメータ、プログラムなどが挙げられる。記憶部は、装置内部又は外部に存在するデータベースとして機能しうる。記憶部は、例えばストレージデバイスなどを利用することにより実現されうる。 The storage unit can store various data, and can store all or part of the data related to the execution of the present invention. The data is not particularly limited, and examples thereof include personal data for each subject, wrinkle evaluation data, product proposal data, calculation parameters, programs, and the like. The storage unit can function as a database existing inside or outside the device. The storage unit can be realized by using, for example, a storage device.
出力部は、操作者又は対象者に対して、対象者を特定する項目(例えば、名前、整理番号など)、対象者の年齢値、対象者の皮膚状態の測定値などの対象者ごとの個人データ;シワの指標値、シワの評価結果、最良のシワリスク、将来のシワ予測、これらの図・表・グラフなどのチャート又はシワ部位の画像などのシワ評価データ;「今のお奨め、・・・歳からのお奨めのアイテム」、これらよりも「幅を広げたお奨めアイテム」などといった単数又は複数の推奨商品(商品名、商品画像など)の表示欄などの商品提案データ;などの情報を出力することができる。出力部は、操作者又は対象者に対して、例えば、各測定値入力欄(数値入力、配色パネル選択など)、各指標値、シワ評価結果、推奨商品などを出力しうる。出力部は、例えばLCD(Liquid Crystal Display)またはOLED(Organic Light-Emitting Diode)などの表示部などにより実現されうる。
また、入力部は、操作者又は対象者が入力する、対象者を特定する項目、対象者の年齢値、対象者の皮膚状態の測定値などの情報を取得することができる。入力部は、例えば、マイクロフォン、タッチセンサ、キーボード、マウス、カメラなどにより実現されうる。入力部は、例えば、各測定値入力、各配色パネル画像選択、各レベル選択、各指標値の選択などから、皮膚のシワを評価するためのデータなどを取得することができる。
The output unit is an individual for each target person, such as items that identify the target person (for example, name, reference number, etc.), age value of the target person, measured value of the skin condition of the target person, etc. for the operator or the target person. Data; wrinkle index value, wrinkle evaluation result, best wrinkle risk, future wrinkle prediction, wrinkle evaluation data such as charts such as these figures / tables / graphs or images of wrinkle parts;・ Information such as product proposal data such as display columns for single or multiple recommended products (product name, product image, etc.) such as "recommended items from the age" and "recommended items with a wider range" than these. Can be output. The output unit can output, for example, each measurement value input field (numerical value input, color scheme panel selection, etc.), each index value, wrinkle evaluation result, recommended product, etc. to the operator or the target person. The output unit can be realized by, for example, a display unit such as an LCD (Liquid Crystal Display) or an OLED (Organic Light-Emitting Diode).
In addition, the input unit can acquire information such as an item for specifying the target person, an age value of the target person, and a measured value of the skin condition of the target person, which is input by the operator or the target person. The input unit can be realized by, for example, a microphone, a touch sensor, a keyboard, a mouse, a camera, or the like. The input unit can acquire data for evaluating skin wrinkles from, for example, each measurement value input, each color scheme panel image selection, each level selection, each index value selection, and the like.
通信部は、例えばWi-Fi、Bluetooth(登録商標)、LTE(Long Term Evolution)などの通信技術を利用して、情報通信ネットワークを介して通信する機能を有してもよい。コンピュータ例1は、通信I/F(インターフェース)を備えてもよい。 The communication unit may have a function of communicating via an information communication network by using communication technology such as Wi-Fi, Bluetooth (registered trademark), and LTE (LongTermEvolution). Computer example 1 may include a communication I / F (interface).
コンピュータ1は、例えばPC(Personal Computer)1aであってもよいし、サーバ1b、スマートフォン端末1c、タブレット型端末、携帯電話端末、PDA(Personal Digital Assistant)、ウェアラブル端末(HMD:Head Mounted Display、メガネ型HMD、バンド型端末等)であってもよい(図5参照)。これらは、スタンドアローンであってもよいし、ネットワークを介して接続されていてもよい。
The
本発明の方法を実行するプログラムは、コンピュータ1以外のコンピュータ装置又はコンピュータシステムに格納されてもよい。この場合、コンピュータは、このプログラムが有する機能を提供するクラウドサービスを利用することができる(図5参照)。このクラウドサービスとして、例えばSaaS(Software as a Service)、IaaS(Infrastructure as a Service)、PaaS(Platform as a Service)などが挙げられる。
The program that executes the method of the present invention may be stored in a computer device or computer system other than the
さらにこのプログラムは、様々なタイプのコンピュータが可読可能な記録媒体を用いて格納され、コンピュータに供給することができる。コンピュータ可読可能な記録媒体として、例えば、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、Compact Disc Read Only Memory(CD-ROM)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、Programmable ROM(PROM)、Erasable PROM(EPROM)、フラッシュROM、Random Access Memory(RAM))を含む。また、上記プログラムは、様々なタイプのコンピュータ記録媒体によってコンピュータに供給されてもよい。 Furthermore, this program is stored using a recording medium that can be read by various types of computers and can be supplied to the computer. Computer-readable recording media include, for example, magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical disks), CompactDiscReadOnlyMemory (CD-ROM), CD-R. , CD-R / W, including semiconductor memory (eg, mask ROM, Programmable ROM (PROM), Erasable PROM (EPROM), flash ROM, Random Access Memory (RAM)). The program may also be supplied to the computer by various types of computer recording media.
コンピュータ1は、これ以外にも上述した構成を取捨選択したり、他の構成に適宜変更したりできる。
In addition to this, the
コンピュータ1の入力部に、操作者又は対象者が、対象者の年齢の値と、皮膚の明るさの測定値との少なくともこれら2つの値、さらに皮膚の赤みの測定値及び/又は皮膚の皮脂量の測定値の1つ又は2つの値のデータを入力する。制御部が、このようなデータを選択し入力を行ってもよく、このとき制御部は記憶部にアクセスしこれらに関するデータを記憶部から制御部に送信させてもよい。データ入力に際し、数値入力の他、複数ある配色パネル画像からの配色パネル画像の選択、レベルバーなどからのレベル選択を行い、これら画像又はレベルを選択することでこれら画像又はレベルに基づき、制御部は、年齢や各測定値などのデータを得ることができる。
At the input unit of the
例えば、皮膚の明るさの場合、明るさの配色パネル画像のなかから対象者の皮膚の明るさに最も近似する又は同じ色の画像を選択することで、選択された画像データに紐付けされている明るさの測定値が、対象者の明るさの測定値データとして用いられる。また、皮膚の赤みの場合、同様に、赤みの配色パネル画像のなかから対象者の皮膚の赤みに最も近似する又は同じ色の画像を選択することで、選択された画像に紐付けされている赤みの測定値が、対象者の赤みの測定値のデータとして用いられる。また、皮膚の皮脂量の場合、レベルバーなどでレベル選択をすることで、この選択されたレベルの数値が、対象者の皮脂量の測定値のデータとして用いられる。 For example, in the case of skin brightness, by selecting an image that most closely matches or has the same color as the subject's skin brightness from the brightness color scheme panel images, it is linked to the selected image data. The measured value of the existing brightness is used as the measured value data of the brightness of the subject. Similarly, in the case of skin redness, it is associated with the selected image by selecting an image that most closely resembles or has the same color as the subject's skin redness from the redness color scheme panel images. The measured value of redness is used as the data of the measured value of redness of the subject. Further, in the case of the amount of sebum on the skin, by selecting the level with a level bar or the like, the numerical value of the selected level is used as the data of the measured value of the amount of sebum of the subject.
また、各測定値のデータは、コンピュータ1に1種又は2種以上の測定部が備えられている場合、当該測定部から制御部に送信され入力されてもよい。また、コンピュータ1の外部に存在する測定装置2にて対象者を測定し得られた測定値データを、ネットワークを介して、コンピュータ1又はこの制御部に送信し入力してもよい(図5参照)。
Further, when the
これによって、コンピュータ1は、これらのデータから本発明の皮膚のシワ評価方法を用いて、対象者の皮膚のシワの指標値を推定し、対象者のシワ評価結果を得、この評価結果を操作者又は対象者に対してシワ情報として提供することができる。
さらに、コンピュータ1は、皮膚のシワ評価結果に基づき得られたシワ評価データや個人データなどを、出力部に出力することができる。さらに、コンピュータ1は、皮膚のシワ評価結果に基づいた推奨商品を、出力部に出力してもよい。
Thereby, the
Further, the
コンピュータ1は、対象者のシワ評価データとして、例えば、対象者のシワリスクなどを出力し、これら情報を操作者又は対象者に提供することができる。より具体的には、例えば、対象者における現在のシワリスクと最良のシワリスクのパターン(例えば、一次関数のグラフ)、対象者の目指すリスクの減少度合い(例えば、対象者の過去、現在、将来の顔画像)などを出力することができる。さらに、コンピュータ1は、対象者に対する単数又は複数の推奨商品(例えば化粧料や皮膚外用剤など)を、お奨めアイテムとして出力することができる。「お奨めアイテム」の項目として、現状に適した商品を提示するための「今のお奨めアイテム」、将来で適した商品を提示するための「・・・歳から切り替えアイテム」、対象者の商品選択の幅を広げるための「幅を広げたおすすめアイテム」などが挙げられるがこれに限定されず、操作者又は対象者が出力された「お奨めアイテム」の項目を、適宜、切り替えたり、選択できる。
The
コンピュータ例1は、これらの結果のデータを、対象者の個人データとして、対象者を特定する項目のデータに紐づけ又は付属させて記憶部に記憶させておくことができる。これにより、制御部は、記憶部に適宜アクセスして記憶部にあるこれらの結果のデータを種々の目的に利用できる。なお、推奨商品の提案又は提供については、後記「3.本発明に係るシワ改善用組成物の評価又は探索方法」にて説明する。 In computer example 1, the data of these results can be stored in the storage unit as personal data of the target person by associating or attaching to the data of the item that identifies the target person. As a result, the control unit can appropriately access the storage unit and use the data of these results in the storage unit for various purposes. The proposal or provision of the recommended product will be described later in "3. Method for evaluating or searching for a composition for improving wrinkles according to the present invention".
2-2.本発明に関する皮膚のシワ評価の例
本発明に関する皮膚のシワ評価の手順などについて、より具体的に説明するが、本発明の皮膚のシワ評価は、これらに限定されない。当該皮膚のシワ評価の手順の説明は、本発明の皮膚のシワ評価方法、皮膚のシワ評価装置、及び評価システムの動作の説明とすることもできる。
2-2. Example of skin wrinkle evaluation according to the present invention The procedure for skin wrinkle evaluation according to the present invention will be described more specifically, but the skin wrinkle evaluation of the present invention is not limited thereto. The description of the procedure for evaluating skin wrinkles can also be used as a description of the operation of the skin wrinkle evaluation method, the skin wrinkle evaluation device, and the evaluation system of the present invention.
なお、皮膚のシワ評価を行う操作者は、入力部にて、対象者の年齢の値、皮膚の明るさの測定値、対象者を特定する項目(例えば、名前、識別番号など)などの種々のデータを入力してもよい。これにより、入力部から、これらデータが制御部に送信される。
また、予め、操作者の入力により、記憶部において、対象者を特定する項目(例えば、名前、整理番号など)のデータと、対象者の皮膚状態の測定値及び/又は年齢のデータとが紐付けされて記憶されるように構成されていてもよい。制御部は、入力された対象者の特定項目に基づき、これと紐付けされているデータが、記憶部から制御部に送信されるように制御するように構成されていてもよい。
In addition, the operator who evaluates wrinkles on the skin has various items such as the age value of the subject, the measured value of the brightness of the skin, and the items for identifying the subject (for example, name, identification number, etc.) at the input unit. You may enter the data of. As a result, these data are transmitted from the input unit to the control unit.
In addition, the data of the item (for example, name, reference number, etc.) that identifies the target person and the measured value of the skin condition of the target person and / or the data of the age are linked in advance in the storage unit by the input of the operator. It may be configured to be attached and stored. The control unit may be configured to control so that the data associated with the input specific item of the target person is transmitted from the storage unit to the control unit.
また、測定部が対象者の皮膚状態を測定した場合、測定部から測定値のデータが制御部に送信されるように構成されていてもよい。このとき、制御部は、記憶部にて、これらデータを対象者の特定項目と紐解けて一緒に記憶するように構成されていてもよい。 Further, when the measuring unit measures the skin condition of the subject, the measurement unit may be configured to transmit the measured value data to the control unit. At this time, the control unit may be configured to store these data together with the specific item of the target person in the storage unit.
2-2-1.本発明の皮膚のシワ評価に関する実施形態1及び2
本実施形態1及び2として、対象者の年齢の値と、皮膚の明るさの測定値、皮膚の赤みの測定値、皮膚の皮脂量の測定値との4つに基づき、対象者の皮膚のシワの指標値を推定することができる(例えば、図1参照)。
2-2-1. Embodiments 1 and 2 relating to the evaluation of wrinkles on the skin of the present invention
In the first and second embodiments of the present embodiment, the skin of the subject is based on the four values of the age of the subject, the measured value of the brightness of the skin, the measured value of the redness of the skin, and the measured value of the amount of sebum of the skin. The index value of wrinkles can be estimated (see, for example, FIG. 1).
ステップ101において、制御部に、対象者の年齢の値と、皮膚の明るさの測定値、皮膚の赤みの測定値、皮膚の皮脂量の測定値との4つが送信される。
ステップ102において、制御部が、対象者の年齢の値と、皮膚の明るさの測定値、皮膚の赤みの測定値、皮膚の皮脂量の測定値との4つに基づき、対象者の皮膚のシワの指標値を推定する。なお、制御部は、対象者のシワの指標値を出力する。
In
In
本実施形態1aとして、対象者の年齢の値、皮膚の明るさの測定値、皮膚の赤みの測定値、皮膚の皮脂量の測定値のこれら4つ及びシワ予測モデル(下記のシワ予測式1)に基づき、対象者の皮膚のシワの指標値を推定することができる(例えば、図2参照)。
なお、本実施形態2aとして、シワ予測式1をシワ予測式2に代えた以外は本実施形態1aと同様にして、対象者の皮膚のシワの指標値を推定することができる(例えば、図2参照)。
As the
As the present embodiment 2a, the index value of the wrinkles on the skin of the subject can be estimated in the same manner as in the
下記式1に示すシワ予測式1は、「年齢」、「皮膚の明るさ」、「皮膚の赤み」、「皮膚の皮脂量」、「皮脂量と皮膚の赤みの交互作用項」の5つのシワ予測因子から構成されるシワ予測式である。
ステップ101aにおいて、制御部が、シワ予測モデル(下記のシワ予測式1)に、対象者の「年齢の値」、「皮膚の明るさの測定値」、「皮膚の赤みの測定値」、「皮膚の皮脂量の測定値」のこれら4つの値を代入することにより、シワの指標値(シワグレード)を推定することができる(例えば、図2参照)。
ステップ102aにおいて、対象者の将来のシワの状態を予測するために予め設定されている値及びシワ予測式1に基づき、シワ基準値を得ることもできる(例えば、図2参照)。当該予め設定されている値とは、年齢の値、皮膚の明るさの値、皮膚の赤みの値、皮膚の皮脂量の値からなる群から選択される1種又は2種もしくは3種以上であり、制御部は、当該選択された値を、シワ予測式1に代入することで、シワ基準値を得ることができる。対象者の将来のシワの状態を予測するための値は、操作者が適宜代入してもよい。
ステップ103aにおいて、前記シワの指標値と、前記シワ基準値とを対比することで、対象者のスキンケアを提案することができる。
具体的には、シワの指標値が、シワ基準値未満の場合には、対象者に対して、シワ基準値に到達する時期を、シワ改善用組成物の使用開始時期として出力する。シワの指標値が、シワ基準値と同等以上の場合には、対象者に対して、シワ改善用組成物の使用開始する旨の出力を行う。
操作者は、上述のようにして、前記制御部から出力されたシワ指標値、シワ基準値に基づき、スキンケアを提案することもできる。
The
In step 101a, the control unit uses the wrinkle prediction model (
In step 102a, a wrinkle reference value can also be obtained based on a preset value for predicting the future wrinkle state of the subject and the wrinkle prediction formula 1 (see, for example, FIG. 2). The preset value is one, two, or three or more selected from the group consisting of age value, skin brightness value, skin redness value, and skin sebum amount value. Yes, the control unit can obtain the wrinkle reference value by substituting the selected value into the
In step 103a, by comparing the wrinkle index value with the wrinkle reference value, it is possible to propose skin care for the subject.
Specifically, when the wrinkle index value is less than the wrinkle reference value, the time when the wrinkle reference value is reached is output to the subject as the start time of using the wrinkle improving composition. When the wrinkle index value is equal to or higher than the wrinkle reference value, an output is output to the subject to start using the wrinkle improving composition.
