WO2021186472A1 - Procédé et système de réalisation d'une exposition contrôlée de rayons ultraviolets (uv) - Google Patents
Procédé et système de réalisation d'une exposition contrôlée de rayons ultraviolets (uv) Download PDFInfo
- Publication number
- WO2021186472A1 WO2021186472A1 PCT/IN2021/050272 IN2021050272W WO2021186472A1 WO 2021186472 A1 WO2021186472 A1 WO 2021186472A1 IN 2021050272 W IN2021050272 W IN 2021050272W WO 2021186472 A1 WO2021186472 A1 WO 2021186472A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- user
- source
- dosage
- microcontroller
- ultraviolet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/117—Identification of persons
- A61B5/1171—Identification of persons based on the shapes or appearances of their bodies or parts thereof
- A61B5/1176—Recognition of faces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0626—Monitoring, verifying, controlling systems and methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0626—Monitoring, verifying, controlling systems and methods
- A61N2005/0627—Dose monitoring systems and methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0632—Constructional aspects of the apparatus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0636—Irradiating the whole body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0658—Radiation therapy using light characterised by the wavelength of light used
- A61N2005/0661—Radiation therapy using light characterised by the wavelength of light used ultraviolet
Definitions
- the present disclosure generally relates to a system and method for performing exposure of ultraviolet (UV) rays to a user. More particularly, the present disclosure relates to the system and method of performing controlled exposure of ultraviolet (UV) rays to the user.
- UV ultraviolet
- UV radiation is an essential for various health purposes including, such as but not limited to, production of Vitamin ‘D’, regulation of insulin level, diabetes control, supporting lung function, and controlling the expression of genes in cancer.
- UV radiation In case, a person is deprived from sufficient amount of ultraviolet (UV) radiations, the person may be subject to rickets, bone weakening, muscle pain, and body aches.
- UV radiation being a good source of UV radiations, people are frequently advised by doctors to be exposed to the sunlight for obtaining sufficient amount of ultraviolet (UV) radiations.
- UV radiation ultraviolet
- a UV exposure system is equipped with a UV light source that provides UV rays to the user, upon activation.
- UV exposure system are not equipped with a control system to control and deliver optimum amount of UV rays to the user.
- risk factors including skin cancer, pre-mature aging, skin damage, skin burns, eye damage, and immune suppression.
- an operator manually activates the UV exposure system to expose the user for a predefined amount of time, and thereafter manually deactivates the UV exposure system upon completion of the predefined amount of time.
- Such manual control of the UV exposure system may be inaccurate and subject to errors. Moreover, in such UV exposure system, it may be required for the user to dedicate the time for being exposed to the UV rays. Furthermore, in case the user wishes to be exposed to the UV rays in a number of small dosages, the operator may cause a manual error in recording the dosage already delivered to the user.
- One object of the present disclosure relates to a method of performing controlled exposure of ultraviolet (UV) rays to a user, comprising: capturing, with use of a camera unit, an image of the user positioned opposite to a camera unit; performing face recognition on the captured image, with use of a microcontroller, to identify a user profile of the user; obtaining, with use of the microcontroller, information on a dosage value delivered to the user of the identified user profile in a defined amount of dosage time period; comparing, with use of the microcontroller, the dosage value with a threshold value; and performing an action, with use of the microcontroller, on the UV source based on the comparison between the dosage value and the threshold value.
- UV ultraviolet
- the method is initiated upon detection of a presence of a user opposite to the camera unit, with use of the camera unit.
- the action performed by the microcontroller includes: activating the UV source, with use of the microcontroller, to expose the user with UV rays in case the dosage value is below the threshold value; and deactivating the UV source, with use of the microcontroller, in case the dosage value is above the threshold value.
- UV exposure system for performing controlled exposure of the UV rays to a user.
- the UV exposure system comprising a camera unit, a UV source, and a microcontroller.
- the camera unit being adapted to capture an image of the user positioned opposite to the camera unit.
- the UV source adapted to expose the user with UV rays when actuated.
- the microcontroller being adapted to: perform face recognition on the captured image to identify a user profile of the user; obtain information on a dosage value delivered to the user of the identified user profile in a defined amount of dosage time period; compare the dosage value with a threshold value; and perform an action on the UV source based on the comparison between the dosage value and the threshold value.
