WO2021117367A1 - 画像処理装置、および画像処理システム、並びに画像処理方法 - Google Patents
画像処理装置、および画像処理システム、並びに画像処理方法 Download PDFInfo
- Publication number
- WO2021117367A1 WO2021117367A1 PCT/JP2020/040443 JP2020040443W WO2021117367A1 WO 2021117367 A1 WO2021117367 A1 WO 2021117367A1 JP 2020040443 W JP2020040443 W JP 2020040443W WO 2021117367 A1 WO2021117367 A1 WO 2021117367A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subject
- tracking
- prediction vector
- type
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/61—Control of cameras or camera modules based on recognised objects
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
- G06T7/251—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving models
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/62—Control of parameters via user interfaces
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/63—Control of cameras or camera modules by using electronic viewfinders
- H04N23/631—Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/63—Control of cameras or camera modules by using electronic viewfinders
- H04N23/631—Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters
- H04N23/632—Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters for displaying or modifying preview images prior to image capturing, e.g. variety of image resolutions or capturing parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
- H04N23/681—Motion detection
- H04N23/6811—Motion detection based on the image signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/695—Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Definitions
- the present disclosure relates to an image processing apparatus, an image processing method, and a program. More specifically, the present invention relates to an image processing device for tracking a subject and performing image shooting, an image processing system, and an image processing method.
- an automatic tracking imaging device capable of capturing a moving image while tracking the subject is used.
- an image pickup device is attached to a pan head device that can freely set the shooting direction, and the pan head device is driven so as to follow the movement of the subject to shoot an image.
- the automatic tracking imaging device is described in, for example, Patent Document 1 (Japanese Unexamined Patent Publication No. 2010-154391).
- many automatic tracking imaging devices When shooting a tracking image (moving image) of a subject, many automatic tracking imaging devices first perform a process in which a user (photographer) selects a subject to be tracked. For example, before starting image shooting by the camera, the user confirms the live view image (through image) displayed on the display unit of the camera and selects the subject to be tracked.
- the user selects a subject to be tracked from the live view image displayed on the touch panel type display screen, and sets a frame surrounding the image area of the selected subject with a finger.
- the control unit of the automatic tracking imaging device uses the image of the frame region as a template image and drives the pan head so as to follow the image region similar to the template image. By such processing, a tracking image is taken.
- the present disclosure has been made in view of the above-mentioned problems, for example, and the tracking image of the target subject to be tracked can be obtained without performing processing such as setting a frame on the display screen by the user (photographer). It is an object of the present invention to provide an image processing apparatus and an image processing system capable of taking a picture, and an image processing method.
- the first aspect of the disclosure is Detects the tracking subject corresponding to the type specified in advance from the captured image, A subject movement prediction vector calculation unit that calculates a movement prediction vector according to the type and posture of the detected tracking subject,
- the image processing apparatus has a camera control signal generation unit that generates a camera control signal for tracking the tracking subject based on the motion prediction vector.
- the second aspect of the present disclosure is It is an image processing system having a camera mounted on a pan head and a pan head control unit for controlling the pan head.
- the camera Detects the tracking subject corresponding to the type specified in advance from the captured image,
- a subject movement prediction vector calculation unit that calculates a movement prediction vector according to the type and posture of the detected tracking subject, It has a camera control signal generation unit that generates a camera control signal for tracking the tracking subject based on the motion prediction vector.
- the pan head control unit An image processing system that executes pan head control for capturing a tracking image of the tracking subject based on the camera control signal.
- the third aspect of the present disclosure is This is an image processing method executed in an image processing device.
- Subject movement prediction vector calculation unit Detects the tracking subject corresponding to the type specified in advance from the captured image, A subject movement prediction vector calculation step that calculates a movement prediction vector according to the type and posture of the detected tracking subject, and
- the camera control signal generator There is an image processing method that executes a camera control signal generation step of generating a camera control signal for tracking the tracking subject based on the motion prediction vector.
- system is a logical set configuration of a plurality of devices, and the devices having each configuration are not limited to those in the same housing.
- a device and a method for calculating a motion prediction vector corresponding to the type and posture of the tracking subject and generating a camera control signal necessary for capturing the subject tracking image are realized. ..
- a subject motion prediction vector calculation unit that detects a tracking subject of a predetermined type from a captured image input from an imaging unit and calculates a motion prediction vector according to the type and orientation of the detected tracking subject. It also has a camera control signal generation unit that generates a camera control signal for capturing a tracking image of the tracking subject based on the motion prediction vector calculated by the subject movement prediction vector calculation unit.
- the subject motion prediction vector calculation unit executes detection processing and motion prediction vector calculation processing of the type of tracking subject specified by the user from the captured image by using a neural network or the like.
- a device and a method for calculating a motion prediction vector corresponding to the type and posture of the tracking subject and generating a camera control signal necessary for capturing the subject tracking image are realized.
- the effects described in the present specification are merely exemplary and not limited, and may have additional effects.
- FIG. 1 is a diagram showing a configuration example of an automatic tracking imaging device 10 which is an example of the image processing device of the present disclosure.
- the automatic tracking imaging device 10 includes a camera 11, a pan head 12, and a pan head control unit 13.
- the camera 11 is mounted on the pan head 12.
- the camera 11 has a configuration in which the shooting direction can be freely changed on the pan head 12.
- the pan head control unit 13 drives and controls the pan head 12 so that the shooting direction of the camera 11 is directed in the direction of the tracking subject set in advance.
- the tracking subject In order to shoot the subject tracking image, the tracking subject is detected from the image captured by the camera, the direction of the detected tracking subject is analyzed, and the process of matching the shooting direction of the camera to that direction is continuously executed. It is necessary to do.
- These processes (1) to (4) are executed by either the camera 11 or the pan head control unit 13.
- all the processes (1) to (4) may be executed by the pan head control unit 13, or the processes (1) to (3) may be executed by the camera 11 and the process (4) may be executed.
- the configuration may be such that only the pan head control unit 13 executes only.
- the image captured by the camera 11 is input to the pan head control unit 13 via the signal line 14.
- the pan head control unit 13 executes the above processes (1) to (4) using the captured image.
- the pan head drive control signal generated by the camera 11 is used.
- the pan head control unit 13 executes the above process (4) using the pan head drive control signal generated by the camera 11.
- an external communication terminal or server for example, an external device such as a server on the cloud, executes the process while communicating with the camera 11 or the pan head control unit 13. It is also possible to configure it.
- the user when capturing a tracking image (moving image) of a subject, the user (photographer) first selects a subject to be tracked. .. For example, the user selects a subject to be tracked from a live view image (through image) displayed on the touch panel type camera display screen, and sets a frame surrounding the image area of the selected subject with a finger.
- the subject selection process is not limited to the operation on the touch panel type camera display screen, and may be performed by using a physical operation unit such as an operation button.
- the image processing device of the present disclosure solves this problem, for example, and enables a user (photographer) to capture a tracking image of a target subject without setting a frame surrounding the tracking subject area. It is the one. Further, most of the conventional methods described in Patent Document 1 (Japanese Unexamined Patent Publication No. 2010-154391) and the like described above are configured to predict the moving position of a subject by using a plurality of frame information, and improve the prediction accuracy. Therefore, the occurrence of latency is inevitable. Therefore, there is a possibility that the subject may already be removed from the screen before the high-speed subject is captured and tracking is started.
- the method of the present disclosure is a method that enables the subject tracking image to be taken based on the posture estimation result of the subject to be tracked in one frame without using the information of a plurality of frames, and causes latency. It is possible to take a tracking image of the subject without causing it.
- an outline of the processing executed by the image processing apparatus of the present disclosure will be described with reference to FIGS. 2 and below.
- FIG. 2 and 3 are diagrams illustrating a processing step for capturing a moving image which is a tracking image of a specific subject by using the automatic tracking imaging device 10 shown in FIG. 1, which is an example of the image processing device of the present disclosure. is there.
- the user selects the type of the subject to be tracked by using the tracking subject type selection UI 16 displayed on the camera display unit 15.
- icons that can select the following subject types are displayed.
- there are other subject types that can be selected by the user and the user can slide the screen left and right. By sliding it up and down, you can display icons that indicate various other selectable subject types.
- FIG. 2 shows an example in which the user (photographer) selects “(5) bird” as the tracking subject type as the process of (step S11).
- the tracking subject type information selected by the user (photographer) is input to the data processing unit of the image processing device (automatic tracking imaging device 10).
- FIG. 3 shows the next processing step.
- FIG. 3 is a diagram showing a state in which an image is displayed on the camera display unit 15. This display image is a current image before the start of recording, a so-called live view image (LV image). While viewing the live view image (LV image), the user first touches the automatic tracking (Auto Lock ON) mode setting icon 17 in (step S12) at an arbitrary timing.
- LV image live view image
- the touch operation of the automatic tracking (Auto Lock ON) mode setting icon 17 is input to the data processing unit of the image processing device (automatic tracking imaging device 10), and the automatic tracking process is started.
- a bird is photographed in the live view image (LV image), but at this point, it is not essential that the bird is photographed in the live view image (LV image).
- the user touches the shooting (recording) start instruction icon 18 in (step S13). This touch operation is input to the data processing unit of the image processing device (automatic tracking imaging device 10), and shooting (recording) is started.
- the touch process of the shooting (recording) start instruction icon 18 can be executed at any timing desired by the user (photographer). In the example shown in FIG. 3, a bird is photographed in the live view image (LV image), but the recording is started by touching the shooting (recording) start instruction icon 18 on the screen where the bird is not photographed. Is also possible.
- the processing executed by the user (photographer) is the following processing.
- S11 Tracking subject type selection process
- S12 Automatic tracking mode ON setting process
- S13 Shooting (recording) start instruction process Tracking a subject of the type specified (selected) by the user with only these simple operations
- the method of the present disclosure is a method that enables a subject tracking image to be captured based on a posture estimation result of a subject to be tracked in one frame without using a plurality of frame information, and generates latency. It is possible to take a tracking image of the subject without any problem.
- FIG. 4 shows a communication terminal 30 such as a smartphone (smartphone) owned by a user (photographer).
- the communication terminal 30 has a configuration capable of communicating with at least one of the camera 11 and the pan head control unit 13. On the communication terminal 30, the same tracking subject type selection UI 31 as described above with reference to FIG. 2 is displayed.
- FIG. 4 shows an example in which the user (photographer) selects “(5) bird” as the tracking subject type as the process of (step S11).
- the tracking subject type information selected by the user (photographer) is transmitted from the communication terminal 30 to the camera 11 or the pan head control unit 13.
- FIG. 5 shows the next processing step executed by using the communication terminal 30.
- FIG. 5 is a diagram showing a state in which the captured image of the camera 11 is displayed on the communication terminal 30.
- the captured image of the camera 11 is transmitted to the communication terminal 30 via the communication unit of the camera 11 and displayed.
- This display image is a current image before the start of recording, a so-called live view image (LV image).
- the user While viewing the live view image (LV image) displayed on the communication terminal 30, the user first sets the automatic tracking (Auto Lock ON) mode displayed on the communication terminal 30 at an arbitrary timing in (step S12). Touch the icon 32.
- Auto Lock ON automatic tracking
- the touch operation information of the automatic tracking (Auto Lock ON) mode setting icon 32 is transmitted from the communication terminal 30 to the camera 11 or the pan head control unit 13, and the automatic tracking imaging device 10 starts the automatic tracking process.
- step S13 the user (photographer) touches the shooting (recording) start instruction icon 33 displayed on the communication terminal 30.
- This touch operation information is transmitted from the communication terminal 30 to the camera 11 or the pan head control unit 13, is input to the data processing unit of the automatic tracking imaging device 10, and shooting (recording) is started.
- the user may execute each of the following processes using a communication terminal such as a smartphone.