As described above, the operator can also propose skin care based on the wrinkle index value and the wrinkle reference value output from the control unit.
<シワ予測式1(式1)> <Wrinkle prediction formula 1 (Formula 1)>
Wrinkle grade i =0.1469×Age
+ 0.7540×Ln(sebum)
+ 0.3270×Skin color a*
+ 0.1654×Mean[Skin color L*]
- 0.1044×[Ln(sebum)×Skin color a*]
- 15.90
+ b0,i
(式1)
b0,i ~N(0, 0.4847)
Final equation for prediction of wrinkle grade in Japanese women aged 22-60 years
Wrinkle grade i = 0.1469 × Age
+ 0.7540 × Ln (sebum)
+ 0.3270 × Skin color a *
+ 0.1654 × Mean [Skin color L *]
- 0.1044 × [Ln (sebum) × Skin color a *]
- 15.90
+ b 0, i
(Equation 1)
b 0, i ~ N (0, 0.4847)
Final equation for prediction of wrinkle grade in Japanese women aged 22-60 years
<シワ予測式2(式2)>
下記式2に示すシワ予測式2は、「年齢」、「皮膚の明るさ」、「皮膚の赤み」、「皮膚の皮脂量」、「皮脂量と皮膚の赤みの交互作用項」の5つのシワ予測因子から構成されるシワ予測式である。なお、上記本実施形態1及び1aで既に述べたことと重複する箇所については、適宜省略する。
シワ予測モデル(シワ予測式2)に、対象者の「年齢」、「皮膚の明るさ」、「皮膚の赤み」、「皮膚の皮脂量」のこれら4つの値を代入することにより、シワの指標値(シワグレード)を推定することができる(例えば、図2参照)。また、当該シワ予測式2に、予め設定されている値(「年齢の値」、「皮膚の明るさの値」、「皮膚の赤みの値」、「皮膚の皮脂量の値」)の4つの値を代入することにより、シワ基準値を得ることもできる(例えば、図2参照)。
本実施形態2aにおいて、上述したシワ予測式1を採用した本実施形態1aと同様に、対象者の将来のシワの状態を予測することができ、対象者のスキンケアを提案することもできる。
<Wrinkle prediction formula 2 (Formula 2)>
The
By substituting these four values of "age", "skin brightness", "skin redness", and "skin sebum amount" of the subject into the wrinkle prediction model (wrinkle prediction formula 2), the wrinkles The index value (wrinkle grade) can be estimated (see, for example, FIG. 2). In addition, 4 of the preset values (“age value”, “skin brightness value”, “skin redness value”, “skin sebum amount value”) in the
In the present embodiment 2a, similarly to the
Wrinkle grade i= 0.1200~0.2053×Age
+ 0.2200~1.280×Ln(sebum)
+ 0.050~0.5710×Skin color a*
+ 0.050~0.4000×Mean[Skin color L*]
- 0.030~0.1800×[Ln(sebum)×Skin color a*]
- 25.00~7.600
(式2)
Wrinkle grade i = 0.1200 ~ 0.2053 × Age
+ 0.2200 ~ 1.280 × Ln (sebum)
+0.050 ~ 0.5710 × Skin color a *
+ 0.050 ~ 0.4000 × Mean [Skin color L *]
- 0.030 ~ 0.1800 × [Ln (sebum) × Skin color a *]
- 25.00-7.600
(Equation 2)
2-2-2.本発明の皮膚のシワ評価に関する実施形態3
本実施形態3として、対象者の年齢と、皮膚の明るさの測定値との少なくともこれら2つに基づき、対象者の皮膚のシワの指標値を推定することができる(例えば、図1参照)。なお、当該実施形態そのもののステップのフローの図を省略するが、当該フローは、図1及び図2を参照することで理解できる。
2-2-2. Embodiment 3 relating to the evaluation of wrinkles on the skin of the present invention
As the third embodiment, it is possible to estimate the index value of wrinkles on the skin of the subject based on at least these two, the age of the subject and the measured value of the brightness of the skin (see, for example, FIG. 1). .. Although the figure of the step flow of the embodiment itself is omitted, the flow can be understood by referring to FIGS. 1 and 2.
ステップ301において、制御部に、対象者の年齢の値と、皮膚の明るさの測定値との少なくとも2つが送信される。
ステップ302において、制御部が、対象者の年齢の値と、皮膚の明るさの測定値との2つに基づき、対象者の皮膚のシワの指標値を推定する。制御部は、対象者のシワの指標値を出力する。
In step 301, at least two values, an age value of the subject and a measured value of skin brightness, are transmitted to the control unit.
In step 302, the control unit estimates the index value of wrinkles on the skin of the subject based on the value of the age of the subject and the measured value of the brightness of the skin. The control unit outputs an index value of wrinkles of the target person.
本実施形態3aとして、対象者の年齢の値と、皮膚の明るさの測定値とのこれら2つ及びシワ予測モデル(下記のシワ予測式3)に基づき、対象者の皮膚のシワの指標値を推定することができる(例えば、図2参照)。
下記式3に示すシワ予測式3は、「年齢」、「皮膚の明るさ」、の2つのシワ予測因子から構成されるシワ予測式である。なお、上記実施形態1~実施形態2で既に述べたことと重複する箇所については、適宜省略する。
ステップ301aにおいて、制御部が、シワ予測モデル(下記のシワ予測式3)に、対象者の「年齢の値」と、「皮膚の明るさの測定値」とのこれら2つの値を代入することにより、シワの指標値(シワグレード)を推定することができる(例えば、図2参照)。また、当該シワ予測式3に、予め設定されている値(「年齢の値」、「皮膚の明るさの値」)の2つの値を代入することにより、シワ基準値を得ることもできる(例えば、図2参照)。
上記実施形態1~実施形態2と同様に、対象者の将来のシワの状態を予測することができ、対象者のスキンケアを提案することもできる。
As the present embodiment 3a, an index value of wrinkles on the skin of the subject is based on these two values of the age value of the subject and the measured value of the brightness of the skin and a wrinkle prediction model (wrinkle prediction formula 3 below). Can be estimated (see, for example, FIG. 2).
The wrinkle prediction formula 3 shown in the following formula 3 is a wrinkle prediction formula composed of two wrinkle prediction factors, "age" and "skin brightness". It should be noted that the parts that overlap with those already described in the above-described first to second embodiments will be omitted as appropriate.
In step 301a, the control unit substitutes these two values of the subject's "age value" and "skin brightness measurement value" into the wrinkle prediction model (wrinkle prediction formula 3 below). Therefore, the index value (wrinkle grade) of wrinkles can be estimated (see, for example, FIG. 2). Further, the wrinkle reference value can be obtained by substituting the two values of the preset values (“age value” and “skin brightness value”) into the wrinkle prediction formula 3 (“wrinkle reference value”). For example, see FIG. 2).
Similar to the above-described first to second embodiments, the future wrinkle state of the subject can be predicted, and skin care of the subject can be proposed.
<シワ予測式3(式3)> <Wrinkle prediction formula 3 (Formula 3)>
Wrinkle grade i = 0.1484×Age
+ 0.1844×Mean[Skin color L*]
- 14.80
(式3)
Wrinkle grade i = 0.1484 × Age
+ 0.1844 × Mean [Skin color L *]
- 14.80
(Equation 3)
2-2-3.本発明の皮膚のシワ評価に関する実施形態4
本実施形態4として、対象者の年齢の値と、皮膚の明るさの測定値、皮膚の皮脂量の測定値との3つに基づき、対象者の皮膚のシワの指標値を推定することができる(例えば、図1参照)。なお、当該実施形態そのもののステップのフローの図を省略するが、当該フローは、図1及び図2を参照することで理解できる。
2-2-3. Embodiment 4 relating to the evaluation of wrinkles on the skin of the present invention
As the fourth embodiment, it is possible to estimate the index value of wrinkles on the skin of the subject based on the three values of the age of the subject, the measured value of the brightness of the skin, and the measured value of the amount of sebum of the skin. Yes (see, for example, Figure 1). Although the figure of the step flow of the embodiment itself is omitted, the flow can be understood by referring to FIGS. 1 and 2.
ステップ401において、制御部に、対象者の年齢の値と、皮膚の明るさの測定値、皮膚の皮脂量の測定値の少なくとも3つが送信される。
ステップ402において、制御部が、対象者の年齢の値と、皮膚の明るさの測定値、皮膚の皮脂量の測定値との3つに基づき、対象者の皮膚のシワの指標値を推定する。制御部は、対象者のシワの指標値を出力する。
In step 401, at least three values of the age value of the subject, the measured value of the skin brightness, and the measured value of the amount of sebum of the skin are transmitted to the control unit.
In step 402, the control unit estimates the index value of the skin wrinkles of the subject based on the three values of the age value of the subject, the measured value of the skin brightness, and the measured value of the sebum amount of the skin. .. The control unit outputs an index value of wrinkles of the target person.
本実施形態4aとして、対象者の年齢の値と、皮膚の明るさの測定値、皮膚の皮脂量の測定値とのこれら3つ及びシワ予測モデル(下記のシワ予測式4)に基づき、対象者の皮膚のシワの指標値を推定することができる(例えば、図2参照)。
下記式4に示すシワ予測式4は、「年齢」、「皮膚の明るさ」、「皮膚の皮脂量」の3つのシワ予測因子から構成されるシワ予測式である。なお、上記実施形態1~実施形態3で既に述べたことと重複する箇所については、適宜省略する。
ステップ401aにおいて、制御部が、シワ予測モデル(下記のシワ予測式3)に、対象者の「年齢の値」、「皮膚の明るさの値」、「皮膚の皮脂量の値」のこれら3つの値を代入することにより、シワの指標値(シワグレード)を推定することができる。また、当該シワ予測式4に、予め設定されている値(「年齢の値」、「皮膚の明るさの値」、「皮膚の皮脂量の値」)の3つの値を代入することにより、シワ基準値を得ることもできる(例えば、図2参照)。
上記実施形態1~実施形態3と同様に、対象者の将来のシワの状態を予測することができ、対象者のスキンケアを提案することもできる。
As the present embodiment 4a, the target is based on these three values of the age value of the subject, the measured value of the skin brightness, the measured value of the sebum amount of the skin, and the wrinkle prediction model (wrinkle prediction formula 4 below). It is possible to estimate the index value of wrinkles on a person's skin (see, for example, FIG. 2).
The wrinkle prediction formula 4 shown in the following formula 4 is a wrinkle prediction formula composed of three wrinkle prediction factors of "age", "skin brightness", and "skin sebum amount". It should be noted that the parts that overlap with those already described in the above-described first to third embodiments will be omitted as appropriate.
In step 401a, the control unit uses the wrinkle prediction model (wrinkle prediction formula 3 below) to indicate the subject's "age value", "skin brightness value", and "skin sebum amount value". By substituting one value, the wrinkle index value (wrinkle grade) can be estimated. Further, by substituting the three values of the preset values (“age value”, “skin brightness value”, and “skin sebum amount value”) into the wrinkle prediction formula 4, the wrinkle prediction formula 4 is substituted. A wrinkle reference value can also be obtained (see, for example, FIG. 2).
Similar to the above-described first to third embodiments, the future wrinkle state of the subject can be predicted, and skin care of the subject can be proposed.
<シワ予測式4(式4)> <Wrinkle prediction formula 4 (Formula 4)>
Wrinkle grade i = 0.1504×Age
+ 0.1880×Mean[Skin color L*]
+0.044×Ln(sebum)
- 15.28
(式4)
Wrinkle grade i = 0.1504 × Age
+ 0.1880 × Mean [Skin color L *]
+0.044 × Ln (sebum)
- 15.28
(Equation 4)
2-2-4.本発明の皮膚のシワ評価に関する実施形態5
本実施形態5として、対象者の年齢の値と、皮膚の明るさの測定値、皮膚の皮脂量の測定値、皮膚の赤みの測定値とのこれら4つに基づき、対象者の皮膚のシワの指標値を推定することができる(例えば、図1参照)。なお、当該実施形態そのもののステップのフローの図を省略するが、当該フローは、図1及び図2を参照することで理解できる。
2-2-4. Embodiment 5 relating to the evaluation of wrinkles on the skin of the present invention
As the fifth embodiment, wrinkles on the skin of the subject are based on these four values of the age of the subject, the measured value of the brightness of the skin, the measured value of the amount of sebum of the skin, and the measured value of the redness of the skin. The index value of can be estimated (see, for example, FIG. 1). Although the figure of the step flow of the embodiment itself is omitted, the flow can be understood by referring to FIGS. 1 and 2.
ステップ501において、制御部に、対象者の年齢の値と、皮膚の明るさの測定値、皮膚の皮脂量の測定値、皮膚の赤みの測定値との4つが送信される。
ステップ502において、制御部が、対象者の年齢の値と、皮膚の明るさの測定値、皮膚の皮脂量の測定値、皮膚の赤みの測定値との4つに基づき、対象者の皮膚のシワの指標値を推定する。制御部は、対象者のシワの指標値を出力する。
In step 501, four transmissions are transmitted to the control unit: the age value of the subject, the measured value of the skin brightness, the measured value of the sebum amount of the skin, and the measured value of the redness of the skin.
In step 502, the control unit determines the skin of the subject based on the four values of the age of the subject, the measured value of the brightness of the skin, the measured value of the amount of sebum of the skin, and the measured value of the redness of the skin. Estimate the wrinkle index value. The control unit outputs an index value of wrinkles of the target person.
本実施形態5aとして、対象者の年齢の値と、皮膚の明るさの測定値、皮膚の皮脂量の測定値、皮膚の赤みの測定値とのこれら4つ及びシワ予測モデル(下記のシワ予測式5)に基づき、対象者の皮膚のシワの指標値を推定することができる(例えば、図2参照)。
下記式5に示すシワ予測式5は、「年齢」、「皮膚の皮脂量」、「皮膚の赤み」、「皮膚の明るさ」の4つのシワ予測因子から構成されるシワ予測式である。なお、上記実施形態1~実施形態4で既に述べたことと重複する箇所については、適宜省略する。
ステップ501aにおいて、制御部が、シワ予測モデル(下記のシワ予測式5)に、対象者の「年齢の値」、「皮膚の皮脂量の測定値」、「皮膚の赤みの測定値」、「皮膚の明るさの測定値」のこれら4つの値を代入することにより、シワの指標値(シワグレード)を推定することができる(例えば、図2参照)。
また、当該シワ予測式5に、予め設定されている値(「年齢の値」、「皮膚の皮脂量の値」、「皮膚の赤みの値」、「皮膚の明るさの値」)の4つの値を代入することにより、シワ基準値を得ることもできる(例えば、図2参照)。
上記実施形態1~実施形態4と同様に、対象者の将来のシワの状態を予測することができ、対象者のスキンケアを提案することもできる。
As the present embodiment 5a, these four values of the subject's age value, a measured value of skin brightness, a measured value of sebum amount of skin, and a measured value of redness of skin and a wrinkle prediction model (the following wrinkle prediction model). Based on the formula 5), the index value of the wrinkles on the skin of the subject can be estimated (see, for example, FIG. 2).
The wrinkle prediction formula 5 shown in the following formula 5 is a wrinkle prediction formula composed of four wrinkle prediction factors of "age", "skin oil content", "skin redness", and "skin brightness". It should be noted that the parts that overlap with those already described in the above-described first to fourth embodiments will be omitted as appropriate.
In step 501a, the control unit uses the wrinkle prediction model (wrinkle prediction formula 5 below) to indicate the subject's "age value", "skin sebum amount measurement value", "skin redness measurement value", and "skin redness measurement value". By substituting these four values of "measured value of skin brightness", the index value (wrinkle grade) of wrinkles can be estimated (see, for example, FIG. 2).
In addition, 4 of the preset values (“age value”, “skin sebum amount value”, “skin redness value”, “skin brightness value”) in the wrinkle prediction formula 5. A wrinkle reference value can also be obtained by substituting two values (see, for example, FIG. 2).
Similar to the above-described first to fourth embodiments, the future wrinkle state of the subject can be predicted, and skin care of the subject can be proposed.