- the action performed by the microcontroller includes: activating the UV source, with use of the microcontroller, to expose the user with UV rays in case the dosage value is below the threshold value; and deactivating the UV source, with use of the microcontroller, in case the dosage value is above the threshold value.
- Yet another object of the invention relates to integrally installing of the ultraviolet (UV) exposure system for performing the controlled exposure of the UV rays to the user, on to a furniture unit.
- the furniture unit is either of a household furniture unit including a mirror, a headboard of a bedding arrangement, and/or a television unit; or a hospital furniture unit, such as but not limited to, an incubator, a hospital bedding arrangement, and / or a hospital headwall.
- each of the camera unit, the UV source, and the microcontroller of the UV exposure system are integrally installed on the furniture unit.
- FIG. 1 illustrates a schematic of a household furniture unit implemented with an ultraviolet (UV) exposure system, illustrating various components of the UV exposure system, in accordance with the concepts of the present disclosure.
- UV ultraviolet
- FIG 2 illustrates a flowchart of a method of performing controlled exposure of ultraviolet (UV) rays to a user, as employed by the UV exposure system of Figure 1 , in accordance with the concepts of the present disclosure.
- UV ultraviolet
- UV ultraviolet
- the present disclosure also discloses a method [104] employed by the UV exposure system [102], for performing controlled exposure of the UV rays to the users.
- the present disclosure discloses a furniture unit [100] that integrally installs the UV exposure system [102] for performing controlled exposure of the UV rays to the users.
- the present disclosure hereinafter will describe the furniture unit [100] and integral installation of the UV exposure system [102] on the furniture unit [100], it may be obvious to a person ordinarily skilled in the art that the concepts of the present disclosure may also extend to a bathing unit and integral installation of the UV exposure system [102] on the bathing unit.
- integral installation of the UV exposure system [102] on the bathing unit also lies within a scope of the present disclosure, wherein the bathing unit may embody a bathing shower, a bathing tub, a jacuzzi, and/or a bathing cabinet.
- the bathing unit may embody a bathing shower, a bathing tub, a jacuzzi, and/or a bathing cabinet.
- Fig. 1 shows a schematic of the furniture unit [100] employing the ultraviolet (UV) exposure system [102], for performing controlled exposure of the UV rays to the users.
- the UV exposure system [102] is integrally installed on the furniture unit [100], to facilitate controlled exposure of the UV rays to a user, while the user uses the furniture unit [100].
- the furniture unit [100] may embody, any household furniture unit, such as but not limited to, a headboard of a bedding arrangement, a vanity mirror, a study table, a kitchen cabinet, and the like. With such embodiment of the furniture unit [100], the users are able to perform a household task and concurrently get exposed to the UV rays.
- the furniture unit [100] may embody, any hospital furniture unit, such as but not limited to, an incubator, a hospital bedding arrangement, a hospital headwall, and the like.
- Concepts of the present disclosure hereinafter will be defined as UV exposure system [102] been integrally installed on to the vanity mirror [100] as a preferred embodiment, however it may be obvious to a person ordinarily skilled in the art that the concepts of the present may also be applied to the UV exposure system [102] been integrally installed on other aforementioned examples of the furniture unit [100].
- the furniture unit [100] may be referred to as the vanity mirror [100], interchangeably hereinafter.
- the vanity mirror [100] may be used while applying make-ups or getting ready for a party, and the like.
- the vanity mirror [100] may be any silver polished mirror that reflects an image of a user to be viewed by the user.
- the vanity mirror [100] may include any shape, profile, and structure, defining a peripheral portion [106].
- the UV exposure system [102] is integrally installed on the vanity mirror [100]. Notably, as the vanity mirror [100] is frequently used by users, integrally installing the UV exposure system [102] on to the vanity mirror [100] corresponds to relatively promised exposure of the UV rays to the users.
- the UV exposure system [102] includes a UV source [108], a camera unit [110], and a microcontroller [112].
- the UV source [108] is a part of a light unit [114] installed along the peripheral portion [106] of the vanity mirror [100].
- the light unit [114] has alternate portions of a light source [114a] and the UV source [108].