- S11 Tracking subject type selection process
- S12 Automatic tracking mode ON setting process
- S13 Shooting (recording) start instruction process Tracking a subject of the type specified (selected) by the user with only these simple operations
- the method of the present disclosure is a method that enables a subject tracking image to be captured based on a posture estimation result of a subject to be tracked in one frame without using a plurality of frame information, and generates latency. It is possible to take a tracking image of the subject without any problem.
- the flowchart shown in FIG. 6 is a flowchart illustrating a sequence of processes executed by the image processing apparatus of the present disclosure.
- the image processing device that executes the processing according to the flowchart shown in FIG. 6 will be described with reference to the automatic tracking imaging device 10 described above with reference to FIGS. 1 to 3 or FIGS. 4 to 5. It is a device composed of the automatic tracking image pickup device 10 and the communication terminal 30.
- the processing of each processing step of the flowchart shown in FIG. 6 will be sequentially described.
- step S101 First, in step S101, the type of tracking subject is specified. This process corresponds to the process described above with reference to FIGS. 2 and 4.
- the user selects the type of the subject to be tracked by using the display data shown in FIGS. 2 and 4, that is, the tracking subject type selection UI displayed on the display unit of the camera 11 or the communication terminal 30. To do.
- FIGS. 2 and 4 described above are examples in which the user (photographer) selects "(5) bird" as the tracking subject type.
- the tracking subject type information selected by the user (photographer) is input to the data processing unit of the image processing device (automatic tracking imaging device 10 or communication terminal 30).
- step S102 the automatic tracking mode is set to ON. This process corresponds to the process of (step S12) described above with reference to FIGS. 3 and 5.
- the user touches the automatic tracking mode setting icon displayed on the display unit of the camera 11 or the communication terminal 30 to set the automatic tracking mode to ON.
- the information in which the automatic tracking mode is set to ON is input to the data processing unit of the image processing device (automatic tracking imaging device 10 or communication terminal 30).
- the subject to be automatically tracked is the type of tracked subject specified in (step S101) above, for example, a “bird”.
- the live view image (LV image) is displayed on the display unit of the camera 11 or the communication terminal 30 in FIGS. 3 and 5 described above, even if the live view image (LV image) is displayed. It does not have to be displayed.
- step S103 Next, in step S103, an instruction to start shooting (recording) is given. This process corresponds to the process of (step S13) described above with reference to FIGS. 3 and 5.
- the user touches the shooting (recording) start instruction icon as described with reference to FIGS. 3 and 5.
- This touch operation information is input to the data processing unit of the image processing device (automatic tracking imaging device 10 or communication terminal 30).
- the shooting (recording) start instruction can be executed at any timing desired by the user (photographer).
- the captured image of the “bird” designated as the tracking subject is displayed in the live view image (LV image), but the shooting (recording) is started at the screen position where the bird is not captured. It is also possible to give an instruction and start recording.
- steps S101 to S103 are processes that involve user operations on the UI, and these user operation information is input to the data processing unit of the image processing device (automatic tracking imaging device 10 or communication terminal 30), and in the automatic tracking mode. Image (moving image) shooting process will be started.
- the tracking target is a subject matching the subject type selected in step S101, for example, a “bird”.
- Step S104 In steps S101 to S103, the following input processing by the user, (S101) Tracking subject type selection process (S102) Automatic tracking mode ON setting process (S103) Shooting (recording) start instruction process
- S101 Tracking subject type selection process
- S102 Automatic tracking mode ON setting process
- S103 Shooting (recording) start instruction process
- the automatic tracking imager 10 automatically tracks in step S104 or lower. Start the image (moving image) shooting process in the mode.
- step S104 the tracking subject detection process from the captured image is executed.
- the subject to be detected is a subject of the type specified by the user in step S101, for example, a “bird”.
- the data processing unit of the image processing device executes detection processing of a subject matching the tracking subject type specified by the user (photographer) from the captured image. It is possible to determine whether or not there is a subject matching the tracking subject type specified by the user (photographer) in the captured image as the determination process of (1) or (0). Alternatively, the reliability of the subject matching the tracking subject type (for example, the reliability of 0 to 100, etc.) is calculated, and it is determined that the subject is detected when the determination is made to be equal to or higher than the predetermined reliability threshold value. You may perform processing to which reliability is applied.
- this subject identification process is executed by performing image analysis processing of the captured image. Specifically, for example, subject identification processing using learning data is executed. The details of this process will be described later.
- Step S105 it is determined whether or not the tracking subject detection process from the captured image in step S104 was successful. If it is determined to be successful, the process proceeds to step S106. On the other hand, if it is determined that the failure has occurred, the process returns to step S104, and the tracking subject detection process from the continuously captured image frame is executed.
- the subject to be detected is a subject of the type specified by the user in step S101, for example, a “bird”. If no "bird" is detected in the captured image, it is determined in step S105 that the tracking subject detection process from the captured image has failed, the process returns to step S104, and the detection process from the next image frame is performed. ..
- a plurality of subjects of the type specified by the user for example, a plurality of "birds" may be detected from one image frame.
- the user sets the tracking mode in advance as to which "bird" is to be tracked.
- An example of this tracking mode setting sequence will be described with reference to the flowchart shown in FIG. 7.
- the processing flow shown in FIG. 7 is a tracking mode setting process executed by input from the user (photographer) as a preprocessing before starting the image shooting process in the subject tracking mode according to the flow shown in FIG. ..
- the tracking mode information set according to the process shown in FIG. 7 is stored in the storage unit in the image processing device (automatic tracking imaging device 10), and the tracking subject is detected from the captured images in steps S104 to S105 of the flow of FIG.
- the success determination process of the process is executed according to the set tracking mode. The processing of each step of the flow shown in FIG. 7 will be described.
- Step S201 First, in step S201, the user decides whether or not to limit the tracking subject to one, and inputs the selection information.
- the UI for inputting the selection information is displayed on, for example, the display unit of the camera 11 or the communication terminal 30, and the user inputs the selection information using the displayed UI.
- step S201 If the user selects a setting that limits the tracking subject to one in step S201, the process proceeds to step S202. On the other hand, if the user selects a setting that does not limit the tracking subject to one in step S201, the process proceeds to step S211.
- Step S202 If the user selects a setting that limits the tracking subject to one in step S201, the process proceeds to step S202.
- the user determines whether or not the tracking subject is a subject close to the center of the image, and inputs the selection information.
- the UI for inputting the selection information is also displayed on the display unit of the camera 11 or the communication terminal 30, for example, and the user inputs the selection information using the displayed UI.
- step S202 when the user selects a setting in which the tracking subject is a subject close to the center of the image, the process proceeds to step S212.
- step S202 when the user selects a setting that does not set the tracking subject as a subject close to the center of the image, the process proceeds to step S213.
- the selection information of steps S201 and S202 by the user is input to the data processing unit in the image processing device (automatic tracking imaging device 10 or communication terminal 30), and the data processing unit executes the subject based on the input information. Determine the tracking mode.
- the subject tracking mode includes, for example, the following three types of modes.
- (A) Multiple subject tracking mode (B) Central subject tracking mode (C) Maximum subject tracking mode
- the data processing unit in the image processing device (automatic tracking imaging device 10 or communication terminal 30) selects steps S201 and S202 by the user. According to the information, it is determined which of the above (A) to (C) tracking modes is to be executed.
- step S201 If the determination in step S201 is No, the process proceeds to step S211 and the tracking mode to be executed is set. (A) Set to multiple subject tracking mode.
- step S201 If the determination in step S201 is Yes and the determination in step S202 is Yes, the process proceeds to step S212, and the tracking mode to be executed is set. (B) Set to the central subject tracking mode.
- step S201 If the determination in step S201 is Yes and the determination in step S202 is No, the process proceeds to step S213, and the tracking mode to be executed is set. (C) Set to the maximum subject tracking mode.
- Step S211 If the determination in step S201 is No, that is, in step S201, if the user selects a setting that does not limit the tracking subject to one, the process proceeds to step S211.
- the data processing unit of the image processing device (automatic tracking imaging device 10 or communication terminal 30) sets the tracking mode to be executed.
- step S101 of FIG. 6 when a plurality of subjects corresponding to the tracking subject type specified in step S101 of FIG. 6 are detected from the captured image, the tracking subject covers an area including all the subjects corresponding to the tracking subject type. This is the mode. As shown in the image of FIG. 7 (step S211), when a plurality of subjects (“birds” in this example) corresponding to the tracking subject type are detected in the captured image, the area including all of these subjects is defined as the tracking subject. To do.
- Step S212 When the determination in step S201 is Yes and the determination in step S202 is Yes, that is, in step S201, the user selects a setting to limit the tracking subject to one, and in step S202, the user centers the tracking subject on the image.
- the process proceeds to step S212.
- the data processing unit of the image processing device (automatic tracking imaging device 10 or communication terminal 30) sets the tracking mode to be executed.
- step S101 of FIG. 6 when a plurality of subjects corresponding to the tracking subject type specified in step S101 of FIG. 6 are detected from the captured image, the center subject is closest to the center of the captured image among the plurality of detected subjects.
- This mode uses one subject as the tracking subject.
- the center of the captured image is detected from among these subjects. Select one subject closest to, and use this selected subject as the tracking subject.
- Step S213 If the determination in step S201 is Yes and the determination in step S202 is No, that is, in step S201, the user selects a setting that limits the tracking subject to one, and in step S202, the user centers the tracking subject on the image. If no setting for a close subject is selected, the process proceeds to step S213. In this case, the data processing unit of the image processing device (automatic tracking imaging device 10 or communication terminal 30) sets the tracking mode to be executed. (C) Set to the maximum subject tracking mode.
- the maximum subject tracking mode when a plurality of subjects corresponding to the tracking subject type specified in step S101 of FIG. 6 are detected from the captured image, the maximum subject tracking mode has the largest image area among the plurality of detected subjects1. This mode uses one subject as the tracking subject. As shown in the image of FIG. 7 (step S213), when a plurality of subjects (“birds” in this example) corresponding to the tracking subject type are detected in the captured image, among these subjects, in the captured image. One subject that occupies the largest image area is selected, and this selected subject is set as the tracking subject.
- the tracking mode information set according to the processing flow shown in FIG. 7 is stored in a storage unit in the image processing device (automatic tracking imaging device 10 or communication terminal 30).
- the success determination process of the tracking subject detection process from the captured images in steps S104 to S105 of the flow of FIG. 6 described above is executed according to the set tracking mode.
- mode classification examples of (A) multiple subject tracking mode, (B) central subject tracking mode, and (C) maximum subject tracking mode have been described, but other different modes may be used. It may be configured to be configurable. For example, it may be configured so that mode settings such as a leading subject selection mode in which the leading car or person in a race or the like is the tracking subject can be selected.
- FIG. 8 is a diagram illustrating an example of processing in steps S104 to S105 of the flow shown in FIG. 6, that is, tracking subject detection processing from the captured image.
- FIG. 8 shows a captured image that executes the detection process of the tracking subject.
- the example shown in FIG. 8 is an example when the tracking subject type is set to "bird".
- the determination in step S105 becomes N0, and the process returns to step S104 to execute the detection process of the bird as the tracking subject from the continuously captured images.
- step S104 a process of determining the tracking subject is performed according to a preset tracking mode.
- the (B) central subject tracking mode described above with reference to FIG. 7 has been set.
- the data processing unit of the image processing device determines (B) the bird near the center of the image as the tracking subject among the two birds detected from the captured image according to the setting of the central subject tracking mode. In this way, the tracking subject determination process is executed. Returning to FIG. 6, the processing of step S106 and subsequent steps will be described.
- Step S106 If it is determined in step S105 that the tracking subject detection process from the captured image in step S104 is successful, the process proceeds to step S106.
- the image processing device executes a motion prediction vector calculation process according to the type and posture of the tracking subject.
- the type of tracking subject is, for example, a subject type designated by the user as a tracking subject, such as a bird, a person, or a dog.
- the posture is a posture in which a bird is perched on a tree, a posture in which a person is flying, a posture in which a person is present, a posture in which a person is running, and the like.