<シワ予測式5(式5)> <Wrinkle prediction formula 5 (Formula 5)>
Wrinkle grade i = 0.1460×Age
+ 0.035×Ln(sebum)
+ 0.013×Skin color a*
+ 0.1812×Mean[Skin color L*]
(式5)
Wrinkle grade i = 0.1460 × Age
+ 0.035 × Ln (sebum)
+ 0.013 × Skin color a *
+ 0.1812 × Mean [Skin color L *]
(Equation 5)
2-2-5.本発明の皮膚のシワ評価に関する実施形態6
本実施形態6として、対象者の年齢の値と、皮膚の明るさの測定値、皮膚の皮脂量の測定値、皮膚の赤みの測定値とのこれら4つに基づき、対象者の皮膚のシワの指標値を推定することができる(例えば、図1~図3参照)。本実施形態6のシワ予測モデルに、対象者の年齢の値及び皮膚の明るさの測定値の2つの値を用いることにより、対象者の皮膚のシワの指標値を推定することができる。より具体的には、本実施形態6は、対象者の皮膚の明るさの測定値に基づき、皮膚が明るめか暗めかの判別を行い、対象者の皮膚の明るさの状態(明るめ及び暗め)によって場合分けをし、それぞれで皮膚のシワの評価について判別することで、より精度良く対象者に適したスキンケアを提案することができる。
なお、上記実施形態1~実施形態5で既に述べたことと重複する箇所については、適宜省略するが、上記実施形態1~実施形態5の構成を適宜適用することができる。
2-2-5. Embodiment 6 relating to the evaluation of wrinkles on the skin of the present invention
As the sixth embodiment, wrinkles on the skin of the subject are based on these four values of the age of the subject, the measured value of the brightness of the skin, the measured value of the amount of sebum of the skin, and the measured value of the redness of the skin. The index value of can be estimated (see, for example, FIGS. 1 to 3). By using the two values of the age value of the subject and the measured value of the skin brightness in the wrinkle prediction model of the sixth embodiment, the index value of the wrinkles of the skin of the subject can be estimated. More specifically, in the sixth embodiment, it is determined whether the skin is light or dark based on the measured value of the skin brightness of the subject, and the state of the brightness of the skin of the subject (bright and dark). By classifying the cases according to the case and determining the evaluation of skin wrinkles in each case, it is possible to propose skin care suitable for the subject more accurately.
Although the parts that overlap with those already described in the first to fifth embodiments are omitted as appropriate, the configurations of the first to fifth embodiments can be appropriately applied.
<皮膚が明るめか暗めかの判別>
ステップ601において、制御部は、皮膚の明るさの測定値により、対象者の皮膚が明るめか暗めかを判別する。具体的には、制御部は、対象者の皮膚の明るさの測定値が、皮膚の明るさの基準値と対比する。当該皮膚の明るさの基準値は、適宜設定することができ、例えば、一般的なヒト(好ましくは女性、特に黄色人種(モンゴロイド人種))の皮膚の明るさの平均値であってもよい。
対象者の皮膚の明るさが、皮膚の明るさの基準値以上である場合には(Yes)、対象者の皮膚が明るめと判別し、それ以外(すなわち、所定未満の場合)には(No)、対象者の皮膚が暗めと判別することができる(例えば、図3参照)。
<Determining whether the skin is light or dark>
In step 601 the control unit determines whether the subject's skin is light or dark based on the measured value of the skin brightness. Specifically, the control unit compares the measured value of the skin brightness of the subject with the reference value of the skin brightness. The reference value of the skin brightness can be appropriately set, for example, even if it is the average value of the skin brightness of a general human (preferably a female, particularly a yellow race (Mongoloid race)). good.
If the subject's skin brightness is equal to or higher than the skin brightness reference value (Yes), it is determined that the subject's skin is bright, and otherwise (that is, if it is less than the predetermined value) (No). ), The subject's skin can be determined to be dark (see, for example, FIG. 3).
<皮膚が明るめの場合(S602~S607)>
ステップ602において、制御部が、対象者の皮膚が明るめ(Yes)と判別した場合には、シワ予測式6を選択する。
制御部は、対象者が明るめの皮膚である場合、シワ予測式6に、その対象者の「年齢の値」、「皮膚の赤みの測定値」、「皮膚の皮脂量の測定値」のこれら3つの値を代入することにより、シワの指標値(シワグレード)を推定することができる。
<When the skin is light (S602 to S607)>
In step 602, when the control unit determines that the skin of the subject is bright (Yes), the wrinkle prediction formula 6 is selected.
When the subject has light skin, the control unit uses the wrinkle prediction formula 6 to indicate the subject's "age value", "skin redness measurement value", and "skin sebum amount measurement value". By substituting the three values, the wrinkle index value (wrinkle grade) can be estimated.
ステップ603において、制御部は、ステップ602とは別に、将来のシワの状態を予測するための値及びシワ予測式6に基づき、明るめの皮膚のシワ基準値を得ることができる。具体的には、対象者の将来のシワの状態を予測するための各皮膚状態の値を選択し、選択された値をシワ予測式6に代入することができる。各値については、操作者が入力してもよい。 In step 603, the control unit can obtain a wrinkle reference value for bright skin based on the value for predicting the future wrinkle state and the wrinkle prediction formula 6 separately from step 602. Specifically, the value of each skin condition for predicting the future wrinkle condition of the subject can be selected, and the selected value can be substituted into the wrinkle prediction formula 6. The operator may input each value.
ステップ604において、制御部は、ステップ603とは別に、将来のシワの状態を予測するための値及びシワ予測式1又はシワ予測式2に基づき、標準的な皮膚のシワ基準値を得ることができる。具体的には、標準的なヒトを表している前記シワ予測式1を用いて、上述した実施形態1及び2と同様にして、将来のシワの状態を予測するための値及びシワ予測式1又は2に基づき、標準的な皮膚のシワ基準値を得ることもできる。各値については、操作者が入力してもよい。
In step 604, apart from step 603, the control unit may obtain a standard skin wrinkle reference value based on the value for predicting the future wrinkle state and the
なお、ステップ604がある場合には、ステップ603をスキップしてもよく、この場合には、制御部は、シワ指標値と、標準的な皮膚のシワ基準値との対比になる。また、ステップ603がある場合には、ステップ604をスキップしてもよく、この場合には、制御部は、シワ指標値と、明るめの皮膚のシワ基準値との対比になる。 If there is step 604, step 603 may be skipped. In this case, the control unit compares the wrinkle index value with the standard skin wrinkle reference value. If there is step 603, step 604 may be skipped. In this case, the control unit compares the wrinkle index value with the wrinkle reference value of bright skin.
ステップ605において、制御部は、明るめのシワ基準値及び/又は標準的シワ基準値と、シワの指標値を対比する。これにより、明るめの皮膚の対象者のスキンケアを提案することができる。
具体的には、ステップ606において、シワの指標値が、前記シワ基準値未満の場合には、対象者に対して、シワ基準値に到達する時期を、シワ改善用組成物の使用開始時期として出力する。
ステップ607において、シワの指標値が、前記シワ基準値と同等以上の場合には、対象者に対して、シワ改善用組成物の使用開始する旨の出力を行う。
In step 605, the control unit compares the bright wrinkle reference value and / or the standard wrinkle reference value with the wrinkle index value. This makes it possible to propose skin care for subjects with bright skin.
Specifically, in step 606, when the wrinkle index value is less than the wrinkle reference value, the time when the wrinkle reference value is reached for the subject is set as the start time of using the wrinkle improving composition. Output.
In step 607, when the wrinkle index value is equal to or higher than the wrinkle reference value, an output is output to the subject to start using the wrinkle improving composition.
予測式6及び7から、皮膚が明るめの場合には、シワになりやすい傾向が認められる。このため、明るめのシワ基準値を採用することで、皮膚が明るめの対象者に対して、シワの予防又は改善などが行いやすい。
操作者は、上述のようにして、前記制御部から出力されたシワ指標値、シワ基準値に基づき、スキンケアを提案することもできる。
From the prediction formulas 6 and 7, when the skin is light, there is a tendency for wrinkles to occur easily. Therefore, by adopting a bright wrinkle reference value, it is easy to prevent or improve wrinkles for a subject with bright skin.
As described above, the operator can also propose skin care based on the wrinkle index value and the wrinkle reference value output from the control unit.
<皮膚が暗めの場合(S608~S613)>
ステップ608において、制御部が、対象者が明るめの皮膚ではない(No)(すなわち、対象者の皮膚が暗め)と判別した場合には、シワ予測式7を選択する。
制御部は、対象者が暗めの皮膚である場合、シワ予測式7に、その対象者の「年齢の値」、「皮膚の赤みの測定値」、「皮膚の皮脂量の測定値」のこれら3つの値を代入することにより、シワの指標値(シワグレード)を推定することができる。
<When the skin is dark (S608-S613)>
In step 608, when the control unit determines that the subject does not have light skin (No) (that is, the subject's skin is dark), the wrinkle prediction formula 7 is selected.
When the subject has dark skin, the control unit uses the wrinkle prediction formula 7 to indicate the subject's "age value", "skin redness measurement value", and "skin sebum amount measurement value". By substituting the three values, the wrinkle index value (wrinkle grade) can be estimated.
ステップ609において、制御部は、ステップ608とは別に、対象者の将来のシワの状態を予測するための値及びシワ予測式7に基づき、暗めの皮膚のシワ基準値を得ることができる。具体的には、対象者の将来のシワの状態を予測するための各皮膚状態の値を選択し、選択された値をシワ予測式7に代入することができる。各値については、操作者が入力してもよい。 In step 609, the control unit can obtain a wrinkle reference value for dark skin based on the value for predicting the future wrinkle state of the subject and the wrinkle prediction formula 7 separately from step 608. Specifically, the value of each skin condition for predicting the future wrinkle condition of the subject can be selected, and the selected value can be substituted into the wrinkle prediction formula 7. The operator may input each value.
ステップ610において、制御部は、ステップ609とは別に、上述したステップ603と同様の動作を行い、標準的な皮膚のシワ基準値を得ることもできる。 In step 610, the control unit can perform the same operation as step 603 described above separately from step 609 to obtain a standard skin wrinkle reference value.
なお、ステップ609がある場合には、ステップ610をスキップしてもよく、この場合には、制御部は、シワ指標値と、標準的な皮膚のシワ基準値との対比になる。また、ステップ610がある場合には、ステップ609をスキップしてもよく、この場合には、制御部は、シワ指標値と、明るめの皮膚のシワ基準値との対比になる。 If there is step 609, step 610 may be skipped. In this case, the control unit compares the wrinkle index value with the standard skin wrinkle reference value. If there is step 610, step 609 may be skipped. In this case, the control unit compares the wrinkle index value with the wrinkle reference value of bright skin.
ステップ611において、制御部は、暗めのシワ基準値及び/又は標準的シワ基準値と、シワの指標値を対比する。これにより、暗めの皮膚の対象者のスキンケアを提案することができる。
具体的には、ステップ612において、シワの指標値が、前記シワ基準値未満の場合には、対象者に対して、シワ基準値に到達する時期を、シワ改善用組成物の使用開始時期として出力する。
ステップ613において、シワの指標値が、前記シワ基準値と同等以上の場合には、対象者に対して、シワ改善用組成物の使用開始する旨の出力を行う。
In step 611, the control unit compares the dark wrinkle reference value and / or the standard wrinkle reference value with the wrinkle index value. This makes it possible to propose skin care for subjects with dark skin.
Specifically, in step 612, when the wrinkle index value is less than the wrinkle reference value, the time when the wrinkle reference value is reached for the subject is set as the start time of using the wrinkle improving composition. Output.
In step 613, when the wrinkle index value is equal to or higher than the wrinkle reference value, an output is output to the subject to start using the wrinkle improving composition.
予測式6及び7から、皮膚が明るめの場合には、シワになりやすい傾向が認められる。このため、標準的なシワ基準値を採用することで、皮膚が暗めの対象者に対して、シワの予防又は改善などが行いやすい。
操作者は、上述のようにして、前記制御部から出力されたシワ指標値、シワ基準値に基づき、スキンケアを提案することもできる。
From the prediction formulas 6 and 7, when the skin is light, there is a tendency for wrinkles to occur easily. Therefore, by adopting a standard wrinkle reference value, it is easy to prevent or improve wrinkles for a subject with dark skin.
As described above, the operator can also propose skin care based on the wrinkle index value and the wrinkle reference value output from the control unit.
対象者が明るめの皮膚の場合に適用することができるシワ予測式6は、「年齢」、「皮膚の赤み」、「皮膚の皮脂量」、「皮脂量と皮膚の赤みの交互作用項」の4つのシワ予測因子から構成することが望ましい。一方、対象者が暗めの皮膚の場合は「年齢」、「皮膚の赤み」、「皮膚の皮脂量」の3つのシワ予測因子から構成されるシワ予測式7であることが望ましい。これらシワ予測式を用いるとき、対象者は、「年齢」の値と、その年齢における「皮膚の明るめ」、「皮膚の赤み」、及び「皮膚の皮脂量」の測定値とを有することが望ましい。
それぞれのシワ予測式は、<1-4-2.シワ予測モデルの作製方法>にて得ることができ、また、後記〔実施例〕の試験例1で得られたデータを用いて得ることができる。
The wrinkle prediction formula 6 that can be applied to the subject with light skin is the "age", "skin redness", "skin sebum amount", and "interaction term between sebum amount and skin redness". It is desirable to consist of four wrinkle predictors. On the other hand, when the subject has dark skin, it is desirable that the wrinkle prediction formula 7 is composed of three wrinkle predictors of "age", "skin redness", and "skin sebum amount". When using these wrinkle prediction formulas, it is desirable that the subject has a value of "age" and a measured value of "skin lightening", "skin redness", and "skin sebum amount" at that age. ..
Each wrinkle prediction formula is <1-4-2. It can be obtained by the method for producing a wrinkle prediction model>, and can also be obtained by using the data obtained in Test Example 1 described later [Example].
3.本発明に係るシワ改善用組成物の評価又は探索方法
以下に、本発明のシワ改善用組成物の評価又は探索方法の実施形態を説明する。本実施形態の説明において、上述した「1.」及び「2.」と重複する各構成、評価方法などの説明について適宜省略するが、当該「1.」及び「2.」の説明が本実施形態にも当てはまり、適宜採用することができる。なお、本実施形態において、上述した皮膚のシワ評価及びシワ予測モデル(例えばシワ予測式1~7など)などを適宜採用することができる。
3. 3. Method for evaluating or searching for a wrinkle-improving composition according to the present invention Hereinafter, an embodiment of the method for evaluating or searching for a wrinkle-improving composition of the present invention will be described. In the description of the present embodiment, the description of each configuration, the evaluation method, etc. that overlaps with the above-mentioned "1." and "2." will be omitted as appropriate, but the description of the "1." and "2." It also applies to the form and can be adopted as appropriate. In this embodiment, the above-mentioned skin wrinkle evaluation and wrinkle prediction model (for example,
本発明は、上記「1.」及び「2.」で説明したシワ評価方法を用いて、被験物質を投与された対象者の皮膚のシワ指標値を推定する工程、及び
当該推定された対象者の皮膚のシワ指標値が、投与前の対象者の皮膚のシワ指標値よりも、低い場合に、被験物質をシワ改善用と判別する工程、を含む、シワ改善用組成物の評価又は探索方法を提供することができる。
これにより、簡便に精度良く対象者のシワ指標値を推定できるため、対象者ごとに適したシワ改善用組成物を、より簡便により精度よく評価又は探索することができる。本発明のシワ改善用組成物の評価又は探索方法において、本発明のカメラ付きモバイル端末を用いることが、継続して細やかに記録することができ、簡便でもあるので、好ましい。
The present invention uses the wrinkle evaluation method described in "1." and "2." above to estimate the wrinkle index value of the skin of the subject to whom the test substance is administered, and the estimated subject. A method for evaluating or searching for a wrinkle-improving composition, which comprises a step of determining a test substance for wrinkle-improving when the skin wrinkle index value of the subject is lower than the skin wrinkle index value of a subject before administration. Can be provided.
As a result, the wrinkle index value of the subject can be estimated easily and accurately, so that the wrinkle improving composition suitable for each subject can be evaluated or searched more easily and accurately. In the method for evaluating or searching for a composition for improving wrinkles of the present invention, it is preferable to use the mobile terminal with a camera of the present invention because it is possible to continuously record finely and it is also convenient.
前記被験物質は、特に限定されないが、シワの予防、改善又は治療のための組成物として市販されている市販品であってもよい。市販品であっても、効能の程度に個人間差が生じるため、本発明であれば、個人に適した市販品を選択することができる。また、前記被験物質は、シワの予防、改善又は治療が期待できる新規又は既知の物質であってもよく、これによって、より適したシワ予防、改善又は治療用の物質を検索し選択することができる。
前記投与とは、経口投与又は非経口投与(例えば、注射、塗布など)のいずれでも良いが、塗布が好適である。
投与時期は、適宜投与時期を選択することができ、1日1回投与されてもよく又は1日複数回に分けて投与されてもよく、また、数日又は数週間に1回投与されてもよい。
The test substance is not particularly limited, but may be a commercially available product commercially available as a composition for preventing, improving or treating wrinkles. Even if it is a commercially available product, the degree of efficacy varies between individuals. Therefore, according to the present invention, a commercially available product suitable for an individual can be selected. In addition, the test substance may be a new or known substance that can be expected to prevent, improve or treat wrinkles, whereby a more suitable substance for preventing, improving or treating wrinkles can be searched for and selected. can.