- the light source [114a] outputs visible light to be projected on to the user’s body using the vanity mirror [100], for improved illumination.
- the visible light outputted by the light source [114a] is within a range of 400 - 700nm.
- the UV source [108] outputs UV light to output the UV rays be projected on to the user’s body for exposure to the UV rays.
- the UV rays outputted by the UV source [108] to be exposed to the user is within a range of 280 - 320 nm.
- Each of the UV source [108] and the light source [114a] may be controlled for activation and / or deactivation by the microcontroller [112], as and when required.
- the camera unit [110] is positioned on a top center position of the vanity mirror [100].
- the camera unit [110] is adapted to detect a presence of a user positioned in front of the vanity mirror [100].
- the camera unit [110] is suitably positioned to capture images of a user positioned opposite the camera unit [110] (and opposite thus the vanity mirror [100]). It may be noted that the camera unit [110] is suitably positioned on the vanity mirror [100], such that the camera unit [110] is focused on and captures the images of a single user, even in case of presence of multiple users positioned opposite therefrom.
- the camera unit [110] may further be controlled by the microcontroller [112], for capturing the images of the user positioned in front of the vanity mirror [100].
- the microcontroller [112] is electrically connected to each of the light source [114a] and the UV source [108] of the lighting unit [114], and the camera unit [110], to control each of the light source [114a], the UV source [108], and the camera unit [110], in accordance to a method [104] of performing controlled exposure of the UV rays to the user as disclosed in the present disclosure.
- the microcontroller [112] is a combination of a memory unit, a processor, and a number of other electronic components, capable of performing the method [104] of controlled exposure of the UV rays to the user.
- the microcontroller [112] may embody either of an 8-bit microcontroller, 16-bit microcontroller, a 32-bit microcontroller, and/or a 64- bit microcontroller.
- Examples of the microcontroller [112] includes, such as but not limited to, an 8081 microcontroller, an 8085 microcontroller, a PIC2x, an Intel 8096, and/or MC68HC12 families.
- the microcontroller [112] is adapted to perform the method [104] of performing controlled exposure of the UV rays to the user.
- the microcontroller [112] stores an information on a dosage value delivered to a number of users corresponding to a number of user profiles in a defined amount of dosage time period.
- the microcontroller [112] has a database that stores information for a number of users, including a user profile (for example a user profile ID), and a dosage value delivered in a defined amount of dosage time period, for each user.
- the dosage time period is a time period between a preset time instance and a current.
- the microcontroller [112] may be programmed to define 00:00 A.M.
- the microcontroller [112] is capable of performing the method [104] of performing controlled exposure of the UV rays to the users.
- the microcontroller [112] is programmed and adapted to perform the following: perform face recognition on the captured image to identify a user profile of the user; obtain a dosage value delivered to the user of the identified user profile in a defined amount of dosage time period; compare the dosage value with a threshold value; and perform an action on the UV source [108] based on the comparison between the dosage value and the threshold value.
- the microcontroller [112] performs actuation of the UV source [108] in case the dosage value is below the threshold value, and performs deactivation of the UV source [108] in case the dosage value is above the threshold value.
- ‘Activation’ of the UV source [108] herein refers to adjusting the UV source [108] to the ON’ mode, in which the UV source [108] exposes the user with UV rays.
- ‘Deactivation’ of the UV source [108] herein refers to: adjusting the UV source [108] in the OFF’ mode, in which the UV source [108] stops exposing the user with UV rays.
- ‘Deactivation’ of the UV source [108] herein refers to: adjusting the UV source [108] in the OFF’ mode if the UV source [108] is previously in the “ON’ mode; and keeping the UV source [108] in the OFF’ mode if the UV source [108] is previously in the OFF’ mode.
- the threshold value may be a value dependent on the user profile, i.e., each user profile may have a different threshold value for each user.
- the threshold value may also be a user-customizable value in place of the prestored value, which can be changed if required.
- FIG. 2 shows a flowchart of the method [104] of performing the controlled exposure of ultraviolet (UV) rays to the users.
- the method [104] initiates at step [202].
- the camera unit [110] detects the presence of the user opposite to the camera unit [110].