- the posture also includes the size of the tracking subject in the image, and when calculating the motion prediction vector, processing is performed in consideration of the size of the tracking subject in the image.
- the calculation process of the motion prediction vector according to the type and posture of the tracking subject is executed in the data processing unit in the image processing device (automatic tracking imaging device 10 or communication terminal 30). The details of this motion prediction vector calculation process will be described later.
- FIG. 10 is a diagram showing a specific example of a motion prediction vector corresponding to one posture with a “bird” when the type of the tracking subject is “bird”.
- a vector extending in the upper right direction from the center position of the bird, which is the tracking subject is shown.
- This vector is the motion prediction vector of the bird that is the tracking subject.
- the direction of the motion prediction vector is set to the direction corresponding to the predicted movement direction of the bird as the tracking subject, and the length of the motion prediction vector corresponds to the predicted movement speed (80 km / h) of the bird as the tracking subject. It is set to.
- a specific example of the calculation process of the motion prediction vector will be described later.
- FIG. 11 is a diagram showing a specific example of a motion prediction vector corresponding to one posture of a "person” when the type of the tracking subject is "person".
- a vector extending in the left horizontal direction from the center position of the person who is the tracking subject is shown.
- This vector is the motion prediction vector of the person who is the tracking subject.
- the direction of the motion prediction vector is set to the direction corresponding to the predicted movement direction of the person who is the tracking subject, and the length of the motion prediction vector corresponds to the predicted movement speed (38 km / h) of the person who is the tracking subject. It is set to.
- step S106 shown in FIG. 6 the motion prediction vector calculation process according to the type and posture of the tracking subject is executed in this way.
- the calculation process of the motion prediction vector according to the type and posture of the tracking subject is executed in the data processing unit in the image processing device (automatic tracking imaging device 10 or communication terminal 30).
- the calculation process of the motion prediction vector according to the type and posture of the tracking subject can be executed as a process using the learning data.
- a table in which motion prediction vectors according to the type and posture of the tracking subject are recorded in advance may be stored in the storage unit, and the motion prediction vector may be acquired by referring to this table.
- the motion prediction vector calculation process according to the type and orientation of the tracking subject is executed, for example, in units of image frames captured by the camera 11. However, when calculating the motion prediction vector corresponding to a new image frame, the previous frame is calculated. Etc., a new predicted motion vector is calculated by referring to the motion prediction vector calculated based on the past frame and the measured motion vector reflecting the actual motion of the tracking subject obtained from the past captured image. You may.
- the motion prediction vector is calculated based on the analysis result of the initial frame, but after the next frame, the motion prediction motion vector calculated from the latest captured image frame is calculated. And, the actual motion vector that reflects the actual motion of the tracking subject obtained from the past captured images is compared, and the correction process is performed so that this difference becomes small to calculate the final predicted motion vector. Processing may be performed.
- processing such as setting weights on the predicted motion vector and the measured vector and calculating the final predicted motion vector by weight addition may be performed.
- weighting the predicted motion vector deteriorates the accuracy. Therefore, the measured vector may be weighted more.
- step S107 the shooting direction of the camera is controlled according to the motion prediction vector according to the type and posture of the tracking subject calculated in step S106. That is, it is assumed that the tracking subject moves according to the motion prediction vector according to the type and orientation of the tracking subject calculated in step S106, and the shooting direction of the camera is changed so that the shooting direction of the camera matches the moving direction. Generates a camera direction control signal. Further, the camera direction is changed according to the generated camera direction control signal.
- the data processing unit in the image processing device moves the tracking subject to the moving position based on the motion prediction vector according to the type and orientation of the tracking subject calculated in step S106.
- the camera shooting direction movement vector for matching the shooting directions of the camera 11 is calculated.
- the data processing unit in the image processing device drives the cloud stand 12 required to change the camera shooting direction according to the calculated camera shooting direction movement vector. Direction and drive amount) are determined. Further, the data processing unit in the image processing device (automatic tracking imaging device 10 or communication terminal 30) drives the pan head 12 according to the determined drive mode (drive direction and drive amount) of the pan head 12. A control signal is generated, and the generated pan head drive control signal is output to the pan head control unit 13. The pan head control unit 13 applies the input pan head drive control signal to drive the pan head 12.
- the shooting direction of the camera is controlled so that the shooting direction of the camera matches the moving direction. Will be done. As a result, it becomes possible to shoot a captured image (moving image) that tracks the tracking subject.
- the camera setting information for shooting the optimum image of the tracking subject such as pan, tilt, zoom, etc. is calculated, and this calculated information is also controlled by the camera 11 or the pan head. It may be configured to output to unit 13 for control.
- Step S108 it is determined in step S108 whether or not the automatic tracking mode is set to OFF.
- the automatic tracking mode is set to OFF, the shooting process in the automatic tracking mode ends.
- step S104 If the automatic tracking mode is not set to OFF, the process returns to step S104, and the processes of steps S104 to S107 are repeated for a new captured image frame.
- the image shooting process in the automatic tracking mode is continuously executed.
- FIG. 12 shows a configuration example of the image processing device 100 of the present disclosure.
- the image processing device 100 shown in FIG. 12 is a combination of the automatic tracking imaging device 10 described with reference to FIGS. 1 to 3 or the automatic tracking device 10 described with reference to FIGS. 4 to 5 and a communication terminal 30. Corresponds to the device.
- the configuration diagram shown in FIG. 12 is a configuration diagram in which only a portion related to the shooting direction control process of the camera executed by the image processing apparatus of the present disclosure is extracted. The general configuration of the camera, communication terminal, and pan head control unit is omitted.
- the image processing device 100 includes an input unit 101, an imaging unit 102, a subject movement prediction vector generation unit 110, a camera control signal generation unit 121, and a camera (head) drive unit 122.
- the subject movement prediction vector generation unit 110 uses the tracking subject identification unit 111, the subject estimation learning data 112, the tracking subject type & posture correspondence movement prediction vector calculation unit 113, and the tracking subject type & posture correspondence movement prediction vector estimation learning data 114. Have.
- the input unit 101 inputs, for example, tracking subject type information. Specifically, as described above with reference to FIGS. 2 and 4, the user tracks using the tracking subject type selection UI displayed on the display unit of the camera 11 or the display unit of the communication terminal 30. Select and enter the type of target subject.
- the tracking subject type designation information 201 input from the input unit 101 is input to the subject movement prediction vector generation unit 110.
- the imaging unit 102 corresponds to the imaging unit of the camera 11 in the configuration described with reference to FIGS. 1 to 5.
- the imaging unit 102 acquires a captured image such as a current image before the start of recording, a so-called live view image (LV image), or an image for recording after the start of recording.
- a captured image such as a current image before the start of recording, a so-called live view image (LV image), or an image for recording after the start of recording.
- LV image live view image
- the captured image 202 acquired by the imaging unit 102 is input to the subject movement prediction vector generation unit 110.
- the subject movement prediction vector generation unit 110 inputs the tracking subject type designation information 201 from the input unit 101, inputs the captured image 202 from the imaging unit 102, and uses these input information to predict the tracking subject type and the motion corresponding to the posture. Generate and output vector 204.
- the tracking subject type & posture-corresponding motion prediction vector 204 is a motion prediction vector corresponding to the type of the tracking subject, for example, the type of the tracking subject such as a bird, a dog, a person, or a ball, and the posture of the tracking subject.
- the tracking subject type is a bird
- the length of the movement prediction vector of the bird perched on the tree is almost zero, but when the bird is flying in the sky, the movement prediction vector is the direction of the bird's head. It is a vector that has almost the same direction as the bird and has a length corresponding to the flight speed of the bird.
- the subject movement prediction vector generation unit 110 first tracks the captured image 202 by using the tracking subject type designation information 201 input from the input unit 101 and the captured image 202 input from the imaging unit 102 by the tracking subject identification unit 111. Detect the subject. Specifically, a tracking subject matching the tracking subject type specified by the user is detected from the captured image 202.
- a process of detecting "bird” from the captured image 202 is executed.
- a process of detecting "person” from the captured image 202 or the like is executed.
- the tracking subject identification unit 111 executes the subject identification process using the subject estimation learning data 112 when the tracking subject is detected.
- the learning data 112 for subject estimation is data accumulated by a learning process executed in advance, and collects image feature information of various moving subjects such as people, birds, dogs, cats, and balls, and types of subjects from the images. It is the learning data that made it possible to estimate.
- the tracking subject identification unit 111 uses, for example, a tracking target that matches the tracking subject type specified by the user from the captured image 202 by using a neural network configured by using the learning data 112 for subject estimation, for example, a “bird”. Is detected.
- the detection information of the tracking subject identification unit 111 is output as the tracking subject detection information 203 to the tracking subject type & posture correspondence motion prediction vector calculation unit 113.
- the tracking subject type & posture correspondence motion prediction vector calculation unit 113 inputs the tracking subject detection information 203 from the tracking subject identification unit 111.
- the tracking subject type & posture corresponding motion prediction vector calculation unit 113 calculates the motion prediction vector corresponding to the type and posture of the tracking subject included in the captured image 202 based on this input information.
- the tracking subject type & posture correspondence motion prediction vector calculation unit 113 describes the type of the tracking subject, for example, the type of the tracking subject such as a bird, a dog, a person, or a ball, and the motion prediction vector corresponding to the posture of the tracking subject, that is, the tracking.
- the subject type & posture correspondence motion prediction vector 204 is calculated.
- the tracking subject type & posture corresponding movement prediction vector calculation unit 113 calculates a vector using the tracking subject type & posture corresponding movement prediction vector estimation learning data 114 when performing the calculation processing of the tracking subject type & posture corresponding movement prediction vector 204. Execute the process.
- the learning data 114 for tracking motion prediction vector estimation for tracking subject type & posture is data accumulated by a learning process executed in advance, and various types of moving subjects such as people, birds, dogs, cats, and balls and their postures. This is learning data that can accumulate motion vectors corresponding to the above and estimate the motion vector of the subject from the type of the subject detected from the image and its posture.
- the tracking subject type & posture correspondence motion prediction vector calculation unit 113 uses, for example, a neural network configured by using the tracking subject type & posture correspondence movement prediction vector estimation learning data 114, and the tracking subject included in the captured image 202. Calculate the motion prediction vector corresponding to the type and posture of.
- the motion prediction vector calculation process according to the type and posture of the tracking subject by the tracking subject type & posture-corresponding motion prediction vector calculation unit 113 is acquired from a table generated in advance in addition to the processing using the above-mentioned learning data. It may be configured. That is, a table in which motion prediction vectors according to the type and posture of the tracking subject are recorded in advance may be stored in the storage unit, and the motion prediction vector may be acquired by referring to this table.
- the tracking subject type & posture correspondence motion prediction vector 204 calculated by the tracking subject type & posture correspondence motion prediction vector calculation unit 113 is output to the camera control signal generation unit 121.
- the camera control signal generation unit 121 generates a control signal for controlling the shooting direction of the camera 11 by using the tracking subject type & posture correspondence motion prediction vector 204 calculated by the tracking subject type & posture correspondence motion prediction vector calculation unit 113. .. That is, a camera direction control signal that sets the shooting direction of the camera at the position where the tracking subject moves according to the tracking subject type & posture correspondence motion prediction vector 204 is generated.
- the camera direction control signal specifically corresponds to a drive control signal of the pan head 12 that controls the shooting direction of the camera 11.
- the camera direction control signal generated by the camera control signal generation unit 121 is input to the camera (head) drive unit 122.
- the camera (head) drive unit 122 is a component of the pan head control unit 13 shown in FIG.
- the camera (head) drive unit 122 drives the pan head based on the camera direction control signal generated by the camera control signal generation unit 121. That is, the pan head is driven so as to match the shooting direction of the camera with the position where the tracking subject has moved according to the tracking subject type & posture correspondence motion prediction vector 204.
- the shooting direction of the camera moves according to the movement of the tracking subject specified by the user (photographer), and the tracking image (moving image) of the tracking subject can be taken.