The administration may be either oral administration or parenteral administration (for example, injection, application, etc.), but application is preferable.
The administration time can be appropriately selected, and may be administered once a day, divided into multiple times a day, or once every few days or weeks. May be good.
また、本発明は、上記「1.」及び「2.」で説明したシワ評価方法を用いて、対象者の皮膚のシワ指標値を推定する工程、及び
当該推定された対象者の皮膚のシワ指標値に基づき、単数又は複数のシワ改善用組成物を判別する工程、を含む、シワ改善用組成物の提供方法を提供することができる。これにより、当該シワ指標値に対応するシワ改善用組成物を判別することができ、対象者に適したシワ改善用組成物を提案又は提供することができる。さらに、判別されたシワ改善用組成物を出力部にて出力する工程がさらに含まれることが好適である。なお、出力されたシワ改善用組成物を対象者に対して提案又は提供することを、操作者が行ってもよいし、制御部が行ってもよい。
Further, the present invention uses the wrinkle evaluation method described in "1." and "2." above to estimate the wrinkle index value of the skin of the subject, and the estimated wrinkle of the skin of the subject. It is possible to provide a method for providing a wrinkle improving composition, which comprises a step of discriminating a single or a plurality of wrinkle improving compositions based on an index value. Thereby, the wrinkle improving composition corresponding to the wrinkle index value can be discriminated, and the wrinkle improving composition suitable for the subject can be proposed or provided. Further, it is preferable to further include a step of outputting the determined wrinkle improving composition at the output unit. The operator may propose or provide the output wrinkle improving composition to the subject, or the control unit may perform it.
シワ改善用組成物は、シワ予防用やシワ治療用の組成物であってもよく、特に限定されず、商品であってもよい。
各シワ改善用組成物のデータには、各シワ改善用組成物にて対応可能な皮膚のシワ指標値のデータが特定のデータに紐付け又は付属されていてもよい。当該対応可能な皮膚のシワ指標値は、シワ改善用組成物の公知の効能に基づき、又は上記本発明のシワ改善用組成物の評価又は探索方法による結果に基づき、得ることができる。シワ改善用組成物のデータに対応可能な皮膚のシワ指標値のデータを紐付け又は付属させることで、対象者の皮膚のシワ状態(例えばシワ指標値、シワグレードなど)に対応するシワ改善用組成物を、より簡便により精度よく検索でき、検索されたシワ改善用組成物の情報を対象者により簡便により精度よく提供することができる。これにより、対象者の皮膚のシワ状態により適したシワ改善用組成物の情報を提案又は提供することができる。
The composition for improving wrinkles may be a composition for preventing wrinkles or treating wrinkles, and may be a commercial product without particular limitation.
In the data of each wrinkle improving composition, the data of the wrinkle index value of the skin corresponding to each wrinkle improving composition may be associated with or attached to the specific data. The corresponding skin wrinkle index value can be obtained based on the known efficacy of the wrinkle improving composition or based on the result of the evaluation or searching method for the wrinkle improving composition of the present invention. For wrinkle improvement corresponding to the wrinkle state (for example, wrinkle index value, wrinkle grade, etc.) of the subject's skin by associating or attaching the data of the wrinkle index value of the skin corresponding to the data of the composition for wrinkle improvement. The composition can be searched more easily and accurately, and the searched information on the wrinkle-improving composition can be provided more easily and accurately to the subject. Thereby, it is possible to propose or provide information on a wrinkle improving composition more suitable for the wrinkle condition of the skin of the subject.
また、各シワ改善用組成物のデータは、各シワ改善用組成物にて対応可能な皮膚のシワ指標値データに基づき、所定の範囲ごとにグループ化されてもよい。制御部が、各シワ改善用組成物のデータに付された対応可能なシワ指標値のデータに基づき、グループ化してもよい。所定の範囲ごとのグループ化は、シワグレードの標準表の区分に従って行うことができ、例えば、シワグレード3~4:シワ改善用組成物A,B,Cなど、シワグレード4~5:シワ組成物D,Fなど、シワグレード5~6:シワ改善用組成物G,H,i,Jなど、シワグレード6~7:シワ改善用組成物O,Pなどが挙げられ、各組成物のデータには、対応可能なシワ指標値(例えば4.5や6.7など)のデータが付されていてもよい。所定の範囲ごとの間隔は、特に限定されず、1又は0.5刻み間隔であってもよく、例えば、0、1、2、3、4、5、6、7の1刻みの8段階であってもよい。グループ化により、対象者の皮膚のシワ状態に対応するシワ改善用組成物を含むグループの単数又は複数の情報を、より簡便により精度よく操作者又は対象者に対して提案又は提供することができる。
シワ改善用組成物のデータ、対応可能なシワ指標値データ及びグループデータなどのシワ改善用組成物に関する各種データは、記憶部に記憶されていてもよい。
Further, the data of each wrinkle improving composition may be grouped by a predetermined range based on the wrinkle index value data of the skin that can be dealt with by each wrinkle improving composition. The control unit may group based on the data of the corresponding wrinkle index values attached to the data of each wrinkle improving composition. Grouping by predetermined range can be performed according to the division of the wrinkle grade standard table, for example, wrinkle grades 3 to 4: wrinkle improving compositions A, B, C, etc., wrinkle grades 4 to 5: wrinkle composition. Wrinkle grades 5 to 6: wrinkle improving compositions G, H, i, J and the like, wrinkle grades 6 to 7: wrinkle improving compositions O and P, etc., and data of each composition. May be attached with data of a wrinkle index value (for example, 4.5 or 6.7) that can be dealt with. The interval for each predetermined range is not particularly limited, and may be an interval of 1 or 0.5, for example, in 8 steps of 0, 1, 2, 3, 4, 5, 6, and 7. There may be. By grouping, it is possible to propose or provide information on a single group or a plurality of groups including a composition for improving wrinkles corresponding to the wrinkle state of the skin of the subject to the operator or the subject more easily and accurately. ..
Various data related to the wrinkle improving composition such as wrinkle improving composition data, compatible wrinkle index value data, and group data may be stored in the storage unit.
また、操作者又は対象者に対して提案又は提供されるシワ改善用組成物は、対象者の現状又は将来のシワグレードに対応するシワ改善用組成物であってもよい。例えば、制御部が、対象者の皮膚のシワ指標値に基づき、これと同等又はそれ以上(より好適には同等又はそれより段階が1つ上)の単数又は複数のシワ改善用組成物又はグループを、判別すること、そして、操作者又は対象者に対して、判別された単数又は複数のシワ改善用組成物又はグループの情報を、出力、提案又は提供することができる。制御部は、判別されたシワ改善用組成物又はグループの情報を、対象者の「今のお奨めアイテム」として提案又は提供することができる。 Further, the wrinkle improving composition proposed or provided to the operator or the target person may be a wrinkle improving composition corresponding to the current or future wrinkle grade of the target person. For example, the control unit may use a single or multiple wrinkle-improving compositions or groups equal to or higher than this (more preferably equivalent or one step higher) based on the wrinkle index value of the subject's skin. And can output, propose or provide to the operator or subject the information of the identified single or multiple wrinkle-relieving compositions or groups. The control unit can propose or provide the information of the identified wrinkle improving composition or group as the "currently recommended item" of the subject.
また、制御部は、対象者における皮膚のシワ指標値及びシワ予測モデルに基づき、対象者の将来の皮膚のシワ指標値を得、先程と同様にして、対象者における将来の皮膚のシワ指標値に基づき、この将来のシワ指標値と同等又はそれ以上(より好適には同等又はそれより段階が1つ上)のシワ改善用組成物又はグループの情報を、将来のシワ改善用組成物として、操作者又は対象者に対して出力、提案又は提供することができる。制御部は、判別されたシワ改善用組成物又はグループを、対象者の「・・・歳からの切り替えアイテム」といった「将来のお奨めアイテム」とすることができる。また、制御部は、「対象者の皮膚のシワ指標値と同等又はそれ以上(より好適には同等又はそれより段階が1つ上)」について、当該段階をさらに上1段階~下1段階などと段階の幅を広げることによって、提案又は提供されるシワ改善用組成物の情報の幅が広がり、商品点数も増やすことができ、このように幅を広げた情報を、「幅を広げたお奨めアイテム」として、操作者又は対象者に対して提案又は提供することができる。 In addition, the control unit obtains the future skin wrinkle index value of the subject based on the skin wrinkle index value and the wrinkle prediction model of the subject, and in the same manner as before, the future skin wrinkle index value of the subject. Based on, the information of the wrinkle improving composition or group equal to or higher than this future wrinkle index value (more preferably equal to or one step higher) is used as the future wrinkle improving composition. It can be output, proposed or provided to the operator or the target person. The control unit can use the identified wrinkle-improving composition or group as a "future recommended item" such as a "... switching item from the age of" of the subject. In addition, the control unit further raises the stage from one step above to one step below for "equal to or higher than the wrinkle index value of the skin of the subject (more preferably equivalent or one step higher than that)". By expanding the range of stages, the range of information on the wrinkle-reducing composition proposed or provided can be expanded, and the number of products can be increased. As a "recommended item", it can be proposed or provided to the operator or the target person.
以下に、本発明のシワ予測モデルを用いるシワ予防、改善又は治療用組成物の提供方法を例1及び例2として示す。当該シワ予測モデルは、上記「1.」及び「2.」のシワ予測モデル又はシワ予測式を適宜用いることができる。 Hereinafter, a method for providing a composition for preventing, improving or treating wrinkles using the wrinkle prediction model of the present invention is shown as Example 1 and Example 2. As the wrinkle prediction model, the wrinkle prediction model or the wrinkle prediction formula of the above "1." and "2." can be appropriately used.
<例1>
ステップ701において、制御部は、前記シワ予測モデルに、対象者の皮膚の、明るさの測定値、赤みの測定値、皮脂量の測定値の4つの値を入力する。これにより、対象者1個人のシワ予測式aを設定することができる。
ステップ702において、制御部が、前記シワ予測式aに、対象者の年齢の値を入力することで、対象者の現状のシワの指標値が出力される。これにより、操作者又は対象者が、対象者の現状のシワリスク(シワグレード)を理解できる。
ステップ703において、制御部は、前記シワ予測式aに、最良のシワリスク値としてシワグレード3~5を入力することで、シワ基準値とこのときの年齢を出力することができる。なお、シワグレードの設定が低いほど最良のシワリスクとなる。
出力として、画面表示、音声表示など特に限定されない。また、シワ予測モデルへの操作者は、商品販売員、カウンセラー、オペレータ、対象者など特に限定されない。
<Example 1>
In step 701, the control unit inputs four values of the subject's skin, a measured value of brightness, a measured value of redness, and a measured value of sebum amount, into the wrinkle prediction model. As a result, the wrinkle prediction formula a for one individual subject can be set.
In step 702, the control unit inputs a value of the age of the target person into the wrinkle prediction formula a, so that the index value of the current wrinkle of the target person is output. This allows the operator or the target person to understand the current wrinkle risk (wrinkle grade) of the target person.
In step 703, the control unit can output the wrinkle reference value and the age at this time by inputting the wrinkle grades 3 to 5 as the best wrinkle risk value in the wrinkle prediction formula a. The lower the wrinkle grade setting, the better the wrinkle risk.
The output is not particularly limited to screen display, audio display, and the like. Further, the operator of the wrinkle prediction model is not particularly limited to a product salesperson, a counselor, an operator, a target person, and the like.
なお、対象者の各皮膚状態の測定値(明るさの測定値、赤みの測定値、皮脂量の測定値)のデータは、入力画面に数値入力欄がある場合には、操作者が、当該数値入力欄に測定値を入力することで得てもよい。また、入力画面に配色パネルの画像を又はレベルを選択する入力欄がある場合には、操作者又は対象者に、複数存在する配色パネルの画像又はレベルから対象者の皮膚の状態と同じ又は近似する配色パネル又はレベルを選択させることで、これら各データに紐付け又は付属させていた各測定値データが制御部によって選択され、これにより当該測定値のデータを制御部が得てもよい。配色パネルの選択に際し、操作者が、目視による皮膚状態又は撮像された画像データとの対比により、対象者の皮膚状態と同じ又は近似する配色パネルなどを選択してもよいし、制御部が撮像された対象者の皮膚の画像データの色調と同じ又は最も近似する配色パネルを選択してもよい。 If there is a numerical input field on the input screen, the operator will be responsible for the data of the measured values of each skin condition of the subject (measured value of brightness, measured value of redness, measured value of sebum amount). It may be obtained by inputting a measured value in a numerical value input field. In addition, if the input screen has an input field for selecting the image of the color scheme panel or the level, the operator or the target person has the same or similar to the skin condition of the target person from the images or levels of the multiple color scheme panels. By selecting the color scheme panel or level to be used, each measured value data associated with or attached to each of these data is selected by the control unit, whereby the control unit may obtain the measured value data. When selecting the color scheme panel, the operator may select a color scheme panel or the like that is the same as or similar to the skin condition of the subject by visual comparison with the skin condition or the captured image data, or the control unit captures the image. A color scheme panel that is the same as or most similar to the color tone of the image data of the subject's skin may be selected.
ステップ704において、制御部は、対象者の現状のシワの指標値が、シワ基準値以上である場合(Yes)には、対象者が現状で使用しているシワ改善用組成物の効能と比較し、より強い効能があり推奨するシワ改善用組成物を1種又は2種以上出力する。
ステップ705において、制御部は、対象者の現状のシワの指標値が、シワ基準値以上でない場合(No)(すなわち、シワ基準値未満の場合)には、前記シワ予測モデルaに基づき、最良のシワリスク値として設定されているシワグレード(3~5)に到達するときの予想年齢を出力する。この予想年齢以降に使用を推奨するシワ改善用組成物を1種又は2種以上出力する。
In step 704, when the index value of the current wrinkle of the subject is equal to or higher than the wrinkle reference value (Yes), the control unit compares it with the efficacy of the wrinkle improving composition currently used by the subject. However, one or more of the recommended wrinkle improving compositions having stronger efficacy are output.
In step 705, when the current wrinkle index value of the subject is not greater than or equal to the wrinkle reference value (No) (that is, less than the wrinkle reference value), the control unit is best based on the wrinkle prediction model a. Outputs the expected age when reaching the wrinkle grade (3 to 5) set as the wrinkle risk value of. Output one or more wrinkle-reducing compositions recommended for use after this expected age.
<例2>
ステップ801において、制御部は、前記シワ予測モデルに、対象者の皮膚の明るさの測定値、皮膚の赤みの測定値、皮膚の皮脂量の測定値の3つの値を入力する。これにより、対象者1個人のシワ予測式bを設定することができる。
ステップ802において、制御部は、現状のシワ指標値を出力すると共に、現状で使用しているシワ改善剤以外に、現状のシワグレードに対応可能なシワ改善用組成物を1種又は2種以上出力する。
<Example 2>
In step 801 the control unit inputs three values, a measured value of the skin brightness of the subject, a measured value of the redness of the skin, and a measured value of the amount of sebum of the skin, into the wrinkle prediction model. This makes it possible to set the wrinkle prediction formula b for one individual subject.
In step 802, the control unit outputs one or more wrinkle improving compositions capable of dealing with the current wrinkle grade, in addition to the wrinkle improving agent currently used, while outputting the current wrinkle index value. Output.
<例3>
操作者が、入力画面における、対象者の各皮膚の状態(明るさの測定値、赤みの測定値、皮脂量の測定値)の配色パネル又はレベルを選択する像(画像、映像など)から、対象者と同じ又は近似する配色パネル又はレベルを選択する(図6参照)。また、制御部が、対象者の画像データなどの個人データに基づき、対象者の各皮膚の状態の測定値データを得てもよい。対象者の年齢の値については、操作者が直接入力してもよいし、制御部が個人データから読み込んでもよい。制御部は、選択された配色パネル又はレベルに基づき(例えば、配色パネルのデータに紐付けられている測定値データなど)、これらに対応する各測定値のデータを得ることができる。
<Example 3>
From the image (image, video, etc.) on which the operator selects the color scheme panel or level of each skin condition (measured value of brightness, measured value of redness, measured value of sebum amount) of the subject on the input screen. Select a color scheme panel or level that is the same as or similar to the subject (see Figure 6). Further, the control unit may obtain measured value data of each skin condition of the subject based on personal data such as image data of the subject. The age value of the target person may be directly input by the operator or may be read by the control unit from personal data. Based on the selected color scheme panel or level (for example, the measured value data associated with the data of the color scheme panel), the control unit can obtain the data of each measured value corresponding to these.
ステップ901において、制御部は、前記シワ予測モデルに、対象者の皮膚の、明るさの測定値、赤みの測定値、皮脂量の測定値の4つの値を入力することができる。これにより、対象者1個人のシワ予測式aを設定することができる。 In step 901, the control unit can input four values of the subject's skin, a measured value of brightness, a measured value of redness, and a measured value of sebum amount, into the wrinkle prediction model. As a result, the wrinkle prediction formula a for one individual subject can be set.