- the camera unit [110] upon detection of the presence of the user opposite to the camera unit [110] signals the microcontroller [112] to initiate the method [104] of performing the controlled exposure of ultraviolet (UV) rays to the user.
- the method [104] then proceeds to step [204]
- the microcontroller [112] sends a signal to the camera unit [110], to capture an image of the user positioned opposite to the camera unit [110].
- the camera unit [110] is suitably positioned on the vanity mirror [100] to capture the image of a single user positioned opposite to the camera unit [110]. Therefore, in case of presence of multiple users positioned opposite to the camera unit [110], the camera unit [110] capture the image of the single user positioned opposite to the camera unit [110].
- the camera transfers the captured image to the microcontroller [112].
- the method [104] then proceeds to step [206].
- the microcontroller [112] performs face recognition on the captured image, to identify a user profile of the user whose image is captured.
- the microcontroller [112] runs the face recognition algorithm to identify the user profile of the user whose image is captured.
- the microcontroller [112] stores algorithm for face recognition algorithm to perform the face recognition on the captured image.
- the microcontroller [112] also has a database of user database that stores information for a number of users, including a user profile (for example a user profile ID), and a dosage value delivered in a defined amount of dosage time period, for each user.
- the microcontroller [112] performs face recognition relative to the entire database, to identify a user profile of the user positioned opposite the camera unit [110].
- the method [104] then proceeds to step [208].
- the microcontroller [112] obtains a dosage value delivered to the user of the identified user profile in a defined amount of dosage time period.
- the defined amount of dosage time period is a time period between a preset time instance and a time instance during initiation of the method [104].
- the preset time instance is 00:00 A.M. Therefore, in such embodiments, the defined amount of dosage time period defines the time period elapsed in the day of performing the method [104] until the method [104] is initiated.
- the dosage value obtained at step [208] is the dosage delivered to the user of the identified user profile during the same day until the method [104] is initiated. The method [104] then proceeds to step [210].
- the microcontroller [112] compares the dosage value with a threshold value. In particular, the microcontroller [112] identifies if the dosage value delivered to the user of the identified user profile in the defined amount of dosage time period is above/below the threshold value. The method [104] then proceeds to step [212].
- the microcontroller [112] performs an action on the UV source [108] based on the comparison between the dosage value and the threshold value. In particular, based on the comparison, the method [104] proceeds to either of step [212a] or step [212b].
- the microcontroller [112] deactivates the UV source [108] in case the dosage value is above the threshold value.
- the method [104] is terminated.
- the microcontroller [112] activates the UV source [108] to expose the user with UV rays in case the dosage value is below the threshold value.
- the microcontroller [112] activates the UV source [108] for at least a defined amount of active time period.
- step [212c] the microcontroller [112] deactivates the UV source [108] for at least a defined amount of halt time period.
- step [212d] the microcontroller [112] increments the dosage value delivered to the user of the identified user profile.
- step [212d] the method [104] proceeds to perform step [202] again.
- the method [104] disclosed in the present disclosure provides for deactivating the UV source [108] in case the dosage value reaches above the threshold value, the method [104] provides for limiting the exposure of the user to the UV rays from the UV source [108] upto the threshold value. Therefore, over exposure of the UV rays from the UV source [108], is avoided. Moreover, as the method [104] disclosed in the present disclosure activates the UV source [108] for the defined amount of active time period only and deactivates thereafter, the method [104] provides for avoiding over exposure of the user to the UV rays from the UV source [108].
- the method [104] provides the UV rays exposure to the user by the UV source [108] within a range of 280 nm - 320 nm, such range is relatively safer and provides for safe exposure of the user to the UV rays by the UV source [108].
- the method [104] and the ultraviolet (UV) exposure system [102] are integrally installed on the furniture unit [100], such arrangement provides for exposure of the users to the UV rays by the UV source [108] while the user uses the furniture unit [100].
- the method [104] and the ultraviolet (UV) exposure system [102] is integrally installed on the vanity mirror [100].
- such arrangement of the method [104] and the ultraviolet (UV) exposure system [102] with the vanity mirror [100] provides for controlled exposure of the UV rays by the UV source [108] of the ultraviolet (UV) exposure system [102] and concurrent use of the vanity mirror [100].