- the process executed by the subject movement prediction vector generation unit 110 that is, the type of the tracking subject, for example, the type of the tracking subject such as a bird, a dog, a person, or a ball, and the movement prediction vector corresponding to the posture of the tracking subject.
- the type of the tracking subject for example, the type of the tracking subject such as a bird, a dog, a person, or a ball
- the movement prediction vector corresponding to the posture of the tracking subject A specific processing example of the generation processing of the motion prediction vector 204 corresponding to a certain tracking subject type & posture will be described with reference to FIGS. 13 and 14.
- FIG. 13 is a processing example when the type of the tracking subject specified by the user (photographer) is “bird”.
- FIG. 14 is an example of processing when the type of the tracking subject specified by the user (photographer) is “person”.
- FIG. 13 shows a tracking subject identification unit 111, which is a component of the subject movement prediction vector generation unit 110, and a tracking subject type & posture correspondence motion prediction vector calculation unit 113. Each of these has a neural network generated by the training data.
- the tracking subject identification unit 111 has a designated subject type detection neural network generated by the learning data.
- the designated subject type detection neural network is a neural network that inputs the tracking subject type designation information 201 from the input unit 101 and the captured image 202 from the imaging unit 102 and outputs the tracking subject detection information 203.
- the tracking subject detection information 203 generated by the tracking subject identification unit 111 is output to the tracking subject type & posture correspondence motion prediction vector calculation unit 113.
- the tracking subject type & posture correspondence movement prediction vector calculation unit 113 has a bird posture correspondence movement prediction vector estimation neural network generated by the learning data.
- This neural network is a neural network that estimates a motion prediction vector corresponding to the posture of a bird, assuming that the subject type is a bird.
- the neural network may be set for each bird type, for example.
- a neural network for each type of bird such as pigeon, sparrow, swan, etc. may be applied.
- the subject type pigeon
- the motion prediction vector corresponding to the posture of the pigeon may be estimated.
- the tracking subject type & posture-corresponding motion prediction vector calculation unit 113 has a neural network for motion prediction vector estimation according to the subject type (person, bird, dog, etc.), and is designated as a tracking target by the user.
- the neural network to be used is switched and used according to the subject type (people, birds, dogs, etc.).
- the tracking subject type & posture correspondence motion prediction vector calculation unit 113 is configured to perform the tracking subject type identification processing and the posture correspondence movement prediction vector calculation processing.
- the posture-corresponding motion prediction vector calculation process may be performed by an individual processing unit. Further, these processes may be performed by different devices.
- the type of subject (whether or not it is a subject specified for tracking) is specified on the camera side, and movement is predicted by another information processing device such as an external communication terminal or a server on the cloud side using that information. May be good.
- the tracking subject type & posture-corresponding motion prediction vector calculation unit 113 obtains a vector having a direction in the forward direction of the bird flying in the sky, which is the tracking subject, and having a length corresponding to the flight speed of the bird. , Tracked subject type & orientation correspondence motion prediction vector 204 is calculated.
- This tracking subject type & posture correspondence motion prediction vector 204 is output to the camera control signal generation unit 121.
- the camera control signal generation unit 121 uses this motion prediction vector to generate a camera direction control signal that sets the shooting direction of the camera at the position where the tracking subject moves according to the motion prediction vector.
- FIG. 14 shows a tracking subject identification unit 111, which is a component of the subject movement prediction vector generation unit 110, and a tracking subject type & posture correspondence motion prediction vector calculation unit 113. Each of these has a neural network generated by the training data.
- the tracking subject detection information 203 generated by the tracking subject identification unit 111 is output to the tracking subject type & posture correspondence motion prediction vector calculation unit 113.
- the tracking subject type & posture-corresponding motion prediction vector calculation unit 113 has a “human” posture-corresponding motion prediction vector estimation neural network generated by the learning data.
- This neural network is a neural network that estimates motion prediction vectors corresponding to various types of people and human postures.
- the type of person is the type of an adult, a child, a man, a woman, etc., and the posture of a person is, for example, a walking posture, a running posture, or the like.
- the neural network can also generate and use a neural network for a specific individual as a type of person. It is possible to learn the movements of a specific Mr. A according to various postures, and based on this learning data, generate a neural network that estimates the motion prediction vector according to the various postures of the specific Mr. A. When a specific Mr. A is detected from the captured image, a highly accurate motion prediction vector based on the data unique to Mr. A can be estimated by applying this neural network unique to Mr. A.
- the tracking subject type & posture-corresponding motion prediction vector calculation unit 113 has a direction toward the front of the person in the running posture, which is the tracking subject, and has a length corresponding to the running speed of the person. Is calculated as the tracking subject type & posture-corresponding motion prediction vector 204.
- This tracking subject type & posture correspondence motion prediction vector 204 is output to the camera control signal generation unit 121.
- the camera control signal generation unit 121 uses this motion prediction vector to generate a camera direction control signal that sets the shooting direction of the camera at the position where the tracking subject moves according to the motion prediction vector.
- the camera control signal generation unit 121 uses the tracking subject type & posture correspondence motion prediction vector 204 calculated by the tracking subject type & posture correspondence motion prediction vector calculation unit 113.
- a control signal for controlling the shooting direction of the camera 11 is generated.
- a camera direction control signal that sets the shooting direction of the camera at the position where the tracking subject moves according to the tracking subject type & posture corresponding motion prediction vector 204 is generated.
- the camera direction control signal specifically corresponds to a drive control signal of the pan head 12 that controls the shooting direction of the camera 11.
- FIG. 15 is a diagram showing a processing example of the camera control signal generation unit 121.
- FIG. 15 shows an example of processing when the tracking subject is a bird.
- the current frame (n) and the next frame (n + 1) scheduled to be photographed by moving the camera 11 in accordance with the movement of the tracking subject are shown.
- the “tracking subject type & posture-corresponding motion prediction vector” is shown by a solid line in the forward and upward direction from the bird, which is the tracking subject detected in the current frame (n).
- the “tracking subject type & posture corresponding movement prediction vector” shown in FIG. 15 is a vector calculated based on the tracking subject type & posture corresponding movement prediction vector 204 calculated by the subject type & posture corresponding movement prediction vector calculation unit 113. , Corresponds to a vector indicating the movement destination of the subject between one frame of the shooting frame (n) and (n + 1) of the camera 11.
- the image processing apparatus of the present disclosure predicts the movement vector of the tracking subject, and includes the information so that the subject becomes the target position (for example, the image center position). It makes it possible to control. Therefore, it is possible to set the position other than the position of the bird on the dotted line of the frame (n + 1) shown in FIG. Further, the shooting direction of the camera 11 can be set in various ways other than the setting of changing to the center of the next frame (n + 1) image shown by the dotted circle in FIG.
- the camera control signal generation unit 121 calculates the camera shooting direction movement vector based on the tracking subject type & posture correspondence motion prediction vector 204 calculated by the subject type & posture correspondence motion prediction vector calculation unit 113, and the camera according to this vector. Change the shooting direction of. By this processing, it is possible to shoot a tracking image such that the tracking subject specified by the user is shot in each shot image frame.
- the technology disclosed in the present specification can have the following configuration. (1) Detects the tracking subject corresponding to the type specified in advance from the captured image, and A subject movement prediction vector calculation unit that calculates a movement prediction vector according to the type and posture of the detected tracking subject, An image processing device having a camera control signal generation unit that generates a camera control signal for tracking the tracking subject based on the motion prediction vector.
- the subject movement prediction vector calculation unit is A tracking subject identification unit that detects a tracking subject corresponding to a specified type from the captured image, and a tracking subject identification unit.
- the image processing apparatus according to (1) which has a tracking subject type & posture-corresponding subject movement prediction vector calculation unit that calculates a motion prediction vector according to the type and posture of the tracking subject detected by the tracking subject identification unit.
- the subject movement prediction vector calculation unit is The image processing apparatus according to (1) or (2), which executes tracking subject identification processing using learning data and motion prediction vector calculation processing.
- the image processing device is It has a display unit that displays a UI (user interface) for allowing the user to select the type of tracking subject.
- the subject movement prediction vector calculation unit Using the UI, a subject of a type corresponding to the type of the tracking subject specified by the user is detected from the captured image, and a motion prediction vector according to the type and posture of the detected tracking subject is calculated (1) to.
- the image processing apparatus according to any one.
- the image processing device is The image processing apparatus according to any one of (1) to (4), which starts detection processing of a tracking subject of a type specified in advance from the captured image in response to an automatic tracking mode start input by the user.
- the subject movement prediction vector calculation unit is The image processing according to any one of (1) to (5), which has a tracking subject identification unit that detects a tracking subject of a type specified by the user from the captured image using a neural network generated based on the learning data. apparatus.
- the subject movement prediction vector calculation unit is It has a tracking subject type & posture corresponding subject movement prediction vector calculation unit that calculates a motion prediction vector according to the type and posture of the tracking subject using a neural network generated based on the training data (1) to (6).
- the image processing apparatus according to any one.
- the subject movement prediction vector calculation unit is When multiple tracking subjects of the type specified by the user are detected in the captured image, The image processing apparatus according to any one of (1) to (7), which determines a tracking subject according to preset subject tracking mode setting information.
- the subject movement prediction vector calculation unit is (A) Multiple subject tracking mode (B) Central subject tracking mode (C) Maximum subject tracking mode
- the subject movement prediction vector calculation unit is The image processing according to any one of (1) to (9), in which the motion prediction vector according to the type and posture of the tracking subject is acquired by referring to the table in which the motion prediction vector according to the type and posture of the tracking subject is recorded. apparatus.
- the subject movement prediction vector calculation unit is The image processing apparatus according to any one of (1) to (10), which calculates a motion prediction vector in consideration of the size of the tracking subject in the image.
- the subject movement prediction vector calculation unit is The image processing apparatus according to any one of (1) to (11), which calculates a motion prediction vector using an actually measured motion vector that reflects the motion of a tracking subject obtained from a past captured image.
- the subject movement prediction vector calculation unit is The predicted motion vector calculated from the latest captured image is compared with the measured motion vector that reflects the motion of the tracking subject obtained from the past captured image, and the predicted motion vector is corrected (1) to (12).
- the camera control signal generation unit The image processing according to any one of (1) to (13), which generates a control signal in the camera direction for capturing a tracking image of the tracking subject based on the motion prediction vector calculated by the subject motion prediction vector calculation unit. apparatus.
- the camera control signal generation unit Based on the motion prediction vector calculated by the subject motion prediction vector calculation unit, a camera control signal of at least one of pan, tilt, and zoom of the camera for capturing the tracking image of the tracking subject is generated (1).
- a camera control signal of at least one of pan, tilt, and zoom of the camera for capturing the tracking image of the tracking subject is generated (1).
- An image processing system having a camera mounted on a pan head and a pan head control unit for controlling the pan head.
- the camera Detects the tracking subject corresponding to the type specified in advance from the captured image,
- a subject movement prediction vector calculation unit that calculates a movement prediction vector according to the type and posture of the detected tracking subject, It has a camera control signal generation unit that generates a camera control signal for tracking the tracking subject based on the motion prediction vector.
- the pan head control unit An image processing system that executes pan head control for capturing a tracking image of the tracking subject based on the camera control signal.
- the subject movement prediction vector calculation unit of the camera is A tracking subject identification unit that detects a tracking subject corresponding to a specified type from the captured image, and a tracking subject identification unit.
- Subject movement prediction vector calculation unit Detects the tracking subject corresponding to the type specified in advance from the captured image, A subject movement prediction vector calculation step that calculates a movement prediction vector according to the type and posture of the detected tracking subject, and
- the camera control signal generator An image processing method for executing a camera control signal generation step of generating a camera control signal for tracking the tracking subject based on the motion prediction vector.
- the series of processes described in the specification can be executed by hardware, software, or a composite configuration of both.