ステップ902において、制御部は、前記シワ予測式aに、対象者の年齢値を入力することで、対象者における現状のシワの指標値が出力される。これにより、制御部は、操作者又は対象者に、対象者の現状のシワリスク(シワグレード)を出力又は提供できる。 In step 902, the control unit inputs the age value of the target person into the wrinkle prediction formula a, so that the index value of the current wrinkle of the target person is output. As a result, the control unit can output or provide the current wrinkle risk (wrinkle grade) of the target person to the operator or the target person.
ステップ903において、制御部は、上記<例1>のステップ703と同様にして、シワ基準値とこのときの年齢を出力することができる。さらに、図6に示すように、対象者のシワ評価データとして、対象者のシワリスクを出力することができる。例えば、対象者における現在のシワリスクと最良のシワリスクのパターンの出力、さらに、対象者の目指すリスクの減少度合いを示す対象者の現在と将来の顔画像などが挙げられる。 In step 903, the control unit can output the wrinkle reference value and the age at this time in the same manner as in step 703 of the above <Example 1>. Further, as shown in FIG. 6, the wrinkle risk of the subject can be output as the wrinkle evaluation data of the subject. For example, the output of the current wrinkle risk and the best wrinkle risk pattern in the subject, and the present and future facial images of the subject showing the degree of reduction of the risk aimed at by the subject.
ステップ904において、制御部は、対象者における現状のシワの指標値に基づき、この指標値と同等又はそれ以上のシワ指標値が紐付け又は付属させている単数又は複数のシワ改善用組成物を判別し、判別されたシワ改善用組成物又はグループを、お奨めアイテムとして、操作者又は対象者に、出力部に出力して、提案又は提供することができる。制御部は、入力部に出力させたお奨めアイテムから、操作者又は対象者に、シワ改善用組成物を単数又は複数選択させることができ、これにより、制御部は、選択されたシワ改善用組成物を商品として、販売や発送などにより、対象者に提供することができる。 In step 904, the control unit attaches or attaches a wrinkle index value equal to or higher than the wrinkle index value equal to or higher than the current wrinkle index value of the subject to a single or a plurality of wrinkle improvement compositions. The determined and identified wrinkle improving composition or group can be output to the output unit to the operator or the target person as a recommended item to be proposed or provided. The control unit can allow the operator or the target person to select one or more wrinkle-improving compositions from the recommended items output to the input unit, whereby the control unit can select the selected wrinkle-improving composition. The composition can be provided to the target person as a product by selling or shipping.
本発明の例3は、以下の構成を提供することもできる。
本発明は、対象者の年齢の値と、皮膚の明るさの測定値と、皮膚の赤みの測定値と、皮脂量の測定値とに基づき、対象者の皮膚のシワの指標値を推定する、対象者の皮膚のシワ指標値を推定する工程、及び、
当該推定された対象者の皮膚のシワ指標値に基づき、対象者に適したシワ改善用組成物を判別する工程、を含む、対象者に適したシワ改善用組成物の情報の提供方法を提供することができる。
Example 3 of the present invention can also provide the following configurations.
The present invention estimates a subject's skin wrinkle index value based on the subject's age value, skin brightness measurement value, skin redness measurement value, and sebum amount measurement value. , The process of estimating the wrinkle index value of the subject's skin, and
Provided is a method for providing information on a wrinkle improving composition suitable for a subject, including a step of determining a wrinkle improving composition suitable for the subject based on the estimated wrinkle index value of the skin of the subject. can do.
前記シワ改善用組成物のデータには、対応可能な皮膚のシワ指標値のデータが紐付け又は付属されていることが好適であり、当該対応可能な皮膚のシワ指標値のデータが選択されることで、制御部は、対象者に適したシワ改善用組成物又は当該グループを判別することができる。
さらに、判別された単数又は複数のシワ改善用組成物又は当該グループの情報を、出力部にて、出力、提案又は提供することが、さらに含まれることが好適である。
It is preferable that the data of the wrinkle improving composition is associated with or attached to the data of the wrinkle index value of the corresponding skin, and the data of the wrinkle index value of the corresponding skin is selected. As a result, the control unit can determine the wrinkle improving composition or the group suitable for the subject.
Further, it is preferable that the output unit further outputs, proposes, or provides information on the identified single or a plurality of wrinkle improving compositions or the group thereof.
前記推定工程の前に、対象者の皮膚の明るさと同じ又は近似する配色パネルが選択されることにより、当該配色パネルのデータに紐付けられている皮膚の明るさの測定値データが選択され、選択された測定値データを前記皮膚の明るさの測定値とすること、及び/又は、対象者の皮膚の赤みと同じ又は近似する配色パネルが選択されることにより、当該配色パネルのデータに紐付けられている皮膚の赤みの測定値データが選択され、選択された測定値データを前記皮膚の赤みの測定値とすることを含むことが、より好適である。 Prior to the estimation step, a color scheme panel that is the same as or similar to the skin brightness of the subject is selected, so that the measured value data of the skin brightness associated with the data of the color scheme panel is selected. By using the selected measurement value data as the measurement value of the skin brightness and / or selecting a color arrangement panel that is the same as or similar to the redness of the subject's skin, it is linked to the data of the color arrangement panel. It is more preferable that the attached skin redness measurement value data is selected, and the selected measurement value data is used as the skin redness measurement value.
4.シワ予測に関する評価システム
以下に、本発明のシワ予測に関する評価システムの実施形態を説明する。本実施形態の説明において、上述した「1.」~「3.」と重複する各構成、評価方法などの説明について適宜省略するが、当該「1.」~「3.」の説明が本実施形態にも当てはまり、適宜採用することができる。
4. Evaluation System for Wrinkle Prediction An embodiment of the evaluation system for wrinkle prediction of the present invention will be described below. In the description of the present embodiment, the description of each configuration, the evaluation method, etc. that overlaps with the above-mentioned "1." to "3." will be omitted as appropriate, but the description of the "1." to "3." It also applies to the form and can be adopted as appropriate.
本発明の皮膚のシワ評価システムでは、前記シワ予測モデルに、対象者の年齢及び皮膚状態の測定値を適用することで、対象者のシワ予測モデルを導き出すことができる。
さらに、制御部は、対象者の実年齢に基づき、対象者の皮膚のシワ指標値を推定することができる。
一方で、対象者の将来の年齢を設定することで、前記制御部は、この将来のシワ指標値を推定する。当該将来の年齢は、対象者が所望する年齢であってもよいし、対象者の実年齢+α歳などと記憶部などに予め設定されている将来の年齢であってもよい。これにより、将来における対象者のシワの状態を予測することができる。
In the skin wrinkle evaluation system of the present invention, the wrinkle prediction model of the subject can be derived by applying the measured values of the age and skin condition of the subject to the wrinkle prediction model.
Further, the control unit can estimate the wrinkle index value of the skin of the subject based on the actual age of the subject.
On the other hand, by setting the future age of the subject, the control unit estimates this future wrinkle index value. The future age may be the age desired by the subject, or may be the actual age of the subject + α-year or the like and a future age preset in the memory unit or the like. This makes it possible to predict the wrinkle condition of the subject in the future.
また、制御部は、同じシワ予測モデルにおいて、前記シワ指標値と、設定されたシワ基準値とを対比することにより、シワ改善用の組成物の使用開始時期を判別することができる。 Further, in the same wrinkle prediction model, the control unit can determine when to start using the composition for improving wrinkles by comparing the wrinkle index value with the set wrinkle reference value.
さらに、制御部は、前記シワ指標値と、設定されるシワ基準値のシワグレード「3~5」とを、対比することが好ましく、これにより、制御部は、シワ改善用の組成物の使用開始時期を判別することができる。 Further, the control unit preferably compares the wrinkle index value with the wrinkle grade "3 to 5" of the set wrinkle reference value, whereby the control unit uses the composition for improving wrinkles. The start time can be determined.
前記設定されるシワ基準値は、記憶部などに予め記憶し、設定されていてもよい。
制御部は、前記シワ予測モデルを用いて、対象者の実年齢からシワ指標値を推定することができる。一方で、制御部は、同じシワ予測モデルを用いて、設定したシワの基準値、例えば「3~5」になるときの対象者の年齢を推定することができ、この基準値から推定された年齢をシワ改善用組成物の使用開始時期と判別する。
The wrinkle reference value to be set may be stored in advance in a storage unit or the like and set.
The control unit can estimate the wrinkle index value from the actual age of the subject using the wrinkle prediction model. On the other hand, the control unit can estimate the age of the subject when the set wrinkle reference value, for example, "3 to 5", is estimated by using the same wrinkle prediction model, and is estimated from this reference value. Determine the age as the time to start using the wrinkle improving composition.
さらに、制御部は、シワ予測モデルにより推定されるシワ指標値が予め設定されたシワ基準値に達したときに、この達したときの年齢をシワ改善用の組成物の使用開始時期として判別することができる。 Further, when the wrinkle index value estimated by the wrinkle prediction model reaches a preset wrinkle reference value, the control unit determines the age at which the wrinkle index value is reached as the start time of use of the wrinkle improving composition. be able to.
前記測定値は、計測機器又は撮像装置(例えば、デジタルカメラ、ビデオカメラ、動画、静止画)などの皮膚状態の測定装置による測定値であることが好適である。これにより、測定者が原因となる測定値のばらつきを低減することができる。 It is preferable that the measured value is a measured value by a measuring device or a measuring device for a skin condition such as an imaging device (for example, a digital camera, a video camera, a moving image, a still image). As a result, it is possible to reduce the variation in the measured value caused by the measurer.
本発明のシワ評価システムは、
予測モデルにより推定されるシワ指標値が予め設定されたシワ基準値に達したと判別すること、
この達したときの年齢を、シワ改善用の組成物の使用開始時期として判別することとを含む、ことが好適である。
より好適には、予め設定されるシワ基準値は、対象者の同じ年齢+5歳の標準的なシワ基準値であることが好適である。
The wrinkle evaluation system of the present invention is
Determining that the wrinkle index value estimated by the prediction model has reached the preset wrinkle reference value,
It is preferable to include determining the age at which this is reached as the time to start using the composition for improving wrinkles.
More preferably, the preset wrinkle reference value is a standard wrinkle reference value of the same age of the subject + 5 years old.
5.シワ予測に関する評価プログラム
以下に、本発明のシワ予測に関する評価システムの実施形態を説明する。本実施形態の説明において、上述した「1.」~「4.」と重複する各構成、評価方法などの説明について適宜省略するが、当該「1.」~「4.」の説明が本実施形態にも当てはまり、適宜採用することができる。
対象者の年齢の値と、皮膚状態の測定値とを入力する機能と、
前記年齢の値と前記皮膚状態の測定値とをシワ予測モデルに用いて、対象者の皮膚のシワの指標値を推定する機能と、をコンピュータに実現させる皮膚のシワ評価プログラム。
5. Evaluation Program for Wrinkle Prediction Hereinafter, embodiments of the evaluation system for wrinkle prediction of the present invention will be described. In the description of the present embodiment, the description of each configuration, the evaluation method, etc. that overlaps with the above-mentioned "1." to "4." will be omitted as appropriate, but the description of the "1." to "4." It also applies to the form and can be adopted as appropriate.
A function to input the age value of the subject and the measured value of the skin condition,
A skin wrinkle evaluation program that realizes a function of estimating an index value of skin wrinkles of a subject by using the age value and the measured value of the skin condition in a wrinkle prediction model, and a computer.
対象者の年齢の値と、皮膚状態の測定値とを入力する機能と、
前記年齢の値と前記皮膚状態の測定値とをシワ予測モデルに用いて、対象者の皮膚のシワの指標値を推定する機能と、
前記推定されたシワの指標値と、予め設定されたシワ基準値を対比することにより、
前記推定されたシワの評価値が、予め設定されたシワ基準値に達したときに、この達したときの年齢をシワ改善用の組成物の使用開始時期として判別する機能と、
をコンピュータに実現させる皮膚のシワ評価プログラム。
A function to input the age value of the subject and the measured value of the skin condition,
The function of estimating the index value of wrinkles on the skin of the subject by using the value of the age and the measured value of the skin condition in the wrinkle prediction model, and
By comparing the estimated wrinkle index value with the preset wrinkle reference value,
When the estimated wrinkle evaluation value reaches a preset wrinkle reference value, the function of determining the age at which the estimated wrinkle evaluation value is reached as the start time of use of the wrinkle improving composition, and
A skin wrinkle evaluation program that makes a computer realize.
6.本発明に関する学習済みモデル
以下に、本発明に係る学習済みモデルの実施形態を説明する。本実施形態の説明において、上述した「1.」~「5.」と重複する各構成、評価方法などの説明について適宜省略するが、当該「1.」~「5.」の説明が本実施形態にも当てはまり、適宜採用することができる。また、本実施形態において、上述した皮膚のシワ評価及びシワ予測モデル(例えばシワ予測式1~7など)などを適宜採用することができる。
本発明に用いるシワ予測モデルは、学習済みモデルを生成する方法にて生成されたシワ予測モデルであってもよく、上述した「1-4-2.シワ予測モデルの作製方法」の説明を採用することが好適である。
6. Trained model according to the present invention Hereinafter, embodiments of the trained model according to the present invention will be described. In the description of the present embodiment, the description of each configuration, the evaluation method, etc. that overlaps with the above-mentioned "1." to "5." will be omitted as appropriate, but the description of the "1." to "5." It also applies to the form and can be adopted as appropriate. Further, in the present embodiment, the above-mentioned skin wrinkle evaluation and wrinkle prediction model (for example,
The wrinkle prediction model used in the present invention may be a wrinkle prediction model generated by a method for generating a trained model, and the above-mentioned explanation of "1-4-2. Method for producing a wrinkle prediction model" is adopted. It is preferable to do so.
本発明において学習済みモデルとして用いられる特化型AIの処理手順例を簡略的に示すと、「(1)学習データ→(2)アルゴリズム→(3)学習
済みモデル」「(4)入力データ→(3)学習済みモデル→(5)結果物」とすることができるが、これに限定されない(例えば図7参照)。特化型AIは、大きな枠組みとして、学習用プログラムとして機能するアルゴリズムに学習データ(教師データ)を組み込むことより構築された学習済みモデルに対して、任意の入力データを適用することにより結果物が得られる仕組みである。
To briefly show an example of the processing procedure of the specialized AI used as the trained model in the present invention, "(1) training data-> (2) algorithm-> (3) trained model""(4) input data-> (3) Trained model → (5) Result product ”, but is not limited to this (see, for example, FIG. 7). The specialized AI is a large framework in which the result is obtained by applying arbitrary input data to a trained model constructed by incorporating training data (teacher data) into an algorithm that functions as a learning program. It is a mechanism that can be obtained.
本発明において、学習データ(教師データ)における対象者には、上述した「1-4-2.シワ予測モデルの作製方法」での参加者を含めることができる。
制御部は、学習データ(教師データ)として、対象者の年齢の値と、皮膚の明るさの測定値との少なくとも2つの値を、データとして、複数人以上、取得する。同じ対象者の年齢の値と、皮膚の明るさの測定値との少なくとも2つの値を、1データセットとすることが好適である。当該教師データとして、例えば、上記「1-4-1.シワ予測モデルの予測因子」を採用することができ、年齢、皮膚の明るさ、皮膚の赤み、皮膚の皮脂量、皮脂量と皮膚の赤みの交互作用項などから選択される2種又は3種以上が好ましい。
制御部は、当該2つの値と、皮膚の赤みの測定値及び/又は皮膚の皮脂量の測定値の1つ又は2つの値を、データとして、さらに取得することがより好適である。制御部は、これらから2つ以上選択される教師データを記憶部から読み出すことができる。なお、記憶部は、複数の対象者から取得した年齢値及び測定値を予めデータとして記憶する。
In the present invention, the subject in the learning data (teacher data) can include the participants in the above-mentioned "1-4-2. Method for producing a wrinkle prediction model".
The control unit acquires at least two values, a value of the age of the subject and a measured value of the brightness of the skin, as learning data (teacher data) for a plurality of people as data. It is preferable that at least two values, an age value of the same subject and a measured value of skin brightness, are set as one data set. As the teacher data, for example, the above "1-4-1. Predictor factor of wrinkle prediction model" can be adopted, and age, skin brightness, skin redness, skin sebum amount, sebum amount and skin. Two or three or more selected from the redness interaction term and the like are preferable.
It is more preferable that the control unit further acquires the two values and one or two values of the measured value of redness of the skin and / or the measured value of the amount of sebum of the skin as data. The control unit can read out the teacher data selected from these two or more from the storage unit. In addition, the storage unit stores the age value and the measured value acquired from a plurality of subjects as data in advance.