- such arrangement provides for controlled exposure of the UV rays from the UV source [108] to the user while using the vanity mirror [100].
- the method [104] and the ultraviolet (UV) exposure system [102] may be integrally installed on a bathing shower.
- such arrangement of the method [104] and the ultraviolet (UV) exposure system [102] with the vanity mirror [100] provides for controlled exposure of the UV rays by the UV source [108] of the ultraviolet (UV) exposure system [102] and concurrently using the bathing shower for bathing purposes.
- such arrangement provides for controlled exposure of the UV rays from the UV source [108] to the user while using the bathing shower.
- an ultraviolet (UV) exposure system [102] and the method [104] as disclosed in the present disclosure provides for performing controlled exposure of ultraviolet (UV) rays to a user.
- UV ultraviolet
- the user is able to produce enough Vitamin ‘D’, which provides for improved bone strength, better regulation of insulin level, diabetes control, improved lung function support, and controlled expression of genes in cancer. This avoids chances of rickets, bone weakening, and muscle pain to the user.
- the ultraviolet (UV) exposure system [102] and the method [104] as disclosed in the present disclosure provides for controlled exposure of the user to the UV ray, while the user performs other household work of using the furniture unit [100].
- the user may use the furniture unit [100] (for example may use the vanity mirror unit [100]), and concurrently get exposed to the UV rays by the disclosed UV exposure system [102] and the method [104]. While doing so, the user is also prevented from over exposure of the UV rays, thereby preventing the user from skin cancer, pre-mature aging, skin damage, skin burns, eye damage, and immune suppression.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Studio Devices (AREA)
Abstract
L'invention concerne un procédé [104] d'exposition contrôlée de rayons ultraviolets (UV) à un utilisateur, à l'aide d'un système d'exposition aux UV [102] comprenant une unité de caméra [110], une source UV [108] et un microcontrôleur [112]. Le procédé [104] comprend : la capture d'une image de l'utilisateur ; la réalisation d'une reconnaissance faciale sur l'image capturée pour identifier un profil d'utilisateur ; l'obtention d'informations sur la valeur de dosage administrée à l'utilisateur dans une quantité définie de périodes de temps de dosage ; la comparaison de la valeur de dosage à une valeur de seuil ; et la réalisation d'une action sur la source UV [108] sur la base de la comparaison. L'action comprend : l'activation de la source UV [108] si la valeur de dosage est inférieure à la valeur de seuil ; et la désactivation de la source UV [108], si la valeur de dosage est supérieure à la valeur de seuil.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/912,344 US20230133529A1 (en) | 2020-03-19 | 2021-03-17 | Method and system of performing controlled exposure of ultraviolet (uv) rays |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IN202011011956 | 2020-03-19 | ||
| IN202011011956 | 2020-03-19 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2021186472A1 true WO2021186472A1 (fr) | 2021-09-23 |
Family
ID=77769474
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IN2021/050272 Ceased WO2021186472A1 (fr) | 2020-03-19 | 2021-03-17 | Procédé et système de réalisation d'une exposition contrôlée de rayons ultraviolets (uv) |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US20230133529A1 (fr) |
| WO (1) | WO2021186472A1 (fr) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160030766A1 (en) * | 2014-08-01 | 2016-02-04 | Hygenia, LLC | Hand Sanitizer Station |
| WO2016176360A1 (fr) * | 2015-04-27 | 2016-11-03 | Benesol, Inc. | Systèmes et procédés pour photothérapie uvb ciblée pour des troubles auto-immuns et d'autres indications |
| US20180071414A1 (en) * | 2015-05-04 | 2018-03-15 | One Health Labs, Inc. | UV-C Based Skin Sterilization Device |