- executing processing by software install the program that records the processing sequence in the memory in the computer built in the dedicated hardware and execute it, or execute the program on a general-purpose computer that can execute various processing. It can be installed and run.
- the program can be pre-recorded on a recording medium.
- LAN Local Area Network
- the various processes described in the specification are not only executed in chronological order according to the description, but may also be executed in parallel or individually as required by the processing capacity of the device that executes the processes.
- the system is a logical set configuration of a plurality of devices, and the devices having each configuration are not limited to those in the same housing.
- the motion prediction vector corresponding to the type and posture of the tracking subject is calculated to generate the camera control signal necessary for capturing the subject tracking image.
- Devices and methods are realized. Specifically, for example, a subject motion prediction vector calculation unit that detects a tracking subject of a predetermined type from a captured image input from an imaging unit and calculates a motion prediction vector according to the type and orientation of the detected tracking subject. It also has a camera control signal generation unit that generates a camera control signal for capturing a tracking image of the tracking subject based on the motion prediction vector calculated by the subject movement prediction vector calculation unit.
- the subject motion prediction vector calculation unit executes detection processing and motion prediction vector calculation processing of the type of tracking subject specified by the user from the captured image by using a neural network or the like. With this configuration, a device and a method for calculating a motion prediction vector corresponding to the type and posture of the tracking subject and generating a camera control signal necessary for capturing the subject tracking image are realized.
- Automatic tracking imager 11 Camera 12 Pan head 13 Head control unit 15 Camera display unit 16 Tracking subject type selection UI 17 Automatic tracking mode setting icon 18 Shooting (recording) start instruction icon 30 Communication terminal 31 Tracking subject type selection UI 32 Automatic tracking mode setting icon 338 Shooting (recording) start instruction icon 100 Image processing device 101 Input unit 102 Imaging unit 110 Subject movement prediction vector generation unit 111 Tracking subject identification unit 112 Subject estimation learning data 113 Tracking subject type & posture-corresponding movement Prediction vector calculation unit 114 Tracking subject type & orientation correspondence Learning data for motion prediction vector estimation 121 Camera control signal generation unit 122 Camera (cloud stand) drive unit 201 Tracking subject type specification information 202 Captured image 203 Tracking subject detection information 204 Tracking subject type & Motion prediction vector for posture
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Human Computer Interaction (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Studio Devices (AREA)
- Image Analysis (AREA)
- Closed-Circuit Television Systems (AREA)
Abstract
Description
例えば、撮影方向を自在に設定可能な雲台装置に撮像装置を取り付け、雲台装置を被写体の動きに追従させるように駆動して画像を撮影する。
なお、自動追尾撮像装置については例えば特許文献1(特開2010-154391号公報)等に記載がある。
例えば、カメラによる画像撮影を開始する前に、ユーザがカメラの表示部に表示されるライブビュー画像(スルー画像)を確認して追尾対象被写体の選択を行う。
例えば、ユーザ(撮影者)がカメラを手に持ち、被写体である「鳥」を追いかけながら、「鳥」の追尾画像を撮影しようとする場合等、カメラが固定されていない状態において、ユーザが正確な枠を描くのは困難である。
このように、被写体と、撮影者の双方が動いている状況では、目的とする被写体を囲む正確な枠を描くことは極めて困難であるという問題がある。
撮影画像から予め指定された種類に対応する追尾被写体を検出し、
検出した追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する被写体動き予測ベクトル算出部と、
前記動き予測ベクトルに基づいて、前記追尾被写体を追尾するためのカメラ制御信号を生成するカメラ制御信号生成部を有する画像処理装置にある。
雲台に装着されたカメラと、前記雲台を制御する雲台制御部を有する画像処理システムであり、
前記カメラは、
撮影画像から予め指定された種類に対応する追尾被写体を検出し、
検出した追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する被写体動き予測ベクトル算出部と、
前記動き予測ベクトルに基づいて、前記追尾被写体を追尾するためのカメラ制御信号を生成するカメラ制御信号生成部を有し、
前記雲台制御部は、
前記カメラ制御信号に基づいて、前記追尾被写体の追尾画像を撮影するための雲台制御を実行する画像処理システムにある。
画像処理装置において実行する画像処理方法であり、
被写体動き予測ベクトル算出部が、
撮影画像から予め指定された種類に対応する追尾被写体を検出し、
検出した追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する被写体動き予測ベクトル算出ステップと、
カメラ制御信号生成部が、
前記動き予測ベクトルに基づいて、前記追尾被写体を追尾するためのカメラ制御信号を生成するカメラ制御信号生成ステップを実行する画像処理方法にある。
具体的には、例えば、撮像部から入力する撮影画像から予め指定された種類の追尾被写体を検出し、検出した追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する被写体動き予測ベクトル算出部と、被写体動き予測ベクトル算出部が算出した動き予測ベクトルに基づいて、前記追尾被写体の追尾画像を撮影するためのカメラ制御信号を生成するカメラ制御信号生成部を有する。被写体動き予測ベクトル算出部は、ニューラルネットワーク等を用いて、撮影画像からユーザの指定した種類の追尾被写体の検出処理と動き予測ベクトル算出処理を実行する。
本構成により、追尾被写体の種類と姿勢に対応する動き予測ベクトルを算出して、被写体追尾画像の撮影に必要なカメラ制御信号を生成する装置、方法が実現される。
なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また付加的な効果があってもよい。
1.本開示の画像処理装置の構成と処理の概要について
2.本開示の画像処理装置が実行する処理のシーケンスについて
3.画像処理装置の構成と被写体動き予測ベクトルの生成処理の詳細について
4.本開示の構成のまとめ
まず、本開示の画像処理装置の構成と処理の概要について説明する。
図1は、本開示の画像処理装置の一例である自動追尾撮像装置10の一構成例を示す図である。
カメラ11は雲台12に装着されている。カメラ11は、雲台12上で、自在に撮影方向を変化させることが可能な構成となっている。
雲台制御部13は、予め設定された追尾被写体の方向にカメラ11の撮影方向を向けるように雲台12を駆動制御する。
(1)カメラ11の撮影画像からの追尾被写体の検出処理、
(2)検出された追尾被写体を撮影するためのカメラ方向の算出処理、
(3)算出したカメラ方向にカメラを駆動するための雲台駆動制御信号の生成処理、
(4)生成した雲台駆動制御信号に基づく雲台駆動処理
例えば上記(1)~(4)の全ての処理を雲台制御部13において実行する構成としてもよいし、上記(1)~(3)の処理をカメラ11において実行し、(4)の処理のみを雲台制御部13において実行する構成としてもよい。
雲台制御部13は、この撮影画像を用いて、上記処理(1)~(4)を実行する。
雲台制御部13は、カメラ11が生成した雲台駆動制御信号を用いて、上記処理(4)を実行する。
さらに、上記(1)~(3)の処理については、外部の通信端末やサーバ、例えばクラウド上のサーバ等の外部装置が、カメラ11、または雲台制御部13と通信を行いながら処理を実行する構成も可能である。
例えば、ユーザがタッチパネル型のカメラ表示画面上に表示されるライブビュー画像(スルー画像)から追尾対象となる被写体を選択し、選択した被写体の画像領域を囲む枠を指で設定する。
なお、被写体選択処理は、タッチパネル型のカメラ表示画面に対する操作に限らず、操作釦等の物理的操作部を用いて行う構成としてもよい。
このように、被写体と撮影者の双方が動いている状況では、目的とする被写体を囲む正確な枠を描くことは極めて困難である。
また、前述した特許文献1(特開2010-154391号公報)等に記載の従来手法の多くは、複数枚のフレーム情報を利用して被写体の移動位置を予測する構成であり、予測精度向上のためにはレイテンシの発生が避けられない。従って、高速被写体を捉えて追尾開始する前にすでに画面から被写体が抜けてしまう可能性がある。
これに対して本開示の手法は、複数枚のフレーム情報を利用することなく、1つのフレームの追尾対象被写体の姿勢推定結果に基づいて被写体追尾画像を撮影可能とした手法であり、レイテンシを発生させることなく被写体の追尾画像撮影が可能となる。
以下、図2以下を参照して本開示の画像処理装置の実行する処理の概要について説明する。
図に示すUIには、以下の被写体種類を選択可能なアイコンが表示されている。
(1)人
(2)犬
(3)車
(4)ねこ
(5)鳥
(6)ボール
なお、これらの被写体種類以外にも、ユーザが選択可能な被写体種類があり、ユーザは画面を左右や上下にスライドさせることで、他の様々な選択可能な被写体種類を示すアイコンを表示することができる。
このユーザ(撮影者)が選択した追尾被写体種類情報は、画像処理装置(自動追尾撮像装置10)のデータ処理部に入力される。
図3は、カメラ表示部15に画像が表示された状態を示す図である。この表示画像は録画開始前の現在画像、いわゆるライブビュー画像(LV画像)である。
ユーザは、ライブビュー画像(LV画像)を見ながら、任意のタイミングで、まず、(ステップS12)において、自動追尾(Auto Lock ON)モード設定アイコン17をタッチする。
画像撮影処理は、自動追尾モードで実行され、先の(ステップS11)において指定した追尾被写体種類=「鳥」を追尾するように画像撮影が実行される。すなわち、追尾被写体種類=「鳥」を追尾するようにカメラ11の撮影方向を移動させる雲台制御が実行されて撮影が行われる。
(S11)追尾被写体種類の選択処理
(S12)自動追尾モードON設定処理
(S13)撮影(録画)開始指示処理
これらの簡単な操作のみで、ユーザが指定(選択)した種類の被写体を追尾した追尾画像の撮影を開始することができる。