次いで、制御部は、予め設定されているアルゴリズムに記憶部から読み出した学習データを組み込むことによって、シワ予測モデル(学習済みモデル)を構築することができる。これにより、制御部は、シワ予測モデルを有する構成となる。「1-4.シワ予測モデル」で説明したように、「統計解析」を用いて学習済みモデル(シワ予測モデル)を取得することができる。 Next, the control unit can construct a wrinkle prediction model (learned model) by incorporating the learning data read from the storage unit into a preset algorithm. As a result, the control unit has a configuration having a wrinkle prediction model. As explained in "1-4. Wrinkle prediction model", a trained model (wrinkle prediction model) can be obtained by using "statistical analysis".
上述したアルゴリズムは、例えば機械学習アルゴリズムとして機能することができる。機械学習アルゴリズムの種類として、特に限定されず、例えばRNN(RecurrentNeural Network:再帰型ニューラルネットワーク)、CNN(Convolutional NeuralNetwork:畳み込みニューラルネットワーク)又はMLP(Multilayer Perceptron:多層パーセプトロン)等のニューラルネットワークを用いたアルゴリズムであってもよく、任意のアルゴリズムであってもよい。 The above-mentioned algorithm can function as, for example, a machine learning algorithm. The type of machine learning algorithm is not particularly limited, and is an algorithm using a neural network such as RNN (Recurrent Neural Network), CNN (Convolutional Neural Network) or MLP (Multilayer Perceptron). It may be any algorithm.
次いで、制御部は、操作者からの入力データ((4)入力データ(入力層)を、構築されたシワ予測モデル(学習済みモデル)に入力することで、表示から出力するためのシワ評価に関するデータ((5)結果物(出力層))を生成することができる。
前記学習済みモデルは、例えば深層学習(ディープラーニング)により生成された学習済みモデルであってよい。例えば、前記学習済みモデルは、多層ニューラルネットワークであってよく、例えば深層ニューラルネットワーク(DNN:Deep Neural Network)であってよく、より具体的には畳込みニューラルネットワーク(CNN:Convolutional Neural Network)であってもよい。学習済みモデルとして、多層ニューラルネットワークが用いられてもよく、当該多層ニューラルネットワークは、対象者などが年齢値及び測定値を入力する入力層と、対象者のシワ評価結果を出力する出力層と、入力層と出力層との間に設けられる少なくとも1層の中間層とを有することができる。
Next, the control unit relates to the wrinkle evaluation for outputting from the display by inputting the input data from the operator ((4) input data (input layer) into the constructed wrinkle prediction model (trained model)). Data ((5) result (output layer)) can be generated.
The trained model may be, for example, a trained model generated by deep learning. For example, the trained model may be a multi-layer neural network, for example, a deep neural network (DNN), and more specifically, a convolutional neural network (CNN). You may. A multi-layer neural network may be used as the trained model, and the multi-layer neural network includes an input layer for inputting an age value and a measured value by the subject, an output layer for outputting the wrinkle evaluation result of the subject, and the like. It may have at least one intermediate layer provided between the input layer and the output layer.
制御部は、以下のような、学習済みモデルの生成方法、学習済みモデルを用いた対象者に対する皮膚のシワの評価方法もしくは皮膚のシワの評価の提供方法を実現することができる。
(a)対象者の年齢の値と、皮膚の明るさの測定値との少なくともこれら2つの値とをデータとして含む教師データを複数取得すること、(b)前記教師データを用いて、各対象者の年齢の値と、皮膚の明るさの測定値との少なくともこれら2つの値を入力すること、(c)これら入力データから、対象者の皮膚のシワの指標値を推定するためのシワ予測モデルを出力する学習済みモデルを生成すること、を含む、学習済みモデル生成方法。
The control unit can realize the following method of generating a trained model, a method of evaluating skin wrinkles for a subject using the trained model, or a method of providing an evaluation of skin wrinkles.
(A) Acquiring a plurality of teacher data including at least these two values of the age value of the subject and the measured value of the skin brightness, and (b) each subject using the teacher data. Enter at least these two values, the age value of the person and the measured value of the skin brightness, and (c) the wrinkle prediction for estimating the index value of the skin wrinkles of the subject from these input data. A trained model generation method, including generating a trained model that outputs a model.
(d)対象者の年齢の値と、皮膚の明るさの測定値との少なくともこれら2つの値とをデータとして取得すること、(e)対象者の年齢の値と、皮膚の明るさの測定値との少なくともこれら2つの値を用いて前記学習済モデル生成方法により生成された学習済みモデルに対して、対象者の年齢の値と、皮膚の明るさの測定値との少なくともこれら2つの値を適用することによって、対象者の推定される皮膚のシワの指標値を生成し、(f)当該生成された指標値を皮膚のシワの評価とする方法又は皮膚のシワの評価として提供する方法。
前記皮膚のシワの評価とする方法又は皮膚のシワの評価として提供する方法を、コンピュータに実行させるプログラム、又は当該プログラムを格納する記録媒体。当該プログラム又は当該記録媒体を含む、皮膚のシワ評価装置又は皮膚のシワ評価システム。
(D) Obtaining at least these two values of the subject's age value and the measured value of the skin brightness as data, and (e) measuring the subject's age value and the skin brightness. At least these two values of the age value of the subject and the measured value of the skin brightness with respect to the trained model generated by the trained model generation method using at least these two values. By applying the above, an index value of skin wrinkles estimated by the subject is generated, and (f) a method of using the generated index value as an evaluation of skin wrinkles or a method of providing the index value as an evaluation of skin wrinkles. ..
A program for causing a computer to execute the method for evaluating skin wrinkles or the method for evaluating skin wrinkles, or a recording medium for storing the program. A skin wrinkle evaluation device or a skin wrinkle evaluation system including the program or the recording medium.
なお、本技術は、以下の構成を採用することもできる。
・〔1〕 対象者の年齢の値と、皮膚の明るさの測定値との少なくともこれら2つの値に基づき、対象者の皮膚のシワの指標値を推定する、皮膚のシワの評価方法、又は当該皮膚のシワの評価を提供する方法。
前記〔1〕記載の方法は、操作者、第三者への評価結果の提供者、対象者、エンドユーザ、商品購入者、業とする者(カウンセラー、オペレータ、商品販売員など)などから選択される1種又は2種以上が用いることが好適である。前記〔1〕記載の方法は、当該シワの指標値の推定結果を提示、表示又は提供することを含む、皮膚のシワの評価を補助する方法であってもよい。前記〔1〕記載の方法は、コンピュータに実行させる方法であってもよい。
The present technology can also adopt the following configurations.
[1] A skin wrinkle evaluation method or a skin wrinkle evaluation method for estimating an index value of skin wrinkles of a subject based on at least these two values of a subject's age value and a measured value of skin brightness. A method of providing an assessment of wrinkles on the skin.
The method described in [1] above is selected from the operator, the provider of the evaluation result to a third party, the target person, the end user, the product purchaser, the person in the business (counselor, operator, product salesperson, etc.). It is preferable to use one kind or two or more kinds. The method according to [1] may be a method for assisting the evaluation of wrinkles on the skin, which comprises presenting, displaying or providing the estimation result of the index value of the wrinkles. The method described in [1] above may be a method of causing a computer to execute the method.
・〔2〕 前記2つの値と、皮膚の赤みの測定値及び/又は皮膚の皮脂量の測定値の1つ又は2つの値と、に基づき、対象者の皮膚のシワの指標値を推定する、前記〔1〕に記載の評価方法又は評価の提供方法。
・〔3〕 シワ予測モデルに、対象者の年齢の値及び皮膚の明るさの測定値の2つの値を用いることにより、対象者の皮膚のシワの指標値を推定する、前記〔1〕に記載の評価方法又は評価の提供方法。
・〔4〕 シワ予測モデルに、対象者の年齢及び皮膚の明るさの測定値の2つの値と、かつ、皮膚の赤みの測定値及び/又は皮膚の皮脂量の測定値の1つ又は2つの値とを用いることにより、対象者の皮膚のシワの指標値を推定する、前記〔2〕に記載の評価方法又は評価の提供方法。
・〔5〕 前記シワ予測モデルは、 1個人のシワ指標値を目的変数とした、当該1個人の年齢及び皮膚の明るさの測定値を少なくとも説明変数に含む線形混合効果モデルを用いて導き出すことにより、 得られたモデルである、前記〔3〕又は〔4〕に記載の評価方法又は評価を提供する方法。
・〔6〕 前記線形混合効果モデルのパラメータは最尤法もしくは制限付き最尤法を用いて得られるものである、前記〔5〕に記載の評価方法又は評価を提供する方法。
・〔7〕前記〔1〕~〔6〕の何れか1つに記載のシワ評価方法を用いて、被験物質を投与された対象者の皮膚のシワ指標値を推定する工程、及び
当該推定された皮膚のシワ指標値が、投与前の対象者の皮膚のシワ指標値よりも、低い場合に、被験物質をシワ改善用と判別する工程、を含む、シワ改善用組成物の評価もしくは探索方法、又は評価結果もしくは探索結果を提供する方法。
・〔8〕対象者の年齢の値と、皮膚の明るさの測定値との少なくともこれら2つの値に基づき、対象者の皮膚のシワの指標値を推定する、対象者の皮膚のシワ指標値を推定する工程、及び
当該推定された対象者の皮膚のシワ指標値に基づき、シワ改善用組成物を判別する工程、を含む、対象者に適したシワ改善用組成物の情報の提供方法。前記推定工程は、前記〔1〕~〔6〕の何れか1つに記載のシワ評価方法を用いて推定してもよい。
[2] Estimate the index value of skin wrinkles of the subject based on the above two values and one or two values of the measured value of redness of the skin and / or the measured value of the amount of sebum of the skin. , The evaluation method or the evaluation providing method according to the above [1].
[3] The index value of wrinkles on the skin of the subject is estimated by using two values, the age value of the subject and the measured value of the skin brightness, in the wrinkle prediction model. The evaluation method described or the method of providing the evaluation.
[4] In the wrinkle prediction model, two values of the subject's age and skin brightness, and one or two of the skin redness measurement and / or the skin oil content measurement. The evaluation method or the method for providing an evaluation according to the above [2], which estimates an index value of wrinkles on the skin of a subject by using the two values.
[5] The wrinkle prediction model shall be derived using a linear mixed effect model in which the wrinkle index value of one individual is used as the objective variable and the measured values of the age and skin brightness of the individual are included in at least the explanatory variables. The evaluation method or the method for providing the evaluation according to the above [3] or [4], which is the model obtained by the above.
[6] The method for providing the evaluation method or evaluation according to the above [5], wherein the parameters of the linear mixed-effects model are obtained by using the maximum likelihood method or the limited maximum likelihood method.
[7] A step of estimating the wrinkle index value of the skin of a subject to whom the test substance is administered by using the wrinkle evaluation method according to any one of the above [1] to [6], and the estimation thereof. A method for evaluating or searching for a composition for improving wrinkles, which comprises a step of determining a test substance for wrinkle improvement when the wrinkle index value of the skin is lower than the wrinkle index value of the skin of a subject before administration. , Or a method of providing evaluation or search results.
[8] The wrinkle index value of the skin of the subject, which estimates the index value of the wrinkle of the skin of the subject based on at least these two values of the age value of the subject and the measured value of the brightness of the skin. A method for providing information on a wrinkle-improving composition suitable for a subject, which comprises a step of estimating the wrinkle and a step of determining a wrinkle-improving composition based on the estimated wrinkle index value of the skin of the subject. The estimation step may be estimated using the wrinkle evaluation method according to any one of the above [1] to [6].
・〔9〕コンピュータに、前記〔1〕~〔6〕の何れか1つに記載の皮膚のシワ評価方法又は皮膚のシワ評価を提供する方法を実行させる、皮膚のシワ評価装置。当該シワ評価装置は、前記〔1〕~〔6〕の何れか1つの前記方法を実行するように構成されている、(a)皮膚のシワ評価プログラム、及び/又は(b)当該プログラムを記録もしくは格納した記録媒体を備えていることが好適である。当該シワ評価装置は、当該装置の外部に存在する当該プログラム又は当該媒体にアクセスして、前記〔1〕~〔6〕の何れか1つの前記方法を実行することが好適である。当該記録媒体は、コンピュータにより実行可能な命令を有する、コンピュータ記録媒体であってもよい。 [9] A skin wrinkle evaluation device that causes a computer to execute the method for evaluating skin wrinkles or the method for providing skin wrinkle evaluation according to any one of the above [1] to [6]. The wrinkle evaluation device is configured to perform any one of the above methods [1] to [6], (a) a skin wrinkle evaluation program, and / or (b) a recording of the program. Alternatively, it is preferable to have a stored recording medium. It is preferable that the wrinkle evaluation device accesses the program or the medium existing outside the device to execute the method according to any one of the above [1] to [6]. The recording medium may be a computer recording medium having instructions that can be executed by a computer.
・〔10〕 (a)コンピュータに、学習済みモデルを用いて、シワ予測モデルを作製させること、(b)得られたシワ予測モデルに、対象者の年齢の値と、皮膚の明るさの測定値との少なくともこれら2つの値に基づき、対象者の皮膚のシワの指標値を推定する、皮膚のシワ評価方法又は皮膚のシワ評価を提供する方法。当該シワ予測モデルは、前記〔3〕~〔6〕のいずれか1つが好適である。
・〔11〕 対象者の年齢の値と、皮膚の明るさの測定値との少なくともこれら2つの値とをデータとして含む教師データを複数取得し、
前記教師データを用いて、各対象者の年齢の値と、皮膚の明るさの測定値との少なくともこれら2つの値を入力し、対象者の皮膚のシワの指標値を推定する、シワ予測モデルを出力する学習済みモデルを生成する、学習済みモデル生成方法。前記データとして、皮膚の赤みの測定値及び/又は皮膚の皮脂量の測定値の1つ又は2つの値をさらに含むことが好適である。
・〔12〕 対象者の年齢の値と、皮膚の明るさの測定値との少なくともこれら2つの値とをデータとして取得し、
各対象者の年齢の値と、皮膚の明るさの測定値との少なくともこれら2つの値を入力し、対象者の皮膚のシワの指標値を推定するシワ予測モデルを出力する、教師データを用いて学習させた学習モデルに、
対象者の年齢の値と、皮膚の明るさの測定値との少なくともこれら2つの値とに基づき、対象者の皮膚のシワの指標値を推定する、皮膚のシワの評価方法又は当該皮膚のシワの評価を提供する方法。前記データとして、皮膚の赤みの測定値及び/又は皮膚の皮脂量の測定値の1つ又は2つの値をさらに含むことが好適である。
・〔13〕前記〔11〕記載の皮膚のシワの評価方法又は当該皮膚のシワの評価を提供する方法を、コンピュータに実行させるプログラム、又は当該プログラムを格納する記録媒体。当該プログラム、当該記録媒体を含む皮膚のシワ評価装置又は皮膚のシワ評価システム。
[10] (a) Have a computer create a wrinkle prediction model using a trained model, and (b) use the obtained wrinkle prediction model to measure the age value of the subject and the brightness of the skin. A method for evaluating skin wrinkles or a method for providing skin wrinkle evaluation, which estimates an index value of skin wrinkles of a subject based on at least these two values. As the wrinkle prediction model, any one of the above [3] to [6] is suitable.
[11] Obtaining a plurality of teacher data including at least these two values, that is, the age value of the subject and the measured value of the skin brightness, are obtained.
A wrinkle prediction model that estimates the index value of wrinkles on the skin of a subject by inputting at least these two values, an age value of each subject and a measured value of skin brightness, using the teacher data. A trained model generation method that generates a trained model that outputs. It is preferable that the data further includes one or two values of the measured value of redness of the skin and / or the measured value of the amount of sebum of the skin.
-[12] Obtain at least these two values, the age value of the subject and the measured value of the skin brightness, as data.
Using teacher data, input at least these two values, the age value of each subject and the measured value of skin brightness, and output a wrinkle prediction model that estimates the index value of wrinkles on the skin of the subject. To the learning model trained by
A skin wrinkle evaluation method or a skin wrinkle evaluation method for estimating an index value of skin wrinkles of a subject based on at least these two values of a subject's age value and a measured value of skin brightness. How to provide a rating for. It is preferable that the data further includes one or two values of the measured value of redness of the skin and / or the measured value of the amount of sebum of the skin.
[13] A program for causing a computer to execute the method for evaluating skin wrinkles or the method for providing evaluation of skin wrinkles according to the above [11], or a recording medium for storing the program. A skin wrinkle evaluation device or a skin wrinkle evaluation system including the program and the recording medium.