| WO2019125809A1 (fr) * | 2017-12-21 | 2019-06-27 | Basf Corporation | Dispositif de traitement de gazon |
| CN209060072U (zh) * | 2018-09-10 | 2019-07-05 | 深圳市开颜医疗器械有限公司 | 一种消毒照明系统 |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6173068B1 (en) * | 1996-07-29 | 2001-01-09 | Mikos, Ltd. | Method and apparatus for recognizing and classifying individuals based on minutiae |
| US20110046702A1 (en) * | 2009-08-20 | 2011-02-24 | Saunaworks, Inc. | Infrared therapy chamber |
| IL249680B (en) * | 2016-12-21 | 2018-05-31 | Zabari Lidor | Self-sealing and disinfecting shower head |
| US10834482B2 (en) * | 2017-12-05 | 2020-11-10 | The Government of the United States of America, as represented by the Secretary of Homeland Security | Systems and methods for integrating first responder technologies |
| EP3668276A1 (fr) * | 2018-12-13 | 2020-06-17 | Seaborough Life Science B.V. | Photobiomodulation (pbm) dans l'éclairage général |
-
2021
- 2021-03-17 WO PCT/IN2021/050272 patent/WO2021186472A1/fr not_active Ceased
- 2021-03-17 US US17/912,344 patent/US20230133529A1/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160030766A1 (en) * | 2014-08-01 | 2016-02-04 | Hygenia, LLC | Hand Sanitizer Station |
| WO2016176360A1 (fr) * | 2015-04-27 | 2016-11-03 | Benesol, Inc. | Systèmes et procédés pour photothérapie uvb ciblée pour des troubles auto-immuns et d'autres indications |
| US20180071414A1 (en) * | 2015-05-04 | 2018-03-15 | One Health Labs, Inc. | UV-C Based Skin Sterilization Device |
| WO2019125809A1 (fr) * | 2017-12-21 | 2019-06-27 | Basf Corporation | Dispositif de traitement de gazon |
| CN209060072U (zh) * | 2018-09-10 | 2019-07-05 | 深圳市开颜医疗器械有限公司 | 一种消毒照明系统 |
Also Published As
| Publication number | Publication date |
|---|---|
| US20230133529A1 (en) | 2023-05-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4528781B2 (ja) | X線装置のイメージングパラメータを調整する装置及び方法 | |
| Stringham et al. | Action spectrum for photophobia | |
| US9545524B2 (en) | Light therapy device | |
| US6870673B2 (en) | Method and overhead system for performing a plurality of therapeutic functions within a room | |
| Crosson et al. | Treatment of naming in nonfluent aphasia through manipulation of intention and attention: A phase 1 comparison of two novel treatments | |
| Wahnschaffe et al. | Implementation of dynamic lighting in a nursing home: impact on agitation but not on rest-activity patterns | |
| US11730917B2 (en) | Gamma stimulation pulsing light source system with dosage adjustment for gaze angle | |
| CA2983025A1 (fr) | Systemes et procedes pour phototherapie uvb ciblee pour des troubles auto-immuns et d'autres indications | |
| Zhou et al. | Effects of site-specific level adjustments on speech recognition with cochlear implants | |
| Yuda et al. | Suppression of vagal cardiac modulation by blue light in healthy subjects | |
| JP7041245B6 (ja) | 光線療法システム及び方法 | |
| JP2018142422A (ja) | 施療用照明装置および姿見装置 | |
| WO2021186472A1 (fr) | Procédé et système de réalisation d'une exposition contrôlée de rayons ultraviolets (uv) | |
| McAnany et al. | Full-field electroretinography, pupillometry, and luminance thresholds in X-linked retinoschisis | |
| CN110929575A (zh) | 放射治疗病人身份验证方法、装置及放射治疗设备 | |
| Shoeibi et al. | Electrophysiologic evaluation of retinal function in patients with psoriasis and vitiligo | |
| AU2003207978A1 (en) | Dual function ct scan | |
| CN1711057A (zh) | 防止人类近视形成的方法或装置 | |
| CN117157125A (zh) | 家庭光疗装置及相关系统和方法 | |
| CN109192296A (zh) | 一种可穿戴设备管理方法与系统 | |
| Onoda et al. | Event-related potentials in the frontal cortex, hippocampus, and cerebellum during a temporal discrimination task in rats | |
| JP2005296277A (ja) | X線診断装置及びその診断方法 | |
| KR101973115B1 (ko) | 백반증 치료 시스템 및 그 방법 | |
| Van Wieringen et al. | Comparison of procedures to determine electrical stimulation thresholds in cochlear implant users | |
| Freeman et al. | Retinal ganglion cell adaptation to small luminance fluctuations |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21770691 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 21770691 Country of ref document: EP Kind code of ref document: A1 |