すなわち、本開示の構成では、ユーザ(撮影者)が画面上の追尾対象被写体を枠で囲むといった面倒な処理を行う必要がない。
また、本開示の手法は、複数枚のフレーム情報を利用することなく、1つのフレームの追尾対象被写体の姿勢推定結果に基づいて被写体追尾画像を撮影可能とした手法であり、レイテンシを発生させることなく被写体の追尾画像撮影を行うことができる。
図4には、ユーザ(撮影者)の所有するスマホ(スマートフォン)等の通信端末30を示している。
通信端末30には、先に図2を参照して説明したと同様の追尾被写体種類選択UI31が表示される。
このユーザ(撮影者)が選択した追尾被写体種類情報は、通信端末30から、カメラ11、または雲台制御部13に送信される。
図5は、通信端末30にカメラ11の撮影画像を表示した状態を示す図である。カメラ11の撮影画像はカメラ11の通信部を介して通信端末30に送信されて表示される。
この表示画像は録画開始前の現在画像、いわゆるライブビュー画像(LV画像)である。
(S11)追尾被写体種類の選択処理
(S12)自動追尾モードON設定処理
(S13)撮影(録画)開始指示処理
これらの簡単な操作のみで、ユーザが指定(選択)した種類の被写体を追尾した追尾画像の撮影を開始することができる。
すなわち、本開示の構成では、ユーザ(撮影者)が画面上の追尾対象被写体を枠で囲むといった面倒な処理を行う必要がない。
また、本開示の手法は、複数枚のフレーム情報を利用することなく、1つのフレームの追尾対象被写体の姿勢推定結果に基づいて被写体追尾画像を撮影可能とした手法であり、レイテンシを発生させることなく被写体の追尾画像撮影を行うことができる。
次に、本開示の画像処理装置が実行する処理のシーケンスについて説明する。
なお、図6に示すフローチャートに従った処理を実行する画像処理装置は、先に図1~図3を参照して説明した自動追尾撮像装置10、または、図4~図5を参照して説明した自動追尾撮像装置10と通信端末30によって構成される装置である。
以下、図6に示すフローチャートの各処理ステップの処理について、順次、説明する。
まず、ステップS101において、追尾被写体種類を指定する。
この処理は、先に図2や図4を参照して説明した処理に相当する。
ユーザ(撮影者)が選択した追尾被写体種類情報は、画像処理装置(自動追尾撮像装置10または通信端末30)のデータ処理部に入力される。
次に、ステップS102において、自動追尾モードをONに設定する。
この処理は、先に図3や図5を参照して説明した(ステップS12)の処理に相当する。
自動追尾モードをONに設定した情報は、画像処理装置(自動追尾撮像装置10または通信端末30)のデータ処理部に入力される。
なお、先に説明した図3や図5では、カメラ11や通信端末30の表示部にライブビュー画像(LV画像)を表示しているが、ライブビュー画像(LV画像)は表示されていても表示されていなくてもよい。
次に、ステップS103において、撮影(録画)開始指示を行う。
この処理は、先に図3や図5を参照して説明した(ステップS13)の処理に相当する。
追尾対象は、ステップS101で選択した被写体種類に一致する被写体、例えば「鳥」である。
ステップS101~S103において、ユーザによる以下の入力処理、
(S101)追尾被写体種類の選択処理
(S102)自動追尾モードON設定処理
(S103)撮影(録画)開始指示処理
これらの入力処理が完了すると、自動追尾撮像装置10は、ステップS104以下において、自動追尾モードでの画像(動画)撮影処理を開始する。
ここで、検出対象とする被写体は、ステップS101においてユーザが指定した種類の被写体、例えば「鳥」である。
ステップS105では、ステップS104における撮影画像内からの追尾被写体検出処理に成功したか否かを判定する。
成功したと判定した場合は、ステップS106に進む。
一方、失敗したと判定した場合は、ステップS104に戻り、継続して撮影される画像フレームからの追尾被写体検出処理を実行する。
撮影画像内に「鳥」が検出されなければ、ステップS105において、撮影画像内からの追尾被写体検出処理が失敗と判定され、ステップS104に戻り、次の画像フレームからの検出処理を行うことになる。
このような場合に、どの「鳥」を追尾対象とするかについては、予めユーザが追尾モードを設定しておく。
この追尾モードの設定シーケンスの一例について、図7に示すフローチャートを参照して説明する。
図7に示す処理に従って設定された追尾モード情報は、画像処理装置(自動追尾撮像装置10)内の記憶部に格納され、図6のフローのステップS104~S105の撮影画像内からの追尾被写体検出処理の成功判定処理は、設定された追尾モードに従って実行されることになる。
図7に示すフローの各ステップの処理について説明する。
まず、ステップS201において、ユーザは追尾被写体を1つに限定するか否かを決定し、選択情報を入力する。なおこの選択情報入力のためのUIは、例えばカメラ11、あるいは通信端末30の表示部に表示され、ユーザは表示されたUIを用いて選択情報を入力する。
一方、ステップS201において、ユーザが追尾被写体を1つに限定しない設定を選択した場合、ステップS211に進む。
ステップS201において、ユーザが追尾被写体を1つに限定する設定を選択した場合、ステップS202に進む。
この場合、ユーザは、ステップS202において、追尾被写体を画像中心に近い被写体とするか否かを決定し、選択情報を入力する。なおこの選択情報入力のためのUIも、例えばカメラ11、あるいは通信端末30の表示部に表示され、ユーザは表示されたUIを用いて選択情報を入力する。
一方、ステップS202において、ユーザが追尾被写体を画像中心に近い被写体としない設定を選択した場合、ステップS213に進む。
(A)複数被写体追尾モード
(B)中心被写体追尾モード
(C)最大被写体追尾モード
画像処理装置(自動追尾撮像装置10または通信端末30)内のデータ処理部は、ユーザによるステップS201、S202の選択情報に従って、上記(A)~(C)のいずれの追尾モードを実行するかを決定する。
(A)複数被写体追尾モード
とする。
(B)中心被写体追尾モード
とする。
(C)最大被写体追尾モード
とする。
(ステップS211)
ステップS201の判定がNoの場合、すなわち、ステップS201において、ユーザが追尾被写体を1つに限定しない設定を選択した場合、ステップS211に進む。
この場合、画像処理装置(自動追尾撮像装置10または通信端末30)のデータ処理部は、実行する追尾モードを、
(A)複数被写体追尾モード
とする。
図7(ステップS211)の画像に示すように撮影画像内に追尾被写体種類に相当する被写体(本例では「鳥」)が複数、検出された場合、これらの被写体すべてを含む領域を追尾被写体とする。
ステップS201の判定がYesで、ステップS202の判定がYesの場合、すなわち、ステップS201において、ユーザが追尾被写体を1つに限定する設定を選択し、ステップS202において、ユーザが追尾被写体を画像中心に近い被写体とする設定を選択した場合、ステップS212に進む。
この場合、画像処理装置(自動追尾撮像装置10または通信端末30)のデータ処理部は、実行する追尾モードを、
(B)中心被写体追尾モード
とする。
図7(ステップS212)の画像に示すように撮影画像内に追尾被写体種類に相当する被写体(本例では「鳥」)が複数、検出された場合、これらの被写体の中から、撮影画像の中心に最も近い被写体を1つ選択し、この選択被写体を追尾被写体とする。
ステップS201の判定がYesで、ステップS202の判定がNoの場合、すなわち、ステップS201において、ユーザが追尾被写体を1つに限定する設定を選択し、ステップS202において、ユーザが追尾被写体を画像中心に近い被写体とする設定を選択しなかった場合、ステップS213に進む。
この場合、画像処理装置(自動追尾撮像装置10または通信端末30)のデータ処理部は、実行する追尾モードを、
(C)最大被写体追尾モード
とする。
図7(ステップS213)の画像に示すように撮影画像内に追尾被写体種類に相当する被写体(本例では「鳥」)が複数、検出された場合、これらの被写体の中から、撮影画像内で最も大きな画像領域を占める被写体を1つ選択し、この選択被写体を追尾被写体とする。
先に説明した図6のフローのステップS104~S105の撮影画像内からの追尾被写体検出処理の成功判定処理は、設定された追尾モードに従って実行される。
図8は、図6に示すフローのステップS104~S105における処理、すなわち、撮影画像内からの追尾被写体検出処理の例を説明する図である。
図8には、追尾被写体の検出処理を実行する撮影画像を示している。
なお、図8に示す例は追尾被写体種類を「鳥」に設定した場合の例である。
ステップS104では、図9(状態1)に示すように、まず、ステップS101でユーザ(撮影者)が指定した追尾被写体種類=鳥に基づいて撮影画像から追尾被写体候補となる鳥の画像領域を検出する。
この例では、2つの鳥が検出され、これらが追尾被写体候補となる。
ここでは、先に図7を参照して説明した
(B)中心被写体追尾モード
の設定がなされているものとする。
図6に戻り、ステップS106以下の処理について説明する。
ステップS105において、ステップS104における撮影画像内からの追尾被写体検出処理に成功したと判定した場合は、ステップS106に進む。
追尾被写体の種類とは例えば、鳥、人、犬等、ユーザが追尾被写体として指定した被写体種類である。姿勢とは、鳥が木にとまった姿勢、飛んでいる姿勢、人があるいている姿勢、人が走っている姿勢等である。また姿勢には画像内の追尾被写体の大きさも含まれ、動き予測ベクトルの算出時には、画像内の追尾被写体の大きさも考慮した処理を行う。
この動き予測ベクトル算出処理の詳細については後段で説明する。
図10は、追尾被写体の種類が「鳥」の場合における、「鳥」のある1つの姿勢に対応する動き予測ベクトルの具体例を示す図である。
動き予測ベクトルの方向は、追尾被写体である鳥の予測移動方向に対応する方向に設定され、動き予測ベクトルの長さは、追尾被写体である鳥の予測移動速度(80Km/h)に対応する長さに設定される。
この動き予測ベクトルの算出処理の具体例については後段で説明する。
動き予測ベクトルの方向は、追尾被写体である人の予測移動方向に対応する方向に設定され、動き予測ベクトルの長さは、追尾被写体である人の予測移動速度(38Km/h)に対応する長さに設定される。
前述したように、追尾被写体の種類と姿勢に応じた動き予測ベクトルの算出処理は、画像処理装置(自動追尾撮像装置10または通信端末30)内のデータ処理部において実行される。
あるいは予め追尾被写体の種類と姿勢に応じた動き予測ベクトルを記録したテーブルを記憶部に格納し、このテーブルを参照して動き予測ベクトルを取得する構成としてもよい。
次に、ステップS107において、ステップS106で算出した追尾被写体の種類と姿勢に応じた動き予測ベクトルに従って、カメラの撮影方向を制御する。すなわち、ステップS106で算出した追尾被写体の種類と姿勢に応じた動き予測ベクトルに従って追尾被写体が移動すると想定し、その移動方向にカメラの撮影方向が一致するようにカメラの撮影方向を変更するためのカメラ方向制御信号を生成する。
さらに、生成したカメラ方向制御信号に従ってカメラ方向を変化させる。
さらに、画像処理装置(自動追尾撮像装置10または通信端末30)内のデータ処理部は、決定した雲台12の駆動態様(駆動方向と駆動量)に従って雲台12を駆動させるための雲台駆動制御信号を生成し、生成した雲台駆動制御信号を雲台制御部13に出力する。雲台制御部13は入力した雲台駆動制御信号を適用して雲台12の駆動を実行する。
この結果、追尾被写体を追尾する撮影画像(動画像)の撮影が可能となる。
最後に、ステップS108において自動追尾モードがOFFに設定されたか否かを判定する。
自動追尾モードがOFFに設定された場合は、自動追尾モードでの撮影処理は終了する。
この繰り返し処理により、自動追尾モードでの画像撮影処理が継続的に実行される。
次に、画像処理装置の構成と被写体動き予測ベクトルの生成処理の詳細について説明する。
図12に示す画像処理装置100は、図1~図3を参照して説明した自動追尾撮像装置10、または図4~図5を参照して説明した自動追尾装置10と通信端末30とを組み合わせた装置に対応する。
なお、図12に示す構成図は、本開示の画像処理装置が実行するカメラの撮影方向制御処理に関連する部分のみを抽出した構成図である。カメラや通信端末や雲台制御部の一般的な構成については省略して示している。
被写体動き予測ベクトル生成部110は、追尾被写体識別部111、被写体推定用学習データ112、追尾被写体種類&姿勢対応動き予測ベクトル算出部113、追尾被写体種類&姿勢対応動き予測ベクトル推定用学習データ114を有する。
具体的には、先に図2や図4を参照して説明したように、カメラ11の表示部、あるいは通信端末30の表示部に表示される追尾被写体種類選択UIを用いて、ユーザが追尾対象とする被写体の種類を選択して入力する。
に相当する。撮像部102は、録画開始前の現在画像、いわゆるライブビュー画像(LV画像)や録画開始後の録画用画像等の撮影画像を取得する。
例えばユーザによって指定された追尾被写体種類が「人」である場合、撮影画像202から「人」を検出する処理等を実行する。
被写体推定用学習データ112は、予め実行された学習処理によって蓄積されたデータであり、人、鳥、犬、ねこ、ボール等、様々な動く被写体の画像特徴情報を集積し、画像から被写体の種類を推定することを可能とした学習データである。
追尾被写体識別部111は、ユーザ(撮影者)によって指定された追尾被写体種類、例えば「鳥」に一致する画像領域を検出して、検出画像領域に「ラベル=鳥」を設定した撮影画像を、追尾被写体検出情報203として出力する。
すなわち、予め追尾被写体の種類と姿勢に応じた動き予測ベクトルを記録したテーブルを記憶部に格納し、このテーブルを参照して動き予測ベクトルを取得する構成としてもよい。
すなわち、追尾被写体種類&姿勢対応動き予測ベクトル204に従って追尾被写体が移動した位置にカメラの撮影方向を設定するカメラ方向制御信号を生成する。なお、カメラ方向制御信号は、具体的にはカメラ11の撮影方向を制御する雲台12の駆動制御信号に相当する。
なお、このカメラ(雲台)駆動部122は、図1に示す雲台制御部13の構成要素である。
カメラ(雲台)駆動部122は、カメラ制御信号生成部121が生成したカメラ方向制御信号に基づいて雲台を駆動する。
すなわち、追尾被写体種類&姿勢対応動き予測ベクトル204に従って追尾被写体が移動した位置にカメラの撮影方向を一致させるように雲台を駆動する。
図14は、ユーザ(撮影者)が指定した追尾被写体の種類が「人」である場合の処理例である。
なお、指定被写体種類検出ニューラルネットワークは、入力部101からの追尾被写体種類指定情報201と、撮像部102からの撮影画像202を入力して、追尾被写体検出情報203を出力するニューラルネットワークである。
このニューラルネットワークは、被写体種類=鳥として、鳥の姿勢に対応する動き予測ベクトルを推定するニューラルネットワークである。