以下、試験例等に基づいて本発明をさらに詳細に説明する。なお、以下に説明する試験例等は、本発明の代表的な試験例等の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。 Hereinafter, the present invention will be described in more detail based on test examples and the like. It should be noted that the test examples and the like described below show an example of a representative test example and the like of the present invention, and the scope of the present invention is not narrowly interpreted by this.
<試験例1:シワ予測モデル>
試験例1-1.試験の参加者
株式会社コーセー研究所において、2011年から2013年の各年に実施したシワ及び皮膚状態評価研究に参加した計48名の日本人女性を、本研究の参加者とした。全ての対象者は、ヘルシンキ条約に基づき、コーセー研究所にて作成された同意説明書に署名した。
本研究は、経時的繰り返し研究であり、2011年~2017年まで継続して1年ごとに、参加者のシワ及び皮膚特性評価を実施した。参加者(女性)の年齢は、全調査期間を通して、22歳から60歳であった。2017年終了時の年齢構成は、20代:6人、30代:15人、40代:13人、50代:13人、60代1人であった。参加者の試験の参加回数は、最大6回、少なくとも3回以上であり、調査への参加が5回の対象者が最も多かった。
<Test Example 1: Wrinkle prediction model>
Test Example 1-1. Participants in the study A total of 48 Japanese females who participated in the wrinkle and skin condition evaluation study conducted from 2011 to 2013 at Kose Research Institute Co., Ltd. were selected as participants in this study. All subjects signed a written consent prepared by the Kose Laboratory under the Helsinki Convention.
This study was a repetitive study over time, and wrinkles and skin characteristics of participants were evaluated annually from 2011 to 2017. The age of participants (female) ranged from 22 to 60 years throughout the survey period. The age composition at the end of 2017 was 20s: 6 people, 30s: 15 people, 40s: 13 people, 50s: 13 people,
試験例1-2.シワの評価及び皮膚状態の各機器評価
参加者は同一の洗顔料を用いて洗顔した後、20~22℃、50±5%に制御された環境下で30分間馴化した後に、以下のような全ての評価(シワ、角層水分量、経表皮水分蒸散量、皮脂量、及び皮膚色など)を実施した。シワ評価以外の各評価については、以下に記載のような、一般的な測定装置及び測定部位にて測定した。
Test Example 1-2. Evaluation of wrinkles and evaluation of each device of skin condition Participants washed their face with the same facial cleanser, and after acclimatizing for 30 minutes in an environment controlled at 20 to 22 ° C and 50 ± 5%, the following All evaluations (wrinkles, cleansing water content, transepidermal water evaporation amount, sebum amount, skin color, etc.) were performed. Each evaluation other than the wrinkle evaluation was measured with a general measuring device and measuring site as described below.
参加者のシワ状態は、日本化粧品工業連合会が発表したガイドライン(日本香粧品学会誌(英語表記Journal of Japanese Cosmetic Science Society), ”化粧品機能評価法検討委員会報告:化粧品機能評価法ガイドライン”, Vol. 30, No. 4, pp.316~332 (2006).)に従い、専門評価者(Trained expert)による目視評価を実施した。シワグレード標準表に従い「0,1,2,3,4,5,6,7」までを0.25ポイントごとに右目尻のシワ状態をシワグレードとして評価した。シワグレード標準表には、例えば、グレード0の場合、「シワはない」、グレード7の場合、「著しく深いシワが認められる」とされている。
参加者の角層水分量は、参加者の右側頬上部をSKICON-200EX(アイ・ビイ・エス社製)を用いて測定した角層キャパシタンスを指標とした。
経表皮水分蒸散量は、Vapometer(Delfin technologies社製)を用いて、同様に右頬部を測定した。
参加者の皮脂量の測定は、Sebumeter(Courage +Khazaka electronic GmbH社製)を用い、額中央部を測定した。
参加者の皮膚色は、Spectrophotometer CM-700d(KONICA MINOLTA社製)を用い,参加者の右側頬上部のL*値(明るさの指標),a*値(赤みの指標),b*値(黄みの指標)を測定した。
The wrinkle condition of the participants is the guideline published by the Japan Cosmetic Industry Association (Journal of Japanese Cosmetic Science Society), "Cosmetic Function Evaluation Method Review Committee Report: Cosmetic Function Evaluation Method Guideline", According to Vol. 30, No. 4, pp.316-332 (2006).), A visual evaluation was carried out by a trained expert. According to the wrinkle grade standard table, the wrinkle condition of the right outer corner of the eye was evaluated as the wrinkle grade for every 0.25 points up to "0,1,2,3,4,5,6,7". In the wrinkle grade standard table, for example, in the case of grade 0, "no wrinkles" and in the case of grade 7, "significantly deep wrinkles are observed".
Participant's stratum corneum water content was indexed by the stratum corneum capacitance measured by using SKICON-200EX (manufactured by IBS) on the upper right cheek of the participant.
The transepidermal water loss was measured on the right cheek in the same manner using a Vapometer (manufactured by Delfin technologies).
The amount of sebum of the participants was measured using a Sebumeter (Courage + manufactured by Khazaka electronic GmbH) at the center of the forehead.
For the skin color of the participants, Spectrophotometer CM-700d (manufactured by KONICA MINOLTA) was used, and the L * value (index of brightness), a * value (index of redness), and b * value (index of redness) on the right cheek of the participants. The index of yellowness) was measured.
試験例1-3.シワ予測モデル開発のための統計解析
「試験例1-1.」「試験例1-2.」で得られたデータを用いて、以下のシワ予測モデル(式1~7)を得た。
Test Example 1-3. Statistical analysis for wrinkle prediction model development The following wrinkle prediction models (
本研究の主要目的である加齢によるシワ状態を予測するモデルを検証するため、取得したシワグレードの分布及び年齢とシワグレード間の関係性を確認した。
次に、我々はシワ予測因子の候補として、年齢と機器評価により取得した全ての時点における皮膚状態測定値に加えて、評価機器ごとの全ての測定点平均を個人の皮膚状態を示す重要な特性値となると考え、シワ予測因子に加えることとした。
予測に於いては、データ数が多くないことから検証データとテストデータに分けることは避け、全てのデータを用いることとした。さらに予測モデルには、経時的繰り返しデータにおける予測不可能な個人間差を変量効果として表現できる一般化線形混合効果モデルを用いることとした。
In order to verify the model that predicts the wrinkle state due to aging, which is the main purpose of this study, we confirmed the distribution of the acquired wrinkle grades and the relationship between age and wrinkle grades.
Next, as candidates for wrinkle predictors, in addition to the skin condition measurements at all time points obtained by age and device evaluation, the average of all measurement points for each evaluation device is an important characteristic that indicates the individual's skin condition. Considering that it will be a value, we decided to add it to the wrinkle predictor.
In the prediction, we decided to avoid dividing into verification data and test data because the number of data is not large, and to use all the data. Furthermore, we decided to use a generalized linear mixed-effects model that can express unpredictable differences between individuals in time-repeated data as a variable effect.
シワ予測因子の選択には、変数減少法(アルゴリズム)によるステップワイズ法を用い、AIC(Akaike Information Criterion:赤池情報量基準)が最小となったモデルを最善モデルと決定した。(アルゴリズム:Mallows (1973) Technometrics 15, 661-675.; Steyerberg (2009) Statistics in Medicine 19(8), 1059-1079.; Akaike (1973) In 2nd International Symposium on Information Theory and an Extension of the Maximum Likelihood Principle, B. N. Petrov, and F. Csaki (eds), 267-281.)。このシワ予測因子の選択では、シワ予測因子を全て用いたフルモデルから順に検討した。
最後に、得られたシワ予測因子を用いて感度解析を実施した。なお、全ての解析は、R ver.3.5.2 statistical software(R Foundation for Statistical Computing, Vienna, Austria)を用いて実施した。
The stepwise method based on the variable reduction method (algorithm) was used to select the wrinkle predictor, and the model with the smallest AIC (Akaike Information Criterion) was determined to be the best model. (Algorithm: Mallows (1973) Technometrics 15, 661-675 .; Steyerberg (2009) Statistics in Medicine 19 (8), 1059-1079 .; Akaike (1973) In 2nd International Symposium on Information Theory and an Extension of the Maximum Likelihood Principle, BN Petrov, and F. Csaki (eds), 267-281.). In the selection of this wrinkle predictor, the full model using all the wrinkle predictors was examined in order.
Finally, a sensitivity analysis was performed using the obtained wrinkle predictors. All analyzes were performed using R ver.3.5.2 statistical software (R Foundation for Statistical Computing, Vienna, Austria).
試験例1-4.結果及び考察
〔試験例1-4.1 参加者〕
試験期間における参加者の平均年齢は、試験開始時38.64歳(95% CI:35.47-41.81)から試験終了時44.24歳(95 % CI:41.47-47.34)と推移した。
次に、個人ごとのシワグレードの経時変化は、年齢が増加するごとにシワグレードが増えるといった強い線形関係と個人ごとのシワ平均値に大きな個人間差が認められた。このことから、本研究のシワ予測モデルとして、切片に変量効果を導入する線形混合効果モデルを選択した。
Test Example 1-4. Results and discussion [Test Example 1-4.1 Participants]
The average age of participants during the study period ranged from 38.64 years (95% CI: 35.47-41.81) at the start of the study to 44.24 years (95% CI: 41.47-47.34) at the end of the study. ).
Next, regarding the change over time in the wrinkle grade for each individual, a strong linear relationship such that the wrinkle grade increased with increasing age and a large individual difference in the average wrinkle value for each individual were observed. For this reason, we selected a linear mixed-effects model that introduces a variable effect into the intercept as the wrinkle prediction model in this study.
〔試験例1-4.2 シワ予測モデルの開発〕
最終のシワ予測モデルとして、5つのシワ予測因子(1)「年齢」、2)「皮脂量(皮膚の皮脂量)」、3)「a*値(皮膚の赤み)」、4)「個人ごとの全測定年の平均L*値(皮膚の明るさ))、5)「皮脂量とa*値の交互作用項」)を含むことが、推定された(表1)。
本発明のシワ予測モデルの精度を検証するため、シワ予測因子により説明されるシワグレードの予測精度を示すR2(%)と予測値と観測値の差を示すRMSEを算出した結果(R2=84.75,RMSE=0.685)と推定され、この結果からシワ予測モデルは良好な予測精度を示した。
[Test Example 1-4.2 Development of wrinkle prediction model]
Five wrinkle predictors (1) "age", 2) "sebum amount (skin sebum amount)", 3) "a * value (skin redness)", 4) "for each individual" as the final wrinkle prediction model It was estimated that the average L * value (skin brightness) for all measurement years) and 5) “interaction term between sebum amount and a * value”) were included (Table 1).
In order to verify the accuracy of the wrinkle prediction model of the present invention, the result of calculating R 2 (%) indicating the prediction accuracy of the wrinkle grade explained by the wrinkle predictor and RMSE showing the difference between the predicted value and the observed value (R 2). = 84.75, RMSE = 0.685), and from this result, the wrinkle prediction model showed good prediction accuracy.
〔試験例1-4.3 シワ予測モデル(式1)〕
さらに、上記で導き出した5つのシワ予測因子及び線形混合効果モデルを用いた、以下のシワ予測モデル(式1)を示す。
[Test Example 1-4.3 Wrinkle prediction model (Equation 1)]
Further, the following wrinkle prediction model (Equation 1) using the five wrinkle predictors derived above and the linear mixed-effects model is shown.
Wrinkle grade i =0.1469×Age
+ 0.7540×Ln(sebum)
+ 0.3270×Skin color a*
+ 0.1654×Mean[Skin color L*]
- 0.1044×[Ln(sebum)×Skin color a*]
- 15.90
+ b0,i
(式1)
b0,i ~N(0, 0.4847)
Final equation for prediction of wrinkle grade in Japanese women aged 22-60 years
Wrinkle grade i = 0.1469 × Age
+ 0.7540 × Ln (sebum)
+ 0.3270 × Skin color a *
+ 0.1654 × Mean [Skin color L *]
- 0.1044 × [Ln (sebum) × Skin color a *]
- 15.90
+ b 0, i
(Equation 1)
b 0, i ~ N (0, 0.4847)
Final equation for prediction of wrinkle grade in Japanese women aged 22-60 years
そして、上述した試験例1及び後述する試験例2~5を考慮すると、本発明のシワ予測モデルにおいて、この5つのシワ予測因子のうち、年齢と皮膚の明るさの測定値の少なくとも2つが重要であった。このため、皮膚のシワを評価したい対象者は、これら2つに基づき、対象者のシワの指標値を良好な予測精度にて推定することができると考えた。 Considering Test Example 1 described above and Test Examples 2 to 5 described later, at least two of the five wrinkle predictors, the measured values of age and skin brightness, are important in the wrinkle prediction model of the present invention. Met. Therefore, it is considered that the subject who wants to evaluate the wrinkles of the skin can estimate the index value of the wrinkles of the subject with good prediction accuracy based on these two.
一般的に年齢と共にシワグレードが高くなるが、このシワを予防するためには保湿がよいとされている。このため、従来であれば、年齢と、保湿に関連する測定値(例えば、皮膚の水分量、経表皮水分蒸散量)とが、最も重要な値と考えられる。しかし、本研究のシワ予測モデルにおいて、皮膚の水分量及び経表皮水分蒸散量の測定値がなくともよく、しかも年齢と、皮膚の明るさとが、最も重要な値であったことは、本発明者にとって全くの意外であった。個人ごとに、年齢と皮膚の状態を示す値(皮膚の評価及び測定値など)とを、長期間にわたりデータ集積し、多変量解析(特に線形混合効果モデル)を用いたことで、従来にない結果及びアイデアを導き出すことに成功した。 Generally, the wrinkle grade increases with age, but it is said that moisturizing is good to prevent this wrinkle. For this reason, conventionally, age and measured values related to moisturization (for example, skin water content, transepidermal water evaporation amount) are considered to be the most important values. However, in the wrinkle prediction model of this study, it is not necessary to have measured values of skin water content and transepidermal water evaporation, and age and skin brightness were the most important values in the present invention. It was completely unexpected to the person. By accumulating data indicating age and skin condition (skin evaluation and measurement values, etc.) for each individual over a long period of time and using multivariate analysis (especially linear mixed-effects model), it has never been seen before. Succeeded in deriving results and ideas.
さらに、年齢、皮膚の明るさ、皮膚の赤み、皮膚の皮脂量、及び皮脂量と皮膚の赤みの交互作用項の5つのシワ予測因子から構成されるシワ予測モデルは、予測精度が特に良好になることも確認することができた。
例えば、対象者(女性)における「年齢の値」が35歳、「皮膚の明るさの測定値」が68、皮膚の赤みの測定値が8.3、皮膚の皮脂量の測定値が6.0であった場合、これらを上記(式1)の「Age」に「年齢の値」、「Skin color L*」に「皮膚の明るさの測定値」、「Skin color a*」に「皮膚の赤みの測定値」、「sebum」に「皮膚の皮脂量の測定値」を代入した場合、以下のようになり、皮膚のシワグレードは、3.0になる。
Furthermore, the wrinkle prediction model, which consists of five wrinkle predictors of age, skin brightness, skin redness, skin sebum amount, and the interaction term between sebum amount and skin redness, has particularly good prediction accuracy. I was also able to confirm that it would be.
For example, in the subject (female), the "age value" is 35 years old, the "skin brightness measurement value" is 68, the skin redness measurement value is 8.3, and the skin oil content measurement value is 6. If it is 0, these are "age value" in "Age" of the above (Equation 1), "measured value of skin brightness" in "Skin color L *", and "skin" in "Skin color a *". When "measured value of the amount of sebum of the skin" is substituted for "measured value of redness" and "sebum", the result is as follows, and the wrinkle grade of the skin is 3.0.
さらに、本研究によって、シワ予測モデルの式1、及び後述する式2~式7を得ることもできた。従来、シワ評価(シワグレード)は、ヒトの目視に頼るため、経験を積んだ専門家に頼る必要があり、簡便ではなかった。しかし、本技術であれば、より簡便にかつ客観的にシワグレードの数値化が可能になった。しかも、本研究で用いる皮膚状態の測定値は、計測機器などの皮膚状態の測定装置によって、より簡便に得ることができる。このため、本発明であれば、経験を積んだ専門家でなくとも、シワグレードの数値を、より簡便に、より精度良く得ることができる。さらに、本発明であれば、スマートフォンやWebカメラ付きパソコンなどのカメラ機能、ビデオ機能を利用することでも、シワグレードを数値化できるので、本発明は、より簡便な操作で、時間や場所も問わず、シワの評価を客観的により精度良く行うことができる。
そして、本発明のシワ予測モデルを、CPUを含むコンピュータにて実行することで、個人ごとに、より簡便に、予測精度がより良いシワ評価を、モバイル端末などにて容易に利用することも可能である。
よって、本発明は、個人ごとに、皮膚のシワを、精度良く、より簡便に評価できる技術を提供することができる。
Furthermore, by this study, it was possible to obtain
Then, by executing the wrinkle prediction model of the present invention on a computer including a CPU, it is possible to easily use wrinkle evaluation with better prediction accuracy for each individual on a mobile terminal or the like. Is.
Therefore, the present invention can provide a technique for evaluating skin wrinkles more accurately and more easily for each individual.
<試験例2:シワ予測モデル(式2)>
試験例1で得られたデータを用いて、さらに、シワ予測モデル(式1)における各切片が以下の範囲である場合には、個人レベルのシワ予測精度は、60%以上と良好であった。このため、以下の式2をシワ予測モデル(式2)とすることが可能であることが確認できた。
よって、本発明は、シワ予測式1又はシワ予測式2を用いることで、年齢の値、皮膚の明るさの測定値、皮膚の赤みの測定値、皮膚の皮脂量の測定値の4つ値に基づき、対象者の皮膚のシワの指標値を精度良く、より簡便に推定することもできる。
<Test Example 2: Wrinkle prediction model (Equation 2)>
Using the data obtained in Test Example 1, when each section in the wrinkle prediction model (Equation 1) was in the following range, the wrinkle prediction accuracy at the individual level was as good as 60% or more. .. Therefore, it was confirmed that the
Therefore, in the present invention, by using the
Wrinkle grade i = 0.1200~0.2053×Age
+ 0.2200~1.280×Ln(sebum)
+ 0.050~0.5710×Skin color a*
+ 0.050~0.4000×Mean[Skin color L*]
- 0.030~0.1800×[Ln(sebum)×Skin color a*]
- 25.00~7.600
(式2)
Wrinkle grade i = 0.1200 ~ 0.2053 × Age
+ 0.2200 ~ 1.280 × Ln (sebum)
+0.050 ~ 0.5710 × Skin color a *
+ 0.050 ~ 0.4000 × Mean [Skin color L *]
- 0.030 ~ 0.1800 × [Ln (sebum) × Skin color a *]
- 25.00-7.600
(Equation 2)
<試験例3:シワ予測因子の数>
試験例1で得られたデータを用いて、上記シワ予測因子に採用した値(年齢、皮脂量、皮膚の赤み、皮膚の明るさ)以外に、皮膚状態の機器評価を行っていた。例えば、皮膚の水分量、経表皮水分蒸散量、皮膚の黄みなどの機器評価を行った。しかしながら、全ての測定値を予測因子として用いて予測したシワグレードは最善モデルと比較した結果、予測精度は60%程度、又はRMSEの値が1.5程度と大きくなったため、良好な予測精度を示さなかった。このため、上記5つのシワ予測因子(年齢、皮脂量、皮膚の赤み、皮膚の明るさ、皮脂量とa*値の交互作用項)に、さらに他のシワ予測因子(例えば、皮膚の水分量、経表皮水分蒸散量など)を追加した場合には、予測精度が低下すると考える。このことから、上記5つのシワ予測因子を用いたシワ予測モデルが最も良好なモデルと考える。
<Test Example 3: Number of wrinkle predictors>
Using the data obtained in Test Example 1, the device evaluation of the skin condition was performed in addition to the values (age, sebum amount, skin redness, skin brightness) adopted for the above wrinkle predictors. For example, device evaluations such as skin water content, transepidermal water evaporation, and skin yellowing were performed. However, as a result of comparing the wrinkle grade predicted using all the measured values as predictors with the best model, the prediction accuracy was as large as about 60%, or the RMSE value was as large as about 1.5, so good prediction accuracy was obtained. Not shown. Therefore, in addition to the above five wrinkle predictors (age, sebum amount, skin redness, skin brightness, interaction term between sebum amount and a * value), other wrinkle predictors (for example, skin water content). , Transepidermal water loss amount, etc.) is considered to reduce the prediction accuracy. From this, it is considered that the wrinkle prediction model using the above five wrinkle prediction factors is the best model.
<試験例4:上記2つのシワ予測因子(年齢、及び皮膚の明るさ)の場合>
上記測5つのシワ予測因子のうち、「年齢」及び「皮膚の明るさ」を選択し、この2つのシワ予測因子を用いたシワ予測モデル(式3)を以下に示す。個人レベルのシワ予測精度は、80%以上と良好であった。当該シワ予測モデル及びシワ予測精度は、上記「試験例1-3.シワ予測モデル開発のための統計解析」及び「試験例1-4.2 シワ予測モデルの開発」で述べたR2を用いた。
よって、本発明は、シワ予測式3を用いることで、年齢の値、及び皮膚の明るさの測定値の2つ値に基づき、対象者の皮膚のシワの指標値を精度良く、より簡便に推定することもできる。
<Test Example 4: In the case of the above two wrinkle predictors (age and skin brightness)>
"Age" and "skin brightness" are selected from the above five wrinkle predictors, and a wrinkle prediction model (Equation 3) using these two wrinkle predictors is shown below. The wrinkle prediction accuracy at the individual level was as good as 80% or more. The wrinkles prediction model and wrinkles prediction accuracy, use the R 2 mentioned above, "Development of Test Example 1-4.2 wrinkles predictive model""Test Example 1-3. Statistical analysis for wrinkles predictive model development" and board.
Therefore, in the present invention, by using the wrinkle prediction formula 3, the index value of the wrinkles on the skin of the subject can be accurately and easily determined based on the two values of the age value and the measured value of the skin brightness. It can also be estimated.
Wrinkle grade i = 0.1484×Age
+ 0.1844×Mean[Skin color L*]
- 14.80
(式3)
Wrinkle grade i = 0.1484 × Age
+ 0.1844 × Mean [Skin color L *]
- 14.80
(Equation 3)
<試験例5:上記2つのシワ予測因子+シワ予測因子(皮脂量)の場合>
試験例1で得られたデータを用いて、上記5つのシワ予測因子のうち、「年齢」と「皮膚の明るさ」を選択し、さらに「皮脂量」を選択し、この3つのシワ予測因子を用いたシワ予測モデル(式4)を以下に示す。個人レベルのシワ予測精度は、80%以上と良好であった。当該シワ予測モデル及びシワ予測精度は、上記「試験例1-3.シワ予測モデル開発のための統計解析」及び「試験例1-4.2 シワ予測モデルの開発」で述べたR2を用いた。
よって、本発明は、シワ予測式4を用いることで、年齢の値、皮膚の明るさの測定値、さらに皮脂量の測定値の3つの値に基づき、対象者の皮膚のシワの指標値を精度良く、より簡便に推定することができる。
<Test Example 5: In the case of the above two wrinkle predictors + wrinkle predictors (sebum amount)>
Using the data obtained in Test Example 1, among the above five wrinkle predictors, "age" and "skin brightness" were selected, and then "sebum amount" was selected, and these three wrinkle predictors were selected. The wrinkle prediction model (Equation 4) using the above is shown below. The wrinkle prediction accuracy at the individual level was as good as 80% or more. The wrinkles prediction model and wrinkles prediction accuracy, use the R 2 mentioned above, "Development of Test Example 1-4.2 wrinkles predictive model""Test Example 1-3. Statistical analysis for wrinkles predictive model development" and board.
Therefore, in the present invention, by using the wrinkle prediction formula 4, the index value of the wrinkles on the skin of the subject is determined based on the three values of the age value, the measured value of the skin brightness, and the measured value of the amount of sebum. It can be estimated more accurately and more easily.
Wrinkle grade i = 0.1504×Age
+ 0.1880×Mean[Skin color L*]
+0.044×Ln(sebum)
- 15.28
(式4)
Wrinkle grade i = 0.1504 × Age
+ 0.1880 × Mean [Skin color L *]
+0.044 × Ln (sebum)
- 15.28
(Equation 4)
<試験例6:上記2つのシワ予測因子+シワ予測因子(赤み、皮脂量)の場合>
試験例1で得られたデータを用いて、上記5つのシワ予測因子のうち、「年齢」と「皮膚の明るさ」を選択し、さらに「赤み」及び「皮脂量」を選択し、この4つのシワ予測因子を用いたシワ予測モデル(式5)を以下に示す。個人レベルのシワ予測精度は、80%以上と良好であった。当該シワ予測モデル及びシワ予測精度は、上記「試験例1-3.シワ予測モデル開発のための統計解析」及び「試験例1-4.2 シワ予測モデルの開発」で述べたR2を用いた。
よって、本発明は、シワ予測式5を用いることで、年齢の値、皮膚の明るさの測定値、さらに赤み及び皮脂量の測定値の4つの値に基づき、対象者の皮膚のシワの指標値を精度良く、より簡便に推定することができた。
<Test Example 6: In the case of the above two wrinkle predictors + wrinkle predictors (redness, sebum amount)>
Using the data obtained in Test Example 1, among the above five wrinkle predictors, "age" and "skin brightness" were selected, and then "redness" and "sebum amount" were selected, and these 4 A wrinkle prediction model (Equation 5) using two wrinkle predictors is shown below. The wrinkle prediction accuracy at the individual level was as good as 80% or more. The wrinkles prediction model and wrinkles prediction accuracy, use the R 2 mentioned above, "Development of Test Example 1-4.2 wrinkles predictive model""Test Example 1-3. Statistical analysis for wrinkles predictive model development" and board.
Therefore, in the present invention, by using the wrinkle prediction formula 5, the index of wrinkles on the skin of the subject is based on the four values of age value, skin brightness measurement value, and redness and sebum amount measurement value. The value could be estimated more accurately and more easily.
Wrinkle grade i = 0.1460×Age
+ 0.035×Ln(sebum)
+ 0.013×Skin color a*
+ 0.1812×Mean[Skin color L*]
(式5)
Wrinkle grade i = 0.1460 × Age
+ 0.035 × Ln (sebum)
+ 0.013 × Skin color a *
+ 0.1812 × Mean [Skin color L *]
(Equation 5)
Claims (7)
1個人のシワ指標値を目的変数とした、当該1個人の年齢及び皮膚の明るさの測定値を少なくとも説明変数に含む線形混合効果モデルを用いて導き出すことにより、
得られたモデルである、請求項3又は4に記載の皮膚のシワの評価方法。 The wrinkle prediction model is
By deriving using a linear mixed-effects model that includes at least the measured values of the age and skin brightness of the individual as the objective variable, with the wrinkle index value of the individual as the objective variable.
The method for evaluating skin wrinkles according to claim 3 or 4, which is the obtained model.
当該推定された皮膚のシワ指標値が、投与前の対象者の皮膚のシワ指標値よりも、低い場合に、被験物質をシワ改善用と判別する工程、を含む、シワ改善用組成物の評価又は探索方法。 A step of estimating the skin wrinkle index value of a subject to whom the test substance is administered by using the skin wrinkle evaluation method according to any one of claims 1 to 6, and the estimated skin wrinkle index. A method for evaluating or searching for a wrinkle-improving composition, which comprises a step of determining a test substance for wrinkle-improving when the value is lower than the wrinkle index value of the skin of a subject before administration.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2022531712A JP7671287B2 (en) | 2020-06-15 | 2021-06-09 | How to assess skin wrinkles |
| CN202180030981.2A CN115443095A (en) | 2020-06-15 | 2021-06-09 | Method for evaluating skin wrinkles |
| KR1020227037546A KR20230023611A (en) | 2020-06-15 | 2021-06-09 | Method for evaluating skin wrinkles |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2020102942 | 2020-06-15 | ||
| JP2020-102942 | 2020-06-15 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2021256339A1 true WO2021256339A1 (en) | 2021-12-23 |
Family
ID=79267963
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2021/021888 Ceased WO2021256339A1 (en) | 2020-06-15 | 2021-06-09 | Skin wrinkle evaluation method |
Country Status (5)
| Country | Link |
|---|---|
| JP (1) | JP7671287B2 (en) |
| KR (1) | KR20230023611A (en) |
| CN (1) | CN115443095A (en) |
| TW (1) | TWI893138B (en) |
| WO (1) | WO2021256339A1 (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009142069A1 (en) * | 2008-05-23 | 2009-11-26 | ポーラ化成工業株式会社 | Method for automatically judging skin texture and/or crease |
| US20150099947A1 (en) * | 2013-10-04 | 2015-04-09 | Access Business Group International Llc | Skin youthfulness index, methods and applications thereof |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1078455C (en) * | 1997-08-01 | 2002-01-30 | 上海家化联合股份有限公司 | Method for measuring skin grain and wrinkles |
| CN103654724B (en) * | 2012-09-04 | 2016-06-22 | 宝丽化成工业有限公司 | Method for identifying skin condition based on fibrous structure analysis |
| JP6185807B2 (en) * | 2013-09-25 | 2017-08-23 | 花王株式会社 | Wrinkle state analysis method and wrinkle state analyzer |
| EP4557306A3 (en) * | 2016-04-22 | 2025-07-23 | Fitskin Inc. | Systems for skin analysis using electronic devices |
| CN108154142B (en) * | 2018-01-29 | 2021-02-26 | 杭州美界科技有限公司 | Skin wrinkle evaluation method and system based on voice recognition |
-
2021
- 2021-06-09 WO PCT/JP2021/021888 patent/WO2021256339A1/en not_active Ceased
- 2021-06-09 CN CN202180030981.2A patent/CN115443095A/en active Pending
- 2021-06-09 KR KR1020227037546A patent/KR20230023611A/en active Pending
- 2021-06-09 JP JP2022531712A patent/JP7671287B2/en active Active
- 2021-06-11 TW TW110121273A patent/TWI893138B/en active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009142069A1 (en) * | 2008-05-23 | 2009-11-26 | ポーラ化成工業株式会社 | Method for automatically judging skin texture and/or crease |
| US20150099947A1 (en) * | 2013-10-04 | 2015-04-09 | Access Business Group International Llc | Skin youthfulness index, methods and applications thereof |
Non-Patent Citations (1)
| Title |
|---|
| ANONYMOUS: "Guideline for Evaluation of Anti-wrinkle Products ", TASK FORCE COMMITTEE FOR EVALUATION OF ANTI-AGING FUNCTION, 1 January 2006 (2006-01-01), pages 316 - 332, XP055895351, Retrieved from the Internet <URL:http://www.jcss.jp/journal/contents_guideline1.pdf> [retrieved on 20220224] * |
Also Published As
| Publication number | Publication date |
|---|---|
| TWI893138B (en) | 2025-08-11 |
| JPWO2021256339A1 (en) | 2021-12-23 |
| CN115443095A (en) | 2022-12-06 |
| TW202201425A (en) | 2022-01-01 |
| JP7671287B2 (en) | 2025-05-01 |
| KR20230023611A (en) | 2023-02-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5639060B2 (en) | Objective model, method and use of apparent age | |
| Mothes et al. | Automated objective and marker-free facial grading using photographs of patients with facial palsy | |
| KR102485256B1 (en) | Customized Skin diagnostic and Managing System | |
| Chen et al. | Automated video exposure assessment of repetitive hand activity level for a load transfer task | |
| Sheridan et al. | Variability of capillary refill time among physician measurements | |
| Hasan et al. | Pain level detection from facial image captured by smartphone | |
| CN119167112A (en) | Traditional Chinese medicine diagnosis and treatment data analysis system and method based on digital human cloning technology | |
| Migliorelli et al. | A store-and-forward cloud-based telemonitoring system for automatic assessing dysarthria evolution in neurological diseases from video-recording analysis | |
| Kim et al. | Development of a new classification and scoring system for scalp conditions: Scalp Photographic Index (SPI) | |
| Yu et al. | The relevance and accuracy of an AI algorithm‐based descriptor on 23 facial attributes in a diverse female US population | |
| Guhan et al. | Developing an effective and automated patient engagement estimator for telehealth: A machine learning approach | |
| JP2018102730A (en) | Skin analysis method and skin analysis apparatus | |
| TW201331857A (en) | Method of estimating sebaceous quantity | |
| JP7671287B2 (en) | How to assess skin wrinkles | |
| US20240177213A1 (en) | Apparatus and method for recommending customized cosmetics based on artificial intelligence | |
| JP2019201743A (en) | Method for evaluating higher-order impression of face | |
| HK40076692A (en) | Skin wrinkle evaluation method | |
| JP2019217253A (en) | Method of evaluating transparent feeling of skin | |
| JP2023038870A (en) | Impression evaluation method and impression evaluation system | |
| Langer et al. | The AI neuropsychologist: Automatic scoring of memory deficits with deep learning | |
| Stillhart et al. | Screening for dental pain using an automated face coding (AFC) software | |
| DiCanio et al. | Development of a novel facial age assessment model in a multiethnic population for evaluation of topical anti-aging products | |
| JP2023067024A (en) | Combined skin physiological parameter analysis method | |
| CN115885312A (en) | Evaluation device, method, and program | |
| Bayramova et al. | Photographing alopecia: how many pixels are needed for clinical evaluation? |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21825597 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2022531712 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 21825597 Country of ref document: EP Kind code of ref document: A1 |