なお、本実施例では、追尾被写体種類&姿勢対応動き予測ベクトル算出部113が追尾被写体種類の特定処理と、姿勢対応動き予測ベクトル算出処理を行う構成としているが、追尾被写体種類の特定処理と、姿勢対応動き予測ベクトル算出処理は、個別の処理部で行ってもよい。また、これらの処理を各々異なる装置で行ってもよい。例えば、カメラ側で被写体の種類(追尾指定した被写体か否か)を特定し、その情報を用いて外部の通信端末や、クラウド側のサーバ等、他の情報処理装置で動き予測をする構成としてもよい。
このニューラルネットワークは、様々な人の種類と人の姿勢に対応する動き予測ベクトルを推定するニューラルネットワークである。人の種類とは大人、子供、男、女等の種類であり、人の姿勢とは、例えば、歩いている姿勢、走っている姿勢等である。
撮影画像から特定のAさんが検出された場合、このAさん固有のニューラルネットワークを適用することでAさん固有のデータに基づく高精度な動き予測ベクトルを推定することができる。
先に図12を参照して説明したように、カメラ制御信号生成部121は、追尾被写体種類&姿勢対応動き予測ベクトル算出部113が算出した追尾被写体種類&姿勢対応動き予測ベクトル204を用いて、カメラ11の撮影方向を制御する制御信号を生成する。
現フレーム(n)と、カメラ11を追尾被写体の移動に併せて移動させて撮影する予定の次フレーム(n+1)を示している。
図15に示す「追尾被写体種類&姿勢対応動き予測ベクトル」は、被写体種類&姿勢対応動き予測ベクトル算出部113が算出した追尾被写体種類&姿勢対応動き予測ベクトル204に基づいて算出されるベクトルであり、カメラ11の撮影フレーム(n)と(n+1)の1フレーム間での被写体の移動先を示すベクトルに相当する。
このためには、カメラ11の撮影方向を、図に黒丸で示す現フレーム(n)画像中心から、図に点線丸で示す次フレーム(n+1)画像中心に変更する必要がある。
この方向制御量を規定するのが図に示す点線矢印、すなわち、カメラ撮影方向移動ベクトルである。
なお、図15に示す処理例は一例であり、本開示の画像処理装置は、追尾被写体の移動ベクトルを予測し、その情報も含めて、被写体が目標位置(例えば画像中心位置)になるように制御することを可能とするものである。従って、図15に示すフレーム(n+1)の点線の鳥の位置以外の位置に設定する構成も可能である。また、カメラ11の撮影方向についても、図15に点線丸で示す次フレーム(n+1)画像中心に変更する設定以外の様々な設定が可能である。
以上、特定の実施例を参照しながら、本開示の実施例について詳解してきた。しかしながら、本開示の要旨を逸脱しない範囲で当業者が実施例の修正や代用を成し得ることは自明である。すなわち、例示という形態で本発明を開示してきたのであり、限定的に解釈されるべきではない。本開示の要旨を判断するためには、特許請求の範囲の欄を参酌すべきである。
(1) 撮影画像から予め指定された種類に対応する追尾被写体を検出し、
検出した追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する被写体動き予測ベクトル算出部と、
前記動き予測ベクトルに基づいて、前記追尾被写体を追尾するためのカメラ制御信号を生成するカメラ制御信号生成部を有する画像処理装置。
前記撮影画像から、指定された種類に対応する追尾被写体を検出する追尾被写体識別部と、
前記追尾被写体識別部が検出した追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する追尾被写体種類&姿勢対応被写体動き予測ベクトル算出部を有する(1)に記載の画像処理装置。
学習データを用いた追尾被写体識別処理と、動き予測ベクトル算出処理を実行する(1)または(2)に記載の画像処理装置。
ユーザに追尾被写体の種類を選択させるためのUI(ユーザインタフェース)を表示する表示部を有し、
前記被写体動き予測ベクトル算出部は、
前記UIを利用してユーザが指定した追尾被写体の種類に対応する種類の被写体を前記撮影画像から検出して、検出した追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する(1)~(3)いずれかに記載の画像処理装置。
ユーザによる自動追尾モード開始入力に応じて、前記撮影画像から予め指定された種類の追尾被写体の検出処理を開始する(1)~(4)いずれかに記載の画像処理装置。
学習データに基づいて生成されるニューラルネットワークを用いて、前記撮影画像から、ユーザの指定した種類の追尾被写体を検出する追尾被写体識別部を有する(1)~(5)いずれかに記載の画像処理装置。
学習データに基づいて生成されるニューラルネットワークを用いて、追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する追尾被写体種類&姿勢対応被写体動き予測ベクトル算出部を有する(1)~(6)いずれかに記載の画像処理装置。
ユーザの指定した種類の追尾被写体が、前記撮影画像内に複数、検出された場合、
予め設定された被写体追尾モード設定情報に従って追尾被写体を決定する(1)~(7)いずれかに記載の画像処理装置。
(A)複数被写体追尾モード
(B)中心被写体追尾モード
(C)最大被写体追尾モード
上記(A)~(B)のいずれかのモードに従って追尾被写体を決定する(8)に記載の画像処理装置。
追尾被写体の種類と姿勢に応じた動き予測ベクトルを記録したテーブルを参照して、追尾被写体の種類と姿勢に応じた動き予測ベクトルを取得する(1)~(9)いずれかに記載の画像処理装置。
追尾被写体の画像内の大きさを考慮した動き予測ベクトルの算出を実行する(1)~(10)いずれかに記載の画像処理装置。
過去の撮影画像から得られる追尾被写体の動きを反映した実測動きベクトルを利用して動き予測ベクトルを算出する(1)~(11)いずれかに記載の画像処理装置。
最新の撮影画像から算出した動き予測動きベクトルと、過去の撮影画像から得られる追尾被写体の動きを反映した実測動きベクトルを比較して、前記予測動きベクトルを補正する(1)~(12)いずれかに記載の画像処理装置。
前記被写体動き予測ベクトル算出部が算出した動き予測ベクトルに基づいて、前記追尾被写体の追尾画像を撮影するためのカメラ方向の制御信号を生成する(1)~(13)いずれかに記載の画像処理装置。
前記被写体動き予測ベクトル算出部が算出した動き予測ベクトルに基づいて、前記追尾被写体の追尾画像を撮影するためのカメラのパン、またはチルト、またはズームの少なくともいずれかのカメラ制御信号を生成する(1)~(14)いずれかに記載の画像処理装置。
前記カメラは、
撮影画像から予め指定された種類に対応する追尾被写体を検出し、
検出した追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する被写体動き予測ベクトル算出部と、
前記動き予測ベクトルに基づいて、前記追尾被写体を追尾するためのカメラ制御信号を生成するカメラ制御信号生成部を有し、
前記雲台制御部は、
前記カメラ制御信号に基づいて、前記追尾被写体の追尾画像を撮影するための雲台制御を実行する画像処理システム。
前記撮影画像から、指定された種類に対応する追尾被写体を検出する追尾被写体識別部と、
前記追尾被写体識別部が検出した追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する追尾被写体種類&姿勢対応被写体動き予測ベクトル算出部を有する(16)に記載の画像処理システム。
被写体動き予測ベクトル算出部が、
撮影画像から予め指定された種類に対応する追尾被写体を検出し、
検出した追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する被写体動き予測ベクトル算出ステップと、
カメラ制御信号生成部が、
前記動き予測ベクトルに基づいて、前記追尾被写体を追尾するためのカメラ制御信号を生成するカメラ制御信号生成ステップを実行する画像処理方法。
具体的には、例えば、撮像部から入力する撮影画像から予め指定された種類の追尾被写体を検出し、検出した追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する被写体動き予測ベクトル算出部と、被写体動き予測ベクトル算出部が算出した動き予測ベクトルに基づいて、前記追尾被写体の追尾画像を撮影するためのカメラ制御信号を生成するカメラ制御信号生成部を有する。被写体動き予測ベクトル算出部は、ニューラルネットワーク等を用いて、撮影画像からユーザの指定した種類の追尾被写体の検出処理と動き予測ベクトル算出処理を実行する。
本構成により、追尾被写体の種類と姿勢に対応する動き予測ベクトルを算出して、被写体追尾画像の撮影に必要なカメラ制御信号を生成する装置、方法が実現される。
11 カメラ
12 雲台
13 雲台制御部
15 カメラ表示部
16 追尾被写体種類選択UI
17 自動追尾モード設定アイコン
18 撮影(録画)開始指示アイコン
30 通信端末
31 追尾被写体種類選択UI
32 自動追尾モード設定アイコン
338 撮影(録画)開始指示アイコン
100 画像処理装置
101 入力部
102 撮像部
110 被写体動き予測ベクトル生成部
111 追尾被写体識別部
112被写体推定用学習データ
113 追尾被写体種類&姿勢対応動き予測ベクトル算出部
114 追尾被写体種類&姿勢対応動き予測ベクトル推定用学習データ
121 カメラ制御信号生成部
122 カメラ(雲台)駆動部
201 追尾被写体種類指定情報
202 撮影画像
203 追尾被写体検出情報
204 追尾被写体種類&姿勢対応動き予測ベクトル
Claims (18)
- 撮影画像から予め指定された種類に対応する追尾被写体を検出し、
検出した追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する被写体動き予測ベクトル算出部と、
前記動き予測ベクトルに基づいて、前記追尾被写体を追尾するためのカメラ制御信号を生成するカメラ制御信号生成部を有する画像処理装置。 - 前記被写体動き予測ベクトル算出部は、
前記撮影画像から、指定された種類に対応する追尾被写体を検出する追尾被写体識別部と、
前記追尾被写体識別部が検出した追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する追尾被写体種類&姿勢対応被写体動き予測ベクトル算出部を有する請求項1に記載の画像処理装置。 - 前記被写体動き予測ベクトル算出部は、
学習データを用いた追尾被写体識別処理と、動き予測ベクトル算出処理を実行する請求項1に記載の画像処理装置。 - 前記画像処理装置は、
ユーザに追尾被写体の種類を選択させるためのUI(ユーザインタフェース)を表示する表示部を有し、
前記被写体動き予測ベクトル算出部は、
前記UIを利用してユーザが指定した追尾被写体の種類に対応する種類の被写体を前記撮影画像から検出して、検出した追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する請求項1に記載の画像処理装置。 - 前記画像処理装置は、
ユーザによる自動追尾モード開始入力に応じて、前記撮影画像から予め指定された種類の追尾被写体の検出処理を開始する請求項1に記載の画像処理装置。 - 前記被写体動き予測ベクトル算出部は、
学習データに基づいて生成されるニューラルネットワークを用いて、前記撮影画像から、ユーザの指定した種類の追尾被写体を検出する追尾被写体識別部を有する請求項1に記載の画像処理装置。 - 前記被写体動き予測ベクトル算出部は、
学習データに基づいて生成されるニューラルネットワークを用いて、追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する追尾被写体種類&姿勢対応被写体動き予測ベクトル算出部を有する請求項1に記載の画像処理装置。 - 前記被写体動き予測ベクトル算出部は、
ユーザの指定した種類の追尾被写体が、前記撮影画像内に複数、検出された場合、
予め設定された被写体追尾モード設定情報に従って追尾被写体を決定する請求項1に記載の画像処理装置。 - 前記被写体動き予測ベクトル算出部は、
(A)複数被写体追尾モード
(B)中心被写体追尾モード
(C)最大被写体追尾モード
上記(A)~(B)のいずれかのモードに従って追尾被写体を決定する請求項8に記載の画像処理装置。 - 前記被写体動き予測ベクトル算出部は、
追尾被写体の種類と姿勢に応じた動き予測ベクトルを記録したテーブルを参照して、追尾被写体の種類と姿勢に応じた動き予測ベクトルを取得する請求項1に記載の画像処理装置。 - 前記被写体動き予測ベクトル算出部は、
追尾被写体の画像内の大きさを考慮した動き予測ベクトルの算出を実行する請求項1に記載の画像処理装置。 - 前記被写体動き予測ベクトル算出部は、
過去の撮影画像から得られる追尾被写体の動きを反映した実測動きベクトルを利用して動き予測ベクトルを算出する請求項1に記載の画像処理装置。 - 前記被写体動き予測ベクトル算出部は、
最新の撮影画像から算出した動き予測動きベクトルと、過去の撮影画像から得られる追尾被写体の動きを反映した実測動きベクトルを比較して、前記予測動きベクトルを補正する請求項1に記載の画像処理装置。 - 前記カメラ制御信号生成部は、
前記被写体動き予測ベクトル算出部が算出した動き予測ベクトルに基づいて、前記追尾被写体の追尾画像を撮影するためのカメラ方向の制御信号を生成する請求項1に記載の画像処理装置。 - 前記カメラ制御信号生成部は、
前記被写体動き予測ベクトル算出部が算出した動き予測ベクトルに基づいて、前記追尾被写体の追尾画像を撮影するためのカメラのパン、またはチルト、またはズームの少なくともいずれかのカメラ制御信号を生成する請求項1に記載の画像処理装置。 - 雲台に装着されたカメラと、前記雲台を制御する雲台制御部を有する画像処理システムであり、
前記カメラは、
撮影画像から予め指定された種類に対応する追尾被写体を検出し、
検出した追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する被写体動き予測ベクトル算出部と、
前記動き予測ベクトルに基づいて、前記追尾被写体を追尾するためのカメラ制御信号を生成するカメラ制御信号生成部を有し、
前記雲台制御部は、
前記カメラ制御信号に基づいて、前記追尾被写体の追尾画像を撮影するための雲台制御を実行する画像処理システム。 - 前記カメラの被写体動き予測ベクトル算出部は、
前記撮影画像から、指定された種類に対応する追尾被写体を検出する追尾被写体識別部と、
前記追尾被写体識別部が検出した追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する追尾被写体種類&姿勢対応被写体動き予測ベクトル算出部を有する請求項16に記載の画像処理システム。 - 画像処理装置において実行する画像処理方法であり、
被写体動き予測ベクトル算出部が、
撮影画像から予め指定された種類に対応する追尾被写体を検出し、
検出した追尾被写体の種類と姿勢に応じた動き予測ベクトルを算出する被写体動き予測ベクトル算出ステップと、
カメラ制御信号生成部が、
前記動き予測ベクトルに基づいて、前記追尾被写体を追尾するためのカメラ制御信号を生成するカメラ制御信号生成ステップを実行する画像処理方法。
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP20899815.3A EP4075785A4 (en) | 2019-12-09 | 2020-10-28 | Image processing apparatus, image processing system, and image processing method |
| JP2021563781A JP7435621B2 (ja) | 2019-12-09 | 2020-10-28 | 画像処理装置、および画像処理システム、並びに画像処理方法 |
| US17/756,581 US20230007167A1 (en) | 2019-12-09 | 2020-10-28 | Image processing device and image processing system, and image processing method |
| CN202080084455.XA CN114762316B (zh) | 2019-12-09 | 2020-10-28 | 图像处理设备、图像处理系统和图像处理方法 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019-222440 | 2019-12-09 | ||
| JP2019222440 | 2019-12-09 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2021117367A1 true WO2021117367A1 (ja) | 2021-06-17 |
Family
ID=76329742
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2020/040443 Ceased WO2021117367A1 (ja) | 2019-12-09 | 2020-10-28 | 画像処理装置、および画像処理システム、並びに画像処理方法 |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20230007167A1 (ja) |
| EP (1) | EP4075785A4 (ja) |
| JP (1) | JP7435621B2 (ja) |
| CN (1) | CN114762316B (ja) |
| WO (1) | WO2021117367A1 (ja) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7706945B2 (ja) * | 2021-06-14 | 2025-07-14 | キヤノン株式会社 | 電子機器、電子機器の制御方法、プログラム、記憶媒体 |
| CN113489895B (zh) * | 2021-06-23 | 2022-05-31 | 荣耀终端有限公司 | 确定推荐场景的方法及电子设备 |
| US12356076B2 (en) * | 2022-05-24 | 2025-07-08 | Canon Kabushiki Kaisha | Image capture control device, image capture device, image capture control method, and non-transitory computer-readable storage medium |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008276214A (ja) * | 2007-04-04 | 2008-11-13 | Nikon Corp | デジタルカメラ |
| JP2010154391A (ja) | 2008-12-26 | 2010-07-08 | Panasonic Corp | 自動追尾カメラ装置 |
| JP2015191074A (ja) * | 2014-03-27 | 2015-11-02 | キヤノン株式会社 | 撮像装置 |
| WO2015170776A1 (ja) * | 2014-05-07 | 2015-11-12 | 日本電気株式会社 | 物体検出装置、物体検出方法および物体検出システム |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20030044437A (ko) * | 2001-11-30 | 2003-06-09 | (주)혜림 | 제어 네트워크를 기반으로 하는 영상 객체 인식방법 |
| EP1748378B1 (en) * | 2005-07-26 | 2009-09-16 | Canon Kabushiki Kaisha | Image capturing apparatus and image capturing method |
| JP4304639B2 (ja) * | 2007-01-16 | 2009-07-29 | ソニー株式会社 | 画像処理装置、画像処理方法、およびプログラム |
| KR20110075250A (ko) * | 2009-12-28 | 2011-07-06 | 엘지전자 주식회사 | 객체 추적 모드를 활용한 객체 추적 방법 및 장치 |
| JP2012253451A (ja) * | 2011-05-31 | 2012-12-20 | Jvc Kenwood Corp | 撮像装置及びプログラム |
| JP2015145901A (ja) * | 2014-01-31 | 2015-08-13 | キヤノン株式会社 | 撮像装置 |
| US9696404B1 (en) * | 2014-05-06 | 2017-07-04 | The United States Of America As Represented By The Secretary Of The Air Force | Real-time camera tracking system using optical flow feature points |
| CN104113698A (zh) * | 2014-08-06 | 2014-10-22 | 北京北纬通信科技股份有限公司 | 应用于图像捕获设备的模糊图像处理方法和系统 |
| CN106688228B (zh) * | 2014-09-10 | 2019-06-14 | 富士胶片株式会社 | 摄像控制装置、摄像控制方法、相机、及相机系统 |
| CN106716989B (zh) * | 2014-09-10 | 2020-02-28 | 富士胶片株式会社 | 摄像装置、摄像方法及程序 |
| JP2017204795A (ja) * | 2016-05-13 | 2017-11-16 | キヤノン株式会社 | 追尾装置 |
| CN106651904B (zh) * | 2016-12-02 | 2019-08-09 | 北京空间机电研究所 | 一种宽尺寸范围多空间目标捕获跟踪方法 |
| US11399137B2 (en) * | 2018-08-10 | 2022-07-26 | Aurora Flight Sciences Corporation | Object-tracking system |
| WO2020078900A1 (en) * | 2018-10-15 | 2020-04-23 | Starship Technologies Oü | Method and system for operating a robot |
| US10872424B2 (en) * | 2018-11-19 | 2020-12-22 | Accenture Global Solutions Limited | Object tracking using object attributes |
| US11574089B2 (en) * | 2019-06-28 | 2023-02-07 | Zoox, Inc. | Synthetic scenario generator based on attributes |
-
2020
- 2020-10-28 WO PCT/JP2020/040443 patent/WO2021117367A1/ja not_active Ceased
- 2020-10-28 EP EP20899815.3A patent/EP4075785A4/en active Pending
- 2020-10-28 JP JP2021563781A patent/JP7435621B2/ja active Active
- 2020-10-28 US US17/756,581 patent/US20230007167A1/en not_active Abandoned
- 2020-10-28 CN CN202080084455.XA patent/CN114762316B/zh active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008276214A (ja) * | 2007-04-04 | 2008-11-13 | Nikon Corp | デジタルカメラ |
| JP2010154391A (ja) | 2008-12-26 | 2010-07-08 | Panasonic Corp | 自動追尾カメラ装置 |
| JP2015191074A (ja) * | 2014-03-27 | 2015-11-02 | キヤノン株式会社 | 撮像装置 |
| WO2015170776A1 (ja) * | 2014-05-07 | 2015-11-12 | 日本電気株式会社 | 物体検出装置、物体検出方法および物体検出システム |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP4075785A4 |
Also Published As
| Publication number | Publication date |
|---|---|
| EP4075785A1 (en) | 2022-10-19 |
| US20230007167A1 (en) | 2023-01-05 |
| CN114762316A (zh) | 2022-07-15 |
| JP7435621B2 (ja) | 2024-02-21 |
| CN114762316B (zh) | 2025-02-18 |
| JPWO2021117367A1 (ja) | 2021-06-17 |
| EP4075785A4 (en) | 2023-01-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12165358B2 (en) | Main subject determining apparatus, image capturing apparatus, main subject determining method, and storage medium | |
| US8824802B2 (en) | Method and system for gesture recognition | |
| JP7435621B2 (ja) | 画像処理装置、および画像処理システム、並びに画像処理方法 | |
| CN112703533A (zh) | 对象跟踪 | |
| JP2009089077A5 (ja) | ||
| JP5001930B2 (ja) | 動作認識装置及び方法 | |
| JP6210234B2 (ja) | 画像処理システム、画像処理方法及びプログラム | |
| CN112119627A (zh) | 基于云台的目标跟随方法、装置、云台和计算机存储介质 | |
| JP2019186955A (ja) | 情報処理システム、情報処理方法及びプログラム | |
| CN109451240B (zh) | 对焦方法、装置、计算机设备和可读存储介质 | |
| JP6575845B2 (ja) | 画像処理システム、画像処理方法及びプログラム | |
| JP2020052822A (ja) | 情報処理装置、認証システムおよびそれらの制御方法、プログラム | |
| US11394873B2 (en) | Control apparatus, control method, and recording medium | |
| WO2020235401A1 (ja) | 画像処理装置、および画像処理方法、並びにプログラム | |
| US11882363B2 (en) | Control apparatus and learning apparatus and control method | |
| JP2021056885A (ja) | 検出装置、検出方法、及びプログラム | |
| JP7332047B2 (ja) | 追跡装置、追跡システム、追跡方法、およびプログラム | |
| US20230177860A1 (en) | Main object determination apparatus, image capturing apparatus, and method for controlling main object determination apparatus | |
| US9761009B2 (en) | Motion tracking device control systems and methods | |
| NL2011771C2 (en) | Method and apparatus for acquiring images. | |
| US12418713B2 (en) | Main object determination apparatus, imaging apparatus, and control method for controlling main object determination apparatus | |
| JP2023161440A (ja) | 映像処理装置及びその制御方法及びプログラム | |
| JP2022086194A (ja) | 情報処理装置及びその制御方法、並びにプログラム | |
| EP4187912B1 (en) | Camera control apparatus, camera control method, and non-transitory storage medium | |
| JP7566471B2 (ja) | 画像処理装置、撮像装置、画像処理方法およびプログラム |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20899815 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2021563781 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2020899815 Country of ref document: EP Effective date: 20220711 |
|
| WWG | Wipo information: grant in national office |
Ref document number: 202080084455.X Country of ref document: CN |